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Transition from Fireball to Poynting-flux-dominated Outflow in

Three-Episode GRB 160625B

B.-B. Zhang1,2,3, B. Zhang4, A. J. Castro-Tirado1,5, Z. G. Dai2,6, P.-H. T. Tam7, X.-Y.

Wang2,6, Y.-D. Hu1,8, S. Karpov9,10, A. Pozanenko11,12, F.-W. Zhang13, E. Mazaeva11, P.

Minaev11, A. Volnova11, S. Oates32, H. Gao14, X.-F. Wu15,16,17, L. Shao18,15, Q.-W. Tang35,6,

G. Beskin9,10, A. Biryukov19,10, S. Bondar20, E. Ivanov20, E. Katkova20, N. Orekhova20, A.

Perkov20, V. Sasyuk10, L. Mankiewicz21, A. F. Żarnecki22, A. Cwiek23, R. Opiela21, A.

Zadrożny23, R. Aptekar24, D. Frederiks24, D. Svinkin24, A. Kusakin25, R. Inasaridze26, O.

Burhonov27, V. Rumyantsev28, E. Klunko29, A. Moskvitin9, T. Fatkhullin9, V. V. Sokolov9,

A. F. Valeev9,10, S. Jeong1,30, I. H. Park30, M. D. Caballero-Garćıa31, R. Cunniffe1, J. C.

Tello1, P. Ferrero1, S. B. Pandey33, M. Jeĺınek31, R. Sánchez-Ramı́rez1, A. Castellón34

The ejecta composition of gamma-ray bursts (GRBs) is an open question in GRB

physics [1]. Some GRBs possess a quasi-thermal spectral component in the time-

resolved spectral analysis [2, 3], suggesting a hot fireball origin. Some others show

an essentially feature-less non-thermal spectrum known as the “Band” function [4,

5] , which can be interpreted as synchrotron radiation in an optically thin region

[5, 6], suggesting a Poynting-flux-dominated jet composition [7]. Here we report an

extraordinarily bright GRB 160625B, simultaneously observed in gamma-rays and

optical wavelengths, whose prompt emission consists of three dramatically different

isolated episodes separated by long quiescent intervals, with the durations of each

“sub-burst” being ∼ 0.8 s, 35 s, and 212 s, respectively. The high brightness (with

isotropic peak luminosity Lp,iso ∼ 4 × 1053 erg/s) of this GRB allows us to conduct

detailed time-resolved spectral analysis in each episode, from precursor to the main

burst and extended emission. Interestingly, the spectral properties of the first two

sub-bursts are distinctly different, which allow us for the first time to observe the

transition from thermal to non-thermal radiation in a single GRB. Such a transition

is a clear indication of the change of jet composition from a fireball to a Poynting-

flux-dominated jet.
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A relativistic GRB outflow can be either matter-dominated or magnetically dominated.
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One diagnostic test of such composition is the observed spectrum. If it is a matter-dominated

“fireball”, a bright quasi-thermal spectral component is expected, usually accompanied with

a non-thermal component originated from the internal shocks [8–10]. Indeed, such a quasi-

thermal component, usually characterized as a multi-temperature blackbody in the time-

integrated spectra and a Planck-like function in the time-resolved spectra, has been observed

in a few cases (e.g, GRB 090902B) [2, 3]. If the outflow is magnetically dominated, the pho-

tosphere component would be suppressed so that the observed spectrum is dominated by a

non-thermal synchrotron emission component [7]. Some GRBs indeed show synchrotron-only

spectra without evidence of a thermal component (e.g. GRB 130427A and GRB 130606B)

[5, 11]. The cases with superposition of a sub-dominant thermal component on a dominant

synchrotron component are also observed (e.g. GRB 100724B, GRB 110721A, and GRB

120323A) [12, 13], which can be understood if GRBs have a hybrid jet composition [14].

However, no significant change of jet composition has been observed in a single GRB in the

past.

GRB 160625B triggered Gamma-Ray Monitor (GBM; 8 keV - 40 MeV) on board the

NASA Fermi Gamma-Ray Observatory twice at 22:40:16.28 UT and 22:43:24.82 on 25 June

2016 [15]. Its intense high-energy photon flux also triggered the Large Area Telescope (LAT)

on board Fermi, Konus-Wind, INTEGRAL/SPI-ACS and CALET (attached to the ISS).

The prompt emission light curves and spectral fitting results are shown in Figure 1. Long

term follow-up observations of the burst have been carried out by Swift and several ground-

based optical telescopes (see Supplementary Information for the details). The overall long

term multi-wavelength afterglow light curves are presented in Figure 2. A summary of the

timing and spectral properties of the burst are listed in Table I.

One distinct feature of GRB 160625B is that it is composed of three sub-bursts separated

by two quiescent times (∼ 180 s and ∼ 339 s, respectively). The first sub-burst, which is

undoubtedly related to the main event (see Supplementary Figure 1) is particularly inter-

esting as it’s short duration (∼ 0.84 s) gives it the appearance of a traditional short GRB

(Figure 1). To test such a possibility, we over-plot all the three sub-bursts on the Ep −Eiso

and Ep − Liso diagrams in Figure 3, where Ep is peak energy in the νFν energy spectrum,

Eiso is isotropic equivalent radiated energy and Lp,iso is the the isotropic peak luminosity.

The values of Ep in Figure 3 are from the time-integrated spectral fitting using a Band

function or cutoff power law model, which are listed in Table 1. It can be seen that all three
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sub-bursts lie in the long GRB tracks in both diagrams. According to the multi-wavelength

physical classification criteria flowchart (Figure 8 of [16]), all three sub-bursts fall into the

correlations of Type II (massive star origin) rather than Type I (compact star origin) GRB

category. On the other hand, a good fraction of long GRBs show a short precursor before

the main emission episode [17]. The first sub-burst in our analysis is consistent with being

a precursor of the main burst.

Most interestingly, the time-resolved spectral shape of the first sub-burst is a typical

blackbody function. As shown in Supplementary Table I and Supplementary Figure 3,

the Planck function gives an adequate fit to the time-resolved spectra in 6 fine time bins

with satisfactory goodness of fit. We note that a power-law with a high-energy exponential

cutoff model can also give acceptable/improved fit. The Planck function was chosen because

it carries a physical meaning. A few GRBs have shown a thermal precursor before [18].

However, GRB 160625B for the first time allows one to perform a fine time-resolved spectral

analysis and track the blackbody evolution. Based on the standard fireball photosphere

model [20], one can infer the fireball launch radius r0Y
3/2 and the bulk Lorentz factor

ΓY −1/4, where Y > 1 is the ratio between total energy of the fireball and the energy emitted

in γ-rays at the photosphere. The derived values are also presented in Supplementary Table

I, which suggests a highly relativistic fireball launched from a radius of a few ×108 cm, the

range of a typical jet emerging from a Wolf-Rayet progenitor star [19].

The 2nd sub-burst is consistent with a typical long GRB with T90 ∼ 35.1 s. At redshift

z = 1.406± 0.001 determined by our Gran Telescopio CANARIAS (GTC) observations (see

Supplementary Figure 2), the derived total isotropic γ-ray energy is Eiso ∼ 3 × 1054 erg,

making it the fifth most energetic GRB ever observed with known redshift. Thanks to its

high flux, one can divide the 2nd sub-burst into 59 slices based on the criterion to have

enough photons each bin to conduct a fine time-resolved spectral analysis. The length of

each time bins are comparable to the ones used for the 1st sub-burst. The spectrum of

each time slice cannot be fit with a Planck-like spectrum, but can be successfully fit by the

Band function model[4]. The best-fit parameters are listed in Supplementary Table 1 and

their evolution with time is plotted in Figure 1. Adding an additional thermal component

neither improves the goodness of the fit, nor leads to constraints on the parameters of the

new component (for details see Supplementary Figure 4). The Ep evolution first shows a

hard-to-soft evolution trend during the time 180-190 s interval following the first trigger,
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and then generally follows an intensity tracking pattern thereafter. All the Band-function

parameters are typical and similar to most long GRBs. Physically, a typical GRB spectrum

(e.g, with α ∼ −1 and β ∼ −2.2 in the context of Band function fit) can be explained by

synchrotron emission in a decaying magnetic field [6], and confronting the model to the data

indeed suggests that such a model can fit the data equally well as the Band function [5].

We perform the synchrotron model as described in [5] to fit the time-dependent spectra of

the second sub-burst and obtained satisfactory fits. One example of such fits is presented

in Supplementary Figure 5. The non-existence of a thermal component in these time bins

suggests a Poynting flux dominated outflow with the photosphere emission suppressed.

Although six times longer than the 2nd sub-burst, the 3rd sub-burst is the faintest among

the three sub-bursts – about 126 times weaker than the 2nd sub-burst in term of peak flux

(Table I). Due to low photon statistics, most time resolved spectra of the 3rd sub-bursts can

be adequately fit by a simple power law model with the exception of two slices, in which a

cutoff power law model is needed and Ep can be constrained (Supplementary Table I). The

spectral evolution of the 3rd sub-burst is also shown in Figure 1.

LAT detected high-energy emission up to 15.3 GeV during the prompt emission of GRB

160625B. Supplementary Figure 6 displays the energy-dependent light curves of the three

sub-bursts with the > 1 GeV LAT photons plotted individually as a function of arrival time.

Optical observations (including the data presented here) using a dozen telescopes (see

Supplementary Table II) were also carried out before the trigger of the first sub-burst,

during the prompt and afterglow emission phases, which place deep upper limits during

the quiescent phase between the first two sub-pulses and lead to detections during the 2nd

sub-pulse. There is a ∼ 3 s lag between optical emission and the GBM band emission

(Supplementary Figure 7).

The spectral energy distributions (SEDs) from optical to GeV band at three epochs during

the 2nd-sub-burst are presented in Supplementary Figure 8. An immediate impression is

that the optical emission is in excess of the extrapolation of sub-MeV spectral component

to the optical band. A similar case was observed in the “naked-eye” GRB 080319B [21]. A

possible explanation could be that the optical emission is due to the synchrotron radiation

while the sub-MeV emission is due to the synchrotron-self-Compton (SSC) emission [21, 22].

However, such a model would predict a strong second-order SSC appearing in the GeV-TeV

range [23]. The LAT emission is consistent with or even steeper than the extrapolation of
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the sub-MeV emission to the GeV range, without evidence of the second SSC component.

This disfavors the SSC origin of the sub-MeV component. Instead we interpret the sub-MeV

emission as synchrotron emission in a magnetic dissipation region within the Poynting-flux-

dominated outflow [6, 24]. The optical emission would be produced at a farther distance

from the central engine, as suggested by the ∼ 3s time delay. One possibility is the reverse

shock emission as the variable moderately magnetized ejecta (after significant magnetic

dissipation to produce the sub-MeV emission itself) catch up in the wake of the initial

fireball blastwave. Alternatively, like in the “naked-eye” GRB 080319B, in which a similar ∼

2 s delay was observed [25], the optical emission of GRB 160625B may have originated from

residual internal shocks [26] or from free neutron decay at a large radius from the central

engine [27].

The apparent change of jet composition between two emission episodes of GRB 160625B

sheds light on the central engine of the GRB. The first sub-burst is likely associated with the

initial iron core collapse that forms a black hole or a rapidly spinning magnetar surrounded

by some high-angular momentum materials. The initial hyper-accretion onto the central

object forms a matter-dominated fireball via neutrino-anti-neutrino (ν − ν̄) annihilations.

The jet may be intermittent, but lasts longer than the duration for the jet to penetrate

through the star. The first several pulses within the ejecta merge and eventually break out

of the star to make a successful thermally-dominant GRB precursor [28]. After the early

prompt accretion phase, the central engine enters a quiescent phase lasting for ∼ 180 s. This

could be due to one of the following reasons: 1). In the context of the black hole central

engine model, the accretion may be halted by a magnetic barrier from the central engine [29]

after the initial prompt accretion phase. One needs to wait to accumulate enough materials

to break through the barrier. The free-fall time scale of the C/O core is ∼ 100 s, which

may be related to the waiting time before the magnetic barrier is broken[28]. 2). In the

context of the magnetar central engine model, after the initial accretion phase, the proto-

magnetar would need to take some time to cool before a Poynting-flux-dominated outflow is

launched [30]. The cooling time scale is typically 10s of seconds, somewhat shorter than the

quiescent period. However, the competition between fall-back spin-up and magnetic spin-

down may delay the launch of the outflow. In both above-mentioned scenarios, the central

engine is strongly magnetized when the second jet is launched, so that the emission would

be characterized by a synchrotron spectrum without a significant thermal component from
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the photosphere. After the main emission episode (the second sub-burst), the central engine

would reactivate again similar to the GRBs that show significant late-time X-ray flares [31],

which powers the third emission episode (the second sub-burst).

Some GRBs have a precursor, while some others are characterized by extended X-ray flare

emission. GRB 160625B consists of three distinct emission episodes which may correspond to

the precursor, main burst, and delayed X-ray flare, respectively. Thanks to its exceptional

brightness, one was able to study the detailed spectral evolution of the three episodes in

detail. If the burst was less energetic or was placed at a larger distance, one would only

detect two episodes or even only one, and the event would be ascribed as a “normal” GRB.

It is possible that GRB 160625B is the proto-type of at least one sub-group of long GRBs,

which display three distinct emission episodes [17], and the physical processes delineated in

this paper may apply to these bursts in general.
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METHODS

Data Reduction and Spectral Fitting We processed the GBM and LAT data using the

standard software as described in [3] and [5]. The data from the two brightest Sodium Iodide

(NaI) scintillation detectors and the brightest Bismuth Germanate (BGO) scintillation de-

tectors on board Fermi are used for our spectral fitting analysis. The task of spectral fitting

is performed using our software package, McSpecFit, which combines a Bayesian MC engine

McFit, general forward-folding codes and likelihood calculations and can fit any models to

the observed spectra. In particular, the Bayesian Monte-Carlo engine (McFit), as described

in [5, 32], employs a Bayesian Monte-Carlo (MC) fitting technique to reliably fit parameters

that are constrained by the data even when other parameters are unconstrained . Using this

technique, the best-fit parameters and their uncertainties can be realistically determined

by the converged MC chains. The general forward-folding codes are used to compare a

theoretical spectral model to data. In general, one needs to convolve the model with instru-

mental response, the Detector Response Matrix (DRM), to compare the models with the

observational data. A general-purpose forward-folding code has been written[5] and it can

handle the instrument response R(I, E) from any mission (e.g. Fermi/GBM), read in any

model spectrum, F (E,P ), regardless of its form, and calculate the model-predicted count

spectrum CM(I, P ) =
´∞
0
F (E,P )R(I, E)dE. Such CM(I,P) can be directly compared with

the observed count spectrum C(I). We then calculate the likelihood for those CM(I, P ) and

C(I) pairs. In this paper, we use the maximum likelihood-based statistics, the so-called

PGSTAT, for Poisson data, given by [33], but assuming the background to be Gaussian

(see also https://heasarc.gsfc.nasa.gov/xanadu/xspec/). Such a likelihood function is

then input into our fitting engine McFit so that the parameter space can be explored.

Data Availability The original Fermi observational data are available on-line in Fermi

catalog[34] at http://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm/bursts/. The op-

tical observational data used in this paper are available in Supplementary Table II. The

detailed spectral fitting results are presented in Supplementary Table I. The short and long

GRB samples presented in Figure 3 are taken from [35, 36].
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TABLE I: Properties of Three Sub-bursts in GRB 160625B.

Sub-burst A B C

T90 [s] (15 - 350 keV ) 0.84+0.03
−0.01 35.10+0.13

−0.23 212.22+0.95
−2.27

waiting time [s] - ∼ 180 ∼ 339

lag (15− 25 : 50− 150keV ) 0.007 ± 0.013 0.80± 0.05 -0.06± 0.30

Ep (keV) (time-integrated) 66.8± 1.8 448.8+4.42
−4.22 290.5+95.0

−55.7

fluence (erg cm−2) 1.75± 0.05× 10−6 6.01± 0.02× 10−4 5.65± 0.02× 10−5

Fp (erg cm−2 s−1) 2.42± 0.11× 10−6 7.31± 0.13× 10−5 5.80± 0.13× 10−7

Eiso (erg) 8.86± 0.24× 1051 3.05± 0.01× 1054 2.87± 0.01× 1053

Lp,iso (erg s−1) 1.23± 0.05× 1052 3.71± 0.06× 1053 2.94± 0.07× 1051

z 1.406±0.001

Most energetic LAT photons 15.3 GeV (346.2 s); 6.95 GeV (793 s); 5.4 GeV (573 s)

32. Zhang, B.-B., van Eerten, H., Burrows, D. N., Ryan, G. S., Evans, P. A., Racusin, J. L.,

Troja, E., & MacFadyen, A., An Analysis of Chandra Deep Follow-up Gamma-Ray Bursts:

Implications for Off-axis Jets, The Astrophysical Journal. 806, 15, (2015)

33. Cash, W., Parameter estimation in astronomy through application of the likelihood ratio, The

Astrophysical Journal. 228, 939, (1979)

34. Narayana Bhat, P., et al., The Third Fermi GBM Gamma-Ray Burst Catalog: The First Six

Years, The Astrophysical Journal Supplement Series. 223, 28, (2016)

35. Zhang, F.-W., Shao, L., Yan, J.-Z., & Wei, D.-M., Revisiting the Long/Soft-Short/Hard Clas-

sification of Gamma-Ray Bursts in the Fermi Era, The Astrophysical Journal. 750, 88, (2012)

36. Zhang, F.-W., Zhang, B., & Zhang, B., GRB 150906B - NGC 3313 association: Constraints

from Ep-Eiso and Ep-Liso Relations., GRB Coordinates Network. 18298, 1, (2015)
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Figure 1: Top: prompt Fermi/GBM light curve of GRB 160625B. Bottom: Spectral evolution

of three sub-bursts. Bottom two pannels show the NaI and BGO light curves. The evolution of

model parameters are displayed in the higher panels. The spectral models are blackbody, Band

function, respectively, for the 1st and 2nd sub-bursts. For the 3rd sub-burst, a power law model is

applied except two slices for which a power-law model with exponential cutoff is applied and Ep is

constrained.

Figure 2: Left two panels: Optical Observations of the BOOTES-1, BOOTES-2, Pi of the Sky and

MiniMega telescopes during the prompt emission in comparison with the GRB 160625B γ-ray light

curve. Right panel: Long-term multi-wavelength light curves. Inset shows the zoomed-in late-time

optical and X-ray light curves.
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Figure 3: The three sub-bursts in GRB 160625B in the Ep-Eiso and Ep-Liso diagrams. All three

sub-bursts are consistently located in the typical long (or Type II) GRB regions. The solid lines

are the best fit correlations: logEp/(1 + z) = (3.24 ± 0.07) + (0.54 ± 0.04)log(Eiso/1052) for short

GRBs, logEp/(1 + z) = (2.22± 0.03) + (0.47± 0.03)log(Eiso/1052) for long GRBs, logEp/(1 + z) =

(2.84±0.09) + (0.49±0.07)log(Liso/1052) for short GRBs and logEp/(1+z) = (2.49±0.03) + (0.43±

0.03)log(Liso/1052) for long GRBs.
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Supplementary Information

1. Additional gamma-ray observations of GRB 160625B and localization by

the IPN.

GRB 160625B was detected by four InterPlanetary Network (IPN) experiments – Fermi-

GBM in a low-earth orbit, INTEGRAL SPI-ACS[37], in a highly elliptical orbit, Konus-

�Wind[38], in orbit around the Lagrangian point L1, and Mars-Odyssey HEND[39], in orbit

around Mars – at 0.02, 0.38, 4.32, and 276.46 light-seconds from Earth, respectively. The

burst showed three emission episodes: the initial short duration episode (observed by Konus,

Fermi-GBM, SPI-ACS), the main very intense episode (observed by all IPN instruments and

Fermi-LAT), and the final rather weak episode (observed by GBM, SPI-ACS and Konus).

As the two first sub-bursts are entirely different, we cannot exclude that they could be

related to two independent events whose wavefronts happened to arrive at Earth 180 s apart.

In order to check this we have derived the annuli for the first two sub-bursts (see Fig. S1)

and found that both of them are consistent with the Swift-XRT position for GRB 160625B,

hence confirming that they very likely have the same origin.

As observed by Konus-Wind, the second sub-burst had a fluence of 9.50±0.15×10−4 erg

cm−2, and a 256-ms peak flux, measured from T0+188.928 s, of 1.27± 0.07×10−4 erg cm−2s−1

(both in the 20 keV - 10 MeV energy range), which are consistent with Fermi observations

as listed in Table I.

2. Simultaneous Optical Observations of GRB 160625B.

2.1. Very-wide field observation by CASANDRA cameras on the BOOTES

Network

Early upper limits were obtained by the CASANDRA all-sky cameras[40] at the

BOOTES-1 and BOOTES-2 astronomical stations[41] which were gathering data (as usual)

with a 60s time resolution. As the GRB position on the sky was not at optimal conditions,

only the above-mentioned upper limits could be derived, although the afterglow is marginally

detected at maximum brightness.

2.2. Mini-MegaTORTORA Observation

Mini-MegaTORTORA nine-channel wide-field monitoring system[42] reacted[43] to pre-

cursor GBM event and started observing its error box 52 seconds after it and 136 seconds

before LAT trigger. Due to large size of GBM error box, the observations have been per-

formed in “widefield+deep” regime, with channels simultaneously covering ∼30×30 deg field
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of view with 30 s exposures in white light to achieve deepest detection limit. The system

acquired 20 frames in such regime, covering time interval from T0-136 to T0+466 s, and de-

tected a bright optical flash on a frame coincident with LAT trigger time (T0-15.9 - T0+14.1

s), with a magnitude of about V=8.8 mag, which then brightened for about 0.1 mag, and

then faded following nearly smooth power-law decay with slope of about - 1.6, down to

V=12.2 at last acquired frame. The images acquired prior to LAT trigger do not display

any object at that position down to about V=13.5 mag. The system also observed the same

location between T0+1691 s and T0+2264 s, acquiring 20 more 30-s exposure frames. These

frames do not display any transient at the position of GRB 160625B brighter than V=13.5

mag.

2.3. Pi of the Sky Observation

The Pi of the Sky is a system of wide field of view robotic telescopes, which search for

short timescale astrophysical phenomena, especially for prompt optical GRB emission[44].

The system was designed for autonomous operation, monitoring a large fraction of the sky to

a depth of 12m− 13m and with time resolution of the order of 10 seconds. Custom designed

CCD cameras are equipped with Canon lenses f=85 mm, f/d = 1.2 and cover 20◦x20◦ of

the sky each. The prototype telescope with two cameras is operational in Chile since 2004

(currently at San Pedro de Atacama Observatory) and the final system with 16 cameras

on 4 equatorial mounts was completed in 2014 at the INTA El Arenosillo Test Centre in

Spain[45].

Cameras of the Pi of the Sky observatory in Spain were not observing the position of

the GRB160625B prior to the first sub-burst. Observations started only after receiving

Fermi GBM trigger 488587220, about 140 seconds prior to the second sub-burst. As the

position estimate taken from Fermi alert and used to position the telescope was not very

accurate, the actual position of the burst happened to be in the overlap region of two cameras,

CAM35 and CAM39, resulting in two independent sets of measurements. Light curves from

both cameras were reconstructed using the LUIZA framework[46, 47]. Observations were

performed in wide visible band, with IR-cut and UV-cut filters only, and 10 s exposure time.

Images were calibrated to the reference stars from Tycho 2 using the transformation from

Tycho to the Pi of the Sky system given by:

VPI = VT + 0.235− 0.292 · (BT − VT )
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No object brighter than 12.4m (3 σ limit) was observed prior to the second sub-burst. An

optical flash was identified on an image starting -5.9 s before the time of the LAT trigger,

brightening to about 8m on the next image and then becoming gradually dimmer, fading

below our sensitivity after about 400 s.

3. Additional Optical Observations (photometry)

Additional optical Observations (photometry) The afterglow emission was observed by a

dozen of telescopes worldwide: the Zeiss-1000 (1.0m) TSHAO telescope in Kazakhstan, the

AS-32 (0.7m) AbAO telescope in Georgia, the AZT-33IK (1.5m) telescope in Mondy (Rus-

sia), the AZT-11 (1.25m) and ZTSh (2.6m) telescopes at Crimean Astrophysical Observatory

(CrAO), the AZT-22 (1.5m) at Maidanak Observatory (Uzbekistan), the 0.5m MITSuME

telescope in Japan, the 1.5m SMARTS telescope at CTIO (Chile), The 6.0m BTA and Zeiss-

1000 (1.0m) SAO telescopes at Zelenchuk (Russia), the 1.5m RTT150 telescope in Tübitak

(Turkey). and the 0.4m MASTER telescopes worldwide (see Supplementary Table S2 for

the detailed optical observations carried out in this work).

4. Additional optical Observations (spectroscopy) The 10.4 m Gran Telescopio

Canarias (GTC; Canary Island, Spain), equipped with the Optical System for Imaging

and Low-Intermediate Resolution Imaging Spectroscopy (OSIRIS) instrument [48] obtained

optical spectroscopy at two epochs (2 and 14 days post-burst). Data was reduced and

calibrated the usual way using IRAF and custom tools coded up in python. We clearly

detect several absorption lines at both epochs, from which a redshift z = 1.406 ± 0.001 is

derived, besides an intervening absorption system at z =1.319 (see Supplementary Figure

S2).

5. Additional results

Supplementary Figure S3 shows some typical spectral fit of each sub-burst. Supplemen-

tary Figure S5 shows an example fit to the data in one time bin (between 187.23 s and

187.67 s) using the synchrotron model. Supplementary Figure S4 shows an example show-

ing the effect of adding a blackbody component to the Band function model when fitting to

the data in the time bin between 187.23 s and 187.67 s. Supplementary Figure S7 shows

the correlations between GBM prompt γ-ray (black; 15-350 keV ) and optical observations

(red) made by Pi of the Sky (Cam 35), Pi of the Sky (Cam 39) and Mini-Mega TORTORA.

Supplementary Figure S6 shows the energy-dependent light curves of the three sub-bursts.

Supplementary Figure S8 shows the spectral energy distribution (SED) from optical to LAT
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Figure S1: The IPN triangulation of first two emission episodes of GRB 160625B. The 1.48 deg

wide Wind-Fermi annulus derived for the first episode (1st sub-burst, 0.84 s duration) is consistent

with Swift-XRT position (indicated by the star) and the IPN error box defined by Wind-Fermi and

Fermi-Mars-Odyssey annuli derived for the main episode (2nd sub-burst).

energies in each optical observational bins during the second sub-burst. Supplementary Ta-

ble S1 shows the time-resolved spectral fitting results. Supplementary Table S2 shows the

optical observations of GRB 160625B. Supplementary Table S3 shows the best-fit parameters

of the synchrotron model fitted to the spectra between 187.23 s and 187.67 s. Supplementary

Table S4 shows time lag of optical light curves with respect to the γ-ray light curve in the

2nd sub-burst. Supplementary Table S5 shows Spectral fitting parameters for the three SED

slices.
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Figure S2: Spectra of GRB 160625B were obtained with the 10.4m GTC telescope (Osiris) on

2016.06.27 (bottom, black line) and 2016.07.10 (top, blue line). Absorption lines at z(GRB) =

1.406 is marked by solid black lines. An intervening absorption system at z = 1.319 is marked

by red dashed lines. Spectra was shoothed with the Gaussian core (2.8 Å, 4.4 Åand 3.2 Åfor the

blue, red and infrared parts respectively). Among the numerous atmospheric lines in the infrared

part of spectra (marked by the horizontal bands) we do not detect the [OII] lines at both the GRB

redshift or the intervening system. See also [51]
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Figure S3: Typical spectral fit of each sub-burst. From left to right: black body fit of the 1st sub-

burst between 0.13 and 0.35 s, Band function fit of the 2nd sub-burst between 187.23 and187.67 s

and power law fit of the 3rd sub-burst between 520.00 and 535.00 s. Top: photon spectra. Note the

instrumental response has been deconvolved in each plot of the photon spectra. Bottom: Observed

count rate spectra. The best-fit paramters can be found in Table S1.
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Figure S4: An example showing the effect of adding a blackbody component to the Band function

model when fitting to the data in the time bin between 187.23 s and 187.67 s. Bottom Left: the like-

lihood map of the parameter-constraint outputs for the Band fit, where all the parameters are con-

strained. The goodness of fit, PGSTAT/dof, as shown in Supplementary Table S1, is 335.55/360.

Upper Right: the likelihood map of the parameter-constraint outputs for the Band+blackbody

fit. The PGSTAT/dof is 334.01/358. According to the Bayesian information criterion (BIC[49]),

such value of goodness does not imply any improvement in comparison with the Band-only fit.

More importantly, we noticed the flat-shape of likelihood map of the two blackbody parameters

(i.e, blackbody temperate kT and normalization parameter logNorm2), implying they are uncon-

strained. The fluence of the such blackbody component is only ∼ 0.05% of the total fluence. Above

facts suggest that the blackbody component is not required to fit the observational data.
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Figure S5: An example fit to the data in one time bin (between 187.23 s and 187.67 s) us-

ing the synchrotron model (bottom-left) and constraints on the model parameters (upper-right).

Histograms and contours show the likelihood map of the parameter-constraint outputs from our

McSpecFit package. Red crosses mark the best-fit values and 1σ error bars. All the constrained

parameters fall into the reasonable ranges for the synchrotron theoretical model. A Band function

can equally fit to the data with α=-0.8 and β=-2.0 (Table S1).
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Figure S6: Energy-dependent light curves of the three sub-bursts. In each plot, the lightcurves in

each energy bin are plotted in lower panels, and the full-energy-range light curves are plotted in the

top panel with the thick black curves. Also the hardness ratios (defined as HR=
RateE2,E3
RateE1,E2

, where

E1 and E3 define the lower and higher end of the energy range of the selected NaI detectors, and

E2 =
√
E1 × E3) are plotted in solid blue curves. The LAT-band photons are plotted individually

for the 2nd and 3rd sub-bursts.
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Figure S7: Correlations between GBM prompt γ-ray (black; 15-350 keV ) and optical observa-

tions (red) made by Pi of the Sky (Cam 35), Pi of the Sky (Cam 39) and Mini-Mega TORTORA

respectively. Lags are calcualted between the optical flux and the averaged GBM count rate in the

optical expousre intervals. The values of lag are listed in Table S4.
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Figure S8: The spectral energy distribution (SED) from optical to LAT energies in each optical

observational bins during the second sub-burst. The model curves (solid lines) are derived using

GBM data only, which are extrapolated to the optical and LAT energy bands. Such model curves

are only rough estimates of the true SEDs due to the large time bins used and the goodness of those

fits is not statistically favorable (Table S5). Adding an additional blackbody component (dashed)

significantly improves the goodness of the fits from the Band-only case (Table S5). However, such

an apparent blackbody component is an effect of spectral evolution, since in finer spectral bins, no

blackbody component is needed (Figure 1 and Table S1).
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TABLE S1: Time-resolved Spectral fitting
(t1,t2) kT (keV) r0 × Y 3/2 (cm) Γ × Y−1/4 PGSTAT/dof

(-0.30,-0.08) 9.06+2.33
−1.24 4.6 × 108 214 203.42/362

(-0.08,0.13) 13.64+0.63
−0.67 4.6 × 108 323 222.68/362

(0.13,0.35) 15.59+0.50
−0.46 5.2 × 108 381 278.12/362

(0.35,0.57) 15.38+0.51
−0.45 4.9 × 108 370 228.15/362

(0.57,0.78) 14.60+0.57
−0.54 4.7 × 108 348 209.76/362

(0.78,1.00) 8.47+1.08
−0.77 7.2 × 108 224 217.85/362

(t1,t2) α β Ep (keV) PGSTAT/dof

(187.23,187.67) −0.78+0.04
−0.08 −2.04+0.05

−0.25 806.38+271.15
−61.44 335.55/360

(187.67,188.04) −0.70+0.04
−0.06 −1.98+0.06

−0.10 757.66+140.77
−73.09 385.54/360

(188.04,188.16) −0.73+0.03
−0.11 −2.10+0.07

−0.52 912.39+441.55
−79.77 337.65/360

(188.16,188.33) −0.72+0.04
−0.05 −2.18+0.08

−0.18 995.84+177.44
−94.27 383.20/360

(188.33,188.56) −0.61+0.03
−0.03 −2.11+0.05

−0.06 797.45+59.23
−57.06 470.96/360

(188.56,188.76) −0.62+0.03
−0.03 −2.14+0.05

−0.07 794.14+62.27
−52.33 385.24/360

(188.76,188.96) −0.63+0.03
−0.03 −2.13+0.05

−0.07 711.24+57.30
−47.08 396.40/360

(188.96,189.06) −0.63+0.05
−0.05 −2.19+0.08

−0.13 691.62+81.39
−75.76 448.78/360

(189.06,189.16) −0.60+0.04
−0.06 −2.23+0.08

−0.11 611.75+75.05
−41.58 423.54/360

(189.16,189.37) −0.59+0.02
−0.04 −2.22+0.05

−0.08 595.18+50.44
−29.04 395.99/360

(189.37,189.48) −0.62+0.05
−0.04 −2.18+0.09

−0.08 611.49+54.98
−59.86 393.04/360

(189.47,189.58) −0.58+0.04
−0.05 −2.18+0.06

−0.11 519.47+61.29
−34.26 410.86/360

(189.58,189.78) −0.56+0.04
−0.03 −2.17+0.06

−0.06 495.36+30.30
−31.37 400.01/360

(189.78,189.98) −0.61+0.03
−0.05 −2.17+0.07

−0.08 514.59+52.29
−30.36 396.81/360

(189.98,190.04) −0.62+0.09
−0.08 −2.17+0.13

−0.15 403.14+71.68
−53.70 290.77/360

(190.04,190.33) −0.65+0.04
−0.03 −2.14+0.06

−0.07 475.64+37.32
−32.42 407.86/360

(190.33,190.96) −0.66+0.03
−0.03 −2.18+0.04

−0.07 402.28+23.41
−22.83 471.62/360

(190.96,191.47) −0.63+0.04
−0.05 −2.20+0.05

−0.10 327.40+29.13
−18.13 365.25/360

(191.47,192.47) −0.66+0.02
−0.04 −2.27+0.04

−0.07 295.09+16.74
−10.80 450.68/360

(192.47,192.85) −0.71+0.04
−0.04 −2.54+0.37

−6.46 334.05+29.25
−29.25 326.52/360

(192.85,193.19) −0.60+0.05
−0.05 −2.35+0.09

−0.12 299.31+23.84
−19.88 384.56/360

(193.19,194.14) −0.64+0.02
−0.02 −2.44+0.05

−0.09 416.01+17.06
−12.83 477.81/360

(194.14,194.46) −0.68+0.03
−0.04 −2.75+0.13

−0.63 469.09+40.35
−19.46 409.00/360

(194.46,194.76) −0.68+0.02
−0.04 −2.79+0.13

−0.47 527.72+42.41
−19.19 455.57/360

(194.74,195.36) −0.63+0.02
−0.03 −2.49+0.07

−0.08 430.53+20.55
−12.95 435.11/360

(195.14,195.66) −0.60+0.03
−0.03 −2.37+0.07

−0.08 389.85+20.85
−18.75 427.55/360

(195.66,196.16) −0.64+0.02
−0.04 −2.54+0.07

−0.25 420.02+36.58
−12.69 440.93/360

(196.16,196.42) −0.66+0.04
−0.06 −2.39+0.09

−0.27 406.81+46.99
−27.44 372.77/360

(196.46,196.82) −0.67+0.03
−0.03 −2.79+0.46

−6.66 408.09+22.14
−22.14 404.01/360

(196.82,197.51) −0.73+0.03
−0.04 −2.41+0.08

−0.16 405.62+28.31
−23.65 459.31/360

(197.51,198.07) −0.73+0.01
−0.04 −3.12+0.59

−6.15 534.16+21.26
−21.26 436.09/360

(198.07,198.47) −0.71+0.03
−0.04 −2.45+0.09

−0.20 425.78+38.86
−20.96 366.34/360

(198.47,198.83) −0.80+0.03
−0.04 −3.66+1.09

−6.03 471.09+44.33
−12.77 353.59/360

(198.83,199.46) −0.74+0.01
−0.03 −3.19+0.63

−6.67 500.14+33.15
−3.56 399.37/360

(199.46,199.89) −0.66+0.02
−0.03 −2.77+0.12

−0.32 580.51+32.85
−24.63 389.78/360

(199.89,200.29) −0.68+0.02
−0.04 −2.78+0.09

−0.39 604.95+50.79
−15.58 408.52/360

(200.29,200.48) −0.74+0.03
−0.06 −2.23+0.09

−0.20 652.73+107.08
−51.17 454.37/360

(200.48,200.68) −0.68+0.04
−0.04 −1.94+0.04

−0.07 650.16+85.37
−50.93 436.57/360

(200.68,200.98) −0.63+0.03
−0.03 −2.13+0.06

−0.05 600.54+37.90
−36.03 434.81/360

(200.98,201.23) −0.70+0.02
−0.04 −2.50+0.07

−0.22 601.52+50.43
−27.57 346.01/360

(201.23,201.54) −0.51+0.04
−0.07 −2.27+0.07

−0.11 348.36+35.20
−18.36 353.90/360

(201.54,201.83) −0.77+0.01
−0.04 −3.30+0.77

−5.91 537.52+46.32
−7.59 427.30/360

(201.83,202.10) −0.68+0.01
−0.04 −3.04+0.51

−6.45 554.86+48.08
−3.19 437.78/360

(202.10,202.38) −0.68+0.03
−0.03 −2.92+0.46

−6.32 554.26+35.02
−35.02 413.80/360

(202.38,202.68) −0.80+0.02
−0.04 −3.89+1.26

−5.76 455.98+32.04
−13.44 400.63/360

(202.68,203.03) −0.78+0.01
−0.05 −2.79+0.42

−6.25 478.94+59.03
−6.50 411.35/360

(203.03,203.61) −0.79+0.02
−0.03 −3.18+0.61

−6.48 466.08+30.27
−12.21 426.47/360

(203.61,204.21) −0.89+0.01
−0.04 −3.14+0.75

−6.33 461.94+41.47
−11.18 389.57/360

(204.21,205.21) −0.81+0.02
−0.04 −2.62+0.10

−0.51 441.88+39.46
−17.18 431.78/360

(205.21,206.18) −0.76+0.02
−0.05 −2.63+0.04

−6.57 401.49+45.70
−10.23 450.97/360

(206.18,206.78) −0.69+0.02
−0.08 −2.76+0.03

−11.86 260.54+31.03
−2.98 429.98/360

(206.78,207.78) −0.75+0.03
−0.06 −2.34+0.09

−0.21 259.57+27.57
−12.05 433.37/360
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TABLE S1: Time-resolved Spectral fitting (continued)
(t1,t2) α β Ep (keV) PGSTAT/dof

(207.78,208.37) −0.76+0.04
−0.12 −2.32+0.07

−2.61 214.76+49.99
−9.72 394.46/360

(208.37,208.97) −0.90+0.05
−0.06 −3.00+0.58

−6.09 232.88+29.37
−6.50 387.05/360

(208.97,210.47) −0.84+0.04
−0.04 −2.43+0.31

−6.66 238.76+19.08
−19.08 376.16/360

(210.47,211.81) −0.87+0.05
−0.05 −2.38+0.31

−6.93 264.60+25.86
−25.86 420.99/360

(211.81,214.97) −1.08+0.01
−0.12 −2.15+0.27

−6.82 183.20+32.55
−32.55 404.11/360

(214.97,215.47) −1.15+0.11
−0.26 −12.74+7.59

−4.68 263.12+568.59
−36.64 281.61/360

(215.47,218.24) −1.17+0.09
−0.09 −1.96+0.26

−7.04 223.68+101.53
−82.42 363.91/360

(520.00,535.00) −1.39+0.02
−0.03 349.13/362

(535.00,542.00) −1.51+0.04
−0.06 320.62/362

(542.00,559.00) −1.52+0.03
−0.05 403.90/362

(570.00,578.00) −1.08+0.03
−0.04 366.79/362

(578.00,585.00) −1.54+0.03
−0.03 425.14/362

(585.00,593.00) −1.20+0.07
−0.13 188.61+70.23

−19.34 384.23/361

(593.00,600.00) −1.33+0.05
−0.05 413.41/362

(650.00,658.00) −1.59+0.03
−0.04 353.24/362

(658.00,661.50) −1.40+0.06
−0.21 171.80+262.90

−16.82 411.65/361

(661.50,665.00) −1.47+0.02
−0.03 411.45/362

(665.00,669.00) −1.30+0.03
−0.03 437.81/362

(669.00,673.00) −1.44+0.03
−0.04 386.22/362

(673.00,680.00) −1.68+0.03
−0.04 399.92/362

(740.00,750.00) −2.31+0.07
−0.08 397.40/362

(750.00,760.00) −2.76+0.19
−0.29 318.07/362

(760.00,770.00) −2.37+0.12
−0.13 379.96/362

(770.00,780.00) −2.49+0.25
−0.33 319.50/362
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TABLE S2: Optical observations of GRB 160625B.

Tmid(s) Texp(s) Mag Error Band Tmid(s) Texp(s) Mag Error Band

BOOTES-1 and BOOTES-2

-27.28 36 >7.5 R 41.72 > 36 >7.5 R

Mini-MegaTORTORA

187.90 30 8.67 0.004 V 429.30 30 11.16 0.02 V

218.00 30 8.52 0.004 V 459.40 30 11.28 0.02 V

248.10 30 9.19 0.01 V 489.50 30 11.50 0.03 V

278.20 30 9.53 0.01 V 519.60 30 11.63 0.03 V

308.60 30 9.91 0.01 V 550.00 30 11.78 0.03 V

338.70 30 10.24 0.01 V 580.10 30 11.87 0.04 V

368.80 30 10.56 0.01 V 610.20 30 11.98 0.04 V

398.90 30 10.85 0.02 V 640.30 30 12.14 0.05 V

67.20 30 >13.85 V 2136.60 30 >13.82 V

97.30 30 >13.76 V 2166.69 30 >13.68 V

127.40 30 >13.75 V 2196.79 30 >13.78 V

157.50 30 >13.9 V 2226.89 30 >13.83 V

1895.19 30 >13.79 V 2257.30 30 >13.8 V

1925.29 30 >13.74 V 2287.39 30 >13.84 V

1955.39 30 >13.7 V 2317.40 30 >13.79 V

1985.49 30 >13.79 V 2347.49 30 >13.82 V

2015.89 30 >13.67 V 2377.89 30 >13.7 V

2045.99 30 >13.71 V 2407.90 30 >13.66 V

2076.09 30 >13.8 V 2437.99 30 >13.7 V

2106.19 30 >13.76 V 2468.09 30 >13.73 V

Pi of the Sky 35

187.10 10 9.18 0.02 V 369.79 10 11.11 0.12 V

200.30 10 8.04 0.01 V 383.00 10 11.28 0.14 V

Continued on next page
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– Continued from previous page

Tmid(s) Texp(s) Mag Error Band Tmid(s) Texp(s) Mag Error Band

213.50 10 8.85 0.01 V 396.20 10 11.43 0.16 V

226.71 10 9.16 0.02 V 409.41 10 11.52 0.17 V

239.91 10 9.35 0.02 V 422.60 10 11.66 0.20 V

253.13 10 9.48 0.03 V 435.80 10 11.97 0.26 V

266.33 10 9.76 0.03 V 448.99 10 11.44 0.16 V

279.53 10 9.89 0.04 V 462.19 10 12.23 0.33 V

303.76 10 10.36 0.06 V 475.39 10 11.71 0.20 V

316.97 10 10.36 0.06 V 488.60 10 12.10 0.30 V

330.17 10 10.66 0.08 V 501.80 10 12.02 0.27 V

343.38 10 10.78 0.09 V 541.41 10 12.15 0.30 V

356.58 10 10.90 0.10 V 581.02 10 12.21 0.33 V

Pi of the Sky 39

192.78 10 8.08 0.01 V 362.12 10 10.99 0.12 V

208.13 10 8.40 0.01 V 377.47 10 11.23 0.15 V

223.48 10 9.30 0.03 V 392.82 10 11.05 0.13 V

238.83 10 9.38 0.03 V 408.17 10 11.27 0.16 V

254.69 10 9.60 0.03 V 425.57 10 11.47 0.19 V

270.04 10 9.76 0.04 V 440.89 10 12.00 0.31 V

285.39 10 10.00 0.05 V 456.75 10 11.79 0.25 V

300.72 10 10.24 0.06 V 472.10 10 12.09 0.34 V

316.07 10 10.44 0.07 V 487.45 10 11.95 0.30 V

331.42 10 10.64 0.09 V 518.15 10 12.14 0.35 V

346.77 10 10.79 0.10 V 625.60 10 12.19 0.37 V

TSHAO

79301.38 6960 18.90 0.05 R 2405985.98 6600 >21.7 R

247220.64 7560 20.32 0.06 R 2491992.00 6600 >22.0 R

764124.19 2400 21.33 0.18 R 3182164.70 3120 >21.9 R

Continued on next page
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– Continued from previous page

Tmid(s) Texp(s) Mag Error Band Tmid(s) Texp(s) Mag Error Band

1029271.10 2160 21.67 0.29 R 3273906.82 10080 >22.7 R

1116053.86 11700 21.61 0.16 R 3354166.37 5040 >22.5 R

1284887.23 8700 21.64 0.09 R 3268571.62 18240 >23.0 R

1378602.72 5100 21.89 0.34 R 3785611.68 2760 >22.0 R

1464446.30 5700 21.92 0.28 R 3964933.15 1560 >21.1 R

AbAO

166746.82 3240 19.61 0.06 CR 1731695.33 4020 22.13 0.21 CR

424964.45 1380 20.75 0.37 CR 1896639.84 3000 >21.7 CR

518178.82 1980 20.89 0.17 CR 2594973.89 3840 22.24 0.26 CR

693245.09 1620 21.22 0.18 CR 2682638.78 3840 >22.5 CR

1559670.34 2880 21.87 0.35 CR 3026274.05 4800 >22.9 CR

Mondy

328701.02 3600 20.33 0.10 R 1360882.94 3600 21.93 0.11 R

757106.78 3480 21.13 0.09 R 2394252.00 4500 >21.6 R

CrAO

84461.18 3240 18.87 0.10 R 2935651.68 3600 23.05 0.08 R

2680685.28 4080 22.88 0.09 R 5730540.48 3840 >23.8 R

2847137.47 5760 23.10 0.07 R

Maidanak

1122346.37 1800 21.75 0.11 R 1891335.74 5400 22.30 0.34 R

1208215.01 1800 21.55 0.08 R 2326797.79 4320 22.45 0.26 R

1294950.24 1800 21.71 0.09 R 3480784.70 3600 23.31 0.10 R

1373255.42 1800 21.97 0.11 R 3830392.80 13800 23.69 0.11 R

1462217.18 1800 22.02 0.10 R 4608813.6 8400 >22.8 R

1552235.62 1800 22.12 0.17 R

SAO RAS

170726.40 2100 19.87 0.07 R 348710.40 2400 20.56 0.20 R

Continued on next page
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TABLE S3: Best-Fit Parameters of the Synchrotron Model Fitted to the Spectra Between 187.23

s and 187.67 s

Parameter Name Value error(-) error (+)

logΓ 1.29 0.09 3.15

p 7.16 1.30 0.84

logγinj 6.38 0.16 1.75

logR0
inj 47.31 2.98 1.24

log q -6.20 2.24 3.61

logB0 0.188 0.95 3.08

b 0.53 0.14 1.19

t̂ 2.95 2.36 5.52

TABLE S4: Time lag of optical light curves with respect to the γ-ray light curve in the 2nd

sub-burst

Band lag (s)

Pi 35 vs GBM 3.1+1.4
−2.1

Pi 39 vs GBM 3.3+1.3
−1.1

Mini-MegaTORTORA vs GBM 4.8+5.1
−4.7

– Continued from previous page

Tmid(s) Texp(s) Mag Error Band Tmid(s) Texp(s) Mag Error Band

335232.00 600 20.53 0.07 R 3276451.30 720 23.47 0.10 R
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TABLE S5: Spectral fitting parameters for the three SED slices

(t1,t2) kT (keV) α β Ep (keV) PGSTAT/dof

(172.90,202.90) −0.65+0.01
−0.01 −2.18+0.01

−0.01 466.80+5.28
−4.63 3799.78/360

(203.00,233.00) −0.85+0.09
−0.01 −2.21+0.03

−0.05 302.63+8.61
−6.83 1724.41/360

(233.10,263.10) −0.54+0.15
−0.23 −1.70+0.05

−0.24 454.01+271.34
−81.78 407.87/360

(172.90,202.90) 35.00+0.55
−0.56 −0.79+0.01

−0.01 −2.40+0.02
−0.01 744.88+11.34

−13.59 2745.70/360

(203.00,233.00) 33.22+1.31
−1.10 −1.06+0.02

−0.02 −2.43+0.08
−0.11 493.80+29.46

−26.01 1655.76/360
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Postigo, A., Mateo Sanguino, T. J., & Gomboš, I., A very sensitive all-sky CCD camera
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