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Abstract

Motivation: Time course data are often used to study the changes to a biological process after

perturbation. Statistical methods have been developed to determine whether such a perturbation

induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to

uncover differences. However, existing methods do not provide a principled statistical approach to

identify the specific time when the two time course datasets first begin to diverge after a perturb-

ation; we call this the perturbation time. Estimation of the perturbation time for different variables

in a biological process allows us to identify the sequence of events following a perturbation and

therefore provides valuable insights into likely causal relationships.

Results: We propose a Bayesian method to infer the perturbation time given time course data from

a wild-type and perturbed system. We use a non-parametric approach based on Gaussian Process

regression. We derive a probabilistic model of noise-corrupted and replicated time course data

coming from the same profile before the perturbation time and diverging after the perturbation

time. The likelihood function can be worked out exactly for this model and the posterior distribution

of the perturbation time is obtained by a simple histogram approach, without recourse to complex

approximate inference algorithms. We validate the method on simulated data and apply it to study

the transcriptional change occurring in Arabidopsis following inoculation with Pseudomonas syrin-

gae pv. tomato DC3000 versus the disarmed strain DC3000hrpA.

Availability and Implementation: An R package, DEtime, implementing the method is available at

https://github.com/ManchesterBioinference/DEtime along with the data and code required to repro-

duce all the results.

Contact: Jing.Yang@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression time profiles can reveal important information

about cellular function and gene regulation (see, e.g. Bar-Joseph,

2004). A common experimental design is to perturb a biological

system either before or during a time course experiment. In this

case, a fundamental problem is to identify the precise perturbation

time when a gene’s time profile is first altered. In this paper we

present an exactly tractable Bayesian inference procedure to infer

the perturbation time by comparing perturbed and wild-type gene

expression profiles. Ordering genes by their perturbation time

gives valuable insight into the likely causal sequence of events fol-

lowing a perturbation. We demonstrate the applicability of our

method by studying the timing of transcriptional changes in

Arabidopsis thaliana leaves following inoculation with the
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hemibiotrophic bacteria Pseudomonas syringae pv. tomato

DC3000 versus the disarmed strain DC3000hrpA.

Most methods for the analysis of differentially expressed genes

are based upon snapshots of gene expression (Dudoit et al., 2002;

Kerr et al., 2000) and there are many well-established software

packages for that purpose targeted at microarray and RNA-Seq data

(Anders and Huber, 2010; Hardcastle and Kelly, 2010; Robinson

et al., 2010). However, most of these methods cannot easily be ex-

tended to time course gene expression data and ignoring the tem-

poral nature of the data is statistically inefficient. Methods have

therefore been developed specifically for time-series applications. In

the case of gene expression profiles under a single condition, one-

sample methods have been developed to discriminate differentially

expressed genes from constitutively expressed genes. For example,

probabilistic models have been designed for this purpose which use

a likelihood-ratio test to rank genes based on a comparison between

a dynamic and a constant profile (Angelini et al., 2008; Kalaitzis

and Lawrence, 2011).

When expression profiles are available from two or more condi-

tions then a two-sample test is more appropriate (Conesa et al.,

2006; Kim et al., 2013; Stegle et al., 2010; Storey et al., 2005).

Storey et al. (2005) apply a polynomial regression model to simulate

the temporal behaviour of genes and a statistical test to identify dif-

ferentially expressed genes. Conesa et al. (2006) adopt a two-step re-

gression model in analyzing temporal profiles of genes with time

treated as an extra experimental factor. Kim et al. (2013) apply

Fourier analysis to time course gene expression data and identify dif-

ferentially expressed genes in the Fourier domain. Stegle et al.

(2010) apply a model based on Gaussian Process (GP) regression

which is closely related to our proposed approach. In this model,

when two time series are the same they are represented by a shared

GP function but where they differ they are better represented by two

independent GP functions. Binary latent variables are used to model

whether a particular time interval is better represented by two inde-

pendent GPs or one combined GP. More recently, the GP regression

framework has been refined through use of a non-stationary covari-

ance function and a simplified scoring approach to detect time peri-

ods of differential gene expression (Heinonen et al., 2014). Similar

to the work of Stegle et al. (2010), a log-likelihood ratio is used to

identify time periods of differential expression. In order to better

adapt to the case where unevenly or sparsely distributed times are

used, they introduce a non-stationary covariance function and pro-

posed two novel likelihood ratio tests to evaluate the likelihood at

arbitrary time points. All these approaches can be used to find differ-

entially expressed genes and some can be used to identify temporal

domains where there is support for profiles being different.

However, these methods do not directly score the probability of the

perturbation time where two profiles first diverge, which is the aim

of our approach. Although the methods of Stegle et al. (2010) and

Heinonen et al. (2014) can be adapted to provide an estimate of the

perturbation time, e.g. by applying a thresholding procedure to their

differential expression scores, we show here that direct inference of

the perturbation time is a more powerful approach when that is the

object of interest.

In this paper, we propose a method to identify the perturbation

point given data from two time course experiments. We use a non-

parametric GP to describe the joint posterior distribution of two

time profiles which are equal up to a proposed perturbation time.

The perturbation time is then a model parameter which can be

inferred. We derive the covariance function of the GP model and

show that the likelihood function is exactly tractable. The posterior

distribution of the perturbation time can be computed through a

simple one-dimensional histogram approach, with no assumptions

over the shape of the posterior distribution and no need to resort to

complex approximate inference schemes. This differs from Stegle

et al. (2010) and Heinonen et al. (2014) in that we focus specifically

on inferring the perturbation time and derive an exact approach to

this problem. Stegle et al. (2010) creates a mixed model in pre-

specified time intervals with the transition between independent GPs

and shared GPs. The likelihood in that case must be approximated

using Expectation Propagation (EP) due to its non-Gaussian nature.

Heinonen et al. (2014) provide a simpler approach by adopting the

expected marginal log-likelihood ratio or the noisy posterior con-

centration ratio to construct a smooth curve indicating time periods

of differential expression. However, their approach does not allow

direct inference of the perturbation time.

The paper is organized as follows. In Section 2, we present back-

ground on GP regression and derive the covariance function, likeli-

hood function and posterior inference procedure for our new model.

In Section 3, the algorithm is demonstrated on simulated data and

subsequently applied to identify the perturbation times for

Arabidopsis genes in a microarray time series dataset detailing the

transcriptional changes that occur in Arabidopsis following inocula-

tion with DC3000 versus the disarmed strain DC3000hrpA (Lewis

et al., 2015) and with a brief conclusion presented in Section 4.

2 Methods

2.1 Gaussian process regression
Gaussian Processes (GPs) (Rasmussen and Williams, 2006) extend

multivariate Gaussian distributions to infinite dimensionality and

can be used as probabilistic models that specify a distribution over

functions (Lawrence, 2005). GPs have been used in a range of gene

expression applications, e.g. to model the dynamics of transcrip-

tional regulation (Gao et al., 2008; Honkela et al., 2010) and in tem-

poral differential expression scoring (Heinonen et al., 2014;

Kalaitzis and Lawrence, 2011; Stegle et al., 2010; Yuan, 2006).

We have a dataset D with N inputs X ¼ fxngN
n¼1 and corres-

ponding real valued targets Y ¼ fyngN
n¼1. In the case of time course

data the data are ordered such that xn � xn�1 but there is no restric-

tion on the spacing since GPs operate over a continuous domain. We

allow the case xn ¼ xn�1 since that provides a simple way to incorp-

orate replicates. We assume that measurement noise in Y, denoted

by �, is i.i.d Gaussian distributed � � Nð0; r2IÞ and the underlying

model for Y as a function of X is f ð�Þ, so that

Y ¼ f ðXÞ þ �;

and f ðXÞ represents the mean of the data generating process. Our

prior modelling assumption is that the function f is drawn from a

GP prior with mean function lðXÞ, covariance function KðX;XÞ and

hyperparameters h. We write,

f ðXÞ � GPðlðXÞ;KðX;XÞÞ;

and the likelihood of Y becomes

pðYjX; hÞ � NðlðXÞ;KðX;XÞ þ r2IÞ;

where KðX;XÞ is the N�N covariance matrix with elements

Kðxn;xmÞ. The covariance function describes typical properties of

the function f, e.g. whether it is rough or smooth, stationary or non-

stationary etc. We choose the squared exponential function,

Kðxn; xmÞ ¼ a exp �ðxn � xmÞ2

2l2

 !
; (1)
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with hyper-parameters h ¼ ða; lÞ specifying the amplitude and length-

scale of samples drawn from the prior. This choice corresponds to a

prior assumption of smooth and stationary functions. However, our

model can be applied with any other choice of covariance function,

e.g. the non-stationary covariance introduced by Heinonen et al.

(2014). The hyper-parameters can be estimated from the data by max-

imum likelihood or through a Bayesian procedure (Rasmussen and

Williams, 2006). We can also consider the noise variance, r2, as an

additional hyper-parameter to be estimated similarly.

A typical regression analysis will be focused on a new input x�
and its prediction f�. Based upon Gaussian properties (Rasmussen

and Williams, 2006) the posterior distribution of f� given data Y is

pðf�jYÞ � Nðl�;C�Þ with

l� ¼ KðX;x�Þ>ðKðX;XÞ þ r2IÞ�1Y;

C� ¼ Kðx�; x�Þ � KðX;x�Þ>ðKðX;XÞ þ r2IÞ�1KðX; x�Þ:

We see then that the posterior distribution is also a GP but it is

adapted to the data. The mean prediction is a weighted sum over

data with weights larger for nearby points in a manner determined

by the covariance function. The posterior covariance captures our

uncertainty in the inference of f� and will typically be reduced as we

incorporate more data.

A special case of GP regression, which is useful in deriving our

model below, is the case where ðX;YÞ is a single point ðxp;uÞ meas-

ured with zero noise. In this case the GP regression of all new points

X given ðxp; uÞ is then

pðf ðXÞjYÞ � N ðlðXÞ;CðX;XÞÞ; (2)

with

lðXÞ ¼ KðX;xpÞu
Kðxp;xpÞ

; (3)

CðX;XÞ ¼ KðX;XÞ �KðX;xpÞKðX; xpÞ>

Kðxp; xpÞ
: (4)

2.2 Joint distribution of two functions constrained to

cross at one point
Consider the case where two time profiles, f ðXÞ and gðZÞ, evaluated

at specified sets of time points X and Z, respectively, cross at the

point xp with f ðxpÞ ¼ gðxpÞ ¼ u at the crossing point. Before con-

sidering the constraint we use the same GP prior for each function

with hyperparameters h,

f ðXÞ � GPðlðXÞ;KðX;XÞÞ; gðZÞ � GPðlðZÞ;KðZ;ZÞÞ:

Imposing the constraint that the functions cross at xp is equiva-

lent to observing a data point ðxp; uÞ with zero noise. Then pðf jX;uÞ
and pðgjZ; uÞ are as in Eq. (2),

pðf ðXÞjuÞ � NðlX;CXÞ; pðgðZÞjuÞ � NðlZ;CZÞ;

with

lX ¼
KðX; xpÞu
Kðxp; xpÞ

; CX ¼ KðX;XÞ �KðX;xpÞKðX; xpÞ>

Kðxp; xpÞ
;

lZ ¼
KðZ; xpÞu
Kðxp; xpÞ

; CZ ¼ KðZ;ZÞ � KðZ; xpÞKðZ; xpÞ>

Kðxp; xpÞ
;

In practice, the time profiles f ðXÞ and gðZÞ are typically meas-

ured at the same time points, so that Z can be replaced by X. The

value of the functions at the crossing point, u, is not known and we

marginalize it out using the prior Gaussian distribution

u � Nð0;Kðxp;xpÞÞ. The joint probably distribution of f and g is

then given by Eq. (5) below,

p f ðXÞ; gðXÞð Þ ¼
ð

pðf jX; uÞpðgjX;uÞpðuÞdu;

/ exp �1

2
f gð ÞR�1 f gð Þ>

� �
;

(5)

so that the two functions are jointly Gaussian distributed as Nð0;RÞ
with covariance given by,

R ¼
Kff Kfg

Kgf Kgg

 !
¼

KX
kXk>X
kxp

kXk>X
kxp

KX;

0BBBB@
1CCCCA; (6)

where KX; kxp
and kX are abbreviations for KðX;XÞ; Kðxp;xpÞ and

KðX; xpÞ, respectively. We show an example of this covariance func-

tion in Figure 1 (upper panel) for X in the range [0,100] and

xp¼40. The detailed derivations of Eqs. (5) and (6) are illustrated in

the Supplementary.

2.3 The data likelihood under the model
We define the perturbation time xp as the point where two time pro-

files first begin to diverge. If the time profiles are measured without

noise then it would be trivial to identify this point. However, biolo-

gical time course data from high-throughput experiments are often

corrupted by significant biological and technical sources of noise

and our task is to infer the perturbation time given noisy time course

data. In order to do that we must first derive the likelihood function

under the new model.

Let two sets of gene expression time course data, ycðXÞ and

ypðXÞ, represent noisy measurements with i.i.d Gaussian measure-

ment noise, Nð0;r2IÞ, from the control condition and perturbed

condition, respectively. A GP prior is placed on the mean functions

Fig. 1. Illustration of the covariance matrix, R, for two functions f and g eval-

uated at points evenly distributed in [0,100] and crossing at xp¼40 (upper)

and the resulting data covariance matrix, bR, for time course data yc and yp

from a wild-type and perturbed system respectively (lower) (Color version of

this figure is available at Bioinformatics online.)
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underlying yc and yp and a time point xp is defined as the perturb-

ation time point. The data model is defined as:

1. The two datasets yc and yp before xp are noise-corrupted ver-

sions of the same underlying mean function f which has a GP

prior,

ycðxnÞ � N ðf ðxnÞ; r2Þ;

ypðxnÞ � N ðf ðxnÞ; r2Þ for xn � xp :

2. The mean function for yc stays intact after xp while the mean

function for yp changes to follow g,

ycðxnÞ � N ðf ðxnÞ; r2Þ;

ypðxnÞ � N ðgðxnÞ;r2Þ for xn > xp;

where f and g are constrained to cross at xp and follow the GP

described in Eq. (5).

The joint distribution of yc and yp is then

p ycðXÞ; ypðXÞjxp

� �
¼ exp �1

2

yc

yp

 !>bR�1 yc

yp

 ! !
; (7)

where the covariance matrix bR can be worked out in terms of the co-

variance matrix R for the joint distribution of f and g defined by Eq.

(6),

bR ¼ bKycyc bKycypbKypyc bKypyp

0@ 1A; (8)

with

bKycðX1ÞycðX2Þ ¼ Kf ðX1Þf ðX2Þ þ r2I X1 2 X;X2 2 X

bKycðX1ÞypðX2Þ ¼
(

Kf ðX1Þf ðX2Þ

Kf ðX1ÞgðX2Þ

X1 2 X;X2 � xp

X1 2 X;X2 > xp

bKypðX1ÞycðX2Þ ¼
(

Kf ðX1Þf ðX2Þ

KgðX1Þf ðX2Þ

X1 � xp;X2 2 X

X1 > xp;X2 2 X

bKypðX1ÞypðX2Þ ¼

Kf ðX1Þf ðX2Þ þ r2I

KgðX1Þf ðX2Þ

Kf ðX1ÞgðX2Þ

KgðX1ÞgðX2Þ þ r2I

X1 � xp;X2 � xp

X1 > xp;X2 � xp

X2 > xp;X1 � xp

X1 > xp;X2 > xp

8>>>>><>>>>>:
The lower panel in Figure 1 shows the data covariance matrix bR

for X evenly spread in the range ½0; 100	 and with a perturbation

occurring at xp¼40.

2.4 Posterior distribution of the perturbation point
According to Bayes’ rule the posterior distribution of xp is,

pðxpjycðXÞ; ypðXÞÞ ¼ pðycðXÞ; ypðXÞjxpÞpðxpÞð
pðycðXÞ; ypðXÞjxpÞpðxpÞdxp

:

We assume a uniform prior on xp within the range ½xmin;xmax	 of

the observed data. We use a simple discretization xp 2 ½xmin; xmin

þd;xmin þ 2d; . . . ; xmax	 in this range. Then the posterior can be

approximated as a simple summation over this grid,

pðxpjycðXÞ; ypðXÞÞ ’ pðycðXÞ; ypðXÞjxpÞXx¼xmax

x¼xmin

pðycðXÞ; ypðXÞjxÞ
;

only requiring that we evaluate the likelihood at each grid point.

There are hyper-parameters h also involved in the posterior distribu-

tion of xp which would potentially complicate matters. We choose

to estimate these hyper-parameters prior to inferring xp. To do this

we use maximum likelihood optimization for the case where xp

approaches -1 which corresponds to the two GPs for the control

and perturbed conditions being independent,

h
^

¼ argmax
h

lim
xp!�1

phðycðXÞ; ypðXÞjxp; hÞ
� �

:

Since we have a simple histogram representation for the poster-

ior distribution of the perturbation time point xp then we can easily

estimate the mean, median or mode (MAP) of the posterior distribu-

tion to provide a point estimate.

2.5 Pre-filtering to remove non-DE genes
In many applications a large number of genes will show no strong

evidence for DE at any time or will have a low signal-to-noise due to

being weakly expressed. We therefore filter genes prior to using our

model. A DE gene will be better represented by two independent

GPs rather than a shared GP under control and perturbed condi-

tions. We therefore filter genes using the log-likelihood ratio r be-

tween the independent GP model (equivalent to xp approaching �1
in the perturbation model) and the integrated GP (with xp approach-

ing þ1):

r ¼ logLðycðXÞ; ypðXÞjxp ! �1Þ � logLðycðXÞ; ypðXÞjxp ! þ1Þ

We note that it is difficult to distinguish genes with a late per-

turbation time from those that are non-DE and our filtering ap-

proach may remove some genuine late perturbation genes. In many

applications we are primarily interested on relatively early perturb-

ations (e.g. in the application considered here) in which case this

will not significantly impact the results. In the Supplementary we

consider an alternative filtering approach which is based on detect-

ing genes with time-varying profile in either the control or perturbed

condition and is therefore less likely to filter out late xp genes.

The method has been implemented in the DEtime R-package

(github.com/ManchesterBioinference/DEtime) and also as the

DEtime kernel in the GPy Python package (github.com/

SheffieldML/GPy). The running time for the whole genome (32 578

genes) for the example in Section 3.3 on a Intel(R) Core(TM) i7-

3770 CPU of 3.40 GHz is around 11 h using the DEtime R-package.

3 Results and discussion

3.1 Generating simulated data
We generated data under a range of different scenarios to explore

performance and robustness to deviations from the model. We gen-

erated expression profiles from three different covariance models,

one matching the one used for inference and the other two generat-

ing rougher profiles. We then add noise using three different noise

models, one matching the Gaussian model used for inference and

two from heavier-tailed distributions.

1. profile1: simulated noise-free profile generated from the model G
Phð0; bRhÞ with bRh given in Eq. (8) assuming a squared exponen-

tial covariance function (recall Eq. (1)) with the hyperparameters

h ¼ fa ¼ 30:0; l ¼ 2:0g.
2. profile2: simulated noise-free profile generated from above

model with the covariance function in the form of a matern32
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covariance function (see Rasmussen and Williams, 2006) with

the same hyperparameters as above.

3. profile3: simulated noise-free profile generated from above

model with the covariance function in the form of a matern12

covariance function (an Ornstein-Uhlenbeck (OU) process) with

the same hyperparameters as above.

Nine simulated dataset are induced with different kinds of i.i.d

noise on top of profile1, profile2 and profile3, respectively: Gaussian

Nð1:5Þ, Student-t distributed with 3 ðTð3ÞÞ and 6 ðTð6ÞÞ degrees of

freedom. The simulated data are sampled every hour from 0 h until

18 h. We simulate data with a range of perturbation times xp 2 f0;1
; . . . ; 17; 18g and 100 different sets of data are produced for each xp

value.

Figure 2(a) shows an example of simulated data (using the pro-

file1þNð1:5Þ scenario) with two replicates and a perturbation at

4 h. The estimated posterior distribution of xp is shown in the upper

panel and in the lower panel we show the GP regression function

after fixing xp at the MAP value. In this case the MAP estimate for

xp is very close to the ground truth. The mean, mode and median of

the posterior distribution of xp for 19 simulated datasets are illus-

trated in Figure 2(b) together with the 5–95 percentile coverage of

the posterior distribution. It is clear that the posterior distributions

of the perturbation time cover the actual perturbation time to a

great extent and that the three different point estimates are typically

close to the ground truth values.

3.2 Comparison with a thresholding approach
Related methods have been introduced to identify regions of differ-

ential expression from time course data (Heinonen et al., 2014;

Stegle et al., 2010). Such methods can in principle also be used to

identify the perturbation time by locating the first time point where

the DE score passes some threshold value. Here we compare our

approach to the most recently published package of this type, devel-

oped by Heinonen et al. (2014) implemented in the nsgp R-package.

The nsgp package infers the differentially expressed time periods

and uses four likelihood ratios: marginal log-likelihood ratio (MLL),

expected marginal log-likelihood ratio (EMLL), the posterior con-

centration (PC) and the noisy posterior concentration (NPC) to

quantify these regions. We adopt thresholds of 0.5 and 1.0 to define

the initial perturbation points, respectively. The mean, median and

mode of the posterior distribution of the inferred perturbation

points from our method are also computed. The performance of

ranking xp using each method is measured by Spearman’s rank cor-

relation coefficient with the known ground truth and the mean and

standard deviation of the rank correlation coefficients across 100

dataset are illustrated in Table 1.

From the table, it is clear that the mean, median and MAP esti-

mates from the DEtime package provide better ranking perform-

ance. The results from the nsgp package vary significantly through

different ratios and thresholds, among which, EMLL with threshold

1.0 performs the best in this task, giving rank correlation coefficient

of 0.67 6 0.16 when tested on the simulated profile1 contaminated

with Gaussian noise Nð1:5Þ, which is still considerably lower than

the rank correlation coefficients from mean, median or mode of the

DEtime package. In order to compare the performance of the algo-

rithm on data with varied signal-to-noise ratios, we adjusted the sig-

nal amplitude hyperparameter a and compared the results from

DEtime and nsgp with a ¼ 1:5;10:0;20:0; 30:0. Supplementary

Table S1 illustrates the results which shows the robustness of the

proposed model. Supplementary Figure S1 shows the errorbar of the

mean, median, mode from DEtime package and EMLL with thresh-

olds of 0.5 and 1.0 from nsgp package across 100 replicates along

all perturbation times for all simulated datasets. We observe that the

DEtime package provides reasonable estimation of the initial per-

turbation time under various noise distributions whereas the per-

formance of the EMLL ratio from nsgp package varies substantially

and its performance seems to be deteriorating with later initial

perturbations.

We note that methods in the nsgp package are not designed spe-

cifically for the task of inferring the initial perturbation point as

they were proposed for the more general problem of identifying DE

regions. Nevertheless, a common application of time-series DE stud-

ies is to distinguish early and late DE events. We have demonstrated

that one can obtain greater accuracy by focusing on this specific task

rather than adapting a more general DE method.

3.3 Bacterial infection response in A. thaliana
To determine the biological utility of estimating perturbation times,

we re-examined a large dataset recently published by Lewis et al.

(2015) that captures the transcriptional reprogramming associated

with defence and disease development in A. thaliana leaves inocu-

lated with P. syringae pv. tomato DC3000 and the non-pathogenic

DC3000hrpA mutant strain. The differences in gene expression be-

tween these two challenges is a result of the action of virulence fac-

tors delivered by the DC3000 strain into the plant cell, in this case

predominately the collaborative activities of 28 bacterial effector

proteins. Figure 3 shows examples of an early and late perturbed

gene identified by our method. A preliminary investigation of the

perturbation times of differentially expressed genes revealed two

peak times (Supplementary Fig. S2), allowing genes to be assigned to

one of three groups: early, intermediate and late perturbed genes.

This initial characterization was consistent with major phase

changes in the infection process, and the onset of effector mediated

transcriptional reprogramming: effectors are not delivered into plant

cells until 90–120 min post inoculation (Grant et al., 2000), and do

not promote bacterial growth until �8 hpi, when they have effect-

ively disabled host defence processes. This general progression is re-

flected in GO and pathway analysis outlined in Supplementary

Section 4.

The recent study by Lewis et al. (2015) provided a comprehen-

sive overview of the transition from defence to disease. Thus we

investigated if the calculation of perturbation times provided

(b)(a)

Fig. 2. (a) The shaded area in the lower panel represents the 95% credible re-

gion of the GP regression result. In the top panel we show the inferred poster-

ior distribution for the perturbation time xp. (b) The mean, mode and median

of the posterior distribution of xp with the 5-95 percentile coverage of the pos-

terior distribution for 19 simulated dataset at different perturbation time

points (dashed line shows the ground truth) (Color version of this figure is

available at Bioinformatics online.)

2960 J.Yang et al.

 at U
niversity of W

arw
ick on January 10, 2017

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw329/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw329/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw329/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw329/-/DC1
http://bioinformatics.oxfordjournals.org/


supporting evidence and additional novel insights not highlighted by

Lewis et al. (2015). To do so, genes were first grouped according to

their GO or AraCyc Pathway annotation, and the cumulative per-

turbation time for each term calculated. The time at which more

than 50% of the genes associated with a particular term were per-

turbed could then be used to rank terms, allowing a high resolution

understanding of the infection process. Heat maps showing the cu-

mulative density function (CDF) of perturbation times for each term

are shown in Supplementary Figures S4–S10. For clarity, we chose

to focus predominately on the earliest processes perturbed by bacter-

ial effectors as these are predicted to be processes integral to the sup-

pression of innate immunity. As an initial proof of concept we

focussed on the perturbation of hormone pathways, as modulation

of these pathways are well known to be integral to pathogen viru-

lence strategies (Fig. 4).

First we looked at abscisic acid (ABA) pathways, as it has previ-

ously been shown that DC3000 rapidly induces de novo ABA bio-

synthesis and hijacks ABA signalling pathways to promote virulence

(de Torres-Zabala et al., 2007; de Torres Zabala et al., 2009).

Figure 4A shows a strong link between various GOs associated with

ABA processes and early perturbation, which is what is predicted in

the literature and demonstrated by Lewis et al. (2015). Amongst

these early ABA signalling components induced were the classic

ABA responsive TFs, RD26 and both ATAIB and AFP2 were

induced around 2 hpi. This prediction suggests that effectors are tar-

geting ABA signaling very early in the infection process.

Furthermore > 50% of genes annotated with ‘regulation of abscisic

acid biosynthetic process’ were perturbed by 2.3 hpi, consistent with

measurable increased in de novo ABA biosynthesis 6 hpi, (de

Torres-Zabala et al., 2007), with subsequent perturbation of ‘cellu-

lar response to abscisic acid stimulus’ occurring by 3.5 hpi. Two

genes showing perturbation at 4.1 hpi and annotated as ABA re-

sponsive, BLHL1 and TCP14, are predicted to be targeted by the

DC3000 effector AvrPto in yeast two hybrid protein–protein inter-

action studies (Mukhtar et al., 2011). Moreover a knockout of

TCP14 results in enhanced disease resistance to DC3000, consistent

with TCP14 being a virulence target of effectors (Weßling et al.,

2014). Subsequently, a number of ABA related pathways appear to

be further targeted later in the infection. Interestingly ‘negative regu-

lation of abscisic acid-activated signaling pathway’ was perturbed at

4.4 hpi suggesting this is an example of a failed host response Lewis

et al. (2015). Other notable perturbed ABA related ontologies

included ‘abscisic acid transport’ (4.9 hpi), ‘abscisic acid catabolic

process’ (5.1 hpi), ‘abscisic acid binding’ (5.1 hpi), ‘abscisic acid-

activated signaling pathway’ (6.3 hpi), ‘abscisic acid biosynthetic

process’ (7.2 hpi) and ‘positive regulation of abscisic acid-activated

signaling pathway’ (7.2 hpi). Thus we can validate the importance

of ABA in the infection process but, moreover, using our estimation

of perturbation process we can see fine resolution of the increased

impact of ABA biosynthesis and signaling on the infection process

not evidenced by the previous analyses (Lewis et al., 2015) as illus-

trated in Figure 4A.

As expected, we also identified strong early perturbations in sali-

cylic acid (Fig. 4B) related ontologies, as these are key targets for ef-

fector mediated suppression (DebRoy et al., 2004). For further

validation, we looked at ontologies associated with the hormone jas-

monic acid (Fig. 4C). The JA ontologies show more delayed perturb-

ation than ABA, particularly notably the ontologies associated with

‘response to jasmonic acid’ (2.3 hpi), ‘jasmonic biosynthetic proc-

esses’ (3.7 hpi) and ‘regulation of jasmonic acid mediate signaling

pathways’ (3.8 hpi). This is consistent with the recent study by de

Torres et al. (2015) using a specific targeted analysis of the sameT
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dataset which demonstrated that the JA contribution to DC3000

pathogenesis was preceded by a stronger ABA component. Thus both

the ABA and JA analyses provide two examples that validate the util-

ity of the perturbation estimation approach. Two other hormone sig-

nalling pathways, gibberellic acid (Fig. 4D) and ethylene (Fig. 4E), are

predicted to play a minor role in establishment of virulence, with their

contributions only occurring late in the infection process.

We next identified two signalling and two primary metabolism

pathways that are predicted to be important in the early conflict be-

tween plant defence and pathogen virulence: MAP kinase kinase

(MAPKK) activity, regulation of protein kinase activity, NAD bio-

synthesis process and methionine biosynthesis (Fig. 4F/G).

MAMP signaling activates an early kinase phosphorylation cas-

cade that initiates transcriptional activation (Zipfel, 2014), however

little is known about the transcriptional activation or kinases.

Remarkably, 8 out of the 10 MAPKKs encoded by the Arabidopsis

genome were perturbed early. Given that these MAPKKs are respon-

sible for phosphorylation of the 20 downstream MAPKs their re-

spective roles are naturally extensive. However, MAPKKs are

strongly implicated in biotic stress. Most notably, the DC3000 ef-

fector HopF2 can interact with Arabidopsis MKK5 and most likely

other MAPKKs to inhibit MAPKs and PAMP-triggered immunity.

This is probably through MAPKK inhibition via ADP-ribosylation

as HopF2 delivery inhibited PAMP-induced MPK phosphorylation

(Wang et al., 2010). Functional evidence for a positive role of

MKKs in defence comes from work in tobacco, where transient ex-

pression of AtMKK7/AtMKK9 and AtMKK4/AtMKK5 caused a

hypersensitive response (Zhang et al., 2008). However, the roles of

MKKs are likely to be multifunctional and may be manipulated by

effectors to promote virulence. The MAPKK, MKK1 was shown to

negatively regulate immunity (Kong et al., 2012). This may be

through a dual role in activating ABA signalling as AtMKK1 as well

as AtMKK2 and AtMKK3, could activate the ABA responsive

RD29A promoter and MKK8 could activate the RD29B promoter

(HUA et al., 2006). Concomitant with perturbation of the MKK

pathway was a significant early perturbation of a sets of genes asso-

ciated with regulation of protein kinase activity. Strikingly, these

genes belong to a class of evolutionarily conserved kinases function-

ing as metabolic sensors and are activated in response to declining

energy levels. Their co-regulation is probably because they typically

function as a heterotrimeric complex comprising two regulatory

subunits, b and c and an a-catalytic subunit. Intriguingly, a recent

study predicted that the two clade A type 2C protein phosphatases

that are negative regulators of ABA signalling, ABI1 and PP2CA,

negatively regulate the Snf1-related protein kinase1 and that PP2C

inhibition by ABA results in SnRK1 activation (Rodrigues et al.,

2013). Moreover, SnRK1 and ABA were shown to induce largely

overlapping transcriptional responses, thus these data reveal a previ-

ously unknown link between ABA and energy signalling during

DC3000 infection.

A pathway intimately linked to energy signalling and redox reac-

tions is NAD biosynthesis, one of the most significantly perturbed

pathways following effector delivery (Fig. 4G). Although powdery

mildew infection of barley leaves was reported to be associated with

increased NAD content more than 40 years ago (Ryrie and Scott,

1969) and recently the identification of the fin4 (flagellin insensitive

4) mutant as aspartate oxidase (Macho et al., 2012), a precursor of

the NANP biosynthetic pathway, the role of pyridines in plant de-

fence has received little attention. NAD and NADP play crucial roles

in pro-oxidant and antioxidant metabolism and have been linked to

biotic stress responses, including production of nitric oxide and me-

tabolism of reactive lipid derivatives (Crawford and Guo, 2005;

Mano et al., 2005). We highlight two possible, and contrasting,

roles for rapid induction of NAD biosynthesis components by ef-

fectors. First, it has recently been shown that chloroplast ROS pro-

duction is influenced by NADP:NADPH ratios and bacteria effector

delivery rapidly suppresses a MAMP triggered chloroplast burst of

hydrogen peroxide in an ABA dependent manner (de Torres Zabala

et al., 2015). Second, poly(ADP-Ribose) polymerases (PARPs) is

emerging as a key regulator of defence responses. PARPs are import-

ant NADþ consuming enzymes induced by biotic stress, polymeriz-

ing long poly(ADP-ribose) chains on target proteins including

histones. Adams-Phillips et al. (2010) reported a 40–50% decrease

in NADþ 12 hpi of DC3000 challenged leaves compared to a mock

Fig. 3. Examples of fitting the DEtime model to an early-perturbed (left) and

late-perturbed gene from an experiment comparing arabadopsis leaves col-

lected from plants infected with DC3000 (condition 1) and the mutant

DC3000hrpA (condition 2). The shaded area represents the 95% credible re-

gion of the GP and the dashed line is the estimated mean of the model (Color

version of this figure is available at Bioinformatics online.)
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control and �50% increase in total cellular and nuclear poly(ADP-

Rib) polymers (Adams-Phillips et al., 2010). Consistent with these

results, a knockout of PARP2, which is induced by MAMPs, re-

stricts DC3000 growth (Song et al., 2015) demonstrating that loss

of poly(ADP-ribosyl)ation activity affects the capacity of

Arabidopsis to limit DC3000 growth.

The second primary metabolism example we choose to highlight

is the very rapid induction methionine biosynthesis pathway (Fig.

4G). Methionine is a sulphur amino acid involved in multiple cellu-

lar processes from being a protein constituent, to initiation of

mRNA translation as well as functioning as a regulatory molecule in

the form of S-adenosylmethionine (SAM). There are 13 unique genes

associated with this ontology, and while it is outside the scope of

this manuscript to explore these in detail it is worth noting that this

includes DMR1 (Downy Mildew Resistance 1) (van Damme et al.,

2009), encoding homoserine kinase, which produces O-phospho-L-

homoserine, a compound at the branching point of methionine and

threonine biosynthesis. Mutations in dmr1 lead to elevated foliar

homoserine and resistance to the biotrophic pathogens

Hyaloperonospora arabidopsidis, Oidium neolycopersici, F. culmo-

rum and F. graminearum, although the mechanism has yet to be

identified (Brewer et al., 2014; Huibers et al., 2013; van Damme

et al., 2009).

Thus in summary, we have validated perturbation times against

previous analyses, and provide four new examples derived from

examining early perturbation times of biological pathways to iden-

tify novel signalling and, particularly, primary metabolic pathways

that are implicated in the transition from defence to disease follow-

ing infection with DC3000. These examples provide compelling

leads for further investigation.

4 Conclusion

We have introduced a fully Bayesian approach to infer the initial

point where two gene expression time profiles diverge using a novel

GP regression approach. We model the data as noise-corrupted sam-

ples coming from a shared function prior to some ‘perturbation time’

after which it splits into two conditionally independent functions. The

full posterior distribution of the perturbation point is obtained

through a simple histogram approach, providing a straightforward

method to infer the divergence time between two gene expression

time profiles under different conditions. The proposed method is

applied to a study of the timing of transcriptional changes in A. thali-

ana under a bacterial challenge with a wild-type and disarmed strain.

Analysis of differences in the gene expression profiles between strains

is shown to be informative about the immune response.

Many transcriptional perturbation experiments are focused on a

single perturbation. However, multiple perturbations occurring at

different times or a single perturbation targeting many conditions

will be needed to unmask complex gene regulatory strategies. An

interesting future line of research would be the development of GP

covariance structures to uncover the ordering of events under these

more general scenarios.
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