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Abstract

Efficient life-cycle management of civil infrastructure systems under continuous deterioration can

be improved by studying the sensitivity of optimised preventive maintenance decisions with re-

spect to changes in model parameters. Sensitivity analysis in maintenance optimisation problems

is important because if the calculation of the cost of preventive maintenance strategies is not suf-

ficiently robust, the use of the maintenance model can generate optimised maintenances strategies

that are not cost-effective. Probabilistic sensitivity analysis methods (particularly variance based

ones), only partially respond to this issue and their use is limited to evaluating the extent to which

uncertainty in each input contributes to the overall output’s variance. These methods do not take

account of the decision-making problem in a straightforward manner. To address this issue, we

use the concept of the Expected Value of Perfect Information (EVPI) to perform decision-informed

sensitivity analysis: to identify the key parameters of the problem and quantify the value of learning

about certain aspects of the life-cycle management of civil infrastructure system. This approach

allows us to quantify the benefits of the maintenance strategies in terms of expected costs and in

the light of accumulated information about the model parameters and aspects of the system, such

as the ageing process. We use a Gamma process model to represent the uncertainty associated with

asset deterioration, illustrating the use of EVPI to perform sensitivity analysis on the optimisa-

tion problem for age-based and condition-based preventive maintenance strategies. The evaluation

of EVPI indices is computationally demanding and Markov Chain Monte Carlo techniques would

not be helpful. To overcome this computational difficulty, we approximate the EVPI indices using
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Gaussian process emulators. The implications of the worked numerical examples discussed in the

context of analytical efficiency and organisational learning.

Keywords: Cost-benefit analysis, Deterioration models, Expected Value of Partial Perfect

Information, Gaussian process, optimised maintenance, Time Input emulator, Uncertainty

quantification

1. Introduction

The cost effective life-cycle management of civil infrastructure systems is highly dependent

on the determination of optimal maintenance and rehabilitation strategies. The determination

of optimal maintenance decisions is widely recommended [6] as an effective way of minimising

system downtime and corresponding maintenance costs. For instance, Dobbs et al. [1] report that5

maintenance costs for infrastructure systems such as water energy, rail, etc. are rapidly rising and

current estimates suggest that optimized maintenance strategies could save $100bn p.a. on global

infrastructure costs. Infrastructure maintenance practices have traditionally been premised on one

of two strategies; Corrective Maintenance (CM) which involves repairing failed components and

systems, or Preventative Maintenance (PM) which involves the systematic inspection and correction10

of incipient failures before they develop into major defects. Recent years have seen increasing

dominance of PM approaches with overall costs demonstrated to (perhaps counter-intuitively) be

lower than for a CM strategy. PM is widely used to mitigate asset deterioration and reduce the

risk of unexpected failure and as a strategy can be sub-classified into two approaches; time-based

maintenance (TBM), where maintenance activities take place at predetermined time intervals, and15

condition-based maintenance (CBM) where interventions are prompted by information collected

through condition sensing and monitoring processes (either manual or automated). Ahmad and

Kamaruddin [6] provide an extensive review comparing TBM against CBM (see also [2, 3, 4, 5]).

Preventive maintenance strategies (both time and condition based) are widely used for infras-

tructure life-cycle management decision making. These strategies can be planned and scheduled and20

their costs are typically lower than those for CM strategies. However, early preventive maintenance

intervention adds little to the reliability of the system and can lead to unnecessary costs, hence

maintenance strategies often comprise a combination of preventative and corrective approaches.

The challenge is then to identify the optimal PM decision that achieves the best balance between
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these types of maintenance and minimise overall maintenance costs, controlled over an appropriate25

time period. The central challenge for those who wish to make informed PM decisions is that de-

termining the time to first inspection, maintenance intervention, or replacement is confounded by

model parameter uncertainties associated with the adopted failure, deterioration, repair, or mainte-

nance model. Consequently, SA of the model output (to identify an optimal maintenance strategy)

with respect to the changes in the model parameters is of great interest. In this paper we investi-30

gate the issue of SA for maintenance optimisation models. To achieve this, we consider time based

and condition based preventive maintenance strategies for infrastructure systems under continuous

deterioration. Both strategies are discussed in detail in [6, 11] and references therein. Under TBM,

a component is replaced (or perfectly repaired) either at failure (CM) or when it has reached age

T - whichever occurs first. The central objective of a TBM decision problem is to determine the35

replacement time which minimizes expected total cost. The CBM strategy involves the periodic

inspection of a component/structure at a fixed time interval Ti and cost Ci. At the ith inspection,

one of the following actions might be taken: (i) the system is operating satisfactorily and no action

is required to be taken; (ii) immediate preventative maintenance is required to avoid component or

system failure; (iii) a failure is identified and corrective maintenance (or a perfect repair) is required40

to restore the system’s functionality (see Subsection 5.2 and [11] for further details). The optimal

maintenance decision under the CBM strategy is taken as the inspection time and the PM ratio

which are similarly determined by minimising the cost function of interest. The decision under

a CBM policy for a deteriorating component constitutes a two-dimensional optimisation problem,

whilst for the TBM case the aim is to find the critical age as a single variable. It has been argued45

that the types of PM strategy discussed above is more useful in practice (particularly for larger and

more complex systems) since it removes the need to record component ages ([6, 7]).

As inferred above, the preventive maintenance policy cost function is influenced by both the

deterioration model and repair model’s parameters. Thus, the calculation of a mean cost rate for a

particular preventive maintenance policy is not sufficiently robust because of the uncertainty around50

parameter values, and the corresponding maintenance model can generate inefficient outcomes. In

other words, the identification of an optimal maintenance intervention becomes sensitive to the

model parameters creating uncertainty as to the optimal strategy. Variance based approaches [14]

offer a partial answer to this problem and can be used to assess the degree to which uncertainty
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in each variable contributes to the overall variance in model output. However, these approaches55

do not take account of the decision-making context properly. In order to address this issue, we

make use of the concept of the Expected Value of Partially Perfect Information (EVPPI). The

EVPPI provides a decision-informed SA framework which enables researchers to determine the

key parameters of the problem and quantify the value of learning about certain aspects of the

system ([8, 7]). In maintenance studies ([9, 10]), this information can play an important role,60

particularly where we are interested in not only identifying an optimal maintenance decision but in

also gathering additional information about the system characteristics including the deterioration

process to improve the robustness of decisions.

The determination of EVPPI involves the calculation of multi-dimensional integrals that are

often computationally demanding, making conventional numerical integration or Monte Carlo sim-65

ulation techniques infeasible in practice. To partially overcome this computational difficulty, we

follow the work of [7, 8], and execute SA through the use of Gaussian process emulators. The

following section presents a well-known probabilistic model of deterioration; the Gamma process

model, and discusses how this relates to TBM and CBM maintenance optimisation problems. We

go on to describe how Gaussian Process (GP) emulators can be used to compute EVPPIs within70

the context of decision-theoretic SA. Robust optimised maintenance decisions are then derived for

two forms of PM policy using several illustrative settings of varying complexity. We conclude by

discussing the implications of our approach and identify opportunities for future work.

2. Deterioration models

Infrastructure asset deterioration processes are uncertain and can best be regarded as stochastic.75

Two previous studies have demonstrated the values of using Gamma process models to analysis the

deterioration of physical assets. Pandey et al. [11] compared the use of random variable and gamma

process models in the life-cycle management of infrastructure systems. They demonstrated that

the random variable model cannot capture the temporal variability associated with the evolution

of asset degradation. As a consequence, this model tends to underestimate the life-cycle cost due80

to the lack of consideration of temporal uncertainty. Van Noortwijk [12] extensively reviewed the

application of stochastic deterioration processes, and particularly the use of the Gamma process

model in maintenance. He concluded that gamma processes are well suited for modelling the
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temporal variability of deterioration, and of particular value when determining optimal inspection

and maintenance decisions.85

We now briefly introduce the Gamma process for deterioration modelling of an ageing asset.

In mathematical terms, a gamma process is a stochastic process with independent non-negative

increments having a gamma distribution ([11, 12]). The Gamma process with a shape function

ν(t) > 0 and scale parameter ξ > 0 is a continuous-time stochastic process {X(t), t ≥ 0} with the

following properties:90

1. Pr(X(0) = 0) = 1

2. X(ι)−X(t) ∼ Ga(ν(ι)− ν(t), ξ),∀ ι > t ≥ 0

3. X(t) has independent increments

and where ν(t) is a non-decreasing, right-continuous, real-valued function of t ≥ 0 with ν(0) ≡ 0.

Let X(t) denote the deterioration at time t ≥ 0, and let X(t) follows a gamma process with the

shape function ν(t) > 0 and scale parameter ξ > 0, then the probability density function of X(t) is

given by

fX(t)(x) = Ga(x | ν(t), ξ) =
(x/ξ)v(t)−1

ξΓ(v(t))
exp{−x/ξ}, for x ≥ 0 (1)

The structural failure for a deteriorating structure or component is defined as an event when its

deteriorating resistance, denoted by R(t) = r0−X(t), falls short of the applied stress s. The initial

resistance r0 and s are assumed to be fixed and known. We denote ρ = (r0− s) > 0 as the available

design margin or a failure threshold. We let the time at which failure occurs be denoted by the

lifetime T (also called the first hitting time of level ρ). Since the deterioration of a component at

time t is given by Eq. (1), the cumulative lifetime distribution of this is then given by

FGT (t) = Pr(T ≤ t) = Pr(X(t) ≥ ρ) = 1− G(ρ; ν(t)t, ξ) (2)

where G(ρ; ν(t)t, ξ) denote the cumulative distribution function of the deterioration model at ρ.95

Expression (2) features outstanding duality between a component’s deterioration and its lifetime

that makes the Gamma process model tractable for cycle-life management analysis. It should be

noted that the lifetime probability density function, denoted by fGT = ∂
∂tF

G
T (t), has no closed form

expression, and the corresponding maintenance optimisation problem requires a computationally

fast and powerful numerical method.100
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3. Optimal Preventive Maintenance Policy

The central objective of a preventive maintenance (TBM or CBM) optimisation model is to

determine the value of the decision variable T (replacement time or inspection time) that optimizes

a given objective function amongst the available alternative maintenance decisions. For instance

in a TBM policy, the optimisation problem is usually defined over a finite time horizon [0, t], and

the objective function, denoted by C(t), represents costs over the interval [0, t]. For infinite horizon

models, we seek to minimise the long-term average costs [13]. If a life cycle of an asset is defined

over the period between two consecutive maintenance/replacements, then the expected cost per

unit of time under decision T (which could be either optimised maintenance time or inspection

interval) is given by

C(T |θ) =
C(T |θ)

L(T |θ)
(3)

where C(T |θ) is the expected cost during the system’s life cycle, L(T |θ) is the expected length of

the life cycle or length of time between two consecutive replacements/repairs, and θ is the vector of

deterioration/failure and time to repair/replacement. We assume that system/component failure

and time to repair or replacement is a random variable characterized by a distribution as discussed105

in Section 5.

The following formula is an example of the expected cost per unit of a component under a

general TBM policy

C(T ) =
c1F (T ) + c2R(T )

T ·R(T ) +
∫ T
0
tf(t)dt+ τ

(4)

where F (T ) is the failure distribution function of a system at time T (or probability of unplanned

replacement due to an unexpected failure), R(T ) = 1− F (T ) is the probability of planned replace-

ment at time T , c1 is the cost of a corrective maintenance, c2 is the cost of planned replacement and

τ is the expected duration of replacement. The objective is then to identify the optimal strategy

T ∗ that corresponds to the minimum cost rate (cost per unit of time), that is;

T ∗ = arg min
T>0
{C(T )}. (5)

A similar method is used to determine the optimised CBM strategy. The cost function in this policy

is the mean cost rate which is defined as

K(tI , υ) =
E[C(tI , υ)]

E[L(tI , υ)]
(6)
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where E[C(tI , υ)] represents the renewal cycle cost, E[L(tI , υ)] is the renewal cycle length, tI is the

inspection time interval and υ is the PM ratio. The details of numerator and denominator of the

mean cost rate will be given in Section 5. The objective is then to find t∗I and υ∗ so that K(t∗I , υ
∗)

becomes the minimal cost solution.110

3.1. Uncertainty quantification via decision-informed sensitivity analysis

The optimal maintenance strategies derived by minimizing the expected cost rate is influenced

by characteristics such as the deterioration process or failure behaviour of the system and the

characteristics of maintenance tasks (including repair/replacement policy, maintenance crew and

spare part availability etc.). These characteristics are subject to uncertainty, prompting study of the115

sensitivity of an optimal maintenance strategy with respect to changes in the model parameters and

other uncertain inputs. Such an analysis improves understanding of the ‘robustness’ of the derived

inferences or predictions of the model, and, offers a tool for determining the critical influences on

model predictions ([14]). Zitrou et al. [7] summarise the main sensitivity measures and discuss their

values and applications in an extensive SA. They conclude that a simple yet effective method of120

implementing SA is to vary one or more parameter inputs over some plausible range, whilst keeping

the other parameters fixed, and then examine the effects of these changes on the model output.

Although this method is straightforward to implement and interpret, it becomes inconvenient where

there are large numbers of model parameters or when the model is computationally intensive.

In order to resolve this difficulty, we use a variance-based method for SA ([14]). This approach125

can capture the fractions of the model output variance which are explained by the model inputs.

In addition, it can also provide the total contribution to the output variance of a given input -

i.e. its marginal contribution and its cooperative contribution. The contribution of each model’s

input to the model output variance serves as an indicator of how strong an influence a certain

input or parameter has on model output variability. However, within a decision-making context130

like the maintenance optimisation problem, we are primarily interested in the effect of parameter

uncertainty on corresponding utility or loss. To achieve this objective, we use the concept of EVPPI

as a measure of parameter importance ([7, 8]). Incorporating the value of information (or EVPPI)

in a sensitivity analysis allows the decision-maker (or model user) to relate the importance of each

uncertain input parameter directly to the decision problem at hand, something that is lacking in135

a traditional variance-based sensitivity analysis method. The EVPPI approach thus allows the
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application of SA to the maintenance optimisation model and identifies the model parameters for

which collecting additional information (learning) prior to the maintenance decision would have a

significant impact on total cost.

Monte Carlo sampling can be used to estimate partial EVPIs [18], but again, in the case of140

computationally expensive models this may not be practical due to the numbers of model runs

typically required. Oakley [8] shows how Gaussian process emulators can be used to obtain estimates

more efficiently in this case.

4. Decision-informed sensitivity analysis

4.1. Sensitivity analysis145

The mean cost rate induced by a specific maintenance strategy (chosen value for T or tI) is

effected by features like the deterioration process of individual structure/system and the aspects

of the replacement/repair task. As these aspects are part of a real-world system, they are then

subject to uncertainty. It is thus of key importance to investigate sensitivity of the maintenance

model with respect to these uncertain aspects.150

Sensitivity analysis is widely used in modelling to examine whether alternative assumptions

or modelling choices lead to different predictions or inference. In general, there are two types of

approach: ‘local and ‘global sensitivity analysis. The aim of the former is to evaluate the change in

output, f(θ) due to small perturbations in the input from some baseline value/choice, and typically

involves the consideration of partial derivatives of the function under study with respect to the155

variables, ∂f(θ)/∂θi ([34, 35]). When f(·) is non-linear in its inputs, x and small perturbations of

the inputs do not adequately reflect the input uncertainty, a local sensitivity analysis is unlikely

to be a plausible approach. In this situation, a global sensitivity analysis can be used to examine

how the output varies as the inputs vary over some range. Where we are interested in reducing

uncertainty about model inputs by collecting more data, a global sensitivity approach may identify160

how to prioritize data collection by identifying the most important uncertain inputs.

There are two approaches to global sensitivity analysis: variance-based methods, and decision-

theoretic approaches based on the expected value of perfect information. The variance-based global

sensitivity analysis method is extensively reviewed in [36], and its applications can be found in [37].

The two most useful measures of input importance within the variance-based approach are the main165
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effect index (zi(θi) = E(f(θ)|θi) − E(f(θ)|θi)) and the total sensitivity index. A third concept,

related to the main effect index, is the main effect plot, which can be used to display graphically

the relationship between an input and the output ([16, 14]).

There are various computational methods for estimating these sensitivity measures. One of

the earliest proposed approaches was the FAST (Fourier amplitude sensitivity test, [36, 14]) which170

involves evaluating simulator outputs at inputs along a curve which explores the input space, oscil-

lating at different frequencies in each input dimension. Other approaches relate enhancements on

simple Monte Carlo sampling [38]. The computation of the sensitivity indices for the complex func-

tions (e.g., consists of non-linear terms or expressed based on a complicated mathematical formulae)

would be very challenging. In these situations, the emulators can be then used for computationally175

expensive simulators. In [17], the GP emulator was used to compute sensitivity indices and produce

main effects plots (see also [25, 39]).

Variance-based measures are more concerned with the individual elements within vector outputs

(or simply scalar outputs) and express what fraction of the variance of f(θ) can be attached to an

uncertain input variable θi, or any subset of θ. However, these approaches do not take account180

of the decision-making context properly. In order to tackle this drawback, a sensitivity analysis

method based on the concept of value of information which allows the decision-maker to relate

the importance of each uncertain input parameter directly to the decision problem at hand was

developed in [8].

In the field of life-cycle management of civil infrastructure, the value of information concept185

is widely used to determine the optimum preventive maintenance policy or condition monitoring

strategy. For instance, a methodology based on partially observable Markov decision process was

proposed in [40] to calculate the value provided by condition monitoring systems for infrastructure

assets. This was achieved by combining “value of information” concepts with Markov sequential

decision process.190

The determination of the benefits offered by the two condition monitoring technologies can then

be ascertained and the decision maker can choose the most appropriate one in an informed man-

ner. In order to understand the factors that influence the information value, sensitivity analysis on

the specific model parameters are carried out. In order to understand the impact of accuracy, the

parameter can be varied, keeping other parameters constant, and the resulting total expected costs195
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can be calculated for each technology. In a similar study [41] Markov chains and simulation tech-

niques were used to quantify the benefits of condition monitoring for wind turbines by conducting

sensitivity analysis to operational parameters.

A comprehensive overview of the mathematical framework for estimating the value of informa-

tion adapted to life-cycle analysis of structural systems was provided in [42, 43]. It was shown the200

computation of the expected value of information relating to decisions on maintenance of the civil

infrastructure systems requires a large number of life-cycle analyses, and the computational cost

can be very high when decisions concern the systems that are modelled with complex computa-

tional models[44]. In order to tackle this computational burden, it was suggested to use the Kriging

meta-models.205

In this paper, we provide a holistic approach for guiding making optimised decisions in the pres-

ence of uncertainty using value of information analysis. We show how global sensitivity analysis

can be conducted within the framework of preventive maintenance decision making, based on the

concept of the expected value of perfect information. It should be noted that the variance based

sensitivity analysis method is considered as a special case of this approach. The computational210

challenges are tackled using computationally efficient meta-models known as Gaussian process em-

ulators which enable us to compute the value of information indices (including EVPI and EVPPI) of

complex scenarios. In this section, we describe how GP emulators can be used to compute EVPPIs

within the context of decision-theoretic sensitivity analysis.

A comprehensive overview of the mathematical framework for estimating the value of informa-215

tion adapted to life-cycle analysis of structural systems is provided in [42, 43]. It was shown the

computation of the expected value of information relating to decisions on maintenance of the civil

infrastructure systems requires a large number of life-cycle analyses, and the computational cost can

be very high when decisions concern the systems that are modelled with complex computational

models [44]. In order to tackle this computational burden, it was suggested to use the Kriging220

meta-models.

In this paper, we provide a holistic approach for guiding making optimised decisions in the

presence of uncertainty using value of information analysis. We show how global SA can be con-

ducted within the framework of preventive maintenance decision making, based on the concept of

the expected value of perfect information. It should be noted that the variance based SA method225
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is considered as a special case of this approach. The computational challenges are tackled using

computationally efficient meta-models known as Gaussian process emulators which enable us to

compute the value of information indices (including EVPI and EVPPI) of complex scenarios. In

this section, we describe how GP emulators can be used to compute EVPPIs within the context of

decision-theoretic SA.230

4.2. Expected Value of Perfect Information

To briefly recap, the objective function of interest to us is the expected cost function (e.g., the

cost rate function given in Equation (4) for TBM or the mean cost rate given in (6) for CBM).

These cost functions take reliability and maintenance parameters as uncertain inputs (denoted by

θ) and a decision parameter, T (which could be critical age or periodic inspection interval). A

strategy parameter (which is fixed) needs to be selected in the presence of unknown reliability and

maintenance parameters. These unknown parameters can be modelled by a joint density function,

π(θ). In the maintenance optimisation setting, the decision maker can choose the strategy parameter

T (from a range or set of positive numbers) where each value of T corresponds to a maintenance

decision. The decision T is selected so that the following utility function is maximised

U(T,θ) = −C(T ;θ) (7)

where C(T ;θ) is a generic cost function per unit of time given the unknown parameters θ.

Suppose that we need to make a decision now, on the basis of the information in π(θ) only. The

optimal maintenance decision (known as baseline decision), given no additional information, has

expected utility

U0 = arg max
T>0

Eθ [U(T,θ)] (8)

where

Eθ [U(T,θ)] = −
∫
θ

C(T ;θ)π(θ)dθ (9)

Now suppose that we wish to learn the precise value of a parameter θi in θ before making a decision

(e.g., through exhaustive testing; new evidence elicited from the domain expert). Given θi, we are

still uncertain about the remaining input parameters, θi = (θ1, . . . , θi−1, θi+1, . . . , θn), and so we

would choose the maintenance strategy to maximise

Eθ|θi [U(T,θ)] = −
∫
θi

C(T ;θ)π(θ | θi)dθi (10)
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The expected utility of learning θi is then given by

Uθi = Eθi

[
arg max

T>0
Eθ|θi {U(T,θ)}

]
(11)

Now, learning about parameter θi before making a maintenance decision will benefit the decision-

maker by

EVPIθi = Eθi [Uθi ]− U0. (12)

Therefore, the quantity EVPIθi , known as the partial Expected Value of Perfect Information (partial

EVPI or EVPPI), is a measure of the importance of parameter θi in terms of the cost savings that

further learning (data collection) will achieve.235

EVPIs allow for SA to be performed in a decision-theoretic context. However, the computation

of partial EVPIs as in (12) requires the evaluation of expectations of utilities over many dimen-

sions. Whereas the one-dimensional integral Eθi [Uθi ] can be evaluated efficiently using Simpson’s

rule, averaging over the values of multiple parameters is computationally intensive. One way to

approximate these expectations is to use a Monte Carlo numerical method. However, the Monte240

Carlo based integration methods require a large number of simulations which make the computation

of the EVPPIs impractical. Zitrou et al. [7] propose an alternative method for resolving this prob-

lem by utilizing a Gaussian Process emulator based SA to the objective function of interest. This

method enables computation of the multi-dimensional expectations at a limited number of model

evaluations with relative computational ease. We develop this method further for the purposes245

mentioned above.

4.3. Gaussian Process Emulators

An emulator is an approximation of a computationally demanding model, referred to as the

code. An emulator is typically used in place of the code, to speed up calculations. Let C(·) be a

code that takes as input a vector of parameters θ ∈ Q ⊂ Rq, for some q ∈ Z+, and has output250

y = C(θ), where y ∈ R. As we will see later on, this is not a restrictive assumption, and we will

let y ∈ Rs, for some s ∈ Z+. For the time being, let C(·) be a deterministic code, that is for fixed

inputs, the code produces the same output each time it ‘runs’.

An emulator is constructed on the basis of a sample of code runs, called the training set. In

a Gaussian Process emulation context, we regard C(·) as an unknown function, and use a q−
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dimensional Gaussian Process (GP) to represent prior knowledge on C(·), i.e.

C(·) ∼ Nq(m(·), v(·, ·)) (13)

We subsequently update our knowledge about C(·) in the light of the training set, to arrive at a

posterior distribution of the same form.255

Expression (13) implies that for every {θ1, . . . ,θn} output {C(θ1), . . . C(θn)} has a prior mul-

tivariate normal distribution with mean function m(·) and covariance function v(·, ·). There are

many alternative models for the mean and covariate functions m(·). Here, we use the formulation

in line with [15], and assume

m(θ) = h(θ)ᵀβ (14)

for the mean function, and

v(θ,θ′) = σ2c(θ,θ′). (15)

for the covariance function. In (14), h(·) is a vector of q known regression functions of θ and β is a

vector of coefficients. In (15), c(·, ·) is a monotone correlation function on R+ with c(θ,θ) = 1 that

decreases as |θ − θ′| increases. Furthermore, the function c(·, ·) must ensure that the covariance

matrix of any set of outputs is positive semi-definite. Throughout this paper, we use the following

correlation function which satisfies the aforementioned conditions and is widely used in the Bayesian

Analysis of Computer Code Outputs (BACCO) emulator ([8, 16]) for its computational convenience:

c(θ,θ′) = exp{−(θ − θ′)ᵀR(θ − θ′)} (16)

where R is a diagonal matrix of positive smoothness parameters (also known as length scales). R

determines how close two inputs θ and θ′ need to be such that the correlation between C(θ) and

C(θ′) takes a particular value. For mathematical tractability, the conjugate prior form for β and

σ2, the normal inverse gamma distribution, is assumed ([17]):

p(β, σ2) ∝ (σ2)−
1
2 (κ+q+2) exp{−{(β − z)TV −1(β − z) + a}/(2σ2)}

where the hyperparameters z, V, a and κ (the number of regressors in the mean function) are known.

The cost function of interest C(·) is evaluated at N design points θ1, . . . ,θN to generate the

outputs yT = (C(θ1), . . . C(θN )). The following set D = {(θi, C(θi)), i = 1, . . . , N} is then con-

sidered as the data required to train the standard GP. These design points are chosen based on a
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suitable space filling design, such as Max-Min Latin Hypercube scheme which is designed to ensure

the multi-dimensional parameters pace is fully covered without having to use a very large sample

size which is required in the Monte Carlo based methods. As a result, we only need to evaluate

C(θ) at limited input points. Since θ is unknown, the beliefs about θ is represented by the prob-

ability distribution π(θ). Therefore, the choice of the design points will also depend on π(.) (the

choice of design points is discussed in [19]). The standardised posterior distribution of C(·) given

D = {(θi, C(θi)), i = 1, . . . , N} is

C(θ)−m∗(θ)

σ̂
√
c∗(θ,θ′)

| D,R ∼ tq+N (17)

where tq+n is a student t random variable with n+ q degrees of freedom,

m∗(θ) = h(θ)T β̂ + t(θ)TA−1(y−Hβ̂)

c∗(θ,θ′) = c(θ,θ′)− t(θ)TA−1t(θ′) +

(h(θ)T − t(θ)TA−1H)(HTA−1H)−1(h(θ′)T − t(θ′)TA−1H)T

t(θ)T = (c(θ,θ1), . . . , c(θ,θn))

HT = (h(θ1), . . . ,h(θn))

and

A =



1 c(θ1,θ2) . . . c(θ1,θn)

c(θ2,θ1) 1
...

...
. . .

c(θn,θ1) . . . 1


β̂ = V ∗(V −1z +HTA−1y)

σ̂2 =
{a+ zTV −1z + yTA−1y− β̂T (V ∗)−1β̂}

(N + q − 2)

V ∗ = (V −1 +HTA−1H)−1

The outputs corresponding to any set of inputs will now have a multivariate t-student distri-

bution as presented in (17). The resulting t-distribution is obtained as a marginal distribution for260

C(θ) after integrating out the hyperparameters β and σ2. It is not tractable to remove analytically

the smoothness parameters R, and we deal with uncertainty in R by sampling from the posterior
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distribution of R|y using MCMC methods (see [20]). These estimates can be obtained by using the

posterior mode approach, and cross validation.

The GP emulators developed above are useful tools for uncertainty and SA ([8, 17]) and it has

been shown that they perform better than standard Monte-Carlo methods in terms of both accuracy

of model output and computational effort. This is mainly due to their analytical efficiency which

can be used to evaluate E[C(θ)] and V ar[C(θ)] relatively fast. Thus, it is trivial to show that if

C(θ) ∼ GP (·, ·), then

E[C(θ)] =

∫
θ

C(θ)π(θ)dθ (18)

follows a GP distribution.265

In order to perform the decision-theoretic sensitivity approach, we need to compute the partial

EVPIs given in (12). By using an emulator, the expected value of the utility function U(T,θ) for

each decision variable T , including the first and second moments can be rapidly computed with rela-

tively low much computational effort. In recent years, GP emulators have been extensively used for

a wide range of applications including sensitivity/uncertainty analysis [25, 16, 17], calibration [20],270

forecasting [22, 49, 50], optimisation [50, 7], etc. A detailed comparison of the use of Monte-Carlo

and emulator methods to deal with uncertainty and sensitivity analyses and relevant examples is

provided in [16] showing that both methods can provide an estimate for the model/quantity of

interest, with an error term to represent model uncertainty. Model uncertainty can be reduced by

executing multiple model runs which, in the case of Monte-Carlo methods can run in to the tens or275

hundreds of thousands. In the case of the GP emulator, the set of model runs is used to construct

the emulator and achieving acceptable accuracy would require only a handful of runs for a model

with just one or two inputs, or up to a few hundred for a complex function of many inputs. There-

fore, achieving the desired precision can be a cumbersome business for a complex model even with

a handful of input variables when using the Monte-Carlo methods. [16] draws a similar conclusion280

in computing the sensitivity measures for an application in the field of health economics. He shows

that achieving negligible bias may require a very large number of simulations. This can lead to

evaluate C(θ) numerous times (of the order of 10000) at different values of θ to achieve a sufficiently

small bias using the Monte Carlo sampling method for a simple case study.

In another study presented in [25], an emulator-based sensitivity analysis was used to examine285

the changes in system availability and reliability with respect to changes in time-to-failure and
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time-to-repair distribution parameters. It was shown that only tens to hundreds of model runs are

required to construct an emulator (depending on the complexity of the system under study), and

subsequently compute the variance-based sensitivity measures while the computation of the same

sensitivity indexes would require millions of model runs using the Monte-Carlo method.290

In this study, we are interested in identifying the robust optimised PM strategy T ∗ which

minimizes the cost rate function given in (7). This optimization problem can be addressed using

two sub approaches. In the first approach, the PM strategy, T belongs to a finite set Tm =

{T1, T2, . . . , Tm}, and the main objective is to identify the optimal decision among this finite set of

decision options. Oakley [8] addressed this issue for a limited number of the available decisions in295

a health economics context. Zitrou et al. [21, 7] use the same method to find the robust optimized

maintenance action. In this framework, a separate GP model is first fitted to approximate the

mapping between θ and C(θ, Ti) for each Ti. The computed partial EVPI for each Ti is then used

to select the optimized PM strategy over a subset of the parameter space.

In the case that the decision space is not finite or consists of many decision options, the method-300

ology addressed in these works is not useful and practical. In addition, regardless of the model

complexity and the model runs required to compute the EVPPI for each decision option, the

conventional Monte Carlo based methods will also not be useful when the decision space is not

finite [21, 7]. Consequently, we adopt the multi-output Gaussian process models proposed in [22].

They propose various methods to deal with the modelling of multivariate computer code model305

outputs including Multi-Output emulator (MO), Many Single Outputs (MS) and Time Input (TI)

emulators. The MO emulator is a multivariate version of the single output emulator, where the

dimension of the output space is υ. This process allows for the representation of any correlations

existing among the multiple outputs. The MS emulator procedure treats the multi-outputs of the

function of interest, {Y1, . . . , Ys} as independent random variables, and emulates each output Yj310

separately. This means that s separate GP emulators are built, each describing the utility for each

decision T ∈ Tm. This is the model that is used in [8, 21]. Finally, the TI emulator is a single-output

emulator that considers decision variable T as an additional input parameter. In this paper, we

show that this model can be used to find the robust optimised PM when Tm does not have to be a

finite space, and cost rate function C(θ, T ) can be determined for any value of T over any interval, as315

(Tl, Tu). In other words, the optimised maintenance strategy T identified using the TI emulator can
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be a continuous variable, and the expectations of any order of C(θ, T ) are continuous functions of

T , and the utilities of the optimal strategies are calculated without restricting the decision-maker

to choose amongst a pre-determined, finite number of options. This feature of the TI emulator

outweighs the general correlation structure provided by the MO emulator (see [22]). In the next320

section, we briefly introduce the TI emulator and demonstrate how it can be used to identify the

optimized PM strategy.

4.4. The TI Emulator

Suppose that the optimal decision T in a maintenance optimisation problem (critical age or

periodic interval) belongs to an infinite set T = (Tl, Tu). We consider T as an additional code input325

and we are interested in building a single-output emulator to approximate the utility function,

U(T,θ) = −C(T ;θ). As mentioned above and shown in the related literature, the computation of

Eθ[U(T,θ)] and Eθ|θi [U(T,θ)] for any T ∈ T, required to calculate EVPI and the partial EVPI,

using the TI emulator would be very fast and efficient.

The main challenge is to estimate the hyper-parameters of the TI emulator, based on the gen-

erated training dataset consisting of code outputs y = (y1 = C(x1), . . . , yN = C(xN )), where

(x1,x2, . . . ,xN )ᵀ are design points defined as follows:

xl = (Ti,θj), l = 1, 2, . . . , N = s× n

where Ti is a maintenance decision (i = 1, . . . , s) and θj are (reliability, maintainability) parameter330

values (j = 1, . . . , n).

The choice of design points affects how well the emulator is estimated. Here, we choose equally

spaced points {T1, . . . , Ts} so that interval T is properly covered. Points (θ1,θ2, . . . ,θn)ᵀ are

generated using Latin hypercube sampling (see [23]), which ensures that the multidimensional

parameter space is sufficiently covered.335

As mentioned earlier, building a TI emulator requires the inversion of an N ×N matrix. Given

the size of the training set, this can be computationally challenging. Essentially, there are two ways

to build the TI emulator: (1) fit a Gaussian process directly to the whole training set y obtained

as described above; (2) separate y and fit two Gaussian Processes: one on the set of design points

(θ1,θ2, . . . ,θn) and one on the time input data points {T1, . . . , Ts}. Multiple authors ([24, 22, 7])340

have concluded that the first approach based on fitting a single GP to the whole training set y

17



takes longer, but that it produces more accurate results. In addition, they have shown that the

relative mean squared error of the posterior predictive mean of the first model (based on fitting

a single Gaussian process) is much smaller than when fitting two Gaussian process. We therefore

follow their suggestion and fit a single GP to the full training set.345

The baseline maintenance strategy is the choice of T that maximises utility, and the baseline

expected utility in (8) is now calculated as

U0 = max
T∈T

EC{Eθ [C(T,θ)]} (19)

and the utility of the optimal strategy in (10), after learning the value of Θi, becomes

Uθi = max
T∈T

EC{ET,θ|θi [C(T,θ)]}. (20)

Bayesian quadrature ([15]) allows us to compute the expectations given in (8) and (10) rela-

tively fast based on the fitted GP to y. The details of the approximation of this type of integral

(expectation) in terms of the fitted GP can be found in [25]. The computation steps of computing

EVPI and partial EVPI are given in Algorithm 1.

In Equation (21), Ri and Wi are given by

Ri =

∫
h(θ, Ti)

Tπ(θ)dθ, WT
i =

∫
t(θ, Ti)

Tπ(θ)dθ

The computation of these integrals is trivial. For example, if inputs are normally distributed, and350

the correlation and mean functions are respectively given in (14) and (16), ), these integrals can be

evaluated analytically. If the inputs are not normally or uniformly distributed, then numerical or

Monte Carlo integration can be used without significant computational effort [8].

As we are interested in conducting a global sensitivity analysis (how the output varies as the

inputs vary over some range), then the following prior distribution defined over the input parameters

would be plausible:

π(θ) =

q∏
i=1

U(ai, bi)

where the hyper-parameters ai and bi are determined based on information elicited from experts or

published studies (e.g., see [11]).355
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Algorithm 1 The computation of EVPI and Partial EVPI of the given cost function.

1: Require: The cost function of interest: C(T,θ); the prior distribution over θ; and the set of

the possible strategy options: {T1, . . . , Ts}.

2: Using Max-min Latin hypercube, generate the design points of size n over Q, as (θ1,θ2, . . . ,θn).

3: By including the set of the strategy options, expand the design points to

{xl = (Ti,θj), l = 1, 2, . . . , N = s× n, i = 1, . . . , s, j = 1, . . . , n}

4: Evaluate, N = n× s values of {yl = C(xl), l = 1, . . . , N}

5: Fit a TI Emulator to {(xl, yl), l = 1, . . . , N}

6: Estimate: A−1; β̂ = (β̂0, β̂1, . . . , β̂q, β̂T ); and σ̂2;

7: For each strategy, Ti, compute

EC(Ti,.)[Eθ[C(Ti,θ)]] = Riβ̂ + WiA
−1(yi −Hβ̂) (21)

8: U0 = maxiEC(Ti,.)[Eθ[C(Ti,θ)]]

9: For each strategy, Ti, compute

EC(Ti,.)[ETi,θ|θj [C(Ti,θ)]] = Rijβ̂ + WijA
−1(yi −Hβ̂) (22)

10: Uθj = maxiEC(Ti,.)[ETi,θ|θj [C(Ti,θ)]]

11: EV PIθj = Eθj [Uθj ]− U0

By choosing this prior distribution, Ri and WT
i can be analytically evaluated as follows:

Ri =

∫
h(θ, Ti)

Tπ(θ)dθ = β̂0 +

p∑
l=1

β̂lEπ(θl) + β̂TTi,

WT
i =

∫
t(θ, Ti)

Tπ(θ)dθ,

where the jth element of WT
i , associated with the jth design point, is given by∫

exp{−((θ, Ti)− (θj , Ti))
T R̂((θ, Ti)− (θj , Ti))}π(θ)dθ,
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which can also be analytically evaluated,

Rij =

∫
h(θ, Ti)

T dπ(θ|θj) = β̂0 + β̂jθj +

p∑
l=1,l 6=j

β̂lEπ(θl) + β̂TTi,

WT
ij =

∫
t(θ, Ti)

T dπ(θ | θj),

where the lth element of WT
ij , associated with the lth design point, is given by∫

exp{−((θ, Ti)− (θl, Ti))
T R̂((θ, Ti)− (θl, Ti))}dπ(θ|θj),

which can be analytically evaluated, R̂ = diag{r̂1, . . . , r̂q, r̂T } and h(θ, T )T = (1,θ, T ).

We use R and GEM-SA packages to fit the GP to the training points and then approximate

the expected utilities and their corresponding uncertainty bounds. To calculate the aforementioned

expected utilities, the calculations are carried out based on the discretisation of the interval S

(maintenance decision) and the support of the joint prior distribution of the parameters π(θ). It is360

apparent that the computation of these expectation can become quite expensive by choosing a finer

discretisation. The following section presents two illustrative examples. The focus here is on the

way emulators can be used to perform SA based on EVPI, providing a resource efficient method for

maintenance strategy identification and identifying targets for institutional learning (uncertainty

reduction). In the first example we build an emulator for a TBM optimisation problem and in the365

second example find a robust CBM strategy for a civil structure using emulator-based SA.

5. Numerical examples

5.1. Time-based maintenance decisions model

Under the TBM policy (also known as age-based replacement), the system or component under

study is in one out of two operating conditions; working or failed. System failure is identified370

immediately and corrective maintenance (CM) actions are undertaken to restore the system to its

original condition. Regardless of the system condition, the system is renewed when it reaches a

predetermined time (or age) T ∗. In the TBM optimisation problem, the main challenge is to identify

the optimal time to maintenance to minimise overall maintenance costs. This optimisation problem

is usually defined over a finite horizon [0, t], and we seek to minimise the objective cost function375

C(t) over this time interval.
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Figure 1: Total long-run average costs per unit time function for different values of θ = (γ, ξ, α, β) for Gamma-process

It can be illustrated [26, 28] that the cost per unit of time, as defined in (3) for a deteriorating

component under the TBM strategy is equivalent to

CG(t;θ) =
C(t|θ)

L(t|θ)
=
CF [1− G(ρ; γt, ξ)] + CPG(ρ; γt, ξ)∫ T

0
G(ρ; γt, ξ)dt+ τ(θ2)

(23)

where the cumulative distribution function of system failure (due to deterioration) is represented

by G(ρ; γt, ξ) as defined in Section 2, the unexpected replacement of the component cost is denoted

by CF , each preventive maintenance action costs CP (0 < CP ≤ CF ), and τ(θ2) is the expected

duration of the maintenance action, and is defined by

τ(θ2) =

∫ ∞
0

tgT (t;θ2)dt (24)

where gT (t;θ2) is the time to repair (or replacement) distribution, and θ2 is the set of repair dis-

tribution parameters. The repair distribution, gT (t;θ2) is assumed to follow a Gamma distribution

with α and β as shape and scale parameters respectively. A more general age-based replacement

(and inspection) policy can be found in [33].380

For numerical illustration, we follow [11] and set CF = 50 and CP = 10. Figure 1 illustrates

how the expected cost rates change over the decision variable T for specific values of parameters,

θ = (γ, ξ, α, β) and the given costs. It can be clearly concluded that the optimal replacement

time would change by varying the parameter values. As a result, the sensitivity of the optimal

maintenance strategy should be examined with respect to the changes of the input parameters to385

achieve robust optimised TBM decisions.
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The decision-maker proposes the following prior distribution on θ

π(θ) = π1(γ)π2(ξ)π3(α)π4(β) (25)

where each of these parameters individually is uniformly distributed as follows

γ ∼ U(0.18, 0.22), ξ ∼ U(9, 11), α ∼ U(1, 3), β ∼ U(2, 3)

where U(a1, b1) denote a uniform density function defined over (a1, b1).

It can be shown that the cost function in (23) has a unique optimal solution (according to

Theorem 1 given in [26]). When the uncertainty in input parameters θ are included, the optimal

maintenance decision will lie in the interval, I = [25, 35] (see [7] for the technical details of the390

existence of such an interval for the considered cost rate function).

In order to lower the computational load of computing the value of information measures (EVP-

PIs) as the SA index, a TI emulator is fitted to the cost rate function CR(t;θ). The total training

data-points to build this emulator is 1260 and selected as follows. We first generate 60 design points

from π(θ), using the Latin hypercube design (see [19]). We then calculate the cost rate function395

(as a computer code) at each design point for 21 values of T (i.e., T = 25, 25.5, 26, . . . , 35).

Using the fitted Gaussian process, the baseline optimal decision is derived at T = 28.2 where

the corresponding maximum utility is U0 = 0.369. So, if there is no additional information available

on individual input parameters, apart from the prior information, the optimal time to maintenance

is at 28.2 time units. The maximum expected net benefit (or cost saving) that a decision maker400

can gain by selecting the optimal maintenance time at T = 28.2, given no information, will be

U0 = 0.369 monetary unit. Further benefit can be achieved if additional information about the

values of the parameters can be provided before making any decision. For example, suppose that

ξ is known before making a decision. Table 1 provides the detailed information about the optimal

decisions for the different values of ξ, γ, α and β. For instance, when the scale parameter, ξ, of405

the lifetime distribution of a component under study takes values in (9.05, 9.25), then the cost

rate is minimum for T = 32.5, but if ξ ∈ (10.25, 10.75), then the optimal maintenance decision is

T = 26.75.
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Range T Range T

Parameter γ

(9, 9.05) 35 (9.75, 10.25) 29.5

(9.05, 9.25) 32.5 (10.25, 10.75) 26.75

(9.25, 9.75) 29 (10.75, 11) 25

Parameter ξ

(0.18,0.1890) 28.4 (0.1890,0.22) 28.2

Parameter α

(1,1.35) 29.25 (2.05,2.45) 29.25

(1.35,1.55) 28.25 (2.85.2.95) 28.25

(1.55,1.95) 27.25 (2.65,2.85) 27.25

(1.95,2.05) 28 (2.45,2.55) 28

(2.95,3) 29.5

Parameter β

(2,2.07) 28.7 (2.69,2.81) 28.2

(2.07,2.21) 28.2 (2.81, 2.93) 28.5

(2.21,2.69) 27.9 (2.93,3) 29

Table 1: Optimal TBM decisions when a parameter of interest is known prior the maintenance decision.

The values of the EVPPIs along with the uncertainty intervals for this case are given in Table 2.

By learning the values of input parameters, the decision-maker could select the maintenance time410

that maximises the expected utility for a particular value of the parameter of interest. For instance,

if the decision maker learns about the value of “α” with the details given in Table 1, before making

any decision, the expected increase in utility of learning α will be 0.3361 (in monetary unit) which

is gained on the top of the situation when a decision was made based on no information (or the

prior information only). The benefits that can be gained by learning α and β (the shape and scale415

parameters of the repair distribution) are much higher than γ and ξ. In addition, knowing α and β

prior to the decision shows the most substantial differentiation between optimal strategies. Thus,

these parameters are ‘important’ in the sense that reducing uncertainty about their values is likely

to trigger selection of a different strategy.

Figure 2 summaries the SA of the cost rate function with respect to the changes of the model420

23



input parameters at T = 28.2. In this figure, the variance contribution of each parameter to the

total variance of the cost rate at T = 28.2 is shown. The variance contribution of ξ, γ and α are 46%,

26% and 24% respectively based on only 60 data-points at T = 28.2, while β covers only 4% of total

variance. In other words, this analysis exposes the behaviour of the expected cost at a specific time

for different values of the parameters. Figure 3 illustrates how expected cost Eθ|θi [−CR(t;θ)] when425

T = 28.2 changes with different values of the parameters (i.e., (η, δ, α, β)), along a 95% uncertainty

bound (the thickness of the band).

θi EV PPIi C.I

γ 0.0049 (0.0047, 0.0051)

ξ 0.0075 (0.0077, 0.0079)

α 0.3361 (0.3359, 0.3363)

β 0.3359 ( 0.3357, 0.3361)

Table 2: Estimated EVPPIs based on the fitted GP emulator for the parameters of the GP deterioration model for

the TBM policy.
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Figure 2: The variance contribution of each in-

put parameters to the mean cost rate of the

TBM policy at T = 28.2 for the GP deteriora-

tion model.
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Figure 4: CBM decision tree for the GP deterioration model.

5.2. The CBM policy under the GP deterioration model

The inspection and replacement scenarios under the Gamma process deterioration model are

more convoluted and complicated due to the temporal uncertainty (see [11]). The CBM policy430

under the GP deterioration model is illustrated in Figure 4 and explained as follows:

1. The system at the ith inspection is at sound operating state (if X(itI) < υtI), and no action

is required to be taken at this stage.

2. Immediate PM should be done (when υρ < X(itI) < ρ) to prevent any unexpected failure

3. A failure is identified at the ith inspection (if X(itI) > ρ), and subsequent CM is required to435

restore the system.

where 0 < υ < 1 is called PM ratio, and υρ is the threshold for the PM which is a fraction of the

failure threshold.

According to renewal theory ([29, 26]), the mean cost rate for the CBM policy under the GP

deterioration model is given by

KG(tI , υ;θ) =
E[CUG(tI , υ;θ)]

E[LDG(tI , υ;θ)] + τr
(26)

where the expected cost associated with a renewal cycle is given by

E[CUG(tI , υ;θ)] = CP + (CF − CP )[1 +

∞∑
n=1

G(υρ;nγtI ; ξ)]−

(CF − CI − CP )[G(ρ; γtI ; ξ) +

∞∑
n=1

∫ υρ

0

g(z;nγtI ; ξ)G(ρ− z; γtI ; ξ)dz]
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and the mean cycle length is as follows

E[LDG(tI , υ;θ)] =

∫ tI

0

G(ρ; γt; ξ)dt+

∞∑
n=1

∫ υρ

0

∫ tI

0

g(z;nγtI ; ξ)G(ρ− z; γt; ξ)dtdz]

where g(z;nγtI ; ξ) denote to gamma density function with nγtI as shape and ξ as scale parameter,

and θ = (γ, ξ, α, β) .440

The objective in the CBM policy is to find the optimal inspection time and PM ratio so that

the corresponding mean cost rate becomes minimum, that is,

(t∗I , υ
∗) = arg min

(tI ,υ)
{KG(tI , υ;θ)}

As discussed in [29, 11], one can conclude that the optimal inspection time (tI) is unique and

will lie in an interval derived from the system information, failure and the characteristics of the

inspection and replacement tasks. These decision variables would clearly change by varying the

parameter value of θ. As a result, the sensitivity of the determined inspection time and PM ratio

parameters should be examined with respect to the changes of the input parameters to achieve445

robust optimised CBM decisions.

The PM ratio, υ is considered as an extra parameter and included into the uncertain parameters

input, that is, ψ = (γ, ξ, α, β, υ), where γ, ξ are respectively the shape and scale parameters of the

GP deterioration model given in (2), α, β are respectively the shape and scale parameters of the

maintenance distribution. The corresponding joint prior distribution is given by

π(ψ) = π1(γ)π2(ξ)π3(α)π4(β)π5(υ) (27)

where

γ ∼ U(0.2, 0.4), ξ ∼ U(9, 12), α ∼ U(1, 3), β ∼ U(2, 3), υ ∼ U(0.2, 0.8)

We first generate 80 design points generated from the joint distribution of ψ (using the Latin

hypercube desin) and then evaluate the mean cost rate, KG(tI , υ;ψ). An emulator based SA is

implemented using this data, D = {(ψ(i),KG(t0I ;ψ
i)), i = 1, . . . , 80} at a fixed inspection time,

t0I = 24.5. From the variance contribution fractions of these parameters shown in Figure 5, it is450

evident that the PM ratio (covers 83% of the total variance) has a substantial role on determining

the optimal inspection interval and minimising the maintenance costs.

Due to the importance of the PM ratio in determining the optimal inspection interval, the

robustness of tI with respect to the changes in θ at some fixed values of υ is examined. We first let
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Figure 5: The variance contribution of each input parameters to the mean cost rate of the CBM policy at tI = 26.5

for the GP deterioration model.

υ = 0.55. To train the TI emulator, we generate 60 design points from the prior joint distribution455

of θ over the range of the parameters given above. For each of these design points we then calculate

the mean cost rate, KG(tI , υ
(1);θ) for 35 values of tI , in particular for tI = 18, 18.5, . . . , 35. The

final training set is comprised of 2100 points.

The baseline optimal inspection time is derived at tI = 33.64 where the corresponding maximum

utility is U0 = 0.669. The maximum expected net benefit (U0) shows the decision maker’s gain (in460

monetary unit) corresponds to the optimal inspection time at tI = 33.64 which derived without any

knowledge of the input parameters’ values. Table 3 shows the optimal inspection interval decisions

when the values of γ, ξ, α and β are learned prior to making any decision about the inspection

time. For example, if the decision maker learns that γ ∈ (0.2, 0.226), the baseline decision for the

inspection time will not be changed. But, if it was learned that γ ∈ (0.226, 0.234), the optimal465

inspection time should be tI = 31.44.

The values of the estimated EVPPIs along with the uncertainty intervals are given in Table 4.

These values illustrate the expected increase in utility of learning each input parameter before

making any decision regarding the optimal inspection time. For example, if the decision maker

learns about the value of γ in advance, the expected net benefit will increase to 0.145 (in monetary470

unit) more than the maximum expected net benefit, U0. A similar interpretation can be made about

the benefits of learning ξ, α and β based on their estimated EVPPIs given in Table 4. From these

results, it can be concluded that γ (the shape parameters of the lifetime distribution) is the most

important factor in the sense that knowing its value prior to making any decision would result in

substantial cost savings and reduced uncertainty about the optimal inspection strategy. A similar475
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conclusion can be derived from Figure 6 which summaries the variance fractions of each parameter

to the total variance of the cost rate at tI = 33.64. It also confirms that γ which covers about 92%

of total variance of the mean cost rate is the most important factor affecting the maintenance cost.

As demonstrated above, the optimal inspection decision is very sensitive to υ’s changes (see

Figure 5). As a result, by changing υ value from 0.55 to 0.75, the derived results would be changed480

dramatically and this extreme behaviour at these two points is the the main reason behind selecting

υ = 0.55 and υ = 0.75 for the SA of the cost function (and the optimal inspection strategy) with

respect to the changes in parameter values. We list the possible changes of the SA when υ = 0.75

as follows

• The optimal inspection interval, tI ∈ [25, 39]485

• The baseline optimal inspection interval is tI = 29.76 (corresponding to the maximum benefit

of U0 = 0.951).

• Based on the computed EVPPIs of the parameters, β and γ are in order the most important

factors in reducing the uncertainty about the optimal inspection interval (see Table 5).

• At the baseline decision (tI = 29.76), ξ, γ and α are the most important factors affecting the490

maintenance costs (see Figure 7).

Table 6 shows the optimal inspection interval decisions when υ = 0.75 and the values of γ, ξ, α and

β are learned prior to making any decision about the inspection time.
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Range tI Range tI

Parameter γ

(0.2,0.226) 33.64 (0.278, 0.29) 25.65

(0.226,0.234) 31.44 (0.290, 0.294) 25.14

(0.274,0.278) 26.16 (0.294, 0.318) 24.50

(0.234,0.254) 29.56 (0.318,0.338) 23.44

(0.254,0.27) 27.6 (0.338, 0.398) 22.06

(0.270,0.274) 26.50 (0.398,0.4) 19.70

Parameter ξ

(9,9.03) 28.20 (9.51,9.57) 24.80

(9.03, 9.09) 27.86 (9.57, 9.63) 24.46

(9.09, 9.15) 27.52 (9.63, 9.69) 24.12

(9.15, 9.33) 26.50 (9.69, 11.31) 23.44

(9.33,9.51) 25.40 (11.31, 12) 20.44

Parameter α

(1, 1.10) ∪ (1.30, 1.42) 24.46 (1.42, 1.58) ∪ (1.78, 3) 23.44

(1.10, 1.30) 25.14 (1.58, 1.78) 21.54

Parameter β

(2,2.07) 21.54 (2.27,2.41) 25.24

(2.07, 2.21) ∪ (2.51, 2.69) ∪ (2.85, 2.95) 23.5 (2.69, 2.85) 22.76

(2.21, 2.27) ∪ (2.45, 2.51) ∪ (2.95, 3) 24.60

Table 3: The optimal inspection interval, tI when a parameter is known prior the maintenance decision for the CBM

policy and under the GP deterioration model for υ = 0.55.
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θi EV PPIi C.I

γ 0.145 (0.142, 0.148)

ξ 0.14 (0.137, 0.143)

α 0.1375 (0.134, 0.141)

β 0.1378 (0.1344, 0.1412)

Table 4: The estimated EVPPIs for the pa-

rameters of the GP deterioration model for the

CBM policy when υ = 0.55 .

θi EV PPIi C.I

γ 0.0128 (0.0122, 0.0133)

ξ 0.0095 (0.0089, 0.0099)

α 0.0092 (0.0087, 0.097)

β 0.0149 (0.0144, 0.0154)

Table 5: The estimated EVPPIs for the pa-

rameters of the GP deterioration model for the

CBM policy when υ = 0.75 .
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Figure 6: The variance contribution of each input parame-

ters to the mean cost rate of the CBM policy at tI = 33.64

for the GP deterioration model when υ = 0.55.
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Figure 7: The variance contribution of each input parame-

ters to the mean cost rate of the CBM policy at tI = 29.76

for the GP deterioration model when υ = 0.75.
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Range tI Range tI

Parameter γ

(0.2, 0.3615) 30.88 (0.3615, 0.3855) 30.66

(0.3855, 0.4) 30.32

Parameter ξ

(9, 9.10) 36.76 (9.74, 9.90) 35.64

(9.10, 9.38) 36.48 (9.90, 10.10) 35.36

(9.38, 9.58) 36.20 (10.10, 10.98) 35.08

(9.58, 9.74) 35.92 (10.98, 12) 35.36

Parameter α

1,1.38) 30.18 (2.14,2.26) 29.48

(2.34, 2.78) 30.32 (2.78, 2.92) 30.88

(1.38, 1.66) 39 (2.92, 3) 31.44

(1.66, 2.14) 28.64

Parameter β

(2, 2.07) 29.22 (2.39, 2.51) 31.44

(2.07, 2.11) 30.20 (2.51, 2.59) 30.32

(2.07, 2.15) 30.54 (2.59, 2.65) 29.48

(2.15, 2.39) 31.72 (2.65, 3) 28.36

Table 6: The optimal inspection interval, tI when a parameter is known prior the maintenance decision for the CBM

policy and under the GP deterioration model for υ = 0.75.

6. Discussion and conclusions

In this paper we have investigated the robustness of preventive maintenance policies (TBM and495

CBM) as they relate to a deteriorating infrastructure system with respect to the changes of the

lifetime and repair distributions’ parameters using a decision-informed SA approach. The concept

and application of Expected Value of Perfect Information (EVPI) have been furthered to help the

decision-maker in choosing an optimised maintenance decision (critical age or inspection interval)

out of the infinite set of decisions. Using this sensitivity method, analysts can examine the effect500

of parameter uncertainty on cost calculations, resulting in more robust maintenance decisions with

respect to changes in parameter values. When planning inspections or predicting the remaining
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useful life of an asset, engineers must assess the benefits of the additional information that can

be obtained and weigh them against the cost of these measures. The methodology developed in

this paper provides an efficient framework to quantify these benefits, and possibly revise decisions505

based on the aggregation of the information including the system deterioration process, maintenance

aspects, etc. The computation of the EVPPI requires the evaluation of multi-dimensional integrals

which are often computationally exhausting. We have demonstrated how the Gaussian process

emulator can be used to reduce the computational burden associated with the EVPI-based SA.

In particular, we have used a Time-Input GP emulator to obtain expected utilities as continuous510

functions of the decision parameter (critical age or inspection interval). One of the main practical

benefits of using such an emulator is that it does not restrict the decision-maker/engineer to choosing

a maintenance decision from a limited number of decision options. This flexibility enables the

decision maker to take maintenance decisions which are as precise as possible in the presence of

parameter uncertainty which in turn would have a considerable effect on the overall cost of the515

maintenance strategy.

We have applied this sensitivity approach in the life-cycle management of infrastructure systems

under continuous deterioration through two illustrative examples comprise both time-based (or age

replacement policy) and condition-based maintenance strategies. The sensitivity results have iden-

tified the most ‘important’ parameters in terms of the benefit to be achieved by ’learning’. It is520

shown that the optimal strategy may change if a parameter becomes known prior to a maintenance

decision, and this may have significant effect on the resulting cost. For instance, under the time-

based maintenance example, the shape and scale parameters of the repair distribution were found to

be the main influencing factors affecting the cost calculations and consequently the optimal main-

tenance decision. In contrast, under CBM and when υ = 0.55 , the shape and scale parameters of525

the lifetime distribution play the primary role in determining the cost-effective inspection strategy.

Identifying important parameters in this way can provide guidance on reliability testing, monitoring

or inspection. The EVPI-based SA presented here can be used for other maintenance optimisation

problems including problems with imperfect maintenance ([30]), or delay-time maintenance ([31]),

considered as one of the more effective preventive maintenance policies for optimising inspection530

planning. An efficient condition-based maintenance strategy which allows us to prevent system/-

component failure by detecting the defects via an optimised inspection might be identified using
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the SA proposed in this paper to determine a robust optimal solution for delay-time maintenance

problems and the expected related cost when the cost function parameters are either unknown or

partially known.535

Finally, the method articulated in this contribution might usefully be extended to calculate the

EVPI measures associated with decisions at multiple points in time. In many contexts, mainte-

nance decisions can be made at multiple points in time, at which different amounts of information

from the monitoring system are available. A classic example is the monitoring and inspection of

a deteriorating structure. In this situation, the EVPI measures should be computed so that the540

maintenance decisions could be optimized sequentially. Gramacy and Polson [32] proposed a se-

quential design and optimization approach for a complex system using particle learning of Gaussian

process which could be very useful in computing the corresponding EVPPIs. We would encourage

further developments in this field to enhance engineers’ ability to make informed decisions about

infrastructure maintenance and rehabilitation.545

In this work, we have been concerned with computing the value of information indices and

determining optimised CBM or TBM based on available information and a given cost function.

In [45], it was discussed that whilst most existing autonomous condition monitoring systems provide

functions for data collection they lack decision support functionality. It thus becomes crucial to

understand the link between the information we have to hand and our ability to make informed550

decisions about asset management. The quality of information provided by the condition monitoring

system is another important factor which influences the effectiveness of maintenance decisions and

thus the performance of the asset [46]. For instance, the accuracy of information regarding the rate

of asset degradation is critical to improving civil infrastructure life-cycle management. In order

to better evaluate the accuracy of information (and the quality of the corresponding maintenance555

decisions) provided by condition monitoring, the value of information methodology has been used

to compare the benefits offered by these techniques and the factors that affect the value delivered

by them.

Autonomous condition monitoring systems (e.g., sensors) provide higher quality information

in comparison to more traditional approaches such as visual inspection [40]. However, sensor560

location, sensitivity, and parameter recording frequency across multiple components and assets

become important determinants of robust decision making. The value of information approach
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proposed in this paper can be used to guide more efficient information collection by identifying high

information value locations for sensors and sensor arrays [47]. Furthermore, the approach might

be extended to determine the timing of condition-based maintenance interventions using data from565

multiple sensors or time sequenced measurements from a single sensor.

It would be also interesting to extend the methodology proposed in this paper to determine the

condition-based maintenance when data comes from multiple sensors or time sequenced measure-

ments from a single sensor are combined. In this situation a data fusion should be first employed

for improving condition monitoring, quality of information and system health assessment and then570

integrated with the condition-based maintenance system [48]. The EVPPI methodology presented

in this paper can play a key role in making a decision of fusing data/features from multiple sensors

which could result in improving the information quality and decision accuracy.
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