
The Library
Understanding capacity fade in silicon based electrodes for lithium ion batteries using three electrode cells and upper cut-off voltage studies
Tools
Beattie, Shane D., Loveridge, Melanie, Lain, Michael J., Ferraria, Stefania, Polzin, Bryant, Bhagat, Rohit and Dashwood, R. J. (2016) Understanding capacity fade in silicon based electrodes for lithium ion batteries using three electrode cells and upper cut-off voltage studies. Journal of Power Sources, 302 . pp. 426-430. doi:10.1016/j.jpowsour.2015.10.06 ISSN 0378-7753.
|
PDF
WRAP_1-s2.0-S0378775315304535-main.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (1367Kb) | Preview |
Official URL: http://dx.doi.org/10.1016/j.jpowsour.2015.10.06
Abstract
Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/ NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Liþ). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.
Item Type: | Journal Article | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QD Chemistry T Technology > TK Electrical engineering. Electronics Nuclear engineering |
||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > WMG (Formerly the Warwick Manufacturing Group) | ||||||||||
Library of Congress Subject Headings (LCSH): | Lithium ion batteries, Electromotive force, Electric capacity, Silicon, Cathodes | ||||||||||
Journal or Publication Title: | Journal of Power Sources | ||||||||||
Publisher: | Elsevier S.A. | ||||||||||
ISSN: | 0378-7753 | ||||||||||
Official Date: | January 2016 | ||||||||||
Dates: |
|
||||||||||
Volume: | 302 | ||||||||||
Page Range: | pp. 426-430 | ||||||||||
DOI: | 10.1016/j.jpowsour.2015.10.06 | ||||||||||
Status: | Peer Reviewed | ||||||||||
Publication Status: | Published | ||||||||||
Access rights to Published version: | Restricted or Subscription Access | ||||||||||
Date of first compliant deposit: | 17 February 2017 | ||||||||||
Date of first compliant Open Access: | 17 February 2017 |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year