
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Eklund, A., Nichols, Thomas E. and Knutsson, H. (2017) Reply to Brown and Behrmann, Cox, 
et al., and Kessler et al. : Data and code sharing is the way forward for fMRI. Proceedings of 
the National Academy of Sciences of the United States of America, 114 (7). E3374-E3375. 
http://doi.org/10.1073/pnas.1620285114   
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/84709  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners. To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
Publisher’s statement: 
© PNAS 2017  
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version. Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://doi.org/10.1073/pnas.1620285114
http://wrap.warwick.ac.uk/84709
mailto:wrap@warwick.ac.uk


REPLY TO COX ET AL. AND KESSLER ET AL.: DATA AND CODE SHARING IS THE WAY
FORWARD FOR FMRI

Anders Eklund a,b,c, Thomas Nichols d, Hans Knutsson a,c

aDivision of Medical Informatics, Department of Biomedical Engineering,
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We are glad that our paper [1] has generated intense dis-
cussions in the fMRI field, on how to analyze fMRI data
and how to correct for multiple comparisons. The goal of
the paper was not to disparage any specific fMRI software,
but to point out that parametric statistical methods are based
on a number of assumptions that are not always valid for
fMRI data, and that non-parametric statistical methods [2]
are a good alternative. Through AFNI’s introduction of
nonparametric statistics in the function 3dttest++ [3, 4], the
three most common fMRI softwares now all support non-
parametric group inference (SPM through the toolbox SnPM
(http://warwick.ac.uk/snpm), and FSL through the function
randomise).

1. REPLY TO COX ET AL.

Cox et al. [3] correctly point out that the bug in the AFNI
function 3dClustSim only had a minor impact on the false
positive rate (FPR). This was also covered in the original pa-
per [1], ”We note that FWE rates are lower with the bug-fixed
3dClustSim function. As an example, the updated function
reduces the degree of false positives from 31.0% to 27.1% for
a CDT of P = 0.01, and from 11.5% to 8.6% for a CDT of P
= 0.001.” It is unfortunate that several media outlets focused
extensively on this bug, when the main problem was found to
be violations of the assumptions in the statistical models.

The statement that AFNI had particularly high FPRs,
compared to SPM and FSL, is for example supported by Sup-
plementary Figure 1 a [1] (Beijing data, two-sample t-test
with 20 subjects, cluster defining threshold p = 0.01). For 8
mm of smoothing, the FPR for AFNI is 23% - 31%, while
it is 13% - 20% for SPM and 14% - 18% for FSL OLS. To
understand the higher FPRs we investigated how the 3dClust-
Sim function works, which eventually lead us to finding the

bug in 3dClustSim. However, we agree that AFNI did not
produce higher FPRs for all parameter combinations.

The 70% FPR comes from Supplementary Figure 9 c [1]
(Oulu data, one-sample t-test with 40 subjects, cluster defin-
ing threshold p = 0.01, FSL OLS with 4 mm smoothing), and
not, as some readers believed, from Figure 2 in the original
paper [1] which shows results for the ad-hoc clustering ap-
proach. The main reason for using the highest observed FPR
was to give the reader an idea of how severe the problem can
be, but we agree that it lead to a too pessimistic view.

As pointed out by Cox et al. [3], the non-parametric ap-
proach also performed sub-optimal for the one-sample t-test,
especially for the Oulu data. As discussed in our paper, the
one-sample t-test has an assumption of symmetrically dis-
tributed errors that can be violated by outliers in small sam-
ples. Our current research is therefore focused on how to im-
prove the non-parametric test for one-sample t-tests. Regard-
ing the flexibility of the permutation testing, recent work has
shown that virtually any regression model with independent
errors can be accomodated [2], and even longitudinal and re-
peated measures data can be analyzed with a related bootstrap
approach [5].

2. REPLY TO KESSLER ET AL.

Kessler et al. [6] extend our evaluations to (non-parametric)
cluster based false discovery rate (FDR) on task data, to better
understand how existing parametric cluster p-values based on
the familywise error rate (FWE) should be interpreted. For
the problematic cluster defining threshold of p = 0.01, they
conclude that a cluster FWE-corrected p-value smaller than p
= 0.00001 survives FDR correction at q = 0.05. Indeed, this
information makes it easier to interpret existing results in the
fMRI literature, but it should be noted that it is not straight-



forward to generalize these results to other studies. For exam-
ple, the fMRI software used, the MR sequence used (EPI or
multiband), the degree of smoothing and the number of sub-
jects are all likely to affect this cutoff. The only way to ret-
rospectively evaluate existing results is, in our opinion, to re-
analyze the original fMRI data (e.g. made available through
OpenfMRI [7]) or to apply a new threshold to the statistical
maps (e.g. made available through NeuroVault [8]).

3. IMPORTANCE OF DATA AND CODE SHARING

Cox et al. [3, 4] replicated and extended our findings with
the same open fMRI data [9] as in our original paper (and
made use of our processing scripts available on github,
https://github.com/wanderine/ParametricMultisubjectfMRI),
ultimately resulting in improvements to the AFNI software.
Further, we never would have been able to identify the bug in
3dClustSim were AFNI not open source software. Kessler et
al. [6] also used the same task datasets from OpenfMRI [7],
to find the empirical cluster FDR. Together, these examples
show the importance of data sharing [10, 11], open source
software [12], code sharing [13, 14] and reproducibility [15].
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