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RESEARCH ARTICLE

Chromosome congression is promoted by CENP-Q- and CENP-E-
dependent pathways

James Bancroft*,§, Philip Auckland§, Catarina P. Samora` and Andrew D. McAinsh"

ABSTRACT

A key step of mitosis is the congression of chromosomes to the

spindle equator. Congression is driven by at least two distinct

mechanisms: (1) kinetochores slide along the microtubule lattice

using the plus-end directed CENP-E motor, and (2) kinetochores

biorientating near the pole move to the equator through microtubule

depolymerisation-coupled pulling. Here, we show that CENP-Q – a

subunit of the CENP-O complex (comprising CENP-O, CENP-P,

CENP-Q and CENP-U) that targets polo-like kinase (Plk1) to

kinetochores – is also required for the recruitment of CENP-E to

kinetochores. We further reveal a CENP-E recruitment-independent

role for CENP-Q in depolymerisation-coupled pulling. Both of these

functions are abolished by a single point mutation in CENP-Q

(S50A) – a residue that is phosphorylated in vivo. Importantly, the

S50A mutant does not affect the loading of Plk1 onto kinetochores

and leaves the CENP-O complex intact. Thus, the functions of

CENP-Q in CENP-E loading and depolymerisation-coupled pulling

are independent from its role in Plk1 recruitment and CENP-O

complex stabilisation. Taken together, our data provide evidence

that phosphoregulation of CENP-Q plays a central function in

coordinating chromosome congression mechanisms.

KEY WORDS: CENP-E, CENP-Q, Congression, Kinetochore,

Mitosis

INTRODUCTION
Chromosome congression is the process by which chromosomes

align at the spindle equator, a position equidistant from both

spindle poles (Kops et al., 2010; Walczak et al., 2010). In human

cells, this process takes ,15-20 min and results in the formation

of the metaphase plate. Chromosomes remain in metaphase for a

similar period of time before sister chromatids are segregated to

opposite spindle poles in anaphase. Congression is coincident

with the process of chromosome biorientation, that is the

establishment of amphitelic (or bipolar) attachments in which

sister kinetochores attach to microtubules emanating from

opposite spindle poles. Such amphitelic attachments are

compatible with oscillatory motion because sisters switch

between poleward and away from pole movement states

(Skibbens et al., 1993). These chromosomes are able to congress

because they undergo sustained movements towards the spindle

equator. The force for these movements comes from the poleward-

moving sister kinetochore remaining attached to depolymerising

kinetochore–microtubule plus-ends (from here on called

depolymerisation-coupled pulling) (Coue et al., 1991; Koshland

et al., 1988; Mitchison and Salmon, 1992). Congression can also

take place before biorientation: mono-orientated kinetochores have

been shown to engage with the lattice of pre-existing kinetochore–

microtubule fibres (K-fibres) and other stabilized microtubule

bundles through the second (leading) sister, and they then slide

towards the spindle equator (Kapoor et al., 2006; Cai et al., 2009).

Once at the metaphase plate, these kinetochores then biorientate.

Furthermore, work in human cells and mouse oocytes reveals that

chromosomes are arranged in a ring-like conformation early in

prometaphase that favours the ‘instantaneous’ biorientation of sister

kinetochores at the spindle equator (Kitajima et al., 2011; Magidson

et al., 2011). Thus, cells have multiple mechanisms to position

chromosomes on the metaphase plate.

The key challenge is to identify the molecules that are involved

in these congression mechanisms. The sliding of chromosomes by

laterally attached kinetochores is mediated by the minus-end-

directed motor dynein (Yang et al., 2007) or the plus-end-directed

kinesin CENP-E (Kapoor et al., 2006; Kim et al., 2010).

Following depletion or inhibition of CENP-E, the majority of

chromosomes congress, forming a metaphase plate; however, a

subset remain trapped around the spindle poles – these are termed

polar chromosomes (Putkey et al., 2002). In contrast to these

lateral-sliding mechanisms, the molecules required for

depolymerisation-coupled pulling are largely unknown. Such a

mechanism must involve proteins that (1) mediate end-on

microtubule–kinetochore attachments, (2) maintain attachment

to depolymerising microtubules and (3) ensure the K-fibre

remains in a net depolymerising state through control of

kinetochore–microtuble dynamics. The Ndc80 and Ska

complexes can directly bind to microtubules in vitro, with the

Ska complex (but not the Ndc80 complex) able to autonomously

track depolymerising microtubule plus-ends (Schmidt et al.,

2012). Extensive depletion of either complex results in a severe

failure in chromosome congression and the inability to form a

metaphase plate (Daum et al., 2009; Gaitanos et al., 2009;

Welburn et al., 2010). Thus, the Ndc80 and Ska complexes are

proposed to form the end-on microtubule attachment sites within

the kinetochore.

Whether the process of end-on attachment can be separated

from the mechanism of depolymerisation-coupled pulling is

unclear. In this regard, our previous work has shown that the

constitutive centromere-associated network (CCAN) is required
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for normal chromosome congression, but that it is not required for
the formation of end-on attachments (Amaro et al., 2010;

McClelland et al., 2007; Toso et al., 2009). The CCAN is a 17-
subunit complex that contains a set of core factors that directly
bind to CENP-A (CENP-C and CENP-N) and to Histone 3 (H3)
nucleosomes (CENP-T, CENP-W, CENP-S and CENP-X) (for

reviews, see Perpelescu and Fukagawa, 2011; McAinsh and
Meraldi, 2011; Westhorpe and Straight, 2013). The core CCAN
recruits the extended CCAN, which includes the complex

comprising CENP-H, CENP-I, CENP-K and CENP-M (Basilico
et al., 2014), and the CENP-O complex, which comprises
CENP-O, CENP-P, CENP-Q and CENP-U (Hori et al., 2008).

However, the function of this extended CCAN is poorly
understood. Phenotypic analysis shows that depletion of such
CCAN subunits can interfere with timely chromosome

congression, as well as altering kinetochore–microtubule plus-
end turnover, K-fibre stability and poleward microtubule flux
(Amaro et al., 2010; Foltz et al., 2006; Hori et al., 2008;
McClelland et al., 2007; Mchedlishvili et al., 2012). The CENP-O

complex also plays a role in the recruitment of other key
kinetochore components, including Plk1 through interaction with
phosphorylated residue T78 of CENP-U (Kang et al., 2011).

Moreover, the CENP-Q and CENP-U subunits bind directly to
taxol-stabilised microtubules in vitro (Amaro et al., 2010; Hua
et al., 2011), suggesting that they might have direct roles in

regulating the kinetochore microtubule and, potentially,
depolymerisation-coupled pulling.

RESULTS
Depletion of CENP-Q causes accumulation of
polar chromosomes
To investigate the function of human CENP-Q, we depleted

the protein in HeLa cells using small interfering RNA (siRNA)
oligonucleotides. Immunoblotting with antibodies against
CENP-Q demonstrated that the total protein levels were reduced

to non-detectable levels (Fig. 1A). Moreover, quantitative
immunofluorescence confirmed that the kinetochore-bound
population of the CENP-Q protein was reduced by 86%

(66.2) (relative to CENP-A) following siRNA-mediated
depletion (Fig. 1B). Previous work (Hori et al., 2008; Kang
et al., 2006) has demonstrated that depletion of CENP-Q
destabilises the binding of other CENP-O complex subunits to

kinetochores. We were able to confirm these observations as
depletion of CENP-Q resulted in the loss of CENP-O from
kinetochores (supplementary material Fig. S1A). Moreover,

depletion of CENP-Q reduced the levels of Plk1 at
kinetochores by 84% (supplementary material Fig. S1B,C,
n53, 300 kinetochores, 30 cells). Consistent with a

kinetochore-specific effect, CENP-Q depletion did not affect
the polar localisation of Plk1 (supplementary material Fig.
S1B,C, n53, 120 poles, 60 cells). To rule out off target effects,

we performed a rescue experiment where cells treated with a
control or CENP-Q siRNA were transfected with an siRNA-
resistant enhanced green fluorescent protein eGFP tagged
CENP-Q (CENP-Q-eGFP) or an empty vector. The transgene

partially rescued kinetochore-bound levels of Plk1 to 50% of
those observed in control-siRNA-treated cells that had been
transfected with the empty vector (supplementary material Fig.

S1B,C, n53, 600 kinetochores, 60 cells). Immunoblotting
confirmed that the siRNA against CENP-Q depleted the
endogenous protein without affecting the expression of the

CENP-Q-eGFP transgene used for these rescue experiments

(Fig. 1A). These data confirm that the CENP-O complex is a key
platform for the recruitment of Plk1 to kinetochores.

Depletion of CENP-Q did not, however, affect the kinetochore
binding of Ndc80, Kif18A, Ska3 or MCAK (supplementary
material Fig. S1A), indicating that CENP-Q does not play a major
role in global kinetochore architecture. This conclusion is

consistent with the ability of CENP-Q-depleted cells to form a
normal metaphase plate (Fig. 1C,D). We did, however, note that
the loss of CENP-Q from kinetochores had a striking effect on the

position of a subset of chromosomes within the spindle; a number
of kinetochores were trapped around the spindle poles (from here
on termed polar chromosomes; Fig. 1C). This phenotype can also

be observed in images of CENP-Q-knockout DT40 cells (Hori
et al., 2008) or CENP-U-depleted human cells (Kang et al., 2006).
To further assess this phenotype, we collected time-lapse movies

in living HeLa cells co-expressing Histone2B–eGFP and
monomer red fluorescent protein (mRFP)-tagged a-tubulin
(mRFP–a-tubulin, Fig. 1D; supplementary material Movies 1,
2). Taking T50 to be the point of nuclear envelope breakdown,

we determined the timing of chromosome congression. Only
10.3% of CENP-Q-depleted cells had formed a metaphase plate
and aligned all their chromosomes by T524 min, compared with

.95% in control cells (Fig. 1D,E). Consistent with our fixed-cell
experiments, a number of chromosomes remained trapped around
the spindle pole (yellow arrows in Fig. 1D). These chromosome

congression defects were associated with a prolonged mitotic
delay, with only 26% of CENP-Q-depleted cells undergoing
anaphase within 96 min, compared with 99% of control cells

(Fig. 1E). Of the cells that underwent anaphase within 114 min,
19% failed to congress all chromosomes. This is consistent with
previous work showing that the knockout of CENP-Q in chicken
DT40 cells causes a mitotic delay and congression defects (Hori

et al., 2008).
To rule out off-target effects, we depleted cells of CENP-Q

using siRNA and transfected them with either an siRNA-

resistant CENP-Q–eGFP transgene or an empty vector. We next
treated the cells with MG132 for 90 min (to prevent anaphase
onset and therefore rule out differences associated with variable

cell cycle stage) (Klebig et al., 2009) before fixation and staining
with antibodies against CENP-A (to mark kinetochores) and
DAPI (to mark the chromosome position). This allowed the
proportion of cells with polar chromosomes to be calculated.

Depletion of CENP-Q and transfection with empty vector
resulted in 84% (63.5%) of metaphase cells having unaligned
kinetochores that were situated at the pole. In contrast,

transfection with an siRNA-resistant CENP-Q transgene
greatly reduced the proportion of cells with polar
chromosomes to 48% (68%) (Fig. 1F,G). This reduction in

polar chromosomes following transfection with the CENP-Q
transgene also resulted in an increased rate of chromosome
congression (compared with that of vector alone), with

approximately twice the number of cells entering anaphase
when assessed by using live-cell imaging of Histone-2B–GFP-
expressing cells (Fig. 1E). Finally, a second siRNA that targets
CENP-Q gave the same polar chromosome and congression

phenotype (supplementary material Fig. S2A–C), as did
depletion of the CCAN subunit CENP-P, which has been
shown to recruit CENP-Q to kinetochores (supplementary

material Fig. S2A–C) (Foltz et al., 2006).
Taken together, these data show that kinetochores lacking

CENP-Q (and thus the CENP-O complex) are defective in the

timely congression of most chromosomes and that they are also
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unable to transport a subset of chromosomes that are positioned

near the spindle pole to the metaphase plate.

CENP-Q is required to load CENP-E onto kinetochores
The polar chromosome phenotype in CENP-Q-depleted cells is
very reminiscent of that reported for the depletion of the kinesin 7
family member CENP-E in human cells (Putkey et al., 2002;
Weaver et al., 2003). We therefore investigated whether CENP-Q

was required for the loading of CENP-E onto kinetochores. We

confirmed with immunofluorescence that the treatment of cells
with an siRNA targeting CENP-E reduced the levels of the motor
protein on kinetochores by 95.6% (Fig. 2A,C, 150 kinetochores).

Depletion of CENP-Q also reduced the levels of CENP-E on
kinetochores by 80% (Fig. 2A,C; 100 kinetochores). Thus,
phenotypes associated with CENP-Q depletion must be
considered as a composite of losing both CENP-Q and CENP-E.

Fig. 1. See next page for legend.
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We next performed the reciprocal experiment and found that
depletion of CENP-E did not affect binding of CENP-Q to

kinetochores (Fig. 2B,C). To confirm these results, we treated cells
with control or CENP-Q siRNA and then transfected with either
the siRNA-resistant CENP-Q–eGFP transgene or an empty vector
and quantified the levels of CENP-E on kinetochores. Transfection

with the transgene partially rescued the binding to kinetochores of
CENP-E to ,50% of the intensity measured in control-siRNA-
treated cells that had been transfected with the empty vector

(Fig. 2D,E). These data indicate that CENP-Q is required to load
CENP-E onto kinetochores.

Fate of unaligned kinetochore pairs in CENP-Q- and CENP-E-
depleted cells
The key question is whether the polar chromosome phenotype in
CENP-Q-depleted cells simply reflects the unbinding of CENP-E

motor proteins from kinetochores, or whether CENP-Q makes
additional contributions to chromosome congression that are
independent of CENP-E recruitment. We reported above, we were

in a position to answer this question because depletion of CENP-E
did not affect CENP-Q binding to kinetochores, compared with

depletion of CENP-Q that also removed CENP-E. We therefore
determined how these differing kinetochore states affected the
congression of chromosomes by tracking the fates of uncongressed
kinetochore pairs by using live-cell microscopy. For this, we used

HeLa K cells expressing eGFP–CENP-A (a kinetochore marker)
and eGFP–centrin1 (a spindle pole marker), and collected time-
lapse movies over the course of 5 min in both CENP-Q-depleted

cells and CENP-E-depleted cells. Sister pairs were assigned as non-
biorientated (as judged in in the first frame of the movie;
supplementary material Movies 3–6) if the sister–sister axis was

rotated by approximately 90˚ relative to the pole-to-pole axis (see
schematic in Fig. 3A). Biorientation would be improbable with this
geometry because kinetochores could not make end-on attachments

with microtubules coming from opposite spindle poles. Similarly,
kinetochore pairs positioned behind the spindle pole were classed as
non-biorientated because, in this state, biorientation would be
geometrically impossible. In contrast, kinetochore pairs with a

sister–sister axis of ,45˚or less relative to the pole–pole axis were
classified as orientated. We cannot be sure that these sisters are
biorientated because it is not possible to distinguish this state from

sister pairs in which one sister is mono-orientated and the second is
laterally attached (Kapoor et al., 2006; schematic in Fig. 3A). The
relative proportion of orientated and non-biorientated uncongressed

kinetochore pairs was very similar in CENP-Q- and CENP-E-
depleted cells, with around 80% occupying a non-biorientated state
(Fig. 3B). The fates of these non-biorientated unaligned kinetochore

pairs were also very similar, with the majority (.90%) remaining
stalled and unable to progress towards the spindle equator
(Fig. 3C,E).

In CENP-Q-depleted cells (where CENP-E is also absent from

kinetochores), the orientated kinetochore pairs were also unable
to congress and remained stalled (Fig. 3D,E; also see
supplementary material Movie 4 for a further example).

Surprisingly, in CENP-E-depleted cells (where CENP-Q
remains bound to kinetochores), 80% of orientated sister pairs
were able to congress to the metaphase plate (Fig. 3D,E; also see

supplementary material Movie 5 for a further example). Because
CENP-E is essential for lateral sliding, the congression events
observed in CENP-E-depleted cells are almost certainly due to
biorientated kinetochores utilising depolymerisation-coupled

pulling.
We note that the level of kinetochore-bound CENP-E was

significantly less following depletion of CENP-E compared with

that upon depletion of CENP-Q (Student’s t-test P50.0148;
Fig. 2A–C). Thus, the stronger phenotype in CENP-Q-depleted
cells cannot be attributed to a more efficient loss of CENP-E from

kinetochores. Moreover, inhibition of CENP-E with 300 nM
GSK925293, which puts the motor into a rigor state (Wood
et al., 2010), gave a similar result, with almost 100% of non-

biorientated kinetochores remaining stalled (supplementary
material Fig. S2D) and over 50% of orientated kinetochores able
to congress (supplementary material Fig. S2E). One prediction
from these data is that CENP-E-depleted cells should have a higher

proportion of their unaligned kinetochores trapped behind spindle
poles. Indeed, 69.7% of unaligned kinetochores were behind the
pole in CENP-E-depleted cells (chromosomes 1, 2 and 3 in

Fig. 3A), compared with only 50.4% in CENP-Q-depleted cells.
Overall, these data suggest that a CENP-Q-dependent (CENP-E-
independent) mechanism is required for generating sustained

plateward movement through depolymerisation-coupled pulling in

Fig. 1. Depletion of the outer-plate protein CENP-Q causes
accumulation of polar chromosomes. (A) Immunoblots of whole-cell HeLa
E1 lysates that had been transfected with control siRNA or an siRNA against
CENP-Q (CENP-Q siRNA) for 12 h and then transfected with either empty
vector or an siRNA-resistant vector expressing CENP-Q tagged with eGFP
for 48 h. The blot was probed with antibodies against CENP-Q and a-tubulin.
Endogenous CENP-Q and the corresponding a-tubulin control are shown in
the top two panels. The pellet fraction is shown as nonspecific staining
obscuring the protein in the supernatant. Expression of the transgene and
corresponding a-tubulin loading control are shown in the lower two panels.
(B) Immunofluorescence microscopy images of metaphase cells and
magnified (zoom) kinetochore pairs in cells transfected with a control siRNA
or CENP-Q siRNA that were then stained with CREST antisera (red) and
antibodies against CENP-Q (green) and a-tubulin (blue). The images of
metaphase cells correspond to z-projections (10 focal planes at 0.2 mm
spacing) and the zoom images of the single kinetochores are from a single
focal plane of the stack. Values at the base of the bottom two panels
correspond to the relative values of CENP-Q staining in control and CENP-
Q-depleted cells (n53, 150 kinetochores, 30 cells). (C) Immunofluorescence
microscopy images of a CENP-Q-depleted metaphase HeLa E1 cell stained
with CREST antisera (green) and an antibody against a-tubulin (red). The
image is a z-projection (10 focal planes at 0.2 mm spacing). Zoom boxes 1
and 2 are centred on the spindle poles, and yellow arrows point to unaligned
kinetochores around the spindle poles. (D) Frames from live-cell movies of
HeLa E1 cells co-expressing H2B–eGFP and mRFP–a-tubulin in control (top
row) and CENP-Q-siRNA-treated cells (second row). Yellow arrows point
to unaligned kinetochores. Videos of control and CENP-Q-depleted cells are
available in in supplementary material Movies 1 and 2, respectively. t50,
point of nuclear envelope breakdown. (E) Quantification of the time from
nuclear envelope breakdown (NEB) to the time when the last chromosome
congressed to the metaphase plate, and NEB to the time of anaphase onset.
Blue and orange lines indicate the timings of HeLa E1 cells co-expressing
H2B–eGFP and mRFP–a-tubulin in control and CENP-Q-siRNA-treated
cells, respectively. Black green and red lines represent timing data from cells
expressing H2B–mRFP that had been treated with control siRNA and siRNA-
resistant CENP-Q–eGFP vector (black), CENP-Q siRNA and siRNA-
resistant CENP-Q–eGFP vector (green) and CENP-Q siRNA and eGFP
vector (red). (F) Immunofluorescence microscopy images (z-projections, 10
focal planes at 0.2 mm spacing) of a CENP-Q-siRNA rescue experiment in
HeLa E1 cells. Cells were treated with CENP-Q siRNA or control siRNA for
14 h and then transfected with an siRNA-resistant CENP-Q–eGFP construct
or a control eGFP expression plasmid for a further 48 h. To reduce the
effect of the mitotic stage on alignment, cells were treated with 1 mM MG132
for 90 min before fixation. Cells were stained with DAPI and probed with an
antibody against CENP-A. (G) Quantification of cells with polar
chromosomes in the rescue experiment described in F. n52, §100 poles, 50
cells. Scale bars: 3 mm (B,C,F); 10 mm (D).
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Fig. 2. CENP-Q is required to load CENP-E to kinetochores. (A) Immunofluorescence microscopy images of a metaphase HeLa E1 cells treated with control
siRNA, or siRNA against CENP-E (CENP-E siRNA) or CENP-Q for 48 h and then stained with CREST antisera (red) and antibodies against CENP-E (green)
and a-tubulin (blue). The image is a z-projection (10 focal planes at 0.2 mm spacing). Yellow arrows point to unaligned kinetochores. Insets show single
kinetochore pairs. (B) Immunofluorescence microscopy images of metaphase HeLa E1 cells treated with control, CENP-E or CENP-Q siRNA for 48 h and
stained with CRESTantisera (red) and antibodies against CENP-Q (green) and a-tubulin (blue). The image is a z-projection (10 focal planes at 0.2 mm spacing).
Yellow arrows point to unaligned kinetochores. Insets show single kinetochore pairs. (C) Left panel, quantification of CENP-E immunofluorescence levels in
HeLa E1 cells treated with control siRNA, CENP-E siRNA or CENP-Q siRNA for 48 h. The intensities are determined at each kinetochore relative to that of
CREST after background subtraction, n§150 kinetochores per condition from three independent experiments. Dashed line indicates CENP-E levels in control
siRNA cells. Error bars indicate 6s.d. Right panel, quantification of CENP-Q immunofluorescence levels in HeLa E1 cells treated with control siRNA, CENP-E
siRNA or CENP-Q siRNA for 48 h. Intensities are determined at each kinetochore relative to that of CREST after background subtraction, n§100
kinetochores per condition from two independent experiments. Dashed line indicates CENP-Q levels in control cells. Error bars indicate 6s.d. (D)
Immunofluorescence microscopy images (z-projections, 10 focal planes at 0.2 mm spacing) of a CENP-Q siRNA rescue experiment in HeLa E1 cells. Cells were
treated with CENP-Q siRNA or control siRNA for 12 h and then transfected with an siRNA-resistant plasmid expressing CENP-Q–eGFP or a control eGFP
expression plasmid for a further 48 h. To reduce the effect of the mitotic stage on alignment, cells were arrested in metaphase with MG132 at a 1 mM final
concentration for 90 min, followed by fixation. Cells were stained with antibodies against CENP-A (blue) and CENP-E (red). (E) Quantification of CENP-E
immunofluorescence levels in the CENP-Q siRNA rescue experiment detailed in D. Intensities were determined at each kinetochore relative to that of CENP-A
after background subtraction, n§150 kinetochores per condition from three independent experiments. Dashed line indicates CENP-Q levels in cells treated with
the control siRNA. Error bars indicate 6s.d. Scale bars: 3 mm (A,B,D).
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order to move kinetochore pairs that reside between the pole and
equator to the metaphase plate.

CENP-Q and CENP-E generate counter forces on
polar chromosomes
Behind the spindle pole, the geometry of microtubules is
reversed, i.e. the plus-ends of astral microtubules are proximal

to the cell cortex, whereas K-fibres have plus-ends proximal to

the metaphase plate. If CENP-Q directs depolymerisation-
coupled pulling, it would move chromosomes poleward,
whereas the CENP-E-driven lateral sliding would move them

towards the plus-end (anti-poleward). Thus, we would predict that
depletion of each protein would alter the positions of
kinetochores located behind the pole relative to the spindle
pole. To test this hypothesis, we used fixed-cell high-resolution

wide-field fluorescence imaging to measure the position of polar

Fig. 3. See next page for legend.
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kinetochore pairs relative to the spindle pole and astral
microtubules (Fig. 4A,B). Kinetochores were on average
1.29 mm (60.43 mm) from the pole in CENP-E-depleted cells

(Fig. 4B,C; n52 159 kinetochores). In contrast, kinetochore pairs
in CENP-Q-depleted cells were further from the pole, occupying
an average distance of 2.62 mm (60.99 mm) (Fig. 4B,C; n52,

107 kinetochores). Thus supporting our prediction that depletion
of CENP-Q and CENP-E differentially affects the position of
polar chromosomes relative to the pole.

To further validate this finding, we measured the distance of
individual kinetochores to the spindle pole in monopolar
spindles following depletion of CENP-E or CENP-Q. To
generate monopolar spindles, cells were treated with

monastrol, an inhibitor of Eg5 (also known as KIF11), for
90 min, which prevents centrosome separation in prophase
(Mayer et al., 1999). This induces a high frequency of syntelic

attachments (Lampson et al., 2004), enabling the assessment of
positional changes in end-on attached kinetochores. Cells were
then fixed and stained with antibodies against CENP-A

(kinetochore marker) and c-tubulin (spindle pole marker). The
fixed cells were imaged, and the centre of mass for the
monopole was identified based on the c-tubulin signal (see

Materials and Methods for details). We then automatically found
the kinetochore positions based on the CENP-A staining and
calculated the Euclidian distance to the monopole (Fig. 4D). The
kinetochore-to-pole distances for each experiment (n§4

independent experiments, §8 cells per experiment per
condition) were then used to calculate the cumulative

distribution frequency of the kinetochore-to-pole distances, the
average of these cumulative distribution frequencies was then
plotted (Fig. 4E,F). These plots show that depletion of CENP-E
resulted in the distribution of kinetochore-to-pole distances

moving closer to the monopole compared with that of control
cells (Fig. 4E). We confirmed this result by treating cells with
300 nM GSK925293 to inhibit CENP-E motor activity

(Fig. 4E). Conversely, kinetochores in CENP-Q-depleted cells
(which also lack the anti-poleward CENP-E force due to its
unbinding from kinetochores) occupied a similar mean distance

between the monopole and kinetochores in control-siRNA-
transfected cells, albeit with a much narrower standard deviation
(Fig. 4F). Taken together, these data support our model that

CENP-E slides kinetochores towards microtubule plus-ends,
whereas CENP-Q-dependent mechanisms (that are independent
of CENP-E recruitment) drive depolymerisation-coupled pulling
that moves chromosomes towards or away from the pole

depending on the microtubule geometry.

The roles of CENP-Q in chromosome congression are
independent of the recruitment of Plk1 and CENP-O
complex subunits
Previous reports have demonstrated that CENP-Q is

phosphorylated by CENP-U-bound Plk1 in vitro, (Kang et al.,
2011) and that Plk1 is required for localisation of CENP-E to the
kinetochore (Ahonen et al., 2005; Nishino et al., 2006).

Moreover, serine 50 in CENP-Q is phosphorylated in vivo

(Rigbolt et al., 2011), suggesting that this might represent a key
regulatory event. We therefore mutated serine 50 to alanine
(CENP-QS50A–eGFP) or to a phospho-mimicking aspartic acid

residue (CENP-QS50D–eGFP). We first tested whether the S50A
mutant affected the recruitment of Plk1 to kinetochores.
Consistent with our previous result (supplementary material

Fig. S2), CENP-Q-depleted cells that had been transfected with
an empty vector demonstrated an 84% reduction in Plk1 at
kinetochores (63.7%; Fig. 5A,B, n53, 300 kinetochores, 30

cells). In contrast, transfection with CENP-QS50A–eGFP rescued
kinetochore Plk1 levels to 62% (612%; Fig. 5A,B, n53, 600
kinetochores, 60 cells). Previous work has shown that recruitment
of Plk1 to kinetochores is dependent upon CENP-U (Kang et al.,

2006). The presence of Plk1 and CENP-Q therefore indicates
that CENP-U remains kinetochore bound, indicating that the
CENP-O complex had successfully assembled at the kinetochore.

Moreover, serine 50 is not reported as a Plk1 phosphorylation site
(Santamaria et al., 2011); therefore, CENP-QS50A–eGFP enables
the separation of the role of CENP-Q in chromosome

congression, in CENP-O complex assembly and in Plk1
recruitment.

Next we investigated whether CENP-QS50A–eGFP could

rescue the CENP-Q depletion phenotype. Transfection with
CENP-QS50A–eGFP failed to rescue CENP-E recruitment when
compared with that of control cells transfected with an empty
vector (Fig. 6A,B, n53, 600 kinetochores, 60 cells). These cells

still had an alignment defect, with approximately six kinetochore
pairs trapped at each spindle pole (Fig. 6A,B, n53, 120 poles, 60
cells). To further validate the potential importance of

phosphorylation at serine 50, we transfected CENP-Q-depleted
cells with the phospho-mimetic CENP-QS50D–eGFP transgene.
This partially rescued CENP-E recruitment to 43% (610%),

comparable with that of wild-type CENP-Q–eGFP (Fig. 6A,B,

Fig. 3. Fates of unaligned kinetochore pairs. (A) Schematic representing
the orientation of unaligned kinetochore pairs within the mitotic spindle. The
black dotted line represents the pole-to-pole axis, dotted green lines on
chromosomes 4 and 5 represent the kinetochore sister–sister axis, the ,90˚
angle between the sister–sister axis of chromosome 4 and the spindle pole-
to-pole axis indicates non-biorientation. The reduced angle (#45 )̊ of the
sister–sister axis relative to spindle axis of chromosome 5 indicates
biorientation. Chromosomes 1, 2 and 3 are behind the pole and are therefore
non-biorientated. Chromosome 6 is mono-orientated by the pole proximal
kinetochore and laterally attached to an adjacent K-fibre by the pole distal
kinetochore. Discriminating this chromosome from biorientated
chromosomes (e.g. number 5) was not possible in our assay. (B) The
orientation state of unaligned kinetochore pairs in CENP-Q- (n5217
kinetochores) and CENP-E-siRNA- (n5211 kinetochores) treated HeLa K
cells stably expressing eGFP–CENP-A and eGFP–centrin1. Pink represents
non-biorientated kinetochores (classes 1, 2, 3 and 4), and orange
orientated kinetochores (classes 5 and 6). n§3 independent experiments.
(C) The fates of non-biorientated kinetochore pairs over 5 min in live HeLa K
cells (stably expressing eGFP–CENP-A and eGFP–centrin1) after 48 h of
treatment with CENP-Q or CENP-E siRNA. (D) The fates of orientated
kinetochore pairs over 5 min in live HeLa K cells (stably expressing eGFP–
CENP-A and eGFP–centrin1) after 48 h of treatment with CENP-Q or CENP-
E siRNA. (E) Example frames from movies of kinetochore fates in HeLa K
cells (stably expressing eGFP–CENP-A and eGFP–centrin1) after 48 h of
treatment with CENP-Q or CENP-E siRNA. Orange chevrons indicate pairs
that are orientated with the spindle axis, blue chevrons indicate pairs that are
non-biorientated and white chevrons indicate where the designation of
state is unclear. Yellow stars indicate the spindle pole when visible. The first
column shows an example of a biorientated kinetochore pair in a CENP-Q-
depleted cell, the pair does not congress but switches to a non-biorientated
state (supplementary material Movie 3). The second column shows an
example of an orientated kinetochore pair that fails to congress in CENP-Q-
depleted cells (supplementary material Movie 4). In contrast, the third column
shows an example of an orientated sister pair in CENP-E-depleted cells
that is still able to congress to the metaphase plate (supplementary material
Movie 5). The forth column shows an unaligned non-biorientated sister pair
that cannot move to the metaphase plate in a CENP-E-depleted cell
(supplementary material Movie 6). t50, first frame of the movie. The dashed
lines indicate the metaphase plate periphery.
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n53, 600 kinetochores, 60 cells). These cells also displayed a less

severe congression phenotype, having on average 2.4 (60.8)
kinetochore pairs per pole (Fig. 6A,B, n53, 120 poles, 60 cells).

Importantly, both CENP-QS50A–eGFP and CENP-QS50D–eGFP

proteins were recruited to kinetochores (Fig. 6A). However,
owing to the transient transfection, some cells had a low or non-
detectable eGFP signal on kinetochores. We thus performed

additional experiments and restricted our analysis to cells where a
CENP-Q–eGFP, CENP-QS50A–eGFP or CENP-QS50D–eGFP
signal could be detected on kinetochores. We first quantified

this signal and confirmed that the levels were equivalent for the

wild-type and mutant CENP-Q transgenes (Fig. 6C, n§150

kinetochores per condition). Next, we counted the number of
kinetochore pairs per pole in these cells and found that the CENP-
Q–eGFP and CENP-QS50D–eGFP transgenes, but not the CENP-

QS50A–eGFP transgene, almost completely rescued the phenotype
(the median number of kinetochore pairs per pole was zero for the
wild-type and S50D mutant constructs, compared with 6.5 for

S50A; Fig. 6D, n§150 kinetochores per condition). Likewise,
we found that the CENP-Q–eGFP and CENP-QS50D–eGFP
transgenes restored the binding of CENP-E to kinetochores to

,75% of the levels measured in control cells (Fig. 6D; n§150

Fig. 4. CENP-Q and CENP-E generate counter
forces on polar chromosomes. (A) Schematic
representing the measurement of the pole-to-
kinetochore distances ‘d’ during depletion of
CENP-Q and CENP-E. (B) Immunofluorescence
microscopy images of HeLa K cells that had
been treated for 48 h with CENP-Q or CENP-E
siRNA and stained with CREST antisera (green)
and antibodies against a-tubulin (blue) and
pericentrin (red). The image is a single z-slice.
Insets show enlarged images of the boxed areas.
Scale bar: 5 mm. (C) Quantification of pole-to-
kinetochore distances in CENP-Q-siRNA- (blue
n52 159 kinetochores) and CENP-E-siRNA-
treated (green, n52, 107 kinetochores) cells.
Error bars represent 6s.d.
(D) Immunofluorescence microscopy image of a
HeLa E1 cell stained with antibodies against
CENP-A (green) and c-tubulin (red). Cells were
treated for 48 h with control, CENP-Q or CENP-E
siRNA followed by 90 min of treatment with 1 mM
monastrol to induce monopolarity. The image is a
z-projection (all focal planes, 15 mm at 0.2 mm
spacing). The successive analysis overlays show
the automated process of pole identification and
kinetochore identification followed by distance
measurement from each kinetochore to the pole.
(E) Cumulative distribution of kinetochore
distances from the monopole centre in cells that
had been treated with control siRNA (red lines,
n55 experiments with §8 cells), CENP-E siRNA
(red lines, n54, with §8 cells) and GSK923295
(purple line, n51, 10 cells). Shaded areas
represent 6s.d. (F) The cumulative distribution of
kinetochore distances from the monopole centre
in cells that had been treated with control
siRNA (green lines, n55, with §8 cells) and
CENP-Q siRNA (red lines, n53, with §8 cells).
Shaded areas represent 6s.d.
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kinetochores per condition). Thus, the partial (,50%) rescue in
our population-based rescue experiments (see Fig. 6A,B) are
simply a consequence of some cells not expressing the transgene.

From these data, we also plotted the level of the transgene and
that of CENP-E on individual kinetochores. This revealed a
positive correlation for CENP-Q–eGFP and CENP-QS50D–eGFP,

indicating that the recruitment of CENP-E molecules is
dependent upon the number of CENP-Q molecules at each
kinetochore. As expected, this relationship was lost upon
transfection with CENP-QS50A–eGFP, with no CENP-E

recruitment observed at high transgene levels (Fig. 6E, n§150
kinetochores per condition). Taken together, these data support a
role for CENP-Q in CENP-E loading onto kinetochores and

depolymerisation-coupled pulling that is independent of Plk1 and
the CENP-O complex.

DISCUSSION
Recent studies in human cells indicate that the majority of
chromosomes rapidly convert from lateral to amphitelic

attachment (biorientation) at the spindle equator as a result of
kinetochores being organised into a ring-like conformation
following nuclear envelope breakdown (Magidson et al., 2011).
However, cells must have mechanisms that ensure chromosomes

that are close to the pole early in mitosis can congress and thereby
allow accurate disjunction of sister chromatids in anaphase. Our
data support a model in which there are at least two distinct

mechanisms that drive the congression of such polar
chromosomes (Fig. 7A): (1) the well-documented lateral sliding

of (non-biorientated) kinetochores by CENP-E (Kapoor et al.,
2006) (Fig. 7A, chromosome 1), and (2) a role for CENP-Q that
is independent of CENP-E recruitment in the movement of

biorientated sisters to the metaphase plate (this study; Fig. 7A,
chromosome 2). This conclusion is based on our observation that
biorientated kinetochores are still able to congress in the absence

of CENP-E, but not CENP-Q (where CENP-E is also unbound).
Importantly, it is the absence of CENP-E from kinetochores in
CENP-Q-depleted cells that allows us to rule out lateral sliding as
the mechanism of congression and reveals a role for CENP-Q in

the movement of biorientated sisters.
These CENP-Q-dependent movements are analogous to those

described by Skibbens and colleagues 20 years ago, in which

biorientated kinetochores can undergo long-duration motion
towards the spindle equator (Skibbens et al., 1993). This
motion is a consequence of one sister (facing the metaphase

plate) remaining in a poleward-moving state, while the other
sister maintains an away from pole state. Sister kinetochores that
lack CENP-Q appear unable to sustain their poleward or anti-

poleward state, resulting in stalling and a failure to congress. An
important question will be to understand how CENP-Q
contributes to this process (see below).

How do cells initially move chromosomes to spindle poles?

Existing models (see Kim et al., 2008; Skibbens et al., 1993) state
that movement to the pole is necessary in order to increase the
probability of biorientation due to the higher density of

microtubules. However, our data show that CENP-E-dependent
sliding of laterally attached kinetochores will move chromosomes

Fig. 5. CENP-QS50A–eGFP rescues kinetochore recruitment of Plk1. (A) Immunofluorescence microscopy images (z-slice) of a CENP-QS50A–eGFP
siRNA rescue experiment in HeLa K cells. Cells were treated with CENP-Q siRNA or control siRNA for 12 h and then transfected with an siRNA-resistant
plasmid expressing CENP-QS50A–eGFP or a control eGFP expression plasmid for a further 48 h. To reduce the effect of the mitotic stage on alignment, cells
were arrested in metaphase with 1 mM MG132 for 90 min before fixation. Cells were stained with CREST antisera (blue) and an antibody against Plk1 (red).
Scale bar: 5 mm. (B) Quantification of Plk1 levels in the CENP-QS50A–eGFP siRNA rescue experiment. Staining intensities were determined at each kinetochore
relative to that of CREST after background subtraction, n53, §300 kinetochores, 30 cells. The dashed line indicates CENP-Q levels in control-siRNA-treated
cells. Error bars indicate 6s.d.
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that are behind the pole further away from the pole and towards

the plus-end of astral-microtubules. At the same time, chromosome
arms are pushed away from the pole by the polar ejection force

(Stumpff et al., 2012). To counter these anti-poleward forces,

dynein motors can slide laterally attached kinetochores towards
the pole (Yang et al., 2007). We propose that there is a second

Fig. 6. See next page for legend.
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CENP-Q-dependent process that moves chromosomes poleward.
We suggest that this process is likely to reflect the effect of CENP-
Q on mono-orientated kinetochores. If direct, this would mean a
requirement for CENP-Q in depolymerisation-coupled pulling and

poleward kinetochore motility. It follows that the failure of a
biorientated sister pair to congress is therefore, most likely, also due
to a defective poleward kinetochore movement (depolymerisation-

coupled pulling), rather than an away from pole kinetochore
(pushing) movement. It will be important to determine how
kinetochores are converted between lateral, mono-orientated and

biorientated states (chromosomes 1–4 in Fig. 7A, chromosomes 1
and 2 in Fig. 7B). In this regard, recent work has revealed that the
transition from CENP-E-dependent lateral attachment to an end-on
configuration requires the microtubule depolymerase MCAK

(Shrestha and Draviam, 2013). MCAK is proposed to
depolymerise the astral microtubule back to the kinetochore, thus
promoting the mono-orientation of the kinetochore. Overall, current

data suggests that kinetochores utilise poleward and anti-poleward
mechanisms to position themselves at the optimum distance from
the spindle pole to promote biorientation.

How could CENP-Q contribute to depolymerisation-coupled
pulling? One possibility is that CENP-Q indirectly affects
depolymerisation-coupled pulling by affecting the binding of

other factors to kinetochores (see schematic in Fig. 7C).
However, we can rule out the loss of the CENP-O complex or
Plk1, which both remain kinetochore-bound in cells expressing
the S50A mutant (which phenocopies CENP-Q depletion). In

addition, our data show that CENP-E is not required for
depolymerisation-coupled pulling (see above). Although it
remains possible that an unknown protein is recruited to

kinetochores in manner that is dependent on serine 50, we
favour the alternative idea that CENP-Q mediates a direct effect
on kinetochore–microtubule dynamics. Support for this idea

comes from in vitro biochemistry, which demonstrates that the
purified CENP-Q protein can directly bind to taxol-stabilised

microtubules in vitro (Amaro et al., 2010). We do find that
depletion of CENP-Q reduces the turnover of kinetochore
microtubules in vivo (supplementary material Fig. S3).
However, CENP-E depletion is reported to have the same effect

(Maffini et al., 2009), while still allowing the congression of
biorientated kinetochores through depolymerisation-coupled
pulling (this study). Therefore, we cannot yet attribute these

changes in kinetochore–microtubule dynamics to the observed
defects in chromosome movement in CENP-Q-depleted cells.

Our data suggest that phosphoregulation of CENP-Q through

serine 50 is an important regulatory step in controlling
chromosome congression. An attractive idea is that this
phosphorylation event allows the direct binding of CENP-E to

CENP-Q. However, CENP-E remains bound to kinetochores in
CENP-H- or CENP-L-depleted cells – CCAN proteins that are
required for CENP-Q binding to kinetochores (Amaro et al., 2010;
McClelland et al., 2007; Mchedlishvili et al., 2012). Moreover,

binding of CENP-E to kinetochores in CENP-Q-depleted cells is
partially rescued following depolymerisation of microtubules with
nocodazole (supplementary material Fig. S4). Thus, a direct

mechanism seems unlikely. An alternative possibility is that
CENP-Q modulates kinetochore–microtubule dynamics in such a
way that CENP-E can be recruited. As discussed above, these same

changes in microtubule dynamics could also explain the defects in
depolymerisation-coupled pulling. Finally, the kinase that is most
likely to be responsible for the phosphorylation of serine 50 would

be the CENP-U-bound pool of Plk1 (Kang et al., 2006). CENP-Q
has been shown to be a substrate for Plk1 in vitro (Kang et al.,
2011). However, stable isotope labelling by amino acids in cell
culture (SILAC) experiments show that phosphorylation of serine

50 is not sensitive to the depletion or inhibition of Plk1 in human
cells (Santamaria et al., 2011). Future work will clearly be required
to identify the kinase responsible for the regulation of CENP-Q

function.

MATERIALS AND METHODS
Cell culture, siRNA transfection and drug treatments
HeLa-E1 and HeLa K cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% foetal calf serum, 100 U/ml penicillin

and 100 mg ml21 streptomycin at 37 C̊ under 5% CO2 in a humidified

incubator. The Histone2B–mRFP cell line was maintained in

500 mg ml21 G418 and the eGFP–CENP-A eGFP–centrin1 cell line

was maintained in 500 mg ml21 G418 and 0.3 mg ml21 puromycin. All

other cell lines were maintained in non-selective medium. siRNA

oligonucleotides (53 nM) were transfected using oligofectamine

(Invitrogen) for 48 h [24 h in modified Eagle’s medium (MEM) then

changed to DMEM for a further 24 h] according to the manufacturer’s

instructions. The siRNA oligonucleotide sequences used were control

(Samora et al., 2011), CENP-Q (59-GGUCUGGCAUUACUACAGGA-

AGAAA-39 Stealth, Invitrogen), CENP-Q-2 (59-CAGAGUUAAUGAC-

UGGGAAUAUUCA-39 Stealth, Invitrogen), CENP-P (Amaro et al., 2010)

and CENP-E (59-ACUCUUACUGCUCUCCAGUdTdT-39, Ambion). Drug

treatments were performed at the following concentrations and time periods

– nocodazole (Tocris) 14 h at 1 mg ml21, GSK923295 (CENP-E inhibitor;

Haoyuan Chemexpress) 14 h at 300 nM, taxol (Tocris) at 10 mM for 60 min,

monastrol (Tocris) at 1 mM for 90 min and MG132 at 1 mM for 90 min.

Molecular biology and siRNA rescue experiments
To generate a human CENP-Q–eGFP expression vector, the CENP-Q

coding sequence was amplified by using PCR (using primers MC246 and

MC248) and ligated into pEGFP-N1 (empty vector; Clontech) using

BamHI and EcoRI (pMC276). pMC276 was then mutated using a quick

Fig. 6. CENP-Q serine 50 is required for CENP-E recruitment and
orderly congression. (A) Immunofluorescence microscopy images (z-slice)
of CENP-QS50A–eGFP and CENP-QS50D–eGFP siRNA rescue experiments
in HeLa K cells. Cells were treated with CENP-Q siRNA or control siRNA for
12 h and then transfected with an siRNA-resistant plasmid expressing
CENP-Q–eGFP, CENP-QS50A–eGFP or CENP-QS50D–eGFP or a control
eGFP expression plasmid for a further 48 h. To reduce the effect of the
mitotic stage on alignment, cells were arrested in metaphase with 1 mM
MG132 for 90 min before fixation. Cells were stained with antibodies against
CENP-A (blue) and CENP-E (red). Scale bar: 5 mm. (B) Left panel,
quantification of CENP-E levels in the CENP-QS50A–eGFP and CENP-
QS50D–eGFP siRNA rescue experiments. Intensities were determined at
each kinetochore relative to that of CENP-A after background subtraction,
n53, §300 kinetochores, §30 cells. The dashed line indicates CENP-E
levels in control-siRNA-treated cells. Error bars indicate 6s.d. Right panel,
quantification of the average number of kinetochore pairs per pole in cells
expressing CENP-QS50A–eGFP and CENP-QS50D–eGFP from three
independent rescue experiments (120 poles per condition, 60 cells). (C) Box
plot showing quantification of kinetochore transgene levels for each CENP-Q
variant, n53, §150 kinetochores. The line represents the median, the box
represents the interquartile range, whiskers represent the maximum values
excluding outliers, dots represent outliers. (D) Analysis of cells with
transgene-positive kinetochores. Box plots showing quantification of the
average number of kinetochore pairs per pole, n53, §60 poles (left panel)
and quantification of kinetochore CENP-E levels, n53, §150 (right panel).
Dotted lines indicate the levels in control cells (taken from Fig. 6B). The line
represents the median, the box represents the interquartile range, whiskers
represent the maximum values excluding outliers, dots represent outliers.
(E) A plot demonstrating the relationship between the kinetochore eGFP
signal in cells rescued with CENP-Q–eGFP, CENP-Q–eGFPS50A or CENP-
Q–eGFPS50D and the kinetochore CENP-E signal, n53, §150 kinetochores.
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change site-directed mutagenesis kit (Stratagene) and the primers MC297

\(59-GACAAAGCTAATGAAGAAGGCCTAGCGTTGCTCCAAGAGG-

AAATAGATAAAATGGTAGAG-39) and MC298 (59-CTCTACCATTT-

TATCTATTTCCTCTTGGAGC AACGCTAGGCCTTCTTCATTAGCT-

TTGTC-39), to render the transgene resistant to the CENP-Q siRNA

oligonucleotide (pMC308). This siRNA-resistant CENP-Q construct was

then used as a template for the generation of CENP-Q phospho-mutants

using a quick change site-directed mutagenesis kit (Stratagene) and the

following primers: CENP-QS50A-eGFP (59-ATAAAAATCATCTGAAA-

GATCTGGCTTCTGAAGGACAAACAAAGCAC-39) and (59-GTGC-

TTTGTTTGTCCTTCAGAAGCCAGATCTTTCAGATGATTTTTAT-39),

CENP-QS50D-eGFP (59-AAAAAATAAAAATCATCTGAAAGATCTG-

GATTCTGAAGGACAAACAAAGCACACTAAC-39) and (59-GTTAG-

TGTGCTTTGTTTGTCCTTCAGAATCCAGATCTTTCAGATGATTT-

TTATTTTTT-39). For siRNA rescue experiments, cells were transfected

with CENP-Q or control siRNAs and grown for 14 h in MEM. The

medium was then changed to DMEM and the cells transfected with 1 mg

of pEGFP-N1 (empty vector; Clontech) or a CENP-Q transgene using

FuGene6 transfection reagent (Roche); cells were then incubated for a

further 48 h before analysis.

Immunofluorescence microscopy
Cells were fixed at room temperature for 10 min in 20 mM PIPES

pH 6.8 containing 10 mM EGTA, 1 mM MgCl2, 0.2% Triton X-100 and

4% formaldehyde. Cells were then were then washed with PBS every

10 min three times before blocking with 3% BSA in PBS for 30 min.

After blocking, the fixed cells were incubated for 1 h with primary

antibodies: rabbit anti-CENP-O (1:500; McAinsh et al., 2006), mouse

anti-CENP-A (1:500; Abcam), mouse anti-a-tubulin (1:1000; Sigma-

Aldrich), CREST antisera (1:250; Antibodies Incorporated), rabbit anti-

CENP-E [1:1,500; (Meraldi et al., 2004)], rabbit anti-Ska3 (1:250) (a

kind gift from Anna Santamaria, University of Basel, Switzerland), rabbit

Fig. 7. A model for chromosome congression through
the combined action of CENP-Q and CENP-E.
(A) Schematic showing a proposed model of chromosome
congression for unaligned chromosomes positioned
between the plate and the pole through the combined
action of CENP-Q- and CENP-E-dependent mechanisms.
Chromosome 1 is mono-orientated and laterally attached
‘L’ at the black sister kinetochore through CENP-E, this
chromosome is able to congress to the plate through
lateral sliding, driven by CENP-E, where it is then able to
biorientate (as reported in Kapoor et al., 2006).
Chromosome 2 is biorientated and able to congress to the
metaphase plate by making persistent plateward
movements that are driven by CENP-Q-dependent
microtubule depolymerisation-coupled pulling at the
poleward (P) kinetochore. Chromosome 3 is mono-
orientated and will engage its free kinetochore with either
the microtubule lattice or the plus-end of microtubules
emanating from the opposite pole in order to congress
through CENP-E- and/or CENP-Q-dependent pathways.
Chromosome 4 is biorientated and aligned at the
metaphase plate. AP, away from pole movement.
(B) Schematic showing the mechanisms acting on
chromosomes positioned behind the spindle poles. Arrows
indicate the direction of the generated forces. CENP-E
lateral sliding and polar ejection forces (PEFs) move
chromosomes anti-poleward, whereas CENP-Q-
dependent depolymerisation-coupled pulling and dynein-
driven lateral sliding move chromosomes poleward.
Force balance amongst these mechanisms dictates the
distance of a chromosome from the spindle pole, and
kinetochores are probably able to cycle between these
attachment states (grey arrow). (C) Schematic showing
kinetochore loading and phosphorylation dependencies.
Solid black lines represent direct loading dependencies
(percentage values indicate the level of dependency).
Black dashed lines represent loading dependencies, which
are indirect (or have not been shown to be direct). Blue
lines represent phosphorylation events, and red arrows
represent proteins that have been shown to make direct
contact with the microtubule. Percentage dependencies
were obtained from the following references: [1] (Maia
et al., 2012), [2], (Maffini et al., 2009), [3] (Kang et al.,
2006), [4] this study and [5] (Kang et al., 2011).
Dependencies within CCAN were obtained from several
references (Foltz et al., 2006; McClelland et al., 2007;
Okada et al., 2006). The separation of the CCAN into core
and extended components is taken from Westhorpe and
Straight (Westhorpe and Straight, 2013).
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anti-CENP-Q (1:250; Rockland), rabbit anti-Plk1 (1:250; Santa Cruz),

rabbit anti-c-tubulin (1:200; Abcam), mouse monoclonal anti-Ndc80/Hec1

(1:1000; Abcam). Cells were then washed with PBS every 10 min three

times and incubated for 30 min with AlexaFluor-conjugated highly cross-

adsorbed secondary antibodies raised in goat (Invitrogen). Three-

dimensional image stacks of mitotic cells were acquired in 0.2 mm steps

using a 1006 oil-immersion 1.4 NA objective lens on an Olympus

DeltaVision Elite microscope (Applied Precision, LLC) equipped with a

DAPI, fluorescein isothiocyanate (FITC), Rhodamine or Texas Red, CY5

filter set (Chroma), solid state light source and a CoolSNAP HQ camera

(Roper Scientific). Image stacks were deconvolved using SoftWorx

(Applied Precision, LLC), and figures were generated with Photoshop

and Illustrator (Adobe). Fluorescence-intensity measurements were made

manually using SoftWorx, subtracting background values and normalising

to the intensity of CENP-A or CREST on the same kinetochore.

Live-cell imaging
Fluorescence time-lapse imaging of cells co-expressing H2B–eGFP and

mRFP–a-tubulin was performed on a Personal Deltavision microscope

(Applied Precision, LLC), using a 406 NA 1.3 objective, with GFP

(excitation 475/28, emission 525/50) and mCherry (excitation 575/25,

emission 632/60) filter set, Quad-mCherry dichroic mirror (reflection

bands 381–401, 464–492, 561–590, 625–644, transmission bands 409–

456, 500–553, 598–617, 652–700) (Chroma), Xenon light source and a

CoolSNAP HQ2 camera (Roper Scientific). Image stacks (762 mm z-

sections) were collected every 3 min for a total time of 10 h.

Immunoblotting
Whole-cell protein extracts were prepared using a liquid nitrogen

grinding technique as previously described (McClelland et al., 2007).

Immunoblotting was performed as described previously (McAinsh et al.,

2006). Primary mouse anti-a-tubulin (1:10,000; Sigma-Aldrich) or rabbit

anti-CENP-Q (1:500; Rockland), and secondary anti-mouse or anti-rabbit

horseradish-peroxidase-conjugated secondary antibodies (1:10,000;

Amersham) were diluted in PBS 0.1% Tween20 with 3% milk powder

(Marvel). Primary antibodies were incubated for 14 h overnight at 4 C̊

and secondary antibodies for 1 h at room temperature.
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