
 

 
 

 
 

  warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Nazar, Faizan Q. and Ortner, Christoph. (2016) Locality of the Thomas-Fermi-von Weizsäcker 
Equations. Archive for Rational Mechanics and Analysis, 224 (3). 817. 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/84814      
       
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution 4.0 International 
license (CC BY 4.0) and may be reused according to the conditions of the license.  For more 
details see: http://creativecommons.org/licenses/by/4.0/   
 
A note on versions: 
The version presented in WRAP is the published version, or, version of record, and may be 
cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/84814
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk


Digital Object Identifier (DOI) 10.1007/s00205-017-1075-6
Arch. Rational Mech. Anal. 224 (2017) 817–870

Locality of the Thomas–Fermi–von Weizsäcker
Equations

F. Q. Nazar & C. Ortner

Communicated by G. Friesecke

Abstract

We establish a pointwise stability estimate for the Thomas–Fermi–von Weiz-
säcker (TFW) model, which demonstrates that a local perturbation of a nuclear
arrangement results also in a local response in the electron density and electro-
static potential. The proof adapts the arguments for existence and uniqueness of
solutions to the TFW equations in the thermodynamic limit by Catto et al. (The
mathematical theory of thermodynamic limits: Thomas–Fermi type models. Ox-
ford mathematical monographs. The Clarendon Press, Oxford University Press,
New York, 1998). To demonstrate the utility of this combined locality and stability
result we derive several consequences, including an exponential convergence rate
for the thermodynamic limit, partition of total energy into exponentially localised
site energies (and consequently, exponential locality of forces), and generalised and
strengthened results on the charge neutrality of local defects.

1. Introduction

Locality properties of electronic structure models are a key premise in cer-
tain state of the art numerical algorithms. A well-established example is “near-
sightedness”, a locality property of the density matrix which gives rise to linear
scaling algorithms for Kohn–Sham type models [6,24,25,38]. A stronger notion is
the locality of the mechanical response, which is a fundamental premise underpin-
ning the construction of interatomic potentials and of multi-scale algorithms such
as hybrid QM/MM schemes [17] (here, it is termed “strong locality”). This latter
category of locality is less well studied, the only result in this direction being the
locality of non-selfconsistent tight binding models [14].

The aim of the present work is to establish the locality properties satisfied by
the Thomas–Fermi–von Weizsäcker(TFW) model. Our main technical result to
achieve this is the following pointwise stability estimate for the TFW equations,
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which establishes the locality of the electron response to changes in the nuclear
configuration. Compared with [14] it is noteworthy that our result takes Coulomb
interaction fully into account. Rigorous statements, under different conditions, are
given in Theorems 3.1 and 3.2.

Theorem. For i = 1, 2 let mi ∈ L∞(R3) represent nuclear charge distributions
satisfying

mi � 0 and lim
R→∞

1

R
inf

x∈R3

∫
BR(x)

mi (z) dz = +∞.

Let the corresponding ground state electron densities and electrostatic poten-
tials, denoted by ui , φi : R

3 → R, satisfy the TFW equations,

− Δui + 5

3
u7/3

i − φi ui = 0,

− Δφi = 4π
(

mi − u2
i

)
.

Then there exists C, γ > 0 such that for all y ∈ R
3

|(u1 − u2)(y)| + |(φ1 − φ2)(y)| � C

(∫
R3

|(m1 − m2)(x)|2 e−2γ |x−y| dx

)1/2

.

(1.1)

In the remainder of the article we explore some of the consequences of this
locality result: In Proposition 4.1 we obtain new estimates on finite-domain ap-
proximations which yield exponential decay of surface energies as well as an ex-
ponential convergence rate for the thermodynamic limit. In Corollary 4.1 we show
that (1.1) gives rise to rigorous results that match, and substantially generalise, the
Thomas–Fermi theory of impurity screening in metals [2,28]. In Theorem 4.1 we
strengthen existing results on the neutrality of the TFW model [10]. In all these
results, general (condensed) nuclear arrangements are treated.

A striking application of (1.1) is that it allows us to decompose energy into local
contributions from which we obtain local site energy potentials: Given a countable
collection of nuclei Y = (Y j ) j∈N ⊂ R

3 we construct an energy density E (Y ; x)

which allows us to define the TFW energy
∫
Ω
E (Y ; x) dx of an arbitrary volume

Ω ⊂ R
3 in a meaningful way. This then motivates us to define site energies

E j (Y ) :=
∫
R3

ϕ j (x)E (Y ; x) dx,

where (ϕ j ) j∈N is a smooth partition of unity of R
3, which can be constructed in

such a way that E j are permutation and isometry invariant and most crucially, E j

are local in the sense that ∣∣∣∣∂ E j (Y )

∂Yk

∣∣∣∣ � Ce−γ |Y j −Yk |, (1.2)

for some C, γ > 0. The rigorous statement of this result is given in Theorem 4.2.
An analogous result has recently been proven for a tight binding model in [14].



Locality of the Thomas–Fermi–von Weizsäcker Equations 819

This result not only gives a strong justification for the construction of classical
short-ranged interatomic potentials inmetals, but in fact it allows us to treat theTFW
mechanical response as if it emanated from such a classical potential. For example,
(i) the analysis of the Cauchy–Born continuum limit [37, Page 5] applies directly
to the TFW model; and (ii) we can generalise in [13] the analysis of variational
problems for the mechanical response to defects in an infinite crystal [19].

The remainder of this article is organised as follows: In Section 2 we recall
the definition of the TFW model and summarise the relevant existing results. In
Section 3 we state the main technical results, including the rigorous statement of
the stability result (1.1). In Section 4 we present applications. Concluding remarks
are made in Section 5, followed by the detailed proofs of the results in Section 6.

Remark 1. We conclude the introduction with a remark about the analytical con-
text of this work. The TFW equations for the electron density and potential is a
coupled Schrödinger–Poisson system. Other systems of this class can be found in
semiconductor physics [34,43,45]. We also note that Thomas–Combes estimates
give conditions under which eigenfunctions of a Schrödinger operator decay ex-
ponentially [1,16]. While the results obtained for these systems are similar, the
corresponding equations have different structure, hence the analytical techniques
used to study them differ considerably.

The closest existing result to (1.1) we have found is [8, Theorem 4.6], which
shows the exponential decay of the electron density away from the boundary of a
crystal. Both (1.1) and [8, Theorem4.6] utilise the uniqueness of the TFWequations
to prove stability estimates. In Section 4.1, we use Proposition 4.1 to generalise [8,
Theorem 4.6]. ��

2. The TFW Model

For p ∈ [1,∞] we define the function spaces

L p
loc(R

3) :=
{

f : R
3 → R | ∀ K ⊂ R

3 compact, f ∈ L p(K )
}

and

L p
unif(R

3) :=
{

f ∈ L p
loc(R

3) | sup
x∈R3

‖ f ‖L p(B1(x)) < ∞
}

.

For k ∈ N, Hk
loc(R

3), Hk
unif(R

3) are defined analogously. For a multi-index α =
(α1, α2, α3), we define the partial derivative ∂α = ∂

α1
1 ∂

α2
2 ∂

α3
3 . Throughout this

paper, α, β denote three-dimensional multi-indices.
The Coulomb interaction, for f, g ∈ L6/5(R3), is given by

D( f, g) =
∫
R3

∫
R3

f (x)g(y)

|x − y| dx dy =
∫
R3

(
f ∗ 1

|·|
)

(y)g(y) dy. (2.1)

This is finite due to the Hardy–Littlewood–Sobolev estimate [3]

|D( f, g)| � C ‖ f ‖L6/5(R3) ‖g‖L6/5(R3) . (2.2)
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Let m ∈ L6/5(R3), m � 0 denote the charge density of a finite nuclear cluster,
then the corresponding TFW energy functional is defined, for v ∈ H1(R3), by

ETFW(v, m) = CW

∫
R3

|∇v|2 + CTF

∫
R3

v10/3 + 1

2
D
(

m − v2, m − v2
)

. (2.3)

The function v corresponds to the positive square root of the electron density. The
first two terms of ETFW(v, m) model the kinetic energy of the electrons while
the third term models the Coulomb energy. We remark that this definition of the
Coulomb energy is only valid for smeared nuclei. We can rescale the energy to
ensure CW = CTF = 1.

To construct the electronic ground state for an infinite arrangement of nuclei
(e.g., crystals), we restrict admissible nuclear charge densities to m ∈ L1

unif(R
3), m

� 0, satisfying

(H1) sup
x∈R3

∫
B1(x)

m(z) dz < ∞,

(H2) lim
R→∞ inf

x∈R3

1

R

∫
BR(x)

m(z) dz = ∞.

The property (H1) guarantees that no clustering of infinitely many nuclei occurs
at any point in space whereas (H2) ensures that there are no large regions that are
devoid of nuclei.

Let Rn ↑ ∞ and define the truncated nuclear distribution m Rn = m · χBRn (0),
then the minimisation problem

ITFW(m Rn ) = inf

{
ETFW(v, m Rn )

∣∣∣∣ v ∈ H1(R3), v � 0,
∫
R3

v2 =
∫
R3

m Rn

}

possesses a unique minimiser u Rn . The charge constraint ensures that the system
is neutral. Further, u Rn solves the corresponding Euler–Lagrange equation, which
can be expressed as the coupled system

−Δu Rn + 5

3
u7/3

Rn
− φRn u Rn = 0, (2.4a)

−ΔφRn = 4π
(

m Rn − u2
Rn

)
. (2.4b)

By the proof of [12, Corollary 2.7, Theorem 6.10], it follows that

∥∥u Rn

∥∥
H1
unif(R

3)
+ ∥∥φRn

∥∥
L2
unif(R

3)
� C, (2.5)

where C is independent of Rn . Consequently, (2.5) implies that along a subsequence
(u Rn , φRn ) converge to (u, φ). Passing to the limit in (2.4) yields the following
result.



Locality of the Thomas–Fermi–von Weizsäcker Equations 821

Theorem 2.1. [12, Theorem 6.10] Let m ∈ L1
unif(R

3), m � 0 satisfy (H1)–(H2),
then there exists a unique solution (u, φ) ∈ L∞(R3) × L1

unif(R
3), up to the sign of

u, of

− Δu + 5

3
u7/3 − φu = 0, (2.6a)

− Δφ = 4π
(

m − u2
)

, (2.6b)

in the distributional sense. In addition, inf u > 0.

Definition 1. For any nuclear configuration m satisfying (H1)–(H2), we refer to
(u, φ) solving (2.6) as the ground state corresponding to m. ��
Remark 2. A concise proof of uniqueness of the TFW equations is given in [7] un-
der the assumption that m is smooth and hence u, φ ∈ W 1,∞(R3), which simplifies
the earlier proof given in [12]. ��

In the next section, we discuss results that can be obtained by generalising the
proof of Theorem 2.1.

3. Main Results

3.1. Uniform Regularity Estimates

In the proof of our main results in the next section we employ regularity esti-
mates that refine those of [12], and may be of independent interest.

Other than Proposition 3.1, our estimates rely on uniform variants of (H1)–
(H2) and it turns out that (H2) may then be simplified without loss of generality;
see Lemma 6.1 for more details. Given M, ω0, ω1 > 0, letω = (ω0, ω1) and define
the class of nuclear configurations

ML2(M, ω) =
{

m ∈ L2
unif(R

3)

∣∣∣∣ ‖m‖L2
unif(R

3) � M,

∀ R > 0 inf
x∈R3

∫
BR(x)

m(z) dz � ω0R3 − ω1

}
. (3.1)

As each nuclear distributionm ∈ ML2(M, ω) satisfies (H1)–(H2), Theorem2.1
guarantees the existence of corresponding ground states (u, φ). We adapt the proof
of existence of Theorem 2.1 to show that the uniformity in upper and lower bounds
on m ∈ ML2(M, ω) yields regularity estimates and lower bounds on these ground
states which are also uniform.

Proposition 3.1. For any nuclear distribution m : R
3 → R�0, satisfying

‖m‖L2
unif(R

3) � M,
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there exists (u, φ) solving (2.6) and satisfying u � 0 and

‖u‖H4
unif(R

3) � C
(
1 + M15/4

)
, (3.2)

‖φ‖H2
unif(R

3) � C
(
1 + M3/2

)
. (3.3)

Proposition 3.2. There exists cM,ω > 0 such that for all m ∈ ML2(M, ω) the
corresponding ground state (u, φ) is unique and the electron density u satisfies

inf
x∈R3

u(x) � cM,ω > 0. (3.4)

Assuming higher regularity of the nuclear distributions implies higher regularity
of the ground state. We therefore define, for k ∈ N0,

MHk (M, ω) =
{

m ∈ Hk
unif(R

3)

∣∣∣∣ ‖m‖Hk
unif(R

3) � M,

∀ R > 0 inf
x∈R3

∫
BR(x)

m(z) dz � ω0R3 − ω1

}
.

Arguing by induction and applying the uniform lower bound (3.4) yields the
following result.

Corollary 3.1. Suppose k ∈ N0 and m ∈ MHk (M, ω), then the corresponding
solution (u, φ) to (2.6) satisfies

‖u‖Hk+4
unif (R3)

+ ‖φ‖Hk+2
unif (R3)

� C(k, M, ω). (3.5)

3.2. Pointwise Stability and Locality

We now discuss our main result, a pointwise stability estimate for (2.6) which
reveals a generic locality of the TFW interaction. To establish this result, we adapt
the proof of uniqueness of the TFW equations in [7,12], specialising the class of
test functions to

Hγ =
{

ξ ∈ H1(R3)

∣∣∣∣ |∇ξ(x)| � γ |ξ(x)| ∀ x ∈ R
3
}

(3.6)

for some γ > 0. Observe that e−γ̃ |·| ∈ Hγ for any 0 < γ̃ � γ .

Theorem 3.1. Let m1 ∈ ML2(M, ω), and let (u1, φ1) Also, let m2 : R
3 → R�0

satisfy ‖m2‖L2
unif(R

3) � M ′ and suppose there exists (u2, φ2) solving (2.6) corre-

sponding to m2, satisfying u2 � 0 and

‖u2‖H4
unif(R

3) + ‖φ2‖H2
unif(R

3) � C(M ′). (3.7)
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Further, there exist C = C(M, M ′, ω), γ = γ (M, M ′, ω) > 0 such that for any
ξ ∈ Hγ

∫
R3

⎛
⎜⎝ ∑

|α1|�4

∣∣∂α1(u1 − u2)
∣∣2 +

∑
|α2|�2

∣∣∂α2 (φ1 − φ2)
∣∣2
⎞
⎟⎠ ξ2 � C

∫
R3

(m1 − m2)
2ξ2.

(3.8)

In particular, for any y ∈ R
3,

∑
|α|�2

∣∣∂α(u1 − u2)(y)
∣∣2 + |(φ1 − φ2)(y)|2 � C

∫
R3

|(m1 − m2)(x)|2 e−2γ |x−y| dx .

(3.9)

Remark 3. Since we do not assume that m2 ∈ ML2(M ′, ω′), we can not guarantee
the uniqueness of the corresponding solution (u2, φ2). ��

We can generalise Theorem 3.1 to obtain higher-order pointwise estimates,
but this requires both inf u1, inf u2 > 0, hence we need to assume m1, m2 ∈
MHk (M, ω) for some k ∈ N0.

Theorem 3.2. Let k ∈ N0 and m1, m2 ∈ MHk (M, ω). Consider the corresponding
ground states (u1, φ1), (u2, φ2) and define

w = u1 − u2, ψ = φ1 − φ2, Rm = 4π(m1 − m2).

Then, there exist C = C(k, M, ω), γ = γ (M, ω) > 0 such that for any ξ ∈ Hγ

∫
R3

⎛
⎝ ∑

|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
⎞
⎠ ξ2 � C

∫
R3

∑
|β|�k

∣∣∂β Rm
∣∣2 ξ2.

(3.10)

In particular, for any y ∈ R
3,

∑
|α1|�k+2

∣∣∂α1w(y)
∣∣2 +

∑
|α2|�k

∣∣∂α2ψ(y)
∣∣2 � C

∫
R3

∑
|β|�k

∣∣∂β Rm(x)
∣∣2 e−2γ |x−y| dx .

(3.11)

Remark 4. It is possible to generalise Theorem 3.1 to treat nuclei described by a
non-negative measure m on R

3 satisfying

sup
x∈R3

m(B1(x)) � M, (H1′)

and there exist ω0 > 0, ω1 � 0 such that for all R > 0

inf
x∈R3

m(BR(x)) � ω0R3 − ω1. (H2′)
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The existence and uniqueness of a corresponding ground state (u, φ) is guaranteed
by [12, Theorem6.10].We believe that the arguments used to show [12, Lemma5.5]
and Theorem 3.1 can be adapted to show pointwise estimates similar to (3.8)–(3.9)
when m1, m2 satisfy (H1′)–(H2′) and that m1 − m2 is absolutely continuous with
respect to the Lebesgue measure on R

3, with a density belonging to L2
unif(R

3).
This result is not sufficient to consider the response of the ground state to

a perturbation of point nuclei, though it may be possible to treat this using an
approximation to the identity or by applying similar techniques. ��

4. Applications

4.1. Thermodynamic Limit Estimates

The following result provides an estimate for comparing the infinite ground
state with its finite approximation, over compact sets, thus providing explicit rates
of convergence for the thermodynamic limit. This is discussed in Remark 5.

Interpreted differently, the result yields estimates on the decay of the pertur-
bation from the bulk electronic structure at a domain boundary, generalising the
exponential decay estimate [8, Theorem 4.6] to arbitrary openΩ ⊂ R

3 and general
m ∈ ML2(M, ω).

Proposition 4.1. Let m ∈ ML2(M, ω) and (u, φ) be the corresponding ground
state. Further, let Ω ⊂ R

3 be open and suppose there exists mΩ : R
3 → R�0

such that mΩ = m on Ω and ‖mΩ‖L2
unif(R

3) � M (e.g., mΩ = mχΩ ), then there

exists (uΩ, φΩ) solving (2.6) with m = mΩ , uΩ � 0 and C = C(M, ω), γ =
γ (M, ω) > 0, independent of Ω , such that for all y ∈ Ω∑

|α|�2

∣∣∂α(u − uΩ)(y)
∣∣+ |(φ − φΩ)(y)| � Ce−γ dist(y,∂Ω). (4.1)

Remark 5. Let R > 0 and Rn ↑ ∞, then applying Proposition 4.1 with Ω =
BRn (0) and mΩ = m Rn gives a rate of convergence for the finite approximation
(u Rn , φRn ), solving (2.4), to the ground state (u, φ),

∥∥u − u Rn

∥∥
W 2,∞(BR)(0) + ∥∥φ − φRn

∥∥
L∞(BR)(0) � Ce−γ (Rn−R). (4.2)

This strengthens the result that (u Rn , φRn ) converges to (u, φ) pointwise almost
everywhere along a subsequence [12]. ��

4.2. Locality of the Charge Response

The following result shows that the decay properties of the nuclear perturbation
are inherited by the response of the ground state.

Corollary 4.1. Let k ∈ N0 and m1, m2 ∈ MHk (M, ω). Consider the correspond-
ing ground states (u1, φ1), (u2, φ2) and define

w = u1 − u2, ψ = φ1 − φ2, Rm = 4π(m1 − m2).
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1. (Exponential Decay) If Rm ∈ Hk(R3) and spt(Rm) ⊂ BR(0), or there ex-
ists γ ′ > 0 such that

∑
|β|�k |∂β Rm(x)| � Ce−γ ′|x |, then there exist C =

C(k, M, ω), γ = γ (M, ω) > 0 depending also on R or γ ′ such that
∑

|α1|�k+2

∣∣∂α1w(x)
∣∣+ ∑

|α2|�k

∣∣∂α2ψ(x)
∣∣ � Ce−γ |x |. (4.3)

2. (Algebraic Decay) If there exist C, r > 0 such that
∑

|β|�k |∂β Rm(x)| �
C(1 + |x |)−r then there exists C = C(r, k, M, ω) > 0 such that

∑
|α1|�k+2

∣∣∂α1w(x)
∣∣+ ∑

|α2|�k

∣∣∂α2ψ(x)
∣∣ � C(1 + |x |)−r . (4.4)

3. (Global Estimates) If Rm ∈ Hk(R3) then there exists C = C(k, M, ω) > 0
such that

‖w‖Hk+4(R3) + ‖ψ‖Hk+2(R3) � C ‖Rm‖Hk (R3) . (4.5)

Remark 6. For some of our comparison results, we require onlym1 ∈ ML2(M, ω)

but impose weaker assumptions on m2. This would not generalise Corollary 4.1
since any of the decay assumptions in (1–3) already imply that m2 ∈ ML2(M, ω′)
for some ω′. ��
Remark 7. The estimate (4.3) can be used to study the full non-linear response
of the ground state to a nuclear impurity. We compare this to the results from the
Thomas–Fermi (TF) [2,28,39] and TFW [18,29,35,40] theories of screening.

Consider a nuclear arrangement m1 ∈ ML2(M, ω) and model a nuclear impu-
rity at the origin with positive charge Z by Zη(x), where η ∈ C∞

c (R3), η � 0 and∫
η = 1. Then define the perturbed system by m2 = m1+ Zη ∈ ML2(M1, ω1) and

consider the corresponding TFW ground states (u1, φ1) and (u2, φ2), respectively.
From (4.3) of Corollary 4.1 it follows that

∑
|α|�2

∣∣∂α(u1 − u2)(x)
∣∣+ |(φ1 − φ2)(x)| � C Ze−γ |x |, (4.6)

We now compare (4.6) with existing results from the TF and TFW theories of
screening. These models consider the formal linear response (n, V ) of the electron
density and potential to a nuclear impurity at the origin, modelled by the Dirac
distribution Zδ0, in a uniform electron gas. In both models, V satisfies the linear
equation

−ΔV = 4π [n + Zδ0] ,

while n solves either the linearised TF or TFW equations. In the TF model, V and
n are shown to satisfy [28, Page 112], [2, Page 342]

V (x) = Z
e−ks |x |

|x | , n(x) = − Zk2s
4π

e−ks |x |

|x | , (4.7)
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where ks > 0 is a material-dependent constant called the inverse screening length.
In the TFW model, V and n satisfy [18,29,35,40]

V (x) = Z

4αβ|x |e−α|x | ((α + β)2eβ|x | − (α − β)2e−β|x |) ,

n(x) = −
(
α2 − β2

)2
Z

αβ|x | e−α|x | (eβ|x | − e−β|x |) , (4.8)

where α ∈ R, β ∈ C satisfy 0 < |β| < α. The constants α, β depend on the
material and the coefficient CW , which appears in the definition of the TFW energy
(2.3). There is a critical value of CW below which β > 0 and above which β is
complex, the latter case introduces oscillations in the potential and electron density.
In either case, both the TF and TFW models exhibit screening due to the presence
of the exponential term appearing in (4.7)–(4.8).

The lack of a factor of the form 1
|x | in (4.6) can be attributed to using a smeared

nuclear description for the impurity as opposed to a point description in (4.7)–(4.8).
Other than this, the similarity of (4.6) to (4.7) suggests that the constant γ in (4.6)
may be interpreted as the inverse screening length. In this paper we show there
exists γ > 0 satisfying (4.6), however we do not provide any estimates for its
value.

The estimate (4.6) shows that screening occurs in the TFW model, without
any approximations made to the model and without any restrictions on the nuclear
configurations (other than (H1)–(H2)). It should be noted that although (4.6) agrees
with existing results from the TF theory of screening, in metals often the effects of
screening are weaker. For metals, instead of an exponentially decaying screening
factor, Friedel oscillations are observed [22,27,33]. In this case, the screening
factor behaves as |x |−r f (|x |), where f : R�0 → [−1, 1] is an oscillating function
and the decay rate r > 0 depends on the Fermi surface of the metal. The generic
exponential screening factor in (4.6) demonstrates that the TFWmodel significantly
overscreens charges. ��

4.3. Neutrality of Defects

An immediate consequence of Corollary 4.1 is the neutrality of nuclear per-
turbations in the TFW equations. This result applies to all nuclear configurations
belonging to ML2(M, ω). In particular Theorem 4.1(3) strengthens the result of
[10], which requires m1 − m2 ∈ L1(R3) ∩ L2(R3) and thus excludes typical point
defects; see Remark 8 for more details.

Theorem 4.1. Let m1, m2 ∈ ML2(M, ω) and define ρ12 := m1 − u2
1 − m2 + u2

2.

1. If spt(m1 − m2) ⊂ BR′(0), or there exist C, γ̃ > 0 such that |(m1 − m2)(x)| �
Ce−γ̃ |x |, then ρ12 ∈ L1(R3) and there exist C, γ > 0 such that, for all R > 0,

∣∣∣∣
∫

BR(0)
ρ12

∣∣∣∣ � Ce−γ R . (4.9)
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2. If there exists C, r > 0 such that |(m1 − m2)(x)| � C(1 + |x |)−r then there
exists C > 0 such that, for all R > 0,

∣∣∣∣
∫

BR(0)
ρ12

∣∣∣∣ � C(1 + R)2−r . (4.10)

3. If m1 − m2 ∈ L2(R3) (e.g., r > 3/2 in (2)) then ρ12 ∈ L2(R3) and

lim
ε→0

1

|Bε(0)|
∫

Bε(0)
ρ̂12(k) dk = 0, (4.11)

where ρ̂12 denotes the Fourier transform of ρ12.

Remark 8. In a forthcoming article [13], we construct a variational problem to
study the response of a crystal due to a local defect, using the TFW energy. Arguing
as in [19], we shall show that any minimising displacement decays away from the
defect at the rate |x |−2, which corresponds to case (2) with r = 2. In this case
(4.10) only provides a uniform bound for the charge as opposed to a decay estimate.
However, as r > 3/2 the global neutrality result (4.11) holds for the relaxed system.

Theneutrality estimates ofTheorem4.1 strengthen those of [10] in the following
ways. Firstly, our result considers a perturbation of a general nuclear arrangement
as opposed to a perfect crystal. This allows us, in [13], to consider the response of
extended defects such as dislocations. In addition, we only require that the nuclear
perturbation belongs to L2(R3), which we prove rigorously in [13], whereas in [10]
the nuclear defect is assumed to lie in L1(R3) ∩ L2(R3), which fails for typical
point defects. ��

4.4. Energy Locality

We now show that the locality result, Theorem 3.2, can be used to describe
the energy contribution of each individual nucleus. In effect, we will derive a site
energy potential for the TFWmodel, which has the surprising consequence that, for
the study of mechanical response, TFW can be treated as a classical short-ranged
interatomic potential. Our result gives credence to the construction of interatomic
potentials and the assumption of strong locality used in hybrid quantum mechan-
ics/molecular mechanics (QM/MM) simulations [17].

Let η ∈ C∞
c (BR0(0)) be radially symmetric and satisfy η � 0 and

∫
R3 η = 1

describe the charge density of a single (smeared) nucleus, for some fixed R0 > 0.
For any countable collection of nuclear coordinates Y = (Y j ) j∈N ∈ (R3)N, let the
corresponding nuclear configuration be defined by

mY (x) =
∑
j∈N

η(x − Y j ). (4.12)

A natural space of nuclear coordinates, related to theML2 space is

YL2(M, ω) :=
{

Y ∈ (R3)N | mY ∈ ML2(M, ω)
}

. (4.13)



828 F. Q. Nazar & C. Ortner

This space contains many condensed phases, such as crystals containing point
defects, dislocations and grain boundaries. It does not include arrangements with
arbitrarily large voids such as surfaces or cracks. However, as the TFW model for
surfaces has been established [7], it may be possible to obtain locality estimates for
surfaces and cracks using the TFW model.

We remark that there exists R′ = R′(R0, ω) > 0 such that for any Y ⊂
YL2(M, ω) ⋃

j∈N
BR′(Y j ) = R

3. (4.14)

For any Y ∈ YL2(M, ω) there exists a unique ground state (u, φ) corresponding
to m = mY . Naively, we might define the energy stored in a region Ω ⊂ R

3 by∫
Ω

|∇u|2 +
∫

Ω

u10/3 + 1

2

∫
Ω

(
(m − u2) ∗ 1

|·|
)

(m − u2), (4.15)

however, difficulties arise due to the fact that (m − u2) ∗ 1
|·| is not well-defined.

Instead, we give two alternative definitions for the energy density for an infinite
system:

E1(Y ; ·) := |∇u|2 + u10/3 + 1

2
φ
(

m − u2
)

, (4.16)

E2(Y ; ·) := |∇u|2 + u10/3 + 1

8π
|∇φ|2 , (4.17)

which both satisfy E1(Y ; ·),E2(Y ; ·) ∈ L1
unif(R

3).
Suppose now that Ω ⊂ R

3 is a charge-neutral volume [44], that is, if n is the
unit normal to ∂Ω , then ∇φ · n = 0 on ∂Ω . Recalling from (2.6b) that

−Δφ = 4π
(

m − u2
)

we deduce that

1

8π

∫
Ω

|∇φ|2 = 1

8π

∫
Ω

(−Δφ) φ +
∫

∂Ω

φ∇φ · n = 1

2

∫
Ω

φ
(

m − u2
)

,

and hence ∫
Ω

E1(Y ; x) dx =
∫

Ω

E2(Y ; x) dx .

In particular, for finite neutral systems m Rn = m ·χBRn (0),where m ∈ ML2(M, ω)

and (u Rn , φRn ) denoting the corresponding solution, the following energies agree
on Ω = R

3

∫
R3

( ∣∣∇u Rn

∣∣2 + u10/3
Rn

+ 1

2

((
m Rn − u2

Rn

)
∗ 1

|·|
) (

m Rn − u2
Rn

))

=
∫
R3

( ∣∣∇u Rn

∣∣2 + u10/3
Rn

+ 1

2
φRn (m Rn − u2

Rn
)

)

=
∫
R3

( ∣∣∇u Rn

∣∣2 + u10/3
Rn

+ 1

8π

∣∣∇φRn

∣∣2
)

. (4.18)
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We prove this claim is in Remark 12 in Section 6. Thus, we have derived two
energy densities, E1,E2, which are meaningful and well-defined also for infinite
configurations.

In order to define site energies, we require a partition of R
3. For each j ∈ N let

ϕ j (Y ; ·) ∈ C1(R3), ϕ j (Y ; ·) � 0 satisfying the following conditions: there exist
C, γ̃ > 0 such that for all Y ∈ YL2(M, ω)

∑
j∈N

ϕ j (Y ; x) = 1, (4.19a)

∣∣ϕ j (Y ; x)
∣∣ � Ce−γ̃ |x−Y j |, and (4.19b)∣∣∣∣∂ϕ j

∂Yk
(Y ; x)

∣∣∣∣ � Ce−γ̃ |x−Y j |e−γ̃ |x−Yk |. (4.19c)

We propose a canonical construction of such a partition in Remark 9 below.
Given a family of partition functions satisfying (4.19), we can define site ener-

gies

Ei
j (Y ) =

∫
R3

Ei (Y ; x)ϕ j (Y ; x) dx, (4.20)

for i = 1, 2. A consequence of Theorems 3.1 and 3.2 is that Ei
j (Y ) are local: their

dependence on the environment of nuclei decays exponentially fast. This is made
precise in the following theorem.

Theorem 4.2. Let i ∈ {1, 2}, Y ∈ YL2(M, ω) and {ϕ j | j ∈ N} satisfy (4.19). Then
for every k ∈ N, ∂Yk Ei

j exists and satisfies

∣∣∣∣∣
∂ Ei

j (Y )

∂Yk

∣∣∣∣∣ � Ce−γ |Y j −Yk |, (4.21)

where C = C(M, ω), γ = γ (M, ω) > 0.

The derivative ∂Yk Ei
j can be interpreted as the contribution of the atom at Yk to

the force on the nucleus at Y j . In addition, we show in Section 6.4 that these site
energies generate the correct total force

∑
j∈N

∂ E1
j (Y )

∂Yk
=
∑
j∈N

∂ E2
j (Y )

∂Yk
=
∫
R3

φ(x)
∂mY (x)

∂Yk
dx . (4.22)

Remark 9. Two further canonical requirements on a site energy potential are per-
mutation and isometry (rotation and translation) invariance. This can be obtained
as follows:

If the partition (ϕ j ) j∈N is permutation invariant, that is, for any bijection P :
N → N, Y ◦ P = (YP j ) j∈N, we have

ϕ j (Y ◦ P; x) = ϕPj (Y ; x) ∀ j ∈ N x ∈ R
3, (4.23)
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then so are the site energies,

Ei
j (Y ◦ P) = Ei

j (Y ).

If the partition is isometry invariant, that is, for any isometry A : R
3 → R

3,
AY = (AY j ) j∈N, we have

ϕ j (AY ; x) = ϕ j (Y ; A−1x) ∀ j ∈ N, x ∈ R
3, (4.24)

then the site energies are also isometry invariant,

Ei
j (AY ) = Ei

j (Y ).

Both statements are proven in Lemma 6.8.
A canonical class of partitions satisfying (4.19) as well as (4.23), (4.24) can be

constructed as follows: Let ϕ̃ ∈ C1(R3), ϕ̃ � 0, be radially symmetric and satisfy

|ϕ̃(x)| + |∇ϕ̃(x)| � Ce−γ̃ |x |, (4.25)

ϕ̃(x) � c > 0 on BR′+1(0). (4.26)

For example, this holds for ϕ̃(x) = e−γ̃ |x |2 and for standard mollifiers with suffi-
ciently wide support.

Then, for j ∈ N, we can define

ϕ j (Y ; x) = ϕ̃(x − Y j )∑
j ′∈N ϕ̃(x − Y j ′)

. (4.27)

It is easy to see that this class of functions are well-defined and satisfies all require-
ments. ��
Remark 10. Alternative constructions of energy partitions include Bader volumes
and charge-neutral volumes [4,32,44]. Bader volumes partition space into regions
such that the flux of the electron density on the boundary is zero, while charge-
neutral volumes are defined so that each region has zero charge. The construction
of these volumes is not unique, like our definition of a partition. Bader volumes
were developed as a means to define atoms within molecules [4].

With this in mind, using a partition we may assign a portion of the electron den-
sity to each nucleus in the system. We refer to a nucleus paired with it’s associated
partition of the electron density as an effective atom. Due to the screening that oc-
curs in the TFWmodel, the interaction of two effective atoms decays exponentially
as the distance between the nuclei grows. In comparison, the interaction of two
neutrals atoms separated by a sufficiently large distance r in the TF model has been
shown to decay at the rate r−7 [9]. This suggests that due to the overscreening of
the TFW model, the interaction of the effective atoms is considerably weaker than
is realistic. However, for the purpose of simulating quantum systems, in particular
applying the strong locality principle [17], the weak long-range interaction of the
TFW model is a desirable property. ��
Remark 11. The estimate shown in Theorem 4.2 is a theoretical result which can
be applied to simulate defective crystals, though we do not pursue this. Locality
estimates have been established for the tight-binding model and subsequently used
to construct QM/MM hybrid methods [14,15]. ��
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5. Conclusion and Outlook

The two main results of this work, Theorems 3.1 and 3.2, are stability and ex-
ponential locality estimates for the TFWmodel, which apply to general condensed
nuclear configurations.

We have demonstrated in Section 4 that it can be used to extend and strengthen
a range of existing results on the TFW model. A particular strength of our results
is that they apply to general nuclear configuration inML2(M, ω), whereas the pre-
vious analyses of the TFWmodel have focused on (near-)crystalline arrangements
or the homogeneous electron gas. This generality will be valuable when exploring
the consequences of our analysis for studying models for the mechanical response
problem in [13], where we generalise [19] to electronic structure models.

A further application, that we will develop in a forthcoming work is a study
of the Yukawa potential as a model approximation [36, Theorem 3.5]. Adapting
Theorems 3.1 and 3.2 we can consider the difference between the Coulomb and
Yukawa ground states for a given nuclear configuration and prove uniform error
estimates in terms of the screening parameter in the Yukawa model.

Two key difficulties in the analysis of electronic structure models are (i) the
exchange and correlation of electrons due to the antisymmetry of the electronic
wavefunction; and (ii) the interaction of charged particles (positive nuclei and neg-
ative electrons) via the long-range Coulomb potential. Since the TFW model is
orbital-free it does not account for (i), however it fully incorporates Coulomb in-
teraction. In this regard it is perhaps surprising that the TFW model satisfies the
extremely generic locality property we obtained in Theorems 3.1 and 3.2.

The Hartree–Fock and Kohn-Sham models take both effects into account and
whether thesemodels permit a similarly strongnotion of locality is an openproblem.
It is clear, however, that such results cannot be obtained in the generality that we
considered in the present paper. Since charged defects exist in the reduced Hartree–
Fock model [11] and as locality implies neutrality, this suggests that a locality
property cannot hold for general condensed phase arrangements in the reduced
Hartree–Fockmodel, which is the simplest model in the Hartree–Fock/Kohn–Sham
class.

6. Proofs

This section contains the proofs of themain results. Proofs of results in Sections
3.1, 3.2 and 4 are found in Sections 6.1, 6.2 and 6.3 respectively.

The following is a preliminary result used in the construction of the space
ML2(M, ω).

Lemma 6.1. Suppose m : R
3 → R�0 and m ∈ L1

loc(R
3), then (H2) is equivalent

to the following statement: there exist ω0, ω1 > 0 such that for all R > 0

inf
x∈R3

∫
BR(x)

m(z) dz � ω0R3 − ω1. (6.1)
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Proof (Proof of Lemma 6.1). Clearly, (6.1) implies (H2), so suppose m satisfies
(H2), then there exists R1 > 0 such that

inf
x∈R3

∫
BR1 (x)

m(z) dz � 1.

For R > 0 and x ′ ∈ R
3, let Q R(x ′) ⊂ R

3 denote the cube of side length 2R
centred at x ′, which contains BR(x ′). Also, let R2 = √

3R1, which ensures that
BR2(x) ⊃ Q R1(x) for all x ∈ R

3. Further, let R � R2, hence R = k R2, for some
k � 1. Then

inf
x∈R3

∫
BR(x)

m(z) dz = inf
x∈R3

∫
Bk R2 (x)

m(z) dz � inf
x∈R3

∫
Qk R1 (x)

m(z) dz

� �k�3 inf
x ′∈R3

∫
Q R1 (x ′)

m(z) dz � �k�3

�
(

k

2

)3

= R3

8R3
2

=: ω0R3. (6.2)

Now define ω1 := ω0R3
2 � 0, then it follows from (6.2) that (6.1) holds for all

R > 0. ��

6.1. Proofs of Uniform Regularity Estimates

The following lemma features in the proofs of both the existence and uniqueness
of the TFW equations and is found in [12].

Lemma 6.2. Let a ∈ H1
loc(R

3) ∩ L∞(R3), then define the elliptic operator L =
−Δ + a. Suppose that there exists u ∈ H1

loc(R
3) satisfying u > 0 and Lu = 0 in

distribution. Then, the operator L is non-negative, that is for all ϕ ∈ H1(R3)

〈ϕ, Lϕ〉 � 0. (6.3)

The proof is shown in [12] but is included here for completeness.

Proof (Proof of Lemma 6.2). Let R > 0 and define Ω = BR(0) and consider
L as an operator on L2(Ω) with domain H2(Ω) ∩ H1

0 (Ω). Then L is a self-
adjoint operator with compact resolvent hence has a purely discrete spectrum.
Since a ∈ H1

loc(R
3) it follows that the smallest eigenvalue λ1(Ω) is simple and has

a positive eigenfunction vΩ ∈ H1
0 (Ω) [23, Theorem 8.38]. In addition, by standard

elliptic regularity vΩ ∈ H3(Ω) ↪→ C1,1/2(Ω) [20] and solves

(−Δ + a) vΩ = λ1(Ω)vΩ.

Testing this equation with u and using integration by parts, we obtain

−
∫

∂Ω

∂vΩ

∂n
u = λ1(Ω)

∫
Ω

vΩu. (6.4)
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As vΩ > 0 on Ω and vΩ vanishes over ∂Ω , it follows that ∂vΩ

∂n � 0. It follows
that the left-hand side of (6.4) is non-negative, hence λ1(Ω) � 0. As this holds
for Ω = BR(0), for any R > 0, we deduce that for all ϕ ∈ C1

c (R3) 〈ϕ, Lϕ〉 � 0.
Using that a ∈ L∞(R3) and the density of C1

c (R3) in H1(R3), it follows that for
all ϕ ∈ H1(R3) 〈ϕ, Lϕ〉 � 0. ��

We now show uniform estimates for finite systems corresponding to truncated
nuclear distributions. This result is essentially [12, Proposition 3.5], however as we
require uniform regularity estimates, we provide a complete proof.

Proposition 6.1. Let m : R → R�0 satisfy

‖m‖L2
unif(R

3) � M, (6.5)

and Rn ↑ ∞, then define the truncated nuclear distribution m Rn = m · χBRn (0).
The unique solution to the minimisation problem

ITFW(m Rn ) = inf

{
ETFW(v, m Rn )

∣∣∣∣ v ∈ H1(R3), v � 0,
∫
R3

v2 =
∫
R3

m Rn

}
,

yields a unique solution (u Rn , φRn ) to (2.4)

−Δu Rn + 5

3
u7/3

Rn
− φRn u Rn = 0,

−ΔφRn = 4π
(

m Rn − u2
Rn

)
.

which satisfy the following estimates, with constant C independent of Rn:

‖u Rn ‖H4
unif(R

3) � C
(
1 + M15/4

)
, (6.7)

‖φRn ‖H2
unif(R

3) � C
(
1 + M3/2

)
. (6.8)

Proof (Proof of Proposition 6.1). If m ≡ 0, then for all Rn , clearly u Rn = φRn =
m Rn = 0 satisfies (2.4) and (6.7)–(6.8).

If m �≡ 0, then there exists a constant R0 � 0 such that Rn � R0 ensures that∫
R3 m Rn > 0. Recall

ETFW
Rn

(v, m Rn ) =
∫

|∇v|2 +
∫

v10/3 + 1

2
D
(

m Rn − v2, m Rn − v2
)

.

For each Rn , consider the minimisation problem

ITFW(m Rn ) = inf

{
ETFW(v, m Rn )

∣∣∣∣ v ∈ H1(R3), v � 0,
∫
R3

v2 =
∫
R3

m Rn > 0

}
.

The constraint
∫
R3 v2 = ∫

R3 m Rn ensures the system is charge neutral, and by [31,
Theorem 7.19] there exists a unique non-negative minimiser u Rn ∈ H1(R3) to
ITFW(m Rn ) solving

− Δu Rn + 5

3
u7/3

Rn
−
(
(m Rn − u2

Rn
) ∗ 1

|·|
)

u Rn = −θRn u Rn , (6.9)∫
R3

u2
Rn

=
∫
R3

m Rn > 0. (6.10)
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Here θRn > 0 is the Lagrange multiplier associated with the charge constraint
(6.10) [12,31]. Define φRn : R

3 → R by

φRn =
((

m Rn − u2
Rn

)
∗ 1

|·|
)

− θRn , (6.11)

so we can express (6.9) as the Schrödinger–Poisson system (2.4)

− Δu Rn + 5

3
u7/3

Rn
− φRn u Rn = 0,

− ΔφRn = 4π
(

m Rn − u2
Rn

)
.

Decompose

(m Rn − u2
Rn

) ∗ 1
|·| =

(
m Rn − u2

Rn

)
∗
(

1
|·|χB1(0)

)
+
(

m Rn − u2
Rn

)
∗
(

1
|·|χB1(0)c

)
,

then as u Rn ∈ H1(R3) ↪→ L6(R3) and m ∈ L2
unif(R

3) applying Young’s inequality
gives
∥∥∥
(

m Rn − u2
Rn

)
∗ 1

|·|
∥∥∥

L∞(R3)
� ‖

(
m Rn − u2

Rn

)
‖L5/3(R3)

∥∥∥ 1
|·|χB1(0)

∥∥∥
L5/2(R3)

+ ‖
(

m Rn − u2
Rn

)
‖L7/5(R3)

∥∥∥ 1
|·|χB1(0)c

∥∥∥
L7/2(R3)

� C
((

R3/10
n + R9/14

n

)
‖m Rn ‖L2(R3) + ‖u Rn ‖2H1(R3)

)

� C
((

R9/5
n + R15/7

n

)
‖m‖L2

unif(R
3) + ‖u Rn ‖2H1(R3)

)

� C
((

R9/5
n + R15/7

n

)
M + ‖u Rn ‖2H1(R3)

)
.

By [30, Lemma II.25] we deduce that (m Rn − u2
Rn

) ∗ 1
|·| is a continuous function

vanishing at infinity. It follows that φRn ∈ L∞(R3) and is also continuous. Also,
|∇φRn | ∈ L2(R3)

1

8π

∫
R3

|∇φRn |2 = 1

8π

∫
R3

φRn

(−ΔφRn

)

= 1

2

∫
R3

φRn

(
m Rn − u2

Rn

)

= 1

2

∫
R3

φRn

(
m Rn − u2

Rn

)
+ θRn

2

∫
R3

(
m Rn − u2

Rn

)

= 1

2

∫
R3

(
φRn + θRn

) (
m Rn − u2

Rn

)

= 1

2

∫
R3

((
m Rn − u2

Rn

)
∗ 1

|·|
) (

m Rn − u2
Rn

)
, (6.12)

hence φRn ∈ H1
unif(R

3). Now, consider u Rn ∈ H1(R3), which solves

−Δu Rn = −5

3
u7/3

Rn
+ φRn u Rn . (6.13)
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The right-hand side can be estimated in L2(R3) by
∥∥∥ 5
3u7/3

Rn
− φRn u Rn

∥∥∥
L2(R3)

� 5

3

∥∥∥u7/3
Rn

∥∥∥
L2(R3)

+ ∥∥φRn

∥∥
L∞(R3)

∥∥u Rn

∥∥
L2(R3)

� C
∥∥u Rn

∥∥7/3
H1(R3)

+ ∥∥φRn

∥∥
L∞(R3)

∥∥u Rn

∥∥
H1(R3)

,

which implies u Rn ∈ H2(R3) as Δu Rn ∈ L2(R3). By the Sobolev Embedding
Theorem [20] u Rn ∈ H2(R3) ↪→ C0,1/2(R3), hence u Rn is continuous. Also, by
[5, Lemma 9], u Rn decays at infinity. We now justify this. Recall (6.13) and since
u Rn � 0, we have −Δu Rn � φRn u Rn , hence

−Δu Rn + u Rn � (1 + φRn )u Rn

As φRn ∈ L∞(R3) and u Rn ∈ H1(R3), the right-hand side belongs to L2(R3)

hence by the Lax-Milgram theorem there exists a unique gRn ∈ H1(R3) satisfying

−ΔgRn + gRn = (1 + φRn )u Rn .

Moreover, using theGreen’s function gRn = e−|·|
|·| ∗(1+φRn )u Rn and since

e−|·|
|·| , (1+

φRn )u Rn ∈ L2(R3) by [30, Lemma II.25] gRn is continuous function that decays
at infinity, hence gRn ∈ L∞(R3). It follows from the comparison principle that
u Rn � gRn , so u Rn ∈ L∞(R3) and decays at infinity.

Using that u Rn , φRn + θRn are continuous and decay at infinity, by arguing
as in [41], there exists a universal constant CS > 0, independent of the nuclear
distribution, satisfying

0 < θRn � CS, (6.14)
10

9
u4/3

Rn
� φRn + CS . (6.15)

As u Rn � 0, from the Solovej estimate (6.15) we obtain the uniform lower bound

φRn � −CS . (6.16)

We aim to show a uniform upper bound for φRn , which together with (6.15) will
yield the uniform estimate

‖u Rn ‖4/3L∞(R3)
+ ‖φRn ‖L∞(R3) � C(M), (6.17)

which is independent of Rn .
If φRn is non-positive, then (6.17) holds as

∥∥u Rn

∥∥4/3
L∞(R3)

+ ∥∥φRn

∥∥
L∞(R3)

� 2CS .

Instead, suppose that φ+
Rn

is non-zero at some point in R
3. By (6.11) φRn is a

continuous function that converges to a negative limit at infinity, φ+
Rn

∈ Cc(R
3),

hence there exists a point xRn ∈ R
3 such that

φ+
Rn

(xRn ) =
∥∥∥φ+

Rn

∥∥∥
L∞(R3)

> 0. (6.18)
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Without loss of generality, we assume xRn = 0.
We now show that u Rn > 0 on R

3, arguing by contradiction. Suppose that
there exists z ∈ R

3 such that u Rn (z) = 0. Since u Rn is a non-negative, continuous
function decaying at infinity, there exists yn ∈ R

3 such that

u Rn (yn) = sup
x∈R3

u Rn (x).

Let R > |yn − z|, then by the Harnack inequality [42], we infer

0 � u Rn (yn) = sup
x∈BR(yn)

u Rn (x) � C(R) inf
x∈BR(yn)

u Rn (x) = u Rn (z) = 0,

so u Rn ≡ 0. This contradicts the charge constraint (6.10)
∫
R3 u2

Rn
= ∫

R3 m Rn > 0,

hence u Rn > 0 on R
3.

As u Rn ∈ H1(R3) ∩ L∞(R3), φRn ∈ H1
unif(R

3) ∩ L∞(R3) and u Rn > 0,

Lemma 6.2 implies that L Rn = −Δ + 5
3u4/3

Rn
− φRn is a non-negative operator.

Choose ϕ ∈ C∞
c (B1(0)) satisfying 0 � ϕ � 1, ϕ = 1 on B1/2(0),

∫
R3 ϕ2 = 1

and
∫
R3 |∇ϕ|2 =: cϕ , then for y ∈ R

3, define ϕy ∈ C∞
c (B1(y)) by ϕy = ϕ(· − y).

As L Rn is non-negative (6.3) implies

〈
ϕy, L Rn ϕy

〉 =
∫
R3

|∇ϕy |2 +
∫
R3

(
5

3
u4/3

Rn
− φRn

)
ϕ2

y � 0,

which can be re-arranged and expressed using convolutions as

5

3

(
u4/3

Rn
∗ ϕ2

)
�
(

φRn ∗ ϕ2 −
∫
R3

|∇ϕ|2
)

+
=
(
φRn ∗ ϕ2 − cϕ

)
+ (6.19)

Observe that φRn ∗ ϕ2 solves

−Δ
(
φRn ∗ ϕ2

)
= 4π

(
m Rn ∗ ϕ2 − u2

Rn
∗ ϕ2

)
. (6.20)

We estimate the first term using (6.5)

(
m Rn ∗ ϕ2

)
(x) =

∫
B1(x)

m Rn (y)ϕ2(x − y) dy

�
∫

B1(x)

m(y) dy � C0‖m‖L2
unif(R

3) � C0M. (6.21)
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For the second term, using the convexity of t �→ t3/2 for t � 0 and the fact that∫
ϕ2 = 1, applying Jensen’s inequality and (6.19) we deduce

4π u2
Rn

∗ ϕ2(x) � 5

3
u2

Rn
∗ ϕ2(x)

= 5

3

∫
R3

u2
Rn

(x − y)ϕ2(y) dy

= 5

3

∫
R3

(
u4/3

Rn
(x − y)

)3/2
ϕ2(y) dy

� 5

3

(∫
R3

u4/3
Rn

(x − y)ϕ2(y) dy

)3/2

= 5

3

(
u4/3

Rn
∗ ϕ2

)3/2
�
(
φRn ∗ ϕ2 − cϕ

)3/2
+ . (6.22)

Combining the estimates (6.20)–(6.22) we conclude that

−Δ
(
φRn ∗ ϕ2

)
+
(
φRn ∗ ϕ2 − cϕ

)3/2
+ � C0M.

By (6.11), as φRn is a continuous function that converges to a negative limit at
infinity, φRn ∗ ϕ2 also shares these properties. Now consider the set

S =
{

x ∈ R
3 | φRn ∗ ϕ2 − cϕ > 0

}
,

it follows that S is open and bounded and that φRn ∗ ϕ2 − cϕ = 0 on ∂S. Observe
that the constant function h = (C0M)2/3 satisfies

− Δh + h3/2
+ = C0M on S,

0 = φRn ∗ ϕ2 − cϕ � h in ∂S,

so by the maximum principle φRn ∗ ϕ2 � cϕ + C2/3
0 M2/3 over S, and also on Sc,

hence

φRn ∗ ϕ2 � C1

(
1 + M2/3

)
, (6.23)

where C1 = max{cϕ, C2/3
0 } is independent of M .

Observe that

φ+
Rn

∗ ϕ2 = φ−
Rn

∗ ϕ2 + φRn ∗ ϕ2 � CS + C1

(
1 + M2/3

)
= C

(
1 + M2/3

)
,

and by estimating (2.4b) directly, that

−Δφ+
Rn

= −ΔφRn χ{φRn >0} = 4π
(

m Rn − u2
Rn

)
χ{φRn >0} � 4πm Rn χ{φRn >0} � 4πm Rn .

As 0 � ϕ � 1 and ϕ = 1 on B1/2(0), then∫
B1/2(0)

φ+
Rn

(x) dx �
(
φ+

Rn
∗ ϕ2

)
(0) � C

(
1 + M2/3

)
. (6.24)
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Using a change of variables, (6.24) can be expressed as
∫

B1/2(0)
φ+

Rn
(x) dx =

∫ 1/2

0

∫
St (0)

φ+
Rn

(tγ ) dSt (γ ) dt.

Define f : [0, 1/2] → R by

f (t) =
∫

St (0)
φ+

Rn
(tγ ) dSt (γ )

and suppose that for all t ∈ (1/4, 1/2)

f (t) > 4
∫

B1/2(0)
φ+

Rn
(x) dx > 0,

then∫
B1/2(0)

φ+
Rn

(x) dx =
∫ 1/2

0
f (t) dt �

∫ 1/2

1/4
f (t) dt >

∫
B1/2(0)

φ+
Rn

(x) dx,

which gives a contradiction, hence for some t ∈ (1/4, 1/2)∫
St (0)

φ+
Rn

(tγ ) dSt (γ ) � 4
∫

B1/2(0)
φ+

Rn
(x) dx � C

(
1 + M2/3

)
. (6.25)

Since t > 1/4, (6.25) implies

−
∫

St (0)
φ+

Rn
(tγ ) dSt (γ ) = 1

|St (0)|
∫

St (0)
φ+

Rn
(tγ ) dSt (γ )

� C + M2/3

|S1/4(0)| � C
(
1 + M2/3

)
=: C1(M).

We now construct an upper bound for φ+
Rn

as follows. Let φ1 satisfy

−Δφ1 = 0 in Bt (0),

φ1 = φ+
Rn

on St (0).

As φ1 is harmonic, it satisfies the mean value property

φ1(0) � −
∫

St (0)
φ+

Rn
(tγ ) dSt (γ ) � C1(M). (6.26)

Then consider the Dirichlet problem

−Δφ2 = 4πm in Bt (0),

φ2 = 0 on St (0).

By Lax-Milgram, this has a unique weak solution φ2 ∈ H1
0 (Bt (0)). By standard

elliptic regularity theory [20] φ2 ∈ H2(Bt (0)) ↪→ C0,1/2(Bt (0)) and

‖φ2‖C0,1/2(Bt (0))
� C ‖φ2‖H2(Bt (0)) � C ‖m‖L2(Bt (0)) � Ct3/2 ‖m‖L2

unif(R
3)

� C M.

(6.27)
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The constructed functions φ1, φ2 satisfy

−Δφ+
Rn

� −Δ(φ1 + φ2) in Bt (0),

φ+
Rn

= φ1 + φ2 on St (0),

hence by the maximum principle φ+
Rn

� φ1 + φ2, in particular (6.26)–(6.27) imply

∥∥∥φ+
Rn

∥∥∥
L∞(R3)

= φ+
Rn

(0) � φ1(0) + φ2(0) � C(1 + M),

where the right-hand side is independent of Rn . Combining this with the lower
bound (6.16) and the Solovej estimate (6.15), we obtain the estimate (6.17)

∥∥u Rn

∥∥4/3
L∞(R3)

+ ∥∥φRn

∥∥
L∞(R3)

� C(1 + M).

It follows immediately that for all x ∈ R
3 and r ∈ [1,∞]

∥∥u Rn

∥∥
Lr (B2(x))

� C
(
1 + M3/4

)
, (6.28)

independently of both x, r and Rn . Using (6.17) and (6.28), we now obtain uniform
local estimates for the right-hand side of (6.13)

−Δu Rn = −5

3
u7/3

Rn
+ φRn u Rn

by
∥∥∥ 5
3u7/3

Rn
− φRn u Rn

∥∥∥
L2(B2(x))

� C
∥∥∥ 5
3u7/3

Rn
− φRn u Rn

∥∥∥
L∞(R3)

� C
(∥∥u Rn

∥∥7/3
L∞(R3)

+ ∥∥φRn

∥∥
L∞(R3)

∥∥u Rn

∥∥
L∞(R3)

)

� C
(
1 + M7/4

)
.

Consequently, for any x ∈ R
3, the elliptic regularity estimate [20] gives

∥∥u Rn

∥∥
H2(B1(x))

� C

(∥∥∥ 5
3u7/3

Rn
− φRn u Rn

∥∥∥
L2(B2(x))

+ ∥∥u Rn

∥∥
L2(B2(x))

)

� C(1 + M7/4) + C
(
1 + M1/2

)
� C

(
1 + M7/4

)
. (6.29)

As (6.29) is independent of x ∈ R
3, we obtain

∥∥u Rn

∥∥
H2
unif(R

3)
� C

(
1 + M7/4

)
. (6.30)

Applying a similar argument to estimate the right-hand side of (2.4b)

−ΔφRn = 4π
(

m Rn − u2
Rn

)
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yields (6.8)

‖φRn ‖H2
unif(R

3) � C
(
1 + M3/2

)
.

Using that φRn ∈ H2
unif(R

3) and arguing as in (6.30), we obtain the desired estimate
(6.7) ∥∥u Rn

∥∥
H4
unif(R

3)
� C

(
1 + M15/4

)
.

We remark that while the constants appearing in the final estimates (6.7)–(6.8)
depend on cϕ , they are independent of M . ��
Remark 12. We now justify the claim that for finite and neutral systems and for
Ω = R

3, the three energies shown in (4.18) agree. Recall (6.12), which shows that
the Coulomb energy can be expressed as

1

2

∫
R3

((
m Rn − u2

Rn

)
∗ 1

|·|
) (

m Rn − u2
Rn

)
= 1

2

∫
R3

φRn

(
m Rn − u2

Rn

)

= 1

8π

∫
R3

|∇φRn |2,

so it follows that the energies defined in (4.18) agree for Ω = R
3. ��

We now discuss passing to the limit in (2.4) to obtain regularity for the infinite
system.

Proof (Proof of Proposition 3.1). First suppose that spt(m) is bounded, then for
sufficiently large Rn , m = m Rn and hence by Proposition 6.1 (u, φ) = (u Rn , φRn )

solves (2.6) and satisfies the desired estimates (3.2)–(3.3).
Now suppose spt(m) is unbounded, then the estimates (6.7)–(6.8) of Proposi-

tion 6.1 guarantee that the sequences u Rn , φRn are bounded uniformly in H2
unif(R

3).
Consequently, there existu, φ ∈ H2

unif(R
3)∩L∞(R3) such that along a subsequence

u Rn , φRn converges to u, φ, weakly in H2(BR(0)), strongly in H1(BR(0)) for all
R > 0 and pointwise almost everywhere. It follows from the pointwise convergence
that u � 0 and

‖u‖L∞(R3) � C
(
1 + M3/4

)
,

‖φ‖L∞(R3) � C(1 + M).

Passing to the limit of the equations (2.4) in distribution, we find that the limit
(u, φ) solves

− Δu + 5

3
u7/3 − φu = 0,

− Δφ = 4π
(

m − u2
)

.

Arguing as in (6.7)–(6.8), we deduce that the desired estimates (3.2)–(3.3) hold

‖u‖H4
unif(R

3) � C
(
1 + M15/4

)
,

‖φ‖H2
unif(R

3) � C
(
1 + M3/2

)
.

��
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Proof (Proof of Proposition 3.2). As m ∈ ML2(M, ω), it satisfies (H1)–(H2),
hence by Theorem 2.1, the solution (u, φ) of (2.6) defined in Proposition 3.1 is
unique and satisfies inf u > 0. Now suppose

inf
m∈ML2 (M,ω)

inf
x∈R3

u(x) = 0, (6.31)

we show that this contradicts the assumption that for all m ∈ ML2(M, ω) and
R > 0

inf
x∈R3

∫
BR(x)

m(z) dz � ω0R3 − ω1.

It follows from (6.31) that there exists mn ∈ ML2(M, ω) with corresponding
solution (un, φn) and xn ∈ R

3 such that for all n ∈ N

un(xn) � 1

n
.

Recall the uniform estimates (6.7)–(6.8) from Proposition 3.1

‖un‖H4
unif(R

3) � C
(
1 + M15/4

)
,

‖φn‖H2
unif(R

3) � C
(
1 + M3/2

)
.

It follows that
∥∥∥ 5
3u4/3

n − φnun

∥∥∥
L2
unif(R

3)
� C ‖un‖4/3

L∞(R3)
+ ‖φn‖L2

unif(R
3) ‖un‖L∞(R3) � C(M).

As 5
3u4/3

n − φnun ∈ L2
loc(R

3), un ∈ H1
unif(R

3) and un > 0 solves

Lnun :=
(

−Δ + 5

3
u4/3

n − φn

)
un = 0,

applying the Harnack inequality [42], and observing that the coefficients of Ln are
uniformly estimated by Proposition 3.1, this yields a uniform Harnack constant,
hence for all R > 0, there exists C = C(R, M) > 0 such that

sup
x∈BR(xn)

un(x) � C inf
x∈BR(xn)

un(x) � C

n
.

It follows that the sequence of functions un(· + xn) converges uniformly to zero
on compact sets. Consider the ground state (un, φn) corresponding to the nuclear
distribution mn .

Recall that φn solves the following equation in distribution

−Δφn = 4π
(

mn − u2
n

)
. (6.32)
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We translate the system and then pass to the limit in (6.32) as n tends to infinity.
To do this, we use the following estimates, which are translation invariant:

‖mn(· + xn)‖L2
unif(R

3) � M,

‖φn(· + xn)‖H2
unif(R

3) � C(M).

It follows that, up to a subsequence,φn(·+xn) converges to φ̃,weakly in H2(BR(0)),
strongly in H1(BR(0)) for all R > 0 and pointwise almost everywhere. More-
over, mn(· + xn) converges to m̃, weakly in L2(BR(0)) for all R > 0. By ap-
plying the Lebesgue–Besicovitch Differentiation Theorem [21] we deduce that
m̃ ∈ ML2(M, ω). Passing to the limit in

−Δφn(· + xn) = 4π
(

mn(· + xn) − u2
n(· + xn)

)
,

it follows that φ̃ is a distributional solution of

−Δφ̃ = 4πm̃. (6.33)

Arguing as in [12, Theorem 6.10], we show that for all R > 0∫
BR(0)

m̃(z) dz � CR. (6.34)

As m̃ ∈ ML2(M, ω), this leads to the contradiction that for all R > 0

ω0R3 − ω1 �
∫

BR(0)
m̃(z) dz � CR.

To show (6.34) choose ϕ ∈ C∞
c (B2(0)) such that 0 � ϕ � 1 and ϕ = 1 on B1(0).

Let R > 0, then testing (6.33) with ϕ(·/R) gives

− 1

R2

∫
B2R(0)

φ̃(z)(Δϕ)(z/R) dz = 4π
∫

B2R(0)
m̃(z)ϕ(z/R) dz. (6.35)

The left-hand side can be estimated by

1

R2

∣∣∣∣
∫

B2R(0)
φ(z)(Δϕ)(z/R) dz

∣∣∣∣ � ‖φ‖L∞(R3)‖Δϕ‖L∞
|B2R(0)|

R2 � C R,

where the constant C > 0 is independent of R. As m̃ � 0, from (6.35) we obtain
(6.34) ∫

BR(0)
m̃(z) dz �

∫
B2R(0)

m̃(z)ϕ(z/R) dz � C R.

The contradiction ensures that there exists a constant cM,ω > 0 such that for all
m ∈ ML2(M, ω), the corresponding electron density u satisfies

inf
x∈R3

u(x) � cM,ω > 0.

��
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Proof (Proof of Corollary 3.1). Our aim is to show by induction that for all k ∈
N0, if m ∈ MHk (M, ω) then the corresponding solution (u, φ) to (2.6) satisfies

‖u‖Hk+4
unif (R3)

+ ‖φ‖Hk+2
unif (R3)

� C(k, M, ω). (6.36)

In Proposition 3.1, by combining the estimates (3.2) and (3.3), it follows that (6.36)
holds for the case k = 0: for all m ∈ ML2(M, ω) the corresponding solution (u, φ)

satisfies

‖u‖H4
unif(R

3) + ‖φ‖H2
unif(R

3) � C(M, ω).

We now show the induction step. Suppose the result is true for k ∈ N0, then
consider m ∈ MHk+1(M, ω) ⊂ MHk (M, ω), so by the induction hypothesis the
corresponding solution (u, φ) satisfies

‖u‖Hk+4
unif (R3)

+ ‖φ‖Hk+2
unif (R3)

� C
(

k, ‖m‖Hk
unif(R

3) , ω
)

. (6.37)

We remark that as 0 < cM,ω � u ≤ C(M) and u ∈ Hk+4
unif (R3), it follows that for

all r ∈ R, ur ∈ Hk+4
unif (R3). As (u, φ) solve (2.6)

−Δu = −5

3
u7/3 + φu,

−Δφ = 4π(m − u2),

by standard elliptic regularity theory [20] for any x ∈ R
3

‖φ‖Hk+3(B1(x)) � C

(∥∥∥m − u2
∥∥∥

Hk+1(B2(x))
+ ‖φ‖L2(B2(x))

)

� C

(
‖m‖Hk+1(B2(x)) +

∥∥∥u2
∥∥∥

Hk+1(B2(x))
+ ‖φ‖L2(B2(x))

)

� C
(
‖m‖Hk+1

unif (R3)
+ ‖φ‖L2

unif(R
3)

)
+ C

(
k + 1, ‖u‖Hk+1

unif (R3)

)

� C ‖m‖Hk+1
unif (R3)

+ C
(

k + 1, ‖m‖Hk
unif(R

3) , ω
)

� C
(

k + 1, ‖m‖Hk+1
unif (R3)

, ω
)

,

hence

‖φ‖Hk+3
unif (R3)

= sup
x∈R3

‖φ‖Hk+3(B1(x)) � C
(

k + 1, ‖m‖Hk+1
unif (R3)

, ω
)

. (6.38)

We use an identical argument together and apply the estimate (6.38) to deduce

‖u‖Hk+5
unif (R3)

� C

(∥∥∥ 5
3u7/3 − φu

∥∥∥
Hk+3
unif (R3)

+ ‖u‖L2
unif(R

3)

)

� C
(
‖φ‖Hk+3

unif (R3)
, ‖u‖Hk+3

unif (R3)

)

� C
(

k + 1, ‖m‖Hk+1
unif (R3)

, ω
)

. (6.39)
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Combining (6.38) and (6.39) we obtain the desired estimate

‖u‖Hk+5
unif (R3)

+ ‖φ‖Hk+3
unif (R3)

� C
(

k + 1, ‖m‖Hk+1
unif (R3)

, ω
)

,

which completes the proof of (6.36) by induction. ��

6.2. Proofs of Pointwise Stability Estimates

To prove Theorems 3.1 and 3.2, we adapt the proof of uniqueness of the TFW
equations, shown in [7,12]. Due to the length of the argument, we shall prove
several intermediate results. Before showing these results, we outline the structure
of the proof.

First, we state two alternative sets of assumptions on nuclear distributions
m1, m2:

(A) Let k = 0, m1 ∈ ML2(M, ω), and let (u1, φ1) denote the corresponding
ground state. Also, let m2 : R

3 → R�0 satisfy ‖m2‖L2
unif(R

3) � M ′ and
suppose there exists (u2, φ2) solving (2.6) corresponding to m2, satisfying
u2 � 0 and

‖u2‖H4
unif(R

3) + ‖φ2‖H2
unif(R

3) � C(M ′). (6.40)

In addition, we assume that either m2 �≡ 0 and u2 > 0, or m2 = u2 = φ2 = 0.
(B) Let k ∈ N0, m1, m2 ∈ MHk (M, ω) and let (u1, φ1), (u2, φ2) denote the

corresponding ground states. (Note that (B) implies (A), with M ′ = C(M).)

Remark 13. We point out that in (A) we assume u2 > 0, while in Theorem 3.1
we only require u2 � 0. The restriction u2 > 0 allows us to directly use results
from [12], in particular Lemma 6.2, and will be lifted via a thermodynamic limit
argument in the third part of its proof on page 38. ��

Throughout the remainder of the paper we use the notation

w = u1 − u2, ψ = φ1 − φ2, Rm = 4π(m1 − m2).

By treating the coupled system of equations as a linear system and by exploiting
the coupling between the electron density and electrostatic potential arising from
the Coulomb energy term of the TFW functional, we obtain the following initial
estimates

Lemma 6.3. Suppose (A) holds, then there exists C = C(M, M ′, ω) > 0 such that
for any ξ ∈ H1(R3)

∫
R3

(
w2 + |∇w|2 + |∇ψ |2

)
ξ2 � C

(∫
R3

Rmψξ2 +
∫
R3

(w2 + ψ2) |∇ξ |2
)

.

(6.41)
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To control the ψ-dependence on the right-hand side of (6.41), we require an
estimate of the form∫

R3
ψ2ξ2 � C

(∫
R3

Rmψξ2 +
∫
R3

(w2 + ψ2) |∇ξ |2
)

, (6.42)

which holds for ξ ∈ H1, i.e. ξ ∈ H1(R3) satisfying |∇ξ | � ξ on R
3.

Suppose (6.42) holds, then applying Hölder’s inequality and (6.41) yields
∫
R3

(w2 + ψ2)ξ2 � C ′
(∫

R3
R2

mξ2 +
∫
R3

(w2 + ψ2) |∇ξ |2
)

.

To remove the term
∫
(w2 + ψ2)|∇ξ |2 on the right-hand side, we simply restrict

from ξ ∈ H1 to a narrower class of test functions,

Hγ =
{

ξ ∈ H1(R3) | |∇ξ(x)| � γ |ξ(x)| ∀ x ∈ R
3
}

,

where γ = min{1, (2C ′)−1/2} > 0, to show
∫
R3

(
w2 + |∇w|2 + ψ2 + |∇ψ |2

)
ξ2 � 2C ′

∫
R3

R2
mξ2. (6.43)

In order to show (6.42), we adapt the argument used in [7]. At the same time,
since the equations for (w,ψ) hold pointwise, we obtain additional estimates for
Δw,Δψ .

Lemma 6.4. Suppose (A) holds, then there exists C = C(M, M ′, ω), γ = γ

(M, M ′, ω) > 0 such that for any ξ ∈ Hγ

∫
R3

(
w2 + |∇w|2 + |Δw|2 + ψ2 + |∇ψ |2 + |Δψ |2

)
ξ2 � C

∫
R3

R2
mξ2.

(6.44)

Clearly Lemmas 6.3 and 6.4 hold also under the assumption (B) since (B)
implies (A), with M ′ = C(M). In the case (B) where m1, m2 are both uni-
formly bounded below and have higher regularity, arguing as in Corollary 3.1 and
Lemma 6.4, we obtain improved estimates for w and ψ .

Observe that in Case (B), M ′ = C(M). Due to this, we omit the dependence of
M ′ in the constants that appear in the following lemmas, whenever we assume (B)
holds.

Lemma 6.5. Suppose that either (A) or (B) holds, then there exist C = CA

(M, M ′, ω), γ = γA(M, M ′, ω) > 0 or C = CB(k, M, ω), γ = γB(M, ω) > 0,
where γB independent of k, such that for any ξ ∈ Hγ

∫
R3

( ∑
|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
)

ξ2 � C
∫
R3

∑
|β|�k

∣∣∂β Rm
∣∣2 ξ2.

(6.45)



846 F. Q. Nazar & C. Ortner

In particular, for any y ∈ R
3,

∑
|α1|�k+2

∣∣∂α1w(y)
∣∣2 +

∑
|α2|�k

∣∣∂α2ψ(y)
∣∣2 � C

∫
R3

∑
|β|�k

∣∣∂β Rm(x)
∣∣2 e−2γ |x−y| dx .

(6.46)

We remark that in the following proofs, all integrals are taken overR
3, unless stated

otherwise.

Proof (Proof of Lemma 6.3). Case 1. First suppose that m2 �≡ 0 and u2 > 0.
Recall that m1 ∈ ML2(M, ω), hence by Propositions 3.1, 3.2 and (6.40)

‖u1‖H4
unif(R

3) + ‖φ1‖H2
unif(R

3) � C(M),

‖u2‖H4
unif(R

3) + ‖φ2‖H2
unif(R

3) � C(M ′),

inf
x∈R3

u1(x) � cM,ω > 0.

By the Sobolev embedding: for all k ∈ N0 and x ∈ R
3 Hk+2(B1(x)) ↪→

Ck,1/2(B1(x)), so it follows that

‖u1‖W 2,∞(R3) + ‖φ1‖L∞(R3) � C(M),

‖u2‖W 2,∞(R3) + ‖φ2‖L∞(R3) � C(M ′),

hencew = u1−u2 ∈ H4
unif(R

3)∩W 2,∞(R3),ψ = φ1−φ2 ∈ H2
unif(R

3)∩L∞(R3),
and solve

−Δw = 5

3

(
u2

7/3 − u7/3
1

)
+ φ1u1 − φ2u2, (6.47a)

−Δψ = 4π
(

u2
2 − u2

1

)
+ Rm, (6.47b)

pointwise. Let ξ ∈ H1(R3) then test (6.47a) with wξ2 to obtain

∫
∇w · ∇(wξ2) + 5

3

∫ (
u7/3
1 − u7/3

2

)
wξ2 −

∫
(φ1u1 − φ2u2) wξ2 = 0.

(6.48)

We will use the following rearrangements

φ1u1 − φ2u2 = φ1 + φ2

2
w + u1 + u2

2
ψ, (6.49)∫

∇w · ∇
(
wξ2

)
=
∫

|∇(wξ)|2 −
∫

w2 |∇ξ |2 , (6.50)
∫

∇ψ · ∇
(
ψξ2

)
=
∫

|∇(ψξ)|2 −
∫

ψ2 |∇ξ |2 . (6.51)
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To estimate the second term of (6.48), observe that Proposition 3.2 and (A) imply
that inf u1 � cM,ω > 0 and recall the assumption u2 > 0. It follows that for
ν = 1

2 inf(u
4/3
1 + u4/3

2 ) � 1
2c4/3M,ω > 0

(
u7/3
1 − u7/3

2

)
(u1 − u2) =

(
u4/3
1 + u4/3

2

)
w2 + u1u2

(
u1/3
1 − u1/3

2

)
w

�
(

u4/3
1 + u4/3

2

)
w2

� 1

2

(
u4/3
1 + u4/3

2

)
w2 + νw2. (6.52)

Combining the estimates (6.48)–(6.50) and (6.52), we obtain
∫

|∇(wξ)|2 + 5

6

∫ (
u4/3
1 + u4/3

2

)
w2ξ2 − 1

2

∫
(φ1 + φ2) w2ξ2 + ν

∫
w2ξ2

�
∫

w2 |∇ξ |2 + 1

2

∫
ψ
(

u2
1 − u2

2

)
ξ2. (6.53)

We define the following operators

L1 = −Δ + 5

3
u4/3
1 − φ1,

L2 = −Δ + 5

3
u4/3
2 − φ2,

L = 1

2
L1 + 1

2
L2 = −Δ + 5

6

(
u4/3
1 + u4/3

2

)
− 1

2
(φ1 + φ2) .

As u1, u2 > 0, Lemma 6.2 implies that L1, L2 are non-negative operators, hence
for any ϕ ∈ H1(R3)

〈ϕ, Lϕ〉 = 1

2
〈ϕ, L1ϕ〉 + 1

2
〈ϕ, L2ϕ〉 � 0. (6.54)

Observe that as w ∈ W 2,∞(R3) and ξ ∈ H1(R3), wξ ∈ H1(R3). We can express
(6.53) as

〈wξ, L(wξ)〉 + ν

∫
w2ξ2 �

∫
w2 |∇ξ |2 + 1

2

∫
ψ
(

u2
1 − u2

2

)
ξ2. (6.55)

To control the final term of (6.55), we begin by testing (6.47b) with ψξ2 to obtain
∫

∇ψ · ∇
(
ψξ2

)
= 4π

∫
ψ
(

u2
2 − u2

1

)
ξ2 +

∫
Rmψξ2. (6.56)

Rearranging (6.56) and applying (6.51) yields

1

2

∫
ψ
(

u2
1 − u2

2

)
ξ2 = 1

8π

∫
Rmψξ2 − 1

8π

∫
∇ψ · ∇

(
ψξ2

)

= 1

8π

∫
Rmψξ2 − 1

8π

∫
|∇(ψξ)|2 + 1

8π

∫
ψ2 |∇ξ |2 .

(6.57)
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Combining (6.55) and (6.57) yields

〈wξ, L(wξ)〉 + ν

∫
w2ξ2 + 1

8π

∫
|∇(ψξ)|2

� 1

8π

∫
Rmψξ2 +

∫
w2 |∇ξ |2 + 1

8π

∫
ψ2 |∇ξ |2 . (6.58)

As ξ∇ψ = ∇(ψξ) − ψ∇ξ , we have
∫

|∇ψ |2 ξ2 � C

(∫
|∇(ψξ)|2 +

∫
ψ2 |∇ξ |2

)

� C

(∫
Rmψξ2 +

∫
(w2 + ψ2) |∇ξ |2

)
. (6.59)

Combining the estimates (6.58)–(6.59), we obtain

〈wξ, L(wξ)〉 + ν

∫
w2ξ2 +

∫
|∇ψ |2 ξ2

� C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)
. (6.60)

Next we obtain an estimate for
∫ |∇w|2ξ2, using the fact that L is a non-negative

operator. We can express L as

L = −Δ + a, where a =
5
(

u4/3
1 + u4/3

2

)

6
− φ1 + φ2

2
∈ H2

unif

(
R
3
)

.

From (6.54), we have shown that L = −Δ + a � 0 in the sense that 〈ϕ, Lϕ〉 � 0
for every ϕ ∈ H1(R3). So for ε ∈ (0, 1)

L = (1 − ε)(−Δ + a) + ε(−Δ) + εa � ε(−Δ) − ε ‖a‖L∞(R3) .

Applying this to (6.60) gives

ε

∫
|∇(wξ)|2 + (

ν − ε ‖a‖L∞(R3)

) ∫
w2ξ2

� C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)
,

so choosing ε = min{ ν
2‖a‖L∞ , 1

2 }, we deduce
∫

|∇(wξ)|2 � C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)

and since ξ∇w = ∇(wξ) − w∇ξ , we deduce
∫

|∇w|2 ξ2 � C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)
. (6.61)
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We combine the estimates (6.60) and (6.61) to obtain the desired estimate (6.41)

∫
w2ξ2 +

∫
|∇w|2 ξ2 +

∫
|∇ψ |2 ξ2 � C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)

and observe that this estimate is valid for any ξ ∈ H1(R3).
Case 2. Suppose now that m2 = u2 = φ2 = 0, then the argument used to show

(6.53) holds to give

∫
|∇(wξ)|2 + 5

6

∫
u4/3
1 w2ξ2 − 1

2

∫
φ1w

2ξ2 + ν

∫
w2ξ2

�
∫

w2 |∇ξ |2 + 1

2

∫
ψu2

1ξ
2. (6.62)

Now using that L1 is a non-negative operator, we obtain

1

2

∫
|∇(wξ)|2 + ν

∫
w2ξ2 � 1

2
〈ϕ, L1ϕ〉 + 1

2

∫
|∇(wξ)|2 + ν

∫
w2ξ2

=
∫

|∇(wξ)|2 + 5

6

∫
u4/3
1 w2ξ2 − 1

2

∫
φ1w

2ξ2 + ν

∫
w2ξ2

�
∫

w2 |∇ξ |2 + 1

2

∫
ψu2

1ξ
2.

Then applying the estimates (6.56)–(6.60) yields the desired estimate (6.41): for
all ξ ∈ H1(R3)

∫
w2ξ2 +

∫
|∇w|2 ξ2 +

∫
|∇ψ |2 ξ2 � C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)

��
Proof (Proof of Lemma 6.4). To obtain an integral estimate for ψ , first recall
(6.47a), that w solves

−Δw + 5

3

(
u7/3
1 − u7/3

2

)
− φ1 + φ2

2
w = u1 + u2

2
ψ,

then testing this equation with ψξ2, for ξ ∈ H1(R3), yields
∫

u1 + u2
2

ψ2ξ2 = −
∫

Δwψξ2 + 5

3

∫ (
u7/31 − u7/32

)
ψξ2 −

∫
φ1 + φ2

2
wψξ2.

(6.63)

The first term of the right-hand side can be estimated using integration by parts
∣∣∣∣
∫

Δwψξ2
∣∣∣∣ =

∣∣∣∣
∫

∇w · ∇
(
ψξ2

) ∣∣∣∣ �
∣∣∣∣
∫

∇w · ∇ψξ2
∣∣∣∣+ 2

∣∣∣∣
∫

∇w · ∇ξψξ

∣∣∣∣
�
(∫

|∇w|2 ξ2
)1/2 (∫

|∇ψ |2 ξ2
)1/2

+ 2

(∫
|∇w|2 |∇ξ |2

)1/2 (∫
ψ2ξ2

)1/2
.
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By restricting ξ ∈ H1, we have |∇ξ | � |ξ | hence
∣∣∣∣
∫

Δwψξ2
∣∣∣∣ � 2

(∫
|∇w|2 ξ2

)1/2 (∫
ψ2ξ2

)1/2

+
∫ (

|∇w|2 + |∇ψ |2
)

ξ2.

(6.64)

We now estimate the remaining terms on the right-hand side of (6.63)
∣∣∣∣53
∫ (

u7/3
1 − u7/3

2

)
ψξ2 −

∫
φ1 + φ2

2
wψξ2

∣∣∣∣
� C

∫
|w||ψ |ξ2 � C

(∫
w2ξ2

)1/2 (∫
ψ2ξ2

)1/2

. (6.65)

Combining the estimates (6.64)–(6.65) with (6.63) and using that inf u1 � cM,ω >

0 and u2 � 0, we obtain
∫

ψ2ξ2 � 2

cM,ω

∫
u1 + u2

2
ψ2ξ2 � C

[(∫
|∇w|2ξ2

)1/2

+
(∫

w2ξ2
)1/2

](∫
ψ2ξ2

)1/2

+
∫ (

|∇w|2 + |∇ψ |2
)

ξ2 (6.66)

Applying Young’s inequality twice and using (6.41) of Lemma 6.3 yields
∫

ψ2ξ2 � 1

2

∫
ψ2ξ2 + C

∫ (
w2 + |∇w|2 + |∇ψ |2

)
ξ2

� 1

2

∫
ψ2ξ2 + C

(∫
Rmψξ2 +

∫ (
w2 + ψ2

)
|∇ξ |2

)

� 3

4

∫
ψ2ξ2 + C

(∫
R2

mξ2 +
∫ (

w2 + ψ2
)

|∇ξ |2
)

,

hence we obtain
∫ (

w2 + |∇w|2 + ψ2 + |∇ψ |2
)

ξ2 � C

(∫
R2

mξ2 +
∫ (

w2 + ψ2
)

|∇ξ |2
)

.

(6.67)

We further restrict the choice of the test function ξ , to remove the terms depending
on w and ψ from the right-hand side. Given C = C(M ′, M, ω) > 0, define
γ = min{1, (2C)−1/2} > 0. First note that Hγ ⊆ H1, so for any ξ ∈ Hγ the
estimate (6.67) continues to hold. In addition, |∇ξ | � γ |ξ |, hence
∫ (

w2 + |∇w|2 + ψ2 + |∇ψ |2
)

ξ2

� C

(∫
R2

mξ2 +
∫ (

w2 + ψ2
)

|∇ξ |2
)

� C

(∫
R2

mξ2 + γ̃ 2
∫ (

w2 + ψ2
)

ξ2
)

� C
∫

R2
mξ2 + 1

2

∫ (
w2 + ψ2

)
ξ2.
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After re-arranging, it follows that for any ξ ∈ Hγ

∫ (
w2 + |∇w|2 + ψ2 + |∇ψ |2

)
ξ2 � C

∫
R2

mξ2. (6.68)

Finally, as the equations (6.47) hold pointwise, squaring each equation and inte-
grating them against ξ2 yields

∫
|Δw|2 ξ2 � C

∫ (
w2 + ψ2

)
ξ2

∫
|Δψ |2 ξ2 � C

∫ (
R2

m + w2
)

ξ2.

Combining these estimates with (6.67), we obtain the desired result (6.44)
∫ (

w2 + |∇w|2 + |Δw|2 + ψ2 + |∇ψ |2 + |Δψ |2 )ξ2 � C
∫

R2
mξ2.

��
Proof (Proof of Lemma 6.5). Case 1. Suppose (B) holds, so mi ∈ MHk (M, ω)

for some k ∈ N0. By Corollary 3.1, for i ∈ {1, 2}
‖ui‖Hk+4

unif (R3)
+ ‖φi‖Hk+2

unif (R3)
� C(k, M, ω). (6.69)

Using integration by parts, we shall obtain integral estimates for derivatives of w

in terms of derivatives of Δw. We will use the Einstein summation convention
throughout this proof.

To begin, we approximate w ∈ Hk+4
unif (R3) by smooth functions wh ∈ C∞(R3)

such that for all |β| � k + 4, ∂βwh converges to ∂βw pointwise [26]. This approx-
imation is necessary in order to obtain estimates for ∂αw when |α| = k + 4.

Fix ξ ∈ Hγ and let |β| = k′ � k + 2. Then using integration by parts gives∫ ∣∣∣Δ∂βwh

∣∣∣2 ξ2 =
∫

∂i i ∂
βwh∂ j j ∂

βwhξ2

= −
∫

∂i ∂
βwh∂i j j ∂

βwhξ2 − 2
∫

∂i ∂
βwh∂ j j ∂

βwhξ∂i ξ

=
∫

∂i j ∂
βwh∂i j ∂

βwhξ2 + 2
∫

∂i ∂
βwh∂i j ∂

βwhξ∂ j ξ − 2
∫

∂i ∂
βwh∂ j j whξ∂i ξ

=
∫ ∑

|α|=2

∣∣∣∂α+βw

∣∣∣2 ξ2 + 2
∫

∂i ∂
βwh∂i j ∂

βwhξ∂ j ξ − 2
∫

∂i ∂
βwh∂ j j ∂

βwhξ∂i ξ.

Summing over |β| = k′ and rearranging yields
∫ ∑

|α|=k′+2

∣∣∂αwh
∣∣2 ξ2 =

∫ ∑
|β|=k′

∣∣Δ∂βwh
∣∣2 ξ2

+ 2
∑

|β|=k′

3∑
i, j=1

(∫
∂i∂

βwh∂i j∂
βwhξ∂ jξ −

∫
∂i∂

βwh∂ j j∂
βwhξ∂iξ

)
.
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Then, using that ξ ∈ Hγ ⊆ H1, hence |∇ξ | � |ξ |, we can estimate the right-hand
side using Hölder’s inequality,∫ ∑

|α|=k′+2

∣∣∂αwh
∣∣2 ξ2 �

∫ ∑
|β|=k′

∣∣Δ∂βwh
∣∣2 ξ2

+ C
∑

|β|=k′

3∑
i, j=1

(∫ ∣∣∂i∂
βwh

∣∣ ∣∣∂i j∂
βwh

∣∣ ξ2 +
∫ ∣∣∂i∂

βwh
∣∣ ∣∣∂ j j ∂

βwh
∣∣ ξ2

)

� 1

2

∫ ∑
|α|=k′+2

∣∣∂αwh
∣∣2 ξ2 + C

(∫ ∑
|β1|=k′

∣∣Δ∂β1wh
∣∣2 ξ2 +

∫ ∑
|β2|=k′+1

∣∣∂β2wh
∣∣2 ξ2

)
.

Re-arranging this and letting h → 0, we obtain

∑
|α|=k′+2

∫ ∣∣∂αw
∣∣2 ξ2 � C

(∫ ∑
|β1|=k′

∣∣∂β1Δw
∣∣2 ξ2 +

∫ ∑
|β2|=k′+1

∣∣∂β2w
∣∣2 ξ2

)
.

(6.70)

Using an identical argument, we obtain similar estimates for ψ , for k′ � k,

∑
|α|=k′+2

∫ ∣∣∂αψ
∣∣2 ξ2 � C

(∫ ∑
|β1|=k′

∣∣∂β1Δψ
∣∣2 ξ2 +

∫ ∑
|β2|=k′+1

∣∣∂β2ψ
∣∣2 ξ2

)
.

(6.71)

In the case k′ = 0, combining (6.70), (6.71) and (6.44) of Lemma 6.4 yields: there
exists C, γ > 0 such that for all ξ ∈ Hγ

∫ ∑
|α|=2

(∣∣∂αw
∣∣2 + ∣∣∂αψ

∣∣2) ξ2

� C
∫ (

|∇w|2 + |Δw|2 + |∇ψ |2 + |Δψ |2
)

ξ2 � C
∫

R2
mξ2. (6.72)

We will now provide estimates for the right-hand terms of the form ∂βΔw, ∂βΔψ .
Recall (6.47)

−Δw = 5

3

(
u2

7/3 − u7/3
1

)
+ φ1 + φ2

2
w + u1 + u2

2
ψ =: f1,

−Δψ = 4π
(

u2
2 − u2

1

)
+ Rm =: f2.

From (6.69) it follows that f1 ∈ Hk+2
unif (R3), f2 ∈ Hk

unif(R
3). Let |α1| = j1 �

k + 2, |α2| = j2 � k, then differentiating (6.47) yields

∣∣∂α1Δw
∣∣ � C( j1, M, ω)

∑
|β1|� j1

(∣∣∂β1w
∣∣+ ∣∣∂β1ψ

∣∣) , (6.73)

∣∣∂α2Δψ
∣∣ � C( j2, M, ω)

∑
|β2|� j2

(∣∣∂β2 Rm
∣∣+ ∣∣∂β2w

∣∣) . (6.74)
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Squaring (6.73)–(6.74), summing over partial derivatives and integrating against
ξ2 we deduce

∫ ∑
|α1|= j1

|∂α1Δw|2ξ2 � C
∫ ∑

|β1|� j1

(∣∣∂β1w
∣∣2 + ∣∣∂β1ψ

∣∣2) ξ2, (6.75)

∫ ∑
|α2|= j2

∣∣∂α2Δψ
∣∣2 ξ2 � C

∫ ∑
|β2|� j2

(∣∣∂β2 Rm
∣∣2 + ∣∣∂β2w

∣∣2) ξ2. (6.76)

Substituting (6.75) into (6.70) gives for i � k + 4

∫ ∑
|α|=i1

∣∣∂αw
∣∣2 ξ2 � C

∫ ( ∑
|β1|=i1−1

∣∣∂β1w
∣∣2 +

∑
|β2|=i1−2

∣∣∂β2Δw
∣∣2
)

ξ2

� C
∫ ( ∑

|β1|=i1−1

∣∣∂β1w
∣∣2 +

∑
|β1|�i1−2

(∣∣∂β1w
∣∣2 + ∣∣∂β1ψ

∣∣2)
)

ξ2. (6.77)

Similarly, substituting (6.76) into (6.71) gives for i2 � k + 2

∫ ∑
|α|=i2

∣∣∂αψ
∣∣2 ξ2 � C

∫ ( ∑
|β1|=i2−1

∣∣∂β1ψ
∣∣2 +

∑
|β2|=i2−2

∣∣∂β2Δψ
∣∣2
)

ξ2

� C
∫ ( ∑

|β1|=i2−1

∣∣∂β1ψ
∣∣2 +

∑
|β2|�i2−2

(∣∣∂β2 Rm
∣∣2 + ∣∣∂β2w

∣∣2)
)

ξ2. (6.78)

Using (6.77) and (6.78), arguing by induction over i1, i2 simultaneously gives
∫ ∑

|α|�k+2

(∣∣∂αw
∣∣2 + ∣∣∂αψ

∣∣2) ξ2 � C
∫ ∑

|β|�k

∣∣∂β Rm
∣∣2 ξ2.

To show the remaining estimate for the derivatives of w, applying (6.77) with
i1 = k + 3, k + 4 yields the estimate (6.45)

∫ ( ∑
|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
)

ξ2 � C
∫ ∑

|β|�k

∣∣∂β Rm
∣∣2 ξ2.

Nowfix y ∈ R
3 and choose ξ(x) = e−γ |x−y|.Wewill nowshow the lower pointwise

lower bound for w and ψ

∑
|α1|�k+2

∣∣∂α1w(y)
∣∣2 +

∑
|α2|�k

∣∣∂α2ψ(y)
∣∣2

� C
∫ ( ∑

|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
)

e−2γ |x−y| dx, (6.79)

where the constant C is independent of y and γ .
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ByCorollary 3.1,w ∈ Hk+4(B1(y)), ψ ∈ Hk+2(B1(y)), hence by the Sobolev
embedding theorem [20] w ∈ Ck+2,1/2(B1(y)), ψ ∈ Ck,1/2(B1(y)) and

‖w‖Ck+2(B1(y)) � C ‖w‖Hk+4(B1(y)) ,

‖ψ‖Ck (B1(y)) � C ‖ψ‖Hk+2(B1(y)) .

We use these estimates to show (6.79)

∑
|α1|�k+2

∣∣∂α1w(y)
∣∣2 +

∑
|α2|�k

∣∣∂α2ψ(y)
∣∣2

� ‖w‖2Ck+2,1/2(B1(y))
+ ‖ψ‖2Ck,1/2(B1(y))

� C
(
‖w‖2Hk+4(B1(y))

+ ‖ψ‖2Hk+2(B1(y))

)

= C
∫

B1(y)

( ∑
|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
)

� C
∫
R3

( ∑
|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
)

e−2γ |x−y| dx .

Combining (6.45) and (6.79), we obtain the desired estimate (6.46)

∑
|α1|�k+2

∣∣∂α1w(y)
∣∣2 +

∑
|α2|�k

∣∣∂α2ψ(y)
∣∣2 � C

∫ ∑
|β|�k

∣∣∂β Rm(x)
∣∣2 e−2γ |x−y| dx .

Case 2. Suppose (A) holds, then as m1 ∈ ML2(M, ω), by Proposition 3.1 and
(6.40),

‖u1‖H4
unif(R

3) + ‖φ1‖H2
unif(R

3) � C(M),

‖u2‖H4
unif(R

3) + ‖φ2‖H2
unif(R

3) � C(M ′).

The argument used to show (6.70) holds for k′ � 2, so for ξ ∈ H1

∑
|α1|�4

∫ ∣∣∂α1w
∣∣2 ξ2 � C

(∫ ∑
|β1|�2

∣∣∂β1Δw
∣∣2 ξ2 +

∫ ∑
|β2|�2

∣∣∂β2w
∣∣2 ξ2

)
.

Then, as (6.75) holds with j1 � 2, applying this and (6.70) for k′ = 0 yields

∑
|α1|�4

∫ ∣∣∂α1w
∣∣2 ξ2 � C

∫ ∑
|β1|�2

(∣∣∣∂β1w

∣∣∣2 +
∣∣∣∂β1ψ

∣∣∣2
)

ξ2

� C

(∫
|Δw|2 ξ2 +

∫ ∑
|β1|�1

∣∣∣∂β1w

∣∣∣2 ξ2 +
∑

|β2|�2

∣∣∣∂β2w

∣∣∣2 ξ2
)

.

(6.80)
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Similarly, the argument used to show (6.71) holds for k′ = 0, to give

∑
|α2|�2

∫ ∣∣∂α2ψ
∣∣2 ξ2 � C

(∫
|Δψ |2 ξ2 +

∫ ∑
|β2|�1

∣∣∂β2ψ
∣∣2 ξ2

)
. (6.81)

Finally, combining (6.80)–(6.81) and applying (6.44) from Lemma 6.4, we obtain
the desired estimate (6.45) with k = 0

∑
|α1|�4

∫ ∣∣∂α1w
∣∣2 ξ2 +

∑
|α2|�2

∫ ∣∣∂α2ψ
∣∣2 ξ2

� C

(∫ (
|Δw|2 + |Δψ |2

)
ξ2 +

∫ ∑
|β1|�1

∣∣
(

∂β1w

∣∣∣2 + ∂β1ψ

∣∣∣2
)

ξ2
)

� C
∫

R2
mξ2.

The argument used in Case 1 holds for k = 0 to show the desired estimate (6.46)

∑
|α1|�2

∣∣∂α1w(y)
∣∣2 + |ψ(y)|2 � C

∫
|Rm(x)|2 e−2γ |x−y| dx .

��
We have now established all technical prerequisites to prove Theorems 3.1 and

3.2.

Proof (Proof of Theorem 3.2). Applying Lemmas 6.3–6.5 with the assumption
(B) yields the desired estimates (3.10)–(3.11). ��
Proof (Proof of Theorem 3.1). Case 1. Suppose spt(m2) is bounded and m2 �≡ 0.
We show assumption (A) is satisfied, so by applying Lemmas 6.3–6.5 we obtain
the desired estimates (3.8)–(3.9).

Since m2 ∈ L2
unif(R

3), it follows that m2 ∈ L1(R3) and since m2 � 0 and
m2 �≡ 0, it follows that

∫
m2 > 0. Then, define the minimisation problem

ITFW(m2) = inf

{
ETFW(v, m2)

∣∣∣∣ v ∈ H1(R3), v � 0,
∫
R3

v2 =
∫
R3

m2 > 0

}
,

which yields a unique solution (u2, φ2) to (2.4), satisfying u2 > 0, using [31,
Theorem 7.19]. Applying Proposition 3.1, we obtain the uniform estimates

‖u2‖H4
unif(R

3) + ‖φ2‖H2
unif(R

3) � C(M ′),

Case 2. Suppose m2 = u2 = φ2 = 0, then by definition (u2, φ2) solve (2.6) and
(A) is satisfied, so Lemmas 6.3–6.5 imply (3.8)–(3.9).

Case 3.Suppose spt(m2) is unbounded. By Proposition 6.1, there exists (u2, φ2)

solving (2.6) corresponding to m2 and satisfying u2 � 0. As we can not guarantee
that u2 > 0, we can not apply Lemmas 6.3–6.5 directly to compare (u1, φ1) with
(u2, φ2). Instead we follow the proof of Proposition 6.1 and use a thermodynamic
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limit argument to construct a sequence of functions (u2,Rn , φ2,Rn ) that satisfy (A)
for sufficiently large Rn , which converges to (u2, φ2).

Let Rn ↑ ∞ and define m2,Rn := m2 · χBRn (0), then as m2 ∈ L2
unif(R

3),
m2 � 0 and m2 �≡ 0, it follows that m2,Rn ∈ L1(R3) and for sufficiently large Rn ,∫

m2,Rn > 0. By Proposition 6.1, the minimisation problem

ITFW(m2,Rn ) = inf

{
ETFW(v, m2,Rn )

∣∣∣∣ v ∈ H1(R3), v � 0,
∫
R3

v2 =
∫
R3

m2,Rn

}
,

defines a unique solution (u2,Rn , φ2,Rn ) to (2.4), satisfying u2,Rn > 0 and

∥∥u2,Rn

∥∥
H4
unif(R

3)
+ ∥∥φ2,Rn

∥∥
H2
unif(R

3)
� C(M ′), (6.82)

where the constant is independent of Rn . Passing to the limit in (6.82), there ex-
ist u2 ∈ H4

unif(R
3), φ2 ∈ H2

unif(R
3) such that, respectively, along a subsequence

u2,Rn , φ2,Rn converges to u2, φ2, weakly in H4(BR(0)) and H2(BR(0)), strongly
in H2(BR(0)) and L2(BR(0)) for all R > 0 and for all |α| � 2, ∂αu2,Rn , φ2,Rn

converges to ∂αu2, φ2 pointwise. It follows that (u2, φ2) is a solution of (2.6) cor-
responding to m2, satisfying u2 � 0 and (3.7)

‖u2‖H4
unif(R

3) + ‖φ2‖H2
unif(R

3) � C(M ′).

In addition, (u′
1, φ

′
1) = (u1, φ1) and (u′

2, φ
′
2) = (u2,Rn , φ2,Rn ) satisfy assumption

(A) for large Rn , so by Lemmas 6.3–6.5 that there exist C, γ > 0, independent of
Rn , such that for large Rn and any ξ ∈ Hγ

∫
R3

( ∑
|α1|�4

∣∣∂α1(u1 − u2,Rn )
∣∣2 +

∑
|α2|�2

∣∣∂α2 (φ1 − φ2,Rn )
∣∣2
)

ξ2

� C
∫
R3

(m1 − m2,Rn )2ξ2, (6.83)

and for any y ∈ R
3,

∑
|α1|�2

∣∣∂α1(u1 − u2,Rn )(y)
∣∣2 + ∣∣(φ1 − φ2,Rn )(y)

∣∣2

� C
∫
R3

∣∣(m1 − m2,Rn

)
(x)

∣∣2 e−2γ |x−y| dx . (6.84)

Using the pointwise convergence of (u2,Rn , φ2,Rn ) to (u2, φ2), applying the Dom-
inated Convergence Theorem and sending Rn → ∞ in (6.83)–(6.84) we obtain the
desired estimates (3.8)–(3.9). ��

6.3. Proofs of Applications

The proof of Proposition 4.1 is an application of Theorem 3.1.
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Proof (Proof of Proposition 4.1). Observe that (u1, φ1) = (u, φ) and (u2, φ2) =
(uΩ, φΩ) satisfy the conditions of Theorem 3.1, there exist C, γ̃ > 0, independent
of Ω , such that for all y ∈ R

3

∑
|α|�2

∣∣∂α(u − uΩ)(y)
∣∣2 + |(φ − φΩ)(y)|2 � C

∫
R3

|(m − mΩ)(x)|2 e−2γ |x−y| dx .

Now let y ∈ Ω , d = dist(y, ∂Ω) and observe that m − mΩ ∈ L2
unif(R

3). Since
supx∈A e−2γ̃ |x | � C infx∈A e−2γ̃ |x | for any A ⊂ B1(z), z ∈ R

3, with C = C(γ̃ )

independent of z, we have the bound∫
Bd (y)c

|(m − mΩ)(x)|2 e−2γ̃ |x−y| dx � C
(
‖m‖2

L2
unif(R

3)
+ ‖mΩ‖2

L2
unif(R

3)

) ∫
Bd (y)c

e−2γ̃ |x−y| dx .

Therefore, we obtain the desired estimate (4.1)
∫
R3

|(m − mΩ)(x)|2 e−2γ |x−y| dx =
∫
Ωc

|(m − mΩ)(x)|2 e−2γ |x−y| dx

�
∫
Ωc

buf

m(x)2e−2γ̃ |x−y| dx � C M2
∫

BRbuf (0)
c

e−2γ̃ |x−y| dx

� C M2
∫

Bd (y)c
e−2γ̃ |x−y| dx

= C M2(1 + d2)e−2γ̃ d � C M2e−2γ d ,

for any given 0 < γ < γ̃ , where C = C(γ̃ , γ ). ��
Next, we now prove Corollary 4.1 as a direct consequence of Theorems 3.1 and

3.2.

Proof (Proof of Corollary4.1). Let k ∈ N0 and m1, m2 ∈ MHk (M, ω) and recall
the estimate (3.11) of Theorem 3.2, that there exists C, γ̃ > 0 such that

∑
|α1|�k+2

∣∣∂α1w(y)
∣∣2 +

∑
|α2|�k

∣∣∂α2ψ(y)
∣∣2 � C

∫ ∑
|β|�k

∣∣∂β Rm(x)
∣∣2 e−2γ̃ |x−y| dx .

(6.85)

(1) Rm having compact support is a special case of exponential decay, hence
we consider only the case

∑
|β|�k |∂β Rm(x)|2 � Ce−2γ ′|x−z|. It is straightforward

to see that there exists C, γ > 0, depending on γ̃ , γ ′, such that∫
R3

e−2γ ′|x−z|e−2γ̃ |x−y| dx � Ce−2γ |y−z|. (6.86)

Hence (4.3) follows immediately from combining (6.85) and (6.86).
(2) Suppose that Rm satisfies the algebraic decay

∑
|β|�k |∂β Rm(x)|2 � C(1+

|x |)−2r . It is again elementary to show that there exists C = C(r) > 0 such that
for all y ∈ R

3

∫
R3

(1 + |x |)−2r e−2γ |x−y| dx � C(1 + |y|)−2r . (6.87)
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Combining (6.87) with (6.85) gives the desired estimate (4.4).
(3) Now suppose that Rm ∈ Hk(R3) and recall (3.10) of Theorem 3.2, that

there exists C, γ̃ > 0 such that for all ξ ∈ Hγ̃

∫
R3

⎛
⎝ ∑

|α1|�k+4

∣∣∂α1w
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ
∣∣2
⎞
⎠ ξ2 � C

∫
R3

∑
|β|�k

∣∣∂β Rm
∣∣2 ξ2.

(6.88)

For any 0 < γ � γ̃ , the function ξγ (x) = e−γ |x | ∈ Hγ̃ . Then substituting ξγ into
(6.88) yields

∫
R3

⎛
⎜⎝ ∑

|α1|�k+4

∣∣∂α1w(x)
∣∣2 +

∑
|α2|�k+2

∣∣∂α2ψ(x)
∣∣2
⎞
⎟⎠ e−2γ |x | dx

� C
∫
R3

∑
|β|�k

∣∣∣∂β Rm(x)

∣∣∣2 e−2γ |x | dx � C
∫
R3

∑
|β|�k

∣∣∣∂β Rm(x)

∣∣∣2 dx .

Sending γ → 0 and applying the Dominated Convergence Theorem yields the
desired estimate (4.5).

Under the assumptions ofTheorem3.1with k = 0, other than applyingTheorem
3.1 instead of Theorem 3.2, the proof is identical. ��

We turn to the proofs of the charge-neutrality estimates.

Proof (Proof of Theorem 4.1). Recall that ρ12 = m1 − u2
1 − m2 + u2

2. Let R > 0
and choose ϕR ∈ C∞

c (R3) satisfying 0 � ϕR � 1, ϕR = 1 on BR(0), ϕR = 0
outside BR+1(0) and ‖ϕR‖W 2,∞(R3) � cϕ . Let AR := BR+1(0) \ BR(0). Recall
(6.47b), that the difference ψ := φ1 − φ2 solves

−Δψ = 4πρ12 (6.89)

pointwise. Testing (6.89) with ϕR and using integration by parts yields
∫

BR+1(0)
ρ12ϕR = − 1

4π

∫
AR

ψΔϕR .

Since ϕR = 1 on BR(0), we deduce
∫

BR(0)
ρ12 = − 1

4π

∫
AR

ψΔϕR −
∫

AR

ρ12ϕR,

and hence∣∣∣∣
∫

BR(0)
ρ12

∣∣∣∣ � C
∫

AR

(|m1 − m2| + |u1 − u2| + |φ1 − φ2|) , (6.90)

where C depends only on cϕ . Observe that |AR | � C R2.
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(1) By (4.3) of Corollary 4.1 there exists C, γ̃ > 0 such that

|(φ1 − φ2)(x)| + |(m1 − m2)(x)| + |(u1 − u2)(x)| � Ce−γ̃ |x |.

Then using (6.90) we deduce
∣∣∣∣
∫

BR(0)
ρ12

∣∣∣∣ � C
∫

AR

(|m1 − m2| + |u1 − u2| + |φ1 − φ2|)

� C
∫

AR

e−γ̃ |x | dx � C(1 + R2)e−γ̃ R, (6.91)

which implies (4.9) for any 0 < γ < γ̃ .
(2) Suppose now that |(m1 − m2)(x)| � C(1 + |x |)−r , then using (6.90) we

obtain ∣∣∣∣
∫

BR(0)
ρ12

∣∣∣∣ � C
∫

AR

(1 + |x |)−r � C(1 + R)2−r .

(3) Suppose m1 − m2 ∈ L2(R3), then by Corollary 4.1, u1 − u2, φ1 − φ2 ∈
H2(R3), hence by Proposition 3.1 u2

1−u2
2 ∈ L2(R3). Taking the Fourier transform,

f̂ (k) = ∫
R3 f (x)e−2π ik·x dx , of (6.89) and rearranging, we obtain

ρ̂12(k)

|k|2 = πψ̂(k) ∈ L2(R3).

Arguing as in [10] we show that 0 is a Lebesgue point for ρ̂12. For ε > 0,

1

|Bε(0)|
∫

Bε(0)
|ρ̂12(k)| dk � 1

|Bε(0)|
(∫

Bε(0)
|k|4 dk

)1/2 (∫
Bε(0)

|ρ̂12(k)|2
|k|4 dk

)1/2

� Cε1/2 ‖φ1 − φ2‖L2(R3) ,

which tends to 0 as ε → 0, as claimed. ��

6.4. Proof of Energy Locality

ToproveTheorem4.2,wefirst establish the existence, uniqueness and regularity
of the solutions to the linearised TFW equations.

Fix Y = (Y j ) j∈N ∈ YL2(M, ω) and let m = mY ∈ ML2(M, ω). Let V ∈
R
3

� {0}, k ∈ N and for h ∈ [0, 1] define
Y h = { Y j + δ jkhV | j ∈ N }, (6.92)

and the associated nuclear configuration

mh(x) = m(x) + η(x − Yk − hV ) − η(x − Yk). (6.93)

Lemma 6.6. There exist M ′, ω′
0, ω

′
1 > 0, such that for ω′ = (ω′

0, ω
′
1), mh ∈

ML2(M ′, ω′) for all h ∈ [0, 1]. In particular, Y h ∈ YL2(M ′, ω′) for all h ∈ [0, 1].
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Proof (Proof of Lemma 6.6). Recall thatmh, η � 0, η ∈ C∞(R3) and
∫
R3 η = 1,

then

sup
x∈R3

‖mh‖L2(B1(x)) � sup
x∈R3

(
‖m‖L2(B1(x)) +

(∫
B1(x)

η(z − Yk − hV )2 dz

)1/2
)

� M + ‖η‖L2(R3) =: M ′.

Since m ∈ ML2(M, ω), with ω = (ω0, ω1), for all R > 0,

inf
x∈R3

∫
BR(x)

mh(z) dz � inf
x∈R3

∫
BR(x)

m(z) dz −
∫

BR(x)

η(z − Yk) dz

� ω0R3 − ω1 − 1,

hence for ω′ = (ω0, ω1 +1), mh ∈ ML2(M ′, ω′) for all h ∈ [0, 1], as claimed. ��
As mh ∈ ML2(M ′, ω′) for all h ∈ [0, 1], by Theorem 2.1 there exists a cor-

responding ground state (uh, φh). Also, let (u, φ) = (u0, φ0). We now use Corol-
lary 4.1 to compare (uh, φh)with (u, φ) and rigorously linearise theTFWequations.

Lemma 6.7. Let Y ∈ YL2(M, ω) and let m = mY ∈ ML2(M, ω). Also, let k ∈ N,
V ∈ R

3
� {0} and h0 = min{1, |V |−1}. For h ∈ [0, h0] define

mh(x) = m(x) + η(x − Yk − hV ) − η(x − Yk).

There exist C = C(M ′, ω′), γ0 = γ0(M ′, ω′) > 0, independent of h and |V |, such
that∑
|α|�2

( ∣∣∂α(uh − u)(x)
∣∣+ ∣∣∂α(φh − φ)(x)

∣∣ )+ |(mh − m)(x)| � Che−γ0|x−Yk |,

(6.94)

‖uh − u‖H4(R3) + ‖φh − φ‖H2(R3) � C ‖mh − m‖L2(R3) � Ch. (6.95)

Moreover, the limits

u = lim
h→0

uh − u

h
, φ = lim

h→0

φh − φ

h
, m = lim

h→0

mh − m

h
,

exist and are the unique solution to the linearised TFW equations

−Δu +
(
35

9
u4/3 − φ

)
u − uφ = 0, (6.96a)

−Δφ = 4π (m − 2uu) . (6.96b)

Moreover, u ∈ H4(R3), φ ∈ H2(R3), m ∈ C∞
c (R3) and satisfy

∑
|α|�2

( ∣∣∂αu(x)
∣∣+ ∣∣∂αφ(x)

∣∣ )+ |m(x)| � Ce−γ0|x−Yk |, (6.97)

‖u‖H4(R3) + ∥∥φ∥∥H2(R3)
� C ‖m‖L2(R3) . (6.98)
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Proof (Proof of Lemma 6.7). By Propositions 3.1 and 3.2, for h ∈ [0, h0] the
ground state (uh, φh) satisfies

‖uh‖H4
unif(R

3) + ‖φh‖H2
unif(R

3) � C(M ′), (6.99)

inf
x∈R3

uh(x) � cM ′,ω′ > 0, (6.100)

independently of h. From (6.93), it follows that

|(mh − m)(x)| = |η(x − Yk − hV ) − η(x − Yk)|

� h|V |
∫ 1

0
|∇η(x − Yk − thV )| dt

�
∫ 1

0
|∇η(x − Yk − thV )| dt. (6.101)

For all h ∈ [0, h0], spt(mh − m) ⊂ BR0+1(Yk), so by Corollary4.1 and (6.101) it
follows that there exists γ0 > 0 such that

∑
|α|�2

∣∣∂α(uh − u)(x)
∣∣+ |(φh − φ)(x)| + |(mh − m)(x)| � Che−γ0|x−Yk |,

(6.102)

and (6.95) holds

‖uh − u‖H4(R3) + ‖φh − φ‖H2(R3) � C ‖mh − m‖L2(R3) � Ch. (6.103)

Due to the uniform estimates (6.99)–(6.100) and (6.101), the constants appearing
on the right-hand side are independent of h.

We now show
∑

|α|�2

∣∣∂α(φh − φ)(x)
∣∣ � Ce−γ0|x−Yk |. (6.104)

Observe that for h ∈ (0, h0] as spt(mh−m) ⊂ BR0+1(Yk), by the triangle inequality
x ∈ Bc

R0+3(Yk) implies B2(x) ⊂ Bc
R0+1(Yk). Consequently, for x ∈ Bc

R0+3(Yk)

‖mh − m‖C0,1/2(B2(x)) = 0, (6.105)

and for x ∈ BR0+3(Yk), by (6.93) it follows that

‖mh − m‖C0,1/2(B2(x)) � 2 ‖η‖C0,1/2(B2(x)) . (6.106)

By (6.105)–(6.106) we deduce that x �→ ‖mh − m0‖C0,1/2(B2(x)) is a bounded
function with support in BR0+3(Yk), hence there exists C > 0 such that

‖mh − m‖C0,1/2(B2(x)) � Ce−γ0|x−Yk |. (6.107)
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Then we apply the Schauder estimates [26, Theorem 10.2.1, Lemma 10.1.1] to-
gether with (6.102) and (6.107) to estimate

‖φh − φ‖C2,1/2(B1(x)) � C

(∥∥∥mh − m − u2h + u2
∥∥∥

C0,1/2(B2(x))
+ ‖φh − φ‖L2(B2(x))

)
,

� C

(
‖mh − m‖C0,1/2(B2(x)) +

∥∥∥u2h − u2
∥∥∥

C0,1/2(B2(x))

+‖φh − φ‖L2(B2(x))

)
,

� C
(
‖(uh + u)(uh − u)‖C0,1/2(B2(x)) + e−γ0|x−Yk |

)
,

� C
(
‖uh + u‖C0,1/2(B2(x)) ‖uh − u‖C0,1/2(B2(x)) + e−γ0|x−Yk |

)
.

(6.108)

Applying the Sobolev embeddingC0,1/2(B2(x)) ↪→ H2(B2(x)) and using (6.100),
it follows that

‖uh + u‖C0,1/2(B2(x)) � C ‖uh + u‖H2(B2(x)) � C
(
‖uh‖H2

unif(R
3)

+ ‖u‖H2
unif(R

3)

)
� C.

(6.109)

Applying (6.109) and (6.102) to (6.108), we obtain the desired estimate (6.104):
for any multi-index α satisfying |α| � 2
∣∣∂α(φh − φ)(x)

∣∣ � ‖φh − φ‖W 2,∞(B1(x)) � ‖φh − φ‖C2,1/2(B1(x))

� C
(
‖uh + u‖C0,1/2(B2(x)) ‖uh − u‖C0,1/2(B2(x)) + e−γ0|x−Yk |

)

� C
(
‖uh − u‖W 1,∞(B2(x)) + e−γ0|x−Yk |

)
� Ce−γ0|x−Yk |.

(6.110)

We will show next that there exist u ∈ H4(R3), φ ∈ H2(R3) such that uh−u
h ,

φh−φ
h

converge tou, φ respectively,weakly in H4(R3) and H2(R3), strongly in H3(BR(0))
and H1(BR(0)) for all R > 0 and pointwise almost everywhere, along with their
derivatives as h → 0.

First consider any decreasing sequence hn → 0, then there exists a subse-
quence (still denoted by hn) such that

uhn −u
hn

,
φhn −φ

hn
converge to u ∈ H4(R3), φ ∈

H2(R3) respectively, weakly in H4(R3) and H2(R3), strongly in H3(BR(0)) and
H1(BR(0)) for all R > 0 and pointwise almost everywhere, alongwith their deriva-
tives. In addition, it follows that (u, φ) satisfy (6.97)–(6.98).

We now verify that the limiting functions are independent of the choice of
sequence. First, observe that by passing to the limit as hn → 0 in the equations

− Δ

(
uhn − u

hn

)
+ 5

3

u7/3
hn

− u7/3

hn
− φhn uhn − φu

hn
= 0,

− Δ

(
φhn − φ

hn

)
= 4π

(
mhn − m

hn
− u2

hn
− u2

hn

)
,
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it follows that (u, φ) solve the linearised TFW equations (6.96) pointwise,

−Δu +
(
35

9
u4/3 − φ

)
u − uφ = 0,

−Δφ = 4π (m − 2uu) ,

where m(x) = lim
hn→0

(mhn − m)(x)

hn
= −∇η(x − Yk) · V .

Clearly m is independent of the sequence hn . Applying [7, Corollary 2.3], it fol-
lows that the (u, φ) is the unique solution to the linearised system (6.96), hence is
independent of the sequence (hn). It then follows that

uh−u
h ,

φh−φ
h converge to u, φ

as h → 0 as stated above. ��
We are now in a position to prove Theorem 4.2.

Proof (Proof of Theorem 4.2). We will repeatedly use the fact that there exists
C, γ > 0 such that, for all h ∈ [0, h0], p ∈ [1, 2],∫

R3
(1 + mh(x) + |∇φh(x)|)pe−γ0|x−Yk |e−γ̃ |x−Y j | dx � Ce−γ |Y j −Yk |, (6.111)

which is a consequence of the uniform bounds on mh, φh and of (6.86).
Further, we require that there exist C, γ̃ > 0 such that, for j ∈ N, h ∈ (0, h0],

x ∈ R
3, ∣∣∣∣∣

ϕ j (Y h; x) − ϕ j (Y ; x)

h

∣∣∣∣∣ � Ce−γ̃ |x−Y j |e−γ̃ |x−Yk |, (6.112)

which follows directly from (4.19c).
For i = 1, 2 and j ∈ N, consider the difference

Ei
j (Y

h) − Ei
j (Y )

h
=
∫
R3

Ei (Y h; x)ϕ j (Y h; x) − Ei (Y ; x)ϕ j (Y ; x)

h
dx

=
∫
R3

(
Ei (Y h; x) − Ei (Y ; x)

h

)
ϕ j (Y

h; x) dx

+
∫
R3

Ei (Y ; x)

(
ϕ j (Y h; x) − ϕ j (Y ; x)

h

)
dx (6.113)

We wish to show that the limit of (6.113) exists as h → 0 to obtain

∂ Ei
j

∂Yk
=
∫
R3

∂Ei

∂Yk
(Y ; x)ϕ j (Y ; x) dx +

∫
R3

Ei (Y ; x)
∂ϕ j

∂Yk
(Y ; x) dx, (6.114)

where

∂E1
∂Yk

(Y ; ·) = 2∇u · ∇u + 10

3
u7/3u + 1

2
φ(m − u2) + 1

2
φ(m − 2uu), (6.115)

∂E2
∂Yk

(Y ; ·) = 2∇u · ∇u + 10

3
u7/3u + 1

4π
∇φ · ∇φ. (6.116)
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Case 1. First consider the energy density

E1(Y ; x) = |∇u(x)|2 + u10/3(x) + 1

2
φ(x)(m − u2)(x). (6.117)

To show (6.115), consider the difference

E1(Y h; ·) − E1(Y ; ·)
h

= ∇(uh + u) · ∇
(

uh − u

h

)
+
(

u10/3
h − u10/3

h

)

+ 1

2h

(
φh(mh − u2

h) − 1

2
φ(m − u2)

)

= ∇(uh + u) · ∇
(

uh − u

h

)
+
(

u10/3
h − u10/3

h

)

+ 1

2

(
φh − φ

h

)
(m − u2) + 1

2
φh

(
mh − m − u2

h + u2

h

)
.

(6.118)

It follows from (6.118) and pointwise convergence of uh,∇uh, φh to u,∇u, φ

and
uh−u

h ,∇ ( uh−u
h

)
,

φh−φ
h ,

mh−m
h to u,∇u, φ, m as h → 0, that (6.115) holds

lim
h→0

E1(Y h; ·) − E1(Y ; ·)
h

= 2∇u · ∇u + 10

3
u7/3u + 1

2
φ(m − u2) + 1

2
φ(m − 2uu) = ∂E1

∂Yk
.

Applying (6.94) to (6.118) yields
∣∣∣E1(Y h; x) − E1(Y ; x)

∣∣∣ � C (|(uh − u)(x)| + |∇(uh − u)(x)| + |(mh − m)(x)|)
+ C(1 + m(x)) |(φh − φ)(x)|

� Ch(1 + m(x))e−γ0|x−Yk |. (6.119)

Combining (6.119) and (4.19b), we deduce

∣∣∣∣E1(Y
h; x) − E1(Y ; x)

h
ϕ j (Y ; x)

∣∣∣∣ � C(1 + m(x))e−γ0|x−Yk |e−γ̃ |x−Y j |, (6.120)

hence by (6.111) and the Dominated Convergence Theorem,

∫
R3

∂E1
∂Yk

(Y ; x)ϕ j (Y ; x) dx = lim
h→0

∫
R3

(
E1(Y h; x) − E1(Y ; x)

h

)
ϕ j (Y ; x) dx .

(6.121)

It follows from (6.120) and (6.111) that
∣∣∣∣
∫
R3

∂E1
∂Yk

(Y ; x)ϕ j (Y ; x) dx

∣∣∣∣ � C
∫
R3

(1 + m(x))e−γ0|x−Yk |e−γ̃ |x−Y j | dx � Ce−γ |Y j −Yk |.
(6.122)
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It remains to show that (6.113) converges using (6.111) and (6.112).Asϕ j (Y ; x)

is differentiable with respect to Yk , for all x ∈ R
3

E1(Y ; x)
∂ϕ j

∂Yk
(Y ; x) = lim

h→0
E1(Y ; x)

(
ϕ j (Y h; x) − ϕ j (Y ; x)

h

)
,

and combining (6.117) with (6.112) implies

∣∣∣E1(Y ; x)

(
ϕ j (Y h; x) − ϕ j (Y ; x)

h

) ∣∣∣ � C(1 + m(x))e−γ0|x−Yk |e−γ̃ |x−Y j |,

hence by (6.111) and the Dominated Convergence Theorem,

∫
R3

E1(Y ; x)
∂ϕ j

∂Yk
(Y ; x) dx = lim

h→0

∫
R3

E1(Y ; x)

(
ϕ j (Y h; x) − ϕ j (Y ; x)

h

)
dx,

and

∣∣∣∣
∫
R3

E1(Y ; x)
∂ϕ j

∂Yk
(Y ; x) dx

∣∣∣∣ � Ce−γ |Y j −Yk |. (6.123)

Combining (6.122) and (6.123) yields the desired estimate (4.21).
The second case, using E2 instead of E1, is analogous. ��

Proof (Proof of (4.22)). We will use
∑
j∈N

e−γ |Y j −Yk | < ∞, (6.124)

which is a consequence of (H1) and that Y ∈ YL2(M, ω). Then for i ∈ {1, 2}
∑
j∈N

∣∣∣∣∣
∂ Ei

j

∂Yk

∣∣∣∣∣ �
∑
j∈N

∣∣∣∣
∫
R3

∂Ei

∂Yk
(Y ; x)ϕ j (Y ; x) dx

∣∣∣∣+
∑
j∈N

∣∣∣∣
∫
R3

Ei (Y ; x)
∂ϕ j

∂Yk
(Y ; x) dx

∣∣∣∣
� C

∑
j∈N

e−γ |Y j −Yk | < ∞,

hence by the Monotone Convergence Theorem, the sum is well-defined

∑
j∈N

∂ E1
j

∂Yk
=
∫
R3

∂Ei

∂Yk
(Y ; x)

⎛
⎝∑

j∈N
ϕ j (Y ; x)

⎞
⎠ dx +

∫
R3

Ei (Y ; x)

⎛
⎝∑

j∈N

∂ϕ j

∂Yk
(Y ; x)

⎞
⎠ dx .

As (ϕ j ) j∈N satisfies (4.19a) for all h ∈ [0, h0], it follows that
∑
j∈N

∂ϕ j

∂Yk
(Y ; x) = 0,

and consequently,

∑
j∈N

∂ Ei
j

∂Yk
=
∫
R3

∂Ei

∂Yk
(Y ; x) dx .
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Now consider the difference of (6.115)–(6.116)
(

∂E1
∂Yk

− ∂E2
∂Yk

)
(Y ; ·) = 1

2
φ(m − u2) + 1

2
φ(m − 2uu) − 1

4π
∇φ · ∇φ, (6.125)

and applying integration by parts yields∫
R3

(
∂E1
∂Yk

− ∂E2
∂Yk

)
(Y ; x) dx =

∫
R3

(
1

2
φ(m − u2) + 1

2
φ(m − 2uu) − 1

4π
∇φ · ∇φ

)

= 1

8π

∫
R3

(
φ(−Δφ) + φ(−Δφ) − 2∇φ · ∇φ

)

= 1

8π

∫
R3

(
2∇φ · ∇φ − 2∇φ · ∇φ

) = 0.

In addition, since

1

4π

∫
R3

∇φ · ∇φ = 1

4π

∫
R3

φ(−Δφ) =
∫
R3

φ(m − 2uu)

and since u solves (2.6a), −Δu + 5
3u7/3 − φu = 0, the desired result (4.22) holds:

∫
R3

∂E2
∂Yk

(Y ; x) dx = 2
∫

R

(
∇u · ∇u + 5

3
u7/3u − φuu

)
+
∫
R3

φ m =
∫
R3

φ m.

��
Finally, we establish (4.16)–(4.17): if the partition functions ϕ j are invariant

under permutations and isometries, then so are the site energies.

Lemma 6.8. If the partition (ϕ j ) j∈N is permutation and isometry invariant (4.23)–
(4.24), then for i = 1, 2, for any bijection P : N → N, isometry A : R

3 → R
3,

j ∈ N and Y ∈ YL2(M, ω)

Ei
j (Y ◦ P) = Ei

j (Y ), (6.126)

Ei
j (AY ) = Ei

j (Y ). (6.127)

Proof (Proof of Lemma 6.8). Let Y ∈ YL2(M, ω) andm = mY , then as P : N →
N is a bijection,

mY◦P(x) =
∑
j∈N

η(x − YPj ) =
∑
j∈N

η(x − Y j ) = mY (x).

Since (2.6) has a unique solution, (uY , φY ) = (uY◦P , φY◦P ). Consequently, the
energy densities agree, Ei (Y ◦ P; ·) = Ei (Y ; ·). Together with (4.23) this implies
(6.126).

We now show isometry invariance (6.127). First consider a translation A1(x) =
x + c, for c ∈ R

3, then

m A1Y (x) =
∑
j∈N

η(x − Y j − c) = mY (x − c) = mY (A−1
1 (x)).
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Then, by the uniqueness of the TFW equations, it follows that (u A1Y , φA1Y )(·) =
(uY , φY )(· − c), so Ei (A1Y ; ·) = Ei (Y ; · − c) and thus

Ei
j (A1Y ) =

∫
R3

Ei (A1Y ; x)ϕ j (A1Y ; x) dx =
∫
R3

Ei (Y ; x − c)ϕ j (Y ; x − c) dx

=
∫
R3

Ei (Y ; z)ϕ j (Y ; z) dz = Ei
j (Y ).

Similarly, for a rotation A2(x) = Rx , R ∈ O(3), since we assumed that η is radially
symmetric,

m A2Y (x) =
∑
j∈N

η(x − RY j ) =
∑
j∈N

η
(

R(RT x − Y j )
)

=
∑
j∈N

η
(

RT x − Y j

)
= mY (RT x).

(6.128)

As (uY , φY ) solve (2.6)

− ΔuY + 5

3
u7/3

Y − φY uY = 0,

− ΔφY = 4π(mY − u2
Y ),

then by (6.128) and as the Laplacian is invariant under rotations, it follows that
(u, φ) = (uY , φY ) ◦ A−2

2 solves

− Δu + 5

3
u7/3 − φu = 0,

− Δφ = 4π(mY ◦ RT − u2) = 4π
(

m A2Y − u2
)

,

hence the uniqueness of (2.6) implies (u A2Y , φA2Y ) = (uY , φY ) ◦ A−1
2 . It follows

that Ei (A2Y ; ·) = Ei (Y ; RT ·), hence as det(R) = 1, a change of variables shows

Ei
j (A2Y ) =

∫
R3

Ei (A2Y ; x)ϕ j (A2Y ; x) dx =
∫
R3

Ei (Y ; RT x)ϕ j (Y ; RT x) dx

=
∫
R3

Ei (Y ; z)ϕ j (Y ; z) |det(R)| dz =
∫
R3

Ei (Y ; z)ϕ j (Y ; z) dz = Ei
j (Y ).

As the site energies are invariant under both translations and rotations, they are
invariant under all isometries of R

3. ��
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