

Original citation:

Ray, Jessica L., Althammer, Julia, Skaar, Katrine S., Simonelli, Paolo, Larsen, Aud, Stoecker, Diane, Sazhin, Andrey, Ijaz, Umer Z., Quince, Christopher, Nejstgaard, Jens C., Frischer, Marc, Pohnert, Georg and Troedsson, Christofer. (2016) Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Molecular Ecology, 25 (21). pp. 5585-5602.

Permanent WRAP URL:

http://wrap.warwick.ac.uk/85060

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

This is the pre-peer reviewed version of the following article: Ray, J. L., Althammer, J., Skaar, K. S., Simonelli, P., Larsen, A., Stoecker, D., Sazhin, A., Ijaz, U. Z., Quince, C., Nejstgaard, J. C., Frischer, M., Pohnert, G. and Troedsson, C. (2016), Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Mol Ecol, 25: 5585–5602. doi:10.1111/mec.13844, which has been published in final form at http://dx.doi.org/10.1111/mec.13844. This article may be used for non-commercial purposes in accordance with <u>Wiley Terms and Conditions for Self-Archiving</u>.

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

1 Metabarcoding and metabolome analysis of copepod grazing reveals feeding preference

2 and linkage to metabolite classes in dynamic microbial plankton communities

- 3 Jessica L. Ray^{1*}, Julia Althammer², Katrine S. Skaar¹, Paolo Simonelli³, Aud Larsen¹, Diane
- 4 Stoecker⁴, Andrey Sazhin⁵, Umer Z. Ijaz⁶, Christopher Quince⁷, Jens C. Nejstgaard⁸, Marc
- 5 Frischer^{1,9}, Georg Pohnert² and Christofer Troedsson¹
- ¹Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Uni Research AS, Nygårdsgaten 112,
 N-5008 Bergen, Norway
- 8 ²Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07443 Jena,
 9 Germany
- ³Department of Biology, University of Bergen, Thormøhlensgt 53A, 5006 Bergen, Norway
- ⁴University of Maryland, Center of Environmental Science, Horn Point Lab, Cambridge, Massachusetts, 21613,
 USA
- ⁵P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Laboratory of Ecology of Plankton
 Organisms, Nakhimovsky Prospect 36, Moscow, Russia
- 15 ⁶School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- ⁷WMS Microbiology and Infection, University of Warwick Medical School, Coventry, CV4 7AL, United
 Kingdom
- ⁸Leibniz Institute of Freshwater Ecology and Inland Fisheries, Dep. 3, Experimental Limnology/Alte Fischerhütte 2,
 16775 Stechlin, OT Neuglobsow, Germany
- ⁹Skidaway Institute of Oceanography, 10 Science Circle, Savannah, Georgia 31411, USA
 21

22 Keywords: Calanus grazing, Phaeocystis pouchetii, Skeletonema marinoi, seawater mesocosms,

- 23 eukaryote V7 SSU, metabolome profiling, metabarcoding, symbiosis
- 2425 Running Head: Multi-omic analysis of *Calanus* feeding
- 26
- *Corresponding author: E-mail jessicalouiseray@gmail.com, Telephone (+47) 55 58 26 73, Fax
 (+47) 55 58 96 74
- 30 Current address: Jenabios GmbH, Orlaweg 2, 07743 Jena, Germany.
- 31

29

- 32 Abstract
- 33 In order to characterize copepod feeding in relation to microbial plankton community dynamics,
- 34 we combined metabarcoding and metabolome analyses during a 22-day seawater mesocosm
- 35 experiment. Nutrient amendment of mesocosms promoted the development of haptophyte-

36 (Phaeocystis pouchetii) and diatom- (Skeletonema marinoi) dominated plankton communities in 37 mesocosms, in which *Calanus* sp. copepods were incubated for 24-hours in flow-through chambers to allow access to prey particles ($< 500 \mu m$). Copepods and mesocosm water sampled 38 39 six times spanning the experiment were analyzed using metabarcoding, while intracellular 40 metabolite profiles of mesocosm plankton communities were generated for all experimental 41 days. Taxon-specific metabarcoding ratios (ratio of consumed prey to available prey in the 42 surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive 43 selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including *P. pouchetii*, were passively consumed or even negatively selected according to our 44 indicator. Our analysis of the relationship between *Calanus* grazing ratios and intracellular 45 46 metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession 47 and copepod-prey interactions. This molecular characterization of *Calanus* sp. grazing therefore 48 provides new evidence for selective feeding in mixed plankton assemblages and corroborates 49 previous findings that copepod grazing may be coupled to the developmental and metabolic 50 stage of the entire prey community rather than to individual prey abundances.

51

52 Introduction

The trophic efficiency of the marine food web depends upon the pathway of carbon flow from
primary production to predatory fish - either through the classical food web (diatoms to
mesozooplankton), the microbial food web (flagellates/bacteria to ciliates to mesozooplankton)
(Landry 2002; Pepin *et al.* 2011), or via the recently discussed nutritunneling to bypass
phytoplankton pathways (Pitta *et al.* 2016). Copepods are among the most abundant
mesozooplankton in the global ocean and have long been assumed to be key regulators of carbon

transfer through their selective feeding in the marine food web (Sherr & Sherr 1988; Kleppel
1993; Sanders & Wickham 1993). Understanding the interplay of copepod grazing as a top-down
regulatory force, in concert with the bottom-up regulation of marine plankton assemblages, is
essential for accurately predicting the flow of carbon and nutrients from primary production to
fisheries (Sherr & Sherr 1988; Calbet & Saiz 2005).

64

Copepods can be selective grazers (Kiørboe *et al.* 1996; Kiørboe 2011 and references therein) 65 66 dependent upon prey abundance, size, motility or chemical cues (Nejstgaard et al. 2008 and 67 references therein). Elucidating copepod prey selection in natural environments presents a 68 persistent methodological challenge, as full characterization of copepod feeding requires 69 quantitative knowledge of the potential prev community as well as knowledge of the prev 70 organisms that are actually consumed (reviewed in Pompanon et al. 2011). Chlorophyll a or 71 pigment measurements of copepod gut content cannot be used to determine prey selection in natural prey assemblages as pigments show variable breakdown rates and do not reveal non-72 73 pigmented prey that may frequently be the most selected prey in situ (see data for Calanus in 74 Nejstgaard et al. 1997; 2001b, and further discussion on methods in Nejstgaard et al. 2008). 75 Molecular analysis of phylogenetic markers (metabarcoding; Taberlet et al. 2012) provides a 76 promising alternative due to the universality of genomic DNA among cellular organisms and 77 tunable precision of phylogenetic resolution without previous knowledge of community composition. In addition, tools exist to refine the output of molecular investigation toward a 78 79 more prey-oriented analysis through the use of DHPLC-PCR (Troedsson et al. 2008a,b; Olsen et 80 al. 2014), restriction endonucleases (Maloy et al. 2013) and/or blocking oligonucleotides 81 (Troedsson et al. 2008b; Vestheim & Jarman 2008; Maloy et al. 2013) to selectively inhibit

82 amplification of predator sequences.

83

Ample evidence exists to suggest that chemical cues likely play an equitable role with prey 84 availability in copepod feeding behavior (Poulet & Marsot 1978; Cowles et al. 1988). The 85 86 combination of DNA-based metabarcoding methods with intracellular metabolite profiling may 87 thus facilitate a deeper investigation of copepod feeding behavior (Woodson et al. 2007) that 88 takes into account both taxonomy and chemical ecology (Barofsky et al. 2010; Kuhlisch & 89 Pohnert 2015). We employed a multi-omic approach to characterize microbial plankton 90 communities in seawater mesocosms dominated by the haptophyte *Phaeocystis pouchetii* or the 91 diatom Skeletonema marinoi, and compared seawater microplankton communities to the 92 "community" of prey organisms in the gut content of *Calanus* sp. copepods. The aim of this study was to utilize molecular proxies for feeding selection generated by metabarcoding analysis 93 94 to investigate whether changes in *Calanus* feeding selection could be linked to changes in the chemical profile of co-occurring microbial planktonic communities. 95 96

97 Materials and Methods

98 Mesocosm experiment

A seawater mesocosm experiment was performed during a 22-day period from 8-30 March 2012
at the Espegrend Marine Biological Station at the University of Bergen, Norway. A detailed
description of the experimental set-up is provided elsewhere (Nejstgaard *et al.* 2006; Stoecker *et al.* 2015; Ray *et al.* 2016). Briefly, triplicate 11 m³ reinforced transparent polyurethane
mesocosms bags were either left unamended (Control), amended with 16 μM NO₃⁻ and 1 μM
PO₄³⁻ (NP) to selectively promote *P. pouchetii* growth, or amended with 16 μM NO₃⁻, 1 μM

105	PO_4^{3-} and 5 μ M Si O_4^{2-} (NPSi) to selectively promote diatom growth. For reference,
106	unmanipulated samples were also taken from Raunefjorden (Raunefjorden) directly adjacent to
107	the mesocosm raft. A detailed description of mesocosm bloom development is available
108	elsewhere (Stoecker et al. 2015; Ray et al. 2016). Briefly, exponential growth of the diatom S.
109	marinoi occured in all three mesocosm treatments (Control, NP and NPSi), peaking during 18-23
110	March. Highest abundances of S. marinoi occurred in the NPSi treatment. Exponential growth of
111	P. pouchetii blooms commenced after 25 March in both the NP and NPSi mesocosms, although
112	highest abundances of <i>P. pouchetii</i> occurred in the NP mesocosms (Ray et al. 2016). The
113	initially high nutrient levels in the Raunefjorden, from which mesocosm bags were filled,
114	resulted in similar successive blooms in the different mesocosm treatments despite differential
115	nutrient amendment (Stoecker et al. 2015).
116	

116

117 Sampling for metabarcoding analysis

Samples for metabarcoding were collected on 11, 17, 21, 24, 28 and 30 March 2012 as described 118 previously (Ray et al. 2016, Table 1). Briefly, triplicate 50-200 ml seawater samples from all 119 mesocosms and Raunefjorden were filtered by gentle vacuum onto 0.2 µm SUPOR filters (Pall 120 121 Corporation). Filters were aseptically transferred to 2.0 ml tubes containing 280 µl of 56°C Buffer ATL and 20 µl Proteinase K (20 mg ml⁻¹) (QIAGEN DNeasy Blood & Tissue kit). For 122 123 feeding chamber incubations, *Calanus* sp. were first collected by net tows from Raunefjorden 124 (60°16'18"N, 5°10'26"E), and 20 individuals each of adult female or stage V copepodites were 125 manually sorted into ~ 1.8 L volume grazing chambers containing 0.2 µm-filtered seawater. The detailed chamber construction is described in Ray et al. (2016). Sorted copepods inside grazing 126 chambers were kept in the dark at 8°C until deployment inside mesocosms on the following 127 128 morning. Three replicate grazing chambers containing copepods were deployed inside each

129 mesocosm. The 500 um nylon mesh covering both openings of the grazing chambers allowed 130 constant vertical circulation of mesocosm water containing in situ microbial assemblages through the chambers. After a 24-hour incubation, mesocosm chambers were recovered one at a 131 132 time, and copepods were rinsed with three successive washes of 0.2 um-filtered seawater prior to a final immersion in an anaesthetic seawater solution containing 0.37 mg ml⁻¹ ethyl 3-133 aminobenzoate methanesulfonate (MS222) (Sigma-Aldrich, Norway) (Simonelli et al. 2009). 134 135 Pools of five copepods from each chamber were sorted into 1.5 ml tubes containing 180 µl of Buffer ATL preheated to 56°C and 20 ul (20 mg ml⁻¹) Proteinase K (OIAGEN DNeasy Blood & 136 Tissue kit). In summary, we collected three biological replicate copepod samples (five copepod 137 individuals per sample) and three biological replicate seawater samples (filters) per mesocosm 138 139 and from Raunefjorden on each of the six sampling days. Because whole copepods were lysed, 140 the copepod samples may also contain any symbionts on copepod surfaces or in tissues. For 141 simplicity, however, we refer to these samples as "copepod gut content" samples throughout the manuscript. All filter and copepod samples for DNA extraction were lysed at 56°C overnight 142 143 then frozen at -20°C until processing. DNA extraction was performed according to the manufacturer's protocol, except that two rounds of elution with 100 µl of 56°C Buffer AE 144 145 (QIAGEN) were used instead of the recommended single elution step using 200 µl of room 146 temperature Buffer AE.

147

148 Amplicon library preparation

The universal primers F-1183mod and R-1443mod (Table 1) targeting the V7 region of the small
subunit ribosomal RNA (SSU rRNA) gene were used in polymerase chain reactions (PCR) to

amplify microbial eukaryotes. Universality of primers was checked using the TestPrime function

152 on the Arb-Silva website (<u>http://www.arb-silva.de/search/testprime/</u>) (Table S1). Primer F-

153	1183mod was modified with the Roche GS-FLX Lib-L Adapter B sequence (5' - CCT ATC
154	CCC TGT GTG CCT TGG CAG TC - TCAG - primer - 3') and used in all PCR reactions.
155	Unidirectional sequencing was performed from primer R-1443mod, which was modified with
156	Adapter A (5' - CCA TCT CAT CCC TGC GTG TCT CCG AC -TCAG - barcode - primer - 3'),
157	where a unique 10-mer barcode multiplex identifier (MID) was included for sample
158	identification during demultiplexing. Primers were HPLC-purified to ensure uniform length and
159	to eliminate contaminating DNA from lyophilized primer preparations. In order to block Calanus
160	amplification from copepod samples, a combination of the Calanus-specific blocking oligos,
161	Cal-SpcC3-block and Cal-PNA-block (Table 1 and Supporting Information) was used in 50 μ l
162	PCR reactions containing 5 µl of template DNA, 1X HF buffer (New England Biolabs, Ipswich,
163	Massachusetts), 0.4 U Phusion DNA polymerase (New England Biolabs), 50 μ M each dNTP,
164	250 nM each primer, 2 μ M Cal-SpcC3-block and 1 μ M Cal-PNA-block. For amplification from
165	seawater samples, no blocking oligos were included but otherwise PCR conditions were
166	identical. Amplification was performed using a C-1000 thermal cycler (Bio-Rad) with one cycle
167	of 95°C for 5 min, 30 cycles of 94°C for 20 sec/70.2°C for 10 sec/60.2°C for 20 sec/72°C for 25
168	sec, and a final elongation of 72°C for 2 min. PCR products were pooled by sample, purified
169	using 0.8 vol magnetic beads (Agencourt Ampure XP, Beckman-Coulter Inc., Indianapolis,
170	Indiana, USA), and quantified using PicoGreen (Quant-It PicoGreen dsDNA Assay kit, Life
171	Technologies Ltd, Paisley, UK) on a NanoDrop 3300 fluorospectrophotometer (Thermo Fisher
172	Scientific, Waltham, Massachusetts). Equimolar amounts of each sample pool were combined
173	and vacuum-concentrated to generate one amplicon library from copepod samples and one from
174	seawater samples. A detailed description of amplicon library generation for metabarcoding may
175	be found in the Supporting Information. Amplicon libraries were sequenced on 1/2 plate each

using Roche GS-FLX Titanium chemistry at the Norwegian Sequencing Centre (University ofOslo, Norway).

178

179 Sequence analysis

180 We used two different approaches for analysis of metabarcoding results - operational taxonomic 181 unit (OTU) clustering and taxonomic classification. In order to identify taxa and OTUs common 182 to both libraries, sequence data for the two data sets (copepod gut content and seawater amplicon 183 libraries) were collated prior to taxonomic classification or to OTU clustering using 98% sequence similarity cut-off. OTU clustering with 98% cut-off was performed using 184 AmpliconNoise v.1.29 (Quince et al. 2009; 2011). Alternatively, forward primer trimming and 185 186 quality filtering using trim seqs in mothur v.1.33 (Schloss *et al.* 2009) was performed with the 187 following parameters: gaverage=25, maxambig=0, maxhomop=6, minlength=200, flip=T, pdiffs=1 with raw sequence fasta file and gfile as input. Taxonomic classification of these 188 189 quality-filtered reads was performed using the CREST classifier with the SilvaMod database as 190 reference set (Lanzén et al. 2012). CREST taxonomic classification results for individual 191 samples files were collated using custom awk scripts. Because the SilvaMod database uses the 192 Silva taxonomy without a strict taxonomic ranking, and because the CREST classifier uses a 193 lowest common ancestor (LCA) algorithm, we refer to taxonomic assignments according to rank 194 rather than according to standard taxonomic hierarchy.

195

196 Metabolite profile analysis

Phytoplankton samples for intracellular metabolic profiling were collected every day from 8 to
30 March from all mesocosms and from Raunefjorden and analyzed using a modified protocol
for metabolomic analysis of *Skeletonema marinoi* cultures (Vidoudez & Pohnert 2012). Briefly,

cells from 9 L of seawater were concentrated onto GF/C-filters (1.2 µm nominal pore size) with
gentle vacuum (~400 mbar). Depending on chlorophyll *a* (chl*a*) concentration and microscopy
counts, the daily sampling volume was gradually decreased to 1 L during the experiment.
Samples were extracted, derivatized and analysed as described previously (Vidoudez & Pohnert
2012). A detailed description of methods used for metabolomic profiling is provided in the
Supporting Information.

206

207 Statistical analysis

All statistical analyses, unless otherwise noted, were conducted in the R statistical computing 208 environment (R Core Team, 2015). Alpha- and beta-diversity estimates were performed using 209 the rarecurve and estimateR (richness) and diversity functions in the "vegan" package v.2-0.10 210 211 (Oksanen et al. 2013). Non-metric multidimensional scaling (NDMS) ordination of OTU and taxonomy tables was performed using the metaMDS function in "vegan". Data visualization was 212 213 performed using the "ggplot2" package (Wickham 2009). Permutational analysis of variance 214 using distance matrices (PERMANOVA) was performed using the adonis function in "vegan". Constrained correspondence analysis (CCA) was performed using the cca function in "vegan" 215 216 with ordistep for forward selection to identify significant environmental variables. Correlation 217 analysis of metabarcoding ratios to individual metabolites was performed using cor.test (method="kendall") and custom R scripts. The data matrix from metabolomic runs was analysed 218 219 using canonical analysis of principle coordinates by linear discriminant analysis (CAPdiscrim; 220 Anderson & Willis 2003). CAPdiscrim was performed using the Windows-executable program CAP12 (Anderson 2004) using the following parameters: choice of transformation=none, choice 221 of standardisation=none, choice of distance measure=Bray-Curtis, type of analysis=discriminant 222 analysis, number of principal coordinate axes chosen by the program, number of random 223

permutations=999. Treatment of metabolomics runs to achieve the data matrix is described in theSupporting Information.

226

227 Results

228 Metabarcoding analysis

229 Unidirectional pyrosequencing of the seawater amplicon libraries resulted in 437 522 sequence 230 reads, while the copepod gut content libraries generated 353 459 sequence reads (Table S2). 231 Read coverage for each sample was relatively even for the seawater library, with a maximum 232 approximate two-fold variation in number of reads per sample from highest to lowest coverage and a relatively low standard deviation for both pipelines (Table S2). The Calanus gut content 233 234 sample coverage was less even, with a nearly nine-fold difference in the number of sequence 235 reads per sample between samples with lowest and highest sequence coverage (Table S2). Denoising, quality filtering and OTU clustering and chimera removal using AmpliconNoise 236 237 generated 3115 OTUs in total for both amplicon libraries, while taxonomic assignment of 238 denoised, quality-filtered reads using the CREST classifier and the SilvaMod database as 239 reference resulted in the identification of 1032 unique taxonomic rankings (herein referred to as 240 taxa) in the collated seawater and *Calanus* gut content sequence data (Table S2). Initial 241 inspection of OTU clustering and taxonomy results for the sequence data showed that many reads (2.9 - 36.6 %) present in the Calanus gut content amplicon libraries had highest similarity 242 243 to Calanus copepod SSU sequences (black bars in Fig. S1). Calanus-like sequences were 244 assumed to be copepod sequences that were amplified despite the blocking-PCR strategy used, 245 and were therefore removed from the copepod gut content OTU and taxonomy tables prior to 246 diversity or statistical analysis (Table S2, footnote 2). It should be noted that amplification strategy used is unable to distinguish between (1) *Calanus* sp. sequences that are the result of 247

248 incomplete blocking of predator DNA amplification and (2) Calanus sp. sequences that originate 249 from ingestion of other calanoid species, nauplii and/or eggs. Assuming the former and thus 250 removing these sequences prior to downstream analysis, we have therefore not assessed the 251 contribution of cannibalism or predation on closely-related Calanus taxa. 252 Rarefaction analysis of AmpliconNoise OTUs (Fig. S2A, B) and CREST taxonomic assignments 253 254 (Fig. S2C, D) demonstrated clear undersampling for all *Calanus* gut content samples (Fig. S2A, 255 C), and in particular for those samples for which relatively few reads were obtained (Table S3). Seawater samples, however, were sampled to near saturation (Figures S2B, D), with the 256 exception of seawater samples from Raunefjorden on 17 and 21 March 2012. Closer inspection 257 258 of sequence data from these two seawater samples showed a larger number of singletons (data 259 not shown) and higher biodiversity (Table S3) relative to the other seawater samples. Beta diversity analysis of abundance-normalized OTU and taxonomy tables based on the inverse 260 Simpson's diversity index (1/D) for Jaccard $(1/D_J)$ and Bray-Curtis $(1/D_{BC})$ distance matrices 261 suggested low variation in diversity between seawater samples regardless of analysis pipeline or 262 distance metric used (Table S3, Mesocosm seawater). For *Calanus* gut content samples (from 263 264 which *Calanus*-like reads were removed), however, we observed higher variation in beta diversity when Bray-Curtis was used as distance metric, but not when Jaccard distances were 265 used (Table S3, Calanus gut content). In addition, we observed a trend of increasing beta 266 267 diversity toward the end of the mesocosm experiment for *Calanus* gut content samples for all 268 treatments, regardless of analysis pipeline (Table S3, Calanus gut content). 269

The diversity revealed by metabarcoding of seawater microbial plankton includes all major
marine plankton groups, including rhizarians, diatoms, haptophytes, ciliates, dinoflagellates,

272	chlorophytes, cercozoans, choanoflagellates, cryptophytes, fungi, bivalves, gastropods, tunicates,
273	crustaceans, land plants and others, indicating that the PCR primers used amplify DNA from a
274	broad diversity of eukaryotic microorganisms present in the Raunefjorden ecosystem (Fig. 1).
275	The taxonomic diversity observed was highly uneven, with the 20 most abundant OTUs (Fig.
276	1A) or taxa (fifth-rank taxonomic assignments according to the Silva taxonomy) (Fig. 1B)
277	comprising 20-95% of reads in both seawater and copepod gut content sequence libraries.
278	Inspection of taxonomic assignments for the most abundant OTUs/taxa observed in copepod gut
279	content revealed that these reads may represent organisms living in a symbiotic relationship
280	(sensu Leung and Polin 2008) with Calanus, including Syndiniales (Dinophyceae),
281	Oligohymenophorea (Ciliophora), Amoebophyra (Ciliophora), Paradinium (Rhizaria). Lacking
282	proof, however, that these reads represent symbioses rather than ingested prey, and because these
283	organisms would likely generate a chemical signal that would be detected by the metabolite
284	profiling analysis, we chose to retain them in the sequence data for downstream statistical
285	analyses.
286	
287	Non-metric multidimensional scaling (NMDS) analysis of OTU or taxonomic classification
288	results demonstrated that the strongest effect on sample diversity was sample type, that is,

289 whether the sample originated from seawater or from *Calanus* gut content (Fig. 2). This

290 significance was confirmed by PERMANOVA analysis of OTU (AmpliconNoise) and

291 taxonomic (CREST) diversity, for which Pr(>F) = 0.001 for both pipelines independent of

distance metric (Table 2). Indeed, sample type explained 21-32.1% of the variation in OTU

diversity or 34-47% of the variation in the taxonomic diversity (Table 2) observed.

294 PERMANOVA also identified sampling date as a significant explanatory variable for both

AmpliconNoise OTU (6.8 - 8.8%) and CREST taxonomic (7.6 - 9.6%) diversity (Table 2).

296 Experiment type (mesocosm or fjord) explained a significant fraction of diversity for AmpliconNoise OTUs (3.8 - 4.6% of OTU diversity) but not for CREST taxonomic diversity (< 297 298 1.5%). Treatment was not found to be significant regardless of pipeline or distance metric (Table 299 2). Kruskal-Wallis rank sum tests identified several taxa (Fig. S3) that were significantly 300 different in their relative abundance between seawater and *Calanus* gut content samples. In general, copepod samples were distinguishable by their significantly higher abundances of 301 302 protozoans, primarily apostome ciliates and the rhizarian *Paradinium*. For two representative 303 taxa, *Phaeocystis pouchetii* and *Skeletonema marinoi*, which exhibited exponential growth 304 during the mesocosm experiment, metabarcoding signals were clearly stronger in seawater samples than in the corresponding copepod samples (Fig. 1 and Fig. S3). Seawater samples also 305 306 contained significantly higher numbers of dinoflagellates, cercozoans, nanophytoplankton 307 (Phaeocystales, Bacillariophyta, Prymnesiales, Pelagophyta, Chlorophyta), heterotrophic 308 nanoflagellates and radiolarians relative to the corresponding copepod samples (Fig. S3). 309 Copepod gut content samples, on the other hand, contained relatively higher numbers of ciliates, 310 fungi, arthropods, and kinetoplastid protozoans (Fig. S3).

311

312 Molecular proxy for *Calanus* feeding selection

The quantitative power of the metabarcoding data was examined by comparison with previous results from qPCR and microscopy analysis of *P. pouchetii* and *S. marinoi* performed on samples from the same mesocosm experiment (Ray *et al.* 2016) (Fig. 3). Metabarcoding signal dynamics in seawater were generally consistent with both microscopic enumeration and qPCR quantification of these taxa in each treatment, although the decreasing microscopy and qPCR signals for *S. marinoi* at the end of the experiment in the NP and NPSi treatments were not evident in the metabarcoding data (Fig. 3B). In concert, however, these results support a semi-

320 quantitative interpretation of metabarcoding data to evaluate the dynamics of *Calanus* grazing 321 responses to individual prey taxa as a function of specific prey abundance (D'Amore *et al.* 2016; 322 Lanzén et al. 2016). The ratios of individual OTUs or taxa abundance in copepod gut content to 323 their abundance in surrounding seawater were therefore calculated as a proxy, or selectivity 324 index (Irigoien et al. 2000), for Calanus grazing (Ray et al. 2016) on individual OTUs and taxa (Table S4). Measurable grazing ratios (independent of treatment or sampling date) varied over 325 326 seven orders of magnitude (Fig. 4), indicating a large range in apparent copepod feeding 327 selection. High ratios were interpreted as suggestive of positive feeding selection, while low 328 ratios were suggestive of negative feeding selection. Highest grazing ratios in this study were observed for large pennate and centric diatoms, fungi, kinetoplastid protozoans, marine 329 330 invertebrates, heterotrophic nanoflagellates, hypotrich ciliates and unknown eukaryotes, while 331 lowest grazing ratios were observed for oligotrich and choreotrich ciliates, dinoflagellates, 332 autotrophic flagellates, haptophytes including P. pouchetii and small diatoms such as Skeletonema (Table S4, Part C). Grazing ratios for *P. pouchetii* and *S. marinoi* were almost 333 334 always low (> 1), potentially indicative of negative selection of these food particles by *Calanus* copepod incubated in mesocosm chambers despite their high relative abundance in the NP and 335 NPSi mesocosms (Fig. 3 and Ray et al. 2016). The temporal dynamics of molecular grazing 336 337 ratios calculated from AmpliconNoise OTU- and CREST taxonomic assignments for each treatment are shown in Fig. S4. 338

339

340 Correlation of intracellular metabolites with metabarcoding results

341 In total, 274 features were detected in the intracellular metabolite profiles from all seawater

- 342 samples (Table S5). Canonical correspondence analysis (CCA) with forward selection of
- 343 peaksum-normalized metabolite profiles from all sampling days and treatments identified

344 Treatment (Pr(>F)=0.005, F=2.0215, df=3) and Date (Pr(>F)=0.005, F=2.9512, df=1) as 345 significant structuring variables. Visual inspection of hierarchical clustering patterns in metabolite profiles based on chl a, phaeophytin and P. pouchetii colonial cell abundance 346 347 dynamics reported previously (Ray et al. 2016) for the NP or NPSi mesocosms revealed three distinct stages of the mesocosm succession (Fig. 5). The "early" stage of succession, from 11-17 348 March, was characterized by the exponential growth of the diatom S. marinoi, as indicated by an 349 350 exponential increase in 0.2 um-filterable chl a (Ray et al. 2016) as well as microscopy counts of 351 S. marinoi (Fig. 3). The subsequent plateau of chl a and concomitant increase in phaeophytin were indicators for the "middle" succession phase, which occurred from 18-23 March. Increasing 352 numbers of *P. pouchetii* colonial cells (an indicator of exponential *P. pouchetii* growth) 353 (FlowCAM measurements, Ray et al. 2016) delimited the "late" phase of mesocosms succession, 354 355 from 24-30 March.

356

Succession stage was shown to be a highly significant grouping variable for ordination of the NP 357 358 and NPSi intracellular metabolite profiles by CAP discrim analysis (P = 0.001 with 1000 permutations), explaining 94-95% of the variation in the principal components of the metabolite 359 data (Fig. 6). Succession phase could also explain 49% of the variation in biomass estimates for 360 microbial eukaryote taxonomic groups based on microscopy counts (available on 361 http://datadryad.org) from NP and NPSi mesocosm seawater (PERMANOVA, df = 2, SS = 362 4.0224, F = 20.027, Pr(>F) = 0.001). CAPdiscrim analysis furthermore allowed us to identify 363 364 intracellular metabolites, in particular carbohydrates and carbohydrate derivatives, which could discriminate between the S. marinoi-dominated "middle" succession phase and the P. poucheti-365 366 dominated "late" succession phase during the experiment (Fig. 5). For example, inositol isomers

367 (e.g Metabolites 159, 173, 174) as well as saccharides (Metabolite 161) correlated significantly 368 with the S. marinoi dominated succession phase, while Metabolites 134 and 207 were found to 369 be saccharide-like metabolites whose high concentrations co-occurred significantly with P. 370 *pouchetii* exponential growth. Furthermore, we identified several lipids that were either significantly correlated to the S. marinoi-dominated "middle" mesocosm phase, which included 371 fatty acids (e.g. Metabolite 194), or to the P. pouchetii-dominated "late" mesocosm phase, which 372 373 included a terpene (Metabolite 214) and sterols (Metabolites 260, 264, 267). Metabolites 374 associated with the CAP discrim-identified mesocosm succession stages are shown in (Fig. 5). 375 Based on microscopy biomass estimates (Table S6), several taxonomic groups were found to be 376 significantly correlated to specific metabolites (Table S7). Weak positive correlation to Metabolites 173 (inositol isomer) and 205 (glucose derivative), for example, were identified for 377 378 Skeletonema biomass estimates in NP mesocosms. Metabolites 203 (1-octadecanol), 207 379 (unknown) and 209 (unknown) were found to be positively correlated to *Phaeocystis* biomass, 380 while metabolite 262 (cholesterol) was found to be negatively correlated to *Phaeocystis* biomass, in NP mesocosms. 381

382

383 To further test whether *Calanus* grazing ratios on individual prey taxa correlated significantly to 384 metabolites from all mesocosm treatments and Raunefjorden, we performed pairwise correlation analysis of the 274 detected metabolites to Calanus grazing ratios calculated from 385 386 AmpliconNoise OTUs that were collated by fifth-rank taxonomic assignments (Table S8). Due 387 to limited metabarcoding sample numbers and to missing data points for grazing ratios calculated from the metabarcoding data, it was not possible to identify statistically significant correlations 388 between grazing ratio dynamics for individual OTUs/taxa and individual metabolites. Closer 389 inspection of these non-significant results, however, revealed consistent correlative 390

391	"associations" of grazing ratios with sugar derivatives, saccharides, amino acids and their
392	derivatives, and fatty acids, thus implicating these metabolite classes in Calanus grazing
393	selection (Table S8). Metabolites 159, 173 and 194, for example, which were significantly
394	correlated with the S. marinoi-dominated "middle" mesocosm metabolic phase, were found to be
395	negatively associated with the grazing ratios for Bacillariophyta in the diatom-dominated NPSi
396	mesocosm treatment (Kendall's $tau = -0.733$, -0.87 and -0.733 , respectively) (Table S8). For the
397	NP mesocosms, which experienced strongest dominance by P. pouchetii during the "late"
398	mesocosm metabolic phase, metabolites 134, 214, 260, 264 and 267 were found to be positively
399	associated with <i>Calanus</i> grazing ratios on Phaeocystales (Kendall's $tau = 0.966, 0.690, 0.828,$
400	0.552 and 0.552 respectively). Comprehensive results from correlation analysis of grazing ratios
401	with metabolites can be found in Table S8.

402

403 Discussion

404 Selective feeding by *Calanus* copepods

405 Our molecular characterization of *Calanus* sp. grazing during a seawater mesocosm experiment 406 provides new evidence for dynamic and discriminate feeding selection by this copepod in mixed 407 natural microbial plankton assemblages. Although *Calanus* sp. copepods may generate feeding currents for passive grazing, our findings support numerous empirical studies demonstrating 408 clear selectivity in copepod feeding behavior (Huntley 1988; Meyer-Harms et al. 1999; 409 410 Nejstgaard et al. 1997; 2008; Barofsky et al. 2010, and references therein) in mixed natural 411 assemblages of microbial plankton. Nutrient manipulation of mesocosms to promote a P. *pouchetii* bloom further indicated that the increase in prev particle size range caused by the 412 formation and growth of P. pouchetii colonies during bloom development does not increase the 413 414 ingestion of *P. pouchetii* by *Calanus*, negating size selection as a significant determinant of

415 copepod feeding (Nejstgaard et al. 2007). On the contrary, our molecular diet analysis provides 416 direct evidence that *P. pouchetii* does not contribute significantly to *Calanus* copepod diet in a mesocosm setting (Neistgaard et al. 2006; Ray et al. 2016). The timing of the bloom-like growth 417 418 of *P. pouchetii* in this experiment was such that peak abundance occurred around the time when 419 the experiment was stopped. The complete sample set does therefore not include any samples from a *P. pouchetii* "bloom decline" stage, precluding our ability to test the hypothesis of Estep 420 421 et al. (1990) that ageing or senescent P. pouchetii colonies, either by merit of physical 422 degradation or changes in chemical properties, are more readily consumed by *Calanus* copepods than younger colonies. 423 424 Our molecular grazing ratio results are in accord with idealized food web models and 425 426 experimental observations in which mesozooplankton (copepods) have been shown to prefer

427 ciliates and large diatoms over small autotrophs as a food source (e.g. Kleppel *et al.* 1991;

428 Stoecker & Capuzzo 1990; Ohman & Runge 1994; Nejstgaard et al. 1997, 2001b; Calbet & Saiz

429 2005; Yang *et al.* 2009; Fileman *et al.* 2010). The low grazing selection ratios that we observed

430 for dinoflagellate taxa including *Gyrodinium*, the most abundant genus observed in our

431 experiment (Stoecker et al. 2015, Ray et al. 2016), were more surprising as previous studies have

432 shown high ingestion rates of dinoflagellates by calanoid copepods (Levinsen *et al.* 2000; Batten

433 *et al.* 2001; Olson *et al.* 2006). For example, Fileman *et al.* (2010) observed high clearance rates

434 by C. helgolandicus on Gyrodinium fusiforme/spirale in June in the English Channel; at this time

435 large heterotrophic dinoflagellates dominated the microzooplankton biomass and large

436 choreotrich ciliates were scarce. However, in most grazing experiments, choreotrich ciliates

437 accounted for a larger proportion of the microzooplankton carbon ingested than did heterotrophic

438 dinoflagellates (Fileman et al. 2010). Based on our grazing proxy, our results suggest that 439 *Gyrodinium* spp. dinoflagellates were not prefered prey during the mesocosm experiment. One explanation for this finding is active avoidance of *Calanus* predation by dinoflagellates (Granéli 440 441 et al. 1993; Nejstgaard et al. 1997; 2001a; Verity 2010). Alternatively, ingested dinoflagellates 442 might be rapidly digested in the *Calanus* digestive tract (e.g. Sullivan 2011), however we did not observe consistently low grazing ratios for all naked autotroph and protist taxa present in the 443 444 grazing ratio data (Table S4), nor are we aware of studies demonstrating taxon-dependent 445 differential prey DNA digestion rates. An additional surprising finding of our grazing ratio proxy is the apparent positive selection by *Calanus* copepods on fungi. Dikarya were highly grazed in 446 all treatments and Raunefjorden throughout the experiment (Fig. S4). Inspection of taxonomic 447 448 classification of these taxa revealed primarily pezizomycotina (Ascomycota) and agaricomycetes (Basidiomycota). The high relative presence of these fungal taxa in *Calanus* gut content may 449 450 suggest grazing on fungal hyphae or spores, but may also suggest the consumption of detrital material by copepods (although see Paffenhöffer & Strickland 1970), as these fungal groups are 451 452 known saprophytes of marine macroalgae (Richards et al. 2012). It should be further noted that the apparent gut content of harvested copepods likely reflects prey particles consumed only in 453 the time period (< 1 hour) immediately prior to sampling, as prey DNA digestion (Troedsson et 454 455 al. 2009) and rapid copepod gut passage (Nejstgaard et al. 2003) would certainly hinder 456 detection of prey particles cumulatively consumed during the entire mesocosm incubation period. The metabarcoding data from copepod gut content samples thus represents a snapshot of 457 grazing activity by *Calanus* copepods incubated in mesocosm grazing chambers. In order to 458 ensure that the seawater microbial plankton diversity would provide a concurrent diversity 459 460 "scaffold" upon which to assess prey selection by feeding copepods, seawater samples for

461 metabarcoding analysis were collected from mesocosms and Raunefjorden immediately prior to462 copepod harvesting.

463

464 The interpretation of metabarcoding results as an indication of positive or negative grazing selection by *Calanus* on specific OTUs or taxa requires the implicit assumption that 465 metabarcoding abundances correspond to biologically meaningful quantities, i.e. prev 466 467 abundances. The potential sources of PCR and target gene copy number bias that can limit the quantitative power of metabarcoding approaches in microbial ecology have been described in 468 other publications (Richards & Bass 2005; Potvin & Lovejoy 2009; Amend et al. 2010; Stoeck et 469 al. 2010; Deagle et al. 2010; 2013; Gong et al. 2013). Cognizant of these cautions, we have 470 471 utilized grazing ratios rather than absolute abundances, thus normalizing read abundance data for 472 some of the bias inherent in PCR-based sequencing library preparation. We demonstrate correspondence between metabarcoding analysis, microscopy counts and qPCR estimations for 473 key mesocosm taxa, namely *P. pouchetii* and *S. marinoi*. The semi-quantitative interpretation of 474 475 metabarcoding results for individual OTUs or taxa (D'Amore et al. 2016; Lanzén et al. 2016) has thus generated a numerical proxy by which grazing selection may be evaluated, and which has 476 provided a useful tool for correlative analysis of copepod feeding selection with plankton 477 478 metabolic succession. Contemporary calls for an integrated approach to marine biodiversity 479 assessment and baseline establishment include the contribution of molecular analysis (Duffy et al. 2013), thus critical evaluations of the quantitative power of, for example, metabarcoding data 480 to investigate trophic interactions (King et al. 2008), are both timely and relevant. 481

482

483 Metabarcoding analysis marker selection

484 Sequence read length limitations of earlier generation sequencing technologies restricted the 485 choice of SSU rRNA hypervariable target region to those regions (typically V9 for eukaryotes, ~ 200 bp) representing the best compromise between phylogenetic information density and 486 487 shortest possible target fragment length (Amaral-Zettler et al. 2009; Brown et al. 2009; Stoeck et al. 2009; Edgcomb et al. 2011). Later improvements in sequencing chemistry, however, have 488 facilitated sequencing of longer target regions, thus increasing the possibility for exploration of 489 490 microbial diversity using other hypervariable regions within the SSU rRNA gene (Chariton et al. 491 2010; Stoeck et al. 2010; Behnke et al. 2011; Monchy et al. 2011; Lanzén et al. 2016). Molecular analysis of trophic interactions, however, must also assume considerable prey DNA 492 degradation inside the host gut, which reduces the informational advantage obtained with longer 493 494 sequence reads (Troedsson et al. 2009). The diversity of prey organisms observed in copepod gut content samples in this study (Fig. 1) confirms that the V7 region of the SSU rRNA gene 495 496 targeted in this study (Hadziavdic et al. 2014) provides a satisfactory compromise between fragment length (260-360 bp) and phylogenetic/taxonomic resolution (Table S1) for broad 497 498 exploration of microbial eukaryote plankton diversity in the context of copepod grazing 499 selection.

500

501 Putative protist symbionts of Calanus

The most abundant taxa identified among classified reads and OTUs in the copepod gut content
sequence data had highest similarity to the taxonomically ambiguous *Paradinium* (Shields 1994;
Carman & Dobbs 1997; Skovgaard & Daugbjerg 2008), the dinoflagellate groups Blastodinia
and Syndinia (Shields 1994), Apicomplexa (Rueckert *et al.* 2011), and the apostome ciliate clade
Oligohymenophorea (Carman and Dobbs 1997; Prokopowicz *et al.* 2010; Guo *et al.* 2012;

507 Chantangsi et al. 2013). Symbioses between Calanus and commensals and/or parasites would be 508 characterized by our proxy as having high grazing ratios despite the fact that *Calanus* had not consumed these organisms per se. We have therefore not drawn conclusions about Calanus 509 510 grazing activity on these taxa. Furthermore, the nature of the biological relationship of these taxa 511 with the *Calanus* copepods in which they were detected falls outside the scope of this study, yet raises questions about the incidence of *Calanus* parasitism and the effect of parasitism on 512 513 copepod health, reproduction and feeding behavior (Skovgaard & Saiz 2006; Cirtwill et al. 2015; 514 Worden et al. 2015). Future studies of Calanus feeding using state-of-the-art high-throughput sequencing technology might increase the sequencing depth of *Calanus* gut content sample 515 coverage to improve the sensitivity of detection of prey organisms even in the presence of 516 517 symbioses. Alternatively, prey enrichment strategies such as blocking PCR oligos (Troedsson et 518 al. 2008b; Hu et al. 2014) against dominant suspected symbiont sequences, DHPLC-PCR 519 (Troedsson et al. 2008a,b; Olsen et al. 2012; 2014) and/or restriction enzyme treatment (Maloy et al. 2013) might also be employed to overcome symbiont phylogenetic signal. Amplicon 520 521 libraries were not generated from starved copepods in this study, which would have enabled a more conclusive assessment of prey versus symbiont. The sequencing strategy employed in this 522 study to investigate *Calanus* grazing choice has nonetheless uncovered a high diversity of 523 524 *Calanus*-associated microbial eukaryotes that suggests a considerable degree of endemic symbioses in copepods in accord with previous observations (Skovgaard & Saiz 2006; Rueckert 525 526 et al. 2011; Bickel et al. 2012; Lima-Mendez et al. 2015). 527

528 Role of Metabolites in Grazing Selection by *Calanus*

529 The importance of carbohydrates and lipids was a feature common to all correlation analyses

530 (metabolite succession phase, biomass of taxonomic groups, molecular grazing ratios) performed 531 in this study, implicating the importance of these metabolite classes in the trophodynamics of Calanus feeding. For example, inositol-related peaks (Metabolites 159, 173 and 174) were 532 533 positively correlated with the S. marinoi-dominated "middle" metabolite succession phase as well as *Skeletonema* biomass estimates, but negatively associated to *Calanus* grazing ratios on 534 diatoms, in the NPSi treatment. Using a qPCR-based molecular grazing proxy, we have 535 536 previously shown that *Calanus* grazing selection on *S. marinoi* was low during exponential growth of S. marinoi, but increased with diatom bloom senescence (Ray et al. 2016). Indeed, 537 grazing ratios for diatoms, albeit generally low, increased toward the end of the mesocosm 538 experiment in the NP and NPSi treatments in this study (Fig. S5, "Bacillariophyta"), suggesting 539 540 that copepod grazing on diatoms only increased as the diatom bloom declined during the "late" 541 metabolite succession phase. These results further suggest that exponential-phase S. marinoi is not preferred prey for *Calanus*, and that *Calanus* grazing selection may rather be linked to the 542 developmental status of the greater prey community that is reflected in its chemical composition, 543 544 as previously demonstrated (Barofsky et al. 2010; Ray et al. 2016).

545

The complexity of plankton succession in natural assemblages presents an ongoing challenge of our ability to identify taxon-associated metabolites and their role(s) in grazing selection by copepods. For example, Metabolite 260, a steroid, was significantly positively correlated to the "late" metabolome succession phase of the NP and NPSi treatments, however it was not significantly correlated to microscopy-based biomass estimates for *P. pouchetii* (Table S7), which was a dominant phytoplankton taxon during this phase. This suggests correspondence of this metabolite to the "late" succession phase itself, rather than to one specific taxon. Our

553 additional observation that this metabolite was positively associated with *Calanus* grazing ratios 554 on *P. pouchetii* in the NP treatment (Table S8) is therefore likely anecdotal, i.e. that *Calanus* 555 simultaneously consumed *P. pouchetii* colonies or colony fragments that were physically 556 associated with other prey particles such as diatoms (Smetacek et al. 2002), whose lipids and carbohydrates may have become more bioavailable to Calanus due to diatom bloom senescence 557 during the "late" succession phase. Indeed, Metabolite 207 (galactosylglycerol) was weakly 558 559 positively correlated with *P. pouchetii* biomass estimates (Table S7), but also positively 560 associated with molecular grazing ratios for diatoms (Table S8). The positive association between Metabolite 207 and *P. pouchetii* biomass may therefore indicate that the underlying 561 biological interaction was in fact due to the co-occurring S. marinoi bloom decline rather than to 562 the increase in *P. pouchetii* biomass per se. In concert, these results highlight the biological and 563 564 chemical complexity of the seawater mesocosm plankton communities.

565

566 Conclusions

567 In order to generate new knowledge about copepod grazing behavior, we have implemented a proxy for *Calanus* feeding selection based on metabarcoding analysis of eukaryotic microbial 568 plankton communities. This proxy has revealed a diverse prey landscape, and allowed us to 569 570 identify associations between copepod feeding selection dynamics and metabolic signatures of 571 co-occurring microbial plankton communities. Our correlative approach has provided consistent indication of the importance of carbohydrates and lipids during Calanus feeding selection. In line 572 573 with the findings of previous studies, the combined metabarcoding and metabolomic analyses therefore suggest that prey selection by copepods is determined by the developmental status of 574 575 the diverse prey community, rather than by relative abundances of individual prey taxa. We have

demonstrated that the combined analysis of high-resolution biological and chemical factors can
provide new information about copepod feeding selecting in dynamic and complex prey
assemblages. This knowledge improves our understanding of the efficiency of the marine food
web and increases our ability to predict responses to perturbation and changing climate on a
temporal and spatial scale relevant for evolutionary forces on plankton.

581

582 Acknowledgments

This study was funded by the Research Council of Norway (RCN) research project "A novel 583 cross-disciplinary approach to solve an old enigma: the food-web transfer of the mass-blooming 584 phytoplankter *Phaeocystis pouchetii*" (Phaeonigma, project number 204479/F20). Additional 585 support was received from the European Research Council Advanced Grant ERC-AG-LS8 586 "Microbial Network Organisation" (MINOS, project number 250254), the German Research 587 Foundation within the framework of the CRC1127 ChemBioSys and the RCN project "Processes 588 589 and players in Arctic marine pelagic food webs - biogeochemistry, environment and climate 590 change" (MicroPolar, project number 225956/E10). JLR received Short Term Scientific Mission travel support through the COST-EU funding program ES1103-Microbial ecology & the earth 591 592 system: collaborating for insight and success with the new generation sequencing tools (COST-STSM-ES1103-16732 and COST STSM ES1103 21370). 593

594

595 References

596 Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying

protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4: e6372

Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454
pyrosequencing: does read abundance count? Mol Ecol 19: 5555-5565

- Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of
- 602 constrained ordination for ecology. Ecol 84: 511-525
- 603 Anderson MJ (2004) CAP: a FORTRAN computer program for canonical analysis of principal
- 604 coordinates. Department of Statistics, University of Auckland, New Zealand
- Ausloos P, Clifton CL, Lias SG, Mikaya AI, Stein SE, Tchekhovskoi DV, Sparkman OD, Zaikin
- 606 V, Zhu D (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc607 Mass Spec 10: 287-299
- Barofsky A, Simonelli P, Vidoudez C, Troedsson C, Nejstgaard JC, Jakobsen HH, Pohnert G
- 609 (2010) Growth phase of the diatom *Skeletonema marinoi* influences the metabolic profile of the
- 610 cells and the selective feeding of the copepod *Calanus* spp. J Plankt Res 32: 263-272
- Batten SD, Fileman ES, Halvorsen E (2001) The contribution of microzooplankton to the diet of
- 612 mesozooplankton in an upwelling filament off the north west coast of Spain. Prog Oceanogr 51:
- 613 385-398
- Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate
- 615 pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA
- 616 gene regions. Environ Microbiol 13: 340-349
- Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
 approach to multiple testing. J Roy Stat Soc B 57: 289-300
- 619 Bickel SL, Tang KW, Grossart H-P (2012) Ciliate epibionts associated with crustacean
- 620 zooplankton in German lakes: Distribution, motility and bacterivory. Front Microbiol 3: 27-54
- Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP
- 622 (2009) Microbial community structure in the North Pacific ocean. ISME J 3: 1374-1386
- 623 Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:
 624 157-167
- 625 Carman KR, Dobbs FC (1997) Epibiotic microorganisms on copepods and other marine
 626 crustaceans. Microscop Res Tech 37: 116-135
- 627 Chantangsi C, Lynn DH, Rueckert S, Prokopowicz AJ, Panha S, Leander BS (2013) Fusiforma
- 628 *themisticola* n. gen., n. sp., a new genus and species of apostome ciliate infecting the hyperiid
- 629 amphipod *Themisto libellula* in the Canadian Beaufort Sea (Arctic Ocean), and establishment of
- 630 the Pseudocolliniidae (Ciliophora, Apostomatia). Protist 164: 793-810
- 631 Chariton AA, Court LN, Hartley DM, Colloff MJ, Hardy CM (2010) Ecological assessment of
- estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Front Ecol Environ 8: 233-

633 238

- 634 Cirtwill AR, Stouffer DB (2015) Concomitant predation on parasites is highly variable but
- 635 constrains the ways in which parasites contribute to food web structure. J Anim Ecol 84: 734-744
- 636 Cowles TJ, Olson RJ, Chisholm SW (1988) Food selection by copepods: discrimination on the637 basis of food quality. Mar Biol 100: 41-49
- 638 D'Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, Shakya M, Podar M,
- 639 Quince C, Hall N (2016) A comprehensive benchmarking study of protocols and sequencing
- 640 platforms for 16S rRNA community profiling. BMC Genomics 17: 55
- 641 Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010) Pyrosequencing faecal DNA to
- 642 determine diet of little penguins: is what goes in what comes out? Conserv Genet 11: 2039-2048
- 643 Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence
- 644 proportions in a DNA based diet study using Ion Torrent amplicon sequencing: which counts 645 count? Mol Ecol Res 13: 620-633
- 646 Duffy JE, Amaral-Zettler LA, Fautin DG, Paulay G, Rynearson TA, Sosik HM, Stachowicz JJ
- 647 (2013) Envisioning a Marine Biodiversity Observation Network. 63: 350-361.
- Edgar RC (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads.
 Nature Meth 10: 996-998
- 650 Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R, Leslin C, Holder M, Taylor GT, Suarez P,
- 651 Varela R, Epstein S (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I.
- 652 Pyrosequencing vs Sanger insights into species richness. ISME J 5: 1344-1356
- 653 Estep KW, Nejstgaard JC, Skjoldal HR, Rey F (1990) Predation by copepods upon natural
- 654 populations of *Phaeocystis pouchetii* as a function of the physiological state of the prey. Mar
- 655 Ecol Prog Ser 67: 235-249
- 656 Fileman E, Petropavlovsky A, Harris R (2010) Grazing by the copepods *Calanus helgolandicus*
- 657 and *Acartia clausi* on the protozooplankton community at station L4 in the Western English
- 658 Channel. J Plankt Res 32: 709-724
- 659 Gong J, Dong J, Liu X, Massana R (2013) Extremely high copy numbers and polymorphisms of
- the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist
- **661** 164: 369-379
- 662 Granéli E, Olsson P, Carlsson P, Granéli W, Christer N (1993) Weak 'top-down' control of
- dinoflagellate growth in the coastal Skagerrak. J Plankt Res 15: 213-237

- 664 Guo Z, Liu S, Hu S, Li T, Huang Y, Liu G, Zhang H, Lin S (2012) Prevalent ciliate symbiosis on
- 665 copepods: high genetic diversity and wide distribution detected using small subunit ribosomal
- 666 RNA gene. PLoS One 7: e44847
- 667 Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C (2014)
- 668 Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS 669 One 9: e87624
- 670 Hu S, Guo Z, Li T, Carpenter EJ, Liu S, Lin S (2014) Detecting in situ copepod diet diversity
- 671 using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-
- 672 inclusive PCR protocol. PLoS One 9: e103528.
- 673 Huntley M (1988) Feeding biology of *Calanus*: a new perspective. Hydrobiol 167: 83-99
- 674 Irigoien X (1998) Gut clearance rate constant, temperature and initial gut contents: a review. J
 675 Plankt Res 20: 997-1003
- 676 King RA, Read DS, Traugott M, Symondson WO (2008) Molecular analysis of predation: a
- 677 review of best practice for DNA based approaches. Mol Ecol 17: 947-963
- Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod
 Acartia tonsa. Mar Ecol Prog Ser 143: 65-75
- Kiørboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86: 311340
- 682 Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and
- 683 microplankton: a question about the role of diatoms. Limnol Oceanogr 36: 172-178
- Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99: 183-195
- 685 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2012)
- 686 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation
- 687 sequencing-based diversity studies. Nucl Acids Res gks808
- 688 Kuhlisch C, Pohnert G (2015) Metabolomics in chemical ecology. Nat Prod Rep 32: 937-955
- Landry MR (2002) Integrating classical and microbial food web concepts: evolving views fromthe open-ocean tropical Pacific. Hydrobiologia 480: 29-39
- 691 Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Øvreås L, Urich T
- 692 (2012) CREST-Classification resources for environmental sequence tags. PLoS One 7: e49334
- 693 Lanzén A, Lekang K, Jonassen I, Thompson EM, Troedsson C (2016) High throughput

- metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil drilling
 activities. Mol Ecol (*in press*): 10.1111/mec.13761
- 696 Leung TLF, Polin R (2008) Parasitism, commensalism, and mutualism: Exploring the many
- 697 shades of symbioses. Life & Environ 58: 107-115.
- 698 Levinsen H, Turner JT, Nielsen TG, Hansen BW (2000) On the trophic coupling between
- protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204: 65-77
- 700 Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa
- 701 JC, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello
- AM, Coppola L, Cornejo-Castillo FM, d'Ovidio F, De Meester L, Ferrera I, Garet-Delmas M-J,
- 703 Guidi L, Lara E, Pesant S, Royo-Llonch M, Salazar G, Sánchez P, Sebastian M, Souffreau C,
- 704 Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Gorsky G, Not F,
- 705 Ogata H, Speich S, Stemmann L, Weissenbach J, Wincker P, Acinas SG, Sunagawa S, Bork P,
- 706 Sullivan MB, Karsenti E, Bowler C, de Vargas C, Raes J (2015) Determinants of community
- structure in the global plankton interactome. *Science* 348: 1262073
- Maloy AP, Culloty SC, Slater JW (2013) Dietary analysis of small planktonic consumers: a case
 study with marine bivalve larvae. J Plankt Res: fbt027
- 710 Meyer-Harms B, Irigoien X, Head R, Harris R (1999) Selective feeding on natural phytoplankton
- by *Calanus finmarchicus* before, during, and after the 1997 spring bloom in the Norwegian Sea.
- 712 Limnol Oceanogr 44: 154-165
- 713 Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabé M, Cian A, Meloni D, Niquil
- 714 N, Christaki U, Viscogliosi E (2011) Exploring and quantifying fungal diversity in freshwater
- 715 lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ
- 716 Microbiol 13: 1433-1453
- 717 Nejstgaard JC, Gismervik I, Solberg PT (1997) Feeding and reproduction by *Calanus*
- 718 *finmarchicus*, and microzooplankton grazing during mesocosm blooms of diatoms and the
- 719 coccolithophore *Emiliania huxleyi*. Mar Ecol Prog Ser 147: 197-217
- 720 Nejstgaard JC, Naustvoll L-J, Sazhin A (2001a) Correcting for underestimation of
- 721 microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol
- 722 Prog Ser 221: 59-75
- 723 Nejstgaard JC, Hygym B, Naustoll L-J, Båmstedt U (2001b) Zooplankton growth, diet and
- reproductive success compared in simultaneous diatom- and flagellate-microzooplankton
- dominated plankton blooms. Mar Ecol Prog Ser 221: 77-91
- 726 Nejstgaard JC, Frischer ME, Raule CL, Gruebel R, Kohlberg KE, Verity PG (2003) Molecular

- detection of algal prey in copepod guts and faecal pellets. Limnol Oceanogr Meth 1: 29-38
- 728 Nejstgaard JC, Frischer ME, Verity PG, Anderson JT, Jacobsen A, Zirbel MJ, Larsen A,
- 729 Martínez-Martínez J, Sazhin AF, Walters T, Bronk DA (2006) Plankton development and
- trophic transfer in seawater enclosures with nutrients and *Phaeocystis pouchetii* added. Mar Ecol
- 731 Prog Ser 321: 99-121
- 732 Nejstgaard JC, Tang KW, Steinke M, Dutz J, Koski M, Antajan E, Long JD (2007) Zooplankton
- 733 grazing on *Phaeocystis*: a quantitative review and future challenges. Biogeochem 83: 147-172
- 734 Nejstgaard JC, Frischer ME, Simonelli P, Troedsson C, Brakel M, Adiyaman F, Sazhin AF,
- 735 Artigas LF (2008) Quantitative PCR to estimate copepod feeding. Mar Biol 153: 565-577
- 736 Ohman MD, Runge JA (1994) Sustained fecundity when phytoplankton resources are in short
- ran supply: Omnivory by *Calanus finmarchicus* in the Gulf of St. Lawrence. Limnol Oceanogr 39:
- **738** 21-36
- 739 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos
- 740 P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version
- 741 2.3-0. http://CRAN.R-project.org/package=vegan
- 742 Olsen BR, Dahlgren K, Schander C, Båmstedt U, Rapp HT, Troedsson C (2012) PCR–DHPLC
- assay for the identification of predator–prey interactions. J Plankt Res 27: fbr110
- 744 Olsen BR, Troedsson C, Hadziavdic K, Pedersen RB, Rapp HT (2014) A molecular gut content
- study of *Themisto abyssorum* (Amphipoda) from Arctic hydrothermal vent and cold seep
- 746 systems. Mol Ecol 23: 3877-3889
- 747 Olson MB, Lessard EJ, Wong CHJ, Bernhardt MJ (2006) Copepod feeding selectivity on
- 748 microplankton, including the toxigenic diatoms Pseudo-nitzschia spp. in the coastal northwest
- 749 Pacific. Mar Ecol Prog Ser 326: 207-220
- Pepin P, Colbourne E, Maillet G. (2011) Seasonal patterns in zooplankton community structure
 on the Newfoundland and Labrador Shelf. Prog Oceanogr 91: 274-285
- 752 Pitta P, Nejstgaard JC, Tsagaraki TM, Zervoudaki S, Egge JK, Frangoulis C, Lagaria A,
- 753 Magiopoulos I, Psarra S, Sandaa R-A, Skjoldal EF, Tanaka T, Thyrhaug R, Thingstad TF (2016)
- 754 Confirming the "Rapid phosphorous transfer from microorganisms to mesozooplankton in the
- 755 Eastern Mediterranean Sea" scenario through a mesocosm experiment. J Plankt Res, *in press*
- 756 Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is
- reating what: diet assessment using next generation sequencing. Mol Ecol 21: 1931-1950
- 758 Potvin M, Lovejoy C (2009) PCR based diversity estimates of artificial and environmental 18S

- rRNA gene libraries. J Euk Microbiol 56: 174-181
- 760 Poulet SA, Marsot P (1978) Chemosensory grazing by marine calanoid copepods (Arthropoda:
- 761 Crustacea). Science 200: 1403-1405.
- 762 Prokopowicz AJ, Rueckert S, Leander BS, Michaud J, Fortier L (2010) Parasitic infection of the
- 763 hyperiid amphipod Themisto libellula in the Canadian Beaufort Sea (Arctic Ocean), with a
- 764 description of Ganymedes themistos sp. n. (Apicomplexa, Eugregarinorida). Polar Biol 33: 1339-
- 765 1350
- 766 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The
- 767 SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
- 768 Nucl Acids Res 41: D590-D596
- 769 Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009)
- 770 Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Meth 6:
- 639-641
- Quince C, Lanzén A, Davenport RJ, Turnbaugh PJ (2011). Removing noise from pyrosequenced
 amplicons. BMC Bioinform 12: 38
- Paffenhöfer GA, Strickland JDH (1970) A note on the feeding of *Calanus helgolandicus* on
- 775 detritus. *Mar Biol* 5: 97-99
- R Development Core Team (2015) *R: A Language and Environment for Statistical Computing*. R
 Foundation for Statistical Computing, Vienna, Austria
- 778 Ray JL, Skaar KS, Simonelli PS, Larsen A, Sazhin A, Jakobsen HH, Nejstgaard JC, Troedsson C
- (2016) Molecular gut content analysis demonstrates that *Calanus* grazing on *Phaeocystis*
- 780 *pouchetii* and *Skeletonema marinoi* is sensitive to bloom phase but not prey density. Mar Ecol
- 781 Prog Ser 542: 63-77
- Richards TA, Bass D (2005) Molecular screening of free-living microbial eukaryotes: diversity
 and distribution using a meta-analysis. Curr Op Microbiol 8: 240-252
- Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular
 diversity. Annu Rev Mar Sci 4: 495-522
- 786 Rueckert S, Simdyanov TG, Aleoshin VV, Leander BS (2011) Identification of a divergent
- revironmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa)

from crustacean hosts. PLoS One 6: e18163d quality and population control. Aquat Microb Ecol

- **789** 7: 197-223
- 790 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,

- 791 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF
- 792 (2009) Introducing mothur: Open-source, platform-independent, community-supported software
- for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541
- 794 Sherr E, Sherr B (1988) Role of microbes in pelagic food webs: A revised concept. Limnol
- 795 Oceanogr 33: 1225-1227
- Shields JD (1994). The parasitic dinoflagellates of marine crustaceans. Annu Rev Fish Diseases4: 241-271
- 798 Simonelli P, Troedsson C, Nejstgaard JC, Zech K, Larsen JB, Frischer ME (2009) Evaluation of
- DNA extraction and handling procedures for PCR-based copepod feeding studies. J Plankt Res31: 1465-1474
- Skovgaard A, Saiz E (2006) Seasonal occurrence and role of protistan parasites in coastal marine
 zooplankton. Mar Ecol Prog Ser 327: 37-49
- 803 Skovgaard A, Daugbjerg N (2008) Identity and systematic position of *Paradinium poucheti* and
- 804 other *Paradinium*-like parasites of marine copepods based on morphology and nuclear-encoded
- 805 SSU rDNA. Protist 159: 401-413
- 806 Smetacek V, Klaas C, Menden-Deuer S, Rynearson TA (2002) Mesoscale distribution of
- 807 dominant diatom species relative to the hydrographical field along the Antarctic Polar Front.
- 808 Deep Sea Res II 49: 3835-3848
- 809 Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, Orsi
- 810 W, Edgcomb VP (2009) Massively parallel tag sequencing reveals the complexity of anaerobic
- 811 marine protistan communities. BMC Biol 7: 72
- 812 Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, Richards TA (2010) Multiple
- 813 marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic
- 814 community in marine anoxic water. Mol Ecol 19: 21-31
- 815 Stoecker DK, Capuzzo JM (1990) Predation on protozoa: its importance to zooplankton. J Plankt
 816 Res 12: 891-908
- 817 Stoecker DK, Nejstgaard JC, Madhusoodhanan R, Pohnert G, Wolfram S, Jakobsen HH, Šulčius
- 818 S, Larsen A (2015) Underestimation of microzooplankton grazing in dilution experiments due to
- 819 inhibition of phytoplankton growth. Limnol Oceanogr 60: 1426-1438
- 820 Sullivan LJ (2010) Gut evacuation of larval *Mnemiopsis leidyi* A. Agassiz (Ctenophora, Lobata).
- 821 J Plankt Res 32: 69-74
- 822 Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation

- biodiversity assessment using DNA metabarcoding. Mol Ecol 21: 2045-2050
- 824 Troedsson C, Lee RF, Stokes V, Walters TL, Simonelli P, Frischer ME (2008a) Development of
- a denaturing high-performance liquid chromatography method for detection of protist parasites
- of metazoans. Appl Environ Microbiol 74: 4336-4345
- 827 Troedsson C, Lee RF, Walters T, Stokes V, Brinkley K, Naegele V, Frischer ME (2008b)
- 828 Detection and discovery of crustacean parasites in blue crabs (*Callinectes sapidus*) by using 18S
- 829 rRNA gene-targeted denaturing high-performance liquid chromatography. Appl Environ
- 830 Microbiol 74: 4346-4353
- 831 Troedsson C, Simonelli P, Nägele V, Nejstgaard JC, Frischer ME (2009) Quantification of
- copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Mar Biol
 156: 253-259
- 834 Verity PG (2010) Expansion of potentially harmful algal taxa in a Georgia Estuary (USA).
- 835 Harmful Algae 9: 144-152
- 836 Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare
- sequences in mixed samples a case study on prey DNA in Antarctic krill stomachs. Front Zool
 5: 12
- Vidoudez C, Pohnert G (2012) Comparative metabolomics of the diatom *Skeletonema marinoi* in
 different growth phases. Metabolomics 8: 654-669
- 841 Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and
- retention time index database generated from plant GC/EI-TOF-MS metabolite profiles.
- 843 Phytochem 62: 887-900
- 844 Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York
- 845 Woodson CB, Webster DR, Weissburg MJ, Yen J (2007) Cue hierarchy and foraging in calanoid
- 846 copepods: ecological implications of oceanographic structure. Mar Ecol Prog Ser 330: 163-177
- 847 Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ (2015)
- Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science347: 736-745
- 850 Yang EU, Kang H-K, Yoo S, Hyun J-H (2009) Contribution of auto- and heterotrophic protozoa
- to the diet of copepods in the Ulleung Basin, East Sea/Japan Sea. J Plankt Res 31: 647-659
- 852
- 853 Data Accessibility

- Pvrosequencing flowgram files (*.sff) have been submitted to the NCBI Sequence Read Project 854
- 855 with accession number SRP076974. The AmpliconNoise OTU table, the CREST taxonomic
- assignment table are available from the Dryad Digital Repository 856
- 857 http://dx.doi.org/10.5061/dryad.6tn7c.
- 858

Author Contributions 859

- JLR, JA, PS, JCN, AL, DS, MF, GP and CT designed the research. AL and JCN coordinated the 860
- 861 mesocosm experiment. JLR, JA, PS, DS, AS, GP, MF and CT collected samples. JLR, JA, KSS,

DS and AS performed assay optimization and laboratory processing of samples. JLR, JA, UI and 862

CQ analyzed the data. JLR, JA, PS, JCN, AL, DS, MF, GP and CT wrote the manuscript. 863 Ó. Ø

864

865

Table and Figure Captions 866

867

Table 1. Primers and blocking oligonucletide probes used in this study.
 868

- **Table 2.** PERMANOVA analysis of metabarcoding diversity from OTU clustering
 869
- (AmpliconNoise) or taxonomic classification (CREST). Significant *P*-values are indicated in 870
- bold. Explanatory variable levels tested were: Sample Type seawater vs. copepod gut content; 871
- Experiment mesocosm vs. fjord; Treatment Control, NP, NPSi or Raunefjorden; Date 11, 17, 872
- 873 21, 24, 28 or 30 March 2012.
- 874
 Table S1. In silico coverage of Silva SSU r121 RefNR sequence collection using TestPrime v2.0
- (Klindworth et al. 2012) with primers F-1183mod and R-1443mod and allowing 0, 1, or 2 875
- 876 mismatches between primers and database sequence. Numbers in parenthesis indicate percentage

877 of the r121 RefNR sequence collection detected *in silico* for each number of allowed878 mismatches.

Table S2. Summary metrics from analysis of metabarcoding results from mesocosm seawater (n = 24) and copepod samples (n = 24) analyzed using AmpliconNoise for OTU clustering or

881 CREST for taxonomic assignment.

Table S3. Read distribution per sample and beta diversity estimates from metabarcodinganalysis.

Table S4. Grazing selection by *Calanus* as identified through metabarcoding analysis of

copepod gut content and co-occuring seawater plankton assemblages. Molecular grazing ratios

886 (ratio of each OTU/taxon in copepod gut content to their abundance in seawater) were calculated

for (A) individual AmpliconNoise OTUs, (B) AmpliconNoise OTUs grouped by fifth-level (or

888 highest available) CREST taxonomic assignments, (C) Highest-level CREST taxonomic

assignment ranks and (D) CREST taxonomic assignments grouped by fifth-level (or highest

available) taxonomic ranks. Only finite, non-zero values are shown.

Table S5. Metabolome profiles. (A) GC-MS peak identifications. Metabolite, peak number; Ion,
ionization energy in *e*V; RT, retention time; Identification, certainty is expressed as the reverse

893 match factor of each metabolite when searched against the National Institute of Standards and

894 Technology chemistry database: from 750 to 850 (?), 650 to 750 (??), or 550 to 650 (???). (B)

895 Peaksum-normalized metabolite concentrations in each mesocosm on all sampling days. Top

896 column names indicate <treatment_sampling date>. Bottom column names indicate mesocosm

897 number. (C) Mean metabolite concentration per treatment on each sampling date. Samples

898 (rownames) are indicated as <treatment sampling date>.

Table S6. Biomass estimates for major eukaryotic plankton taxonomic groups in Control, NP
and NPSi mesocosms. Biomass estimates were calculated from microscopy counts according to
previously described methods (Ray *et al.* 2016).

902**Table S7**. Metabolites with significant correlation to biomass estimates for major microbial903eukaryote plankton taxonomic groups present in the NP and NPSi seawater mesocosms. Only904significant correlations are shown. Adjusted *P*-value indicates significance correction for905multiple treatment comparisons according to (Benjamini & Hochberg 1995). Significance, *** =9060.001, ** = 0.01, * = 0.05.

907 Table S8. Correlation results (Kendall's *tau*) for intracellular metabolites to *Calanus* grazing

908 ratios calculated from AmpliconNoise OTUs grouped into lower-level taxonomic ranks.

909 Metabolite - feature identification number; Correlation - Kendall's *tau* correlation test statistic;

910 Adj. P-value - significance adjusted for multiple treatment comparisons. Question marks

911 preceding metabolite identifications indicate degree of uncertainty, and represent the reverse

912 match factor of each metabolite when searched against the National Institute of Standards and

913 Technology chemistry database: from 750 to 850 (?), 650 to 750 (??), or 550 to 650 (???).

Figure 1. The 20 most abundant taxa present in *Calanus* gut content ("Copepod") and mesocosm

seawater ("Water") samples and their relative abundance in the metabarcoding data (excluding

916 Calanus sequences). (A) AmpliconNoise OTUs, (B) CREST fifth-rank taxonomic assignments.

917 Taxonomic assignments of OTUs and of sequence reads were performed using the CREST

918 classifier with SilvaMod reference database.

919 Figure 2. Non-metric multidimensional scaling (NMDS) ordination of (A) AmpliconNoise OTU

920 diversity and (B) CREST taxonomic diversity. *Calanus*-like reads were removed from the

921 sequence data prior to ordination. Dashed ellipses indicate 95% confidence intervals. 922 Figure 3. Comparison of methods used for quantification of (A) *Phaeocystis pouchetii* and (B) Skeletonema marinoi in mesocosm water. Methods used were direct taxonomic classification of 923 pyrosequencing amplicons (Metabarcoding), cell counts per ml (Microscopy), and aPCR 924 925 (qPCR). Units shown are reads per ml, cells per ml, or SSU rRNA gene copies per ml, respectively, for Metabarcoding, Microscopy and qPCR. Note logarithmic *v*-axis. Microscopy 926 and qPCR counts are from (Ray et al. 2016). 927 Figure 4. Numerical distribution of (A) AmpliconNoise OTU or (B) CREST taxonomic 928 929 assignment non-zero, finite grazing ratios (copepod gut content / seawater). The distribution of grazing ratio values for all treatments and Raunefjorden into six arbitrary numerical categories, 930 indicated in the legend at the right, indicate various degrees of putatively "positive" (>1) or 931 "negative" (<1) grazing selection by *Calanus*. Full taxonomic content of AmpliconNoise OTU 932 and CREST grazing ratio tables can be found in the Supporting Information (Table S4). 933 **Figure 5**. Heatmap of metabolites, which are significant (correlation R > 0.235 of CAP discrim 934 of the peaksum normalized data set, Pearson's correlation test used for determination of 935 significance level) for the separation ("early", "middle", "late") in both NP and NPSi treatments. 936 Black=highest concentration, white=lowest concentration, Met=number of metabolite, 937 Ion=iontrace used for quantification, RT=retention time, tag "?", "??", or "???"=reverse match 938 factor of NIST database between 750 and 850, 650 and 750, or 550 and 650.compound classes: 939 CH=carbohydrates and derivatives. LP=lipides. TP=terpenoides. ST=steroles. 940 941 Figure 6. Clustering of intracellular metabolite profiles according to mesocosm succession phase

942 using canonical analysis of principle components using linear discriminant analysis

943 (CAPdiscrim). (A) NP mesocosms, Eigenvalues=0.95 and 0.40, Mis-classification error=25.7 %, Permutation test: P = 0.001 with 1000 permutations (B) NPSi mesocosms, Eigenvalues=0.96 and 944 0.40, Mis-classification error=22.5 %, Permutation test: P = 0.001 with 1000 permutations. 945 Figure S1. Contribution of copepod and putative symbiont reads to sequence datasets. Height of 946 947 bars represents the total number of filtered 454 reads used for OTU clustering or taxonomic identification. The number of copepod OTUs/reads in each sample are indicated by black bars, 948 949 while putative symbion OTUs/reads are shown as grey bars. Percentage of reads remaining after 950 exclusion of copepod and putative symbiont OTUs/reads is shown above each column. (A) AmpliconNoise OTUs, (B) CREST taxonomic classifications. 951 Figure S2. Rarefaction analysis of 454 sequence data from *Calanus* gut content ("COP", A and 952 C) and seawater ("FIL", B and D) samples. OTU clustering (A and B) was performed with a 953 98% similarity cut-off using AmpliconNoise v.1.29 with otherwise default parameters. 954 955 Taxonomic assignments were performed using the CREST classifier and the SilvaMod database 956 as reference taxonomy (C and D). Rarefaction is based on non-normalized read counts and a sampling frequency of 100 (A and B) or 10 (C and D). Treatment labels: blank, Control 957 mesocosm; NP, NP mesocosm; NPSi, NPSi mesocosm; fjord, Raunefjorden. Numbers in sample 958 959 labels indicate date of sampling in March 2012.

Figure S3. Microbial eukaryotes that distinguish *Calanus* gut content diversity from mesocosm
seawater diversity when abundance normalized fifth-rank CREST taxonomic assignments were
analyzed using Kruskal-Wallis rank sum tests (alpha = 0.001) with Sample Type (copepod or
seawater) as grouping variable and significance correction for multiple comparisons (q-value)
(Benjamini & Hochberg 2995). Copepod sequences were removed prior to analysis.

965 Figure S4. Dynamics of *Calanus* sp. feeding selection over time in three mesocosm treatments 966 (Control, NP and NPSi) and Raunefjorden as assessed by metabarcoding analysis. The height of bars (vertically centered at grazing ratio = 1, dashed black line) indicates ratios of the relative 967 968 abundance of taxonomic groups in copepod gut content divided by their relative abundance in 969 co-occurring plankton communities. Grazing ratios > 1 indicate higher abundance of a taxon in 970 *Calanus* gut content relative to taxon abundance in co-occuring plankton communities, while grazing ratios < 1 indicate lower abundance in gut content relative to co-occurring plankton 971 972 communities. Sampling date (March 2012) is shown on the x-axis. (A) AmpliconNoise OTUs grouped by fifth-rank taxonomic classification, (B) Fifth-rank taxonomic classifications. 973 .51

Table 1.

Name	Sequence (5'-3') ¹	T _{an2}	Position ³	Reference
F-1183mod	AATTTGACTCAACRCGGG	60.2	1183-1200	Hadziavdic et al. 2014
R-1443mod	GRGCATCACAGACCTG		1443-1428	Hadziavdic et al. 2014
Cal-SpcC3- block	CTGTTATTGCTCAATCTY GTGCGAC[SpcC3]	70.2	1430-1406	This study
Cal-PNA-block	[NH ₂]-CTAAGAGTCGCCA GTCCC-[COOH]	70.2	1406-1389	This study

1 [SpcC3], -C-C-OH; [NH2], N-terminus of peptide backbone; [COOH], C-terminus of peptide backbone²

Annealing temperature used for PCR, in degrees Celsius

3 Numbering based on reference alignment described in Hadziavdic et al. 2014

Pipeline	Distance metric	Explanatory variable	F-value	P-value	\mathbb{R}^2	
Amplicon	Jaccard	Sample Type	13.279	0.001	0.210	
Noise		Experiment	2.420	0.017	0.038	
		Treatment	0.549	0.996	0.017	
		Date	4.385	0.001	0.069	
	Bray-Curtis	Sample Type	22.592	0.001	0.300	
		Experiment	3.454	0.003	0.046	
		Treatment	0.443	0.996	0.012	
		Date	6.279	0.001	0.084	
CREST	Jaccard	Sample Type	30.930	0.001	0.362	
taxonomic		Experiment	1.170	0.267	0.014	
assignment		Treatment	1.754	0.080	0.041	
		Date	7.919	0.001	0.093	
	Bray-Curtis	Sample Type	51.043	0.001	0.470	
		Experiment	1.151	0.286	0.011	
		Treatment	1.986	0.071	0.037	
		Date	10.465	0.002	0.096	

Table 2.

Taxa Others OTU_1082 (Strobilidium) OTU_1150 (Strobilidium) OTU_175 (Foettingeriidae) OTU_106 (Thraustochytriidae) OTU_1330 (Gyrodinium) OTU_937 (Dinophyceae) OTU_697 (Varistrombidium) OTU_264 (Vampyrophrya) OTU_1441 (Oligotrichia) OTU_1085 (Phaeocystis) OTU_221 (Rhizaria) OTU_88 (Dinophyceae) OTU_903 (Eukaryote) OTU_316 (Skeletonema) OTU_273 (Gyrodinium fusiforme) OTU_222 (Rhizaria) OTU_248 (Hyalophysa) OTU_311 (Skeletonema) OTU_111 (Apostomatida) OTU_397 (Hyalophysa)

Page 43 of 56

Figuren 1 Bcular Ecology

Others Annelida Dikarya Katablepharidaceae Acanthoecidae Isochrysidales Dictyochophyceae Bolidophyceae Porifera Chordata Telonema Kinetoplastida Streptophyta Labyrinthulida Phaeocystales Chlorophyta Cercozoa unclassified_Rhizaria Bacillariophyta Dinophyceae Ciliophora

Figure 4B. CREST taxonomy ratios

Fi	aure	5	Molecular Ecology			NPSi (day of march 2012) Page 48 of 56							
	90.0						"early"	"middle"	"late"	_	"early"	"middle"	"late"
Met	lon	(min)		compound identification	class	R	8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23	24 25 26 27 28 29 30	R	8 9 10 11 12 13 14 15 16 17	18 19 20 21 22 23	24 25 26 27 28 29 30
105	215.1	11.25	??	2-deoxy-erythropentonic acid	СН	0.375				0.283	The second s		
118	204.1	11.81	?	arabinose	СН	0.392				0.332			
119	217.1	11.83	?	methyl-α-D,L-lyxofuranoside	СН	0.428				0.287			
121	204.1	11.87	??	lyxose	СН	0.309				0.355			
159	217.1	13.72	?	3-deoxy-inositol	СН	0.425				0.412			
161	103.1	13.81	??	tagatose	СН	0.354				0.260			
164	205	13.89	???	galactose	СН	0.340				0.315			
165	231	13.93	?	glucose	CH	0.438				0.426			
166	205	13.94	?	glucose	СН	0.407				0.413			
168	205.1	14.01		mannose	СН	0.455				0.244			
169	147	14.09		galactose	СН	0.565	100 A 100			0.318	1. J. J. M.		
173	217.1	14.27	?	isomer of inositol	СН	0.357			State of the second	0.332			-
124	230.1	12.03	?	ethyl-β-D-galactofuraniside	CH	0.535	the second se			0.244	5 m 5 m 5		-
174	318.2	14.36		muco-inositol	СН	0.254	- 10 C -		and the second	0.373		- C	- C.
205	319.2	15.81	???	derivative of glucose	CH	0.238				0.313		_	
186	318.1	14.83	~~	myo-inositol	CH	0.259		- 19		0.325			
134	204.1	12.47	- 77	D-xylopyranose	CH	0.330		- 19		0.334	and the second second	- C.	
143	217.1	13.03	1	arabinoturanose	CH	0.400				0.383			
207	204.1	10.04	222	2-O-glycerol-α-α-galactopyranosia	СН	0.407				0.547		10 A	
204	200.1	16 17	· · · ·	derivative of galactoop		0.307		- 1		0.405			
209	204.1	10.17	ſ	derivative of galactose	Сп	0.200				0.307			
145	271.3	13.09	??	tetradecanol	LP	0.269				0.235			
198	112.1	15.43	??	2-(2-(2-butoxyethoxy)ethanol	LP	0.274			나는 소문을 다	0.242			
194	91 [·]	15.15	?	(all-Z)-4,7,10,13,16,19-docosahexaenoic acid	LP	0.301				0.254	- -		
201	204.1	15.54	???	1-methyl-5-hexadecanoate-α-D-glucopyranoside	LP	0.336			STATE 1781	0.246			
225	343.3	17.02		unknown fatty acid glycerol ester	LP	0.286	The second	- -	- 19 - 19	0.266	the second s	- 1 10 - 11	_
170	110.1	14.14		cis-9-hexadecenoic acid methylester	LP	0.349		- 19 A A A A A A A A A A A A A A A A A A		0.308			
199	111.1	15.47	?	2-hydroxyhexadecanoic acid	LP	0.242		200 B.		0.247			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
214	353.3	16.40	??	trans, trans-tarnesol	IP	0.423	N 6 M 8	- C. B. B. B.		0.396	1. ALC: NO.		
144	255.1	13.07	?		LP	0.449				0.506		er se	
212	107.2	10.21	222			0.245		- 1 10		0.204		5 M T	-
229	107.2	17.30	***	Incholeic aciu	LF	0.340				0.272			
262	370.4	21.35	??	cholesterol	ST	0.294		- 1		0.374			and the second second
230	359.2	17.38	???	7α-androst-4-ene-3,17-dione	ST	0.357				0.391			
260	129.1	20.65	?	(3β, 22E)-26,27-dinorergosta-5,22-dien-3-ol acetate	ST	0.453		1000		0.446	- -		
264	111.1	21.80	??	24-nor-22,23-methylenecholest-5-en-3β-ol	ST	0.327		- 10 March 10		0.429	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	- 1 1	
267	129.1	22.59		ergosta-4,6,22-triene	ST	0.576				0.454			
3	147	6.05		ethylen glycol		0.337				0.238			
25	173.1	6.97		glycolic acid		0.366				0.288			
13	295.1	6.48		unknown		0.252				0.254			
60	117.1	8.66		3-oxa-1,5-pentandiol		0.377	_			0.293			
101	251.1	11.10		n-propyl-malonic acid		0.271				0.371			
66	117	9.26		unknown		0.276				0.295			
67	174.1	9.27		unknown		0.273				0.239			
74	196.1	9.53		lumichrome		0.325				0.320			
238	122.1	17.68	??	N-cyclohexyliden-cyclododecanamin		0.332				0.310			
236	359.2	17.55		unknown		0.348				0.446			
259	463.3	20.46		unknown		0.237				0.413	A	a ser la se	
196	122.1	15.33		oleanitril		0.282			and the second	0.345			
36	103.1	1.47	??			0.306	and the second second			0.282			
100	∠45.1 [°]	10.96		2-memul-3-oxydutenoic acid		0.337				0.302			

Figure 6

Α

В

-0,15

-0,15

8

0

First Constraint Canonical Axis

0,15

Molecular Ecology Figure S1A

Figure S1B

