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ABSTRACT: Understanding the effects of pressure-induced deformations on the optoelectronic properties of nanomaterials is
important not only from the fundamental point of view but also for potential applications such as stress sensors and
electromechanical devices. Here, we describe the novel insights into these piezochromic effects gained from using a linear-scaling
density functional theory framework and an electronic enthalpy scheme, which allow us to accurately characterize the electronic
structure of CdS nanocrystals with a zincblende-like core of experimentally relevant size. In particular, we focus on unravelling
the complex interplay of size and surface (phenyl) ligands with pressure. We show that pressure-induced deformations are not
simple isotropic scaling of the original structures and that the change in HOMO−LUMO gap with pressure results from two
competing factors: (i) a bulk-like linear increase due to compression, which is offset by (ii) distortions and disorder and, to a
lesser extent, orbital hybridization induced by ligands affecting the frontier orbitals. Moreover, we observe that the main peak in
the optical absorption spectra is systematically red-shifted or blue-shifted, as pressure is increased up to 5 GPa, depending on the
presence or absence of phenyl ligands. These heavily hybridize the frontier orbitals, causing a reduction in overlap and oscillator
strength, so that at zero pressure, the lowest energy transition involves deeper hole orbitals than in the case of hydrogen-capped
nanocrystals; the application of pressure induces greater delocalization over the whole nanocrystals bringing the frontier hole
orbitals into play and resulting in an unexpected red shift for the phenyl-capped nanocrystals, in part caused by distortions. In
response to a growing interest in relatively small nanocrystals that can be difficult to accurately characterize with experimental
techniques, this work exemplifies the detailed understanding of structure−property relationships under pressure that can be
obtained for realistic nanocrystals with state-of-the-art first-principles methods and used for the characterization and design of
devices based on these and similar nanomaterials.

KEYWORDS: II−VI nanocrystals, piezochromic properties, linear scaling methods, electronic enthalpy,
time-dependent density functional theory

Group II−VI nanocrystals, such as CdS and CdSe, have
received much attention due to their optical properties,

colloidal processability, and stability under a wide range of
operating conditions.1 The dependence of nanocrystal optical
and electronic properties on pressure, and how this dependence
varies with size and surfactants, is still very much an open
question. Defects also affect the mechanical properties of
nanomaterials.2 This is not only of fundamental interest but
also has technological importance for applications such as
nanoscale stress sensors and other tunable optoelectronic and

electromechanical devices.3,4 Organic ligands with large
HOMO−LUMO gaps are often used to passivate nanocrystal
surfaces and saturate dangling bonds. The impact of ligands on
nanocrystal properties goes beyond simple passivation5 and can
be used to functionalize and modulate their chemophysical
properties in a variety of ways: increase their solubility, prevent
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nanocrystal agglomeration and corrosion,6 and tune band-edge
energy levels7 and optical properties.8 Progress in the synthesis
and demands from applications are driving research toward
nanocrystals of increasingly smaller size, where surface effects
become important. Although these systems pose a challenge to
experimental characterization techniques, they are approaching
sizes that are treatable with state-of-the-art first-principles
electronic structure calculations, which can provide precise
insight into their optoelectronic properties, unravel competing
effects, and guide the design of novel and tunable nanosystems.
While force-field-based simulations have provided interesting
insights into structural-transformation mechanisms in semi-
conductor nanocrystal under pressure,9−13 first-principles
calculations of nanocrystals under pressure have been limited
so far to very small systems.14−20

Here, we present the results of a series of computational
experiments, within a linear-scaling density-functional theory
(DFT) framework, which aim to explore the piezochromic
properties (i.e., the optoelectronic response under pressure) of
prototypical realistic CdS nanocrystals. The goal of our
simulations is to disentangle, at the atomic and the electronic
levels, the effects of pressure, size, and surface ligands, which
would be difficult to separate in experiments. We focus on
Cd32S14(SC6H5)36·4(N(CH3)3), as well as the hydrogen-capped
Cd32S14(SH)36·4NH3, and their smaller versions (with similar
shape and stoichiometry) Cd10S4(SC6H5)12·4(N(CH3)3) and
Cd10S4(SH)12·4NH3. These are, respectively, referred to as
[CdS]32−Ph, [CdS]32−H, [CdS]10−Ph, and [CdS]10−H in the
following. Their structures are shown in Figure 1 and allow us

to carefully unravel the influence of size and ligands. We do not
address in this study the effects of different shapes, which may
be important especially for very small nanocrystals. We choose
[CdS]32−Ph because it is chemically analogous to
Cd32S14(SC6H5)36(DMF)4 (where DMF refers to N,N-
dimethylformamide), a nanocrystal with an 82 atoms
zincblende (ZB) core, which has been synthesized through
crystallization of nanocrystals into superlattices21 and has a
well-characterized single-sized structure; it has the benefit of
having been studied experimentally, including under pressure.22

It has a substantial crystalline core while being sufficiently small
(530 atoms) to be treated by first-principles methods and will
serve as a benchmark.
To simulate the CdS nanocrystals under pressure, we use an

electronic enthalpy scheme,18,19 in which the nanocrystal
excluded volume in the pressure × volume term in the
enthalpy is defined as that enclosed within an electronic density
isosurface, which can efficiently handle complex shapes such as
the intricate ones that characterize the phenyl-capped CdS
systems. This scheme models a nanocrystal immersed in an

implicit pressure transmitting medium, of which it provides a
homogeneous and time-averaged description (as opposed to
methods considering explicit media).12 The emphasis is laid on
the role played by electrons as pressure mediators as pressure is
applied normal to the electronic density isosurface, whose
isovalue needs to be appropriately tuned.19 While this scheme
can also be used at finite temperature with increased
computational costs, we use it to optimize quasi-statically the
nanocrystals structures and obtain the minimum enthalpy
configuration at a given pressure. Here we are interested in a
deformation rather than a phase-transformation regime, as
relevant, e.g., for stress sensors. While the most-significant
results are those in the range 0−5 GPa, we overpressurize (and
consequently overdeform) the nanosystems up to larger values
(15 GPa, which are included for completeness) than those at
which structural transformations would occur experimentally.22

To simulate structural transformations at realistic pressures,
thermal effects and enhanced sampling would need to be
included. In contrast with the hydrogen-capped cluster, the
introduction of explicit phenyl ligands induces some disorder
and, hence, lifts degeneracies in the electronic energy levels;
these disorder effects are captured even with simple geometry
optimization. For the optical absorption spectra, we use the
linear-response time-dependent DFT (TDDFT) formalism23

within the Tamm−Dancoff approximation and mimic broad-
ening thermal effects with a Gaussian smearing of 0.05 eV. Both
the electronic enthalpy method and TDDFT were recently
implemented in the linear-scaling DFT code ONETEP.19,24−28

We perform all calculations within Blöchl’s projector-
augmented wave (PAW) formalism,29,30 particularly useful to
efficiently describe Cd, the PW92 local density approximation
(LDA) exchange-correlation functional,31 an 800 eV equivalent
plane-wave cutoff, and two minimal sets of local orbitals
optimized in situ separately for the occupied and unoccupied
subspaces,25 with localization radii of 4.8 and 6.3 Å,
respectively. Although LDA is known to underestimate energy
gaps and may inaccurately describe some charge-transfer effects
in TDDFT,32 our simulation setup is validated on available
experimental data and allows us to capture qualitative trends for
the selected complex nanocrystals that would not be computa-
tionally tractable with more sophisticated methods including,
e.g., range-separated exchange-correlation functionals with a
fraction of exact exchange.33 Further computational details and
benchmarking tests are available in the Supporting Information.
The fully relaxed nanocrystals’ geometries under pressure

demonstrate that the pressure dependence of the bond strain
pattern cannot be represented by an isotropic scaling of atomic
coordinates dictated by the bulk modulus, as it is often
assumed.20,34,35 Crucially, the electronic enthalpy method we
employ allows for anisotropic pressure-dependent structural
relaxation. This is exemplified by Figure 2, which shows, for
[CdS]32−Ph, a complex pattern of Cd−S bond contraction and
dilation as a function of the distance from the surface.
Even at the center of the nanocrystal, the bonds are

compressed well beyond the bulk ZB values, so we should not
assume that the core is perfectly bulk-like. [CdS]32−Ph at 0
GPa has an average Cd−S bond length of 2.501 Å, in excellent
agreement with the experimental value of 2.503 Å for
Cd32S14(SC6H5)36(DMF)4 at 6.5 K.21 The bond strain pattern
is strongly dependent on the size and on the ligands. In fact, a
smaller size and phenyl ligation increase the spread of Cd−S
bond lengths for both a given shell and shell distance from the
nanocrystal center (see the Supporting Information). This

Figure 1. Simulated CdS nanocrystal structures: (a) Cd10S4(SH)12·
4NH3 ([CdS]10−H), (b) Cd10S4(SC6H5)12·4(N(CH3)3) ([CdS]10−
Ph), (c) Cd32S14(SH)36 ·4NH3 ([CdS]32−H), and (d)
Cd32S14(SC6H5)36·4(N(CH3)3) ([CdS]32−Ph).
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indicates that the nanocrystal deforms differently depending on
the size and ligands, which can be attributed to differences in
surface energy and ligand-surface interactions.
Size and ligands have a strong impact on structural as well as

optoelectronic properties of nanocrystals under pressure.
Figure 3 shows the behavior of HOMO−LUMO gaps with
pressure for the different nanocrystals and compares it to the
values for bulk ZB and wurtzite (WZ, the stable structure at
ambient conditions), for which experimental data are available,
including the phase transition to rocksalt (RS)36). In the
absence of phase transitions, bulk CdS has an optical gap that
varies linearly with pressure, while nanocrystals can display
nonlinear and qualitatively different behavior.
The HOMO−LUMO gap of [CdS]32−H increases linearly

between 0 and 5 GPa with a gradient of 28 meV/GPa
compared to 30 meV/GPa for bulk ZB simulated with DFT;
however, above 5 GPa, the energy gap of [CdS]32−H is found
to decrease as the distortions become important and reduces by
0.43 eV when overpressurized from 0 to 15 GPa. In contrast to
[CdS]32−H, [CdS]32−Ph deviates from the bulk-like behavior
at smaller pressures due to the more pronounced ligand-

induced distortions. This behavior is amplified for [CdS]10−H
and [CdS]10−Ph because of the smaller size and prominence of
surface energetics, with the HOMO−LUMO gap of [CdS]10−
H hardly changing and that of [CdS]10−Ph decreasing over the
tested pressure range. The almost constant trend of the
HOMO−LUMO gap of [CdS]10−H with pressure is due to the
fact that increased disorder and distortion with respect to its
larger counterpart induce a decrease of the HOMO−LUMO
gap with pressure that compensates the bulk-like linear
increase.
The rich phenomenology of the simulated nanocrystals

under pressure is the result of a complex interplay between
geometry and electronic structure. We investigate the band
edge orbitals to gain further insight. Figure 3 shows the features
of HOMO and LUMO for [CdS]32−H and [CdS]32−Ph before
applying pressure. The HOMO belongs to a set of three
degenerate π-orbitals delocalized over the whole nanocrystal
(HOMO−2−HOMO) but with more weight on S atoms. The
LUMO, instead, is a midgap state typical of nonstoichiometric
anion-rich ionic nanocrystals,37 as can be seen in the electronic
density of states (DOS) in Figure 4. The LUMO is also
delocalized over the whole nanocrystal but with relatively more
weight on the Cd atoms. The ordering and character of the
band edge orbitals remains largely unchanged going from 0 to 5
GPa (see the Supporting Information). [CdS]10−H has similar,
albeit less-symmetric, orbitals compared to [CdS]32−H: they
appear to distort more strongly with pressure, which explains
why the trends of the energy gap differ more substantially from
the bulk-like behavior of [CdS]32−H up to 5 GPa, confirming
the compensating effects on the HOMO−LUMO gap between
disorder and distortion and isotropic bulk-like compression
(see the Supporting Information). Figure 3 shows that for
[CdS]32−Ph, the HOMO and LUMO are similar in character
to the [CdS]32−H equivalents, except that they are to some
extent delocalized over both core and phenyl surfactants,
especially the HOMO, in agreement with the experimental
observation that phenyl rings act as good hole acceptors; the
HOMO is localized more strongly over surface S atoms and
phenyl, while the LUMO is more evenly distributed over both
Cd and S in the core and less delocalized over the phenyl rings.

Figure 2. Distribution of nearest neighbor Cd−S distances as a
function of the distance from the center of the nanocrystal (NC) for
[CdS]32−Ph at 0, 5, and 10 GPa with the corresponding bulk
zincblende (ZB) values for reference.

Figure 3. (a) Pressure dependence of HOMO−LUMO gaps for the nanocrystals and zincblende (ZB) and wurtzite (WZ) bulk crystals (DFT and
experiments).36 (b) HOMO and LUMO orbitals (0.01 Å−3/2 orbital density isosurface) for [CdS]32−H and [CdS]32−Ph.
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Increasing pressure from 0 to 5 GPa has the effect of
delocalizing the HOMO more evenly over the core and the
LUMO over the phenyl surfactants. The band edge orbitals for
[CdS]10−Ph are similar in character to those of [CdS]32−Ph
although more strongly hybridized over the phenyl ligands (see
the Supporting Information); they tend to be more evenly
delocalized over the whole nanocrystal compared to [CdS]32−
Ph.
The key mechanisms affecting the electronic structure can be

deconvolved in terms of a variety of effects, including: quantum
confinement, which increases the energy gap with decreasing
size; molecular hybridization, which delocalizes some of the
states over the ligands; isotropic compression, which changes
the energy gap according to the pressure coefficient of bulk ZB;
distortions, which break the local symmetry and affect energy
levels (lift degeneracies), and charge-carrier localization and
electrostatic effects, such as charge redistribution and interfacial
dipoles due to ligands. All of these depend on size, ligands, and
pressure and can have competing effects. In summary it is
found that smaller size, higher pressure, and phenyl ligands
result in more delocalized edge orbitals and more pronounced
structural disorder, breaking symmetry and lifting orbital
degeneracies with consequences for the optical response.
These factors are explored in more detail in the Supporting
Information.
However, HOMO−LUMO gaps are not the whole story, as

strongly allowed transitions can arise from other orbitals, and
we thus calculate the low-energy portion of the optical
absorption spectra with TDDFT, focusing on the main
absorption peak and the physically significant pressure range
0−5 GPa. The oscillator strength of each excitation depends
both on symmetry and overlap of orbitals. Distortions and
hybridization are therefore key to understanding the absorption
spectra. We can disentangle these with first-principles
simulations by designing computational experiments, in which
we change ligands or freeze distortion of the nanocrystal core.
The optical transitions can also be decomposed in terms of the
contribution from different single-particle Kohn−Sham orbital
pairs to determine their character.
Our calculations reveal an intriguing size and ligand

dependence of the absorption spectra with pressure as evident
in Figure 5a−d. As expected, the smaller nanocrystals have
larger absorption energies; however, for both sizes, as the
nanocrystals progressively deform upon a pressure increase of
up to 5 GPa, the main absorption peak is systematically blue-

shifted for the hydrogen-terminated nanocrystals, while it is
red-shifted for the phenyl-terminated ones.
In detail, for [CdS]32−H, the main absorption peak retains its

oscillator strength between 0 and 5 GPa and is shifted up in
energy with pressure with the same pressure coefficient as the
HOMO−LUMO gap. Indeed analysis of [CdS]32−H at 0 GPa
shows that this peak is composed of pure transitions from the
near-degenerate HOMO−2−HOMO → LUMO. This is
expected considering that the states are delocalized over the
whole nanocrystal, which remains highly symmetric. The
second feature in the absorption spectrum instead arises from
transitions more mixed in character. Analysis of [CdS]32−H at
5 GPa reveals equivalent contributions to those at 0 GPa.
Results are similar for [CdS]10−H, except that the oscillator
strengths of the main peak are reduced as pressure is increased
due to the distortions breaking the symmetry as opposed to a
reduction in electron−hole overlap (the band edge orbitals
remain delocalized over the whole nanocrystal). The effect of
degeneracy-lifting due to deformation is evident when
comparing the absorption spectra obtained with the full
structural relaxation with those based on isotropic scaling of
coordinate neglecting distortions (Figure 5c,e).
Interestingly, for [CdS]32−Ph at 0 GPa, the main peak is

mostly due to HOMO−7−HOMO−5 → LUMO. The
oscillator strengths of transitions due to HOMO−2−HOMO
→ LUMO are suppressed due to hybridization over ligands
reducing electron−hole overlap. The second feature is relatively
broad and arises from multiple transitions that are mixed in
character. At 5 GPa, the main peak is due to HOMO−2−
HOMO → LUMO, which gains in oscillator strength as the
orbitals delocalize more over the core of the nanocrystal and
the electron−hole overlap increases. Again, the oscillator
strength of the main peak gradually reduces with increasing
pressure again, which can be interpreted as a combined effect of
disorder and hybridization. We attempt to disentangle these by
replacing the methyl and phenyl groups of [CdS]32−Ph relaxed
at 5 GPa with H atoms and relaxing these while keeping all
other atoms fixed (Figure 5g); the corresponding spectra
indicate that, while both effects account for the reduction of the
main peak energy at 5 GPa, it is mostly hybridization that
reduces its oscillator strength.
For [CdS]10−Ph, at 0 GPa, the transition HOMO−2−

HOMO → LUMO is again suppressed, and the main peak
arises from multiple transitions that are mixed in character. In
Figure 5f, we replace methyl and phenyl groups with H atoms

Figure 4. Electronic density of states of [CdS]32−H (left) and [CdS]32−Ph (right) at 0, 5, 10, and 15 GPa.

Nano Letters Letter

DOI: 10.1021/acs.nanolett.6b04461
Nano Lett. 2017, 17, 1042−1048

1045

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b04461/suppl_file/nl6b04461_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b04461/suppl_file/nl6b04461_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.6b04461/suppl_file/nl6b04461_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.6b04461


while keeping core atoms in positions as in the [CdS]10−Ph
model at 5 GPa. Hybridization does not significantly alter the
energy of the main peak onset, as the valence band edge states
are delocalized over the whole nanocrystal in both cases but
does suppress its oscillator strength considerably. The main
peak is broadened and suppressed with pressure due to the
degeneracy-lifting resulting from distortions.
To validate our computational protocol, in Figure 5h, we

compare the simulated absorption spectra of [CdS]32−Ph,

calculated by including additional transitions so as to resolve
the spectrum up to 3.6 eV, to the experimental spectrum for
Cd32S14(SC6H5)36(DMF)4 dissolved in tetrahydrofuran (THF)
at 77 K.21 The TDDFT spectrum is able to qualitatively capture
the main absorption features observed in the experiment. While
the absolute peak positions are underestimated by ∼0.75 eV
compared to the result from the experiment, as expected with
LDA, their relative separation of 0.52 eV is in good agreement
with the experimental value of 0.57 eV. We note that explicit

Figure 5. Top four panels: TDDFT optical absorption spectra at various pressures for: (a) [CdS]32−H; (b) [CdS]32−Ph; (c) [CdS]10−H; and (d)
[CdS]10−Ph. Arrows indicate trends as pressure is increased. Bottom four panels: TDDFT optical absorption spectra for: (e) [CdS]10−H mimicking
compression by an isotropic scaling of coordinates; (f) [CdS]10−H, [CdS]10−Ph and [CdS]10−H with the same distorted core as [CdS]10−Ph at 5
GPa; (g) [CdS]32−H, [CdS]32−Ph and [CdS]32−H with the same distorted core as [CdS]32−Ph at 5 GPa; and (h) [CdS]32−Ph at 0 GPa converged
up to 3.6 eV with a comparison to experimental data by Herron et al.21 for Cd32S14(SC6H5)36(DMF)4 in tetrahydrofuran (THF) at 77 K, red-shifted
by 0.75 eV.
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and dielectric solvent effects have been neglected in our
calculations and their screening properties may change the
energy levels of band-edge orbitals (especially hybridized ones)
with significant effects on the absorption spectra.38,39 We do,
however, expect this effect to be limited in the case of a mildly
polar solvent such as THF (static dielectric constant of 7.6).
In summary, in this work, we have for the first time

combined a range of state-of-the-art DFT techniques, including
the PAW formalism, the electronic-enthalpy scheme for finite
systems under pressure, and TDDFT, within a linear-scaling
framework to explore the piezochromic properties of CdS
nanocrystals of experimentally relevant size. We have worked in
a size regime in which surface effects are significant, while for
much-larger nanocrystals, a bulk-like response is likely to
dominate, and we have selected systems with the same shape,
which is a variable not addressed in the present study. The
overall picture emerging is that of a strong quantitative and
qualitative dependence of optoelectronic response with
pressure depending on size and ligands, which we have
disentangled with the aid of computational experiments. We
have demonstrated that the selected prototypical nanocrystals
do not behave as merely passivated pieces of bulk with an
elastic response dictated purely by the bulk modulus but
undergo significant pressure-induced structural deformations,
which depend on size and surface chemistry in a complex
fashion, with the smaller nanocrystals undergoing more severe
deformations. These, in turn, affect the details of the electronic
and optical properties. We have shown the peculiar behavior
under pressure of the HOMO−LUMO gap of the investigated
nanocrystals in comparison with the bulk and the influence of
the ligands on the edge orbitals. Specifically, the variation of the
HOMO−LUMO gap with pressure is affected by two
competing processes: a bulk-like linear increase due to
compression and ligand-induced distortions and hybridization
of the frontier orbitals. We have revealed that increased
pressure in a deformation regime induces a blue-shift in the
main absorption peak of the hydrogen-terminated nanocrystals
but a red-shift in the phenyl-capped ones and rationalized the
effects of symmetry-breaking deformation and ligand-induced
hybridization on the peak positions and oscillator strengths. In
fact the frontier orbitals strongly hybridize due to the phenyl
ligands, and, as pressure is increased, the main absorption peak,
which at zero pressure involves deeper hole orbitals, regains a
frontier orbital character, resulting in the observed red shift for
the phenyl-capped CdS systems.
Our theoretical framework provides results in good agree-

ment with the available experimental data and paves the way
toward the study of complex nanosystems of realistic size and
of experimental and industrial interest, in which the interplay
between different mechanisms on the electronic, optical, and
mechanical properties play a crucial role under operating
conditions such as applied pressure.
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(14) Martoňaḱ, R.; Molteni, C.; Parrinello, M. Phys. Rev. Lett. 2000,
84, 682−685.
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