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Abstract

Feedback control is widely used in chemical engineering to improve the performance

and robustness of chemical processes. Feedback controllers require a ‘subtractor’ that

is able to compute the error between the process output and the reference signal. In the

case of embedded biomolecular control circuits, subtractors designed using standard

chemical reaction network theory can only realise one-sided subtraction, rendering

standard controller design approaches inadequate. Here, we show how a biomolec-

ular controller that allows tracking of required changes in the outputs of enzymatic

reaction processes can be designed and implemented within the framework of chem-

ical reaction network theory. The controller architecture employs an inversion-based

feedforward controller that compensates for the limitations of the one-sided subtractor

that generates the error signals for a feedback controller. The proposed approach re-

quires significantly fewer chemical reactions to implement than alternative designs, and

should have wide applicability throughout the fields of synthetic biology and biological

engineering.
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Left-Hand-Side (LHS), Right-Hand-Side (RHS), Ordinary Differential Equation (ODE),

Proportional-Integral (PI), Feedforward (FF), Internal Model Control (IMC), DNA

Strand Displacement (DSD)

1. Introduction

A major challenge in synthetic biology is to develop practically implementable de-

sign methods for the synthesis of feedback controllers that achieve reference tracking,

i.e. force the output of a biomolecular process of interest to track desired changes in

its concentration over time (Hsiao et al., 2015). The design of feedback controllers to5

control biochemical processes has received significant attention in the literature (see.

e.g. (Henson, 2003; Baldea et al., 2013)), and the construction of synthetic control

circuits has become a major focus of research in the new field of synthetic biology.

Ideally, such circuits should be made up of well-defined modules consisting only of

molecular reactions, in order to allow the realisation of embedded biomolecular con-10

trol systems (Cosentino et al., 2016). A promising approach to facilitating the design

of such circuits is provided by nucleic acid-based chemistry, wherein the design of

biomolecular circuits can be done using abstract chemical reaction network (CRN)

theory (e.g. (Soloveichik et al., 2010)), and then translated to Deoxyribonucleic acid

(DNA) using strand displacement reactions for implementations (Chen et al., 2013). A15

CRN is a collection of chemical reactions written in the form

X +Y + . . .︸ ︷︷ ︸
Reactants

γ−→ A+B+ . . .︸ ︷︷ ︸
Products

(1)

where γ is the reaction rate, the Left-Hand-Side (LHS) of the reaction consists of reac-

tants and the Right-Hand-Side (RHS) of the reaction consists of products. Most of the

chemical reactions considered in this paper are either unimolecular (i.e. one reactant

on the LHS of (1)) or bimolecular (i.e. two reactants on the LHS of (1)). According20

to standard CRN theory (see e.g. (Feinberg, 1986, 1988)) a CRN with n species and

m reactions can be represented by an ordinary differential equation (ODE) following
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generalised mass-action kinetic in the form of

dx
dt

= P f (x)

where x ∈ Rn
≥0 is the species concentration, f (x) ∈ Rm is a function describing the

reaction rates of the CRN, P ∈ Rn×m is the stoichiometric matrix that describe the25

dynamics of the species concentrations following their associated reaction rates, R≥0

is the non-negative real number set, R is the real number set, and n and m are positive

integers.

In any reference tracking feedback system, it is imperative that an appropriate error

signal can be computed such that the designed controller can take relevant control ac-30

tion to drive the process output towards the intended state. While such a requirement is

trivial to satisfy in standard control theory, it is not in the context of CRN theory. This

is because a two-sided subtractor (Figure 1), which is an operator that is able to com-

pute the difference between two input signals regardless of their relative magnitude, is

yet to be realised using standard CRN’s. For accurate reference tracking, the error e35

should be able to take both positive (r > y) and negative (r < y) values. Thus, the afore-

mentioned constraint is a serious impediment to the design of functional biomolecular

feedback control systems, that will inevitably lead to poor quality reference tracking

and potentially even instability.

To the best of the authors knowledge, almost all previous designs for biomolecular40

subtractors using CRNs have resulted in only one-sided subtraction. We note that there

is a literature on the design of half-subtractors or full-subtractors using digital logic

gates realised using CRNs (see e.g. (Xu et al., 2013; Lin et al., 2015)), however, as our

focus is on the design of analog biomolecular circuitry, we exclude this work from our

discussion.45

The subtraction operator used in our paper is based on the design presented in

Buisman et al. (2009), which can be realised using a set of four chemical reactions

(see Page 6 of Buisman et al. (2009)). The authors analysed the Jacobian matrix of

the ODE associated with the subtraction operator and found that when the resulting

subtraction is zero, the fixed point does not exist. Additionally, when the resulting sub-50
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traction is negative, the overall system diverges, as the fixed point is unstable. In view

of this, the subtraction outputs a positive value when the magnitude of the first com-

ponent is greater than the second component and zero when the condition is reversed.

We further illustrate this point in Section 2.2 of our paper. Some other relevant results

on biomolecular subtraction can be found in Salehi et al. (In press) and Song et al.55

(2016). The design considered in the former used the subtraction operator to realise a

biomolecular computation of a Berstein polynomial and their subtraction is equivalent

to the design of Buisman et al. (2009). The latter paper proposed frameworks to build

operators using DNA strand displacement, and explicitly mentioned that their subtrac-

tion operator is one-sided. In Harris et al. (2015), the authors designed a feedback60

controller for gene expression regulation, which requires the use of a subtraction, but

do not propose a detailed biomolecular implementation of the subtraction operator.

An alternative approach to the design of biomolecular subtraction operators can be

found in Cosentino et al. (2013, 2016) and Bilotta et al. (2015, 2016). In this work,

the authors developed subtractors that are used to compute the difference between two65

molecular fluxes, rather than two molecular concentrations. By satisfying certain con-

ditions, and assuming all the reactions involve unitary stoichiometric coefficients with

input fluxes constant, the output flux is shown to converge to the difference between

the two input fluxes in an asymptotic manner. While the chemical reactions required

to realise the subtraction operator in this framework are slightly different to the ones70

proposed in Buisman et al. (2009), the final ODE representation is exactly the same,

and thus also yields a one-sided subtraction.

The only available partial solution to the problem mentioned above is to adopt the

design framework proposed in Oishi and Klavins (2011). In this framework, each sig-

nal in the biomolecular circuit is implemented as the difference in the concentration75

of two chemical species. In this way, a two-sided subtraction operator can then be re-

alised. As we show in the following section, however, this approach at least doubles the

total number of chemical reactions required to implement the entire feedback circuit.

This increase in the number of chemical reactions is highly undesirable as it presents a

major challenge for wet lab implementation, and strongly limits the scalability of the80

design. Moreover, large numbers of chemical reactions potentially increases the proba-
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bility of unwanted crosstalk interactions. For instance, a circuit whose implementation

requires n molecular species will increase the potential bimolecular crosstalk interac-

tions by n2. This has prompted researchers to look into ways to reduce crosstalk, such

as requiring a certain number of mismatches for any two distinct recognition domains85

(see e.g. (Qian and Winfree, 2011)). Nonetheless, obtaining large numbers of well-

behaved sequences with long domains is extremely difficult to achieve in practice.

In this paper, using the available framework for realising one-sided biomolecular

subtraction using CRNs (see e.g. (Buisman et al., 2009)), we propose a design strategy

that uses a model-inversion feedforward controller (see e.g. (Devasia, 2002; Franklin90

et al., 2014)) to circumvent the limitations of the feedback controller when using a

one-sided subtraction operator. In addition, our controller design strategy also aims

to utilise the minimal number of chemical reactions, to allow for a more scalable and

feasible wet lab implementation.

2. Material and methods95

2.1. One-sided subtraction operator

To the authors’ knowledge, all current existing designs for biomolecular subtraction

operators that utilise standard CRN theory can only implement one-sided subtraction.

A comprehensive list of mathematical operators that can be implemented using CRN’s,

which includes the one-sided subtraction and its detailed analyses can be found in

Buisman et al. (2009). Following the design of Buisman et al. (2009), the subtraction

operator can be realised using the following abstract chemical reactions:

xi,1
γ−→ xi,1 + xo , xitd + xo

γ−→ /0

xi,2
γ−→ xi,2 + xitd , xo

γ−→ /0 (2)

where xi,1 and xi,2 are the two inputs, xo is the resulting output, xitd is the intermediate

states and γ is the reaction rate. Note that this one-sided subtraction operator is realised

using four abstract chemical reactions. Using generalised mass-action kinetics (see

e.g. (Feinberg, 1986)), these abstract chemical reactions can be represented by ODE’s,
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where the corresponding ODE’s for (2) are given by

dxo

dt
= γ(xi,1− xoxitd− xo)

dxitd

dt
= γ(xi,2− xoxitd) (3)

At steady state, xi,2 = xoxitd , leading to xo = xi,1 − xi,2. By analysing the Jacobian

matrix of the ODE’s relating to this subtraction operator, it has been shown in Buisman

et al. (2009) that when the subtraction of two components results in either zero or a

negative value, the fixed point does not exist or the system converges to an unstable100

fixed point, respectively. Hence, xo = 0 when xi,1 < xi,2 and xo = xi,1− xi,2 > 0 when

xi,1 ≥ xi,2, making the subtraction one-sided. Other example of one-sided subtraction

operators can be found in Cosentino et al. (2016) - in these cases the operators are used

to compute the difference of molecular fluxes, rather than concentrations.

2.2. Two-sided subtraction operator105

As mentioned in Section 1, the only known framework to date that offers a partial

solution to the realisation of a two-sided subtraction operator can be found in Oishi

and Klavins (2011). In that proposed framework, a signal, u is represented as a dif-

ference between two chemical species i.e. u := u+−u−. This representation results in

the chemical species having positive and negative components. To illustrate how such

representation can achieve a two-sided subtraction, we consider first how the summa-

tion operator can be realised using abstract chemical reactions. The abstract chemical

reactions for the summation operator are given by

x+i,1
γ−→ x+i,1 + x+o , x−i,1

γ−→ x−i,1 + x−o , x+i,1 + x−i,1
η−→ /0

x+i,2
γ−→ x+i,2 + x+o , x−i,2

γ−→ x−i,2 + x−o , x+i,2 + x−i,2
η−→ /0

x+o
γ−→ /0 , x−o

γ−→ /0 , x+o + x−o
η−→ /0 (4)

where η is a reaction rate such that η � γ . The corresponding ODEs are given by

dx+o
dt

= γ(x+i,1 + x+i,2− x+o )−ηx+o x−o

dx−o
dt

= γ(x−i,1 + x−i,2− x−o )−ηx+o x−o

dxo

dt
=

dx+o
dt
− dx−o

dt
= γ(xi,1 + xi,2− xo) (5)

6



where at steady state (i.e. dxo/dt = 0), xo = xi,1 + xi,2.

Now, for the subtraction operator, its abstract chemical reactions are given by

x+i,1
γ−→ x+i,1 + x+o , x−i,1

γ−→ x−i,1 + x−o , x+i,1 + x−i,1
η−→ /0

x+i,2
γ−→ x+i,2 + x−o , x−i,2

γ−→ x−i,2 + x+o , x+i,2 + x−i,2
η−→ /0

x+o
γ−→ /0 , x−o

γ−→ /0 , x+o + x−o
η−→ /0 (6)

Notice the difference of the superscripts + and − in the abstract chemical reaction

compared to (4). The corresponding ODEs are given by

dx+o
dt

= γ(x+i,1 + x−i,2− x+o )−ηx+o x−o

dx−o
dt

= γ(x−i,1 + x+i,2− x−o )−ηx+o x−o

dxo

dt
=

dx+o
dt
− dx−o

dt
= γ(xi,1− xi,2− xo) (7)

where at steady state, xo = xi,1− xi,2. Because the signal is represented as the differ-

ence of positive and negative components, xo can be properly computed regardless of

the relative magnitude of xi,1 and xi,2. Note that both the summation and subtraction

operators in (4) and (6) are realised using nine abstract chemical reactions.110

Now, note that the summation of two concentrations that is equivalent to (5) with

positive signals could also have been realised by employing the following three abstract

chemical reactions (Buisman et al., 2009): xi,1
γ−→ xi,1 + xo, xi,2

γ−→ xi,2 + xo and xo
γ−→ /0.

This realisation does not require the signal to be represented using positive/negative

components. Surprisingly, however, an equivalent way of representing the subtrac-115

tion operator as in (7) seems not to exist, as there are no associated abstract chemical

reactions to realise it. We shall further demonstrate this point below.

Consider the following two reactions: xi,1
γ−→ xi,1 + y and y

γ−→ /0. Their correspond-

ing ODEs are dy/dt = +γxi,1 and dy/dt = −γy respectively. Their final ODE ex-

pression can then be obtained by summing these two equations together, i.e. dy/dt =120

γ(xi,1 − y). Now, for the subtraction operator, the corresponding ODE is given by

dy/dt = γ(xi,1− xi,2− y). We have already shown how dy/dt = γ(xi,1− y) can be ob-

tained. Therefore, we simply need another abstract chemical reaction that can achieve
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dy/dt = −γxi,2. With the sign on the RHS of the ODE being negative, one would ex-

pect to write y on the LHS of the abstract chemical reaction. In addition, we require125

the multiplication of xi,2 with γ , which means xi,2 has to be on the LHS of the abstract

chemical reaction as well. A natural first attempt would then be to write xi,2 + y
γ−→ /0.

However, a sum of reactants in an abstract chemical reaction leads to multiplication in

the corresponding ODE, i.e. dy/dt = −γxi,2y. If we are to move y to the RHS of the

abstract chemical reaction, i.e. xi,2
γ−→ xi,2 + y, its corresponding ODE would then be130

dy/dt =+γxi,2. Thus, there is no way to realise dy/dt =−γxi,2 using standard abstract

chemical reactions. This is the reason why the positive/negative components formal-

ism introduced by Oishi and Klavins (2011) is needed to realise a two-sided subtraction

operator.

While the formalism proposed in Oishi and Klavins (2011) is able to realise two-135

sided subtraction, it also inevitably leads to a large increase in the number of abstract

chemical reactions required, since it must be used to realise all operators and compo-

nents in the circuit, even though in many cases there are simpler alternatives available

(e.g. the summation operator). From the point of view of experimental implementa-

tion, it is highly desirable to keep the number of abstract chemical reactions required140

as small as possible, thus motivating our attempt to formulate a design strategy that can

cope with the limitations of a one-sided subtraction operator and thus allow us to avoid

using positive/negative components.

2.3. Enzymatic reaction processes

In this paper, we focus on the problem of controlling enzymatic reaction processes.145

Such processes are ubiquitous in cell biology, with some notable examples including

protein phosphorylation by kinases, metabolic synthesis pathways and anaerobic fer-

mentation of glucose to ethanol in yeast (see e.g. (Segel, 1975; Galazzo and Bailey,

1990; Heinrich et al., 2002; Faeder et al., 2003; Hatakeyama et al., 2003; Charusanti

et al., 2004; Gershon and Shaked, 2008)).150

The main function of enzymes is to act as the catalysts of biochemical systems (see

e.g. (Taylor et al., 2008)). Disruption to the regulation of enzymatic reaction processes

can therefore have significant adverse effect on biological function, and the ability to
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accurately control the dynamics of enzymatic reaction processes at their optimal levels

is crucial to a wide range of natural and engineered biochemical systems.155

The chemical reactions describing the enzymatic reaction process in its simplest

form (see e.g. (Segel, 1975; Gershon and Shaked, 2008)) are given by

xin + xe
kr1−→ xi

xi
kr2−→ xout + xe

xout
kr3−→ /0 (8)

where kr1, kr2 and kr3 are the process binding, catalytic and degradation rates respec-

tively. xin, xe, xi and xout usually represent the substrate, enzyme, enzyme-substrate

and product respectively. In a typical enzymatic reaction, the enzyme combines with

its specific substrate to form the enzyme-substrate complex. After the reaction, this

enzyme-substrate complex breaks up resulting in the associated product and the en-160

zyme itself. This enzyme is unchanged and once separated from the complex is free to

interact again with more substrate.

The corresponding ODE’s for (8) are then given by

dxi

dt
= kr1xinxe− kr2xi

dxout

dt
= kr2xi− kr3xout (9)

Here, we assume that the total concentration of xe and xi represented as xT = xe + xi is

constant.

3. Theory/calculation165

3.1. Derivation of inverse-feedforward controller

The basic aim of the inverse-feedforward controller is to invert the relevant dynam-

ics of the process at steady state in order to provide accurate steady-state tracking of

reference signals. From (9), at steady-state, (i.e. setting both dxi/dt and dxout/dt to

zero), we have170
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kr1xinxe = kr2xi

kr2xi = kr3xout . (10)

After some algebraic manipulation, we get

xin =
αxout

(β −δxout)
(11)

where α = kr2kr3, β = kr1kr2xT and δ = kr1kr3. For reference tracking, the steady state

value of the output, xout should reach the reference signal, r. By substituting xout = r

and rewriting xin = u into (11), we obtain the required control input signal such that the

process is able to track the reference signal at steady state, which is given by

u =
αr

(β −δ r)
(12)

The control signal given in (12) essentially amounts to an open loop control strat-175

egy, in which the relevant dynamics of the process are inverted in order to achieve

perfect steady-state tracking of reference signals. In practice, of course, the inversion

will not be exact, due to model uncertainty, and there is also no way to control the

transient dynamics of the closed loop system using this approach, which could lead to

the presence of steady state errors. To address these limitations, the feedforward con-180

troller is used together with a classical Proportional-Integral (PI) feedback controller, as

shown in Figure 2. The main purpose of the feedback controller is to correct for errors

introduced by model mismatch and to control the transient behaviour of the process.

Thus, the final control signal acting on the process is given by the sum of the outputs

of the feedforward and feedback controllers. Note that Subtraction I and Subtraction II185

shown in Figure 2 are both one-sided subtraction operators.

3.2. Abstract chemical reaction representation of the tracking controller

Here, we show how the tracking controller may be realised using abstract chemical

reactions. As shown in Figure 2, the feedforward controller requires two gain operators,

one division operator and one (one-sided) subtraction operator. Following the design190
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procedure for all those operators given in Buisman et al. (2009), the associated abstract

chemical reactions for the feedforward controller part are given as follows:

[Gain, α:]

r
αγGα−−−→ r+ x1

r
γGα−−→ /0 (13)

where γGα
is α gain reaction rate.

[Gain, δ :]

r
δγG

δ−−−→ r+ x2

r
γG

δ−−→ /0 (14)

where γGδ
is the δ gain reaction rate.

[Subtraction I:]

β
γSbI−−→ β + x3

x2
γSbI−−→ x2 + xs

x3
γSbI−−→ /0

x3 + xs
γSbI−−→ /0 (15)

where γSbI is Subtraction I reaction rate and xs is the intermediate species involved in195

Subtraction I.

[Division:]

x1
γD−→ x1 + x4

x3 + x4
γD−→ x3 (16)

where γD is the division reaction rate.

For the PI feedback controller, the associated abstract chemical reactions are given

as follows:

[Integral gain:]

x7
KI−→ x7 + x8 (17)
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where KI is the integral gain.200

[Proportional gain:]

x7

γGKP
KP

−−−−→ x7 + x9

x9

γGKP−−−→ /0 (18)

where KP is the proportional gain and γGKP
is the gain reaction rates.

[Summation I:]

x8
γSmI−−→ x8 + x10

x9
γSmI−−→ x9 + x10

x10
γSmI−−→ /0 (19)

where γSmI is Summation I reaction rate.

The error resulting from model mismatch and transient effects is computed by Sub-

traction II, where the corresponding abstract chemical reactions are given by

[Subtraction II:]

r
γSbII−−→ r+ x7

x6
γSbII−−→ x6 + xt

x7
γSbII−−→ /0

xt + x7
γSbII−−→ /0 (20)

where γSbII is Subtraction II reaction rate and xt is the intermediate species involved in205

Subtraction II.

The overall control signal to be applied to the process is the summation of the

control signals from both the feedforward and feedback controllers, where the abstract

chemical reactions are given by

[Summation II:]

x4
γSmII−−−→ x4 + x5

x10
γSmII−−−→ x10 + x5

x5
γSmII−−−→ /0 (21)
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where γSmII is Summation II reaction rate.210

With the control signal, x5 as the input to the process, the abstract chemical re-

actions for the process to be controlled are given by (8) with xin = x5 and xout = x6.

Thus, the number of chemical reactions needed to realise the complete control circuit

is 26. On the other hand, if the design framework that utilises two-sided subtraction as

proposed in Oishi and Klavins (2011) is to be used to design just a standard PI feed-215

back controller, 36 chemical reactions would be required in the circuit, an increase in

complexity of 28%.

3.3. Ordinary differential equation representation of the tracking controller

Using generalised mass-action kinetics, the corresponding ODE’s for all the ab-

stract chemical reactions described in Section 3.2 are given by220

[Feedforward Controller:]

dx1

dt
= γGα

(αr− x1)

dx2

dt
= γGδ

(δ r− x2)

dx3

dt
= γSbI (β − xsx3− x3)

dxs

dt
= γSbI (x2− xsx3)

dx4

dt
= γD(x1− x3x4) (22)

[Feedback Controller:]

dx8

dt
= KIx7

dx9

dt
= γGKP

(KPx7− x9)

dx10

dt
= γSmI (x8 + x9− x10) (23)

[Subtraction II:]

dx7

dt
= γSbII (r− xtx7− x7)

dxt

dt
= γSbII (x6− xtx7) (24)
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[Summation II:]

dx5

dt
= γSmII (x4 + x10− x5) (25)

[Process:]

dxi

dt
= kr1x5xe− kr2xi

dx6

dt
= kr2xi− kr3x6 (26)

with xT = xe + xi is constant.

4. Results and discussions

4.1. Limitation of feedback control with one-sided subtraction

In this section, we first illustrate the effect of using a one-sided subtraction operator

when a standard tracking feedback controller is used. Figure 3(A) shows the configu-225

ration of a standard feedback system with a PI controller using a one-sided subtraction

operator and the PI controller is tuned using the standard Ziegler-Nichol or Internal

Model Control (IMC) methods (see e.g. (Ogata, 2010; Rivera et al., 1986)). From Fig-

ure 3(B), at time 0 to 40,000s, the feedback controller attempts to track the reference

value but as overshoot occurs, we have the situation that the reference value is smaller230

than the output value resulting in no control action before the undershoot where the

situation is reversed. This leads to the oscillatory behaviour observed within that time

span. At time 40,000s to 80,000s, the reference value is stepped down and we have

the situation of the reference value being smaller than the output value. This means

the error given by the one-sided subtraction is always zero and the PI controller exerts235

no control action, resulting in the large steady state error. The performance does not

improve despite repeated attempts to tune the PI controller gain - one of the best tun-

ings is shown in Figure 3(C), where the PI controller is still unable to achieve proper

reference tracking.

4.2. Inverse-feedforward controller with one-sided subtraction240

In Figure 4, we show the results of repeating the above simulation with our inverse-

feedforward controller architecture from Figure 2. All the relevant parameters used in
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the simulation are summarised in Table 1. All units are assumed to be defined appro-

priately. The performance of the controller is good as it is able to track the reference

signal properly. The contribution of the two controllers is as expected, where most of245

the control action is given by the feedforward controller while the PI controller is oper-

ative when dealing with transients. The parameters of the PI controller are obtained us-

ing standard tuning methods e.g., Ziegler-Nichol/IMC method (see e.g. (Ogata, 2010;

Rivera et al., 1986)) followed by further fine tuning based on closed-loop simulations.

Parameters Values

Process:

kr1 0.005

kr2 1.6

kr3 0.0008

xT 5.5

Inverse-Feedforward Controller:

γGα
1.0

γGδ
1.0

γGSbI
1.0

γGD 1.0

PI Controller:

γGKP
1.0

KP 0.02

KI 2.5×10−8

γSmI 0.0004

Summation II and Subtraction II:

γSmII 1.0

γSbII 3.0

Table 1: Parameters used in the closed-loop feedback control system.
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4.3. Robustness and sensitivity analysis250

Here, the robustness of the controller when implemented in closed-loop is inves-

tigated using Monte Carlo simulations, where all the parameters in (22) to (26) are

randomly drawn from a uniform distribution and the above simulations are repeated.

The number of Monte Carlo simulations required to obtain various levels of estima-

tion uncertainty with known probability are determined following Chernoff bound255

(Vidyasagar, 1998). Following the guidelines given in Williams (2001), a total num-

ber of 1060 simulations are required to accomplish an accuracy level of 0.05 with

confidence level of 99% (Vidyasagar, 1998; Menon et al., 2009). All the parameters

are varied within ranges of 10% around their nominal values. Mathematically, this

is written as θ(1+0.1∆), where θ ∈ {γGα ,i,γGδ ,i,γSbI , j,γD,i,γGKP ,i
,γSmI ,k,γSbII , j,γSmII ,k,260

KP,KI ,kr1,kr2,kr3}, where i ∈ {1,2}, j ∈ {1,2,3,4,5} and k ∈ {1,2,3}. ∆ is a random

number from the uniform distribution in [-1,1]. Note that all the associated reaction

rates are split according to the number of chemical reactions in which they are in-

volved.

The simulation results are shown in Figure 5. The region shaded in grey is the265

output envelope encompassing all responses from 1060 Monte Carlo simulations for

randomly perturbed parameters in the range of ±10% from the nominal values. The

controller displays a good level of robust performance with no stability issues as a result

of varying parameters. The simulation was repeated with perturbations up to ±100%

(i.e. θ(1+∆) with ∆ = 1) and no instability was observed.270

Despite the robustness analysis showing good performance with no stability issues,

one notable result warranting further investigation is the presence of steady state error.

It is known that any controller with integral action should eliminate steady state errors

even in the presence of model uncertainty and this is not observed in our simulation.

This is due to the effect of uncertainty on the biomolecular subtraction and summa-

tion operators. From (22) to (26), to achieve exact summation and subtraction, their

associated reaction rates (γSb and γSm) are required to be identical. This can be seen by

considering the following summation, i.e., dy/dt = γ1x1 + γ2x2− γ3y. The summation

is exact when γ1 = γ2 = γ3, where at steady state, y = x1 + x2. When the parameters

are perturbed by uncertainty, however, this results in the summation reaction rates no
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longer being identical (γ1 6= γ2 6= γ3). Then, at steady state, y = (γ1/γ3)x1 +(γ2/γ3)x2,

and the summation is no longer exact. Thus, these non-proper summation and subtrac-

tion operators are likely to result in the controller being unable to compute the correct

control signal in response to the error, leading to the observed steady state error. To

confirm this, we performed parameter sensitivity analysis, whereby each of the pa-

rameters shown in Table 1 are multiplied by a factor that ranges from 0.5 to 2.0 with

increments of 0.1. Sensitivity is quantified by computing the relative steady state error

at times 40,000s (step-up) and 80,000s (step-down) or mathematically,

Relative ess,U =
ŷ(40000)−4

ŷ(40000)

Relative ess,D =
ŷ(80000)−1

ŷ(80000)
(27)

where ŷ is the output response subjected to parameter sensitivity. Table 2 shows the

maximum relative steady state errors resulting from tracking the step-up and step-down

of the reference signal.

The results of the sensitivity analysis confirm that the steady state error is largely

attributable to the Summation II and Subtraction II modules. These two operators are275

responsible for computing the total control signal to the process and the error to the PI

controller respectively. The parameters associated with the feedforward controller are

also highly sensitive. This is expected given that the feedforward controller operates

by inverting the relevant dynamics of the process at steady state. Thus, any changes

to the parameters within the feedforward controller could result in the computation of280

the incorrect control signal to negate the process dynamic, which subsequently leads

to large steady state error. Care is thus required when specifying and implementing the

reaction rates related to the controller and the summation and subtraction operators.

4.4. Simplified feedforward controller

The realisation of the inverse-feedforward controller involves a total of 26 abstract

chemical reactions. While this produces a reduction of circuit complexity by 28% com-

pared to using the framework proposed in Oishi and Klavins (2011), further reductions

to the number of abstract chemical reactions would be highly desirable. This can be
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Parameters Rel. ess (%) Parameters Rel. ess (%) Parameters Rel. ess (%)

Subtraction II: Inverse-Feedforward Controller: Summation II:

γSbII ,1 29.58 γGα ,1 50.00 γSmII ,1 50.00

31.97 50.00 50.00

γSbII ,2 20.95 γGα ,2 50.00 γSmII ,2 0.25

23.08 50.00 0.99

γSbII ,3 0.25 γGδ ,1 0.25 γSmII ,3 50.00

0.99 0.00 50.00

γSbII ,4 20.95 γGδ ,2 0.25 Process:

23.08 0.00 kr1 0.25

γSbII ,5 20.95 γSbI ,1 50.00 0.99

23.08 50.00 kr2 0.00

PI Controller: γSbI ,2 0.25 0.00

KI 0.25 0.00 kr3 0.25

0.99 γSbI ,3 50.00 0.99

KP 0.00 50.00

0.00 γSbI ,4 0.25

γSmI ,1 0.25 0.00

0.99 γSbI ,5 0.25

γSmI ,2 0.00 0.00

0.00 γGD,1 50.00

γSmI ,3 0.25 50.00

0.99 γGD,2 50.00

γGKP ,1
0.00 50.00

0.00

γGKP ,2
0.00

0.00

Table 2: Parameter sensitivity analysis of the tracking controller. The maximum percentage relative steady

state error has two rows for each parameter, where the upper and bottom rows denote Relative ess,U and

Relative ess,D respectively.

achieved using an alternative way to realise this feedforward controller, as follows.

From (12), which we rewrite here,

u =
αr

(β −δ r)
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we note that r appears in both the numerator and denominator. This fractional represen-285

tation can often be approximated by a polynomial to obtain a simplified representation.

Taking the Taylor series expansion of u at r∗ = 0, we have the following:

αr
(β −δ r)

≈ αr∗

(β −δ r∗)
+

αβ

(β −δ r∗)2 (r− r∗)

+
αβδ

(β −δ r∗)3 (r− r∗)2 +higher order terms (28)

Neglecting the contribution of higher order terms and substituting r∗ = 0 to (28), we

get
αr

(β −δ r)
=

α

β
r+

αδ

β 2 r2 (29)

As a remark, for r∗ 6= 0, we can always perform a change of variables to ensure that the

equilibrium is zero.

With this approximation, we have reduced the inverse-feedforward controller to290

requiring two gain operators, one summation operator and one polynomial operator.

Substituting the relevant values of α , β and δ , which are related to the process pa-

rameters (i.e. kr1, kr2 and kr3), we obtain u ≈ 0.029r + 0.000002r2. Given that the

coefficient of the second term is very small, our final approximation of the inverse-

feedforward controller is then given by u ≈ 0.029r. Hence, we have further reduced295

the complexity of the inverse-feedforward controller to requiring only one gain opera-

tor. With that, the block diagram configuration of the resulting simplified feedforward

controller is shown in Figure 6.

Using the same variables as in the full feedforward controller case, the associated

abstract chemical reaction for the simplified feedforward controller is given by300

[Simplified feedforward controller:]

r
γGΓ−−→ r+ x4

x4
γG−→ /0 (30)

where γG is the gain reaction rate and Γ = α/β . The associated ODE is given by

dx4

dt
= γG(Γr− x4) (31)
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We repeat the reference tracking simulations as in the case of a full feedforward

controller and the results are shown in Figure 7. The results show that the performance

of the simplified feedforward controller is similar to the case of a full feedforward

controller. However, implementation of the simplified feedforward controller requires

only 18 chemical reactions, a reduction of 31% and 50% from the full feedforward305

controller and framework proposed in Oishi and Klavins (2011) respectively.

We repeat the robustness analysis with the parameters φ ∈{γG,i,γGKP ,i
,γSmI , j,γSbII ,k,

γSmII , j,KP,KI ,kr1,kr2,kr3}, where i ∈ {1,2}, j ∈ {1,2,3} and k ∈ {1,2,3,4,5}. The

result is shown in Figure 8. Again, we observe similar performance compared to the

full feedforward controller. In fact the envelope of possible responses for the simplified310

feedforward controller is smaller compared to the full feedforward controller, since the

number of uncertain parameters is reduced. The sensitivity analysis is also repeated

and the results are shown in Table 3.

As in the the case of the full feedforward controller, the most sensitive parameters

are associated with the summation and subtraction operators as well as the gain of the315

simplified feedforward controller.

4.5. Design considerations and limitations for different biochemical processes

The dynamics of the enzymatic reaction process depend on kr1, kr2 and kr3. From

the experimental biology literature, it is clear that these three parameters can vary over

several orders of magnitude - depending on the particular biochemical process in ques-320

tion values of kr1, kr2 and kr3 in the literature range from 10−9 to 106, 10−2 to 102

and 10−5 to 10−3 respectively (see e.g. (Faeder et al., 2003; Hatakeyama et al., 2003;

Charusanti et al., 2004)). Such large variations in the process parameters can clearly

significantly impact the design of the tracking controller and need to be taken into ac-

count in the design process. Here, we investigate the effect of each of these process325

parameters on the performance of the tracking controller using both the full and sim-

plified feedforward controllers. We retain all the original parameters apart from the

process parameters, which we will vary in our analysis. For each process parameter,

we use the minimum and maximum values given above and consider their effect inde-

pendently and jointly. Table 4 summarises the findings and the simulation results are330
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Parameters Rel. ess (%) Parameters Rel. ess (%)

Subtraction II: Simplified Feedforward Controller:

γSbII ,1 29.58 γG,1 50.12

31.97 50.25

γSbII ,2 21.10 γG,2 50.12

23.08 50.25

γSbII ,3 0.50 Summation II:

0.99 γSmII ,1 50.12

γSbII ,4 21.10 50.25

23.08 γSmII ,2 0.50

γSbII ,5 21.10 0.99

23.08 γSmII ,1 50.12

PI Controller: 50.25

KI 0.50 Process:

0.99 kr1 0.74

KP 0.50 0.99

0.99 kr2 0.74

γSmI ,1 0.50 0.99

0.99 kr3 0.74

γSmI ,2 0.50 0.99

0.99

γSmI ,3 0.50

0.99

γGKP ,1
0.50

0.99

γGKP ,2
0.50

0.99

Table 3: Parameter sensitivity analysis of the tracking controller using the simplified feedforward controller.

The maximum percentage of relative steady state error has two rows, where the upper and bottom rows

denote Relative ess,U and Relative ess,D respectively.

shown in Figures 9 and 10.

In Figures 9 and 10, the signs (+) and () represent respectively the maximum and

minimum values of kr1 to kr3 of the process. For example, the notation (+,-,-) means

that we are analysing the scenario where kr1 takes the maximum value of its range,
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i.e. 1× 106, and kr2 and kr3 take the minimum value of their respective range, i.e.335

1× 10−2 and 1× 10−5. Likewise, the notation (+,+,-) represents the analysis of the

scenario where kr1 and kr2 take their maximum value of their respective range and kr3

is at the minimum value of its range. In each of the subfigures ((A) to (H)), the top row

represents the reference tracking capability of the output and the bottom row represents

the control action given by both the feedforward and feedback control.340

Reference tracking

capability (Y/N) kr1 kr2 kr3 Design remarks

Inverse-Feedforward Controller

N 1×10−9 1×10−2 1×10−5

N 1×10−9 1×102 1×10−5

N 1×106 1×10−2 1×10−5

N 1×106 1×102 1×10−5

Y 1×10−9 1×10−2 1×10−3 Increase reaction rates γ

Y 1×10−9 1×102 1×10−3 Increase reaction rates γ

Y 1×106 1×10−2 1×10−3 Decrease KP and KI

Y 1×106 1×102 1×10−3 Decrease KP and KI

Simplified Feedforward Controller

N 1×10−9 1×10−2 1×10−5

N 1×10−9 1×102 1×10−5

N 1×106 1×10−2 1×10−5

N 1×106 1×102 1×10−5

Y 1×10−9 1×10−2 1×10−3 Increase KP and KI

Y 1×10−9 1×102 1×10−3 No change to existing parameters

Y 1×106 1×10−2 1×10−3 Decrease KP and KI

Y 1×106 1×102 1×10−3 Decrease KP and KI

Table 4: Effect of process parameters on reference tracking capability and remarks on the control design

guidelines. For the reference tracking capability, Y denotes Yes and N denotes No.

The obtained results show that the tracking controller using both full and simplified

feedforward controller has difficulty in tracking reference inputs properly if the degra-

dation term of the process kr3 is very small (∼ 10−5). As shown in both Figures 9 and

10(A)-(D), the control action of PI (cyan line) stays at zero most of the time indicating

that the subtraction is not working properly due to r < y. Now, with a small value of345

kr3, y will degrade slowly, meaning r < y for a longer time, hence the poor tracking

(red line). On the other hand, if kr3 is large (∼ 10−3), the time for which r < y is short

as y degrades much faster, thus leading to accurate tracking as shown in both Figures 9
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and 10(E)-(H).

For very small values of kr1, to achieve good reference tracking requires the reac-350

tion rates in the inverse-feedforward controller to be increased. For implementation

using DNA-based chemistry, the ability to increase reaction rates could potentially be

constrained by the physical binding property of the DNA, thus this point has to be

taken into account when adjusting those reaction rates. For a large value of kr1, good

reference tracking can be achieved by decreasing the PI controller gains KP and KI .355

On the other hand, when the simplified feedforward controller is used, a good ref-

erence tracking can be achieved by just adjusting the PI controller gain. Finally, in the

case when the value of kr1 is small and the values of kr2 and kr3 are large, no adjustment

is required to the controller parameters. In Figures 9 and 10(E) and (F), we note that

despite the tracking controller being able to track the reference signal properly, poten-360

tially large control signals are required, whose feasibility needs to be checked during

the design process with experimentalists.

4.6. Retroactivity

Here, we investigate how retroactivity affects the overall performance of the track-

ing controllers. In previous sections, we have assumed perfect modularity of the dif-365

ferent elements in the closed-loop feedback control system shown in Figures 2 and 6.

In other words, the dynamic responses are not affected by the interconnection of the

components. While this assumption is widely made in the analysis of chemical reaction

based systems, recent work (see e.g. (Del Vechhio et al., 2008)) has shown that such

an assumption does not hold for many biomolecular feedback systems. As shown in370

Del Vechhio et al. (2008), the occurrence of different modules sharing the same molec-

ular species is common, and this sharing of species can affect the overall dynamics

of the processes upon their interconnection. To quantify the way that interconnection

of two modules alters their dynamics with respect to their behaviour in isolation, the

concept of retroactivity has been introduced (Del Vecchio and Jayanthi, 2008; Jayanthi375

et al., 2013). For the process considered here, it should be noted that no retroactivity

effects are present due to the interconnection of modules involving unimolecular reac-

tions. For example, for the closed-loop feedback control systems in Figures 2 and 6,

23



retroactivity does not affect the interconnection of the module Subtraction II with the

PI controller.380

On the other hand, an interconnection of two modules, where one module com-

prises unimolecular reactions while the other module comprises bimolecular reactions,

will feature a unidirectional retroactivity. Again, using an example in the context of

the closed-loop feedback control system shown in both Figures 2 and 6, retroactiv-

ity affects the interconnection of the module Summation II with the process (see (8)385

and (21)). To take into account the effect of retroactivity, the ODE representation of

Summation II must consider the chemical reactions downstream of the process (see

(25)). Thus the ODE representation of the Summation II module including the effect

of retroactivity is given as follows:

dx5

dt
= γSmII (x4 + x10− x5)− kr1x5xe︸ ︷︷ ︸

retroactivity

(32)

We repeat the simulations in Section 4.2 using both the full and simplified feed-390

forward controller taking into account the effects of retroactivity, and the results are

shown in Figures 11 and 12. The results show that retroactivity does not significantly

affect the performance of the overall closed-loop system other than to introduce a very

small steady state error. The reason for this steady state error can be explained as the

following. The retroactivity affects the input to the process, x5. At the same time, x5 is395

also the resulting control signal from both the feedforward and PI controllers. As both

the controllers do not have information regarding this error resulting from retroactivity,

these controllers are unable to provide the correct control signal to react to the effect of

retroactivity, thus leading to the observed steady state error. Nevertheless, our results

show that the performance of the tracking controller is not significantly affected by400

retroactivity, allowing us to undertake designs based on the assumption of modularity

(as is the case with standard control applications).

4.7. Implementation of CRN via DNA strand displacement chemistry

Finally, we briefly provide an overview of the way in which the type of designs pre-

sented in this paper may be implemented experimentally. Recently, there have been a405
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number of studies that described how synthetic circuits composed of abstract chemical

reactions may be readily implemented using DNA-based chemistry (see e.g. (Seelig

et al., 2006; Soloveichik et al., 2010; Qian and Winfree, 2011; Chen et al., 2013)). In

Chen et al. (2013), the authors highlighted that chemical reactions can serve as a pro-

gramming language for the design of DNA-based chemistry synthetic circuits. There-410

fore, circuit components synthesised using DNA that can be expressed mathematically

can be derived from biologically synthesised plasmids. Consequently, in principle this

enables the in vitro implementation of those circuits. The advantage of utilising DNA-

based chemistry in the design lies in the ease of implementation, as the design depends

on the choice of relevant sequences following the standard Watson-Crick pairing (i.e.415

adenine-thymine and guanine-cytosine or A-T and G-C). As a result, design frame-

works and software tools that allow synthetic biomolecular circuitry described using

CRN’s to be readily implemented using DNA strand displacement (DSD) chemistry

have been developed in recent years (see e.g. (Seelig et al., 2006; Soloveichik et al.,

2010; Qian and Winfree, 2011; Chen et al., 2013)).420

In particular, it has been shown in Soloveichik et al. (2010) that unimolecular (one

reactant at the LHS of the chemical reaction) and bimolecular (two reactants at the

LHS of the chemical reaction) chemical reactions can be compiled in DSD chemistry

to accomplish the intended behaviour of their designed biomolecular circuit. All de-

signs presented in this work are all made up of either unimolecular or bimolecular425

chemical reaction, making this framework suitable for the designed controller to be

implemented experimentally. Here, we briefly describe their proposed framework and

refer interested readers to Soloveichik et al. (2010) for details.

Consider the following bimolecular DSD reaction,

X +Q
kb−−⇀↽−−
kub

Y +W (33)

where kb is the binding reaction rate and kub is the unbinding reaction rate of the DNA

strand. The reaction commences when the invader strand Q binds in a standard Watson-430

Crick complementary manner to the toe-hold domain of strand X . As the binding oc-

curs, portions of the strand of X are displaced whereby this separation results in the

product Y and waste W . This partially double stranded product Y can then bind with
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to the toe-hold domain of other DNA strands and complexes for subsequent reactions.

The rate of the overall reaction can be controlled by varying the binding and unbind-435

ing rates, kb and kub. Quite often, different DNA strands do not interact directly with

one another, and hence auxiliary species with sufficiently large amount are required

to facilitate their interaction. With the inclusion of auxiliary species, the DSD imple-

mentation for the respective unimolecular (X → Y +Z) and bimolecular (X +Y → Z)

reactions are given by,440

X +G
q−→ O

O+T
qmax−−→ Y +Z (34)

and

X +L
q−−⇀↽−−

qmax
H +B

Y +H
qmax−−→ O

O+T
qmax−−→ Z (35)

where G, O, T , L, H and B are the auxiliary species with appropriate initial concentra-

tions Cmax. The partial strand displacement rate is given by q = kb/Cmax and qmax is the

maximum strand displacement rate.

Since the abstract chemical reactions describing the tracking controller presented445

here are made up exclusively of unimolecular and bimolecular reactions, the framework

introduced in Soloveichik et al. (2010) enables our design to be implemented via DNA

chemistry. Nevertheless, since the introduction of auxiliary species further increases

the number of reaction needed for DSD implementations, it is imperative that circuit

designs utilise as few reactions as possible. Hence, our results showing the feasibility450

of a radically simplified inverse-feedforward tracking controller offer strong potential

for future wet lab implementations of embedded biomolecular control systems.
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5. Conclusions

In this paper, we have shown for the first time how a controller architecture for im-

plementing reference tracking, based on the use of an inverse-feedforward controller,455

can be adapted to the specific context of embedded biomolecular feedback systems.

Our proposed approach circumvents a fundamental limitation of CRN-based systems

from the point of view of tracking control, i.e. the inability of standard CRNs to im-

plement a two-sided subtraction operator. The only currently available solution to this

problem proposed by Oishi and Klavins (2011) requires the adoption of a non-standard460

modelling and design framework that represents signals as the difference in the concen-

tration of two chemical species, an approach that significantly increases the complexity

of the design process and doubles the total number of chemical reactions needed to im-

plement a given circuit.

The complexity of the control problem considered here is significantly higher than465

in previous studies - almost all previous studies consider either a static or a very simple

first order process that avoids the possibility of the reference value being larger than the

output value (Cosentino et al., 2016) or employing control strategies that can reduce the

duration of the reference value being smaller than the output value (Briat et al., 2016)

or consider only a very simple static process with no dynamics (Yordanov et al., 2014).470

Using the existing standard realisation of one-sided subtraction, our approach of us-

ing inverse feedforward combined with feedback control produces highly accurate and

robust reference tracking. By exploiting the biochemical structure of the feedforward

controller, we are able to reduce its complexity using a Taylor series approximation.

The resulting simplified feedforward control not only achieves similar performance475

to the full feedforward controller, but also utilises far fewer chemical reactions. The

reduction in the number of chemical reactions is important, as it will significantly facil-

itate the experimental implementation of the proposed design in DNA-based chemistry

either in vitro or in vivo.
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Figure 1: Subtraction operator.
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Figure 3: (A) Block diagram configuration of a standard closed-loop feedback control system using a PI
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one-sided subtraction operator with lower control gain, (C) with higher control gain.
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Figure 4: System responses with the tracking controller. (A): Output and reference signals. (B) Control

signals from inverse-feedforward (FF) and PI controllers.
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Figure 8: Robustness analysis of the tracking controller using the simplified feedforward controller.
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Figure 9: Effect of varying process parameters on reference tracking using inverse-feedforward controller.

The notation ‘+’ and ‘-’ denotes respectively the maximum and minimum values of the process parameter.

Red line: output response. Black line: reference (set-point). Magenta line: control signal from

inverse-feedforward controller. Cyan line: control signal from PI controller.
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Figure 10: Effect of varying process parameters on reference tracking using simplified feedforward

controller. The notation ‘+’ and ‘-’ denotes respectively the maximum and minimum values of the process

parameter. Red line: output response. Black line: reference (set-point). Magenta line: control signal from

simplified feedforward controller. Cyan line: control signal from PI controller.
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Figure 11: System responses with retroactivity using inverse-feedforward controller. Top: Output and

reference signals. Bottom: Control signals from inverse-feedforward (FF) and PI controllers.
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Figure 12: System responses to retroactivity using simplified feedforward controller. Top: Output, control

and reference signals. Bottom: Control signals from simplified feedforward (FF) and PI controllers.
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