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Abstract Multi-context architectures like NATURE enable low-power applications to leverage
fast context switching for improved energy efficiency and lower area footprint. The NATURE
architecture incorporates 16-bit reconfigurable DSP blocks for accelerating arithmetic computa-
tions, however, their fixed precision prevents efficient re-use in mixed-width arithmetic circuits.
This paper presents an improved DSP block architecture for NATURE, with native support for
temporal folding and run-time fracturability. The proposed DSP block can compute multiple
sub-width operations in the same clock cycle and can dynamically switch between sub-width
and full-width operations in different cycles. The NanoMap tool for mapping circuits onto NA-
TURE is extended to exploit the fracturable multiplier unit incorporated in the DSP block. We
demonstrate the efficiency of the proposed dynamically fracturable DSP block by implement-
ing logic-intensive and compute-intensive benchmark applications. Our results illustrate that the
fracturable DSP block can achieve a 53.7% reduction in DSP block utilization and a 42.5% re-
duction in area with a 122.5% reduction in power-delay product without exploiting logic folding.
We also observe an average reduction of 6.43% in power-delay product for circuits that utilize
NATURE’s temporal folding compared to the existing full precision DSP block in NATURE,
leading to highly compact, energy efficient designs.

Keywords Fracturable DSP · Temporal logic folding · NATURE architecture · Baugh-Wooley
Multiplier

R. Warrier
E-mail: rakesh3@ntu.edu.sg

S. Shreejith
E-mail: shreejit1@ntu.edu.sg

W. Zhang
E-mail: eeweiz@ust.hk

C. H. Vun
E-mail: achvun@ntu.edu.sg

S. A. Fahmy
E-mail: s.fahmy@warwick.ac.uk

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong
Kong
3 School of Engineering, University of Warwick, United Kingdom



2 Rakesh Warrier1 et al.

1 Introduction

Multi-context reconfigurable platforms like the NATURE architecture [14] aim to extend the
applicability of reconfigurable architectures by providing methods for fast context switching
with minimal resource overheads and energy penalty. NATURE employs Temporal Logic Folding
(TLF) at a fine-grained level, with distributed nano RAMs that enable reconfiguration of Look-
Up Tables (LUTs) to be achieved in a few picoseconds, much faster than commercial Field
Programmable Gate Arrays (FPGAs). NATURE also supports reconfiguration of coarse-grained
DSP blocks [11] and block RAMs (BRAMs) at similar speeds, making high frequency context
switches feasible to improve area utilization and energy efficiency. The custom mapping tool,
NanoMap [15], maps a circuit netlist to the architecture and generates the context switching
controls automatically for each occupied logic element (LUTs, DSPs, and others), which together
describe the circuit.

Register Transfer Level (RTL) code can utilize mixed precision and custom datapath widths
to achieve required accuracy and performance, but in NATURE these are seldom translated
efficiently to hard-blocks like DSPs. The fixed precision on these hard DSP blocks often results
in sub-optimal utilization, especially in cases where the data-widths are half the input width of the
DSP block. In such scenarios, the NanoMap tool infers a complete DSP block but does not utilize
the upper bits for computation, resulting in resource and power wastage. Variable precision DSP
blocks have been described in academic research [8, 9] and implemented by commercial vendors
(Altera) [1]. These support different computational precision and re-use of resources. The DSP
blocks in Xilinx FPGAs offer dynamic programmability, that allows their function to be altered
at run-time using special control inputs, improving their flexibility, as shown in [3] where they
are used in the execution unit of a soft-processor. However, the compute precision of these DSP
blocks cannot be altered across clock cycles, preventing them from being reused efficiently in a
mixed precision circuit implementations, specifically on multi-context architectures that support
TLF. Further, commercial FPGA tools do not currently automatically reuse DSP blocks in this
manner, resulting in inefficient implementation in terms of area and power consumption [10].

In this paper, we present an enhanced DSP block architecture for NATURE that natively
supports run-time precision selection and TLF. The proposed DSP block can switch between
sub-width operation mode (2 independent 8×8 operations simultaneously), full width operation
mode, or wider multiplication mode (32×32, 24×16, and 24×8 on a single DSP block) at runtime.
The NanoMap tool is also extended to efficiently map multi-precision arithmetic operations on
to the NATURE architecture that incorporates the proposed DSP block. Compared to a fixed
precision reconfigurable DSP block, our experiments show that the proposed architecture results
in a 63.5% and 76.2% reduction in power consumption and area while handling two half-width
operations (in the same clock cycle) and 75% and 68.2% reduction in DSP block utilization with
up to 122.5% reduction in power-delay product (P-D) across different benchmark circuits. We
also observe that combining TLF with variable precision in DSP block computation provides
significant advantage in (effective) area (1.24×), compared to a high-end Altera Stratix V device
that incorporates variable precision DSP blocks. The proposed DSP architecture uses 16-bit
operands to comply with NATURE architecture; however, the method can be extended to a 32-
bit DSP block that can simultaneously support two 16-bit operations or four 8-bit operations.

2 Background and Related Work

NATURE is a hybrid reconfigurable architecture that can facilitate high-speed low-overhead
dynamic reconfiguration [14]. The Logic Block (LBs) in NATURE are arranged island-style,
connected by reconfigurable routing interconnect. High density, high speed nano RAMs are dis-
tributed in the logic fabric to store configuration bits. The ability to reconfigure NATURE every
few clock cycles leads to the concept of TLF. TLF improves the logic density and area utilization
by folding the logic circuit in time and maps each fold onto the same logic. Different folding levels
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are supported by NATURE, achieving different area/delay characteristics and offers significant
flexibility in exploring area-delay trade-offs.

For efficient mapping of applications onto NATURE, a design automation tool called NanoMap
is used. It performs implementation of a circuit from RTL level to physical level through mul-
tiple steps: logic mapping, temporal clustering, temporal placement and routing, to generate
configuration bits. After identifying the best folding level based on the design constraints and
optimization objectives, LUT and DSP operations are scheduled using Force Directed Scheduling
(FDS). Temporal clustering of LUTs and DSP blocks is performed to simplify the placement and
routing, which is achieved using a customized version of the Versatile Place and Route (VPR) [2]
tool that supports temporal folding. Direct links are incorporated in VPR to cascade DSP blocks
and to route short-distance nets between LBs.

The current fixed-precision DSP block [11] incorporated in the NATURE architecture is
composed of two 16-bit pre-adders, a 16-bit Wallace tree multiplier and a 32-bit ALU unit that
can perform addition, subtraction, 16-bit barrel shifting, and bitwise logical operations. The sub-
modules form each stage of the three stage pipeline in the DSP block, which also incorporates
multiple output registers to store the final result. Multiplexers within the datapath of the DSP
block direct data from/to various stages, allowing numerous combinations of operations to be
implemented on a DSP block. The DSP block operates with a fixed word length of 16-bits, which
results in large wastage when the operands are half-width (8-bytes) or lower.

Modern commercial FPGAs use highly advanced DSP blocks for accelerating complex compu-
tations. Xilinx’s 7-series FPGAs use the DSP48E1 architecture [12], that features an asymmetric
multiplier design (25×18) with fixed precision and a maximum operating frequency of 741 MHz.
DSP48E1 blocks also offer dynamic programmability that allows their function to be altered at
run-time using control inputs, allowing them to be used flexibly. An example case is shown in [3],
where a DSP48E1 block forms the execution unit of a highly efficient soft-processor. Altera’s
variable precision DSP block can perform multiple sub-width operations concurrently (up to 3
9 × 9) with a design-time decision, while also featuring extensions like coefficient memory for
efficient implementation of filters [1]. The literature also describes DSP block architectures from
academic research with feature enhancements for supporting multi-input addition and varied
bit-width multiplications [8, 9]. However, these DSP block architectures are primarily designed
for single-context FPGAs and hence do not support logic folding.

3 Architecture of Fracturable DSP block

3.1 Fracturable Baugh-Wooley (BW) Multiplier with HPM Reduction Tree

Parallel multipliers like the BW multiplier operate in three steps: generation of primary partial
products, compression, and final addition. To compute two sub-multiplications in parallel, we
introduce a fracturing mechanism at the primary Partial Product (PP) generation stage of a 16-
bit multiplier, as shown in Fig. 1. The fracturing mechanism uses configurable gates in addition
to regular AND/NAND gates that are used in generic PP generation, with dynamic configuration
bits that allow their functionality to be altered on a per-cycle basis. The multiplier unit uses
two configuration bits, mode and gate, to determine the mode of operation. An alternative
scheme would be to use independent and isolated PP generation stages for the full bit-width and
half bit-width cases; however, this requires duplication of the PP stages and wide multiplexers
for selecting the active datapath, resulting in larger area overhead, higher power consumption,
and lower operating speeds. In the proposed scheme, a pipeline stage is introduced within the
architecture to reduce the critical path, resulting in higher operating frequency over the existing
DSP block in NATURE. The pre-adder and ALU stages of the DSP block hav been enhanced to
support extended fractured operations like pre-add multiply or multiply-accumulate.

As mentioned, the proposed architecture makes use of other building blocks to generate
the PPs. These are the configurable AND/NAND, Gated-AND, Gated-NAND, Mode-based-
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Fig. 1 Proposed fracturing mechanism of the 16-bit BW Multiplier.

Gated-NAND (Gated-Mode-NAND), XOR (Mode-Invert), Mode-OR-AND (Mode-AND), and
1-bit multiplexers (Mode-Mux). For the lower 16-bit partial products, the structure resembles
an 8 × 8 multiplier, with additional rows above and below the regular 8-bit PPs. The partial
products are generated by regular AND gates and configurable AND/NAND gates, while the
Gated-AND/NAND gates are selectively disabled to allow sub-computations to be performed
in isolation. The upper 16-bit PPs also mirror a similar structure operating on the upper 8 × 8
partial products. Here, the partial products are generated by Gated-AND, Gated-NAND, while
the Gated-Mode-NAND generates logic ‘1’ to enable proper combination within the reduction
tree. By generating the PP in this manner, we allow the logarithmic reduction tree to be reused
for all modes of operation, without requiring any changes to its internal structure, reducing
the area overhead incurred. The output of reduction tree is pipelined (single-stage) to limit the
critical path within the multiplier.

The configuration bits mode and gate determine the three operating modes of the multiplier
at any given time. These can be automatically generated by our tool flow (see 3.2) for altering
mode at run-time. We describe the operation of the circuit in the different modes below.

Regular 16-bit mode: This mode is selected when gate is set to ‘1’ and mode is set to
‘0’. In this case, our circuit falls back to the regular 16 × 16 partial product tree, whereby the
Gated-AND/NAND and Mode-based-Gated-AND/NAND compute regular AND/NAND func-
tions respectively resulting in normal 16×16 partial products, which are then fed to the reduction
tree and further to the final adder to compute the product.

Dual 8×8 mode: This mode is selected when gate is set to ‘1’ and mode is set to ‘1’. In this
scenario, the lower 8-bits of the inputs X and Y are taken as the input to the lower-16 section
while the upper 8-bits of inputs X and Y are taken as inputs to the upper-16 section. With this
configuration chosen, the Gated-AND/NAND computes regular AND/NAND operation, while
the Gated-Mode-NAND gates are forced to value ‘1’. The configurable AND/NAND operates as
a NAND gate, while the Mode-AND chooses the value of ‘1’. This generates two isolated sections
of partial products which are then compressed using the HPM reduction tree. The Gated-Mode-
NAND gates ensure that the sign bits of the lower-16 bits are unaffected (and contained) during
HPM reduction, while allowing the compression of the upper-16 bits in isolation. At the final
adder stage, the multiplexers (Mode-Mux) choose the lower bit of the upper-16 reduced PP,
while the Mode-Invert preserves the sign bit of the lower-16 result.

Single 8 × 8 mode: This mode is selected when gate is set to ‘0’ and mode is set to ‘1’. In
this scenario, the lower 8-bits of inputs X and Y are taken as the input to the lower-16 section
while the upper 8-bits of inputs X and Y are ignored. With this configuration chosen, the Gated-
AND/NAND are completely gated in addition to the Gated-Mode-NAND gates, producing an
output value ‘0’. This gating allows a significant power reduction when the multiplication is
limited to a single 8-bit scope, compared to a regular 16-bit structure operating on 8 bits. As
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Fig. 3 32-bit multiplication using logic folding.

with the fractured mode, the configurable AND/NAND operates as a NAND gate, while the
Mode-AND chooses the value of ‘1’.

Thus by controlling the mode and gate pins at run-time, the multiplier enables computation
of one 16 × 16 or two 8 × 8 in full mode, or a single 8 × 8 multiplication with reduced power
consumption.

DSP Block Architecture: To make effective use of our fracturable computational path, we
have also defined an enhanced DSP block architecture, based on the architecture in [11]. Fig. 2
shows the basic block diagram of our enhanced DSP block. From the previous DSP block design,
the modified DSP block contains gate, and mode pins to reconfigure the BW multiplier in different
modes. The selection signals of these control pins are controlled by the multiple configuration bits
stored in the associated configuration memory. Also, the interleaved multiplexers allow flexibility
to realize different operations to be implemented using this basic structure. The two pre-adders
(16-bit each) and the ALU (36-bit) have also been fractured using the same gate and mode
inputs, allowing four 8-bit add/sub or two 16-bit ALU operations to be performed in addition
to sub-width multiplication(s). The modified DSP block can now compute a wider range of
computations on 8-bit operands than a standard non-fracturable DSP block, and this flexibility
will be explored by our enhanced NanoMap tool.

Supporting wider multiplications Using TLF, a 32 × 32 multiplication can be mapped
using a single proposed DSP block in eight clock cycles. The 32-bit operands are separated and
fed as the 16 least significant bits followed by the 16 most significant bits over multiple cycles. The
partially computed results are stored in the intermediate registers for successive computations.
The ALU perform shift and add operations on multiplier output to generate accurate results.
Fig. 3 shows a 32-bit multiplier using only one DSP block using logic folding. Using a similar
approach, the proposed DSP block can also implement 24 × 16 and 24 × 8 multiplications by
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Table 1 Power, area and frequency of the proposed DSP block.

Design
Cell Area Dynamic Power(µW) FMax

(µm2) One 8×8 Two 8×8 Full 16×16 (MHz)

Non-Fract. DSP 12938 934 1864 1160 333

Fract. DSP 14683 955 1140 1191 400

reconfiguring one DSP block. Moreover, this approach of realizing wider multiplication takes
1 clock cycle less than Karatsuba-Ofman algorithm [7], while utilizing the DSP block more
efficiently. While folding can be explored for low-power designs, wider multipliers (like 32×32 or
higher) in high performance designs can be implemented using the Karatsuba-Ofman algorithm
by chaining DSP blocks.

DSP Interconnect NATURE uses an island style architecture with each column imple-
menting a single type of basic block. DSP blocks are placed along DSP columns, with direct
links to top and bottom neighbours for cascading and chaining. The I/O ports of the DSP blocks
are equally distributed on the left and right sides of the block, while the carry ports are located
on the top and bottom sides. The I/O ports interface to the generic routing structure (via the
switch matrix) to provide connectivity between DSP and SMB blocks. Including the input switch
matrix, the proposed DSP block occupies an area equivalent to 6 SMB tiles.

3.2 Enhanced NanoMap

In Section 2, we introduced the NanoMap design automation tool-flow that maps applications
onto the NATURE architecture, including fixed precision DSP blocks. Here, the logic mapping
step assigns arithmetic operations with operand bit-width greater than or equal to 8-bits to DSP
blocks, while conditional operations and lower-width arithmetic operations are mapped onto
LUTs. Multiple DSP blocks are automatically invoked when the operand bit-widths are wider
than 16-bits. Once all nodes in the circuit are mapped using the library modules (LUTs, DSP
blocks or Block Memories), FDS schedules the LUT and DSP operations into the best clock cycle.
Further, the LUTs and FFs are packed into CLBs using a constructive algorithm. Our tool-flow
enhances this packing algorithm to reduce DSP block utilization by exploiting the fracturable
nature of the proposed DSP block.

After mapping the mathematical operations to individual DSP blocks, the algorithm itera-
tively searches for operations that are scheduled in the same clock cycles. If any two DSP blocks
perform sub-width operations (for example multiple 8×8 multiplication) in the same clock cycle,
the algorithm groups them onto a single physical DSP block. Furthermore, the DSP operations
scheduled in different cycles are also clustered together considering the connectivity and time
span of the scheduled computation (or lifetime of the DSP). Non overlapping DSP operations
with higher interconnectivity are clustered together for sharing in different cycles. This two-step
approach allows a single DSP block to be reconfigured across cycles to implement sub-width (one
8 × 8 or two 8 × 8) full-width (one 16 × 16), or wider (24 × 16 or 32 × 32) operations, reducing
the DSP block utilization, area, and power consumption. The placement and routing has also
been modified to accommodate the fracturable nature of the primary inputs/outputs of the DSP
blocks.

4 Area/Power overhead of Fracturable DSP Block and Performance Benefits

To evaluate the area/power overhead and the reduction in frequency due to the increased logic in
the multiplier unit, we synthesized our proposed DSP block unit using Synopsys Design Compiler
targeting the TSMC 65nm cell library. For comparison, we also synthesized the existing NATURE
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Table 2 Resource comparison of benchmark circuits implemented on NATURE (with fracturable DSP block and
with non-fracturable DSP block) for folding level-0 and an Altera Stratix V 5SGSMD4E1H29C1.

Benchmark (no of
Existing DSP With Fract. DSP % Reduction A×D P×D Altera Stratix V AEff

mult/mac, add/sub ops) DSPs Min. Period DSPs LUTs AEff Min. Period DSP Area Gain Gain DSP LUTs AEff Gain

DCT (13,19) 32 4.12 ns 13 16 1680 3.22 ns 59.38 50.79 2.60× 2.49× 12 146 1707.4 1.02×
ARF (16,12) 28 3.79 ns 10 0 1280 2.92 ns 64.29 57.86 3.04× 3.08× 12 54 1615.4 1.26×
FIR1 (11,10) 21 3.57 ns 8 0 1024 2.94 ns 61.90 55.05 2.70× 2.78× 11 126 1557.3 1.52×
FIR2 (8,15) 23 3.61 ns 8 0 1024 2.88 ns 65.22 58.96 3.05× 3.21× 8 122 1162.9 1.13×
Wavelet (10,14) 24 4.09 ns 12 144 1680 3.37 ns 50.00 31.50 1.77× 1.48× 10 184 1485.2 0.88×
ASPP4 (3,4) 7 5.08 ns 6 224 992 4.35 ns 14.29 -0.44 1.16× 1.18× 3 148 538.4 0.54×
EWF (8,26) 34 3.75 ns 14 0 1792 3.27 ns 58.82 51.41 2.36× 2.58× 8 210 1250.9 0.70×
HAL (6,4) 10 6.06 ns 4 40 552 5.09 ns 60.00 43.96 2.12× 1.62× 6 46 826.7 1.50×
Paulin (2,2) 4 4.68 ns 3 140 524 3.79 ns 25.00 4.17 1.29× 1.26× 1 84 344.3 0.65×
HornerBezier (8,3) 11 3.74 ns 4 12 524 3.32 ns 63.64 54.12 2.46× 2.00× 8 50 1090.9 2.08×
MotionVector (12,12) 24 3.51 ns 6 16 784 2.83 ns 75.00 68.21 3.90× 3.06× 12 146 1707.4 2.17×
MatrixMult (48,12) 60 4.72 ns 32 96 4192 3.46 ns 46.67 34.31 2.08× 2.18× 48 482 6729.5 1.60×
Smooth Triangle (17,20) 37 4.13 ns 17 48 2224 3.25 ns 54.05 42.98 2.23× 2.01× 17 194 2405.9 1.08×

DSP block which uses a standard BW multiplier, with the same target library. The results
are shown in Table 1. The Table compares the resource consumption of the proposed DSP
architecture against the existing (non-fracturable) DSP block in NATURE [11], which uses a
wallace tree multiplier, with a maximum operating frequency of 333 MHz. It can be observed
that the proposed DSP architecture, based on the BW multiplier with an HPM reduction tree,
incorporates multiple operating modes (as discussed in sec. 3) and deep pipelining in the final
adder stage, thus attaining a higher operating frequency of 400 MHz with a 13.4% increase in
cell area.

We also estimate the power consumption of the proposed DSP block using the Synopsys
PrimeTime tool, the results of which are also shown in Table 1. The power (switching power)
measured using Synopsys primetime compiler consists of Power total = Net Switching Power +
Cell Internal Power+Cell Leakage Power , where the net switching power is the power estimated
using the switching activity values generated using a VCD dump file, the cell internal and leakage
power are the values corresponding to each standard cell of the library module that is being used.
We observe that with fracturing, our architecture results in a 38.3% reduction in power and
43.8% reduction in area when two 8-bit multiplications are scheduled in parallel, which would
utilize two 16-bit multipliers in the NATURE architecture. For single 8-bit and full precision
modes, operating at 400 MHz results in a slight increase in power consumption of 2% and
2.67% respectively over the current NATURE DSP block that runs at 333 MHz. At 333 MHz,
we observed that the fracturable design consumes 15% less power for both single 8-bit and
full precision operations, compared to the existing DSP block. Thus we see a clear advantage
in terms of performance and power consumption for the proposed DSP block architecture in
mixed precision digital circuits, which are commonly used in many applications like audio, vision
systems and others. We further quantify these advantages in the case of actual circuits in the
section below.

5 Performance Results and Discussions

For our experiments, we have used generic RTL/netlists of circuits including Discrete Cosine
wave Transform (DCT), Auto-regression Filter (ARF), Application-Specific Programmable Pro-
cessor (ASSP4) [4], Greatest Common Divisor (GCD), Differential-equation solver (Paulin) [6],
Wavelet Transform, and Finite Impulse Response filters (FIR1 and FIR2). In addition to these
generic circuits, we have also evaluated the proposed DSP using complex functions such as the
Elliptical Wave Filter (EWF), HAL, Smooth Triangle, HornerBezier, Motion Vector, and Matrix
Multiplication, starting from their RTL/netlist description. We set the input precision to 8-bit
for all evaluations.
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In the experiments, we explore two folding levels (0 and 1) and evaluate the area-delay (A-D)
and power-delay (P-D) trade-offs (total runtime power) achieved using the proposed fracturable
DSP block compared against the existing NATURE DSP block. We also compare the results of
folding level 0, which can be considered equivalent to a single context FPGA, against the results
on an Altera Stratix V (5SGSMD4E1H29C1) device that features 6-input fracturable LUTs and
variable precision DSPs, as shown in Table 2. To account for the difference in platforms, we
compute the effective area utilized by the implementation (in terms of equivalent LUTs) using
the relation AEff = LUT Max/DSPMax ∗ DSPutilization + LUTutilization [13]. Also, the number
of multiply/MAC and add/sub operations in each benchmark is shown (in brackets), which helps
determine the reduction in DSP blocks achieved by exploiting their fracturable nature (on Stratix
V and on the proposed DSP block in NATURE).

It can be observed from Table 2 that the proposed DSP block achieves a significant reduction
in DSP utilization compared to the existing fixed precision DSP block architecture in NATURE.
This is because the two sub-width mult/MAC or add/sub operations that are scheduled in the
same clock cycle, can be merged into a single (proposed) DSP block by altering the mode and
gate configuration bits, while this requires two DSP instances with the existing architecture. Also,
Table 2 shows that the % reduction in DSP block utilization is significant for the benchmark
circuits with acyclic dataflow graphs (FIR1, FIR2, Motion Vector, EWF, ARF etc.), since these
circuits contain only sequences of arithmetic operations that can be scheduled to their best
folding cycles. This results in better merging of non-overlapping arithmetic nodes onto the same
fracturable DSP block(s). Finally, the ASSP4 benchmark shows negative gain in area, since the
cyclic circuit contains only one arithmetic node that can be merged, and the area penalty of the
fracturable DSP block (13.4% over the existing DSP block) cannot be covered by this limited
merging. An average reduction of 53.7% in DSP block utilization, 42.5% in area, and 122.5% in
P-D product across all benchmarks is achieved.

Compared to the implementation on Altera Stratix V device, which maps only mult/MAC
operations onto DSP blocks while add/sub operations are implemented using LUTs, we observe
a 1.24× average reduction in effective area (across all benchmarks), despite the Altera device
having superior LUTs (6-input fracturable v/s 4-input fixed on NATURE) and DSP blocks
(3 9 × 9 v/s 2 8 × 8 for proposed DSP on NATURE) architecture. It can also be observed that
the Quartus tool automatically merges sub-width operations to reduce DSP block utilization
in multiple benchmarks (DCT, ARF, PAULIN); however, our enhanced NanoMap tool-flow is
able to further reduce the DSP block utilization by exploiting the fracturable Pre-add/sub and
Post-add/sub blocks in the proposed DSP block.

Table 3 shows the mapping results of the benchmark circuits on NATURE architecture with
the proposed DSP blocks and on NATURE with fixed precision DSP blocks at folding level 1. In
folding level 1, the logic is folded (reconfigured) at a depth of 1 LUT computation. Here, apart
from combining two 8-bit multipliers scheduled in same clock cycle to a fractured DSP block, it
can be reused across clock cycles to implement subsequent operations if there are no resource
conflicts. Further, each DSP block may vary its configuration from full 16×16 mode to the power-
saving single 8×8 mode or a fractured dual 8×8 mode across different cycles, as determined
by its configuration bits. This flexibility allows further optimizations in resource consumption,
compared to folding level 0, which was discussed earlier in Table 2. For each benchmark, we
observed that the overall resource consumption was reduced in folding level 1, with both the
fixed precision DSP block based NATURE and the proposed DSP block based NATURE. Shown
in Table 3 are the 6 benchmarks which offer reduced resource consumption between the two target
platforms (NATURE with fixed precision DSP block and NATURE incorporating proposed DSP
block). In the case of the smaller benchmarks (FIR1, FIR2 and others), we observe that temporal
folding introduces resource conflicts, limiting the scope of DSP reuse through fracturing. We
observe an average reduction of 17.5% in DSP block utilization across the 6 benchmarks and an
average A–D improvement of 1.1× for the NATURE architecture that incorporates our proposed
DSP block. We also observe a P-D product reduction of 6.43% across the benchmark circuits
over the NATURE architecture with fixed precision DSP block.
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Table 3 Resource comparison of benchmark circuits implemented on NATURE (with fracturable DSP block and
with non-fracturable DSP block) for folding level-1 and on FDR 2.0.

Benchmark
Non-Fracturable DSP Fracturable DSP A×D P×D FDR 2.0 % Reduction A×D

DSPs Min. Period DSPs Min. Period Gain Gain DSPs Min. Period DSP Gain

Wavelet 9 3.88 ns 8 3.14 ns 1.23× 1.16× 17 4.28 ns 52.9 2.56×
ASPP4 3 3.57 ns 2 3.68 ns 1.16× 1.01× 5 3.88 ns 60.0 2.29×
Paulin 4 3.67 ns 3 3.4 ns 1.21× 1.08× 4 3.67 ns 25 1.52×
Motion Vector 6 3.62 ns 5 3.01 ns 1.27× 1.15× 12 3.81 ns 58.3 2.38×
MatrixMult 23 3.69 ns 21 3.58 ns 1.01× 1.03× 30 3.78 ns 30 1.17×
Smooth Triangle 10 3.65 ns 9 3.36 ns 1.07× 1.02× 22 3.91 ns 59 2.11×

We also compare the results of NATURE with the fracturable DSP block against the FDR
2.0 architecture [5] that incorporates a DSP block with 3 pipeline stages. Compared to the fixed
precision DSP block available on the FDR architecture, the fracturable nature of our DSP block
enables the mapping tool to merge more DSP operations on to the same DSP block. This results
in improved area and power gain over the existing FDR architecture over the set of benchmarks,
as shown in Table 3. We observe an average reduction of 47.7% in DSP block utilization across
6 benchmarks and an average A-D improvement of 2.01× for the fracturable DSP incorporated
NATURE over FDR architecture. For more computationally intensive circuits, we believe that the
proposed DSP block can result in a more significant improvement in energy efficiency without
compromising system performance. Finally, it is worth mentioning that though we have used
NATURE as a platform to demonstrate the capabilities of our fracturable DSP block, it could
also be integrated into FDR 2.0 to extract similar gains in resource and energy consumption.

6 Conclusion

In this paper we proposed a fracturable DSP block architecture for improving energy efficiency
of computations on the multi-context FPGA architecture, NATURE. The proposed DSP block
achieves this efficiency by fracturing its internal compute-path while maintaining the capability
to dynamically switch computational precision. By utilizing this capability, our proposed DSP
block can efficiently handle two independent half-width (8×8) multiplications in complete isola-
tion, perform a single 8×8 multiplication with lower power consumption, or operate on regular
full-width 16-bit operands. Furthermore, these modes can be switched dynamically, allowing ef-
ficient reuse of the DSP block for low-power applications. We have extended the NanoMap tool
flow to efficiently map and merge mixed precision multiplications on the proposed DSP block. Ex-
perimental results show that mapping benchmarks circuits onto the NATURE architecture with
this proposed DSP block achieved 42.5% and 53.7% average reduction in area and DSP block
utilization with 122.5% reduction in P-D product without utilizing temporal folding (folding level
0). We also observe improvements in energy efficiency and resource utilization when temporal
folding is employed, without sacrificing performance. We aim to evaluate a 32×32 DSP block
that can support two half-width (16-bit) or four quarter-width (8-bit) operations simultaneously,
and extend the tool-flow to support these enhancements.
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