
 

 
 

 
 

  warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Pascoe, D. J. (David J.), Anfinogentov, Sergey, Nisticò, Giuseppe, Goddard, Paul and 
Nakariakov, V. M.. (2017) Coronal loop seismology using damping of standing kink 
oscillations by mode coupling II. additional physical effects and Bayesian analysis. Astronomy 
and Astrophysics, 600 . A78. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/85278  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners. To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Reproduced with permission from Astronomy & Astrophysics, © ESO 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version. Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/85278
mailto:wrap@warwick.ac.uk


Astronomy & Astrophysics manuscript no. ms c⃝ ESO 2017
January 18, 2017

Coronal loop seismology using damping of standing
kink oscillations by mode coupling

II. additional physical effects and Bayesian analysis
D. J. Pascoe, S. Anfinogentov, G. Nisticò, C. R. Goddard, and V. M. Nakariakov
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ABSTRACT

Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends
on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the
transverse loop structure which is important for understanding other physical processes such as heating.
Aims. The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed
by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological
tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period
of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations.
Methods. We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard
the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model
parameters using Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling.
Results. Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved
estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of
different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately
describe the background trend of the oscillating loop.
Conclusions. This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density
profile, and potentially reveals additional physical effects.

Key words. Magnetohydrodynamics (MHD) – Sun: atmosphere – Sun: corona – Sun: magnetic fields – Sun: oscillations – Waves

1. Introduction

Standing kink oscillations of coronal loops were first observed
using the Transition Region And Coronal Explorer (TRACE;
Aschwanden et al. 1999, 2002; Nakariakov et al. 1999). Modern
instruments such as the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) of the Solar Dynamics Observatory (SDO)
have made their detection routine (e.g., Zimovets & Nakariakov
2015; Goddard et al. 2016). Coronal seismology uses observa-
tions of various magnetohydrodynamic (MHD) waves in the so-
lar atmosphere to reveal fundamental plasma parameters (e.g.,
reviews by Stepanov et al. 2012; De Moortel & Nakariakov
2012; Pascoe 2014; De Moortel et al. 2016). In particu-
lar, standing kink oscillations are commonly used to es-
timate the magnetic field strength (e.g., Nakariakov et al.
1999; Nakariakov & Ofman 2001; Van Doorsselaere et al. 2008;
White & Verwichte 2012; Verwichte et al. 2013). MHD waves
also attract interest because of their possible role in coronal heat-
ing and solar wind acceleration (e.g., reviews by Ofman 2010;
Parnell & De Moortel 2012; Arregui 2015).

Another seismological application of kink modes is based
on their strong damping after impulsive excitation. This damp-
ing is attributed to resonant absorption which is a form of mode
coupling that occurs in coronal loops with a smooth transition
between the high density plasma in their core and the back-
ground plasma. Inside this inhomogeneous layer there is a con-

tinuous range of Alfvén speeds and energy is transferred from
the collective kink oscillation to a local, observationally unre-
solved Alfvén mode where the local Alfvén speed matches the
kink speed Ck. This is a robust mechanism first discussed by
Sedláček (1971) and also proposed as a plasma heating mecha-
nism (Chen & Hasegawa 1974; Ionson 1978). Hollweg & Yang
(1988) estimated that for coronal conditions the oscillations
would be strongly damped. After the discovery of standing kink
oscillations by TRACE it was revisited by Ruderman & Roberts
(2002) and Goossens et al. (2002) to account for the damping
which was indeed strong. Ruderman & Roberts (2002) calcu-
lated the inhomogeneous layer width for the oscillating loop ob-
served by Nakariakov et al. (1999), and Goossens et al. (2002)
calculated the layer width for 11 loop oscillations reported
in Ofman & Aschwanden (2002), with both studies assuming
the loops to be 10 times denser than the surrounding plasma.
Aschwanden et al. (2003) extended these studies with indepen-
dent estimates for the loop density contrast ratios based on
TRACE 171 Å cross-sectional flux profiles. The density contrast
ratios differing by a factor „ 2 from those predicted using the
oscillation damping time was attributed to the presence of hot-
ter plasma not detected by TRACE 171 Å. Arregui et al. (2007)
and Goossens et al. (2008) considered more general sesimologi-
cal inversion strategies which include the Alfvén transit time in
addition to the loop density profile parameters.
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Initial application of mode coupling to account for the
damping of kink modes of coronal loops produced analyt-
ical descriptions in the form of an exponential envelope
(Ruderman & Roberts 2002; Goossens et al. 2002). On the other
hand, numerical simulations by Pascoe et al. (2010, 2012)
demonstrated that the predicted exponential envelope did not
fully describe the damping behaviour and that a Gaussian en-
velope could be more suitable. This apparent contradiction
was resolved by Hood et al. (2013) who produced an analyti-
cal description for the damping envelope for all times rather
than just the asymptotic state. Accordingly, it can be seen
that the Gaussian and exponential damping envelopes are ap-
proximations for the non-linear damping envelope which are
applicable for early and late times, respectively. Pascoe et al.
(2013) produced a general approximation for the damping en-
velope which consists of these two (Gaussian and exponential)
approximations combined together and operating in different
stages of the oscillation damping. Numerical simulations per-
formed by Ruderman & Terradas (2013) also demonstrated the
Gaussian and exponential regimes. Observational evidence for
the Gaussian damping regime was found in TRACE data by
De Moortel et al. (2002) and Ireland & De Moortel (2002), and
in SDO data by Pascoe et al. (2016c), and supported by the sta-
tistical analysis of Morton & Mooroogen (2016). Pascoe et al.
(2016b) (which we will refer to as Paper I hereafter) produced
the first seismological inversions of the transverse density profile
using the general damping envelope.

In this paper we extend the seismological analysis of stand-
ing kink oscillations in Paper I to include additional physical
effects. In Sect. 2 we describe the seismological method used,
in particular the modifications to describe the time-dependent
period of oscillation, additional longitudinal harmonics, and the
decayless regime of kink oscillations. We also describe our novel
procedure for describing the background trend and the Bayesian
inference method used in our analysis. Our results are presented
in Sect. 3 where we apply several different models to four obser-
vations of oscillating loops. Discussion and conclusions are in
Sect. 4.

2. Damping of kink oscillations by mode coupling

The damping behaviour of kink oscillations depends on the
transverse structure of the oscillating loop. The transverse den-
sity profile can be characterised by the ratio of the internal
plasma density ρ0 to the external density ρe, and by the width
of the inhomogeneous layer l within which mode coupling takes
place. For a loop with (minor) radius R, the normalised inho-
mogeneous layer width is ϵ “ l{R. It is also convenient to in-
troduce the parameter κ “ pρ0 ´ ρeq{pρ0 ` ρeq as a ratio of
the plasma densities. The general damping profile (Pascoe et al.
2013, 2016b) for standing kink waves is then

D ptq “

$

&

%

exp
´

´ t2

2τ2
g

¯

t ď ts

As exp
´

´
t´ts
τd

¯

t ą ts

τg “
2P
πκϵ1{2

τd “
4P
π2ϵκ

ts “ τ2
g{τd, (1)

where As “ D pt “ tsq is the amplitude at the time ts when the
switch between Gaussian and exponential damping profiles oc-

Fig. 1. Illustration of the principle of seismological inversion
based on kink damping envelope. The two density profiles (left
panels) produce the same overall damping rate for their corre-
sponding kink oscillations (right panels). However, they can be
distinguished based on the shape of the damping envelope, char-
acterised by the switch time ts (vertical dashed lines).

Fig. 2. The inverse relationship between the density contrast ra-
tio and the inhomogeneous layer width ϵ. The curves in param-
eter space correspond to the same kink oscillation damping rate
due to mode coupling (Fig. 1 shows two particular density pro-
files). The solid curve corresponds to the damping rate calculated
using the general damping profile (Eq. (1)) while the dashed
curve is for the exponential damping regime alone.

curs. Here it is assumed that the oscillation is excited at time
t “ 0. Figure 1 shows two examples of the density profiles (left
panels) and the corresponding damping envelopes (right panels).
The two loop density profiles have been chosen to give the same
overall damping rate, taken to be 90% attenuation after six cy-
cles (t “ 6P). The top panels represent the case of a loop with a
low density contrast with a large inhomogeneous layer while the
bottom panels are the case of a loop with a larger density contrast
ratio and thinner inhomogeneous layer. There is an infinite num-
ber of such solutions which reproduce the observed behaviour
if only the damping rate is considered and not also the shape of
the damping profile, represented by the solid curve in parame-
ter space shown in Fig. 2. This curve is based on the general
damping profile Eq. (1) and is qualitatively the same as that for
the exponential damping regime (dashed curve) alone which has
been discussed by previous authors (e.g., Goossens et al. 2008;
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Arregui & Asensio Ramos 2014). A seismological inversion for
the density profile parameters (ρ0{ρe, ϵ) based only on the over-
all damping rate produces a 1D curve in the 2D parameter space
due to the problem being ill-posed. However, the inclusion of
the additional information from the shape of the damping enve-
lope, characterised by the parameter ts, makes the problem well-
posed. For example, in Fig. 1, the loop with the lower density
contrast and larger ϵ (top panel) is distinguished from the loop
with the larger density contrast and smaller ϵ (bottom panel) by
its later switch time ts, even though both loops have the same
overall damping rate. However, the extent to which the structur-
ing parameters may be constrained will still be affected by the
inverse relationship shown in Fig. 2 (in addition to observational
uncertainties). The parametric curve is asymptotic in the limits
ρ0{ρe Ñ 1 and ρ0{ρe Ñ 8. Consequently, when the observa-
tional data (damping envelope) implies a loop with a small den-
sity contrast ρ0{ρe „ 1, then ϵ will be less well constrained than
for a large contrast ρ0{ρe ≳ 5 for which ϵ is almost independent
of density contrast.

The model discussed so far is based on the presence of a
single standing kink mode (the fundamental mode) with a con-
stant period of oscillation. For the analysis in this paper, we ex-
tend this model to include a number of additional physical ef-
fects, namely a time-dependent period of oscillation, the pres-
ence of additional longitudinal harmonics (with and without lon-
gitudinal structuring), and the decayless regime of kink oscilla-
tions. Each of these are discussed below, as are the methods of
Bayesian inference and Markov Chain Monte Carlo (MCMC)
sampling we use to test our models against the observational
data, and our procedure for the background trend which de-
scribes an evolving equilibrium position about which the loop
oscillates.

2.1. Time-dependent period of oscillation

The data analysed by Pascoe et al. (2016c,b) was limited by the
demand that the period of oscillation remained constant. This is
evident in, for example, Fig. 2 of Pascoe et al. (2016c), which
shows the fitted oscillations stopping before the end of the data.
Beyond these times, the loops continue to oscillate but if the
fitted oscillation (with constant period) were extended it would
move out of phase with the observational data and so would no
longer represent a meaningful comparison. In the present paper,
we relax the requirement of oscillations having a constant period
and so allow longer time series to be considered. If we consider
the period of oscillation of the fundamental standing kink mode
as Pk “ 2L{Ck then the period of oscillation may vary in time
either due to changes in the loop length L and/or the kink speed
Ck. The kink speed depends on the Alfvén speeds inside and out-
side the loop, which also determine the damping rate of kink os-
cillations by mode coupling. Furthermore, these are parameters
we are typically interested in using our seismological method to
determine and so independent observational evidence for their
variation in time is unlikely. We therefore choose to consider the
case of variations in period arising due to changes in loop length
alone, i.e. we use the approximation that the transverse density
profile remains unchanged during the oscillation. Since we in-
tend the period of oscillation to be weakly varying we consider
a low-order polynomial to describe its evolution;

Pk ptq “
2L ptq

Ck
,

L ptq “ L0 ` L1t ` L2t2 ` L3t3. (2)

Our use of a polynomial (rather than a linear trend) allows us
to consider the general case of the period of oscillation increas-
ing and/or decreasing during the oscillation, and for the rate of
change to vary in time.

We note that although we consider the transverse loop struc-
ture to be constant, our time-dependent period of oscillation
requires that the Gaussian and exponential damping times are
also time-dependent since τg,d9P. In this way our model dif-
fers from that of Morton & Mooroogen (2016) who consider the
Gaussian damping regime with a time-dependent period of os-
cillation but a constant damping time characterised by the con-
stant a4 in their Eq. (5). Their model therefore corresponds to
changes in period being accompanied by changes in the trans-
verse density profile such that τg remains constant. Changes
in the period of oscillation of kink modes have been investi-
gated using wavelet analysis by De Moortel et al. (2002) and
Ireland & De Moortel (2002) (these two studies also include the
shape of the damping profile as a fitted parameter). White et al.
(2013) and Morton & Mooroogen (2016) fit loop oscillations us-
ing a period of oscillation that varies linearly in time (and all
were found to increase). Nisticò et al. (2013) related the (linear)
increase of the decayless kink oscillation period to the observed
expansion of the loop. Russell et al. (2015) examined the rela-
tionship between loop contraction and oscillation to changes in
the magnetic environment produced by flares, while Hayes et al.
(2016) have recently measured an increase in loop length during
the decay phase of a flare.

For the purpose of analysing the loop oscillations we rewrite
Eq. (2) since the loop length itself is not a parameter in our model
(though it may be estimated separately as in Table 3). Instead we
consider the Alfvén transit time TA “ L{vA and then obtain

Pk ptq “ 2TA ptq

c

1 ` ρe{ρ0

2
,

TA ptq “ TA0 ` TA1t ` TA2t2 ` TA3t3. (3)

Since we assume for simplicity there are no changes in den-
sity, the time-dependence of TA is most simply associated with
changes in loop length as discussed above.

2.2. Longitudinal harmonics

Several observations of standing kink waves in coronal loops
suggest the presence of longitudinal harmonics other than, or
in addition to, the fundamental mode (e.g., Verwichte et al.
2004; De Moortel & Brady 2007; Van Doorsselaere et al.
2007; Zaqarashvili et al. 2013; Kupriyanova et al. 2013;
Kolotkov et al. 2015; Pascoe et al. 2016a).

White et al. (2012) interpret their observation as either a
second or third longitudinal harmonic with vertical polarisa-
tion, while Yuan & Van Doorsselaere (2016) favour the third
harmonic with a horizontal polarisation for this oscillation.
Van Doorsselaere et al. (2009) demonstrate that horizontally and
vertically polarised kink waves have effectively the same period
of oscillation and so the polarisation is not important in terms
of the damping behaviour, although it may provide information
about the excitation mechanism.

For each of the loops in this paper we consider a single time
series i.e. without spatial information. Furthermore, the loops
were initially selected on the basis of exhibiting a clear (single)
period of oscillation. However, it is also evident that the loops
have an aharmonic shape to the oscillation at the beginning. Our
primary motivation for considering additional harmonics in this
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Fig. 3. Dependence of period ratios P1{2P2 (solid lines) and
P1{3P3 (dashed lines) on the density scale height H (top panel)
and loop expansion factor Γ (bottom panel).

paper is therefore to account for this aharmonic shape. We there-
fore expect the amplitudes of the higher harmonics to be small
in comparison to the fundamental mode. However, they may
also have important consequences for seismology since observa-
tions of higher harmonics can also provide additional informa-
tion about the longitudinal structuring of the loop (e.g., review
by Andries et al. 2009).

We limit our model to the first, second, and third harmonic
standing modes. Each harmonic is a sinusoidal oscillation with
the damping profile given in Eq. (1). We distinguish the param-
eters of the different harmonics with the addition of a subscript
corresponding to the order n, e.g., the periods of oscillation for
the fundamental, second, and third harmonic are P1, P2, and P3,
respectively.

The damping behaviour due to mode coupling is based on
the long wavelength approximation for which the kink mode ex-
periences no geometrical dispersion and so the phase speed is
the kink speed Ck (Edwin & Roberts 1983). The period of oscil-
lation for the nth harmonic is then

Pn “
2L
nCk
. (4)

The dispersionless and longitudinally uniform model therefore
corresponds to the harmonics having frequencies that are integer
multiples of the fundamental mode, i.e. P2 “ P1{2 and P3 “

P1{3.
However, there have been numerous studies of the effect of

longitudinal structuring on the period of standing kink modes.
Variation of plasma parameters along the loop can modify the

period of oscillation of different harmonics by different amounts
such that P1{nPn , 1. We consider two such models in this
paper; longitudinal structuring due to density stratification, and
longitudinal structuring due to loop expansion.

The effect of longitudinal stratification on period ratio has
been considered by several authors (e.g., Andries et al. 2005;
Safari et al. 2007; McEwan et al. 2008) and the period ratio of
the fundamental and second harmonic has been used to esti-
mate the coronal density scale height (e.g., Andries et al. 2005;
Van Doorsselaere et al. 2007). For the modification of the peri-
ods of the longitudinal harmonics by density stratification we use
the model considered by Andries et al. (2005) and Safari et al.
(2007) which gives

P1 “ Pk{
`

1 ` L{3π2H
˘

,

P2 “ Pk{2
`

1 ` L{15π2H
˘

,

P3 “ Pk{3
`

1 ` L{35π2H
˘

, (5)

where H is the density scale height and the density decreases
with height z as 9 exp p´L{πH sin πz{Lq. We consider Pk to be
a function of time as given by Eq. (3).

Verth & Erdélyi (2008) studied the effect of longitudinal
magnetic and density inhomogeneities on kink oscillations. In
particular we consider their model for flux tube expansion with
constant density which gives the periods of the longitudinal har-
monics as

γ “ arctan2
´

a

Γ2 ´ 1
¯

,

P1 “ Pk,

P2 “ Pk

b

pπ2{4 ´ γq { pπ2 ´ γq,

P3 “ Pk

b

pπ2{4 ´ γq { p9π2{4 ´ γq, (6)

where Γ is the loop expansion factor, defined as the ratio of the
loop radius at the apex to the radius at the footpoints.

These two longitudinally structured models describe loops
with a constant loop density contrast. We further assume that
ϵ is constant and so the structuring modifies the period ratios
P1{nPn with constant signal qualities τg,d{P for each harmonic
as given in Eq. (1). These models provide analytical relation-
ships for the periods of oscillation in terms of a single additional
parameter with a physical meaning, i.e. the density scale height
H for a stratified loop, and the expansion factor Γ for an ex-
panding loop, rather than a more general approach where each
Pn is considered independently and with no physical constraint.
Figure 3 shows the dependence of the period ratios on the struc-
turing parameters H and Γ. The loop expansion model describes
period ratios P1{nPn greater than unity, while stratification can
account for ratios both greater and less than unity. A period ra-
tio greater than unity is therefore consistent with either an ex-
panding loop, or a negative scale height (i.e. denser at the apex
than at the footpoints) which has been considered for coronal
loops (Andries et al. 2005; Pascoe et al. 2016a) and prominence
threads (Soler et al. 2015; Arregui & Soler 2015).

2.3. Decayless component

The high-resolution imaging data provided by SDO led to the
discovery of the low-amplitude decayless regime of coronal
loop kink oscillations (Nisticò et al. 2013; Anfinogentov et al.
2013). High-amplitude decaying kink oscillations were ini-
tially suggested to be excited by blast-waves launched by
flares (e.g., McLaughlin & Ofman 2008; Pascoe et al. 2009;
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De Moortel & Pascoe 2009; Pascoe & De Moortel 2014). A sta-
tistical study by Zimovets & Nakariakov (2015) shows that the
majority of cases (but not all of them) are associated with
low-coronal eruptions. In comparison, the decayless oscillations
appear to be ubiquitous in active regions (Anfinogentov et al.
2015). Their excitation mechanism is not fully understood but
has been modelled as a self-oscillatory process Nakariakov et al.
(2016). The driving mechanism for decayless standing modes
might also be connected to the ubiquitous propagating kink
waves discovered by Tomczyk et al. (2007). The transverse ve-
locity perturbations have a broadband spectrum with a period
of about 5 minutes and are strongly damped in coronal loops
(Tomczyk & McIntosh 2009) which has also been explained in
terms of mode coupling (e.g., Pascoe et al. 2010, 2011, 2015;
Terradas et al. 2010; Verth et al. 2010; Goossens et al. 2012).

Loop #3 considered below has been studied by Nisticò et al.
(2013) for exhibiting decayless oscillations before and after a
large amplitude decaying oscillation associated with a flare. In
our model, the decayless component is assumed to be a low am-
plitude and undamped fundamental standing mode with a period
of oscillation P1 and amplitude A0. We may consider the de-
cayless component as having a phase difference ϕ0 relative to
the decaying components before the large amplitude perturba-
tions are generated, although after this time it is required to be in
phase with the decaying fundamental mode. However, here we
only consider the oscillation after the impulsive excitation and
so this parameter is not required in our modelling.

The models we consider therefore consist of up to four os-
cillatory components, in addition to the background trend (dis-
cussed in Sect. 2.5). The transverse displacement of the loop
Y ptq measured at a certain location (see slits in Fig. 5) is

Y ptq “ rA0 ` A1D1 pt̃qs sin
ˆ

2πt̃
P1

˙

` A2D2 pt̃q sin
ˆ

2πt̃
P2

` ϕ2

˙

` A3D3 pt̃q sin
ˆ

2πt̃
P3

` ϕ3

˙

, (7)

where t̃ “ t ´ t0 is the time after the start of the oscillation t0
and Dn is the damping envelope for the nth harmonic given by
Eq. (1) with

τg,n “
2Pn

πκϵ1{2

τd,n “
4Pn

π2ϵκ

ts,n “
τ2

g,n

τd,n
“

Pn

κ
, (8)

where Pn is determined either by the dispersionless condition
P1{nPn “ 1 or by one of the longitudinally structured models
given by Eqs. (5) or (6) and described in Sect. 2.2. We note that
we assume all harmonics are damped by the same mechanism of
resonant absorption.

2.4. Bayesian inference

In Paper I, model parameters were determined by a Levenberg-
Marquardt least-squares fit to the data using MPFIT (Markwardt

2009), with each point weighted according to its error (as esti-
mated by the GAUSSFIT model of the transverse intensity pro-
file using IDL). In this paper we instead use a method based
on Bayesian inference. Bayesian analysis allows for robust es-
timation of the dependence of the model output on the input
parameters. It has been successfully applied to the seismolog-
ical inference of coronal loop parameters from the observa-
tions of damped kink oscillations (e.g., Arregui et al. 2013a,
2015; Arregui & Asensio Ramos 2011). Arregui et al. (2013b)
describe a version of the seismological inversion technique us-
ing the Gaussian and exponential damping regimes based on
Bayesian analysis, while Arregui & Asensio Ramos (2014) con-
sider Bayesian analysis of the ill-posed case i.e. the exponential
damping regime only.

In general, a parameter inference problem implies that the
observed data D can be explained in terms of a model M having
parameter set θ “ rθ1, θ2, ¨ ¨ ¨ , θNs. Thus, the aim is to find the
value of parameters θ that gives the best possible agreement with
the observed data D. The formulation of Bayesian parameter in-
ference relies on three main definitions:

1. The prior probability density function (PDF) Ppθq represents
our knowledge about the model parameters θ before con-
sidering the observational data D. For example, this could
be knowledge from previous measurements or a require-
ment that the particular model parameter lies inside a certain
range.

2. The sampling PDF PpD|θq describes the conditional proba-
bility to obtain the observed data D for a fixed value θ of the
model parameters. The likelihood function is PpD|θq consid-
ered as a function of θ with fixed D. We note that the like-
lihood is not a PDF. In particular, its integral over θ is not
equal to unity.

3. The posterior PDF Ppθ|Dq describes the conditional proba-
bility that the model parameters are equal to θ under condi-
tion of observed data being equal to D. This function repre-
sents our knowledge about the model parameters θ after the
observation, when the observed data D is known and fixed.

The Bayes theorem connects prior and posterior probability
density functions and describes how the observational data D
affects our knowledge about model parameters θ

P pθ|Dq “
P pD|θq P pθq

P pDq
. (9)

The normalisation constant P pDq in denominator is the
Bayesian evidence or marginal likelihood

P pDq “

ż

P pD|θq P pθq dθ. (10)

For our prescribed prior probability P pθq and likelihood P pD|θq
functions, the posterior probability distribution P pθ|Dq can be
readily computed for any value of the parameter set θ using the
Bayes theorem in Eq. (9). However, in practical applications,
we are interested to find most probable value and corresponding
uncertainties for each parameter θi. For this purpose, we need to
calculate the marginalised (integrated) posteriors

P pθi|Dq “

ż

P pθ1, θ2, ¨ ¨ ¨ , θN |Dq dθk,i. (11)

For a simple low-parametric model (2–3 parameters), the inte-
grals in Eq. (11) can be directly calculated using standard nu-
merical methods. Unfortunately, it is practically impossible to

5



Pascoe et al.: Kink mode seismology II

use direct numerical integration for complicated models with a
large set of parameters. Indeed, every additional parameter in-
creases the computation time by several orders of magnitude.
Therefore, sampling methods based on Markov Chain Monte
Carlo (MCMC) are preferable for complex models. MCMC al-
lows us to obtain samples from the posterior probability distri-
bution Ppθ|Dq. When enough samples are obtained (our results
are based on 106 samples for each model), the marginalised pos-
terior (Eq. (11)) can be approximated by a histogram of corre-
sponding model parameter θi. In this paper, we use our own IDL
code implementing the standard Metropolis-Hastings MCMC
sampler (Metropolis et al. 1953; Hastings 1970).

In many previous applications of Bayesian analysis to trans-
verse coronal loop oscillations (e.g., Arregui et al. 2013a,b,
2015; Arregui & Asensio Ramos 2011, 2014) coronal loop pa-
rameters were derived from measured oscillation periods, decay
times, and the corresponding uncertainties. On the other hand,
Asensio Ramos & Arregui (2013) apply Bayesian analysis di-
rectly to the time series of a transverse oscillation, including
a fixed background trend (described by a polynomial with co-
efficients taken from the analysis by Aschwanden et al. 2002).
In our study, we use a more general approach by also applying
Bayesian analysis to the measured loop positions (Yi, measured
at times ti) but including the background trend as parameters var-
ied during sampling. Asensio Ramos & Arregui (2013) note that
no physical information is extracted from the coefficients of the
polynomial describing the background trend, which also applies
to the parameters describing our spline-based background trend
(see Sect. 2.5). However, including the trend as a varied compo-
nent of our model potentially allows for a more accurate descrip-
tion of the data and investigation of additional effects, such as the
correlation of the trend with the period of oscillation (Sect. 3.2).
We assume that the error corresponding to Yi measurements is
normally distributed with a standard deviation of σY . Thus, the
likelihood function is the product of Nd Gaussians

P pD|θq “
1

`

2πσ2
Y

˘

Nd
2

Nd
ź

i“1

exp

#

´
rYi ´ Ymodelpti, θqs2

2σ2
Y

+

, (12)

where Nd is the number of data points and Ymodel pti, θq is the
model function that describes the theoretical oscillation profile,
and depends on the instance of time ti and model parameters θ.
The measurement errorσY is an unknown parameter. We assume
it is the same for all data points and infer it during the MCMC
sampling together with the other model parameters.

As an a priori knowledge, we assume the model parameters
θ “ rθ1, θ2, ¨ ¨ ¨ , θNs to be equally probable inside the predefined
ranges

θmin
i ď θi ď θmax

i .

Thus, our prior probability distribution can be expressed as

P pθq “

N
ź

i“1

H
`

θi, θ
min
i , θ

max
i

˘

, (13)

where H px, a, bq is a uniform probability density function de-
fined as

H px, a, bq “

"

1
b´a , a ď x ď b
0, otherwise

. (14)

The particular values of θmax
i and θmin

i are determined by theo-
retical and/or practical considerations. For example, 0 ď ϵ ď 2
according to the definition of our density profile. For our model
based on overdense loops, the density contrast has a defined

lower limit of 1. The upper limit is taken to be 20, which is an
arbitrary value aside from being significantly larger than what
we expect for the typical EUV loops we observe. We find the
following ranges to be suitable for our data

t0 P r´5, 5s minutes,
TA0 P r0.1, 10s minutes,
ρ0{ρe P r1, 20s ,

ϵ P r0, 2s ,

A0,1 P r´10, 10s Mm,
A2,3 P r0, 10s Mm,
ϕ2,3 P r´π, πs ,

L{H P r´20, 20s ,

Γ P r1, 2s ,

TA1,2,3 P r´1, 1s ,

σY P r0,maxpYq ´ minpYqs , (15)

where TA1,2,3 are the polynomial coefficients for the time-
dependent period of oscillation described by Eq. (3). We note
that the decayless and fundamental harmonic amplitudes may
be negative to accommodate the initial direction of the oscilla-
tion and since they are defined to have a phase shift of zero.
In contrast, the amplitude of the second and third harmonics are
restricted to positive values only since those components also al-
low for a phase shift ϕ2,3. Our choice of uniform priors is made as
the simplest option, and is similar to maximum likelihood esti-
mation. Our choice of prior ranges allows us to exclude unphysi-
cal values and improves the efficiency of sampling by restricting
the parameter space. Limits are chosen to be broad enough to
include all reasonable values and so the inference results are not
sensitive to the selection, as demonstrated by inferred values of
parameters being localised within their prior range. Occasional
exceptions to this are for the prescribed limits ϵ Ñ 2 and ΓÑ 1,
which correspond to the physically allowed cases of fully inho-
mogeneous and non-expanding loops, respectively. On the other
hand, the limits ρ0{ρe Ñ 1 and ϵ Ñ 0 should strictly be ex-
cluded since they correspond to no waveguide and no inhomo-
geneous layer, respectively, for which our model of damping due
to mode coupling of kink waves is inapplicable. However, they
also correspond to the limit of undamped oscillations, whereas
our observations are of strongly damped oscillations, and so we
are always far from these limits anyway.

The use of Bayesian analysis to discriminate between mod-
els of stratified and expanding loops was previously investigated
by Arregui et al. (2013a) for the case of the fundamental and
second harmonic kink modes. In principle, the use of the third
(or other additional) harmonic could allow for both stratifica-
tion and expansion to be considered simultaneously, though the
required accuracy of the data to allow this is unlikely to be sat-
isfied. Models Mi and M j can be quantitatively compared using
the Bayes factor (Jeffreys 1961), defined as

Bi j “
P pD|Miq

P pD|M jq
, (16)

where the evidences are calculated according to Eq. (10) using a
Monte Carlo method with importance sampling (e.g., Chen et al.
2001; Hammersley 2013). The evidence for each model consid-
ered is calculated independently and then any two models may
be compared by calculating the Bayes factor as the ratio of the
evidences as given by Eq. (16). As proposed by Kass & Raftery
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(1995) and also used by Arregui et al. (2013a), it is convenient
to consider twice the natural logarithm of this factor, i.e.

Ki j “ 2 ln Bi j, (17)

where values of Ki j greater than 2, 6 and 10 correspond to
“positive”, “strong”, and “very strong” evidence for model Mi
over model M j, respectively. For example, Arregui et al. (2013a)
demonstrate that for their level of uncertainty a period ratio
P1{2P2 ă 0.71 would indicate very strong evidence for a strati-
fied loop rather than a uniform loop, while P1{2P2 ą 1.28 indi-
cates very strong evidence for an expanding loop over a uniform
loop (the case of negative scale heights was not considered).

2.5. Background trend

In Paper I, the loop oscillations were interpreted in terms of a
single harmonic component and so it was convenient to detrend
the loop displacement time series before fitting. The background
trend was determined by spline interpolation of the maxima and
minima to accurately calculate the equilibrium position of the
oscillation. In Pascoe et al. (2016a), observations of a fundamen-
tal and second harmonic kink mode were analysed. To avoid the
detrending procedure influencing the two fitted harmonic com-
ponents, the background trend was described by a polynomial
and was fitted simultaneously with the harmonic components. A
polynomial trend was sufficient in that case because typically a
low number of cycles of the oscillation were analysed. For the
same reason, only the Gaussian damping regime was considered.

In this paper we wish to consider long time series which
demonstrate significant dynamical behaviour for the loop equi-
librium position. On the other hand, the trend should be included
in the model to ensure it is does not have an unwanted influence
on the other model parameters. In contrast with the spline trend
used in Paper I which was based on locating the maxima and
minima, the trend used in this paper is based on the zeroes of
the oscillation. Each sampling of our model includes estimates
for t0 and P1. We use these parameters to define a series of in-
terpolation points approximately corresponding to zeroes of the
oscillation

xi “ t0 ` ixP1y,

where we use the mean value of P1 for our case of a weakly vary-
ing period of oscillation. Some other characteristic timescale
could be used to separate modelled oscillations from the back-
ground behaviour, where generally we wish to consider vari-
ations in the trend which have a longer timescale than the
longest timescale described by our physical model. Two addi-
tional points for interpolation are defined by the start and end
of the time series. The corresponding values of the background
equilibrium position yi at these times xi are taken as additional
model parameters to be varied. The background trend is then de-
fined by spline interpolation of the points pxi, yiq (e.g., see bot-
tom panel of Fig. 10) using the spline function in IDL (with ten-
sion parameter being its default value Sigma “ 1.0).

The background trend for coronal loop oscillations is fre-
quently modelled using a low-order polynomial function. We
note there is no theoretical justification for this choice, or the or-
der of the polynomial, and no physical interpretation associated
with polynomial coefficients. For example, Aschwanden et al.
(2002) contains examples of polynomial trends with order 1–
6, White & Verwichte (2012) use a 3rd order polynomial for the
background, and Morton & Mooroogen (2016) compare results
using 3rd and 4th order polynomials.

Table 1. SDO/AIA observations of standing kink modes anal-
ysed in this paper.

Loop no. Catalogue event no. Date Time (UT)
Loop #1 Event 43 Loop 4 7 Jan 2013 06:38:11
Loop #2 Event 31 Loop 1 26 May 2012 20:41:48
Loop #3 Event 32 Loop 1 30 May 2012 08:58:00
Loop #4 Event 40 Loop 10 20 Oct 2012 18:10:11

Figure 4 demonstrates examples of fitting oscillation data
with a model using a background trend given by a polynomial
function (4th order with constant coefficients; top panels) or our
spline procedure described above (bottom panels). The time se-
ries of the oscillation (circles) are calculated as a harmonic os-
cillation (with constant period and amplitude) about the equilib-
rium position given by the dashed lines. The left panels show
an example of a localised perturbation in the background and
the middle panels are an example of piecewise linear behaviour.
These trends are approximately based on the behaviour seen in
Loops #3 and #4. The polynomial trend is particularly poor at de-
scribing localised changes in the background such as that around
35 mins (left panels). The use of a low-order polynomial trend
has the effect of smoothing out the background behaviour and
introduces artificial modulation of the amplitude of the oscil-
lation. Since our seismological method is based on measuring
the amplitude modulation (damping) of the loop oscillation we
wish to avoid introducing this artificial modulation. The top pan-
els also show how the polynomial trend can erroneously suggest
the background trend is oscillatory. Conversely, when the back-
ground trend is actually oscillatory (right panels), the low-order
polynomial describes an approximately linear trend through the
centre of the background oscillation.

Since a polynomial function describes a background trend
with a fixed amount of information (d ` 1 coefficients for a
polynomial of degree d), then as the time series considered be-
comes longer, the polynomial trend becomes less sensitive to lo-
calised changes, i.e. the background trend and hence oscillation
depend on the particular number of cycles chosen for analysis,
and the trend becomes less accurate as more data is considered.
Our spline trend is designed to avoid this limitation. By defining
the interpolation points in terms of P1 (the longest period of os-
cillation in our physical model) each component of the spline is
a low-order polynomial over this timescale and describes the lo-
cal equilibrium of the oscillation. However, since the number of
interpolation points depends on the number of cycles within the
time series, trends for longer time series remain as well-resolved
as those for shorter time series.

For our spline procedure, the varied parameters for the trend
correspond to a series of points within the range of the oscillation
signal. The prior ranges for our Bayesian analysis are therefore
taken to be yi P rmin pYq ,max pYqs. For our models which use
a polynomial background trend (e.g., Sect. 4), the same prior
range is used for the constant term for the polynomial. The prior
ranges for the coefficients of the higher order terms are r´1, 1s,
which are found to be sufficient for our data.

3. Analysis of loop oscillations

The loop oscillations we analyse were selected from the cata-
logue of kink oscillations compiled by Zimovets & Nakariakov
(2015) and are shown in Fig. 5. Table 1 records the designation
(loop no.) by which they will be referred to in this paper, the
designation used in Goddard et al. (2016), and the date and time
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Fig. 4. Examples of oscillation fits (green lines) which include a background trend (blue lines) given by a 4th order polynomial (top
panels) and our spline procedure (bottom panels) described in Sect. 2.5. The left panels show an example of a localised perturbation
in the background (at around 35 mins), the middle panels are an example of piecewise linear behaviour, and the right panels show an
oscillating background. The spline procedure accurately recovers the actual trend (dashed lines), whereas the low-order polynomial
trend can both introduce artifical modulation and fail to account for modulation that is present.

Table 2. Parameters for Loops #1 – #4 for different models. The posterior summaries are given at the median with uncertainty at
the 95% credible interval.

t0 (min) TA0 (min) ρ0{ρe ϵ A0 (Mm) A1 (Mm) A2 (Mm) A3 (Mm) σY (Mm) L{H Γ Ki0

Loop #1

Fundamental only 1.94`0.11
´0.09 2.75`0.21

´0.24 1.68`0.26
´0.19 1.18`0.74

´0.42 – 0.99`0.04
´0.04 – – 0.08 – – 0

Dispersionless 2.08`0.07
´0.11 2.50`0.21

´0.15 1.71`0.22
´0.19 1.15`0.72

´0.35 – 1.01`0.04
´0.04 0.18`0.05

´0.05 0.08`0.06
´0.06 0.07 – – 24.1

Stratified 2.07`0.07
´0.11 2.47`0.29

´0.18 1.70`0.24
´0.20 1.15`0.73

´0.37 – 1.01`0.04
´0.04 0.17`0.05

´0.05 0.09`0.06
´0.06 0.07 ´0.83`1.72

´1.54 – 19.2

Expanding 2.10`0.07
´0.11 2.48`0.19

´0.11 1.71`0.23
´0.20 1.14`0.71

´0.35 – 1.01`0.04
´0.04 0.18`0.05

´0.05 0.10`0.06
´0.06 0.07 – 1.10`0.15

´0.09 21.8

Loop #2

Fundamental only ´0.45`0.15
´0.13 5.50`0.23

´0.28 1.88`0.28
´0.28 0.75`0.51

´0.20 – ´3.59`0.12
´0.12 – – 0.08 – – 0

Dispersionless ´0.46`0.18
´0.15 5.44`0.25

´0.33 1.93`0.24
´0.18 0.70`0.21

´0.15 – ´3.63`0.10
´0.10 0.24`0.11

´0.11 0.69`0.13
´0.13 0.20 – – 74.2

Stratified ´0.46`0.14
´0.15 5.39`0.26

´0.35 1.92`0.23
´0.18 0.71`0.24

´0.15 – ´3.64`0.10
´0.10 0.24`0.11

´0.11 0.69`0.13
´0.13 0.20 ´0.30`0.80

´1.37 – 67.2

Expanding ´0.47`0.14
´0.13 5.45`0.22

´0.24 1.91`0.23
´0.19 0.72`0.25

´0.16 – ´3.64`0.10
´0.10 0.23`0.11

´0.11 0.70`0.13
´0.13 0.20 – 1.04`0.13

´0.04 69.4

Loop #3

Fundamental only ´0.47`0.08
´0.09 2.96`0.21

´0.17 4.99`10.58
´1.94 0.26`0.11

´0.07 – ´2.09`0.12
´0.12 – – 0.15 – – 0

No decayless ´0.38`0.06
´0.06 2.84`0.19

´0.12 4.55`6.83
´1.29 0.28`0.08

´0.07 – ´2.12`0.09
´0.10 0.42`0.09

´0.09 0.30`0.10
´0.10 0.11 – – 91.3

Dispersionless ´0.37`0.05
´0.06 2.70`0.12

´0.12 2.96`1.00
´0.66 0.49`0.23

´0.12 ´0.14`0.04
´0.04 ´2.01`0.09

´0.09 0.47`0.09
´0.09 0.32`0.10

´0.10 0.10 – – 117.1

Stratified ´0.34`0.06
´0.07 3.50`0.41

´0.26 3.49`6.16
´0.90 0.42`0.18

´0.16 ´0.13`0.04
´0.04 ´2.08`0.11

´0.16 0.38`0.10
´0.09 0.40`0.09

´0.09 0.10 8.74`2.65
´2.42 – 129.8

Expanding ´0.38`0.05
´0.06 2.71`0.13

´0.11 2.96`1.05
´0.66 0.49`0.23

´0.13 ´0.14`0.04
´0.04 ´2.01`0.09

´0.09 0.47`0.09
´0.09 0.33`0.11

´0.10 0.10 – 1.04`0.15
´0.04 111.0

Loop #4

Fundamental only 3.42`0.14
´0.15 3.88`0.25

´0.26 1.51`0.18
´0.18 0.96`0.93

´0.34 – 1.33`0.06
´0.06 – – 0.15 – – 0

Dispersionless 3.48`0.09
´0.14 3.79`0.20

´0.19 1.52`0.16
´0.18 0.96`0.94

´0.31 – 1.34`0.05
´0.05 0.06`0.06

´0.05 0.23`0.07
´0.07 0.14 – – 12.2

Stratified 3.48`0.10
´0.16 3.78`0.36

´0.29 1.52`0.17
´0.18 0.95`0.93

´0.31 – 1.34`0.05
´0.05 0.06`0.07

´0.05 0.23`0.08
´0.08 0.18 ´0.13`1.43

´1.41 – 6.2

Expanding 3.45`0.11
´0.13 3.83`0.21

´0.20 1.51`0.17
´0.17 0.99`0.92

´0.33 – 1.34`0.05
´0.05 0.05`0.07

´0.04 0.23`0.08
´0.08 0.14 – 1.06`0.12

´0.06 7.8

of the event. Loops #1 – #3 are the same as those considered in
Paper I. Loop #4 was identified by Pascoe et al. (2016c) as hav-
ing a Gaussian damping profile, however a full seismological in-
version could not be performed since the exponential regime was
not initially detected. We analyse the loop oscillations according

to the general approach described in Sect. 2. We consider each
event in detail in the subsections below.

Even without the presence of a decayless oscillation we do
not typically observe a kink oscillation decay to an amplitude
of zero since we restrict the analysed signal to a time at which
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Fig. 5. SDO/AIA 171 Å images of the four loops we analyse in this paper. The axis of the chosen loop is indicated by a dashed red
line, which is either an elliptical or a linear fit depending on the loop orientation. The solid blue line shows the location of the slit
used to generate the time series.

the model oscillation remains consistent with the data. Therefore
we do not consider the presence of a decayless component of
the oscillation except where it can be justified by a plateau in
the damping rate and a continuation of the oscillation for sev-
eral cycles. This condition is satisfied for Loop #3 alone, which
demonstrates approximately four cycles without significant at-
tenuation at the end of the signal and was also previously anal-
ysed by Nisticò et al. (2013) as an example of a decayless oscil-
lation.

Pascoe et al. (2016a) report the observation of a spatially re-
solved second harmonic kink mode with an amplitude compara-
ble to that of the fundamental kink mode. However, more typi-
cally higher harmonics are excited less efficiently than the fun-
damental mode. Additionally, they are damped more efficiently
by mode coupling since τg,d9P from Eq. (1). The combination
of these two effects means that the presence of additional har-
monics in the signal may not be readily revealed by methods

such as periodogram or wavelet analysis (see Fig. 18). A pos-
sible indicator that the oscillation is not composed of a single
mode is an aharmonic shape to the signal. However, in the ab-
sence of additional evidence, we must also consider alternative
possibilities. An aharmonic signal might arise instead as a con-
sequence of non-linear effects rather than additional longitudi-
nal harmonics. This would also account for the aharmonic shape
being more prominent at the start of the oscillation (when the
amplitude is greatest) and becoming less prominent as the os-
cillation decays. Goddard & Nakariakov (2016) also report sta-
tistical evidence for the dependence of kink oscillation damping
time on the amplitude of oscillation which may be indicative of
non-linear effects. Since the aharmonic shape exists for a signif-
icant time t ≳ P1 we do not consider it to be a transient feature,
such as the impulsive leaky phase which exists for t ! P1 (e.g.,
Terradas et al. 2006).
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The results of the analysis for Loops #1 – #4 for different
models are summarised in Table 2 and described in detail below.
For comparison with Paper I we include results for a model in-
cluding the fundamental kink mode only (i.e. no additional har-
monics or decayless component). This also serves as a basis to
test our more sophisticated models against using Bayesian model
comparison.

In general the main parameters do not change much for our
different models, which indicates the robustness of the seismo-
logical method, i.e. the density contrast and ϵ depend on the
damping behaviour which is weakly dependent on the additional
harmonics. This is not necessarily always the case since the ad-
ditional harmonics having a low amplitude in our chosen data
was part of our initial selection process. On the other hand, the
large differences between models indicated by the Bayes fac-
tors is related to how well the entire oscillation (i.e. not just the
damping envelope) is described by the model, specifically how
the inclusion of additional harmonics accurately accounts for the
aharmonic shape of the oscillation.

3.1. Loop #1

Figure 6 summarises the results of our analysis for the oscilla-
tion of Loop #1. The top left panel shows the position of the loop
centre as a function of time (symbols). We use Bayesian analysis
(Sect. 2.4) to calculate how our oscillation model describes the
observational data. Our Bayesian analysis returns the posterior
PDF for each of the model parameters. These may be plotted
as histograms, such as those for ρ0{ρe and ϵ in Fig. 6, or sum-
marised by quoting the median and 95% credible intervals as in
Table 2. The red shaded region represents the 99% credible in-
terval for the loop position described by our model, including the
estimated noise σY . The parameters (e.g., vertical dotted line de-
noting t0) or model components (e.g., background trend shown
by blue line in top left panel) plotted in figures correspond to the
median values of the relevant parameters. For comparison, the
results for analysing Loop #1 with a model including the funda-
mental kink mode only is shown in Fig. 16.

The top right panel shows the wavelet analysis of the sig-
nal. The colour contours represent the spectral amplitude (square
root of the spectral power). The dashed lines show the time-
dependent periods of oscillation Pn, which demonstrate a grad-
ual increase during the course of the oscillation of approximately
20%.

The middle right panel shows a 2D histogram of the seismo-
logically determined transverse density profile parameters based
on our 106 MCMC model samplings (with intensity normalised
to unity). The red bars correspond to the median values and 95%
credible intervals based on the individual 1D histograms (bot-
tom panels) and quoted in Table 2. They give a convenient sum-
mmary of the localisation of the parameters by our model fit,
though we note that they do not reflect the strong inverse re-
lationship between ρ0{ρe and ϵ in determing the damping rate
(see Fig. 2). Consequently, the 2D contour (likely density pro-
file parameters) is significantly more localised than considering
the posterior credible intervals independently would suggest. It
is necessary to appreciate this inverse relationship when consid-
ering the quality of the constraint on density profile indicated
by the data. For example, ϵ is generally less well constrained
for lower density contrasts than for larger density contrasts, as
discussed in Sect. 2.

We note that the 95th percentiles quoted in this paper corre-
spond to a 2σ confidence interval, in contrast to Paper I where
the errors were estimated values of 1σ. For example, Paper I

gives the density contrast for Loop #1 as 1.69 ˘ 0.56, and here
(Table 2) it is 1.71`0.22

´0.19, which corresponds to a σ that is approx-
imately five times smaller. On the other hand, the σ for the ϵ
here is comparable to that in Paper I. The solid curves in the his-
togram plots are fits to the data using the exponentially modified
Gaussian function of the form

f pxq “ A
λ

2
exp

ˆ

λ

2

`

2µ` λσ2 ´ 2x
˘

˙

erfc
ˆ

µ` λσ2 ´ x
?

2σ

˙

(18)
where erfc pxq “ 1´erf pxq is the complementary error function,
A is a constant determining the amplitude, µ and σ are the mean
and standard deviation of the Gaussian component, respectively,
and λ is the rate of the exponential component. Equation 18 is
found to describe the histogram profiles well, in particular when
the distribution is asymmetric such as for ϵ which has a strong
inverse relationship with ρ0{ρe.

The large range of ϵ returned by the seismological inference
is a consequence of this inverse relationship to the density con-
trast (see Fig. 2). When the estimated density contrast is low, as
for this loop, ϵ is very sensitive to the particular value of ρ0{ρe.
Conversely, when the estimated density contrast is large (e.g.,
ρ0{ρe ≳ 6 in Fig. 2), ϵ is practically independent of ρ0{ρe. The
range of ϵ calculated for this loop effectively extends up to 2,
which is the maximum value consistent with the definition of the
transverse density profile. Corrections to the model for the ef-
fects of large ϵ (e.g., Van Doorsselaere et al. 2004; Arregui et al.
2005) would also be required before this limit is reached. The in-
versions for Loops #2 and #3 are much more strongly localised
with respect to ϵ due to their larger values of ρ0{ρe (Figs. 9 and
11), while for Loop #4 the estimated density contrast is again
very low and the corresponding range of ϵ is large (Fig. 15).

Table 2 also shows results for analysis using the stratified
and expanding loop models. The histograms for the longitudinal
structuring parameters, i.e. L{H for the stratified model and Γ
for the expanding model, are shown in Fig. 7. For Loop #1, the
period ratios are greater than unity which can be accounted for
either by a negative density scale height L{H “ ´0.83`1.72

´1.54 or
a loop expansion of Γ “ 1.10`0.15

´0.09, with other varied parame-
ters being consistent between models. We note that the uniform
limit for both models (L{H Ñ 0 and Γ Ñ 1) lies within the
95% credible intervals for each longitudinal structuring param-
eter. Additionally, the clear influence of the lower limit of 1 (by
definition) for the prior for Γ means we can effectively only de-
rive an upper limit from the posterior distribution. In Table 2,
Ki0 represents the Bayes factor Eq. 17 calculated for each of the
models in comparison to a model based on the fundamental kink
mode only. For Loop #1, each value is greater than 10, corre-
sponding to very strong evidence in favour of the models with
additional harmonics, reflecting the significantly improved ac-
count of the observational data provided by these models. On
the other hand, the Bayes factors do not imply there is positive
evidence to prefer either of the longitudinally structured mod-
els over the dispersionless model. This, combined with the large
credible intervals for the structuring parameters, advises caution
for the interpretation of the results of the longitudinally struc-
tured models for this loop.

The background trend for Loop #1 exhibits oscillatory be-
haviour. The spectral analysis of the trend component of the
model is shown in Fig. 8 and exhibits a periodicity of approxi-
mately 10 –11 minutes. Pascoe & De Moortel (2014) performed
numerical simulations of standing kink modes in curved coro-
nal loops. Owing to the symmetry of the initial condition the
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Fig. 6. Analysis for Loop #1 using the dispersionless model. Top left Loop position (symbols) as a function of time is described
by our model (green line) which includes a background trend (blue line) described by our spline procedure. The red shaded region
represents the 99% credible intervals for the loop position predicted by the model, including an estimated noise σY . The dotted and
dashed lines denote t0 and ts1, respectively. Top right Wavelet analysis of the loop position with colours representing the normalised
spectral amplitude. The dashed lines show the time-dependent periods of oscillation described by our model. The hatched region
denotes the cone of influence. Middle left Detrended loop position (symbols) with the first (green), second (blue), and third (red)
longitudinal harmonics. Times ts1, ts2, and ts3 are denoted by the dashed lines in the corresponding colour. Middle right Density
profile parameters determined by the oscillation damping envelope. The red bars are based on the median values and the 95%
credible intervals, indicated by the dotted and dashed lines, respectively, in the histograms (bottom panels). The solid curves are fits
to the histogram data using the exponentially modified Gaussian function.

loop is embedded in a magnetic arcade and consequently the ap-
plied perturbation excites not only the fundamental kink mode
of the loop with period Pk “ 2L{Ck but also an oscillation
of the external medium with period PA “ 2L{CAe determined
by the external Alfvén speed CAe. Since the external Alfvén
speed is higher than the kink speed PA ă Pk. (The presence
of this additional oscillation accounts for the period of oscilla-

tion of the kink mode appearing shorter than Pk in Pascoe et al.
(2009); De Moortel & Pascoe (2009)). In the numerical simu-
lations of Pascoe & De Moortel (2014), the perturbation of the
external medium had the same spatial scale as the embedded
loop by definition. However, we can consider a generalised ver-
sion of this where the external medium oscillation is determined
by a characteristic length scale that is not necessarily the length
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Fig. 7. Histograms of the longitudinal structuring parameters for the stratified (left panels) and expanding (right panels) models for
Loops #1 – #4.
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Fig. 8. Wavelet analysis for Loop #1 background trend.

of a particular loop but related to the size of the perturbed re-
gion, i.e. PA “ 2l{CAe. If we consider the seismologically es-
timated external Alfvén speed CAe « 1.8 Mm/s then the char-
acteristic length scale that corresponds to the oscillation period
of 10.5 minutes is l « 570 Mm which is comparable to the size
of the active region. SDO images for the oscillation show that
Loop #1 appears to be embedded in a larger magnetic structure
containing other loops which also oscillate in response to two
CMEs which take place within several hours. In fact, there are
two such larger regions of loops and the eruptions are located
in between them such that they oscillate in anti-phase with each
other. This event was also investigated Harra et al. (2014) using
the Interface Region Imaging Spectrograph (IRIS) in addition to
SDO. Analysis of the spectral lines measured with IRIS demon-
strated the existence of flows in the loops before the eruption
which were affected by the subsequent impact of the filament
and indicate plasma motions parallel to the line of sight preced-
ing the transverse oscillations.

3.2. Loop #2

Figure 9 summarises the results of our analysis of the oscillation
of Loop #2. The oscillation of Loop #2 exhibits a more ahar-
monic shape than Loop #1, with a slightly triangular appearance
that is also seen for Loops #3 and #4. The aharmonic shape of the
signal for the first couple of cycles is well-described by the pres-
ence of small amplitude second and third longitudinal harmon-
ics. These harmonics have damped significantly by t ≳ 10 mins,
after which the signal appears more harmonic. Figure 7 shows
the histograms for the longitudinal structuring parameters for the
stratified and expanding loop models. The Bayes factors for the
longitudinally structured models do not indicate any evidence to
prefer them over the dispersionless model.

There is a high correlation (0.89) between the background
trend and the time-dependent period of oscillation for this loop,
which are shown in more detail in Fig. 10. Both begin at a higher
value at the start then decrease until t « 25 minutes, after which
they remain roughly constant. The position along our observa-
tional slit is measured from the inside of the loop to the outside,
and so an increase in the value of the background trend would
generally correspond to loop expansion, and a decrease to loop
contraction. However, additional effects such as distortion of the
loop shape can complicate this dependence since we only con-
sider the oscillation at a single point along the loop. For com-
parison, Loop #1 has a correlation between the trend and period

Fig. 10. Time-dependent period of oscillation (top) and back-
ground trend (bottom) for Loop #2. The blue circles represent
the interpolation points pxi, yiq.

Fig. 12. Histogram for A0 for Loop #3 for the dispersionless
model with the decayless regime shown in Fig. 11.

of oscillation of 0.77, while Loops #3 and #4 do not show any
significant correlation (in the case of Loop #3 this is expected
based on the orientation of the slit shown in Fig. 5).

3.3. Loop #3

Figure 11 summarises the results of our analysis of the oscil-
lation of Loop #3. As with Loop #2, the aharmonic shape of
the signal for the first couple of cycles is reproduced by small
amplitude second and third longitudinal harmonics, which have
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Fig. 9. Analysis for Loop #2 using the dispersionless model. Panels as in Fig. 6.

damped significantly by t ≳ 10 mins, after which the signal ap-
pears more harmonic. The main difference compared with Loop
#2 is that Loop #3 contains a decayless component, represented
by the yellow line in the oscillation components panel of Fig. 11.
The presence of the decayless component is also confirmed by
|A0| being significantly greater than zero, shown in Fig. 12. For
t ≳ 25 mins, the fundamental kink oscillation has damped below
the amplitude of the decayless component.

For comparison, Fig. 13 shows the results of the MCMC in-
version without including the decayless component. The switch
time ts occurs sooner and consequently the inferred density con-
trast is larger than when the decayless component is included.
The estimated value of σY is larger for this model, indicating a
poorer description of the data by this model, most evident to-
wards the end of the signal when the modelled oscillation con-
tinues to decay while the observational signal remains constant.
The presence of the decayless component of oscillation makes
the overall damping rate appear lower than that for the decay-
ing component alone. For damping by mode coupling, a lower
damping rate is associated with either a smaller density contrast
or layer width. We might therefore expect an unaccounted de-
cayless component would lead to an underestimate of the den-
sity contrast. However, it also has the effect of decreasing the
damping rate during the exponential damping regime. This lower
damping rate corresponds to a smaller switch time ts, which cor-
responds to a higher density contrast ratio. This accounts for the
higher estimation of the density contrast in Paper I. We note that
the density contrast credible interval is significantly higher for
the model using the fundamental mode alone in this paper than
in Paper I. This is due to the time series being restricted in Paper
I to reduce the influence of the decayless regime. Including the

decayless regime reduces the value of the inferred density con-
trast and the estimated range. For a lower density contrast, the
credible interval for the inhomogeneous layer width increases.
However, we note that for the larger density contrast estimate ϵ
was being constrained by the inverse relationship with ρ0{ρe, i.e.
ϵ is approximately constant for large contrasts (e.g., Fig. 2).

The background trend for Loop #3 exhibits an oscillation at
the start which quickly damps by about 15 minutes, by which
time the trend is mainly a gradual decrease. Loop #3 is located
at the end of an arcade of loops and so this damped oscillation
in the background may be associated with interaction with the
arcade. For example, Verwichte et al. (2004) measured the os-
cillations of 9 loops within a coronal arcade and found evidence
of multiple oscillation modes and a wide range of periods (240–
450 s). The oscillation in the background trend may therefore
represent the influence of a nearby oscillating loop with a longer
period of oscillation, although a detailed analysis is beyond the
scope of the present paper. There is another perturbation in the
background trend at around 30 minutes, which is indicative of
the dynamical nature of the corona that must be taken into ac-
count in detailed analysis. This kind of feature is not accounted
for when modelling the background with a low-order polynomial
(see Sect. 2.5 and Figs. 4 and 17).

Loop #3 demonstrates the strongest Bayes factors for the
models with additional harmonics in comparison to the model
based on a fundamental kink mode only. This can be attributed to
the additional effect from including the decayless regime in the
multi-harmonic models. There is also very strong evidence for
the stratified model over the dispersionless model KHD “ 12.6,
and strong evidence for the dispersionless model over the ex-
panding model KDΓ “ 6.1. The stratified model gives mean pe-
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Fig. 11. Analysis for Loop #3 using the dispersionless model including the decayless regime. Panels as in Fig. 6 except the compo-
nents panel also includes the decayless oscillation (yellow line).

Fig. 13. Analysis for Loop #3 using the dispersionless model without including the decayless regime. Panels as in Fig. 6.

Table 3. Comparison of the seismologically estimated density scale height H with the hydrostatic scale height Hs implied by the
loop temperature T estimated using DEM analysis.

Loop no. L (Mm) L{H H (Mm) T (MK) Hs (Mm)

Loop #1 222 ˘ 31 ´0.83`1.72
´1.54 ą 215 (or ă ´107) 0.75–1.25 37.5–62.5

Loop #2 162 ˘ 31 ´0.30`0.80
´1.37 ą 262 (or ă ´116) 0.75–1.25 37.5–62.5

Loop #3 234 ˘ 31 8.74`2.65
´2.42 18–42 0.75–1.25 37.5–62.5

Loop #4 238 ˘ 31 ´0.13`1.43
´1.41 ą 159 (or ă ´175) 0.50–1.25 25–62.5
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Fig. 14. DEM analysis for Loops #1 (top) to #4 (bottom) used to estimate the temperature (Table 3) of the oscillating loop (dashed
white lines). Each panel corresponds to a particular temperature interval.

riod ratios P1{2P2 “ 0.82, P1{3P3 “ 0.79. These period ra-
tios are significantly less than unity, making the stratified model
preferable to the dispersionless one. On the other hand, since
the expanding model can only account for period ratios greater
than unity it is less preferable than the dispersionless model,
i.e. Γ Ñ 1 and so the inclusion of the additional parameter Γ
does not improve how well the model describes the observational
data.

Taking into account the uncertainties for the estimated loop
length of L “ 234 ˘ 31 Mm and the credible interval for L{H,
the range of scale heights is H “ 18–42 Mm. Figure 14 shows
the results of differential emission measure (DEM) analysis to
estimate the loop temperature. The panels show the DEM for
several temperature intervals calculated using the regularization
method of Hannah & Kontar (2012). Obtaining a precise esti-
mate of the loop temperature is complicated due to loops being
multi-thermal (e.g., Nisticò et al. 2014) and the effects of line-of-
sight integration (e.g., Cooper et al. 2003; De Moortel & Pascoe
2012; Viall & Klimchuk 2013) in the optically thin corona which

can include contributions from high temperature background
structures. We estimate the temperature range by considering
the intervals for which the oscillating loop (dashed white lines)
can be clearly identified against the background emission, which
is typically 0.75–1.25 MK. For these temperatures, the hydro-
static density scale height Hs « 50T gives 37.5–62.5 Mm.
The seismologically determined density scale height is there-
fore not consistent with the hydrostatic approximation, as also
reported by previous authors, although for this observation
the result is sub-hydrostatic rather than super-hydrostatic (e.g.,
Van Doorsselaere et al. 2007; Verwichte et al. 2013). Table 3
shows these estimates for all four loops. For Loops #1, #2,
and #4 the seismologically estimated scale heights are super-
hydrostatic and consistent with the longitudinally uniform limit
H Ñ 8.
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Fig. 15. Analysis for Loop #4 using the dispersionless model. Panels as in Fig. 6.

3.4. Loop #4

Figure 15 summarises the results of our analysis for Loop #4.
The oscillation features are qualitatively similar to those of Loop
#2; the loop has a low density contrast with ts1 being towards
the end of the signal and consequently producing a low estimate
for the density contrast and hence a wide credible interval for
ϵ, and the additional longitudinal harmonics exhibit weak depar-
ture from the dispersionless model (Fig. 7). Also similar to Loop
#2, the aharmonic shape of the oscillation is mainly accounted
for by a third harmonic component with approximately 20% of
the amplitude of the fundamental kink mode.

The calculated Bayes factors support there being very strong
evidence for the dispersionless model over the model with no
harmonics. However, this evidence drops to only “strong” for
the longitudinally structured (stratified and expanding) models.
This weaker evidence can be attributed to the fact that the longi-
tudinally structured models tend to their uniform limits anyway,
and so the inclusion of these effects does not improve the de-
scription of the data by the model. This differs from Loops #1
– #3 for which all models with additional harmonics were “very
strong” in comparison to the model without harmonics.

4. Discussion and conclusions

We have extended the analysis of Paper I for the seismology of
coronal loops using damped kink oscillations. This paper rep-
resents the extension and combination of many aspects of theo-
retical modelling and analytical methods developed over almost
two decades of observations of coronal loop oscillations. The
features of the method used in this paper are summarised below.

– The start time of the oscillation t0 is a varied parameter in
the model since it influences the additional harmonics and
the damping profile. Also, where data allows, we generally
want to model the evolution of the background trend before
the oscillation begins.

– The period of oscillation is considered to be time-dependent
(e.g., the linear variations modelled in Nisticò et al. 2013;
White et al. 2013; Morton & Mooroogen 2016). In this pa-
per we use a polynomial (3rd order) to allow increases and/or
decreases during the oscillation and to test the correlation
with the background trend, which may represent changes in
loop length (when the loop has an appropriate orientation).

– The damping of the kink oscillations is explained in
terms of mode coupling and modelled using the general
damping profile (Pascoe et al. 2013, 2016b) which includes
both the Gaussian (e.g., Pascoe et al. 2012; Hood et al.
2013; Ruderman & Terradas 2013) and exponential (e.g.,
Ruderman & Roberts 2002; Goossens et al. 2002) damping
regimes.

– The presence of additional longitudinal harmonics (second
and third) is considered, including longitudinal structur-
ing due to density stratification (e.g., Andries et al. 2005;
Safari et al. 2007; McEwan et al. 2008) or loop expansion
(Verth & Erdélyi 2008) and their potential seismological ap-
plication (e.g., Andries et al. 2005; Van Doorsselaere et al.
2007; Arregui et al. 2013a). The frequency-dependent
damping due to mode coupling (e.g., Pascoe et al. 2010;
Verth et al. 2010; Pascoe et al. 2015) is accounted for in the
model.

– The decayless regime of standing kink oscillations
(Nisticò et al. 2013; Anfinogentov et al. 2013, 2015) is in-
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Fig. 16. Analysis for Loops #1 – #4 using a model including the fundamental kink mode only. Panels as in Fig. 6.

Table 4. Comparison of results for Loops #1 – #4 when using a spline or polynomial background trend.

Loop #1 Loop #2 Loop #3 Loop #4

Parameter Spline Polynomial Spline Polynomial Spline Polynomial Spline Polynomial

ρ0{ρe 1.71`0.22
´0.19 1.70`0.27

´0.19 1.93`0.24
´0.18 1.97`0.30

´0.23 2.96`1.00
´0.66 2.07`1.07

´0.50 1.52`0.16
´0.18 1.51`0.21

´0.18

ϵ 1.15`0.72
´0.35 1.16`0.73

´0.41 0.70`0.21
´0.15 0.68`0.26

´0.17 0.49`0.23
´0.12 0.78`1.09

´0.38 0.99`0.92
´0.34 0.97`0.92

´0.37

σY (Mm) 0.07 0.11 0.20 0.23 0.10 0.17 0.14 0.18

KSP 44.2 53.1 202.5 101.9

cluded (for Loop #3) and its influence on the seismologically
determined loop parameters is investigated.

– Bayesian analysis and MCMC sampling are used to inves-
tigate the dependence of results on model parameters and
perform quantitative model comparison (e.g., Arregui et al.
2013a,b, 2015; Arregui & Asensio Ramos 2011, 2014). The
Bayes factor compares how well a particular model de-
scribes the data (relative to another model), whereas a
goodness of fit test, for example χ2, compares only the
best fits. Morton & Mooroogen (2016) apply an alternative
approach to loop oscillation model comparison using the
Kolmogorov–Smirnoff test.

– The dynamical background behaviour is accurately de-
scribed using a spline-based trend.

However, a number of effects still have not been incorpo-
rated, such as flows (e.g., Soler et al. 2011); changes in den-
sity (e.g., Cargill et al. 2016); the effects of instabilities such
as magnetic reconnection, the Kelvin-Helmholtz instability
(e.g., Soler et al. 2010; Zaqarashvili et al. 2015; Okamoto et al.

2015; Antolin et al. 2015; Mishin & Tomozov 2016), or MHD
avalanches (Hood et al. 2016). Also, the theoretical model we
apply does not include non-linear effects or modifications for a
wide inhomogeneous layer (e.g., Van Doorsselaere et al. 2004;
Arregui et al. 2005), or the effects of alternate profiles for the
density inside the inhomogeneous layer (e.g., Goossens et al.
2002; Roberts 2008; Arregui et al. 2015; Yu et al. 2015).

By allowing the period of oscillation to vary in time we have
been able to extend the time series used for analysis in compari-
son with Paper I. The loops we analyse were initially selected on
the basis of a stable period of oscillation and so these variations
in the period of oscillation are typically small. For Loops #1 and
#2, the correlation of the period of oscillation with the back-
ground trend supports the interpretation of the time-dependence
being related to changes in loop length.

We have also used a new method for describing the back-
ground trend. The method is based on spline interpolation and
so is better capable of describing the dynamical background be-
haviour exhibited in the solar corona. The new method is sim-

18



Pascoe et al.: Kink mode seismology II

Fig. 17. Summary of results using a polynomial (4th order) trend. Panels are comparable to those in Figs. 6, 9, 11, and 15 which
show the same models with a background trend using our spline procedure described in Sect. 2.5.
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ple to implement and is built directly into the model function,
whereas in Paper I the time series was detrended before fitting,
using the assumption that the signal contained a single mode of
oscillation. The new trend method does not require us to make
this assumption about the signal and allows the trend to adapt
according to the values of other parameters (most importantly
the additional longitudinal harmonics) in the model to provide
the most accurate account of the observational data. An impor-
tant feature of our procedure is that the number of points used
to describe the trend scales with the number of cycles of oscil-
lation analysed, ensuring signals with higher quality factors are
as well-resolved as those with smaller quality factors. The ef-
fect of using a polynomial background trend is shown in Fig. 17
and summarised in Table 4 (the results are given for the dis-
persionless model, including the decayless component in the
case of Loop #3). The Bayes factor KSP compares the model
with the spline background trend to that with the polynomial
trend (with all other model features identical). For all loops the
value indicates very strong evidence for the spline-based mod-
els over the polynomial ones. The improvement to the models
provided by the spline-based trend is also reflected in the lower
estimates of the loop position noise σY . In terms of the seis-
mologically determined density profile parameters, the results
for Loops #1, #2, and #4 are similar, with the credible inter-
vals being only marginally greater when using the polynomial
trend, i.e. the spline and polynomial trend models produce the
same seismological results when the background trend can be
well-described using a low-order polynomial. The largest differ-
ence is for Loop #3, for which the spline and polynomial trends
lead to significantly different density profile parameters. The ev-
idence in favour of the spline-based model is also greatest for
Loop #3. This is not surprising given that Loop #3 has the great-
est signal quality and a number of localised perturbations in the
trend, which a low-order polynomial trend is least able to de-
scribe, and which our spline procedure is specifically designed
to accommodate (Sect. 2.5).

Another benefit of the more accurate background trend pro-
duced by our spline procedure is the opportunity to detect ad-
ditional physical effects. Loop #1 demonstrates evidence of a
persistent long period oscillation which may be associated with
oscillations in the larger magnetic structure of the surrounding
active region. For Loop #2 the background trend is strongly cor-
related with the period of oscillation, consistent with the period
changing due to changes in loop length (the polynomial trend is
a good approximation for this loop and also gives the same cor-
relation). The trend for Loop #3 exhibits a damped oscillation
near the start which might also be associated with the surround-
ing environment, in this case an arcade of oscillating loops. The
spline-based background trends for Loops #3 and #4 also reflect
the dynamical nature of the corona with a number of localised
perturbations. In contrast, for a dynamical background a low-
order polynomial may not provide an accurate description of ei-
ther the oscillation or the background trend (e.g., Figs. 4 and
17).

Figure 18 demonstrates the potential limitations of spectral
analysis for damped kink oscillations. Test data (left panel) con-
tains second and third harmonics with 20% amplitude of the
fundamental mode. Owing to their initial low amplitude and the
frequency-dependent damping by mode coupling, these compo-
nents have a negligible signatures in periodogram (middle panel)
and wavelet analysis (right panel). Our method based on for-
ward modelling of the oscillation signal benefits from having this
damping behaviour built directly into the model. Furthermore,
since the damping rates in Eq. (1) are also informed by the re-

lationships for the periods Pn (dispersionless or with longitudi-
nal structuring), we are not required to calculate the damping
rates of the harmonics independently, which would be subject to
large uncertainties, but instead determine all parameters simul-
taneously as part of a self-consistent physical model.

Our consideration of additional longitudinal harmonics is
mainly intended to account for the aharmonic shapes of the os-
cillations, which it does successfully, but can also potentially
provide additional seismological information using the ratios
of the periods of oscillation. In this paper we considered the
effects of density stratification and loop expansion. The addi-
tional harmonics are low amplitude in comparison to the funda-
mental mode, which is partly a selection effect when we chose
our events to consider. However, this interpretation of the ahar-
monic shape requires further evidence. Furthermore, the results
of our Bayesian model comparison suggests caution in interpret-
ing these period ratios except for the case of Loop #3, for which
there is very strong evidence for the stratified model (or another
model which describes P1{nPn ă 1). It is unclear why this loop
differs from the others, and the method applied in this paper
may produce more conclusive results for other data (particularly
oscillations with additional harmonics having amplitudes more
comparable with that of the fundamental mode). On the other
hand, the seismological estimates for the transverse loop density
profile parameters evidently remain robust despite these addi-
tional questions regarding the longitudinal structuring.

The method combining forward modelling, Bayesian infer-
ence, MCMC sampling, and spline interpolation of the back-
ground trend we use in this paper is powerful and robust, and
could be applied to other data. For example, Pugh et al. (2016)
recently studied the properties of quasi-periodic pulsations in
white-light flares observed with Kepler, and discovered evidence
of both Gaussian and exponential damping profiles. The oscilla-
tions with a Gaussian damping profile also exhibit a decay time
that is proportional to the period of oscillation, consistent with
mode coupling of kink waves.

Appendix A: Additional fitted parameters

Fig. A.1 shows histograms for additional model parameters fitted
for Loop #1.

Acknowledgements. This work is supported by the European Research Council
under the SeismoSun Research Project No. 321141 (DJP, SA, CRG, VMN) and
the STFC consolidated grant ST/L000733/1 (GN, VMN). The data is used cour-
tesy of the SDO/AIA team. DJP thanks C. Carbaugh and B. Clark who were
supported by Nuffield Research Placements.

References
Andries, J., Arregui, I., & Goossens, M. 2005, ApJ, 624, L57
Andries, J., van Doorsselaere, T., Roberts, B., et al. 2009, Space Sci. Rev., 149,

3
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