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Solid–liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within
a mono-atomic model of water via the capillary wave method
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We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial
geometry, to determine the solid–liquid interfacial free energy for both polytypes of ice I and the
recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the
molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence
of this choice on the interfacial stiffness. We quantify the influence of discretisation error when
sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-
dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable
to within achievable statistical error and the small ambiguity which arises from the choice of order
parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces
constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless,
we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of
ice I under the same conditions. The rationality of a core–shell model for the nucleation of ice I
within ice 0 is questioned within the context of our results. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975776]

I. INTRODUCTION

The crystallisation of ice I from liquid water continues to
be a benchmark problem for molecular simulation. A variety
of methods have been used to compute nucleation barriers.1–4

Homogeneous nucleation rates have been computed using the
framework of classical nucleation theory5–7 (CNT) or directly
with path sampling approaches.8,9 Heterogeneous nucleation
has been probed in a variety of studies.10–13

One particular subtlety presents a challenge to the accu-
racy of molecular simulations. As yet no simulation has
demonstrated a propensity for ice I to crystallise entirely in
its hexagonal polytype ice Ih (ABABAB stacking of molecu-
lar bilayers) at weak supercooling. Instead, simulations con-
sistently produce stacking disordered mixtures of the cubic
polytype ice Ic (ABCABC stacking) and ice Ih, as seen exper-
imentally only at very low temperatures. The origin of this
stacking disorder, and the preference for ordered hexagonal
stacking in ice formed at weak supercooling, has been the
subject of much discussion in the literature. For details, we
refer the reader to a recent review by Malkin et al.14

In a recent communication, one of us (DQ) presented a
thermodynamic argument that low temperature critical nuclei
of ice I are most stable with stacking disordered structure.15

This model is based on nearest neighbour interactions between
ice bilayers. In the context of nucleation from the liquid,
rather than transformation from other ice phases, experiments

a)Current address: School of Mathematics and Physics, University of Lincoln,
Lincolnshire LN6 7TS, United Kingdom.

b)d.quigley@warwick.ac.uk

suggest that the stacking sequence is entirely random (no cor-
relations involving more than three bilayers) and hence the
nearest-neighbour approximation is reasonable.16 At this level
of approximation, any difference in solid–liquid interfacial
free energy between cubic and hexagonal ice is neglected.

Historical experimental crystallisation data at low temper-
ature can be interpreted as contradicting this assumption, based
on CNT estimates for the interfacial free energy γc between
cubic ice and supercooled water.17 Calculations of γc from
this data require a figure for the cubic–hexagonal free energy
difference ∆Gch. Calculations of this quantity are subject to
considerable variation, ranging from a few J mol�115 in the
popular coarse-grained mW model18 to 627 ± 300 J mol�1

in first principles calculations with lattice vibrations treated
anharmonically.19 For any positive estimate of ∆Gch, a value
for γc, lower than the interfacial free energy between hexag-
onal ice and water γh, is needed to explain the preferential
nucleation of cubic ice within CNT.20 Despite the likelihood
that these historical experiments yielded stacking-disordered
rather than pure cubic ice, the notion that variations in stack-
ing sequence influence interfacial free energy is worthy of
investigation.

One method for the calculation of solid–liquid inter-
facial free energies from molecular simulation is via the
analysis of capillary wave fluctuations.21–24 This can require
simulations on large length and time scales but is increas-
ingly tractable. The method is implemented entirely via post-
processing of simulation trajectories and does not require
invasive modifications to simulation packages. Notably, such
calculations have been largely confined to crystals with cubic
symmetry; however Benet, MacDowell, and Sanz25 have
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recently computed γh for the popular TIP4P/200526 atomistic
model of water via this approach.

In the present work, our primary objective is to com-
pute the solid–liquid interfacial free energy for both cubic
and hexagonal ice in the mono-atomic mW model of water18

and to explore the factors which control and limit accu-
racy of the capillary wave method when applied to ice–water
interfaces. A recent study27 using the “mold integration tech-
nique” provides a useful benchmark for comparison. This was
unable to resolve differences in interfacial free energy between
facets of ice Ih in the mW model or between the orientation-
averaged γc and γh when using the TIP4P/Ice28 model. No
comparison between the two polytypes was made for the mW
model.

The mW model represents the water molecule with a
Stillinger–Weber type potential, favouring tetrahedral local
environments and parametrised to capture structural and ther-
modynamic properties of the ice–water system. The model
has been used in a number of ice nucleation simulations, in
all cases leading to crystallites of mixed cubic and hexagonal
character.3,8,29,30 This model represents an interesting case, as
the difference in bulk stability between cubic and hexagonal
ice is very small.15 This leads to the expectation of stack-
ing disordered nuclei at all temperatures where homogeneous
nucleation is achievable, should the assumption that γh ≈ γc

hold.
In a recent work, Russo, Romano, and Tanaka31 have

obtained an improved CNT fit to low-temperature nucleation
simulations (also using the mW model) by including a low den-
sity metastable ice phase (ice 0) as the first nucleated species
within a 3 parameter core–shell nucleation theory. The inter-
facial free energy γz between ice 0 and water is wrapped into
one of these fitting parameters and must be somewhat lower
than both γh and γc to offset the lower bulk stability of ice
0.32 As a secondary objective, we compute the interfacial
free energy between ice 0 and water directly and determine
how this influences the interpretation of the core–shell fit in
Ref. 31.

II. METHODS

Our calculations closely follow the method of Hoyt,
Asta, and Karma,33 which has been mainly used to cal-
culate the solid–liquid interfacial free energy for crystals
with cubic symmetry.21–24 The interfacial free energy is
dependent on the crystallographic surface exposed to the
melt and can be represented as a function on the unit
sphere,

γ (θ, ϕ) = γ0
[
1 + ε1S1 (θ, ϕ) + ε2S2 (θ, ϕ) + . . .

]
. (1)

Here the functions Si represent a basis set of symmetry-
adapted spherical harmonics appropriate to the point group
of the solid crystal. Provided the free energy is only weakly
anisotropic, the symmetry adapted nature of these functions
ensures that the series can be truncated after the first few
terms. In the case of crystals with cubic symmetry, the appro-
priate basis functions are the Kubic harmonics. In the general
case, generation of appropriate functions in a suitable form
is non-trivial. Implementation of an automated method for

doing so, with only the crystallographic unit cell as input,34

is available via the “gencs” utility distributed with the Alloy
Theoretic Automated Toolkit (ATAT).35 This enables applica-
tion of the capillary wave method to a much wider range of
systems. Appropriate functions Si for cubic and hexagonal ice
I, and for ice 0, are given in the supplementary material as
Equations (S3)–(S5).

As the interfacial free energy cannot be determined
directly from simulations, the coefficients ε i are obtained via
fitting to multiple measurements of the interfacial stiffness γ̃
along directions in the tangent plane perpendicular to the sur-
face normal (see Figure 1). The stiffness along a particular
direction û in the tangent plane is related to the interfacial free
energy via33

γ̃ (θ, ϕ, û) = γ (θ, ϕ) + ûT Hγ (θ, ϕ) û, (2)

where Hγ (θ, ϕ) is the Hessian matrix (in polar coordinates)
expressing the second derivatives of γ (θ, ϕ) evaluated at
angles θ and ϕ.

The stiffness itself is computed via simulation of a
“ribbon-like” interfacial geometry along û, under conditions of
equilibrium coexistence. With reference to the example geom-
etry in Figure 1, the interface is divided into N z columns of
width δz, centred on discrete values zn, containing an element
of solid–liquid interface of area δA = ly δz. In each column
the quantity h (zn) is computed, indicating the x position of the
interface relative to its mean position.

Following earlier authors,24 we denote the simulation
setup via the Miller indices of the (hkl) crystallographic plane
exposed to the liquid and the direction [h′k ′l′] along which
the simulation box is shortest (the y direction in Figure 1).
For example, a simulation geometry for the (110) surface of
cubic ice in which the short direction is taken as [001] will be
denoted as (110)[001].

When comparing solid-liquid interfacial free energies
between two crystal structures, it is important to calculate

FIG. 1. Simulation geometry. Cartesian vectors~i,~j, and ~k denote the crystal
coordinate system such that the polar angles θ and ϕ define a surface normal.
Molecular dynamics simulations are performed in a local coordinate system
with the x direction chosen along this normal. In this case, the direction û = ~eθ
in the tangent plane is chosen as the z direction.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-007707
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interfacial height profiles with the same choice of local order
parameter ξ, used to locate the x position of the interface
and hence h (zn) in each column. For the cubic ice Ic struc-
ture, the commonly used q6 order parameter performs well
but recognises only three solid neighbours in ice Ih leading
to an erroneous large difference between the interfacial free
energies of these two polytypes.

A better choice, which is appropriate for ice I interfaces
only, is the CHILL+ algorithm of Nguyen and Molinero.36

This is based on the ubiquitous Steinhardt order parameter.37

A per-molecule vector ~q3 is constructed with 7 components,
each of which is a sum of the l = 3 spherical harmonics
calculated for the unit vectors connecting a molecule to its
four nearest neighbours. The correlation of ~q3 between each
molecule and its neighbours is used to classify molecules as
solid, liquid, or interfacial. We refer readers to Ref. 36 for
details and note that a very similar order parameter was used
to construct a reaction coordinate for ice nucleation in earlier
work.8 In our work, we assign ξ = 10 to molecules identi-
fied as ice-like by CHILL+, ξ = 0 to molecules identified as
liquid, and ξ = 5 to molecules (if any) identified as interfa-
cial. We then plot (as a function of x) the quantity ξ̄ as the
average value of ξ over all molecules within each of the Nx

elements of width δx along the column perpendicular to the
area element δA. A tanh function is then fitted to these data
and the x position of the interface is taken as the inflexion
point.

To assess any variability of results arising from the choice
of local order parameters, we also compute the interfacial
position using the more complex order parameter of Russo,
Romano, and Tanaka.31 This order parameter is also able to
distinguish ice 0 from liquid. Here the vector order param-
eter ~q12 is used, accumulated over the 16 nearest neigh-
bours of each molecule. The vector ~q12 for each molecule
is then replaced with the average over these 16 neighbours.
Molecules are deemed to be connected if the dot product of
their respective normalised ~q12 vectors exceeds a threshold
value of 0.75. Here we set ξ equal to the number of such con-
nections on each molecule and locate the interface by fitting
ξ̄ as a function of x to a tanh function as above. Example
data for both methods of locating the interface are shown in
Figure 2. An example interfacial height profile is shown in
Figure 3.

FIG. 2. Plot of the averaged local order parameter ξ̄ for particles within vol-
ume elements running along columns perpendicular to an ice 1c (111)[11̄0]
interfacial ribbon geometry. Red crosses indicate ξ̄ computed via the CHILL+
algorithm and black circles via the ~q12 connections. Solid lines are tanh fits
to the data, identifying the location of the interface as the point of inflexion at
x = 205.0 Å (black line) and x = 202.6 Å (red line).

FIG. 3. Interface location in the ice Ic (111)[11̄0] geometry. The computed
interface shape is plotted as red points, each of which indicates the inter-
facial position at each of 50 discretised points in the z direction. Water
molecules are coloured according to their number of solid-like connec-
tions, in this case identified via the ~q12 order parameter. Particles with
more than 12 connections are coloured grey, with the remainder coloured
turquoise. Red beads mark the position of the interface (also identified by
~q12) in each interfacial column. System dimensions are those reported in
Table I.

It is apparent that the two order parameters identify inter-
facial positions which can differ by an amount comparable
to the intermolecular spacing in the crystal. Should this dif-
ference prove to be anything but a constant offset, then the
shape of h(zn) (and hence the calculation of the interfacial free
energy) will be order-parameter dependent. We investigate this
explicitly in Section IV.

For small wavenumbers q, the discrete Fourier transform
h (qn) of these profiles can be connected to the interfacial
stiffness via

〈|h(qn)|2〉 =
kBT

Aγ̃q2
n

, (3)

where A = lylz is the interfacial area. By plotting measure-
ments of this quantity against qn on a double logarithmic scale,
one obtains a linear plot from which the interfacial stiffness
can be extracted from the intercept. The requirement of small
wavenumber restricts linear behaviour to small values of qnδz
such that sin (qnδz) ≈ qδz.22 In our work, we restrict the
linear fit to modes for which qnδz < 0.5. We also note that
Equation (3) is dependent on the interfacial ribbon having a
width sufficiently small that no energy is present in modes
along the short or y direction in Figure 1. For facets with large
surface unit cells, that requirement may be difficult to rec-
oncile with that of surface periodicity, leading to a spurious
dependence of the measured stiffness on the ribbon width ly.

We calculate γ̃ for two mutually orthogonal choices of
the surface direction û at each of the several surface planes,
averaging the resulting stiffness when these are equivalent
by symmetry. The coefficients (γ0, ε1, ε2 . . . ) are then chosen
to minimise the total difference between the measured stiff-
ness values and those obtained by substituting Equation (1)
into (2). For further details of the method we refer the reader to
Ref. 21.

All molecular dynamics simulations were performed
using the LAMMPS38 package. Interfacial configurations
were sampled from 20 ns trajectories following 5 ns careful
equilibration in the isothermal-isobaric ensemble39,40 under
atmospheric pressure. h(qn) was sampled at intervals of 10 ps
during subsequent simulations in the NPH ensemble, in which
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the enthalpy is conserved to within fluctuations of the barostat
kinetic energy. This has the advantage of constraining the long-
term average solid fraction via a feedback mechanism between
latent heat and temperature. The three cell dimensions lx, ly,
and lz were allowed to vary independently subject to constant
90◦ cell angles. This ensures that the interface is unstrained at
all points of the feedback cycle. All simulations used a time
step of 1 fs. Simulations of ice I interfaces were conducted at
the mW melting temperature using 30 000–50 000 molecules
with an interfacial ribbon of length 180–200 Å. Ice 0 simu-
lations required substantially larger ribbon lengths to capture
sufficient wavevectors for accurate fitting. In this case simu-
lations used 80 000–180 000 molecules at the ice 0 melting
temperature of 240 K, with ribbon lengths of 570–620 Å.

III. GEOMETRY AND CONVERGENCE

Table I reports the simulation geometries used in recon-
structing the interfacial free energy of all three ice structures.
In this section, we carefully consider the convergence of the
measured interfacial stiffness for example surfaces. We exam-
ine how the spatial resolution at which the interfacial ribbon
is sampled and the simulation run length govern accuracy
of stiffness measurements. We also establish how the width
of the ribbon (y direction in Figure 1) influences stiffness
measurements.

A. Spatial resolution

We first consider convergence with respect to the spa-
tial sampling resolution δz along the interfacial ribbon. It is

TABLE I. Interfacial geometries used in calculating the stiffness of ice–water
interfaces leading to reconstruction of the anisotropic interfacial free energy.

Structure Orientation Geometry lx × ly × lz (Å) Molecules

Ice Ic

(100)[010] 396.4 × 12.5 × 200.1 32 768
(100)[001] 396.4 × 12.5 × 200.1 32 768
(110)[11̄0] 393.9 × 17.7 × 200.1 46 080
(110)[001] 393.9 × 12.5 × 203.4 33 120
(111)[11̄0] 396.6 × 15.3 × 203.4 40 848
(111)[112̄] 396.6 × 17.7 × 183.8 42 624
(112)[11̄0] 396.6 × 17.7 × 199.1 46 176
(112)[111̄] 396.6 × 15.3 × 194.6 39 072

Ice Ih

(prism)[112̄0] 409.7 × 13.3 × 187.2 33 696
(prism)[basal] 409.7 × 14.4 × 194.7 38 016
(basal)[112̄0] 384.9 × 13.3 × 184.0 31 104
(basal)[prism] 384.9 × 15.3 × 194.8 38 016
(112̄0)[prism] 407.5 × 15.3 × 187.3 38 688
(112̄0)[basal] 407.3 × 14.4 × 183.9 35 712

Ice-0

(001)[010] 418.7 × 23.8 × 570.3 184 320
(001)[100] 418.5 × 23.8 × 570.3 184 320
(100)[001] 416.1 × 21.5 × 570.3 165 888
(100)[010] 415.9 × 23.8 × 516.5 165 888
(101)[010] 344.0 × 17.8 × 614.5 122 400
(101)[1̄01] 344.8 × 12.3 × 606.0 83 232
(102)[010] 336.6 × 17.8 × 609.0 119 016
(102)[2̄01] 336.7 × 16.0 × 606.0 106 488
(110)[001] 392.0 × 21.5 × 604.9 165 888
(110)[11̄0] 392.2 × 25.2 × 516.5 165 888

FIG. 4. Interfacial stiffness calculated via Equation (3) as a function of Nz for
three interfacial geometries. System dimensions are those reported in Table
I. Red points indicate calculations using height profiles computed via the
CHILL+ algorithm and black via the ~q12 solidity criterion.

important to note two distinct effects of this parameter. Smaller
δz leads to a more accurate representation of the interface
geometry but also affords a larger maximum wavevector to
be included in fitting Equation (3).

Figure 4 plots the stiffness measured for a selection of
interfacial geometries as a function of N z when including
all wavevectors q for which qδz is less than 0.5. Jumps in
stiffness are observed at values of N z for which new wavevec-
tors commensurate with the periodicity of the simulation box
become available. Convergence to within statistical uncer-
tainty is achieved at N z = 50 for both ice I polytypes, and
at N z = 100 for ice 0, which for both cases corresponds to a
δz close to interatomic spacing. We note that in the case of ice
0, sampling with N z = 20 leads to a stiffness less than half the
converged value.

Figure 5 plots the measured stiffness versus N z for the ice
Ih (basal)[112̄0] geometry at a fixed number of wavevectors.
Comparison with the central panel of Figure 4 indicates that
enhanced resolution in the representation of h(zn), rather than
inclusion of additional wavevectors in the analysis, has the
greater effect on convergence.

Figure 5 also shows the effect of spatial resolution in
the direction normal to the interface, demonstrating that a
sufficiently high Nx must be used to accurately capture the

FIG. 5. Interfacial stiffness as a function of Nz at fixed Nx = 80 (left) and
as a function of Nx at fixed Nz = 50 (right). In both cases, the simulation
geometry is ice Ih (basal)[112̄0]. Simulation dimensions are those reported in
Table I. Red points indicate calculations using height profiles computed via
the CHILL+ algorithm and black via the ~q12 solidity criterion. In all cases, γ̃
is computed from only the 8 shortest wavelengths which satisfy qδz < 0.5.
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interfacial height h(zn) and hence the stiffness. Errors intro-
duced by insufficient resolution along z and x are similar in
magnitude but of opposite sign. Sampling at very close to the
ultimate limit of spatial resolution (the interatomic spacing) is
required to achieve converged results. We adopt the strategy of
sampling at as close to this limit as possible for the remainder
of this paper.

B. Thickness of interfacial ribbon

The standard analysis which leads to Equation (3) assumes
a pseudo-one-dimensional geometry in which the width of the
interfacial ribbon ly is assumed to be sufficiently thin that
no energy is present in fluctuations along y. For the lowest
index surfaces of crystals with cubic or orthorhombic sym-
metry, very thin interfacial ribbons can easily be constructed
in the geometry of Figure 1 for which ly is commensurate
with the periodicity of the surface unit cell. For higher index
surfaces, or for crystals (such as ice Ih) with non-orthogonal
symmetry, undesirable (for purposes of analysis) skewed sim-
ulation cells are required to achieve the minimum possible
ribbon thickness. In practice, one normally accepts a thicker
ribbon to achieve orthogonal supercells and to satisfy the min-
imum image convention for efficiency. The effect of using
these larger ribbon thicknesses has been explored previously
in the context of aluminium22 but never (to our knowledge)
for ice.

To establish a benchmark property of a flat solid–liquid
interface, we simulate the ice Ih (basal)[prism] geometry using
a reduced cross section of ly = 13.3 Å, lz = 15.4 Å, over
a sufficiently short period of time that capillary waves are
not observed. The root mean square deviation (RMSD) of
the interfacial height profile in this simulation is measured
as 0.69(8) Å, which we take as the reference value for an
atomically “flat” interface, i.e., the minimum possible devia-
tion from a constant interfacial height resulting from thermal
fluctuations of the atomic position about their lattice sites
only.

In Figure 6 we plot the convergence of the interfacial stiff-
ness as a function of N z for three thicknesses of the interfacial
ribbon in the ice 1h (basal)[prism] geometry. In each case, we

FIG. 6. Calculated interfacial stiffness as a function of Nz for three thick-
nesses of the interfacial ribbon in the ice Ih (basal)[112̄0] geometry. Other
dimensions are as reported in Table I. The RMS deviation from a perfectly
uniform profile across the interfacial ribbon (y direction in Figure 1) is also
indicated. The RMSD for a “flat” surface is 0.69(8), indicating that for ly
= 13.3 Å no capillary waves are present in the y direction. The interface
position is located via the ~q12 solidity criterion.

further divide each discrete interfacial element into sections
of width δy and measure the RMSD from the mean height
profile over these sections. The resulting quantity can be com-
pared to the value of 0.69(8) Å to establish if the geometry is
sufficiently narrow to suppress capillary waves across the rib-
bon. An appreciably different stiffness is observed for the nar-
rowest ribbon, which is the only geometry in which the above
criterion is satisfied. For thicker ribbons, the presence of energy
in modes across the ribbon results in an overestimate of the
pseudo-one-dimensional stiffness.

As the stiffness of ice I solid–liquid interfaces is expected
to be approximately isotropic, we adopt the strategy of keeping
the interfacial ribbon at this thickness or smaller, while remain-
ing sufficiently wide to avoid the self-interaction of molecules
with their periodic images. For ice 0, this is problematic. The
tetragonal unit cell of ice 0 results in larger minimum ribbon
thicknesses even for low index interfaces due to periodicity
constraints. Furthermore, as the interfacial stiffness of this
phase is expected to be lower, one expects the criteria for the
suppression of capillary waves across the ribbon to impose
a narrower geometry than that for ice I. We must therefore
acknowledge that for the ice 0 system sizes reported in Table I,
the resulting stiffness and free energy estimates represent an
upper bound.

C. Simulation length

Each measurement of stiffness should be made over a
sufficient number of fluctuations to accurately represent the
ensemble of interfacial height profiles in the current geometry.
In Figure 7 we plot the convergence of the interfacial stiffness
as a function of time for representative geometries of ice Ic,
ice Ih, and ice 0. In the case of ice I phases, the interfacial stiff-
ness measurement is converged to within statistical error after
approximately 80 ns of simulation. In the case of ice 0, where
the use of larger lz leads to additional spatial averaging, con-
vergence is achieved at approximately 25 ns. For all interfacial
geometries, we carefully ensure that the stiffness measurement
is converged with respect to the simulation length to a similar
accuracy.

FIG. 7. Calculated interfacial stiffness as a function of simulation time. The
left panel plots the stiffness for the ice Ih (basal)[112̄0] (black) and the ice Ic
(111)[11̄0] (red) geometries which expose identical crystal layers to the liquid.
The right panel shows much more rapid convergence for the ice 0 (001)[010]
system. The interface position is located via the ~q12 solidity criterion in all
cases.
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IV. RESULTS

We simulate ice–water interfaces for a number of surfaces
corresponding to large interplanar spacings Dhkl, these being
expected to have the lowest interfacial free energy and hence
be most commonly expressed in the crystal morphology.41

A. Ice Ih

Plots from which the stiffness of ice Ih interfaces were
extracted are shown in Figure 8 for the case where the
interface was located using the ~q12 solidity criterion. All plots
should share a common gradient of −2 on the logarithmic
scales shown, which is applied as a constraint in the fitting
procedure.

When fitting these data to second derivatives of
Equation (1), we find that the contribution from the term in
§2 is negligible. Any improvement upon including either S3

and/or S4 is marginal. The best fit is achieved when including
the isotropic term plus S1 and S4 only, constraining ε2 and ε3 to
zero. This suggests that the weak deviations from an isotropic
interfacial free energy are almost entirely captured via the S1

term.
Details of the optimised parameters and the fitted versus

measured stiffnesses are reported in Tables S1, S4, and S7 of
the supplementary material.

FIG. 8. Logarithmic plots of the average Fourier-transformed interface height
squared weighted by the area A divided by thermal energy kBT as a function
of q for various simulations of interfaces between ice Ih and water. Solid lines
are a linear fit to the data points satisfying qδz < 0.5. In this case, the ~q12
solidity criterion is used to locate the interface.

TABLE II. Interfacial free energy at each of the three ice Ih surfaces studied.
Results are reported for both the CHILL+ and ~q12 methods of locating the
solid–liquid interface. Results obtained by Espinosa, Vega, and Sanz27 using
the mold integration technique are shown for comparison.

γh (mJ m�2)

Method (Prism) (Basal) (112̄0)

CHILL+ 35.2(2) 33.0(2) 35.3(2)
~q12 36.8(3) 34.4(4) 36.9(3)
Mold integration27 35.1(8) 34.5(8) 35.2(8)

The final estimates of interfacial free energy for ice Ih at
coexistence are given in Table II, where the results of Espinosa,
Vega, and Sanz27 computed via the mold integration technique
are shown for comparison.

B. Ice Ic

Plots from which the interfacial stiffnesses of ice Ic were
extracted are shown in Figure 9.

FIG. 9. Logarithmic plots of the average Fourier-transformed interface height
squared weighted by the area A divided by thermal energy kBT as a function
of q for various simulations of interfaces between ice Ic and water. Solid lines
are a linear fit to the data points satisfying qδz < 0.5. In this case, the ~q12
solidity criterion is used to locate the interface.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-007707
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TABLE III. Calculated solid–liquid interfacial free energies of all ice Ic sur-
faces considered in this work. Results are shown for both methods of locating
the solid–liquid interface when including m parameters (m − 1 symmetry
adapted functions) in the fit to γ̃c(θ,ϕ).

γc (mJ m�2)

m = 3 m = 4 m = 5

Plane CHILL+ ~q12 CHILL+ ~q12 CHILL+ ~q12

(100) 33.4(2) 35.4(3) 34.6(2) 37.3(3) 34.6(2) 37.2(3)
(110) 32.7(2) 34.7(3) 33.8(2) 36.6(3) 33.8(2) 36.4(3)
(111) 32.1(2) 33.9(3) 33.2(2) 35.9(3) 33.2(2) 35.7(3)
(112) 32.5(2) 34.4(3) 33.5(2) 36.2(3) 33.5(2) 36.0(3)

When fitting these data to second derivatives of
Equation (1), we find a systematic improvement in the fit
when including terms up to and including S3. Including the
S4 term leads to no discernible change to within the statistical
uncertainty of the resulting interfacial free energies. Calculated
interfacial free energies for the four ice Ic interfaces studied
are presented in Table III.

Details of the optimised parameters and the fitted versus
measured stiffnesses are reported in Tables S2, S5, and S8 of
the supplementary material.

As with ice Ih, interfacial free energies calculated via the
use of the ~q12 solidity criterion are systematically higher than
those obtained via CHILL+. There is no significant difference
in the overall magnitude of the free energy between the two
polytypes. The (111) plane of ice Ic and the basal plane of ice
Ih expose identical surface structures to liquid up to the second
sub-surface ice double-layer. Within our calculations, the free
energies of these two surfaces are identical to within statistical
error for the CHILL+ order parameter but differ by a small but
measurable amount when using ~q12.

C. Ice 0

Plots from which the interfacial stiffnesses of ice 0 were
extracted are shown in Figure 10. Note that results are calcu-
lated using only the ~q12 method of identifying the solid–liquid
interface, as CHILL+ does not usefully recognise ice 0 as a
solid.

Fitting the measurement stiffnesses to second deriva-
tives of Equation (1) retained terms up to and including S5.
Details of the optimised parameters and the fitted versus mea-
sured stiffnesses are reported in Tables S3, S6, and S9 of the
supplementary material. Fitted interfacial free energies for
ice 0 are presented in Table IV.

V. DISCUSSION
A. Ice Ih

We first discuss our results for the interfacial free energy
of ice Ih in comparison to the mold integration calculations
of Espinosa, Vega, and Sanz27 for the mW model. Both our
methods of identifying the solid–liquid interface consistently
lead to a small but measurable anisotropy in estimates of γh

favouring the basal plane, a feature not evident in the mold
integration results. While the statistical uncertainty in our esti-
mates is smaller, there is a systematic difference between our

two sets of data, the ~q12 order parameter leading to slightly
higher interfacial free energies at all surfaces. We note that
the mold integration method does not require an order param-
eter for identifying molecules which lie within a solid-like
environment, which from these results would appear to be a
source of small but significant systematic error in capillary
wave calculations.

The fitted isotropic component γ0 = 34.5(2) mJ m�2 for
the CHILL+ solid identification and 36.0(3) mJ m�2 when

FIG. 10. Logarithmic plots of the average Fourier-transformed interface
height squared weighted by the area A divided by thermal energy kBT as
a function of q for various simulations of interfaces between ice 0 and water.
Solid lines are a linear fit to the data points satisfying qδz < 0.5. The ~q12
solidity criterion is used to locate the interface.
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TABLE IV. Calculated solid–liquid interfacial free energy for all planes of
ice-0 considered in this work.

Plane (001) (100) (101) (102) (110)

γz (mJ m�2) 31.3(5) 35.2(5) 34.6(4) 33.6(4) 34.2(4)

using ~q12. These bracket the value of 35.5(3) mJ m�2 obtained
by Espinosa et al.7 for the mW model when extrapolating
results of the seeding method to coexistence.

Despite these small systematic differences from earlier
work, our results confirm that the ice Ih–water interfacial free
energy for the mW model lies toward the upper end of the
experimental estimates and is somewhat higher than values
obtained with detailed atomistic models.7,25

B. Ice Ic

We now compare values of interfacial free energy between
the two ice I polytypes. When using the CHILL+ method of
identifying the solid–liquid interface, the (111) face of ice Ic
and the basal plane of ice Ih have identical interfacial free
energies to within the statistical uncertainty of our measure-
ments and fits. It might be expected that these two surfaces are
both perpendicular to the stacking direction and hence present
identical molecular arrangements to the liquid within the first
two bilayers. Hudait et al.30 have recently demonstrated by
other methods that the surface tension of these two surfaces is
identical. In our work, the~q12 method of identifying the solid–
liquid interface resolves a slight difference in interfacial free
energy between these two surfaces; however, this difference is
smaller than the discrepancy between the two choices of order
parameter and cannot be considered significant. We also note
that the isotropic component of the interfacial free energy γ0

is identical to within statistical uncertainty between the two
polytypes when using ~q12 (Tables S4 and S5 of the supple-
mentary material), but there is a small systematic difference in
this quantity when using CHILL+. Again this is smaller than
the difference in interfacial free energy measured by the two
choices of order parameter.

We therefore conclude, to within the error inherent in the
choice of order parameter and finite sampling of the interfa-
cial fluctuations, that the interfacial free energies of cubic and
hexagonal ice I should be considered identical within the mW
model. We have not considered the interfacial free energy of
surfaces formed by stacking disordered ice but would expect
this to be indistinguishable from the pure polytypes given the
above results.

C. Temperature dependence of γ for ice I

The capillary wave method is limited to measurements
of interfacial free energy at the melting temperature. Here
the area of an infinite plane interface is well defined by the
geometry of the simulation cell. As recently discussed by
Cheng, Tribello, and Ceriotti,42 away from coexistence the par-
titioning of nucleus free energy into volume and surface area
terms is essentially arbitrary. If one chooses (as in the seeding
method) to calculate the volume contribution as the number
of molecules n in the solid nucleus multiplied by the bulk
chemical potential difference between solid and liquid, then

the resulting γ will depend on the interfacial area and hence
how one chooses to define the (usually spherical) dividing sur-
face. To be consistent with the usual assumptions of CNT, this
surface should be chosen such that the enclosed volume is
V = ρsn, where ρs is the number density of molecules in the
bulk solid. Cheng, Tribello, and Ceriotti42 further demonstrate
that imposition of this criterion is equivalent to the Tolman
curvature correction to γ.

We note here that the seeding method calculations of
Espinosa et al.7 are necessarily consistent with CNT by design
and use only data at the critical nucleus size. The resulting fitted
interfacial free energies are Tolman-corrected for the curvature
of the critical nucleus, the size of which is temperature depen-
dent. In Figure 11 we compare these data to interfacial free
energies extrapolated from our measurements via the Turnbull
correlation,44,45

γ0(T ) = C∆H(T )ρ2/3
s (T ), (4)

where∆H(T ) is the temperature dependent enthalpy difference
between solid and liquid and C is a constant determined by
our measurement of γ0 at coexistence. We use measurements
of ∆H (eV/molecule) and ρs (molecules per cubic angstrom)
readily obtained via straightforward simulation. Here we use
the isotropic component of γh (in mJ m�2) computed using the
~q12 order parameter for comparison to ice 0 in Sec. V D. In
these units, this leads to a Turnbull coefficient of C = 38.5. In
all cases, the fitted γ0(T ) obtained via the seeding method cal-
culations of Espinosa et al.7 lies below that estimated from
the Turnbull correlation, consistent with a positive Tolman
length and a lowering of the interfacial free energy as expected
for ice nuclei.46 Furthermore, the magnitude of the difference
increases with decreasing temperature, i.e., in inverse propor-
tion to the critical nucleus radius of curvature. We conclude
that the Turnbull correlation is useful in extrapolating inter-
facial free energies away from coexistence, provided that the
resulting data are interpreted as lacking the Tolman correc-
tion. This is consistent with the work of Limmer and Chan-
dler43 who compute planar interfacial free energies away from

FIG. 11. Isotropic component of the solid–liquid interfacial free energy for
ice Ih and ice 0 as a function of the temperature below freezing of ice I. Tem-
perature dependence is extrapolated from calculations at coexistence (solid
dots) via the Turnbull correlation. The values fitted to simulations of seeded
ice Ih critical nuclei by Espinosa et al.7 are shown for comparison, as are
calculations of ice I planar interfacial free energies by Limmer and Chan-
dler.43 The dashed line indicates the temperature at which Russo, Romano,
and Tanaka31 have inferred nucleation via a core–shell model involving ice 0.
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coexistence and favourably compare these to predictions from
the Turnbull correlation.

It should be noted that improved fits to explicitly com-
puted nucleation barriers have been reported when allowing
the solid–liquid chemical potential difference to deviate from
the bulk value, both for mW ice3 and simple lattice models,47

i.e., a value of γ0 consistent with the usual assumptions of
CNT may not be optimal.

D. Core–shell model for nucleation of ice 0

We now turn our attention to the results for ice 0 inter-
faces. Our results indicate an anisotropic interfacial free energy
which would lead to non-spherical crystallites slightly com-
pressed along the c-axis. Espinosa et al.48 have recently cal-
culated a value for γz = 35.5 mJ m�2 at the ice 0 melting
temperature using mold integration. Details of the exact sur-
face used are not given; however, this figure is remarkably
consistent with our calculation at the (100) surface.

As calculated in Ref. 32, the value of γz need only be 10%
lower than γh in order for the barrier to ice 0 nucleation to be
smaller than for ice I. Russo, Romano, and Tanaka31 interpret
this preferential nucleation via a modified CNT in which nuclei
have an internal ice I core structure coated in a shell, thickness
∆R, of interfacial ice 0. For small widths of the outer shell, this
reduces to the following form of free energy ∆F of a growing
nucleus relative to the metastable liquid,

β∆F(n) = an + bn2/3 + cn1/3, (5)

where n is the number of particles within the growing ice
I nucleus and β is the inverse temperature. The quantity γz

appears in both b and c, which were treated as fitting param-
eters in Ref. 31. By repeating the fit of Equation (5) to the
measured F(n) data reported in Ref. 31 at 215.2 K, we obtain
a = −0.134, b = 0.120, and c = 7.404.

Within this interpretation, one can reasonably neglect the
Tolman correction when comparing γh to γz as the radii of cur-
vature for the ice 0 shell and the competing pure ice I nucleus
are similar. Figure 11 includes the temperature dependence
of the isotropic component γ0 of the interfacial free energy
between ice 0 and liquid water, extrapolated via the Turnbull
correlation as for ice I. For ice 0, the Turnbull coefficient using
the same units as above is C = 312, very much larger than for
ice I. This is due to the much smaller difference in enthalpy
between solid and liquid at coexistence. Consequently, the gra-
dient of γz(T ) is much steeper than for ice I. At 215.2 K it is
clearly energetically favourable to form a liquid interface to
ice 0 rather than to ice I.

Using the data from Figure 11 and other thermodynamic
parameters as used in Refs. 15 and 32, the CNT barrier heights
to the nucleation of ice 0 and ice I are very similar (within
a few percent) at 215.2 K, suggesting ice 0 nucleation is at
worst an energetically competitive crystallisation route in the
mW model. Explicit calculations of γ away from coexistence
would be required to draw definitive conclusions which do not
rely on the empirical Turnbull correlation.

It is however informative to revisit the above fit to a core–
shell nucleation model using our extrapolated value for γz at
215.2 K. The thickness of the ice 0 shell is related to the fitting

parameter c by the relationship

∆R =
32/3c

24βπγz
(4πρs)

1/3, (6)

where ρs is the number density of molecules in the ice I core.
Constraining the interfacial free energy between ice 0 and
water to that in Figure 11 requires that the shell thickness∆R is
3.3 Å. Only slightly larger values would result from Tolman-
corrected values of γz. We must acknowledge that our ice 0
results should be interpreted as an upper-limit on γz due to the
use of large interfacial ribbon widths, more accurate results
may increase the calculated shell thickness further. Based on
the trend for ice I in Figure 6, we suggest that this could not
increase the shell thickness by a factor of two, required to
accommodate the smallest unit cell dimension of ice 0. We
suggest that the improved fit to nucleation data obtained in
Ref. 31 is a result of the extra degree of freedom in the fitting
procedure rather than an indication of core–shell behaviour.

In addition to their mold integration calculations at the
mW ice 0 melting temperature, Espinosa et al.48 have also
used simulations seeded with spherical nuclei to calculate the
nucleation rate of pure ice 0 crystallites at a higher temperature
of 226.5 K. We note that the use of spherical crystallites in that
work may under-represent the lower energy (001) interface of
ice 0. At this temperature, the isotropic estimate of γz was cal-
culated as 29.9 mJ m�2, leading to a nucleation rate 200 orders
of magnitude lower than that for ice Ih under the same condi-
tions. This value of γz is indeed higher than that predicted by
our calculations, as would be expected for spherical nuclei, but
(as discussed above) implicitly contains a Tolman correction
for the critical nucleus size which would be expected to act
against such a difference. We cannot conclusively state that
the use of non-spherical nuclei in seeding calculations would
lead to a higher nucleation rate for ice 0.

Taken in isolation, our results do not rule out the nucle-
ation of pure ice 0 crystallites at very low temperatures in
the mW model; however, we rely on use of the Turnbull
correlation which has not been validated by other methods
for ice 0. In any case, the lower stability of ice 0 in more
detailed models suggests that the nucleation of this phase is not
realistic.32

VI. CONCLUSIONS

We have computed the solid–liquid interfacial free energy
for both cubic and hexagonal polytypes of ice I via the cap-
illary wave method, producing results which are in broad
agreement with earlier work. The free energy is only weakly
anisotropic. We have explicitly explored the convergence of
interfacial stiffness measurements with respect to simulation
geometry, discretisation, and simulation length, and compared
results for ice I polytypes when using two different methods
of assigning molecules to the solid and liquid phases. We find
a small systematic difference between results calculated by
these two order parameters, which is only resolvable due to
careful minimisation of the statistical error.

We have also computed the interfacial free energy of ice 0,
γz, by the same method, with the caveat that interfacial ribbon-
widths are constrained to be rather large by the surface unit
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cells of low index terminations. This may lead to an overesti-
mate of γz, implying that our calculations represent an upper
limit on this quantity. One option for removing this limitation
in future work would be to adopt a two-dimensional analysis of
capillary waves.49,50 Here the amplitude of the observed waves
is logarithmic rather than linear in the dimensions of the inter-
facial cross section, requiring larger simulations than those
reported here before the level of statistical accuracy becomes
comparable to the systematic error introduced by the finite
thickness.

A limitation of the capillary wave method restricts our
knowledge of these interfacial free energies to the melting tem-
perature of each phase. However, by exploiting the empirical
Turnbull correlation, we can estimate γh and γz at tempera-
tures where the nucleation of ice via a core–shell mechanism
involving ice 0 has been suggested. We show that the Turnbull
correlation is consistent with previous measurements of the ice
I interfacial free energy provided the resulting quantities are
interpreted for flat interfaces, i.e., lacking a Tolman correction.

Comparison of γh and γz suggests that the preferen-
tial nucleation of ice 0 may be possible at low temperature.
However our calculated values combined with existing ther-
modynamic data suggest that a core–shell nucleation process
is not a viable description, as the resulting shell thickness is
comparable to a single molecular diameter and significantly
smaller than the ice 0 unit cell dimensions. We stress that
this conclusion may well be particular to the mW model. Fur-
ther calculations using models with atomic resolution may be
required to draw unambiguous conclusions.

SUPPLEMENTARY MATERIAL

See supplementary material for full details of the symme-
try adapted basis functions used to expand γ(θ, ϕ), the fitted
coefficients, measured versus fitted interfacial stiffness, and
free energy plots.
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