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Abstract 

 

The extensive use of antibiotics has led to the emergence of methicillin-resistant 

Staphylococcus pseudintermedius, a bacterium causing difficult-to-treat canine skin 

infection (pyoderma). The administration of bacteriophages (phage therapy) can be 

an alternative to antibiotic therapy. Lytic phages, which lyse their host, are 

considered the only appropriate type of phages for phage therapy as opposed to 

temperate phages, which can survive within their host (lysogeny). However, it is 

possible to mutate temperate phages so that they cannot establish lysogeny anymore. 

Phage λ virulent (Vir) mutants have lost the operator to which the CI repressor binds 

to inhibit the expression of lytic genes. As a result, Vir mutants are strictly lytic. 

 

The work presented in this thesis was undertaken to isolate S. pseudintermedius 

phages and gain knowledge about their biology with the aim to develop phage 

therapy to treat pyoderma. The work was novel; very few data were available on S. 

pseudintermedius phages and no data have been published on phage therapy to treat 

canine skin infection. 

 

Four temperate phage candidates were selected after phenotypic and genotypic 

characterisation. No lytic phages were found. Random mutagenesis approaches were 

unsuccessful for the isolation of Vir mutants. An operator and three point mutations 

leading to the absence of CI repressor binding to this operator were identified 

through gel shift assay. These mutations should lead to a virulent phenotype if 

introduced in the relevant phage genome through site-directed mutagenesis. A PCR-

based assay was performed to explore how widespread lysogeny was in S. 

pseudintermedius: 11 out of 45 tested strains were positive for the presence of 

prophage genes. Bioinformatic analyses revealed some of the genetic characteristics 

of S. pseudintermedius phages: genomic circular permutation and the presence of a 

genetic switch similar to that of phage λ. 

 

The work reported in this thesis represents a first step towards understanding the 

biology of S. pseudintermedius phages and developing phage therapy. 
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Chapter 1 Introduction 

 

1.1. Antibiotics for the treatment of bacterial infections 

1.1.1. Brief history of the discovery and development of antibiotics 

The very first antimicrobial agent to be used in human medicine was discovered by 

Ehrlich in 1909 and was commercialised for the treatment of syphilis under the name 

Salvarsan. In 1928, Fleming discovered that penicillin was responsible for the 

inhibition of growth of Staphylococcus aureus around the colony of a fungus 

belonging to the Penicillium genus (Saga and Yamaguchi, 2009). Penicillin came 

into clinical use in 1940, saving the lives of thousands of soldiers during World War 

II, following the development by Florey and Chain of a protocol for the purification 

of penicillin on a large scale (Chain et al., 2005). By 1945 penicillin was being mass-

produced for widespread use in human medicine. At the same time the first synthetic 

antibiotics, the sulfonamides, were developed (Aminov, 2010), and the first effective 

anti-tuberculosis drug, streptomycin, was discovered by Schatz and Waksman 

(Zumla et al., 2013). The next twenty years saw the discovery of numerous new 

classes of antibiotics (Fernandes, 2006), a lot of which were isolated from soil 

bacteria. 

 

1.1.2. The classes of antibiotics 

Antibiotics are usually classified based on their chemical structure and their 

mechanism of action (Table 1.1). Antibiotics can be bactericidal, e.g. antibiotics 

inhibiting cell wall synthesis, or only bacteriostatic. They can also target specifically 

Gram-positive or Gram-negative bacteria, or they can have a broader spectrum and 

target both (Coates et al., 2011). 
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Table 1.1: Characteristics of the different classes of antibiotics. Broad-spectrum drugs target both Gram-negative and Gram-positive bacteria. 
 

Mechanism of action Class of antibiotics Examples Bactericidal (BC) Spectrum of activity 

Inhibition of cell wall synthesis 

β-lactams 

Penicillins Penicillin, amoxicillin, methicillin BC Broad spectrum 

Cephalosporins Cephalothin, cefalexin BC Broad spectrum 

Carbapenems Imipenem, doripenem BC Broad spectrum 

β-lactamase inhibitors Clavulanic acid, tazobactam  Used with β-lactams 

Glycopeptide Vancomycin BC Gram-positive bacteria 

Polymyxins Polymyxin B, polymyxin E BC Gram-negative bacteria 

Bacitracin Bacitracin BC Gram-positive bacteria 

Inhibition of protein synthesis 

Aminoglycosides Streptomycin, kanamycin BC Broad spectrum 

Tetracyclines Tetracycline, doxycycline  Broad spectrum 

Macrolides Erythromycin, clarithromycin  Broad spectrum 

Chloramphenicol Chloramphenicol  Broad spectrum 

Lincosamides Lincomycin, clindamycin  Anaerobe + Gram-positive bacteria 

Oxazolidinone Linezolid  Gram-positive bacteria 

Streptogramins Quinupristin, dalfopristin  Gram-positive bacteria 

Inhibition of DNA synthesis Fluoroquinolones Nalidixic acid, ciprofloxacin BC Broad spectrum 

Inhibition of RNA synthesis Rifamycins Rifampicin, rifaximin BC Gram-positive bacteria 

Inhibition of mycolic acid synthesis Isoniazid Isoniazid BC Mycobacterium 

Inhibition of folic acid synthesis Sulfonamides Sulfadiazine, sulfisoxazole  Gram-positive bacteria 

Depolarization of cell membrane Lipopeptide Daptomycin BC Gram-positive bacteria 

Inhibition of ATPase Diarylquinoline Bedaquiline BC Mycobacterium 
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1.1.3. Antibiotic resistance 

1.1.3.a. The emergence of resistant pathogens 

The rise of antibiotic resistance started almost immediately after antibiotics were 

used for the first time. The first report of bacterial resistance to penicillin was 

published in 1942 (Peacock and Paterson, 2015). Genes coding for resistance 

mechanisms are themselves not new (D'Costa et al., 2011) but the strong selective 

pressure resulting from the large-scale use of antibiotics in human medicine led to 

the selection of resistant microorganisms and the spread of resistance genes to 

clinically important bacterial species (Davies and Davies, 2010). In the 1960s to 

1970s, while antibiotic resistance was increasing, the discovery rate of antibiotics 

was declining. The approach used since then to tackle emerging resistance of 

pathogens has been the modification of existing antibiotics (e.g. 1st, 2nd, 3rd and 4th 

generations of cephalosporins). Very few new classes of antibiotics have been 

discovered, the only truly novel agents that have been launched in the past 40 years 

are linezolid, daptomycin and bedaquiline (Overbye and Barrett, 2005, Bassetti and 

Righi, 2013). 

 

1.1.3.b. The emergence of “superbugs” 

The combination of many factors including high usage of antibiotics in human 

medicine but also in agriculture, improper use of the drugs (e.g. in the case of a viral 

infection or poor compliance in treatment), the diminished investment in antibiotic 

discovery by the pharmaceutical industry and the spread of resistance genes in the 

environment has led to a critical situation nowadays (Aminov, 2010). The human 

population is now faced with so-called superbugs resistant to almost every, if not all, 

antibiotics currently available (Rossolini et al., 2014). A report published in 2009 

estimated that each year about 25,000 patients in the European Union die from an 

infection with multidrug-resistant bacteria (Norrby et al., 2009). The same report 

estimates that the economic costs due to these infections result in extra healthcare 

costs and productivity losses of at least 1.5 billion euros each year. 

 

1.1.3.c. Multidrug-resistant Staphylococcus aureus, one of the most notorious 

superbugs 

S. aureus is an opportunistic pathogen that causes multiple types of infections 

including skin, osteoarticular and urinary tract infections (Tong et al., 2015). 
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Resistant strains were rapidly selected after the introduction of penicillin in human 

medicine. This antibiotic targets enzymes involved in cell-wall synthesis called the 

penicillin-binding proteins (PBPs). The β-lactam ring present in the penicillin’s 

structure plays a major role in its inhibitory effect (Figure 1.1). The mechanism of 

resistance is the production of a β-lactamase, an enzyme that hydrolyses the β-lactam 

ring and inactivates the drug (Peacock and Paterson, 2015). 

 

 

Figure 1.1: Penicillin contains a β-lactam ring (in blue) that plays a major role in its inhibitory effect 

on cell wall synthesis (picture from Fair and Tor, 2014). 

 

A β-lactamase-resistant penicillin derivative, called methicillin (or meticillin), was 

commercialised in 1959. Methicillin-resistant S. aureus (MRSA) isolates were 

reported for the first time the following year. Resistance to methicillin is not due to 

β-lactamase production and results from the acquisition of the mecA gene from 

another bacterial species. This gene is located on a large mobile genetic element 

called Staphylococcal Chromosomal Cassette (SCC) mec and encodes a new PBP, 

termed PBP2a (Stapleton and Taylor, 2002). This enzyme has reduced affinity for β-

lactams making this class of antibiotics ineffective at treating MRSA infections. 

Although methicillin is not used clinically anymore, the term MRSA has persisted, it 

now refers to multidrug-resistant S. aureus, and the term methicillin resistance 

denotes resistance to virtually all β-lactams. 

 
1.2. Phage therapy 

1.2.1. Phage therapy in the pre-antibiotic era: from initial enthusiasm to 

downfall in western countries 

Bacteriophages, which name literally means “eaters of bacteria”, were discovered 

and described twice by Frederick Twort in 1915 and Félix D’Hérelle in 1917 

(Duckworth, 1987). Following this initial discovery, exploiting the ability of phages 

to infect and kill bacteria (section 1.4.2) became the main focus of phage research 

with the aim to develop phage-based antibacterial agents. D’Hérelle and other 
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researchers obtained encouraging results when using phages to treat dysentery, 

cholera and staphylococcal skin diseases in the 1920s and 1930s (Sulakvelidze et al., 

2001, Kutter et al., 2010). Enthusiasm for this new cure grew fast in an era where 

treatment options for bacterial diseases were extremely limited. In the 1930s, 

companies such as Eli Lilly were commercialising phage products for human use 

(Housby and Mann, 2009). 

 

Despite the initial enthusiasm, controversy arose in the scientific community over the 

validity of phage as a therapeutic agent because of the inconsistent successes and 

failures of phage therapy. Possible reasons for this are that standardized, controlled 

trials did not exist at the time and that the biology of phages was poorly understood 

(Tsonos et al., 2013). Some scientists thought phages were viruses while others 

believed they were lytic enzymes (Wittebole et al., 2014). General overenthusiasm 

and exaggerated claims about commercial phage preparations meant that phages 

were sometimes used in situations where they were not adapted, with disastrous 

consequences (Barrow and Soothill, 1997). 

 

The popularity of phage therapy did not improve after the introduction of antibiotics 

in human medicine in 1940 (section 1.1.1). Antibiotics offered significant advantages 

compared to phage therapy. Their broad spectrum of activity meant that they could 

be used without the need to know which pathogen caused the infection (Villa and 

Veiga-Crespo, 2010). This was not the case with phages (section 1.2.4). The 

pharmacology of antibiotics was also easier to characterise due to their chemical 

nature. Their defined chemical structure meant they were easy to patent to secure 

return on investments for pharmaceutical companies. Overall, antibiotics were quite 

uniformly and dramatically effective against important diseases including 

tuberculosis, they were relatively cheap to produce and were quickly made widely 

available. 

 

Politics also played a role in the downfall of phage therapy. Indeed, it had been 

employed in the Soviet Union and the German army during World War II and was 

regarded with increasing suspicion by the former Allies as a consequence of the Cold 

War. Eventually phage therapy was abandoned in the West (Summers, 2012). 
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1.2.2. Phage therapy in the Soviet Union 

On the contrary to western countries, the study and use of phages as therapeutic 

agents never stopped in the Soviet Union. The Eliava Institute, founded in Georgia in 

1923, and the Hirszfeld Institute, founded in Poland in 1952, became major centres 

for the development of phage therapy benefitting from important governmental 

support. Numerous studies were carried out to test phage therapy for the treatment 

and prophylaxis of enteric diseases, lung and skin infections through topical or oral 

administration with high reported success rates (Alisky et al., 1998). In 1963-1964, 

an extensive study involving more than 30,000 children was conducted to evaluate 

the utility of phages to prevent dysentery. The reported incidence of dysentery was 

2.6-fold higher in the placebo group than in the phage-treated group (Kutter et al., 

2010). Between 1981 and 1986, 550 patients suffering from skin infections were 

treated with phages. The authors reported positive results in 92% of cases (Slopek et 

al., 1987). 

 

Most of the literature reporting these successes was in Russian or Polish. It was later 

made available to the wider scientific community by translating it into English. 

Unfortunately, the controls and methods used in a lot of these studies do not conform 

to current practise in the West (Sulakvelidze et al., 2001). Despite this, phage 

therapy has remained, at least in Georgia, part of the standard healthcare system even 

after antibiotics were introduced (later than in the West) and the collapse of the 

Soviet Union in 1991 (Kutateladze and Adamia, 2008). More recently, the successful 

use of PhagoBioDerm, a biodegradable matrix impregnated with phages and 

antibiotics (Markoishvili et al., 2002), was reported for the healing of infected 

radiation burns (Jikia et al., 2005). 

 

1.2.3. Uses of bacteriophages in the West 

1.2.3.a. Non-therapeutic uses of phages 

Phage therapy may have been abandoned in western countries but bacteriophages 

themselves were not forgotten. In the 1940s, bacteriophages were identified as model 

organisms for pioneering experiments leading the way to molecular biology. Studies 

on phages helped establish that DNA is the genetic material. Temperate phages, of 

which the phage λ that infects Escherichia coli, were used to explore how genes are 

regulated (Keen, 2015). Phage-encoded enzymes such as DNA/RNA polymerases, 
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ligases, and exo- and endonucleases are nowadays used in molecular cloning. The 

study of bacterial resistance mechanisms to phage infection led to the identification 

of restriction enzymes and the CRISPR-Cas system providing more tools for 

molecular biologists (Rohwer and Segall, 2015). In the food industry, phages are 

nowadays used for decontamination or treatment purposes. EcoShieldTM and 

ListShieldTM, both commercialised by Intralytix, are used for the decontamination of 

red meat and food-processing facilities respectively (Figure 1.2) (Sillankorva et al., 

2012). Omnilytics developed AgriPhageTM, a phage preparation for the treatment of 

bacterial diseases on tomato and pepper plants (Zaczek et al., 2015). 

 

 

Figure 1.2: Commercial packaging of ListShieldTM, targeting Listeria monocytogenes in food-

processing plants (picture from Sulakvelidze, 2013). 

 

Phages are also used in laboratories and commercially for the identification and 

detection of pathogens such as Listeria monocytogenes, S. aureus, Salmonella and 

Mycobacterium (Loessner et al., 1996, Monk et al., 2010, Lienemann et al., 2015, 

Rees, 2006). 

 

1.2.3.b. Renewed interest in phage therapy 

As a result of the antibiotic resistance crisis, phages are being reconsidered as 

alternative therapeutics to treat and prevent bacterial infections. In the 1980s Smith 

and Huggins carried out a significant series of carefully controlled studies in the UK. 

They reported the successful use of phages to protect mice, calves, piglets and lambs 

from E. coli infections (Smith and Huggins, 1982, 1983). Interestingly, they found 

that in some cases phage therapy was superior to antibiotic treatment. In the 1990s 

further encouraging results were obtained by Soothill in animal studies (Soothill, 

1992, 1994). 
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In 2000, the US government described antibiotic resistance as “a growing menace to 

all people” (Thiel, 2004) and started encouraging phage research. In 2014, the 

European Parliament proposed a motion for the resolution of antibiotic resistance 

asking member states to prioritise the development of phage therapy (Blondin et al., 

2014). In 2015, the US government released a National Action Plan for Combating 

Antibiotic-Resistant Bacteria (Carter et al., 2015) supporting among other options 

the development of alternative therapeutics including phage. At the same time a few 

phase I/II clinical trials were carried out in humans, demonstrating the general safety 

and suggesting the efficacy of phage treatment through oral, topical and intravenous 

applications (Bruttin and Brüssow, 2005, Sarker et al., 2012, Wright et al., 2009, 

Speck and Smithyman, 2016). 

 

In parallel to clinical trials, which aim is to produce reliable data on a medium to 

large scale, phage therapy is being used sporadically in Europe on a very small scale 

as a last resort treatment, under “compassionate use” regulation, for human patients 

with otherwise untreatable infections (Verbeken et al., 2012, Rose et al., 2014). Such 

experimental treatments have not been described in animal health but one clinical 

trial was performed to evaluate the topical treatment of otitis of dogs with a phage 

mixture (Hawkins et al., 2010). The authors reported the absence of toxicity and the 

possible role of the phage mixture in the treatment of otitis. 

 

1.2.4. Pros and cons of phage therapy 

There are advantages to phage treatment as well as drawbacks. Many ways to 

overcoming the latter have been proposed (Table 1.2). One major advantage is the 

specificity of phages for their host that leads to minimal disruption of the normal 

flora, on the contrary to some broad-spectrum antibiotics. Another advantage is that 

phage therapy is effective against antibiotic-resistant bacteria because the mechanism 

of action is different from all antibiotics (Hanlon, 2007). Phages are also able to 

amplify in situ as long as the host is present, which offers the possibility for single-

dose treatment and potentially reduced costs (Loc-Carrillo and Abedon, 2011). 
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Table 1.2: Advantages and drawbacks of phage therapy, and possible solutions to overcoming the disadvantages. 
 

Advantages Drawbacks Possible solutions 

Narrow host range = minimal disruption of normal 

flora 

Narrow host range = doctors need to know what 

pathogen causes the infection 
! Use phage cocktails to broaden the spectrum 

Phages can multiply in situ = potential for single-

dose treatment 

Phages are quickly cleared from the bloodstream by the 

immune system 

! Prefer topical applications or select long-

circulating phages 

Low toxicity Phages may contain harmful genes (e.g. virulence genes) 
! Perform whole-genome sequencing to ensure 

absence of harmful genes 

Ability to destroy biofilms 
Phage lysis causes the release of bacterial components 

and/or toxins 

! Engineer phages that kill but do not lyse their 

host 

Cheap to produce Difficult to patent 
! Patent method of isolation/production or 

engineer therapeutic phages 

Effective against antibiotic-resistant bacteria Regulatory hurdles 
! Develop a new regulatory framework to 

accommodate phage therapy 

Resistance to phages occurs at a lower frequency 

compared to resistance to antibiotics (Kutateladze 

and Adamia, 2010) 

Development of resistance to phages 
! Use phage cocktails or isolate new phages that 

overcome the resistance. 
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The development of resistance against phages is a concern, however phages can 

quickly adapt and overcome the resistance (Samson et al., 2013). It is possible to 

regularly select new phages able to infect the resistant bacteria. It has been proposed 

to select (and re-select if needed) specific phages through a patient-specific approach 

in hospitals for life-threatening situations (Huys et al., 2013). For other situations 

patients could use commercial phage cocktails that would follow the normal phases 

of drug development but would need regular updating (similarly to vaccines). 

Current regulations do not facilitate either of these approaches and a new regulatory 

framework accommodating phage therapy may be needed (Verbeken et al., 2014b). 

In some cases, the development of resistance to phages may have a more positive 

outcome: the reduction of the bacterial host’s fitness. Some structures on the 

bacterial cell surface that phages use as receptors to recognise their host (section 

1.4.2.a.i) can be virulence factors, e.g. lipopolysaccharide in Salmonella or the 

antigen K in E. coli. The loss or modification of these structures leads to resistance 

against phages but also reduces the virulence (Leon and Bastias, 2015). 

 

An issue associated with the commercial development of phage therapy is the 

difficulty for private companies to secure intellectual property (IP) because the idea 

of using phages therapeutically is not new and phages are ubiquitous. Patenting a 

method of isolation/production of phages or engineering phages may be ways to 

create IP and ensure return on investments (Pirnay et al., 2012). Phage engineering is 

becoming more and more accepted within the phage community and by regulatory 

authorities such as the Food and Drug Administration (communication of Scott 

Sticbitz, FDA representative at the Evergreen Phage Meeting 2015) as one of the 

ways forward to develop phage therapy. A few companies are now taking on the 

challenge to bring commercial phage preparations to the market (Henein, 2013). 

 

Phage therapy offers an interesting alternative to antibiotic treatment with numerous 

advantages, and its disadvantages can be overcome. Given the emergency of the 

situation for patients infected with multi-drug resistant bacteria, some even argue that 

all relevant academic laboratories, authorities and industries, have a moral duty to 

investigate or facilitate the investigation of phage therapy with the aim to alleviate 

suffering (Verbeken et al., 2014a). 
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1.2.5. Choosing a model disease to investigate the effectiveness of phage 

therapy 

As mentioned in the previous sections, phage therapy has been tested for the 

treatment of various types of infections and it is possible to argue that some diseases 

are better models than others to investigate the effectiveness of phage therapy. 

Enteric diseases are not good models. Most are acute, self-limiting infections and by 

the time symptoms show, i.e. diarrhoea, antibacterial treatment is not much use for 

ameliorating the condition of the patient. Rehydration therapy is the cornerstone of 

treatment for diarrhoea (Casburn-Jones, 2004). Moreover, the use of antibiotics for 

treating infectious diarrhoea is likely to select resistant bacteria and should be 

avoided except in severe cases of cholera or typhoid fever (Diniz-Santos et al., 

2006). It is not expected that phages would bring any more benefit than antibiotics in 

cases of diarrhoea. 

 

Surface infections such as skin or ear infections are better models because topical 

application is possible. When applied topically, phages are less likely to be rapidly 

cleared by the immune system, compared to phages applied intravenously, even 

though interaction with the immune system is still possible (Clark and March, 2006). 

Through topical application phages are not exposed to inactivating gastric acid as are 

phages administered orally. Surface infections can also be chronic and resistant to 

antibiotic treatment (Abedon et al., 2011), offering the possibility to show the 

effectiveness and usefulness of phage therapy as an alternative to antibiotic 

treatment. 
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1.3. The bacterium Staphylococcus pseudintermedius 

1.3.1. A commensal, part of the normal canine cutaneous flora 

Staphylococcus pseudintermedius is a coagulase-positive Staphyloccocus species that 

colonises dogs and sometimes other animals such as cats (Bardiau et al., 2013) and 

rats (Himsworth et al., 2013). In healthy dogs, S. pseudintermedius is part of the 

normal cutaneous flora and colonizes the skin, hair (Allaker et al., 1992a) and 

mucocutaneous sites such as the mouth, nose and anus (Devriese and De 

Pelsmaecker, 1987, Allaker et al., 1992b). 

 

The carriage rates reported by several cross-sectional studies conducted on large 

populations of healthy dogs (n > 100) are rather variable. For example two studies 

showed that S. pseudintermedius was present on 46.2% and 87.4% (Hanselman et 

al., 2009, Rubin and Chirino-Trejo, 2011) of healthy dogs. This variability probably 

reflects diversity in the numbers and types of body sites that were sampled and in the 

methods used for sampling (Bannoehr and Guardabassi, 2012). The health status of 

the dogs may also influence S. pseudintermedius carriage. A study showed that the 

carriage rate was higher in dogs suffering from atopic dermatitis (eczema) compared 

to healthy dogs (Fazakerley et al., 2009). 

 

1.3.2. An opportunistic pathogen 

S. pseudintermedius is also an opportunistic pathogen that has been identified as the 

main causative agent of ear and skin infections (pyoderma) (van Duijkeren et al., 

2011b). Abnormal host factors such as hypersensitivities, eczema and ectoparasites 

are the primary causes of pyoderma (Bloom, 2014). S. pseudintermedius is thought 

to act as a secondary infectious agent or lesion contaminant. Bacterial pyoderma can 

be classified into surface, superficial and deep pyoderma depending on the depth of 

the lesion (Ihrke, 1987). Superficial pyoderma is the most common form and 

manifests as hair loss (alopecia) areas spread throughout the body, epidermal 

collarettes, and papules or pustules (Hillier et al., 2014) (Figure 1.3). 
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Figure 1.3: Superficial pyoderma is the most common form of the disease and is associated with (A) 

hair loss (alopecia) areas spread throughout the body, (B) epidermal collarettes, and (C) pustules 

(arrow) and papules (pictures from Hillier et al., 2014). 

 

Until 2005, Staphylococcus intermedius was thought to be the major causing agent of 

pyoderma in dogs. The description of S. pseudintermedius (Devriese et al., 2005) has 

led to the re-classification of the S. intermedius group (SIG). It is now divided into 

four species: S. intermedius, S. pseudintermedius and S. delphini groups A and B 

(Sasaki et al., 2007). S. pseudintermedius is nowadays identified through a series of 

biochemical tests and PCR amplification of the thermonuclease (nuc) gene following 

an initial cultivation step and selection of colonies with a typical Staphylococcus 

morphology. 

 

1.3.3. S. pseudintermedius and antibiotic resistance 

1.3.3.a. The emergence of methicillin-resistant S. pseudintermedius and 

pyoderma treatment options 

S. pseudintermedius is one example of an animal pathogen that has acquired 

resistance, showing that antibiotic resistance has become a problem not only in 

human health but also in animal health. S. pseudintermedius has historically been 

considered slow to acquire resistance to antibiotics (Ravens et al., 2014). However, 

the past fifteen years have seen the emergence of methicillin-resistant S. 

pseudintermedius (MRSP), which acquired its resistance in a similar way to MRSA 

(section 1.1.3.c). MRSP is associated with postoperative infections and urinary tract 

(A) (B) 

(C) 
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infections in addition to skin infections (Kadlec and Schwarz, 2012) and studies 

showed that MRSP carriage is much lower than methicillin-susceptible S. 

pseudintermedius (MSSP) carriage (between 1% and 7% of healthy dogs) (Nienhoff 

et al., 2011, Davis et al., 2014, Kjellman et al., 2015). The treatment of pyoderma 

used to be empirical and involved systemically administered antibiotics such as 

amoxicillin-clavulanic acid, clindamycin or cefalexin (Table 1.1). Systemic 

treatments were, and still are, coupled with the topical application of antibacterial 

agents like hydroxyl acids, benzoyl peroxide or ethyl lactate. Typically, three to six 

weeks of therapy are required and recurrent infections may occur, especially in dogs 

suffering from atopic dermatitis (Dowling, 1996, Summers et al., 2014). 

 

MRSP isolates are considered resistant to all β-lactams, which means that 

amoxicillin cannot be used to treat MRSP infections. Moreover, additional antibiotic 

resistance genes can insert into the Staphylococcal Chromosomal Cassette (section 

1.1.3.c) (Holden et al., 2004, Descloux et al., 2008) and this explains why MRSP is 

often resistant to several non-β-lactam antibiotics (Garbacz et al., 2013, Onuma et 

al., 2012, Murayama et al., 2013). The treatment of pyoderma therefore becomes 

much more difficult and recurrent infections are more likely to occur due to 

treatment failure. 

 

1.3.3.b. Molecular characterisation and genetic aspects of MRSP isolates 

Studies carried out over the past five years showed that MRSP strains constitute a 

rather clonal population with predominant lineages identified through multi-locus 

typing (MLST). MLST characterises isolates by sequencing internal fragments of 

multiple housekeeping genes (loci). The different sequences present within a 

bacterial species are assigned as distinct alleles. The combination of alleles at each 

chosen locus defines the allelic profile or Sequence Type (ST). Seven loci are used to 

discriminate MRSP strains: tuf (elongation factor Tu), cpn60 or hsp60 (heat-shock 

protein 60), pta (phosphotransacetylase), purA (adenylsuccinate synthetase), fdh 

(formate dehydrogenase), ack (acetate kinase) and sar (sodium sulphate symporter) 

(Solyman et al., 2013). ST71 and ST68 are predominant in Europe and North 

America respectively (Kadlec et al., 2010). 
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Two other molecular methods are used to precisely type S. pseudintermedius clones: 

- Spa typing, that involves the amplification, sequencing and analysis of the 

polymorphic repeat X region of the protein A, a cell wall constituent of 

Staphylococci (Tang et al., 2000). 

- SCCmec typing based on the type of recombinase genes, the class of mec 

gene and its associated regulatory sequences (IWG-SCC, 2009). 

 

The geographic restriction described above probably reflects the rather recent 

emergence of methicillin-resistant strains but the situation is evolving rapidly. One 

particular clone, ST71-t02(spa)-II-III(SCCmec), has been isolated since 2007 from 

European countries such as Germany, Spain, Sweden, Norway, Finland and the UK 

(Bannoehr et al., 2007, Ruscher et al., 2010, Gómez-Sanz et al., 2011, Grönthal et 

al., 2014) and later from other parts of the world such as Japan, Hong-Kong and 

South America (Bardiau et al., 2013, Boost et al., 2011, Quitoco et al., 2013). 

 

A study published in 2015, comparing twelve S. pseudintermedius genomes, 

suggested that the success of this clone and other isolates from ST71 and ST68 

lineages depends on their ability to acquire novel mobile genetic elements through 

horizontal gene transfer (HGT) (McCarthy et al., 2015). According to this study 

MRSP evolved through a stepwise accumulation of SCCmec, transposon-like 

elements and also core genome mutations conferring fluoroquinolone resistance. 

Interestingly, this study also suggested that, in contrast to S. aureus, HGT in S. 

pseudintermedius occurs predominantly through bacteriophage transduction rather 

than plasmid conjugation. The role of phages in the transfer of genetic material 

between S. pseudintermedius strains was further suggested in a study published in 

2016 (Couto et al., 2016). This study also found that some prophage genes were 

upregulated in MRSP compared to MSSP, suggesting that prophages may have a role 

in bacterial fitness in S. pseudintermedius. 
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1.3.4. S. pseudintermedius in humans 

S. pseudintermedius has high host specificity and humans do not naturally carry this 

bacterium. However, transient carriage of S. pseudintermedius in humans is possible 

especially for people from the veterinary profession (Bond and Loeffler, 2012). A 

study involving 128 veterinarians showed a relatively high MRSP carriage rate (3.9 

%) persistent over a period of one month (Paul et al., 2011). Another survey of 171 

veterinary dermatology staff in North America showed that nine individuals (5.3%) 

were colonised by MRSP. Interestingly, concordant strains of MRSP were isolated 

from the pets of three of these individuals (Morris et al., 2010). Indeed, pet owners 

are likely to be colonised by MRSP whose origin can be attributed to their pet animal 

(Guardabassi et al., 2004, van Duijkeren et al., 2011a). These results also suggest 

that, although MRSP has not been shown to be more virulent than MSSP, it seems to 

have better ability to colonize humans. 

 

The zoonotic transmission of MRSP is a concern because the bacterium can cause 

infections in humans. The first case of S. pseudintermedius infection in a human was 

described in 2006 (Van Hoovels et al., 2006). Two more recent cases were due to 

ST71 strains (Stegmann et al., 2010, Starlander et al., 2014). It has been suggested 

that ST71 strains have a particular ability to invade human hosts because they adhere 

equally well to canine and human corneocytes. The adherence to corneocytes is an 

important step in skin colonisation and pathogenesis, and S. pseudintermedius 

usually adheres significantly better to canine corneocytes compared to human ones 

(Latronico et al., 2014). Another concern associated with the transmission of MRSP 

from animals to humans is that MRSP may transfer its mobile SCCmec to 

methicillin-susceptible S. aureus present on humans, converting it into MRSA (Cohn 

and Middleton, 2010). 

 

1.3.5. Phage therapy for the treatment of canine pyoderma 

The development of phage therapy to treat canine pyoderma was chosen for several 

reasons: 

- Pyoderma is becoming a serious issue in animal health because of antibiotic-

resistant S. pseudintermedius and phage therapy is an interesting alternative. 

- Canine skin infection constitutes a good model disease for testing the 

effectiveness of phage therapy (section 1.2.5): it is sometimes chronic and 
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offers the possibility to use a topical treatment, avoiding part of the immune 

response and its inhibitory effects. 

- Developing phage therapy in animals would constitute a proof-of-concept 

facilitating its introduction in human health. 

A phage-based commercial product, Staphage Lysate (SPL)®, Delmont Laboratories, 

is already available to help with the treatment of staphylococcal infections in the dog 

but it is said to only stimulate the immune response rather than directly kill the 

bacteria responsible for the infection. The aim in this project was to develop a 

treatment relying on the lytic activity of intact phages. 
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1.4. The biology of bacteriophages 

1.4.1. The classification of bacteriophages 

Bacteriophages are the most abundant organisms on Earth. It is estimated that there 

are more than 1031 phage particles on the planet, with approximately ten phages for 

every bacterial cell (Karam, 2005). They exist in various forms and sizes that can be 

classified. Several classification schemes were proposed during the first half of the 

20th century. The International Committee on Taxonomy of Viruses (ICTV), created 

in 1971, currently recognises one order, thirteen families and 80 genera of phages 

(Krupovic et al., 2016). While families are defined by the nature of the nucleic acid 

and particle morphology (Figure 1.4), there are no universal criteria for genus and 

species determination (Ackermann, 2006). The ICTV has adopted the “polythetic 

species concept” where a species of viruses is defined by a set of properties and no 

single property is absolutely essential. The advantage of this concept is that it 

accommodates the inherent variability of viruses (Fauquet, 2008). 

 

 

Figure 1.4: the ICTV currently recognises 13 families of phages defined by the nature of the nucleic 

acid and particle morphology (picture from Ackermann, 2006). 

 

Classification schemes based on comparative genomics or proteomics, which are not 

taken into account in the ICTV classification, have been proposed. However, the 
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current knowledge of phage genomics and proteomics is limited to a few phage 

groups and it may be too early to establish a universal system based on these 

approaches (Nelson, 2004). The ICTV classification therefore remains relevant. 

 

1.4.2. The phage life cycles 

When considering the Caudovirales, the tailed double-stranded (ds) DNA phages 

that constitute 96% of all known phages (Fokine and Rossmann, 2014), one can 

distinguish two types: lytic phages, which lyse their host after infection and release 

new viruses, and temperate phages, which have the ability to survive within their 

host (lysogeny) and occasionally enter the lytic cycle (Kropinski, 2006) (Figure 1.5). 

 

 

Figure 1.5: The lytic cycle involves (1) attachment to the host and DNA injection, (2) DNA 

replication, (3) DNA transcription, (4) virion assembly and (5) host lysis resulting in the release of 

new viruses. During the lysogenic cycle, (2’) the phage DNA integrates into the host’s chromosome 

and (3’, 4’, 5’) is transmitted to daughter cells. The prophage can occasionally re-enter the lytic cycle. 
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Some temperate phages integrate into the host’s chromosome (as depicted in Figure 

1.5) while others, such as P1, are maintained as a separate episome that replicates 

independently from the chromosome (Sternberg and Austin, 1981). 

 

1.4.2.a. The lytic cycle 

1.4.2.a.i. Phage adsorption to the host cell surface 

The first step of a phage’s lytic cycle is the adsorption of a phage particle to a host 

cell. This occurs through interaction of the distal end of the phage tail, varying from 

a thin tail tip (with or without tail fibres) to a much larger baseplate (Chaturongakul 

and Ounjai, 2014), with cell-surface components (Lindberg, 1973). In phage λ, 

LamB and OmpC, both outer membrane proteins, are recognised by the tail fibres 

(Hendrix and Casjens, 2006). The siphophage SPP1 infecting Bacillus subtilis 

recognises YueB, a membrane anchored-protein, with its tail tip after initial 

interaction with cell wall teichoic acids (Baptista et al., 2008). Wall teichoic acids 

were also shown to be adsorption receptors for S. aureus phages (Xia et al., 2011, 

Uchiyama et al., 2014). Once a phage finds its receptor at the surface of its host cell, 

the binding interaction becomes irreversible and the proteins at the tip of the tail 

undergo conformational changes to allow the ejection of the DNA from the capsid 

into the cell (Rakhuba et al., 2010). 

 

1.4.2.a.ii. DNA translocation into host cells 

The mechanism of DNA translocation through the cell wall and membrane is not 

fully understood. In phages with contractile tails, like the myovirus T4, the internal 

tail tube may be pushed through the cell wall and membranes, and thus act as a DNA 

conduit directly into the host cell (Mosig and Eiserling, 2006). For siphophages, 

which tail is non-contractile, a channel may form from host proteins and/or phage 

proteins (Letellier et al., 1999). DNA ejection relies in some phages at least partially 

on the pressure inside the capsid resulting from the tight packaging of genomic DNA 

(Inamdar et al., 2006). In other phages, DNA ejection is enzyme-driven (Grayson 

and Molineux, 2007). The process is often facilitated by the action of tail-associated 

enzymes such as endopeptidase and cell wall hydrolase that target the integrity of the 

host cell wall (Rashel et al., 2008, Rodríguez-Rubio et al., 2013). 
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1.4.2.a.iii. DNA transcription and replication  

Once it has entered the cell the linear genome of tailed dsDNA phages, is 

circularised through the action of the bacterial ligase on its complementary ends (see 

section 1.4.2.a.iv). The transcription of phage genes, a temporally regulated process, 

then starts. Genes can be classified into early, middle and late genes (Pero et al., 

1979, Kassavetis and Geiduschek, 1984, Madsen and Hammer, 1998). Transcription 

is usually mediated by the host RNA polymerase (RNAP) but some phages, like T7 

and T3, use their own RNAP to transcribe middle and late genes (Krüger and 

Schroeder, 1981). 

 

Early genes code for transcriptional regulators (Hendrix and Casjens, 2006) and 

proteins involved in DNA replication such as single-stranded (ss) DNA binding 

protein (Shokri et al., 2009), helicase (Lee and Richardson, 2011), Holliday junction 

resolvase (Zecchi et al., 2012), dUTPase (Wheeler et al., 1996) and DNA 

polymerase (Mueser et al., 2010). Some phages encode only a subset of DNA 

replication proteins, including an origin-specific replication initiation protein, and 

recruit the host DNA replication machinery (Seco et al., 2013). 

 

DNA replication happens following two modes. The first mode involves 

bidirectional replication of the DNA circle, also called circle-to-circle replication 

(Taylor and Wegrzyn, 1995) (Figure 1.6). After a few rounds, DNA replication 

switches to a second mode and produces DNA concatemers constituted of mature 

phage genomes joined together in a head-to-tail manner (Fujisawa and Morita, 

1997). The concatemers arise by rolling circle, i.e. unidirectional replication of a 

circular genome from an origin of replication, which is used just once (Novick, 

1998). 
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Figure 1.6: The linear phage genome is circularised following translocation into the host. The DNA 

circle is first replicated through bidirectional replication. After a few rounds, replication switches to 

unidirectional or rolling circle replication. This produces DNA concatemers constituted of mature 

phage genomes all joined together. Red arrows indicate the direction(s) of replication (figure based on 

Taylor and Wegrzyn, 1995 and modified). 

 

The products of middle genes include regulatory proteins that control the 

transcription of late genes (Lobocka et al., 2012). These code for virion components 

(capsid and tail proteins), proteins involved in DNA packaging into the phage heads 

and proteins necessary for host lysis (Mosig and Eiserling, 2006, Gupta, 2008). 

 

1.4.2.a.iv. Virion assembly and DNA packaging 

Virion assembly occurs as a result of ordered interactions among the structural 

proteins (Mosig and Eiserling, 2006, Hendrix and Casjens, 2006). Head assembly is 

initiated from the portal protein, or portal vertex (Bazinet and King, 1985, Olia et al., 

2011), and involves the polymerization of capsid proteins into an icosahedral 

structure around scaffolding proteins (White et al., 2012, Black and Rao, 2012). 

These are degraded by a protease when the assembled proheads undergo maturation 

(Ray et al., 2009, Medina et al., 2010). 

 

Individual genome units are then cut and packaged by the terminase into the 

proheads from the concatemers produced during DNA replication, using the hole in 

the portal vertex as an entrance point (Black, 1989). The large subunit of the 

terminase interacts with the procapsid portal and has ATPase and endonuclease 

activities. It therefore provides the energy necessary for DNA translocation and is 

responsible for generating individual genome units by cutting both strands of DNA at 

the ends of each genome unit (Black, 2015). The small subunit of the terminase has a 

DNA-binding activity and stimulates packaging (Koti et al., 2008). 

Switch 



 

 23 

There are two DNA packaging strategies that lead to either genomes with cohesive 

ends or circularly permuted genomes. In phages with cohesive ends such as phage λ 

(Catalano et al., 1995), the DNA concatemer is first cut by the terminase in a 

sequence-dependent manner at the cos site. DNA is then translocated into the capsid. 

The second cut occurs at a second specific DNA site (Oram and Lindsay, 2011). This 

leads to phage particles containing genomes with distinct ends at identical locations 

in the sequence (Figure 1.7, A and B). The ends are “cohesive” because the 

terminase generates protruding single strands that are complementary to each other. 

 

In phages with circularly permuted genomes such as T4 or SPP1 (Jardine and 

Anderson, 2006), the terminase makes a sequence-specific cleavage at the pac site 

and the subsequent cuts (blunt cuts) are made non-specifically in the DNA substrate 

once the capsid is filled to capacity. These phages are therefore called “headful 

packaging” phages. The packaged DNA is usually slightly longer than a complete 

genome. It contains a full set of genes plus an extra copy of a varying subset of 

genes. There are two consequences associated with this:  

- The ends of the genome “move” along the sequence (Casjens and Gilcrease, 

2009). They are not conserved within phage particles (Figure 1.7, C and D) 

and that is the reason why genomes are called circularly permuted. 

- A terminal repeat, consisting of a few hundred bases identical to the 

beginning of the genome sequence and coming from the next genome unit in 

the concatemer, is present at the end of each packaged genome unit. 
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Figure 1.7: (A) In phages with cohesive ends, the terminase (black triangles) cuts DNA concatemers in a sequence-dependent manner (red dotted lines). The first cut occurs at 

the cos site and is followed by DNA translocation into the capsid. (B) The resulting DNA fragments have distinct ends at identical locations in the sequence. (C) In phages 

with circularly permuted genomes, the terminase first cuts at the pac site. Subsequent cuts are non-specific (green dotted lines) and occur once the capsid is full. The packaged 

DNA is usually slightly longer than a complete genome and this causes the ends to “move” along the sequence. (D) The resulting phage particles contain a full set of genes 

plus some duplicated genes leading to the presence of terminal repeats (in bold), and the genome ends are not identical. 
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Following DNA packaging, the terminase complex is replaced by neck proteins, 

which serve as a plug to prevent DNA leakage from the capsid (Cardarelli et al., 

2010). Neck proteins are also called head-tail connector proteins because they form 

an interface between head and tail that allow binding of the two virion components 

(Rishvod et al., 1998, Auzat et al., 2014). 

 

The tail is assembled separately and later attached to the capsid. The process starts at 

the distal end of the tail, from the initiator complex that corresponds to the future tail 

tip or baseplate (Xu et al., 2014, Maxwell and Davidson, 2014) (Figure 1.8). The tail 

proteins polymerize around a tape-measure protein (TMP) that determines the length 

of the tail (Katsura, 1990, Abuladze et al., 1994, Aksyuk and Rossmann, 2011). 

When the tail reaches the length of the TMP, a terminator protein stops 

polymerization by binding at the top of the tail tube (Pell et al., 2009). The 

terminator and the head-tail connector proteins interact to connect the head and tail. 

Side tail fibres, when present, are assembled at the same time (Leiman et al., 2010, 

Aksyuk and Rossmann, 2011). 

 

 

Figure 1.8: Phage assembly starts from the initiator complex. The tail proteins polymerize around a 

tape-measure protein (TMP). When the tail reaches the length of the TMP, a terminator protein stops 

polymerization by binding at the top of the tail tube. The terminator and the head-tail connector 

proteins interact to connect the head and tail. Side tail fibres are assembled at the same time (figure 

based on Pell et al., 2009 and modified). 

 

1.4.2.a.v. Host cell lysis 

The last stage of a phage’s lytic cycle is cell lysis that results in the release of 

progeny ready to infect new host cells. In dsDNA phages, cell lysis requires the holin 

and the endolysin (Young, 1992). Endolysins are cell-wall degrading enzymes and 

holins form holes in the cell membrane leading to its permeabilisation (Grundling et 
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al., 2001, Young and Bläsi, 1995). During the virion assembly period, endolysins 

accumulate in the cytosol while holins accumulate in the membrane (Young and 

Wang, 2006). Then suddenly, at a precise scheduled time, the holins form 

micrometer-scale lesions in the membrane, releasing the endolysins that rapidly 

degrade the peptidoglycan (To and Young, 2014). The holin-endolysin lysis system 

has been studied extensively in the coliphages λ and T4 (Wang et al., 2000, Moussa 

et al., 2014) and similar systems were identified in phages infecting other bacteria 

such as S. aureus (Mishra et al., 2013). 

 

1.4.2.b. The lysogenic cycle 

1.4.2.b.i. Decision between lysis and lysogeny in phage λ 

When it infects its host a temperate phage has to “choose” between entering the lytic 

cycle and staying inside the host as a prophage. The regulatory pathways behind the 

decision between lysis and lysogeny have been extensively studied in phage λ and 

are described below. 

 

The lysis-lysogeny decision is made about ten to fifteen minutes after infection and 

involves the expression of two phage proteins: CII, a transcriptional activator, and 

CIII (Little, 2006). Both proteins interact with host factors in a way that is believed 

to allow sensing of the physiological state of the host cell and influences the lysis-

lysogeny decision (Cheng et al., 1988) The intracellular concentration of CII is the 

key determinant for lysogeny establishment (Kihara et al., 1997). When CII 

accumulates inside the host above a threshold level it promotes lysogenization by: 

- Activating the expression of the CI repressor from the CII-dependent 

promoter PRE (Figure 1.9). This leads to very high levels of CI in the cell and 

repression of the expression of lytic genes (Belfort and Wulff, 1974). 

- Activating the expression of the integrase from the CII-dependent promoter 

PI, which start site is within the xis gene. Thus integrase and no excisionase is 

produced during the establishment of lysogeny (Campbell, 2006). 

- Stimulating the production of an antisense transcript from a third CII-

dependent promoter PAQ. This antisense RNA opposes expression of the Q 

gene, which product activates the expression of late genes (Ho and 

Rosenberg, 1985, Wegrzyn and Wegrzyn, 2005). 
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Figure 1.9: (A) Map of part of the λ genome. att: site of reciprocal recombination for integrating and excising phage DNA, int: integrase, xis: excisionase, PI: CII-dependent 

promoter controlling the expression of int during lysogenization, cI, cII and cIII: genes involved in the establishment and/or maintenance of lysogeny (see text), N: N controls 

the expression of early lytic genes, PLOL: promoter region controlling the expression of N, cro: gene involved in the genetic switch from lysogeny to lysis, O and P: genes 

involved in DNA replication, Q: Q activates the expression of late genes, such as S and R, from the P’R promoter, PAQ: CII-dependent promoter coding for an antisense RNA 

that opposes the expression of Q. (B) Close-up of the PLOL region. There are three operator sequences, OL1, OL2 and OL3, overlapping the promoter. (C) Close-up of the cI/cro 

region. cI is transcribed from the CII-dependent promoter PRE during lysogenization and from the PRM promoter after integration into the host’s genome. cro is transcribed 

from the PR promoter. (D) Close-up of the cI/cro intergenic region. There are three operator sequences, OR1, OR2 and OR3, overlapping both promoters (figure based on Little, 

2006 and modified). 
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1.4.2.b.ii. Integration of the phage DNA into the host’s chromosome 

The phage λ DNA integrates into the host’s genome through site-specific 

recombination between the attB (BOB’) site on the bacterial chromosome and the 

attP (POP’) site on the circularised phage genome (Hsu et al., 1980) (Figure 1.10). 

The crossover event takes place within, or at the boundaries of, a fifteen-base pair 

core sequence, called ‘O’, that is identical on both the host and phage DNA. The 

arms of the att sites (P, P’, B and B’) are all different from each other (Landy and 

Wilma, 1977). The reaction requires a specialised phage-encoded integrase and the 

bacterial integration host factor (IHF) (Tal et al., 2014). It generates attL (left 

prophage end) and attR (right prophage end) at the junctions between the integrated 

prophage and the bacterial chromosome (Mumm et al., 2006). 

 

 

Figure 1.10: The phage λ DNA integrates into the host’s genome through site-specific recombination 

between attB (BOB’) on the host’s chromosome (double line) and attP (POP’) on the circularised 

phage genome (thick black line). The reaction is mediated by the phage integrase (Int) and the host 

integration factor (IHF) and generates attL (left prophage end) and attR (right prophage end) at the 

junctions between the integrated prophage and the bacterial chromosome. 

 

1.4.2.b.iii. Maintenance of lysogeny 

Lysogeny is a very stable state that, in phage λ, is maintained by the CI repressor. 

This protein prevents transcription from two promoters that are key in the lytic cycle: 

PL and PR (Figure 1.9). PL controls the expression of the N gene, which product 

activates the expression of early lytic genes. PR controls Q and cro, which products 

activate the expression of late lytic genes and promote lytic development, 

respectively (Oppenheim et al., 2005). CI therefore maintains λ as a prophage by 
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preventing the transcriptional cascade that leads to cell lysis and release of progeny. 

Added to this, CI promotes its own expression by acting positively on the promoter 

PRM (Friedman and Court, 2001). 

 

The CI repressor binds to an operator region OR situated between the cI and cro 

genes and overlapping both PRM and PR. OR is composed of three binding sites OR1, 

OR2, OR3 (Figure 1.9, C and D) (Ptashne, 2004). When maintaining lysogeny, CI 

binds strongly to OR1 as a dimer and cooperatively to OR2, forming a tetramer (Figure 

1.11, A). In this situation, CI represses PR by preventing RNAP binding through 

steric hindrance, but promotes transcription from PRM (Bakk et al., 2004). CI also 

binds to another operator region OL situated upstream of the N gene. Similarly to OR, 

OL is composed of three binding sites OL1, OL2 and OL3 overlapping PL. CI binds 

cooperatively to OL1 and OL2 as a tetramer and this represses transcription from PL 

(Hochschild, 2002). Another level of cooperativity exists where the CI tetramer 

bound at OR interacts with the tetramer bound at OL forming an octamer and bending 

the DNA (the two regions are separated by 2.4 kilobases) (Little and Michalowski, 

2010) (Figure 1.11, B). This strengthens the interaction of CI with the DNA and 

improves the repression of PR and PL. It also facilitates the cooperative binding of CI 

dimers to OR3 and OL3 when the intracellular concentration of CI is high. This leads 

to repression of PRM and serves as a feedback loop to maintain a stable level of CI 

inside the cell (Dodd et al., 2005). 
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Figure 1.11: (A) At moderate levels of CI, two CI dimers bind to OR1 and OR2, forming a tetramer. This represses PR and activates PRM. A CI monomer is constituted of two 

domains linked by a hinge region. (B) CI tetramers bound at OR and OL interact, forming an octamer. This improves the repression of PR and PL. At high levels of CI, CI 

dimers bind to OR3 and OL3, turning PRM off. (C) At moderate levels of Cro, a Cro dimer binds to OR3, repressing the expression of CI from PRM (figure based on Little, 2006 

and modified). 
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1.4.2.b.iv. Switch from lysogenic state to lytic development 

As mentioned in section 1.4.2, prophages occasionally switch to lytic development. 

This happens when the host SOS stress response, an error-prone DNA repair system 

(D'Ari, 1985), is induced. The two main components of this system are the proteins 

RecA and LexA. RecA is a protein able to recognise short stretches of ssDNA and 

LexA is a transcription repressor that binds upstream of the SOS genes inhibiting 

their expression in absence of DNA damage. When DNA damage occurs leading to 

accumulation of ssDNA at replication sites, RecA is activated. It then binds to the 

ssDNA and acquires a co-protease activity, which facilitates the self-cleavage of the 

LexA repressor. This results in the derepression of the SOS genes and production of 

proteins involved in DNA repair (Janion, 2008). 

 

The CI repressor is a structural homolog of LexA and under SOS activation RecA 

catalyses the self-cleavage of CI. This leads to a drop in the intracellular 

concentration of CI and derepression of PR and PL. As a result the Cro repressor is 

expressed. This protein can bind to the same operator sites as CI but with opposite 

affinities. The strong binding of Cro to OR3 represses the expression of CI from PRM, 

making the switch to lytic development irreversible (Schubert et al., 2007) (Figure 

1.11, C). In absence of the CI repressor, the N gene is expressed, starting the 

transcriptional cascade leading to lysis. The phage integrase and excisionase are also 

expressed and mediate the excision of the prophage from the host’s genome (Casjens 

and Hendrix, 2015). The phage DNA is then ready for completion of the lytic cycle. 

The whole system is effectively a way for λ prophages to detect DNA damages that 

are likely to kill their host and lead to their own destruction if they do not escape 

(Galkin et al., 2009). 

 

1.4.2.b.v. Immunity associated with lysogeny 

The presence of the CI repressor inside a lysogenic cell (or lysogen) means that if it 

is infected by another phage similar to the λ prophage, CI has the ability to bind to 

the operator sites of the entering phage and stop its lytic development. The presence 

of a prophage in a cell therefore confers immunity to its host against further infection 

with a similar phage (Fogg et al., 2010). This is called homoimmunity (Dimmock, 

2016). For this reason, the region covering cI, cro, OR and OL is often referred to as 

the λ immunity region (Wilgus et al., 1973).  
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Heteroimmunity, also called superinfection exclusion, exists as well. It refers to the 

resistance of a lysogen against infection by a phage different from that carried in the 

bacterial genome (Ali et al., 2014). While homoimmunity occurs after nucleic acid 

uptake, superinfection exclusion confers resistance against phage infection by means 

of preventing the uptake of nucleic acid, such as altering the host cell surface to 

prevent phage adsorption or blocking DNA translocation (Mahony et al., 2008). 

 

1.4.2.b.vi. Lysogeny in other temperate phages 

Similar genes and genetic organisation are found in temperate phages other than 

coliphages (Neve et al., 1998, Madsen and Hammer, 1998). Operator sites, cI and 

cro repressors genes, and an att site resembling those of phage λ are found in the 

genome of the S. aureus phage ϕ11 (Lee and Iandolo, 1988, Das et al., 2007, Biswas 

et al., 2014). This suggests that similar regulatory pathways and genetic switches are 

present in temperate phages other than λ to establish, maintain and exit lysogeny. 

 

1.4.3. Lytic phages are required for phage therapy 

Lytic phages are regarded as the only type of phages appropriate for phage therapy 

(Ghanna and Mohammadi, 2012). Temperate phages are expected to be less effective 

at clearing a bacterial infection because after infecting their host there is a chance 

that they will enter the lysogenic cycle and not kill the host. They are associated with 

lysogenic conversion, the modification of the bacterial phenotype, sometimes in 

ways that result in increased virulence. They may also transfer genes, e.g. antibiotic 

resistance genes and pathogenicity determinants, from one host to another when they 

become prophages (Abedon et al., 2011). It is however possible to isolate mutants of 

temperate phages that are no longer able to establish lysogeny. Such mutants may 

have lost the cI repressor gene or other genes involved in lysogeny (integrase, 

excisionase, etc.). Other virulent (Vir) mutants have mutations in the CI repressor 

binding site leading to reduced affinity of the protein for its site, like λvir phages 

(Oppenheim and Salomon, 1970). Vir mutants have the ability to overcome 

homoimmunity (Figure 1.12). 
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Figure 1.12: (A) When a lysogen is infected by a phage that is similar to the prophage present in its 

chromosome, the lytic cycle is prevented through homoimmunity. (B) A Vir mutant has one or several 

mutations (shown as a star) in the CI binding site and can therefore overcome homoimmunity. 

 

1.5. Contents of this thesis 

1.5.1. Aims and objectives of the work reported in this thesis 

The work that was undertaken to gain knowledge about bacteriophages infecting S. 

pseudintermedius is presented in this thesis. This was done towards the general aim 

of this PhD project: developing phage therapy to treat canine skin infection. The 

work was divided into four objectives: 

- The isolation and characterisation of S. pseudintermedius phages with the aim 

to select the best candidate(s) for phage therapy (Chapter 3). 

- The isolation of Vir mutants of S. pseudintermedius phages because the ones 

that were found during this project were all temperate (Chapters 4 and 5). 

- Bioinformatic analyses to learn about some of the characteristics of S. 

pseudintermedius phages on the protein and genome levels (Chapters 5 and 

6). 

- The study of the ecology of S. pseudintermedius and its phages to try and 

understand why the isolation of S. pseudintermedius phages proved difficult 

and show whether lysogeny is widespread in this pathogen (Chapter 7). 

 

1.5.2. Specific introductions in the experimental chapters 

More extensive introductions are given in the above-mentioned experimental 

chapters on matters specific to each chapter. Methods for isolating lytic and 

temperate phages are introduced in Chapter 3. Homoimmunity and the advantage of 

using Vir mutants are further discussed in Chapter 3 too. Methods for the 
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mutagenesis of phages to obtain Vir mutants are presented in Chapters 4 and 5. 

Details about the characteristics of operator sequences, a type of mutations leading to 

a Vir mutant phenotype and how to analyse the structure of proteins in silico are 

introduced in Chapter 5. DNA sequencing technologies and methods for the analysis 

of DNA sequencing data are presented in Chapter 6. The ecology of bacteria and 

their phages, and how it influences where the latter can be found are discussed in 

Chapter 7. 
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Chapter 2 Material and methods 

 

2.1. Bacterial strains 

MRSP and MSSP strains were obtained from laboratories in Europe and North 

America. Their characteristics are listed in Table 2.1, Table 2.2 and other 

publications (Descloux et al., 2008, Perreten et al., 2010, Ben Zakour et al., 2012). 

Material transfer agreements were signed with the relevant institutions. 

 

2.2. Culture and storage of bacterial strains 

Bacterial strains were cultivated on Blood Agar plates (Blood Agar Base, Oxoid + 

5% sheep blood). Liquid culture was performed by adding one colony into 5 mL 

Brain Heart Infusion (BHI) (Atlas, 1997) and incubating overnight at 37°C with 

shaking. In the next sections, an overnight culture refers to a liquid bacterial culture 

prepared as described above with an Optical Density at 600 nm (OD600nm) = 0.3 

following a 10-1 dilution. Strains were stored on Blood Agar plates in the fridge for 

short-term storage and at -80°C in cryotubes (1 mL overnight culture + glycerol at a 

final concentration of 16%) for long-term storage. 

 

2.3. Bacterial growth curve 

100 µL overnight culture was added to 50 mL BHI and cultivated at 37°C with 

shaking. 1 mL samples were taken at regular time intervals and OD600nm was 

measured. Appropriate dilutions of each time point were plated to determine the 

number of Colony Forming Units per mL (CFU/mL) and the correspondence with 

OD600nm. Bacterial growth curves and the determination of growth phases are 

presented in section 4.3.2.a. In the next sections, a bacterial culture at mid-

exponential phase refers to a culture which OD600nm = 0.3 after around three hours of 

cultivation. 
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Table 2.1: Characteristics of the S. pseudintermedius strains used in the project for the induction of prophages through mitomycin C exposure. Some strains are referred to 

with an alternative name in publications (shown in brackets). SCCmec = staphylococcal cassette chromosome mec element, Spa type = staphylococcal protein A type, n/t = 

not tested. 
 

Name 

(Alternative name) 

Methicillin 

resistance 
Sequence Type Spa type SCCmec type Source Animal Country of origin Owner 

E086 (V0703277) MRSP ST71 t02 II-III synovia dog The Netherlands J. Wagenaar 

E123 (AS4) MRSP ST71 t02 II-III skin dog USA S. Weese 

E025 (06-1065) MRSP ST68 t06 V skin dog USA D. Bemis 

E122 (A42) MRSP ST68 t06 V skin dog USA S. Weese 

E125 (129Ab) MRSP ST58 t06 VII healthy animal dog USA S. Weese 

E069 (KM241) MRSP ST73 t24 VII otitis externa dog Switzerland V. Perreten 

E126 (182Ab) MRSP ST113 t06 IV nose dog Canada S. Weese 

E139 (DK639) MRSP ST258 t02 II-III otitis externa dog Denmark A. Moodley 

AB178 MRSP n/t n/t IV wound dog Sweden S. Borjesson 

AB190 MRSP n/t t02 II-III udder horse Sweden S. Borjesson 

AB252 MRSP n/t t06 II-III wound dog Sweden S. Borjesson 

AB255 MRSP n/t n/t n/t wound dog Sweden S. Borjesson 

AB312 MRSP n/t t02 II-III wound dog Sweden S. Borjesson 

AB316 MRSP n/t t35 n/t ear dog Sweden S. Borjesson 

AB680 MRSP n/t t29 II-III unknown dog Sweden S. Borjesson 

08BKT31634 MRSP n/t t10 II-III post-operative wound dog Sweden S. Borjesson 

S56C3 MSSP n/t n/t n/t ear dog Denmark A. Moodley 
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Name 

(Alternative name) 

Methicillin 

resistance 
Sequence Type Spa type SCCmec type Source Animal Country of origin Owner 

S56D2 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S56H7 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S56F3 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S57E7 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S60C4 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S60C6 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S60D6 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S60D7 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S61A3 MSSP n/t n/t n/t wound dog Denmark A. Moodley 

S61A8 MSSP n/t n/t n/t wound dog Denmark A. Moodley 

S61B7 MSSP n/t n/t n/t vulva dog Denmark A. Moodley 

S61D1 MSSP n/t n/t n/t eye dog Denmark A. Moodley 

S61H5 MSSP n/t n/t n/t wound dog Denmark A. Moodley 

S61I9 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S62A2 MSSP n/t n/t n/t ear dog Denmark A. Moodley 

S63G7 MSSP n/t n/t n/t wound dog Denmark A. Moodley 

S76I4 MSSP ST273 n/t IV skin dog Denmark A. Moodley 

JZ22 MSSP n/t n/t n/t dermatitis dog Sweden S. Borjesson 

JZ31 MSSP n/t t65 n/t dermatitis dog Sweden S. Borjesson 

JZ56 MSSP n/t t30 n/t dermatitis dog Sweden S. Borjesson 

JZ133 MSSP n/t n/t n/t dermatitis dog Sweden S. Borjesson 
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Name 

(Alternative name) 

Methicillin 

resistance 
Sequence Type Spa type SCCmec type Source Animal Country of origin Owner 

JZ146 MSSP n/t t63 n/t dermatitis dog Sweden S. Borjesson 

JZ151 MSSP n/t t64 n/t dermatitis dog Sweden S. Borjesson 

JZ152 MSSP n/t t01 n/t dermatitis dog Sweden S. Borjesson 

JZ170 MSSP n/t t15 n/t dermatitis dog Sweden S. Borjesson 

JZ208 MSSP n/t t05 n/t dermatitis dog Sweden S. Borjesson 

JZ220 MSSP n/t t50 n/t dermatitis dog Sweden S. Borjesson 

AB561 MSSP n/t n/t n/t dog bite human Sweden S. Borjesson 

AB564 MSSP n/t n/t n/t dog bite human Sweden S. Borjesson 

 

Table 2.2: Characteristics of the remaining S. pseudintermedius strains and other bacterial strains used in the project. Some strains are referred to with an alternative name in 

publications (shown in brackets). SCCmec = staphylococcal cassette chromosome mec element, Spa type = staphylococcal protein A type, n/t = not tested. 
 

Name 

(Alternative name) 

Methicillin 

resistance 
Sequence Type Spa type SCCmec type Source Animal Country of origin Owner 

E029 (6940) MRSP ST71 t02 II-III skin dog Italy A. Battisti 

E045 (19698) MRSP ST71 t02 II-III wound dog Sweden U. Andersson 

E046 (AB34) MRSP ST71 t02 II-III surgical wound dog Sweden U. Andersson 

E047 (KM061849) MRSP ST71 t02 II-III rhinitis cat Switzerland V. Perreten 

E052 (VPL07229) MRSP ST71 t02 II-III otitis externa dog Switzerland V. Perreten 

E061 (KM08465) MRSP ST71 t02 II-III inflammation dog Switzerland V. Perreten 
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Name 

(Alternative name) 

Methicillin 

resistance 
Sequence Type Spa type SCCmec type Source Animal Country of origin Owner 

E064 (KM1381) MRSP ST71 t02 II-III fistula dog Switzerland V. Perreten 

E075 (IMD071045) MRSP ST71 t02 II-III fistula dog Switzerland V. Perreten 

E133 (Sp73) MRSP ST71 t06 II-III urine dog Canada S. Weese 

E134 (Sp74) MRSP ST71 t06 II-III otitis externa dog USA S. Weese 

E140 (DK729) MRSP ST71 t02 V bite wound dog Denmark A. Moodley 

E017 (06-255) MRSP ST68 t06 V pyoderma dog USA D. Bemis 

E018 (06-1164) MRSP ST68 t06 V skin dog USA D. Bemis 

E019 (06-1400) MRSP ST68 t06 V pyoderma dog USA D. Bemis 

E020 (06-2584) MRSP ST68 t06 V pyoderma dog USA D. Bemis 

E022 (06-632) MRSP ST68 t06 V skin dog USA D. Bemis 

E023 (06-815) MRSP ST68 t06 V pyoderma dog USA D. Bemis 

E026 (06-1460) MRSP ST68 t06 V pyoderma dog USA D. Bemis 

E135 (Sp75) MRSP ST68 t06 V urinary tract infection dog USA S. Weese 

E136 (Sp80) MRSP ST68 t06 V surgical wound dog USA S. Weese 

HK2 MSSP n/t n/t n/t ear dog China A. Moodley 

HK14 MSSP n/t n/t n/t ear dog China A. Moodley 

Y1 MSSP n/t n/t n/t ear dog China A. Moodley 

S66E5 MSSP ST269 n/t IV skin dog Denmark A. Moodley 

S76G8 MSSP ST45 n/t n/t ear dog Denmark A. Moodley 

ED99 MSSP n/t n/t n/t pyoderma dog UK J. Fitzgerald 

S. delphini n/t n/t n/t n/t unknown unknown Denmark A. Moodley 
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Name 

(Alternative name) 

Methicillin 

resistance 
Sequence Type Spa type SCCmec type Source Animal Country of origin Owner 

S. intermedius n/t n/t n/t n/t unknown unknown Denmark A. Moodley 

MRSA2 MRSA n/t n/t n/t unknown unknown UK G. Amos 

MRSA6 MRSA n/t n/t n/t unknown unknown UK G. Amos 

MRSA8 MRSA n/t n/t n/t unknown unknown UK G. Amos 
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2.4. Plate assay 

Phages were isolated and amplified using plate assay and plate washes as previously 

described (Sambrook et al., 1989b). Tryptic Soya Broth (TSB) (Atlas, 1997) molten 

agar (TSB broth + 0.4% agarose + 5 mM CaCl2), TSB plates (TSB + 0.8% agarose + 

5 mM CaCl2), Ringers + Mg solution (0.15 M NaCl, 4.0 mM KCl, 4.0 mM CaCl2 

and 1 mM MgSO4) and an overnight bacterial culture was used. To ensure the 

clonality of newly isolated phages, a single plaque was picked with a Pasteur pipette 

and re-plated twice as previously described (Sambrook et al., 1989b). In the next 

sections, a top agar seeded with bacteria refers to 5 mL molten agar, prepared as 

described above, mixed with 100 µL overnight culture. 

 

2.5. Isolation of phages from faeces and soil 

5 grams of faecal material or soil were homogenised with 30 mL of buffer (0.25 M 

NaCl + 5 mM CaCl2) (Nälgård, 2011) and incubated overnight at 37°C to allow 

diffusion of phages. Tubes were centrifuged twice 15 min at 2,000 rpm, filtered (0.45 

µm filters) or unfiltered supernatants were spotted directly onto top agars seeded 

with bacteria. Enrichment was also attempted by mixing 5 mL of chloroform treated- 

supernatant + 100 µL overnight bacterial culture (strains E018, E133, E139 or E140 

chosen according to their diverse Sequence Types, see Table 2.1 and Table 2.2) + 5 

mM CaCl2 + 5 mL BHI, incubating overnight at 37°C with shaking and spotting 

filtered supernatants onto top agar seeded with bacteria to see plaques. All 

environmental samples were handled in the containment suite level 2 for safety 

reasons. 

 

2.6. Isolation of phages from water samples 

Water samples were filtered (0.20 µm filters), 10 mL of each filtered sample were 

mixed with 10 mL BHI + 100 µL overnight bacterial culture (strains E018, E029, 

E139, AB178, JZ22 or ED99, chosen according to their diverse Sequence Types and 

methicillin resistance status, see Table 2.1 and Table 2.2) + 5mM CaCl2 and 

incubated overnight at 37°C with shaking to enrich the sample. Tubes were 

centrifuged 10 min at 4,000 rpm, and filtered supernatants were spotted onto top agar 

seeded with bacteria to see plaques. 
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2.7. Isolation of phages from skin swabs 

Swabs and their transport gels were soaked in 1 mL 0.5 M NaCl + 0.1 M CaCl2 

(Prof. Finn Vogensen, personal communication) for 2h for phages to diffuse. 

Supernatants were taken without disturbing the settled swab or gel and spotted onto 

top agar seeded with bacteria (strains E018, E069, E133, E139, S66E5 or S76G8, 

chosen according to their diverse Sequence Types and methicillin resistance status, 

see Table 2.1 and Table 2.2) to see plaques. 

 

2.8. Isolation of temperate phages through co-culture 

Bacterial strains were cultivated in BHI until they were at mid-exponential phase. 1 

mL of the cultures were mixed together and incubated overnight at 37°C with 

shaking (Nälgård, 2011). Cells were centrifuged 10 min at 4,000 rpm and 10 µL of 

supernatant were spotted onto top agar seeded with bacteria to investigate the 

presence of phages. Alternatively, 100 µL of overnight cultures of cultivating strain 

and donor strain were added to 5 mL BHI. Cells were centrifuged after overnight 

incubation at 37°C with shaking. 500 µL of supernatant and 100 µL of cultivating 

strain were mixed and the presence of phages was investigated through plate assay. 

 

2.9. Induction of temperate phages with mitomycin C 

100 µL overnight culture of a potential lysogen was added to 5 mL of BHI and 

incubated 1h at 37°C with shaking (until OD600nm = 0.1). 0.5 µg/mL mitomycin C 

(Mitomycin C from Streptomyces caespitosus, Sigma) was added to the culture and 

incubated for 3h at 37°C with shaking. The culture was centrifuged 10 min at 4,000 

rpm, the supernatant was filtered with a 0.2 µm syringe filter and spotted onto top 

agar seeded with bacteria to see plaques. 

 
2.10. Titration of phage lysates 

Phage lysates were diluted and plate assay was performed with appropriate dilutions. 

Plaques were counted the next day to determine the titre in Plaque Forming Units per 

mL (PFU/mL). 
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2.11. Host range screening 

Phage lysates were diluted and 10 µL of 100, 10-1, 10-2, 10-3, 10-4, 10-5 and 10-6 

dilutions were spotted on top agar seeded with bacteria. Results were observed after 

incubation overnight at 37°C. Plaques were counted at two or three dilutions. If 

results were not consistent at different dilutions, the experiment was repeated. 

 

2.12. Genomic DNA extraction from phages 

0.1 µg/mL proteinase K (Promega), 2.5 mM EDTA and 0.5% SDS (w/v) were added 

to 1 mL of high titre phage lysate (109-1010 PFU/mL) and incubated 1h at 56°C to 

digest the capsid. 1 vol. phenol-chloroform-IAA 

(Phenol:Chloroform:Isoamylalcohol, 25:24:1, pH 8.0, Sigma) was added and mixed 

well. After centrifugation at 12,000 rpm for 10 min, the upper layer was transferred 

to a new tube. This step was repeated twice. 1 vol. chloroform was added, mixed 

well and centrifuged at 12,000 rpm for 5 min. The upper layer was transferred to a 

new tube, 0.1 vol. 3 M sodium acetate and 1 vol. 100% ethanol were added and 

incubated overnight at -20°C. After centrifugation at 12,000 rpm for 5 min, the 

supernatant was discarded and the pellet was washed with 70% ethanol before being 

dried at 60°C for 2h and dissolved in TE Buffer + 0.05 mg/mL RNase (Amresco). 

 

2.13. DNA concentration measurement 

DNA concentration was measured with a NanoDrop spectrophotometer (Fisher 

Scientific). If a very accurate reading was required, DNA concentration was 

measured with the Qubit® dsDNA BR assay kit and a Qubit® 2.0 fluorometer 

following the manufacturer’s instructions (Life Technologies). 

 

2.14. Phage genomic DNA digestion  

Phage genomic DNA was digested with EcoRI (Thermo Scientific) and Sau3AI 

(Fisher BioReagents) for 1h at 37°C following the manufacturer’s instructions. 2 

mM spermidine was added to facilitate digestion. 

 

2.15. DNA gel electrophoresis 

Gel electrophoresis was performed with 0.8 to 1% agarose gels containing 0.004% 

(v/v) ethidium bromide and 1x Tris-Acetate-EDTA (TAE) buffer. Gels were run 1h 

at 120 V. Gel pictures were taken with a Gene Flash transilluminator (Syngene Bio 
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Imaging). The GeneRuler 1kb DNA Ladder (Thermo Fisher Scientific), the 1kb 

DNA Ladder (Promega) and the 100bp DNA Ladder (Promega) were used as 

molecular weight markers. All sizes in the next chapters are shown in base pairs. 

 

2.16. Pulsed-Field Gel Electrophoresis (PFGE) 

50 µL of high titre phage lysate (109-1010 PFU/mL) were mixed with 50 µL of 2% 

Low Melting Point (LMP) agarose (Promega) in plug moulds. Plugs were left to set 

in the fridge for 5 min before being incubated overnight at 56°C with 1 mL lysis 

buffer (0.1 M EDTA, 0.1 M Tris-HCl pH 8.0, 1% SDS and 0.5 mg/mL proteinase K) 

to digest the phage capsid. Plugs were washed with 1 mL 0.5x Tris-Borate-EDTA 

(TBE) buffer for 20 min and slid into the wells of a 1% PFGE agarose gel. The gel 

was run for 20h (default settings on Chef Mapper machine, Biorad) and stained with 

0.002% (v/v) ethidium bromide after migration was complete. The Molecular Weight 

Marker for DNA 0.1-200 kb from λ phage (Sigma) was used and sizes are shown in 

kilobase pairs in the next chapters. 

 

2.17. Whole-genome sequencing and assembly 

Phage genomes were sequenced through a single-plaque sequencing method as 

previously described (Kot et al., 2014). Genome assembly was performed with the 

software CLC de novo Assembly Cell 4.0 (CLC Bio). 

 

2.18. Whole-genome annotation and alignment 

Phage genomes were annotated with the software Prokka, that uses the SwissProt 

protein database as a reference (Seemann, 2014). Genomes were aligned with the 

programme Mauve (Darling et al., 2010) using progressiveMauve algorithm and its 

default settings. Genomes were also aligned with the programme Easyfig (Sullivan et 

al., 2011) using the default settings and showing coding DNA sequences (CDSs) 

instead of genes. Colours codes for CDSs of known function were added to the CDS 

features in the GenBank files before performing alignment, as described in the 

Easyfig 2.1 user manual. 

 
2.19. Electron microscopy of phage particles 

10 µL of high titre lysate (109-1010 PFU/mL) were placed onto a formvar-carbon grid 

for 1 min. The surface liquid was blotted with a paper towel and the sample was 
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fixed and stained by adding 10 µL of 2% uranyl-acetate. The grid was blotted again 

and loaded onto a JEM-2010 electron microscope (JEOL). Samples were observed at 

40,000x and 50,000x magnification. 

 
2.20. Measuring phages on electron microscopy pictures 

Electron microscopy pictures were printed out on paper and the size of the capsid, 

tail and baseplate of each phage were measured in centimeters (Figure 2.1). The sizes 

were converted into nanometers by using the scale on each picture. Measurements 

were taken on six different phage particles in total, originating from two lysates that 

were produced independently. 

 

 

Figure 2.1: The size of the capsid, tail and baseplate of each phage were first measured in centimeters 

and then converted into nanometers by using the scale on each picture. 

 

2.21. Phage growth curve 

Bacterial cells from an overnight culture and phage particles were mixed together at 

a chosen MOI (Multiplicity Of Infection – relation between number of phages : 

number of bacterial cells) in 5 mL BHI and incubated at 37°C with shaking. To 

follow phage growth, 100 µL samples were taken at regular time intervals, 

centrifuged, filtered, and plate assay was performed with the supernatants to 

determine the titre in PFU/mL. 

 
2.22. Phage propagation in liquid culture 

Bacterial strains were cultivated in 250 mL BHI (in 1L flasks) at 37°C with shaking 

until mid-exponential phase. The culture was then split into up to ten times 25 mL (in 

125 mL flasks), 5 mM CaCl2 were added to each culture and phages were added at 

Capsid 

Tail 

Baseplate 
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an MOI of 1:1000. Cultures were incubated overnight at 37°C with shaking, the next 

day they were centrifuged and filtered to recover phage particles. 

 

2.23. Phage concentration on Amicon filters 

Following phage propagation, 15 mL of phage lysate were added to a 50-mL Amicon 

Ultra Centrifugal Filters Units (Millipore) and centrifuged at 2,200 rpm until the 

volume reached 500 µL or less. The concentrated lysate was pipetted into a 1.5 mL 

tube. The filter was washed with 1 mL Ringers + Mg that was added to the 

concentrated lysate. 

 

2.24. Testing the pre-attachment phase 

Bacterial cells at mid-exponential or stationary phase and phage particles were mixed 

together at an MOI of 1:1 in 1 mL BHI + 5mM CaCl2. Samples were incubated for 0, 

5, 10, 15, 20, 25 and 30 min at room temperature (RT). Tubes were centrifuged for 1 

min at 5,000 rpm to separate free phages from cells. Appropriate dilutions of the 

supernatants were plated out to determine the titre in PFU/mL. 

 

2.25. Phage mutagenesis through exposure to hydroxylamine 

200 µL of high titre phage lysate (108 to 1012 PFU/mL) were exposed to 

hydroxylamine as previously described (Davis et al., 1980) and incubated at 37°C 

until reaching 99.9% killing. The mutagenized phages were dialysed overnight at 

4°C against 1L Ringers + Mg. After dialysis, the phages were appropriately diluted 

with BHI to reach an MOI of 1:1 when added to a bacterial culture at mid- 

exponential phase. 5 mM CaCl2 were added to the culture and it was incubated 

overnight at 37°C with shaking. The next day the culture was centrifuged, the 

supernatant was filtered, concentrated on an Amicon filter and plated with the phage 

lysogen (300 µL of concentrated mutagenized phages on one plate). The protocol 

optimisation process is described in section 4.3. 

 

2.26. Phage mutagenesis through exposure to ultraviolet (UV) light 

500 µL of high titre phage lysate (109 to 1012 PFU/mL) were 10-fold diluted with 

Ringers + Mg, transferred to a small Petri dish and exposed to UV light (253.7 nm, 

0.707 mW/cm2) for 20s. UV-irradiated phages were mixed with bacterial cells at 

mid-exponential phase at an MOI of 1:1. For this, an appropriate volume of bacterial 
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culture at mid-exponential phase was centrifuged down and re-suspended in 3 mL 

BHI. The UV-irradiated phages were allowed to pre-attach to bacterial cells for 15 

min at RT in the small volume of liquid thus obtained (5 mL phages + 3 mL 

bacteria). BHI was then added up to 25 mL and the culture was incubated overnight 

at 37°C with shaking. The next day the culture was centrifuged, the supernatant was 

filtered, concentrated on an Amicon filter and plated with the lysogen. All 

manipulations and overnight incubation with UV-irradiated phages were performed 

in the dark with a safe red light to avoid photoreactivation. The protocol optimisation 

is described in section 4.4. 

 

2.27. Phage evolution through serial passaging on a permissive host 

Phages were added to 10 mL of bacterial culture at mid-exponential phase at a range 

of MOIs (1:50, 1:100, 1:500 and 1:1000) and incubated overnight at 37°C with 

shaking. The next day, cultures were centrifuged, supernatants were filtered and 

titres were checked through plate assay. The process was repeated six times by using 

the lysate from the previous step with the highest titre. All the filtered lysates were 

kept at +4°C until the end of the experiment. They were then concentrated on 

Amicon filters and plated with the phage lysogen (see also section 4.5). 

 

2.28. Production of cell lysate for Electrophoretic Mobility Shift Assay (EMSA) 

400 µL of overnight bacterial culture were added to 5 mL BHI and incubated for 4h 

at 37°C with shaking. The culture was then centrifuged, re-suspended in 500 µL ice-

cold washing buffer (50 mM Tris HCl, 5 mM EDTA, pH 8.0), centrifuged again and 

re-suspended in 700 µL ice-cold lysis buffer (50 mM Tris HCl, 0.15 M NaCl, 4.0 

mM KCl, 4.0 mM CaCl2 and 1 mM MgSO4, 5 mM EDTA, 10% glycerol, 200 µg/mL 

phenylmethylsulfonyl fluoride, pH 8.0). The mixture was transferred to a ribolysing 

tube containing glass beads and was ribolysed at 6,000 rpm for 2 x 40s. The 

ribolysed cells were centrifuged for 10 min at 10,000 rpm and the supernatant was 

frozen at -80°C until further use. Protein concentration was measured using the 

PierceTM BCA Protein Assay kit (Thermo Scientific). 

 

2.29. Production of dsDNA probes for EMSA through PCR 

The PCR mixture consisted of 10 pmol of ssDNA (ordered from Sigma) in a 25 µL 

final volume composed of 1x Q5® buffer (New England Biolabs), 0.2 mM dNTPs 
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(New England Biolabs), 0.5 µM forward and reverse primers (Table 2.3), 0.5 unit of 

Q5® DNA polymerase (New England Biolabs) and nuclease-free water. Reactions 

mixtures were thermally cycled according to Table 2.4. The length of the dsDNA 

probes (100 bp) was checked by gel electrophoresis before pooling five PCR 

reactions together and purifying the product using the QIAquick® PCR Purification 

kit (Qiagen). 

 

2.30. Radiolabelling of dsDNA probes 

The radiolabelling mixture consisted of 20 pmol of dsDNA probe in a 50 µL final 

volume composed of 1x T4 Kinase buffer (New England Biolabs), 20 units of T4 

Polynucleotide Kinase (New England Biolabs), 1 nmol [γ-32P]ATP (Perkin Elmer, 

3,000 Ci/mmol, 10 mCi/mL) and nuclease-free water. The mixture was incubated for 

30 min at 37°C then 20 min at 65°C to inactivate the kinase. The radiolabelled probe 

was purified using the QIAquick® PCR Purification kit (Qiagen) and stored at +4°C 

until further use. DNA concentration was measured in ng/µL using a UVette® and a 

Biophotometer (Eppendorf). 

 

2.31. Protein binding to dsDNA probes and EMSA 

The protein binding mixture consisted of 5 ng of radiolabelled DNA in a 40 µL final 

volume composed of 1x binding buffer (10x binding buffer: 1.5 M NaCl, 40 mM 

KCl, 40 mM CaCl2 and 10 mM MgSO4, 50 mM EDTA), 1 µg poly(dIdC), 20 µg 

proteins from cell lysate (section 2.28) and nuclease-free water. The mixture was 

incubated for 30 min at 37°C. 10 µL 4x non-denaturing loading buffer (0.2 M Tris 

HCl, pH 6.8, 40% glycerol, 0.04% bromophenol blue) were added and the binding 

reaction was loaded onto a native 4% polyacrylamide gel that was run for 2h at 250 

V. After migration, the gel was dried and an X-ray film was exposed to the gel for 3h 

to see the result. 

 

2.32. Cloning and expressing the phage cI repressor gene into E. coli 

The SpT5 cI gene was amplified through PCR in a mixture consisting of 1 µL SpT5 

genomic DNA in a 25 µL final volume composed of 1x Q5® buffer (New England 

Biolabs), 0.2 mM dNTPs (New England Biolabs), 0.5 µM forward primer and 

reverse primer (Table 2.3), 0.5 unit of Q5® DNA polymerase (New England Biolabs) 

and nuclease-free water. Reaction mixtures were thermally cycled according to Table 



 

 49 

2.4. The PCR product was purified using the QIAquick® PCR Purification kit 

(Qiagen). 

The purified product was A-tailed by mixing 30 µL of purified PCR product with 1x 

Taq Buffer A (KAPA Biosystems), 0.25 mM dATP (Invitrogen), 5 units of KAPA 

Taq polymerase (KAPA Biosystems) and nuclease-free water in a 40 µL final 

volume, and incubating at 95°C for 5 min, then 72°C for 20 min. 

The A-tailed product was gel purified and subcloned into the pGEM-T Easy Vector 

and E. coli JM109 cells following the manufacturer’s instructions (Promega). 

Positive (white) colonies were selected and plasmid miniprep was performed. 

Both pGEM-T + insert and pET28a (Novagen) plasmids were digested with HindIII 

and NdeI using the MutiCORE buffer and following the manufacturer’s instructions 

(Promega). The excised insert and the digested pET28a plasmid were gel purified 

and subcloned into E. coli JM109 cells following the manufacturer’s instructions 

(Promega). Kanamycin-resistant colonies were selected and plasmid miniprep was 

performed. 

BL21(DE3)pLysS Competent Cells were transformed with the purified pET28a 

plasmid + insert or the empty pET28a vector following the manufacturer’s 

instructions (Promega). Kanamycin-resistant colonies were selected and cultivated 

overnight in LB (Luria Broth) + 25 µg/mL kanamycin. The next day, cultures were 

set up in triplicate: 3x pET28a + insert + isopropyl β-D-1-thiogalactopyranoside 

(IPTG), 3x pET28a + insert and 3x empty pET28a + IPTG, and for this 1 mL 

overnight culture was added to 50 mL LB + 50 µg/mL chloramphenicol + 25 µg/mL 

kanamycin and cultures were incubated at 37°C with shaking. When OD600nm 

reached 0.6, 0.25 mM IPTG was added to the relevant cultures to induce gene 

expression. Cultures were incubated at 25°C overnight. The next day, cultures were 

centrifuged 5 min at 4,000 rpm and pellets were used to produce cell lysate as 

described in section 2.28 (see also Figure 5.9). Miniprep was performed with the 

GeneJET Plasmid Miniprep kit (Thermo Scientific). After each miniprep, plasmid 

sequences were checked through Sanger sequencing using the M13 or T7 primers for 

pGEM-T and pET28a respectively (Table 2.3). DNA gel purification was performed 

with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel). 
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2.33. Polyacrylamide gel electrophoresis (PAGE) 

PAGE was performed with Mini-PROTEAN® Tris/Tricine Precast Gels (New 

England Biolabs) and 1x RunBlue Native Run Buffer (Expedeon). Gels were run for 

45 min at 160 V and stained with the InstantBlue reagent (Expedeon) following the 

manufacturer’s instructions. The Color Prestained Protein Standard, Broad Range 

(11 – 245 kDa) (NEB) was used as molecular weight marker. All sizes in the next 

chapters are shown in kiloDaltons. 

 

2.34. Calculating the molecular weight of the CI repressor protein 

The theoretical molecular weight of the CI repressor was calculated with the Protein 

Molecular Weight calculator (http://www.bioinformatics.org/sms/prot_mw.html) 

using the translated sequence of the protein (CDS: locus SpT5_016 in SpT5 genome, 

base range: complement (14,496..14,825), GenBank accession number: KX827368). 

 

2.35. Visualising CI repressor structures 

Visualisation and comparison of CI repressor structures were carried out with the 

Deep View – Swiss-PdbViewer software, using the Magic Fit > C-carbons function 

(Guex and Peitsch, 1997). The crystal structures of the N-terminal domain of the λ 

and TP901-1 CI repressors were used for comparison and are listed in the PDB 

(Protein Data Bank) as 1LMB and 3ZHM respectively.  

 

2.36. Protein and short DNA sequence alignments 

Protein and short DNA sequence alignments were performed with the online tools 

Clustal Omega (Sievers et al., 2011), or protein blast using the blastp algorithm 

(NCBI) using the default settings. 

 

2.37. End-point PCR primer design 

Once the area to be targeted through PCR was selected, it was loaded into the NCBI 

online tool Primer-BLAST and specific primers were designed according to the 

desired settings (Table 2.3). The specificity of the primers was tested against the 

NCBI nucleotide (nr) database. 
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Table 2.3: Characteristics of the PCR primers and oligonucleotides used in the project. The SpT5 operator and its mirror image are in bold and underlined. 

 

Primer/oligo name Sequence (5’-3’) PCR target 
GenBank accession 

no. or reference 

Primer position 

(base range) 

Amplicon’s 

size (bp) 

SpT5_F1 CGTCGTTGGTAATGAAGTGGC 
Phage SpT5 DNA KX827368 

16,592 – 16,612 
125 

SpT5_R1 CTGTTCTTACCTGACCTGCGT 16,696 – 16,716 

SpT152_F1 CAGCGGCTTTTGACTGAAACA 
Phage SpT152 DNA KX827369 

16,730 – 16,750 
485 

SpT152_R1 CGAGACAAGACGGAACGACA 16,266 – 16,285 

SpT252_F1 AGGGTGGGAATCTTTTTGTGGA 
Phage SpT252 DNA KX827370 

20,942 – 20,963 
261 

SpT252_R1 ACGGCTCTCGCTAACAAACA 20,703 – 20,722 

SpT99F3_F1 ACGTGAATACGAAGAAGCTGTTGA 
Phage SpT99/F3 DNA KX827371 

4,065 – 4,088 
375 

SpT99F3_R1 CTTGTTCGTAAGTACGCGCCC 4,419 – 4,439 

SpT5_op_F1 GACATGTGAGAACGATGGAT 
EMSA ssDNA probes N/A 

3’ end of EMSA probe 
100 

SpT5_op_R1 TTTCGGCTCGCAATCTTTTTA 5’ end of EMSA probe 

SpT5_op 

(EMSA probe) 

GACATGTGAGAACGATGGATGTTAAGGTATAAAC

AGTTCTCAAAAGAGAACGAAGGAGGTGACAAAA

TGGTACTTGATCTAAAAAGATTGCGAGCCGAAA 

N/A 

(= not applicable) 
N/A N/A N/A 

SpT5_mir 

(EMSA probe) 

GACATGTGAGAACGATGGATGTTAAGGTATAAAC

ACAAGAGAAAACTCTTGGAAGGAGGTGACAAAA

TGGTACTTGATCTAAAAAGATTGCGAGCCGAAA 

N/A N/A N/A N/A 

SpT5_cI_F1 CAATCATATGAGAAGCAATGATGAAATAATCAC 
SpT5 cI repressor gene KX827368 

14,800 – 14,825 
346 

SpT5_cI_R1 CAATAAGCTTTTATTTATCGCGTGATTTCC 14,496 – 14,515 

M13_forward GTTTTCCCAGTCACGAC Sequencing of pGEM-T 

Easy Vector 
Promega 

2,949 – 2,972 
N/A 

M13_reverse CAGGAAACAGCTATGAC 176 - 197 

      



 

 

52 

Primer/oligo name Sequence (5’-3’) PCR target 
GenBank accession 

no. or reference 

Primer position 

(base range) 

Amplicon’s 

size (bp) 

T7_forward TAATACGACTCACTATAGGG Sequencing of pET28a 

plasmid 
Novagen 

367 - 386 
N/A 

T7_reverse GCTAGTTATTGCTCAGCGG 68 - 86 

SpT99F3_low_F1 TGGGGAAGAAAGGCTCGGA Either side of change in 

coverage 
KX827371 

18,257 – 18,275 
315 

SpT99F3_high_F1 TACTGTGCAATTTGCGCTTG 18,552 – 18,571 

SpT5_F1_cir TCGTTAATATACTAACGCAAT 
SpT5 genome ends KX827368 

39,619 – 39,639 
431 

SpT5_R1_cir AACATTTAGTACAACGCTCGCTA 223 - 245 

SpT152_F1_cir GATGCAACCCCAATTAATTCCAT 
SpT152 genome ends KX827369 

40,707 – 40,729 
818 

SpT152_R1_cir TGGATTCCACCAAAAGCTGTC 417 - 437 

SpT252_F1_cir TATTGAGTGCAGCAGGCCG 
SpT252 genome ends KX827370 

39,875 – 39,893 
447 

SpT252_R1_cir TCGCTATAGGTGCCATTGCT 209 - 228 

SpT99F3_F1_cir TTTTTAAAACGAGGAACGTCTCGGG 
SpT99/F3 genome ends KX827371 

40,611 – 40,635 
415 

SpT99F3_R1_cir CTCTTATCTATTGCATGGCGGTG 252 - 274 

Int_F1 GGCCGAGGGTATATTGACCG 
Phage integrase gene KX827368 

11,433– 11,452 
578 

Int_R1 GAGGCTAAAAGCGCAGAAGC 11,991 – 12,010 

Pse F2 TRGGCAGTAGGATTCGTTAA S. pseudintermedius nuc 

gene 

AB327164 

(Sasaki et al. 2010) 

44 - 63 
926 

Pse R5 CTTTTGTGCTYCMTTTTGG 951 - 969 

qPse F1 ATTTGGGAACGCTAAAACATT S. pseudintermedius nuc 

gene (qPCR) 

AB327164 

(Sasaki et al. 2010) 

982 - 1002 
183 

qPse R1 ATTCAAGCGCTCATTGATAC 1,145 – 1,164 

SpT5_im_F1 GATACTAAGAGCTTTTGCAAAATC 
SpT5 immunity region KX827368 

14,646 – 14,669 
462 

SpT5_im_R1 GCCATTTCATCTTGTGTGATTC 15,066 – 15,087 



 

 53 

2.38. End-point PCR 

The PCR mixture consisted of 1 µL of DNA extract or one colony in a 25 µL final 

volume composed of 1x PCR Master Mix (Promega), 0.4 µM forward and reverse 

primers (Table 2.3), 0.5 mg/mL Bovine Serum Albumin (BSA) and nuclease-free 

water. Reactions mixtures were thermally cycled according to Table 2.4. 

Table 2.4: Description of the end-point PCR programmes that were used in the project. When 

performing colony PCR, the first step was extended to 5 min. 

 

PCR target PCR programme  PCR target PCR programme 

Phage DNA 

(Warwick phage-

specific PCR) 

1 x   2min at 94°C  

Phage DNA 

(genome ends) 

1 x   2min at 94°C 

        15s at 94°C 

30 x 15s at 64°C 

        45s at 72°C 

         15s at 94°C 

30 x 25s at 64°C 

        45s at 72°C 

1 x   2 min at 72°C  1 x   2 min at 72°C 

EMSA ssDNA 

1 x   30s at 98°C  

Phage integrase 

gene 

1 x   2min at 94°C 

        10s at 98°C 

30 x 15s at 60°C 

        10s at 72°C 

         15s at 94°C 

30 x 15s at 59°C 

        45s at 72°C 

1 x   2 min at 72°C  1 x   2 min at 72°C 

SpT5 cI repressor 

gene 

1 x   30s at 98°C  

S. pseudintermedius 

nuc gene 

1 x   2min at 95°C 

        10s at 98°C 

30 x 15s at 64°C 

        15s at 72°C 

         30s at 95°C 

30 x 35s at 56°C 

        1 min at 72°C 

1 x   2 min at 72°C  1 x   2 min at 72°C 

SpT5 immunity 

region 

1 x   2min at 94°C 

        15s at 94°C 

30 x 15s at 60°C 

        45s at 72°C 

1 x   2 min at 72°C 

 

2.39. Determining sequencing read coverage across phage genomes 

The sequencing reads stored in FASTQ files were aligned, or mapped, against the 

assembled genome with the programme BWA-MEM (Li and Durbin, 2009). The 

SAM (Sequence Alignment/Map) file thus obtained was converted into a sorted 

BAM file (binary version of a SAM file) with the application Samtools. The sorted 

BAM file was read with the programme Qualimap (Garcia-Alcalde et al., 2012). 

Qualimap produced a report containing information useful to evaluate the quality of 
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sequencing data, including read coverage across each phage genome. The plot data 

were exported into an Excel file to produce diagrams (detailed description of the 

steps in Appendix A). 

 

2.40. Visualising read alignment across theoretical genome ends 

Phage genomes were cut in half and both original ends were pasted together in a 

fasta file. Sequencing reads were aligned with the cut-and-pasted version of each 

genome following the method described above. The obtained sorted BAM file was 

read with the programme Artemis (Rutherford et al., 2000) using the BAMView 

option (Carver et al., 2010) that allows the visualisation of sequencing reads aligned 

against a reference genome. 

 

2.41. Spiking faeces with S. pseudintermedius cells 

100 µL BHI containing 108 down to 102 CFU of the strain E140 were added to 0.1 

gram of faeces in a 2-mL tube. Liquid and faeces were mixed together with a thin 

metallic spatula and DNA was extracted for further tests (section 2.43). 

 

2.42. Spiking swabs with S. pseudintermedius cells 

100 µL BHI containing 108 down to 102 CFU of the strain E140 were pipetted onto 

Sterilin® flocked regular swabs (Appleton Woods) and left to dry for an hour. DNA 

was extracted for further tests (section 2.44). 

 

2.43. DNA extraction from cells and faeces 

DNA extraction from cells and faeces was performed using the FastDNATM Spin Kit 

for Soil (MP Biomedicals) from 350 µL overnight culture or 0.1 gram of faeces 

following the manufacturer’s instructions. 

 

2.44. DNA extraction from skin swabs 

DNA extraction from skin swabs was performed using the NucleoSpin® Tissue kit 

(Macherey-Nagel) following the manufacturer’s instructions for DNA extraction 

from buccal swabs. The buffer used at step 1 was Phosphate-Buffered Saline (PBS). 
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2.45. Swab and faecal sample collection 

Skin swabs and faecal samples were collected by veterinarians at various locations: 

Kenilworth Avonvale practice, Warwick Avonvale practice, Pride Veterinary Centre 

(Derby), Bristol veterinary school and Lene Boysen’s veterinary dermatology 

practice (Copenhagen, Denmark). Sampling kits containing tubes, swabs and 

minimal sample collection requirements were provided. Veterinarians were asked to 

collect swabs from three places on the body of one dog (bare skin if healthy, or 

pyoderma lesions) and collect a faecal sample from the same animal when possible. 

Faecal samples were also obtained from dogs owned by colleagues in Denmark, 

from litterbins in Coventry and from dogs staying at the Castledean Boarding Kennel 

(Coventry). Samples were kept in the fridge until analysis. 

 

2.46. Quantitative PCR (qPCR) primer design 

Both qPCR reverse primers were designed to hybridise to regions specific to S. 

pseudintermedius based on an alignement of the nuc genes of several Staphylococcus 

species (S. aureus, S. delphini and S. intermedius) generated with the software 

MEGA (Tamura et al., 2011). The amplicon size was 183 bp (size range for qPCR 

primers: 100 to 200 bp) (Table 2.3). 

 

2.47. qPCR assay for the detection of S. pseudintermedius 

The qPCR mixture consisted of 10 µL of DNA extract in a 25 µL final volume 

composed of 1x of Power SYBR® Green PCR Master Mix (Fisher Scientific), 0.9 

µM forward and reverse primers (Table 2.3), 1.0 mg/mL BSA and nuclease-free 

water. qPCR reactions were performed in MicroAmp® Fast Optical 96-well Reaction 

plates (Fisher Scientific) using a 7500 Fast Real-Time PCR System and the 7500 

Software (Applied Biosystems). Plates were sealed with MicroAmp® Optical 

Adhesive Films (Fisher Scientific) and reaction mixtures were thermally cycled once 

at 50°C for 2 min, once at 95°C for 10 min, and 40 times at 95°C for 15s and 60°C 

for 1 min. Genome copy standards were used to generate a standard curve and thus 

genomic DNA from S. pseudintermedius was used to obtain a dilution range from 

1,000,000 to 1 genome(s). The theoretical genome copy numbers in the standards 

were calculated with an online tool (http://cels.uri.edu/gsc/cndna.html) based on the 

amount of DNA in the standard solution in nanograms and the length of the genome 

(2.8 Mbp for strain E140). The geometric mean of Ct values was determined with a 
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threshold of 0.03 and converted into absolute genomic quantities by plotting against 

the genome copies of the standard curve. 
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Chapter 3 Isolation and characterisation of S. pseudintermedius phages 

 

3.1. Introduction 

The initial stage of this PhD project was dedicated to the isolation and 

characterisation of S. pseudintermedius phages. This work was novel; no peer-

reviewed published work was available regarding phages infecting this bacterium. 

However, techniques for the isolation of bacteriophages have been developed during 

the 100 years following their discovery and could be applied to S. pseudintermedius 

phages. These techniques are straightforward and usually involve very little 

processing of the samples. If the sample is liquid, it can be directly spotted onto a top 

agar seeded with the host to see plaques after overnight incubation. If the sample is 

not liquid, it can be homogenised with a buffer and then spotted onto an agar plate 

seeded with bacteria. With these simple techniques, phages were isolated from a 

variety of sources such as water (Karumidze et al., 2013), faeces (Golomidova et al., 

2007, Owens et al., 2013) and soil (Salifu et al., 2013, Cross et al., 2015). 

 

Sometimes the concentration of phages in a sample is too low to be detected by 

spotting a few tens of microliters onto bacteria. To overcome this problem, the 

sample can be enriched through addition of bacteria and nutrients followed by 

overnight incubation (Kim et al., 2012, Lee et al., 2011). If the phages present in the 

sample can infect the host, phage amplification will occur bringing the concentration 

to a level detectable via plate assay. The isolation of S. pseudintermedius lytic 

phages was attempted by screening dog faeces, dog skin swabs, soil and water 

through similar methods, with or without enrichment. The choice of samples to 

screen was based on the assumption that the pathogen could be present in those 

samples and that phages would co-reside with their host. This was discussed in more 

detail in Chapter 7. 

 

Another source of bacteriophages are the prophages present in lysogens. These can 

be captured through co-culture where two or more bacterial strains are cultivated 

together overnight. Prophages in the genome of the donor strain(s) may 

spontaneously enter the lytic cycle, lyse their host and infect the cultivating strain(s) 

present in the culture. Phages amplified this way can be recovered by spotting the 

culture supernatant onto the cultivating strain. This method was used for the isolation 
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of S. intermedius phages (before the re-classification of the SIG group, see section 

1.3.2) with the aim to develop phage typing of S. intermedius strains (Overturf et al., 

1991). 

 

As mentioned in section 1.4.2.b.iv, prophage induction can also occur when inducing 

the host SOS stress response. The antibiotic mitomycin C is a DNA replication 

inhibitor that was isolated from the microorganism Streptomyces caespitosus. It 

induces cross-links in the DNA that trigger the SOS response (Tomasz and Palom, 

1997). Mitomycin C exposure of λ lysogens was shown to induce lytic growth of the 

prophages through activation of RecA and self-cleavage of the CI repressor (Roberts 

and Roberts, 1975). A RecA-LexA-dependent pathway similar to that of E. coli was 

described in S. aureus (Bisognano et al., 2004) and temperate phages of 

Staphylococus epidermidis were isolated through mitomycin C exposure (Gutiérrez 

et al., 2010). This indicated that temperate phages of S. pseudintermedius might be 

inducible through mitomycin C treatment. It was therefore attempted. 

 

Once phages were isolated, they were characterised genotypically and phenotypically 

with a range of methods commonly found in the literature (Kulikov et al., 2012, 

Shen et al., 2012, Kesik-Szeloch et al., 2013). These methods included: 

- Restriction-Fragment Length Polymorphism (RFLP) where phage genomic 

DNA was digested with restriction enzymes and patterns of digestion were 

compared to each other to evaluate diversity between genomes. 

- Pulsed-Field Gel Electrophoresis (PFGE) to determine the phages’ genome 

size 

- Host range testing 

- Whole-genome sequencing and alignment to compare phage genomes 

- Electron microscopy to study the phages’ morphology. This would provide 

information about their taxonomy. 

 

3.2. Isolation of S. pseudintermedius phages from dog samples 

3.2.1. Phages isolated in Denmark prior to the PhD project 

S. pseudintermedius phages were isolated from dog faeces at the University of 

Copenhagen prior to this PhD project (Nälgård, 2011). They were first thought to be 

lytic because of their environmental origin (dog faeces) and were named accordingly 
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SpLx (for Staphylococcus pseudintermedius Lytic phage, x = number). Following 

initial characterisation, ten phages were selected and provided by our collaborators in 

Copenhagen for further analysis in this PhD project. 

 

3.2.2. Further attempts at isolating phages from dog faeces, skin swabs and soil 

Over a period of four months, more than 100 dog faecal samples were collected from 

different sources in the United Kingdom (boarding kennels, veterinary practices, the 

Bristol veterinary school, litterbins) and screened for the presence of phages 

following a method similar to the one previously used in Denmark. A few soil 

samples from the Tocil Wood area situated on the University of Warwick campus 

where dogs were walked regularly were screened (section 2.5). Nine Thames water 

samples collected downstream of wastewater treatment plants during a different 

project were screened too because water is a well-known source of phages (section 

2.6). In addition, skin swabs collected by veterinarians from healthy dogs or dogs 

with suspected pyoderma in the Coventry area were screened for the presence of 

phages (sections 2.7 and 2.45). All these attempts remained unsuccessful. 

 

Three weeks were spent at the University of Copenhagen to screen faecal samples 

collected in Denmark for the presence of phages using the same equipment and the 

same method as previously used there. Skin swabs collected in Denmark from dogs 

with suspected pyoderma were screened too (sections 2.7 and 2.45), but no lytic 

phages were isolated. 

 

For all of the above experiments, bacterial strains with different characteristics and 

Sequence Types (STs) were used to try and capture the diversity of phages 

hypothetically present in environmental samples. STs included ST68 and ST71, 

which are most common in the USA and in Europe respectively (section 1.3.3.b). 

Isolating phages against these strains was therefore the most relevant to this PhD 

project. 

 

3.3. Isolation of temperate S. pseudintermedius phages 

3.3.1. Co-culture with several bacterial strains 

Temperate phages were isolated through co-culture in Denmark prior to this PhD 

project. They could not be re-amplified from the stock lysates stored at -80°C so the 
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experiment was repeated in Denmark following the same protocol (section 2.8). Four 

different mixes (A, B, C and D) composed of seven different S. pseudintermedius 

strains were tested (Table 3.1). The choice of bacterial strains to use in this 

experiment was based on the result of two previous experiments performed by 

collaborators in Denmark. In the first experiment, a plaque-like inhibition zone was 

observed when spotting the supernatant of an overnight culture of the MSSP S61A8 

strain onto a lawn of the MRSP E140 strain. In the second experiment, the ability of 

MSSP cultures to form inhibition zones onto lawns of MRSP strains was further 

studied. The supernatants of 44 MSSP overnight cultures were spotted onto lawns of 

eleven MRSP strains (Nälgård, 2011). The selection of these strains was based on 

their sequence type (ST71 and ST68) and their availability at the time of the 

experiment. The three MSSP strains (S61A8, S61H5 and S63G7) that formed 

inhibition zones on one or several MRSP strains were kept to perform co-culture 

with combinations of the same eleven MRSP strains. 

 

After overnight incubation, the supernatant of each mixed culture was spotted onto 

all fourteen bacterial strains used in the experiment. Plaques were seen on four 

MRSP strains when spotting the supernatant of mixes A, B and D. No plaques were 

seen when spotting mix C on any of the strains. This way twelve temperate phages 

were isolated (Table 3.2). These phages were considered independent from each 

other until further analysis and were named SpTx (Staphylococcus pseudintermedius 

Temperate phage, x = number) depending on the co-culture mix they came from and 

the bacterial strain on which they formed plaques. 
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Table 3.1: Eleven MRSP strains and three MSSP strains were used to isolate temperate phages through co-culture. The bacterial strains were combined in four different mixes 

(A, B, C and D) composed of seven different S. pseudintermedius strains (✔ = strain was present in mix). 
 

S. pseudintermedius 
strains 

Methicillin resistance Sequence Type Country of origin 
Co-culture mixes 

A B C D 

E029 MRSP ST71 Italy ✔  ✔  

E045 MRSP ST71 Sweden ✔   ✔ 

E086 MRSP ST71 The Netherlands ✔  ✔  

E123 MRSP ST71 USA ✔ 
 

✔ 
 

E133 MRSP ST71 Canada ✔ ✔ 
 

✔ 

E140 MRSP ST71 Denmark ✔ ✔ 
 

✔ 

E018 MRSP ST68 USA 
 

✔ ✔ 
 

E022 MRSP ST68 USA 
 

✔ ✔ 
 

E025 MRSP ST68 USA 
 

✔ 
 

✔ 

E122 MRSP ST68 USA 
 

✔ 
 

✔ 

E136 MRSP ST68 USA 
   

✔ 

S61A8 MSSP n/t Denmark ✔ 
  

✔ 

S61H5 MSSP n/t Denmark 
 

✔ ✔ 
 

S63G7 MSSP n/t Denmark 
  

✔ 
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Table 3.2: After co-culture, twelve temperate phages were isolated when spotting the supernatants of mixes A, B and D onto four MRSP strains. No phages were isolated from 

mix C. SpT = Staphylococcus pseudintermedius Temperate phage. 

 

S. pseudintermedius 

strains 
Methicillin resistance Sequence Type Country of origin 

Co-culture mixes 

A B D 

E029 MRSP ST71 Italy SpT1 SpT2 SpT3 

E045 MRSP ST71 Sweden SpT4 SpT5 SpT6 

E086 MRSP ST71 The Netherlands SpT7 SpT8 SpT9 

E133 MRSP ST71 Canada SpT10 SpT11 SpT12 
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3.3.2. Co-culture with two bacterial strains 

When using multiple strains for co-culture it was subsequently difficult to determine 

where the isolated phage(s) came from. This might cause Intellectual Property issues 

since the strains used in this project were obtained from other researchers or 

institutes. To avoid problems in the event of patenting or commercialising a product 

derived from this project, it was decided to use only two strains at a time for 

subsequent co-culture experiments (section 2.8). This way the phage donor strain 

was easily identifiable. 

 

A number of combinations were tested (Table 3.3). Four cultivating strains, E018, 

E136, E086 and E140, were selected because they exhibited the Sequence Types 68 

and 71. A fifth cultivating strain, ED99, was chosen because it did not to contain any 

prophages in its genome (Ben Zakour et al., 2012). Using this strain meant that 

homoimmunity would be avoided (section 1.4.2.b.v) and this might help capture 

phages unable to form plaques on the other cultivating strains. Donor strains were 

selected based on their sensitivity or resistance to methicillin, their geographical 

origin and their sequence type. 

 

Only one combination led to the isolation of a phage: phage SpT99/F3 came from the 

strain S56F3 and was cultivated on the strain ED99. It was possible that 

homoimmunity and other phage resistance mechanisms (e.g. restriction-modification 

systems) prevented the isolation of phages on the other cultivating strains. The fact 

that only one phage was isolated on ED99 suggested that homoimmunity might not 

be the main phage resistance mechanism in S. pseudintermedius. 



 

 

64 

Table 3.3: Five cultivating strains were co-cultivated with 37 donor strains. The combination ED99 / S56F3 was the only one that led to the isolation of a phage. (-) = no 

phage was isolated, (+) = a phage was isolated, n/t = not tested. 
 

Donor strains Methicillin resistance Sequence Type Country of origin 
Cultivating strains 

E018 E136 E086 E140 ED99 

E029 MRSP ST71 Italy n/t - n/t n/t - 
E045 MRSP ST71 Sweden n/t - n/t n/t - 

E086 MRSP ST71 The Netherlands n/t - n/t n/t - 

E123 MRSP ST71 USA n/t - n/t n/t - 

E133 MRSP ST71 Canada n/t - n/t n/t - 

E140 MRSP ST71 Denmark n/t - n/t n/t - 

E018 MRSP ST68 USA n/t n/t - n/t n/t 

E022 MRSP ST68 USA n/t n/t - n/t n/t 

E025 MRSP ST68 USA n/t n/t - n/t n/t 

E122 MRSP ST68 USA n/t n/t - n/t n/t 

E136 MRSP ST68 USA n/t n/t - n/t n/t 

E139 MRSP ST258 Denmark n/t - - n/t - 

AB190 MRSP n/t Sweden - n/t n/t - n/t 

AB312 MRSP n/t Sweden - n/t n/t - n/t 

AB316 MRSP n/t Sweden - n/t n/t - n/t 

AB680 MRSP n/t Sweden - n/t n/t - n/t 

HK2 MSSP n/t China - n/t n/t - n/t 

HK14 MSSP n/t China - n/t n/t - n/t 
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Donor strains Methicillin resistance Sequence Type Country of origin 
Cultivating strains 

E018 E136 E086 E140 ED99 

Y1 MSSP n/t China - n/t n/t - n/t 

S56F3 MSSP n/t Denmark - n/t n/t - + 

S56H7 MSSP n/t Denmark - n/t n/t - - 

S57E7 MSSP n/t Denmark - n/t n/t - - 

S60C4 MSSP n/t Denmark - n/t n/t - - 

S60C6 MSSP n/t Denmark - n/t n/t - - 

S60D6 MSSP n/t Denmark - n/t n/t - - 

S60D7 MSSP n/t Denmark - n/t n/t - - 

S61A3 MSSP n/t Denmark n/t - - n/t - 

S61A8 MSSP n/t Denmark n/t - - n/t - 

S61B7 MSSP n/t Denmark n/t - - n/t - 

S61H5 MSSP n/t Denmark n/t - - n/t - 

S63G7 MSSP n/t Denmark n/t - - n/t - 

JZ31 MSSP n/t Sweden - n/t n/t - n/t 

JZ56 MSSP n/t Sweden - n/t n/t - n/t 

JZ133 MSSP n/t Sweden - n/t n/t - n/t 

JZ146 MSSP n/t Sweden - n/t n/t - n/t 

JZ151 MSSP n/t Sweden - n/t n/t - n/t 

JZ152 MSSP n/t Sweden - n/t n/t - n/t 
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3.3.3. Induction of prophages through mitomycin C exposure 

The induction of prophages through exposure to mitomycin C (section 2.9) was 

attempted on 46 bacterial strains (Table 2.1) and seven phages were isolated. They 

were called SpT08, SpT86, SpT123, SpT152, SpT178, SpT252 and SpT316 based on 

the bacterial strains they came from: 08BKT31634, E086, E123, JZ152, AB178, 

AB252 and AB316 respectively. SpT123 and SpT178 proved to be very difficult to 

amplify to a high titre so both were set aside. 

 

At this stage, 30 phages in total had been isolated (eighteen phages at Warwick and 

ten phages in Denmark). A summary of their characteristics including their strain of 

origin (when applicable) and the strain on which they were propagated is given in 

Table 3.4. Most of these phages were isolated from and/or propagated on ST71 

MRSP strains from different geographical origins. No phages were either isolated or 

propagated on ST68 strains despite such strains being used as donor or cultivating 

strains in all the experiments described above. This suggested that ST68 strains are 

particularly resistant to phage infection. Following isolation, the 28 selected phages 

(30 phages minus SpT123 and SpT178) were characterised to determine whether 

they were different genotypically and phenotypically. 
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Table 3.4: 30 phages in total were isolated either before or during this PhD project. Most of these phages were isolated from and/or propagated on ST71 MRSP strains from 

different geographical origins. No phages were isolated or propagated on ST68 strains. N/A: not applicable, n/t: not tested. 

 

Bacteriophages Method of isolation 
Bacterial strain of origin 

Methicillin resistance Sequence Type Country of origin 
Propagation strain 

SpL7 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL8 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL9 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL10:1 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL10:2 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL10:5 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL10:6 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL11 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpL12 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 
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Bacteriophages Method of isolation 
Bacterial strain of origin 

Methicillin resistance Sequence Type Country of origin 
Propagation strain 

SpL13 Isolation from faeces 
N/A    

E133 MRSP ST71 Canada 

SpT1 Co-culture (mix A) 
Unknown    

E029 MRSP ST71 Italy 

SpT2 Co-culture (mix B) 
Unknown    

E029 MRSP ST71 Italy 

SpT3 Co-culture (mix D) 
Unknown    

E029 MRSP ST71 Italy 

SpT4 Co-culture (mix A) 
Unknown    

E045 MRSP ST71 Sweden 

SpT5 Co-culture (mix B) 
Unknown    

E045 MRSP ST71 Sweden 

SpT6 Co-culture (mix D) 
Unknown    

E045 MRSP ST71 Sweden 

SpT7 Co-culture (mix A) 
Unknown    

E086 MRSP ST71 The Netherlands 

SpT8 Co-culture (mix B) 
Unknown    

E086 MRSP ST71 The Netherlands 

SpT9 Co-culture (mix D) 
Unknown    

E086 MRSP ST71 The Netherlands 

SpT10 Co-culture (mix A) 
Unknown    

E133 MRSP ST71 Canada 
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Bacteriophages Method of isolation 
Bacterial strain of origin 

Methicillin resistance Sequence Type Country of origin 
Propagation strain 

SpT11 Co-culture (mix B) 
Unknown    

E133 MRSP ST71 Canada 

SpT12 Co-culture (mix D) 
Unknown    

E133 MRSP ST71 Canada 

SpT99/F3 Co-culture (two strains) 
S56F3 MSSP n/t Denmark 

ED99 MSSP n/t UK 

SpT08 Mitomycin C induction 
08BKT31634 MRSP n/t Sweden 

E045 MRSP ST71 Sweden 

SpT86 Mitomycin C induction 
E086 MRSP ST71 The Netherlands 

S60D7 MSSP n/t Denmark 

SpT123 Mitomycin C induction 
E123 MRSP ST71 USA 

S60D7 MSSP n/t Denmark 

SpT152 Mitomycin C induction 
JZ152 MSSP n/t Sweden 

E139 MRSP ST258 Denmark 

SpT178 Mitomycin C induction 
AB178 MRSP n/t Sweden 

ED99 MSSP n/t UK 

SpT252 Mitomycin C induction 
AB252 MRSP n/t Sweden 

E045 MRSP ST71 Sweden 

SpT316 Mitomycin C induction 
AB316 MRSP n/t Sweden 

E045 MRSP ST71 Sweden 
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3.4. Genotypic and phenotypic characterisation of the isolated phages 

3.4.1. RFLP analysis of the phages’ genomes 

To characterise the 28 phages, the first test that was performed was RFLP (Figure 

3.1). It was carried out with two enzymes: EcoRI and Sau3AI. EcoRI recognises a 

six base-long digestion site (G^AATT_C) and Sau3AI recognises a shorter four 

base-long digestion site (^GATC_) (section 2.14). It was therefore likely that a 

higher number of Sau3AI sites compared to EcoRI sites were present in a given 

genome, meaning that the genome was more likely to be digested by Sau3AI than 

EcoRI. When using these two enzymes for RFLP it was hoped that digestion could 

be seen with at least Sau3AI. EcoRI digestion patterns, when digestion was possible, 

would bring additional information about diversity. 

 

The genomic DNA from all the phages in this experiment was digested with EcoRI 

and Sau3AI, indicating that all phages contained dsDNA in their capsid. Digestion 

patterns were compared and according to RFLP analysis phages SpT1 to SpT12 were 

very similar. A preliminary host range study showed that all twelve phages exhibited 

the same host range except for phage SpT5 (Table 3.5). Phage SpT8 was kept 

alongside SpT5 as a representative of the eleven other phages. It later turned out that 

the discrepancy between SpT5 and the other phages was due to the fact that 

undiluted lysates were used at the time to test the host range. The inhibition zones 

seen on ST68 strains with all phages but SpT5 were due to lysis from without and 

not productive lysis. As a result, phage SpT5 alone was kept as representative of the 

twelve initial phages. 

 

SpT08, SpT252 and SpT316 appeared very similar to each other based on RFLP 

results. SpT252 was kept for further work. SpT152 and SpT99/F3 showed unique 

patterns of digestion with both enzymes and were kept too. SpT86 proved to be very 

difficult to amplify to a high titre, hence the faint bands visible in Figure 3.1, E and 

F. Added to the fact that SpT86 was very unstable when stored at +4°C, this meant 

that this phage was not kept for further work. 

 

Among the phages isolated in Denmark prior to this PhD project, three types of 

phages could be distinguished. One group included SpL8, SpL9 and SpL10:2. A 

second group included SpL7, SpL10:1, SpL10:6, SpL11, SpL12 and SpL13. 
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SpL10:5 exhibited a unique digestion pattern with both enzymes. One phage out of 

each group, SpL8, SpL11 and SpL10:5, were kept for further analysis. 

 

 

Figure 3.1: RFLP analysis of the S. pseudintermedius phages’ genomic DNA revealed a variety of 

digestion patterns. (A1 and A2) SpT1 to SpT12 with Sau3AI and (B) EcoRI, (C) SpT152, (D) 

SpT99/F3, (E) SpT08, SpT86, SpT252 and SpT316 with Sau3AI and (F) EcoRI, (G, H, I) SpL7 to 

SpL13 with Sau3AI and (J, K, L) EcoRI. 
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Table 3.5: A preliminary host range study showed that phages SpT1 to SpT12 exhibited the same host range except for phage SpT5. In this small study, the host range was 

tested by spotting 10 µL of undiluted lysate onto a top agar seeded with bacteria. (+) = phage lysis was observed, (-) = no lysis. 
 

S. pseudintermedius 

strains 

Methicillin 

resistance 

Sequence 

Type 

Bacteriophages 

SpT1 SpT2 SpT3 SpT4 SpT5 SpT6 SpT7 SpT8 SpT9 SpT10 SpT11 SpT12 

E029 MRSP ST71 + + + + + + + + + + + + 

E045 MRSP ST71 + + + + + + + + + + + + 

E086 MRSP ST71 + + + + + + + + + + + + 

E123 MRSP ST71 + + + + + + + + + + + + 

E133 MRSP ST71 + + + + + + + + + + + + 

E140 MRSP ST71 + + + + - + + + + + + + 

E018 MRSP ST68 + + + + - + + + + + + + 

E022 MRSP ST68 + + + + - + + + + + + + 

E025 MRSP ST68 + + + + - + + + + + + + 

E122 MRSP ST68 + + + + - + + + + + + + 

E136 MRSP ST68 + + + + - + + + + + + + 

S61A8 MSSP n/t + + + + - + + + + + + + 

S61H5 MSSP n/t + + + + - + + + + + + + 

S63G7 MSSP n/t + + + + - + + + + + + + 
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In total seven phages were kept at this stage of the project for further work based on 

RFLP results (Figure 3.2). 

 

 

Figure 3.2: Seven phages were kept for further work after RFLP analysis. Digestion patterns of SpT5, 

SpT152, SpT252, SpL8, SpL11 and SpL10:5 with (A) EcoRI  and (B) Sau3AI, and (C) digestion 

patterns of SpT99/F3. 

 

Following RFLP analysis, PFGE was performed to determine the size of the selected 

phages’ genomes. From now on in this chapter, phages isolated at Warwick (SpT5, 

SpT152, SpT252 and SpT99/F3) will be referred to as “the Warwick phages” and 

phages isolated in Denmark (SpL8, SpL10:5 and SpL11) will be referred to as “the 

Danish phages”. 
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3.4.2. PFGE with the selected phages’ genomes 

After overnight digestion of the capsid, the genomic DNA of the selected phages was 

run on a PFGE gel for 20h (Figure 3.3 and section 2.16). 

 

 

Figure 3.3: PFGE analysis revealed that the length of the genome of the seven analysed phages was 

between 40 and 50 kilobases long. (A) PFGE with the Warwick phages. 1: SpT5, 2: SpT252, 3: 

SpT152 and 4: SpT99/F3. (B) PFGE with the Danish phages. 1: SpL8, 2: SpL10:5 and 3: SpL11. 

 

The length of the genome of the seven analysed phages was between 40 and 50 

kilobases long. Temperate phages often have short genomes (around 40 kb or less) 

compared to lytic phages that can have much larger genomes up to 500 kb 

(Ackermann, 2006). The genome size of the Warwick phages was therefore 

consistent with the fact that they were temperate. The Danish phages exhibited the 

same genome size. This might indicate that they were temperate as well, even though 

they were considered lytic because they were isolated from the environment. 

 

SpT99/F3 showed a unique PFGE pattern with bands around 50, 100, 150, 190 and 

200 kb. A similar result was obtained when performing PFGE for the first time with 

SpT99/F3 genomic DNA (Figure 3.4). The gel presented in Figure 3.3 was 

performed later to confirm the result. For this, SpT99/F3 was re-amplified from the   

-80°C stock lysate to make sure fresh genomic DNA was used. The differences in 

migration distances between both gels were due to the fact that a different agarose 

was used for the second PFGE experiment (Figure 3.3). 
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Figure 3.4: Similar migration patterns were observed when performing PFGE the first time with the 

Warwick phages. 1: SpT5, 2: SpT252, 3: SpT152, 4: SpT86 and 5: SpT99/F3. 

 

The multiple bands corresponding to SpT99/F3 could have resulted from 

contamination of the phage’s DNA with the host’s DNA. If this was case, it was 

surprising that it did not happen with the other phages that were prepared for PFGE 

the same way as SpT99/F3. These bands could also correspond to concatemers of 

SpT99/F3 genomes. Another possibility was the presence of a second phage (or 

more) in the SpT99/F3 lysate, which genome was visible on the gel. In spite of this 

unusual PFGE pattern, SpT99/F3 was kept for further analysis. 

 

3.4.3. Host range screening and Efficiency Of Plating (EOP) 

To characterise the selected phages phenotypically, the host range and EOP (section 

2.11) were determined on a library of 72 methicillin-sensitive or methicillin-resistant 

S. pseudintermedius strains obtained from different parts of the world (Sweden, 

Denmark, UK, USA, China) (Table 3.6). Each phage was tested once on each 

bacterial strain. The phage titre on the test strain was divided by the phage titre on 

the reference strains to calculate the EOP. 
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Table 3.6: The host range of the studied phages was narrow (growth on less than half of 72 S. pseudintermedius strains) and three different plaque sizes were observed. Each 

phage was tested once on each bacterial strain. EOP was calculated by dividing the phage titre on the test strain by the phage titre on the reference strain (in grey). n/t = not 

tested, (-) = no growth, S = small plaques, M = medium-sized plaques, L = large plaques (see pictures below – magnification is the same for all three pictures). 
 

 
 

S. pseudintermedius 

strains 
Methicillin resistance Sequence Type 

Bacteriophages 

SpT5 SpT152 SpT252 SpT99/F3 SpL8 SpL10:5 SpL11 

E029 MRSP ST71 8.7x10-1 S - 8.5 S - 4.1x10-1 S 2.5 M 8.5x10-1 M 

E045 MRSP ST71 1.0 M - 1.0 S - 1.0 S 1.0 M 1.0 M 

E046 MRSP ST71 - - - - - - - 

E047 MRSP ST71 7.0x10-1 M - 9.7x10-1 S - 1.2 S 3.5 M 8.2x10-1 M 

E052 MRSP ST71 - - - - - - - 

E061 MRSP ST71 6.1x10-1 S - 5.7x10-1 S - 4.2x10-1 S 2.0 S 8.2x10-1 M 

E064 MRSP ST71 7.4x10-1 M - 4.5x10-1 S - 2.9x10-1 S 3.5 M 1.18 M 

E075 MRSP ST71 - - - - - - - 

E086 MRSP ST71 1.3 S - 5.2 S - 1.0 S 2.5 M 9.3x10-1 M 

E123 MRSP ST71 1.3 S - 2.2 S - 3.7x10-1 S 3.0 M 6.6x10-1 M 

medium small large 

5 mm 5 mm 5 mm 
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S. pseudintermedius 

strains 
Methicillin resistance Sequence Type 

Bacteriophages 

SpT5 SpT152 SpT252 SpT99/F3 SpL8 SpL10:5 SpL11 

E133 MRSP ST71 1.8 M - 4.7 M - 7.5x10-1 S 2.5 M 9.3x10-1 M 

E134 MRSP ST71 1.1 M - 5.0 M - 4.2x10-1 S 2.5 M 8.8x10-1 M 

E140 MRSP ST71 - - - - - - - 

E017 MRSP ST68 - - - - - - - 

E018 MRSP ST68 - - - - - - - 

E019 MRSP ST68 - - - - - - - 

E020 MRSP ST68 - - - - - - - 

E022 MRSP ST68 - - - - - - - 

E023 MRSP ST68 - - - - - - - 

E025 MRSP ST68 - - - - - - - 

E026 MRSP ST68 - - - - - - - 

E122 MRSP ST68 8.0x10-7 S - - - - - - 

E135 MRSP ST68 - - - - - - - 

E136 MRSP ST68 - - - - - - - 

E069 MRSP ST73 6.5x10-3 S - - - 2.9x10-3 S 2.5x10-4 S 4.9x10-6 S 

E125 MRSP ST58 - - - - - - - 

E126 MRSP ST113 - - - - - - - 

E139 MRSP ST258 2.0x10-1 M 1.0 S 3.7x10-2 S - 8.3x10-2 S 3.5x10-2 M - 

AB178 MRSP n/t - - - - - - - 

AB190 MRSP n/t 1.3 S - 6.7 M - 8.3x10-1 S 3.0 M 1.0 M 

AB252 MRSP n/t - - - - - - - 



 

 

78 

S. pseudintermedius 

strains 
Methicillin resistance Sequence Type 

Bacteriophages 

SpT5 SpT152 SpT252 SpT99/F3 SpL8 SpL10:5 SpL11 

AB255 MRSP n/t - - 2.5x10-6 S - - - 1.6x10-5 M 

AB312 MRSP n/t 1.2 S - 3.0 S - 3.3x10-1 S 1.5 M 1.0 M 

AB316 MRSP n/t - - - - - - - 

AB680 MRSP n/t 3.3x10-6 S - 4.2 M - 3.7x10-1 S 4.0x10-1 S 1.2 M 

08BKT.. MRSP n/t 1.3x10-1 L - - - - - - 

HK2 MSSP n/t - 4.2x10-1 M 8.7x10-3 S 5.1x10-1 S 1.9x10-5 S 1.6x10-1 L 7.1x10-2 L 

HK14 MSSP n/t - - - - - - - 

Y1 MSSP n/t - 1.2x10-5 M - 4.3x10-4 S - - - 

S56C3 MSSP n/t - - - - - - - 

S56D2 MSSP n/t - - - - 6.4x10-4 S - - 

S56F3 MSSP n/t 2.0x10-4 L 1.2x10-6 M 1.2x10-4 M - 1.8x10-5 L 1.4x10-4 M 1.4x10-5 M 

S56H7 MSSP n/t - - - - - - - 

S57E7 MSSP n/t 4.3x10-5 M 1.2x10-4 S 2.5x10-4 M - 1.3x10-4 L 6.2x10-4 M 7.1x10-3 M 

S60C4 MSSP n/t - - - - - - - 

S60C6 MSSP n/t 6.0x10-2 S 1.54 M - - 5.5x10-1 S 3.7x10-3 M 2.9x10-1 M 

S60D6 MSSP n/t 2.7x10-6 S - - - - 3.7x10-6 S 2.9x10-6 S 

S60D7 MSSP n/t - - - - - - - 

S61A3 MSSP n/t 7.3x10-6 S - - - - - 2.1x10-6 S 

S61A8 MSSP n/t - - - - - - - 

S61B7 MSSP n/t 1.3x10-7 S - - 2.7x10-5 S - - 7.1x10-7 M 

S61D1 MSSP n/t - - - - - - - 
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S. pseudintermedius 

strains 
Methicillin resistance Sequence Type 

Bacteriophages 

SpT5 SpT152 SpT252 SpT99/F3 SpL8 SpL10:5 SpL11 

S61H5 MSSP n/t - - - - - - - 

S61I9 MSSP n/t 4.3x10-5 S - 1.5x10-4 L 5.5x10-5 S 9.1x10-4 L 1.2x10-4 M 7.1x10-4 M 

S62A2 MSSP n/t - - - - - - - 

S63G7 MSSP n/t 2.0x10-6 S - - - - - - 

S66E5 MSSP n/t 8.4x10-4 S - 8.6x10-2 S - 2.7x10-3 S 7.5x10-3 S 7.1x10-4 S 

S76G8 MSSP n/t - - - - - - - 

S76I4 MSSP n/t - - - - - - - 

JZ22 MSSP n/t 1.3x10-4 S - - - - - - 

JZ31 MSSP n/t - - - - - - - 

JZ56 MSSP n/t 3.3x10-6 S 2.5x10-6 S - 7.1x10-4 S - 8.7x10-5 M 3.6x10-5 M 

JZ133 MSSP n/t - - - 6.4x10-4 L - - - 

JZ146 MSSP n/t 6.7x10-5 S 4.2x10-1 M 3.5x10-4 S - - 2.5x10-5 L 6.4x10-5 L 

JZ151 MSSP n/t - - - - - - - 

JZ152 MSSP n/t 2.0x10-5 L - 5.0x10-6 S - - 1.2x10-6 M 7.1x10-6 M 

JZ170 MSSP n/t - - 1.5x10-5 M - - 2.5x10-6 M - 

JZ208 MSSP n/t - - 6.7x10-4 M - - 5.0x10-4 S 2.1x10-5 M 

JZ220 MSSP n/t - 4.2x10-7 L 2.5x10-6 M - - 5.0x10-6 M 7.1x10-7 M 

AB561 MSSP n/t 1.5x10-2 S 9.2x10-3 S - 7.5x10-2 S 2.4x10-1 S 5.0x10-3 S 3.6x10-1 M 

AB564 MSSP n/t 3.3x10-3 S 1.2x10-2 S - - 6.4x10-3 S 7.5x10-4 S 1.4x10-2 S 

ED99 MSSP n/t - - - 1.0 M - - - 
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The host range of the studied phages was narrow (growth on less than half of the 

library). On the contrary to broad-host range phages such as phage K that can grow 

on almost all S. aureus strains (O'Flaherty et al., 2005), they could not form plaques 

on all S. pseudintermedius strains. 

 

SpT5 had the largest host range and formed plaques on 31 out of 72 strains (43%). 

Phages SpT252, SpL8, SpL10:5 and SpL11 exhibited the next broadest host ranges 

and these were similar to each other This suggested that these phages were less 

diverse than originally thought based on RFLP results. These five phages could form 

plaques on several ST71 strains at high EOP (1.0x10-1 and over) and around half of 

the MSSP strains at low EOP (less than 1.0x10-4). No phage growth was observed on 

any ST68 strains except for phage SpT5 at a very low EOP (8.0x10-7) on E122. This 

further supported the idea that ST68 strains are particularly resistant to phage 

infection (see section 3.3.3). SpT152 and SpT99/F3 exhibited the narrowest host 

ranges with growth on 11 (15%) and 8 (11%) out of 72 strains respectively. Their 

EOPs were from medium (1.0x10-2) to low (1.0x10-4) value and they could not form 

plaques on any MRSP strains except for SpT152 on E139. 

 

Three plaque sizes were distinguished and the seven phages exhibited all three of 

them depending on the host. Most plaques were small or medium-sized and turbid. 

This was consistent with the fact that the Warwick phages were temperate and 

suggested once again that the Danish phages might be temperate too. 

 

It was possible that S. pseudintermedius contained prophages similar to the tested 

phages. In what case the narrow host ranges could be explained by the phenomenon 

of homoimmunity. The use of Vir mutants insensitive to homoimmunity could 

therefore broaden the spectrum of the selected phages by allowing them to 

successfully infect lysogens (section 1.4.3). 
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3.4.4. Whole-genome sequencing 

3.4.4.a. Whole-genome sequencing of the Danish phages 

While the work presented above was carried out at the University of Warwick, the 

genomes of SpL8, SpL10:5 and SpL11 were sequenced and annotated by 

collaborators in Denmark. These three phages were first thought to be lytic because 

they were isolated from faeces and not through induction of prophages. The 

annotation of the genomes revealed that all three contained genes associated with 

lysogeny (integrase gene, cI repressor gene, etc.). SpL8, SpL10:5 and SpL11 were 

therefore likely to be temperate and, were these phages to be selected for phage 

therapy development, the isolation of Vir mutants became necessary. 

 

3.4.4.b. Whole-genome alignment after sequencing the Warwick phages 

The genomes of SpT5, SpT152, SpT252 and SpT99/F3 were sequenced and 

assembled in Denmark by Dr Witold Kot (section 2.17). They were then annotated at 

the University of Warwick by Dr Andrew Millard (section 2.18). These temperate 

phages contained genes typically associated with lysogeny and similar to those of 

phage λ, such as genes coding for integrases and Cro/CI repressors (see Chapter 6). 

To compare the seven genomes to each other and study genetic diversity in greater 

detail, they were aligned using the programme Mauve (Figure 3.5). 
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Figure 3.5: Whole-genome alignment performed with Mauve. The three Danish phages (SpL8, SpL10:5 and SpL11) were extremely similar. Genomic rearrangements 

(coloured blocks in different order) and unique (white) regions were seen in the Warwick phages’ genomes (SpT5, SpT252, SpT152 and SpT99/F3.). SpT99/F3 was very 

different from the other six phages. 
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Mauve outlined regions of the genomes that aligned with parts of other genomes. 

These regions, circled by coloured blocks, were presumably homologous and 

internally free of genomic rearrangements. Within these blocks, the programme drew 

a similarity profile of the genome sequence. The height of the similarity profile 

corresponded to the average level of conservation in that region of the genome. Some 

areas were completely white meaning that they were not aligned and were unique to 

a particular genome. Regions outside the outlined blocks lacked any detectable 

homology (Darling et al., 2010). 

 

Mauve outlined five coloured blocks (yellow, green, blue, purple and red). Based on 

this alignment, the Danish phages were genetically very similar to each other with no 

unique (white) regions visible in their genome. This suggested that genetic diversity 

of these phages was not as high as the RFLP analysis indicated. Genomic 

rearrangements could be seen in SpT5, SpT252 and SpT152 where the same 

coloured blocks were outlined but in a different order. SpT5 was also very similar to 

the Danish phage genomes apart from genomic rearrangements. No unique regions 

were seen to differentiate SpT5 from the Danish phages. At this point it is important 

to note that the presumption that genomic rearrangements took place was based on 

the assumption that the studied genomes were not circularly permuted (section 

1.4.2.a.iv). Bioinformatics analyses were carried out to determine whether the 

genomes had distinct cohesive ends or were circularly permuted (section 0). 

 

On the contrary to the SpT5 genome, unique regions were visible in the genome of 

SpT252 and SpT152. For SpT152, this could be expected since this phage was 

isolated on an MRSP strain different from those used for the isolation of SpT5 and 

the Danish phages. Regarding the SpT99/F3 genome, Mauve attempted to outline 

homologous blocks but white regions were numerous within these blocks. A quarter 

of SpT99/F3 genome lacked any homology with the other genomes (regions outside 

blocks). This confirmed that this genome was unique among the S. pseudintermedius 

phages isolated in this project. The observation was consistent with the RFLP, PFGE 

and host range results. 
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The genome sizes determined through sequencing for SpT5, SpT152, SpT252, SpL8, 

SpL10:5 and SpL11 were around 40 kb (Table 3.7). They were consistent with the 

PFGE results. Similarly to the other phages, a single 40-kb long genome was 

detected and assembled for SpT99/F3. However, PFGE results for this phage 

suggested that more than one phage might be present in its lysate. Further analysis of 

the sequencing data was carried out to explore this possibility (section 6.4). 

Table 3.7: Whole-genome sequencing revealed that the seven phage genomes were around 40 

kilobases long. This was consistent with the PFGE results. 
 

 Bacteriophages 

 SpT5 SpT152 SpT252 SpT99/F3 SpL8 SpL10:5 SpL11 

Genome 

size (kb) 
39.8 41.1 40.1 40.7 40.5 39.8 40.1 

 

In conclusion, whole-genome alignment revealed that the Danish phages were 

virtually all the same phage. They were also very similar to SpT5 and this was 

consistent with host range results. For these reasons, SpT5 was kept and the Danish 

phages were set aside. SpT252 was very similar to SpT5 in terms of host range and 

genome sequence except for a unique region around 21,000 bp so it was kept too. 

SpT152 and SpT99/F3 were shown to be different from SpT5 and SpT252 both 

genotypically and phenotypically. They were kept for further work as well. 
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3.4.5. Determination of the phages’ morphology through electron microscopy 

The four selected phages were observed in electron microscopy (EM) to determine 

their morphology at the University of Warwick with Ian Hands-Portman’s help 

(Figure 3.6 and section 2.19). 

 

 

Figure 3.6: the Warwick phages exhibited morphologies similar to that of the Siphoviridae family 

with icosahedral capsids and long tails. (A) SpT5, (B) SpT152, (C) SpT252, (D) SpT99/F3 

 

The four Warwick phages had icosahedral capsids and long tails (more pictures in 

Appendix B), and they measured between 225 and 275 nm in total (Table 3.8 and 

section 2.20). This type of morphology was similar to that of the Siphoviridae 

family, a family of bacteriophages characterised by linear genomic DNA, long non-

contractile tails, and a total size of around 200 nm (Ackermann, 2006). Importantly 

all the SpT99/F3 phage particles that were observed in EM appeared to have empty 

heads (dark centre + white lining along the edge of the capsid) and no baseplate was 

seen at the tip of their tails. This strongly suggested that the genomic DNA was 

ejected during sample preparation, displacing the baseplate in the process. SpT99/F3 

particles may also be naturally unstable. Indeed, it was noticed that the titre of 

(A) 

(C) (D) 

(B) 
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SpT99/F3 lysates decreased at a higher rate than lysates of the other three Warwick 

phages when stored at +4°C for several months. Measurements taken on SpT99/F3 

phage particles during this project were therefore not fully representative of the size 

of viable SpT99/F3 particles. 

Table 3.8: The capsid, tail and baseplate of phages SpT5, SpT152 and SpT252 were of similar sizes 

(in nm). For SpT99/F3, measurements were taken on particles with empty heads and were therefore 

not fully representative of the size of viable SpT99/F3 particles. 
 

 
 

Bacteriophages 

 SpT5 SpT152 SpT252 SpT99/F3 

Size (nm) 

Capsid 54.0 60.6 56.9 55.0 

Tail 144.4 143.9 139.3 199.8 

Baseplate 28.4 27.3 31.9 ? 

Total length 226.9 231.8 228.1 271.7 

 

SpT5, SpT152 and SpT252 exhibited similar capsid, tail and baseplate sizes. The 

structure of the baseplate was very different from the thin conical tail tip surrounded 

by tail fibres of phage λ (Casjens and Hendrix, 2015) (Figure 3.7, A). The 

comparatively large baseplate of SpT5, SpT152 and SpT252 was similar to that of 

the lactococcal phage TP901-1, another siphovirus (Spinelli et al., 2014) (Figure 3.7, 

B). Tail fibres, either side tail fibres like that of λ or a central tail fibre like that of 

TP901-1, were not seen on the three Warwick phages. The absence of tail fibres has 

been observed in other Siphoviridae, such as the lactococcal phage p2 (Spinelli et al., 

2006) (Figure 3.7, C). It was, however, possible that tail fibres were not visible on 

the three phages because they have fallen off during sample preparation or because 

the appropriate staining technique was not used. One way to confirm whether this 

might be the case would be to take pictures of a phage known to have fibres using 

the same technique and check whether fibres can be seen. 
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Figure 3.7: (A) Phage λ has a conical tail tip surrounded by side tail fibres, shown with black arrows 

(picture from Casjens and Hendrix, 2015). (B) The lactococcal phage TP901-1 has a larger baseplate 

with a short central tail fibre, shown with black arrows (picture from Spinelli et al., 2014). (C) The 

lactococcal phage p2 has a larger baseplate without tail fibres (picture from Spinelli et al., 2006). 

 

Interestingly, the tail end of Siphoviridae phages, which recognises the receptor on 

the host cell surface, appears to display different morphologies depending on the 

nature of the receptor, i.e. a protein or carbohydrate. Phages that interact with protein 

moieties usually possess a thin, pointed end while those that interact with 

carbohydrate moieties display a much larger baseplate (Mahony and van Sinderen, 

2012). This suggested that SpT5, SpT152 and SpT252 recognise carbohydrate 

moieties on the surface of their host. 

 

It can be shown whether phages have contractile tails by observing them after having 

incubated them with their host or bacterial membranes. Phages and host/membranes 

should be incubated long enough so that attachment and DNA injection occurs but 

not so long that phages lyse their host. Contractile tails will appear shorter once 

DNA has been injected. Filtered lysates of the Warwick phages were used to 

generate the above pictures, no bacterial membranes were present. It was therefore 

not confirmed whether they had non-contractile tails. 

 

3.5. Conclusions 

The isolation of lytic S. pseudintermedius phages was attempted through screening of 

dog samples (faeces and skin swabs) and other samples (soil and water). Faecal 

samples were thought to be a particularly good source because ten phages infecting 

(B) (A) (C) 
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this pathogen were successfully isolated in Denmark from this type of samples prior 

to this PhD project. After many attempts using different types of samples, from 

different sources, with different versions of protocols, no other phages were found 

and experiments were discontinued. One possible reason why phages were not found 

was simply that they were not present in the screened samples. These were chosen on 

the principle of co-residence between host and phages, but there was no evidence of 

the presence of S. pseudintermedius in the samples. A study of the ecology of S. 

pseudintermedius and its phages was designed to try and understand where the 

pathogen and its phages might be (Chapter 7). 

 

The isolation of temperate phages through co-culture and mitomycin C exposure was 

more successful. In total, 28 phages were genotypically and phenotypically 

characterised. Following characterisation, four temperate phages isolated at the 

University of Warwick were selected. One of them, phage SpT5, was isolated 

through co-culture of seven S. pseudintermedius strains together and this meant the 

strain of origin of this phage was not known. Complementary experiments were 

carried out to identify the SpT5 lysogen (section 7.3.2.c). The ten Danish phages 

were shown to be probably temperate because they harboured genes typically 

associated with lysogeny (integrase gene, cI repressor gene, etc.). 

 

The fact that all phages isolated in this project were temperate suggested that 

lysogeny was their preferred lifestyle. This is not unusual for phages infecting 

pathogens. Numerous phages infecting S. aureus, an opportunistic pathogen of the 

skin, are temperate (Deghorain and Van Melderen, 2012) and no lytic phages of 

Clostridium difficile, a pathogen responsible for nosocomial infections, have been 

isolated to this day (Hargreaves and Clokie, 2014). Lytic phages are more common 

with pathogens able to survive and thrive in the environment such as Vibrio cholera 

(Faruque et al., 2005). S. pseudintermedius may occupy a small ecological niche 

restricted to the skin of dogs. If a bacterial pathogen is limited to replication 

associated with its animal host, the chance of a pathogen and a lytic phage 

encountering the animal host at the same time is limited. Lysogeny may be the best 

strategy for S. pseudintermedius phages to closely follow their bacterial host. 
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The presence of S. pseudintermedius temperate phages in the faecal samples 

screened in Denmark suggested that the host was present in these particular samples. 

This may have resulted from contamination with bacteria from the perineum, one of 

the carriage sites of S. pseudintermedius on dogs (Bannoehr and Guardabassi, 2012). 

It is important to note that the faecal samples from which the Danish phages were 

isolated were collected from a veterinary school where a number of pyoderma cases 

were handled every day. It is therefore possible that the prevalence of S. 

pseudintermedius was higher in that context and that contamination of faeces was 

likely to occur. For practical reasons most of the faecal samples analysed at the 

University of Warwick came from dogs not known to have been in contact with S. 

pseudintermedius. This may explain why no phages were found in these samples. 

However, the screening of faecal samples collected from the dermatology service of 

the Bristol veterinary school where pyoderma cases were handled did not lead to the 

isolation of lytic or temperate phages either. The presence of S. pseudintermedius 

and its phages in faeces may therefore be only occasional, even in an environment 

where the bacterium is likely to be more prevalent. 

 

Whole-genome sequencing revealed that the Danish and Warwick phages (apart 

from SpT99/F3) were strikingly similar on the genetic level. For this reason the ten 

Danish phages were not kept for further work. It was interesting to note that, 

similarly to the Warwick phages, the Danish phages belonged to the family of 

Siphoviridae (Nälgård, 2011). This type might be the most common S. 

pseudintermedius phages. Other types may exist. A study showed that in Clostridium 

difficile different antibiotics (mitomycin C and norfloxacin) induced different 

families of phages (Siphoviridae or Myoviridae) (Nale et al., 2012). This principle 

could be applied to S. pseudintermedius to isolate other families of phages.  

 
The four Warwick temperate phages that were selected for further work after 

characterisation exhibited similar characteristics (Table 3.9). 
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Table 3.9: The four Warwick temperate phages exhibited similar characteristics: they belonged to the 

same phage family, and had similar phage particle and genomes sizes. For SpT99/F3, measurements 

were taken on particles with empty heads and were therefore not fully representative of the size of 

viable SpT99/F3 particles. 

  Bacteriophages 

  SpT5 SpT152 SpT252 SpT99/F3 

Phage family Siphoviridae Siphoviridae Siphoviridae Siphoviridae 

Size (nm) 

Capsid 54.0 60.6 56.9 55.0 

Tail 144.4 143.9 139.3 199.8 

Baseplate 28.4 27.3 31.9 ? 

Total length 226.9 231.8 228.1 271.7 

Genome size (kb) 39.8 41.1 40.1 40.7 

 

The host range of these phages was narrow and none of them could infect ST68 S. 

pseudintermedius strains, one of the most common clones found in the USA. Added 

to the fact that they were temperate, these phages could not be considered ideal for 

phage therapy. As mentioned in section 1.2.4, it is becoming more and more 

accepted within the phage community and by regulatory authorities such as the Food 

and Drug Administration (FDA) that phage engineering is one of the ways forward 

to develop phage therapy because the perfect phage for one application may not exist 

in nature (Hodyra and Dabrowska, 2015). Based on this principle, mutagenesis 

approaches were used to isolate lytic mutants of the Warwick phages suitable for 

phage therapy (Chapters 4 and 5). 

 

Acknowledgements 

The Danish phages were isolated by Sofia Nälgård under the supervision of Prof. 

Luca Guardabassi (University of Copenhagen). Their genomes were sequenced and 

annotated by Dr Witold Kot and Dr Arshnee Moodley (University of Copenhagen). 

Samples (faeces, skin swabs and wastewater) used in this work were collected thanks 

to Sophie Bailey (Kenilworth Avonvale veterinary practice), Simon Davies 

(Warwick Avonvale veterinary practice), Paul Sands (Pride veterinary centre, 

Derby), Tristan Cogan (Bristol veterinary school), Lene Boysen (dermatology 

practice, Copenhagen), Dr Gregory Amos (University of Warwick), Dan Powell 

(Coventry City Council) and the Castledean boarding kennel’s staff. 

  



 

 91 

Chapter 4 Phage random mutagenesis for the isolation of Vir mutants 

 

4.1. Introduction 

Following isolation and initial characterisation, four phage candidates SpT5, 

SpT152, SpT252 and SpT99/F3 were kept for the development of phage therapy 

against S. pseudintermedius. These phages could not be used directly because they 

were temperate and only lytic phages are considered appropriate for phage therapy. 

To overcome this problem, it was decided to modify the selected phages through 

mutagenesis approaches. The objective was to isolate Vir mutants because of the 

advantages associated with the use of such mutants, e.g. the ability to overcome 

homoimmunity (sections 1.4.3 and 3.4.3). This property translates into the ability to 

form plaques on a lysogen that contains a similar prophage. The screening process 

for Vir mutants was based on this property and consisted in cultivating mutagenized 

phages on their respective lysogen. Having the lysogen of each phage was therefore 

necessary for these experiments. In the case of SpT5 the strain of origin (or lysogen) 

was not known because it was thought to have originated from a mix of bacterial 

strains (section 3.3.1). A new lysogen of SpT5 was isolated during the PhD project. 

 

Two types of mutagenesis approaches were considered: random or site-directed 

mutagenesis. Random mutagenesis was attempted first because even though precise 

phage engineering is becoming more and more accepted, the commercialisation of 

GMOs may still be difficult particularly in Europe. Random mutagenesis methods 

were expected to produce mutants that should not qualify as GMOs because they 

could be isolated in nature and do not require the introduction of foreign DNA in 

their genome. 

 

Two types of random mutagenesis methods were tested: 

- The exposure of phage particles to hydroxylamine, a chemical that induces 

random mutations in the DNA (Davis et al., 1980). It can usually penetrate 

the capsid of phages and induce mutations within 24 to 48 hours. 

- The exposure of phage particles to ultraviolet (UV) light. It can induce 

mutations in the DNA such as pyrimidine dimers (Goodsell, 2001, Tropp, 

2012) and has been used to mutagenize phage particles (Krwawicz et al., 
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2003, Drake, 1966). Mutations are usually induced within a few tens of 

seconds. 

 

In both cases the time necessary to reach 99.9% killing of phage particles, 

corresponding to a drop in titre by a factor of 103 PFU/mL, was determined. The idea 

that reaching 99.9% killing ensures optimal mutagenesis was discussed by Hopwood 

(Hopwood et al., 1985) in the context of his work on Streptomyces and since became 

a general consensus when performing mutagenesis. 

 

After exposure to the mutagen, mutations, that were likely to have occurred only on 

one strand, were expressed by cultivating mutagenized phages on a permissive host 

(the bacterial strain used to cultivate a given phage). This way, mutations would be 

stably integrated into the phage genome through DNA replication in the host 

(Griffiths et al., 1999). Amplifying phages on plates at this step was too labour-

intensive (too many plates needed) and could also be limiting in terms of phage titre. 

Amplification in liquid culture was preferred for this step because it might yield 

higher phage titres and increase the chances of finding a mutant. Optimisation was 

required to determine the optimal conditions for phage cultivation in liquid medium. 

Indeed, the efficiency of phage amplification depends on characteristics unique to a 

phage or group of similar phages. The adsorption rate (how quickly phages find and 

attach to host cells), the burst size (the number of phage particles produced during 

lysis) and the MOI are examples of such characteristics that can influence how 

efficiently phages amplify (Weld et al., 2004). It may also happen that amplification 

in liquid culture remains impossible with some phages (Prof. David Hodgson, 

personal communication). 

 

A third approach based on the ability of phages to evolve quickly was tested. This 

method called serial or multiple passaging was performed in the hope that a Vir 

mutant may arise spontaneously when sequentially amplifying phages on the same 

host. This principle has been used previously to isolate mutants with characteristics, 

e.g. host range, different from the original phage (Turner and Chao, 1998, Betts et 

al., 2013). Once again, optimisation was needed to determine the best conditions for 

successful sequential amplification. 
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4.2. Isolating and confirming lysogens for use in screening for Vir mutants 

As mentioned in section 4.1, lysogens were necessary for screening for Vir mutants 

after random mutagenesis. A lysogen of SpT5 was not directly available and a new 

one was isolated. This was done by scratching the centre of several SpT5 plaques 

cultivated on E045 (its cultivating strain) with a thin needle and re-streaking each 

obtained colony three times to ensure clonality. The lysogen of SpT5 was identified 

according to two criteria: resistance to lysogenised phage and production of phages 

when cultivated in liquid culture (Figure 4.1). One out of three putative lysogens 

could grow in presence of SpT5 indicating that it was likely to be a lysogen. This 

was further confirmed by the fact that the supernatant obtained after overnight 

culture of this strain could form plaques on a permissive host showing the production 

of phages in liquid culture. The identified lysogen was called E045 lys SpT5 (‘lys’ 

for ‘lysogen’). 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: (A) Strain (1) was likely to be a lysogen of SpT5 because it could grow in presence of the 

phage (streaked vertically between the two dashed lines). Strains (2) and (3) could not grow in 

presence of the phage and were not lysogens. The non-lysogenized host (4) was used as a control. (B) 

The supernatant of an overnight culture of the lysogen (1) formed plaques when spotted on a sensitive 

host (E029). This illustrated the production of phages during overnight incubation. The non-

lysogenized host (2) did not form plaques. 
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In the case of SpT152, SpT252 and SpT99/F3 the strain of origin was known. 

Primers specific to each phage were designed and used to check that the phages’ 

strains of origin were real lysogens (Figure 4.2). Amplification could be seen on 

phage DNA and their corresponding lysogens confirming the lysogenic state of the 

bacterial strains. Once this was confirmed, phage mutagenesis for the isolation of Vir 

mutants was attempted. 

 

 

Figure 4.2: PCR amplification was seen on each phage DNA (first lane) and their corresponding 

lysogens (third lane) when using primers specific to each phage genome. This confirmed the 

lysogenic state of the bacterial strains. 1: SpT5, 2: E045, 3: E045 lys SpT5, 4: SpT152, 5: E139, 6: 

JZ152, 7: SpT252, 8: E045, 9: AB252, 10: SpT99/F3, 11: ED99, 12: S56F3. 
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4.3. Phage mutagenesis through exposure to hydroxylamine 

4.3.1. Killing curve 

The time necessary to reach the 99.9% killing point (drop in titre by a factor of 103 

PFU/mL) when exposing phage particles to hydroxylamine was determined (section 

2.25). This parameter was measured for the four phages (Figure 4.3). 

 

 

Figure 4.3: 26 hours for SpT99/F3 (circles) and 38 hours for SpT5 (squares), SpT252 (diamonds) and 

SpT152 (triangles) were necessary to reach 99.9% killing when exposing phage particles to 

hydroxylamine (Y axis in log10 scale). 

 

It was determined that a 26-hour exposure for SpT99/F3 and a 38-hour exposure for 

the other phages were necessary to reach 99.9% killing. After exposure to the 

mutagen, the induced mutations were expressed by cultivating phage particles on a 

permissive host (the bacterial strain used to cultivate a given phage). A protocol was 

optimised to achieve successful phage amplification in liquid medium. 

 

4.3.2. Phage amplification after mutagenesis for expression of mutations 

4.3.2.a. Bacterial hosts’ growth curves 

Growth curves of the relevant bacterial hosts were determined (section 2.3) as 

supporting information for the design of phage amplification protocols in liquid 

medium. To be able to show bacterial growth in log(number of cells) as a function of 

time (instead of OD600nm as a function of time), the correspondence between OD600nm 

and CFU/mL was determined (Figure 4.4). 
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Figure 4.4: The correspondence between OD600nm and CFU/mL was determined for the bacterial 

strains (A) E045, (B) E139 and (C) ED99. A linear relation was observed between both parameters. 

 

A linear relation was observed between the number of CFU/mL and OD600nm for 

values up to 3.5. However, to keep measured OD600nm values within the linearity 

range defined by the Beer-Lambert law (from 0.1 to 1.0), samples were diluted when 

necessary before performing OD measurement. The obtained curves provided a rapid 

way to calculate the number of cells in a given volume of culture after measuring 

OD600nm. This was useful when determining the growth curves of the relevant 

bacterial hosts (Figure 4.5) and when testing different ratios of phage particles and 

bacterial cells during optimisation of the phage amplification protocol. 
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Figure 4.5: Growth curves of S. pseudintermedius strains E045 (diamonds), E139 (triangles) and 

ED99 (circles) at 37°C. Cells were at mid-exponential phase around three hours of cultivation, which 

corresponded to an OD600nm value of 0.3. 

 

For the three tested bacterial hosts, cells were found to be at mid-exponential phase 

around three hours of cultivation, which corresponded to an OD600nm value of 0.3. 

 

4.3.2.b. Pre-attachment phase and first attempts at phage amplification 

To develop the phage amplification protocol, SpT5 was used as a model before 

applying the optimised protocol to other phages. These were similar to SpT5 (except 

SpT99/F3) so their optimal culture conditions should be similar. First, it was decided 

to introduce a pre-attachment phase in the protocol (section 2.24) where phages and 

cells were mixed together at an MOI of 1:1 in a small volume of medium (1 mL), 

allowing phages to attach to the cells before amplification. It was hoped that this 

would maximise phage infection and help make phage amplification successful. Two 

types of cells were tested: cells at mid-exponential phase and stationary phase, 

because the receptor used by phages to attach to the cells might be expressed at a 

specific time during cell growth (Figure 4.6). 
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Figure 4.6: Kinetics of pre-attachment of SpT5 phage particles to bacterial cells (E045): no cells 

(triangles), with cells at mid-exponential phase (diamonds), with cells in stationary phase (squares). 

No difference was observed when using cells in exponential or stationary phase. 

 

No difference was observed when using cells at mid-exponential or stationary phase, 

so it was decided to use cells at mid-exponential phase from then on. Ten to fifteen 

minutes of pre-attachment were enough for the initial phage titre to drop to less than 

10% free phage particles. It was also determined that six hours were necessary for 

the phages to be amplified to a high titre (from 104-105 to 108 PFU/mL) on a 

permissive host after pre-attachment (Figure 4.7).  

 

 

Figure 4.7: Successful amplification of phage SpT5 (from 104-105 to 108 PFU/mL) was achieved 

within six hours of incubation at 37°C with shaking, following a pre-attachment step at an MOI of 1:1 

and the addition of BHI up to 5 mL final volume. 

 

Based on the data presented above, the following protocol was used to mutagenize 

SpT5 phages: 108-109 PFU/mL were exposed to hydroxylamine (final volume: 1 mL, 
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see section 2.25). After a 38-hour exposure, the mutagenized phages, whose number 

had dropped to 105-106 PFU/mL, were dialysed to remove the remaining 

hydroxylamine. Pre-attachment was performed as described above (cells at mid-

exponential phase + phages, at MOI 1:1, in 1 mL BHI) and phages were amplified 

over six hours at 37°C with shaking following the addition of BHI up to 5 mL final 

volume. Following amplification, the culture’s supernatant was concentrated on an 

Amicon filter (section 2.23) and plated with the lysogen (300 µL phages on one plate 

– despite the high number of phages on one plate, bacterial growth was uniform 

indicating that lysis from without did not occur). After three attempts with this 

version of the protocol, no Vir mutants were isolated and the protocol further 

optimised. 

 

4.3.2.c. Further optimisation of the protocol 

It was hypothesised that the initial number of phage particles exposed to 

hydroxylamine (108-109 PFU) was too low and was reducing chances to obtain the 

right mutation leading to a virulent phenotype. To obtain lysates with very high titre, 

a protocol for the propagation of SpT5 in liquid culture involving overnight 

amplification in 25 mL BHI followed by 10x concentration on Amicon filters was 

developed (sections 2.22 and 2.23). MOI from 1:10 to 1:1000 were tested and it was 

found that when using an MOI of 1:1000 followed by 10x concentration, a titre of up 

to 1012 PFU/mL was obtained. 

 

Mutagenesis with hydroxylamine was repeated using concentrated lysates: 1010-1011 

PFU/mL were exposed to hydroxylamine. After a 38-hour exposure, the titre of 

mutagenized phages had dropped to 107-108 PFU/mL and dialysis was performed. 

Phages were then amplified overnight by adding them to bacterial cells at mid-

exponential phase at an MOI of 1:1 in BHI (final volume: 25 mL). A pre-attachment 

step was not performed in this version of the protocol because phages were left in 

contact with bacteria overnight. Following amplification, the culture’s supernatant 

was concentrated and plated with the lysogen (300 µL concentrated phages on one 

plate). After three attempts, no Vir mutant of SpT5 was isolated. The same results 

were obtained with SpT252 and SpT152. 
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In the case of SpT99/F3, the amplification step was performed on plates as no 

amplification was obtained in liquid culture. For this, following hydroxylamine 

exposure 1 mL of mutagenized phages was divided into four times 250 µL that were 

plated with the SpT99/F3 bacterial host (ED99, four plates in total). Amplified 

phages were recovered after overnight incubation through plate wash. After three 

attempts, no Vir mutant of SpT99/F3 was isolated. It was decided to test other 

random mutagenesis approaches for the isolation of Vir mutants. 

 

4.4. Phage mutagenesis through exposure to UV light 

4.4.1. Killing curve 

Similarly to mutagenesis with hydroxylamine, the time it takes to reach the 99.9% 

killing point was determined for each phage (section 2.26). It was found that 

exposure to UV light (253.7 nm, 0.707 mW/cm2) for fifteen seconds for SpT99/F3 

and for twenty seconds for the other phages was necessary to reach 99.9% killing 

(Figure 4.8). 

 

 

Figure 4.8: Exposure to UV light for fifteen seconds for SpT99/F3 (circles) and for twenty seconds for 

SpT5 (squares), SpT252 (diamonds) and SpT152 (triangles) was necessary to reach 99.9% killing (Y 

axis in log10 scale). 

 

4.4.2. Phage amplification after mutagenesis for expression of mutations 

Similarly to the protocol for hydroxylamine mutagenesis, mutations were expressed 

by cultivating mutagenized phages on a permissive host and the protocol was 

optimised using phage SpT5 as a model. Amplification after UV light exposure was 
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first attempted by mixing UV-irradiated phages (initial number: 1010-1011 PFU/mL, 

final volume: 5 mL, see section 2.26) with bacterial cells at mid-exponential phase at 

an MOI of 1:1 in BHI (final volume: 25 mL) and incubating overnight at 37°C with 

shaking straight away. This resulted in poor phage amplification (titre remained 

around 105 PFU/mL following exposure to UV light and amplification). 

 

The protocol was repeated with a pre-attachment step in a smaller volume of media: 

5 mL of UV-irradiated phages (1010-1011 PFU/mL) were mixed at an MOI of 1:1 

with bacterial cells at mid-exponential phase that had been re-suspended in 3 mL 

BHI. The mixture was left at room temperature for fifteen minutes, then it was 

diluted with BHI (final volume: 25 mL) and incubated overnight at 37°C with 

shaking. With this methiod phage amplification was much better (from 105 to 1010 

PFU/mL). Following amplification, the culture’s supernatant was concentrated and 

plated with the lysogen (300 µL concentrated phages on one plate). The optimised 

protocol was tested three times and no Vir mutant of SpT5 was isolated. The same 

results were obtained with SpT252 and SpT152. 

 

In the case of SpT99/F3, the amplification step was performed on plates. For this, 

following UV-light exposure 5 mL of UV-irradiated phages were divided into twenty 

times 250 µL that were plated with the SpT99/F3 bacterial host (ED99, twenty plates 

in total). Amplified phages were recovered after overnight incubation through plate 

wash. After three attempts, no Vir mutant of SpT99/F3 was isolated. 
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4.5. Phage evolution through serial passaging on a permissive host 

The isolation of virulent mutants was attempted through natural phage evolution by 

cultivating phages multiple times on a permissive host (Figure 4.9 and section 2.27). 

 

 

Figure 4.9: During the serial passaging experiment, the ancestral phages were mixed with bacteria and 

incubated overnight. Phages from this culture (Ps1 phages = passage 1 phages) were mixed with 

bacteria and incubated overnight. The process was repeated six times. At each step, the titre was 

checked and phages were added at an adapted MOI to naïve bacteria (never exposed to phages). The 

lysate resulting from each step was plated onto the lysogen to look for virulent mutants. 

 

To ensure that satisfactory phage amplification occurred at each passage (from 106 to 

1010 PFU/mL), phages (106 PFU/mL) were added to bacterial cells at mid-

exponential phase at a range of MOIs (1:50, 1:100, 1:500 and 1:1000). The phage 

titre of each lysate was checked before performing the next passage. The lysate with 

the highest titre was used for the next step. Interestingly, phage SpT152 was found to 

generally better propagate at an MOI of 1:100 while SpT5 and SpT252 were 

successfully amplified at an MOI of 1:1000. After serial amplification the lysate 

resulting from each step and with the highest titre (six lysates for each phage) was 

concentrated and plated with the lysogen to look for Vir mutants (300 µL 

concentrated phages on one plate). The protocol was tested with SpT5, SpT152 and 

SpT252 but the isolation of Vir mutants remained unsuccessful. The protocol was 

not tested with SpT99/F3 as it involved phage amplification in liquid culture. 

 
4.6. Conclusions 

The isolation and characterisation of S. pseudintermedius phages led to the selection 

of four temperate phage candidates for the development therapy. The modification of 

these phages through random mutagenesis was attempted with the objective to 

isolate Vir mutants suitable for phage therapy. First, phage particles were exposed to 
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hydroxylamine, a chemical mutagen. This random mutagenesis method had been 

used successfully before to isolate Vir mutants of S. aureus phages (Rapson, 2002). 

In this project and in spite of extensive optimisation, it did not lead to the production 

of virulent mutants. Exposure to UV light did not lead to the isolation of Vir mutants 

either. The last method to be tested was multiple passaging of phages on a naïve 

host. This approach was based on the natural ability of phages to evolve quickly but 

once again the isolation of Vir mutants remained unsuccessful. 

 

When exposing phage particles to hydroxylamine or UV light, killing was observed 

indicating that mutagenesis did occur and some of the induced mutations were lethal. 

It is possible that mutations that would theoretically lead to a virulent phenotype 

were also lethal, e.g. they led to the modification of an essential gene. The region 

that is mutated in lambdoid Vir mutants, the operator, is often situated between the 

promoters of the cI and cro genes (Ptashne et al., 1980). For this reason, it was not 

expected that mutations in the operator in S. pseudintermedius temperate phages 

would be lethal. However, the location of the operator sequence(s) might be different 

in S. pseudintermedius phages. This possibility was further explored in Chapter 5. 

 

Random mutagenesis could be attempted with other mutagens. The illumination of 

T4 phages in presence of dyes such as acridine orange and proflavine was used to 

produce mutants with different plaque morphologies (Ritchie, 1965, Spikes, 1968). 

The exposure of phage particles to 5-bromouracil during prophage replication or 

lytic growth was shown to cause DNA-base sequence changes in phage λ (Skopek 

and Hutchinson, 1982). It would also be possible to select deletion mutants using a 

heat-EDTA treatment step (Graham et al., 1979, Sternberg et al., 1979, Yamamoto et 

al., 1968). In that case, the obtained mutants would not result from the introduction 

of point mutations in the genome but the deletion of whole regions of the DNA. The 

experiment is therefore more likely to produce mutants like clear-plaque mutants in 

which the cI gene is deleted. Mutants also lacking the operator might occur and 

would correspond to the type of virulent phages suitable for phage therapy. 
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Chapter 5 Study of the SpT5 operator region and CI repressor: towards site-

directed mutagenesis for the isolation of Vir mutants 

 

5.1. Introduction 

Following the attempts at isolating lytic mutants of the four temperate phages 

through random mutagenesis approaches and the absence of success, it was decided 

to try site-directed mutagenesis instead. The advantage of this method was that it was 

possible to precisely choose the location of the mutations to introduce in the 

temperate phages to produce Vir mutants. It was also expected that using this 

strategy would generate interesting data about the general characteristics of the CI 

repressor and its binding site(s) in the phage genomes. 

 

The first step towards site-directed mutagenesis was to find the CI repressor binding 

site(s), also called operator, within the phage genomes. As described in section 

1.4.2.b.iii, phage λ has two operators composed of three binding sites OR1, OR2 and 

OR3. All three have elements of two-fold rotational symmetry (Maniatis et al., 1975). 

These elements of symmetry, appearing as palindromes (or inverted repeats), have 

been identified in the operator sites of other temperate phages. Three palindromic 

operator sites OL, OR and OD recognised by the CI repressor were found in the 

genome of the lactococcal temperate phage TP901-1 (Johansen et al., 2003). Two 

fifteen-base inverted repeats with partial two-fold symmetry and the ability to bind 

the CI repressor were also identified in the S. aureus temperate phage ϕ11 (Ganguly 

et al., 2009). In both cases and similarly to phage λ the operator sites were situated in 

the cI-cro intergenic region. Based on the assumption that operator sites would 

exhibit similar characteristics in S. pseudintermedius phages, sequence analysis of 

the cI-cro intergenic region was performed to find potential CI repressor binding 

sites. A single palindromic sequence was identified in the genome of phage SpT5. 

 

This putative operator region was further studied through Electrophoretic Mobility 

Shift Assays (EMSA) to confirm whether it was an actual operator. EMSA are based 

on the ability of DNA-binding proteins such as the CI repressor to specifically 

recognise and bind to their target DNA sequence. In these assays, a piece of DNA 

containing the target sequence undergoes migration on a native PolyAcrylamide Gel 

Electrophoresis (PAGE) in presence or absence of the binding protein. When the 
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protein binds to the DNA, the molecular complex is much bigger than DNA alone. 

This slows down the migration and the migration pattern appears shifted upwards 

compared to free DNA (Brunelle et al., 1985) (Figure 5.1). 

 

 

Figure 5.1: When a protein (orange)-DNA (grey) complex migrates on a native PAGE, its migration 

pattern appears shifted upwards compared to free DNA. This property is used in EMSA to study the 

ability of proteins to bind to DNA. 

 

Purified proteins (Hendrickson and Schleif, 1985) or crude cell lysates (Ken and 

Hackett, 1991) can be used. To see the result, different DNA labelling methods are 

available: with fluorescence (Ruscher et al., 2000), with biotin (Funabashi et al., 

2007), or with radioactive phosphate (32P) which remains the most sensitive 

approach to this day. Radioactive labelling was chosen for the work described in this 

chapter. EMSA was first performed to test for specific binding between a DNA 

probe that contained the non-modified SpT5 putative operator sequence and lysogen 

cell lysate that hypothetically contained the SpT5 CI repressor. If specific binding 

occurred, it would indicate that the identified palindrome was an operator. Point 

mutations were then introduced in the potential operator and EMSA was carried out 

to determine whether binding occurred with the mutated probes. If binding was 

abolished, the corresponding mutation was considered a good candidate for site-

directed mutagenesis. 

 

Cell lysates were used in the EMSA experiments. It was therefore not possible to be 

certain that the protein responsible for the interaction was the SpT5 CI repressor. To 

confirm this, the SpT5 cI repressor gene was cloned and expressed in Escherichia 

coli. The gene was amplified through PCR and cloned into a plasmid vector. One 

important characteristic of a plasmid vector is the number of copies produced 

through replication in one host cell. It depends on the type of ORI (replication origin) 
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and leads to the classification of plasmid vectors into two categories: high copy 

number and low copy number plasmids (del Solar et al., 1998). If the objective is to 

make lots of copies of a vector with insert, usually without expressing the gene (i.e. 

subcloning), a high copy number plasmid such as the pGEM series (500-700 copies 

per cell) can be used. When the objective is to express a recombinant protein, using a 

high copy number plasmid may lead to toxically high levels of recombinant protein 

in the cell. A low copy number plasmid such as the pET series (15-60 copies per 

cell) is more adapted (Rosano and Ceccarelli, 2014). 

 

Once the DNA fragment was inserted into the vector, it was introduced into 

competent E. coli cells through heat-shock transformation (Froger and Hall, 2007). 

Marker genes such as antibiotic resistance genes (Padmanabhan et al., 2011) or blue-

white selection (Sambrook et al., 1989a) were used to select for cells that were 

successfully transformed. 

 

To express the cloned gene a pET vector containing the T7 promoter system was 

used. In this system, the gene of interest is cloned behind a promoter recognised by 

the phage T7 RNA polymerase (RNAP). The T7 RNAP gene is usually carried in the 

bacterial genome in a prophage (λDE3), under the control of the lacUV5 promoter 

that is induced by isopropyl β-D-1-thiogalactopyranoside (IPTG). Leaky expression 

of the T7 RNAP without IPTG induction may occur. Expressing the T7 lysozyme, 

provided by a plasmid (pLysS), helps reduce this. In absence of IPTG, the lysozyme 

binds to the RNAP and inhibits its activity. After IPTG induction, the level of T7 

RNAP produced is too high to be inhibited (Rosano and Ceccarelli, 2014). 

 

After cloning the SpT5 cI repressor gene, cell lysates of cultures expressing or not 

the repressor were used in EMSA to test for the ability of the recombinant protein to 

bind to the SpT5 operator sequence. 

 

Finally, the tertiary structure of the SpT5 CI repressor protein was studied in more 

details to see how its DNA-binding ability translated on a structural level. The 

examination of protein structure is performed through Nuclear Magnetic Resonance 

(NMR) (Wüthrich, 2001) or crystallography (Smyth and Martin, 2000). Resolved 

and published protein structures are deposited in the Protein Data Bank (PDB). It is 
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sometimes not possible to observe a protein directly; it may for example not be 

possible to produce suitable crystals for crystallography or producing crystals may be 

too time-consuming. An alternative to direct examination of a protein is 

computational structure prediction. Currently, the most reliable way to predict 

protein structure is to use template-based modelling in which the tertiary structure of 

amino acid sequences is determined by using the similarity between the protein 

sequence of interest and other proteins whose tertiary structure is known. Several 

online tools such as those available on the Phyre2 web portal use this approach 

(Kelley et al., 2015). 

 

The 3D structure of proteins is directly linked to their function and structure 

comparison of two or more proteins might help highlight conserved domains with 

similar functions. This is particularly useful for the classification of new structures 

with unknown functions (Jones and Thornton, 2004). Structure comparison is even 

possible between proteins that have little amino acid sequence similarity because 

evolution conserves protein structure more than protein sequence (Marti-Renom et 

al., 2009). 

 

The tertiary structure of the SpT5 CI repressor protein was predicted from its amino 

acid sequence with the Phyre2 web portal. The predicted structure was compared 

with the crystal structures of the phage λ and phage TP901-1 CI repressors to look 

for conserved domains characteristic of this type of proteins. 
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5.2. Identification of a potential operator region in the genome of phage SpT5 

Whole-genome sequencing and genome annotation of phage SpT5 revealed the 

presence of a cI-cro intergenic region similar to that of phage λ with cI and cro 

repressor genes (Figure 5.2). The presence of Shine-Dalgarno sequences from six to 

eight nucleotides upstream of the predicted start codons confirmed that these were 

likely to be real start codons. A palindrome (also called inverted repeat) was 

identified through sequence analysis within the SpT5 cro repressor gene. A spacer 

constituted of four adenosines was present between the two halves of the palindrome. 

 

Phages often have more than one operator sites but in the case of SpT5 only the one 

palindrome was found. It was interesting to see that the putative operator was 

situated within the cro repressor gene because it might explain the lack of success of 

random mutagenesis approaches. The cro repressor gene is essential for entering the 

lytic cycle and only a few precise mutations could change the sequence of the 

operator without disrupting the coding sequence of the gene. This probably lowered 

the chances of obtaining the right mutation though random mutagenesis. 

 

5.3. Testing protein binding to the putative operator sequence 

To test whether the identified palindrome was an operator, EMSA were carried out 

(sections 2.28, 2.29, 2.30 and 2.31) using two 100-bp DNA probes: SpT5_op 

contained the putative operator sequence and SpT5_mir contained a mirror image of 

the same operator (Figure 5.3 and Table 2.3). In SpT5_mir, the sequence of the 

operator remained the same because of its symmetrical characteristics but it was 

reverted relative to the rest of the DNA sequence. This changed the nucleotides 

present on either side of the palindrome and may have an impact on protein binding 

if nucleotides other than those in the operator were involved in the protein-DNA 

interaction.
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Figure 5.2: A cI-cro intergenic region similar to that of the coliphage λ and other phages was found in the genome of SpT5. cI and cro repressor genes (codons in green and 

red respectively) and a potential operator region in the form of a palindrome (blue) were identified. The first twelve codons of the cro repressor gene were translated. Amino 

acids which codons are covered by the palindrome are shown in bold. The sequence covered by the SpT5_op EMSA probe is underlined. SD = Shine Dalgarno sequence. 

 

 

Figure 5.3: The SpT5_op and SpT5_mir EMSA dsDNA probes contained the putative operator sequence (in bold) and a mirror image of the same operator respectively. In 

SpT5_mir, the putative operator was reverted relative to the rest of the DNA sequence. 

                    cI repressor gene                         SD	
TTTCATCATTGCTTCTCATTTTAAGTATCTCCTGTGTATAAAATATTTGTTCTTATTTGTGAACAATTAGATTATAACATCGTTCCCAAAT 
                                                                                                                                                                           SD                      Met  Leu   Arg   Tyr  
GAATACAATATATCAGAAGAAAAAAACTTTATGATTTTTTTAGAGTAAAAAATGTTGACATGTGAGAACGATGG ATG TTA AGG TAT  
 Lys   Gln    Phe   Ser   Lys   Glu    Asn   Glu                                                                                                                             cro repressor gene 
AAA CAG TTC TCA AAA GAG AAC GAAGGAGGTGACAAAATGGTACTTGATCTAAAAAGATTGCGAGCCGAAAGAATTGCTTGTG 
                        palindromic sequence 
GAATACACAAGATGAAATGGCTAATTTAATGGGATGGAA 

SpT5_op 
 
5’GACATGTGAGAACGATGGATGTTAAGGTATAAACAGTTCTCAAAAGAGAACGAAGGAGGTGACAAAATGGTACTTGATCTAAAAAGATTGCGAGCCGAAA3’!
3’CTGTACACTCTTGCTACCTACAATTCCATATTTGTCAAGAGTTTTCTCTTGCTTCCTCCACTGTTTTACCATGAACTAGATTTTTCTAACGCTCGGCTTT5’!
!
SpT5_mir 
!
5’GACATGTGAGAACGATGGATGTTAAGGTATAAACACAAGAGAAAACTCTTGGAAGGAGGTGACAAAATGGTACTTGATCTAAAAAGATTGCGAGCCGAAA3’!
3’CTGTACACTCTTGCTACCTACAATTCCATATTTGTGTTCTCTTTTGAGAACCTTCCTCCACTGTTTTACCATGAACTAGATTTTTCTAACGCTCGGCTTT5’!
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The SpT5_op probe was radiolabelled and exposed to lysogen (E045 lys SpT5) and 

non-lysogen (E045) cell lysates. In the presence of lysogen cell lysate, that 

hypothetically contained the CI repressor, a shift was observed (Figure 5.4, A). 

Exposing SpT5_op to non-lysogen cell lysate did not result in any shift. When 

performing the same test with SpT5_mir, no shift was observed. This showed that 

binding occurred between the putative operator and a lysogen-specific factor, likely 

to be the CI repressor. The fact that no binding occurred with SpT5_mir suggested 

that nucleotides other than those in the operator were involved in the interaction. To 

further test the specificity of the interaction, a competition assay was performed 

where radiolabelled SpT5_op was exposed to lysogen cell lysate and increasing 

concentration of unlabelled probe (Figure 5.4, B). At high concentrations of cold 

probe the shift decreased significantly confirming the competition between hot and 

cold probes for binding to the hypothetical CI repressor. These data strongly 

supported the hypothesis that the identified palindrome was an operator sequence 

and the lysogen cell lysate contained a CI repressor. 

 

 

Figure 5.4: (A) A shift was observed when exposing a probe containing the operator sequence 

(SpT5_op) to lysogen cell lysate. No shift was seen when performing the same test with a probe 

containing a mirror image of the operator (SpT5_mir). 1 and 4 = free DNA, 2 and 5 = DNA + non-

lysogen (E045), 3 and 6 = DNA + lysogen (E045 lys SpT5). (B) Competition assay: at high 

concentrations of cold SpT5_op the shift decreased significantly confirming the specificity of the 

binding interaction. 1 = free SpT5_op, 2 to 7 = hot SpT5_op + lysogen + 0, 2.5, 5, 25, 50 and 250 ng 

of cold SpT5_op. 

 

Interestingly, similar results were obtained when using cell lysate of phage SpT252 

lysogen. SpT252 was shown to be very similar to SpT5 (section 3.4.4.b) and the 
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same cI-cro intergenic region as SpT5 was found in the genome of SpT252 (Figure 

5.5 and section 2.36). 

 

 

Figure 5.5: Identical cI-cro intergenic regions were identified in the SpT5 and SpT252 genomes. The 

first codons of the cI repressor gene and the cro repressor gene are underlined in green and red 

respectively. The operator is boxed in blue. 

 

When exposing the probe SpT5_op to cell lysate of the lysogen AB252, a shift was 

observed (Figure 5.6). When using SpT5_mir to perform the same test, no shift was 

observed. The non-lysogen strain (E045) was the same for SpT5 and SpT252 and the 

same results were obtained as before. 

 

 

Figure 5.6: When exposing the probe SpT5_op to cell lysate of the lysogen AB252, a shift was 

observed. No shift was seen when using SpT5_mir. 1 and 4 = free DNA, 2 and 5 = DNA + non-

lysogen (E045), 3 and 6 = DNA + lysogen (AB252). 

  

<html><head></head><body><pre style="word-wrap: break-word; white-space: pre-
wrap;">CLUSTAL O(1.2.1) multiple sequence alignment

SpT5        TTTCATCATTGCTTCTCATTTTAAGTATCTCCTGTGTATAAAATATTTGTTCTTATTTGT
SpT252      TTTCATCATTGCTTCTCATTTTAAGTATCTCCTGTGTATAAAATATTTGTTCTTATTTGT
            ************************************************************

SpT5        GAACAATTAGATTATAACATCGTTCCCAAATGAATACAATATATCAGAAGAAAAAAACTT
SpT252      GAACAATTAGATTATAACATCGTTCCCAAATGAATACAATATATCAGAAGAAAAAAACTT
            ************************************************************

SpT5        TATGATTTTTTTAGAGTAAAAAATGTTGACATGTGAGAACGATGGATGTTAAGGTATAAA
SpT252      TATGATTTTTTTAGAGTAAAAAATGTTGACATGTGAGAACGATGGATGTTAAGGTATAAA
            ************************************************************

SpT5        CAGTTCTCAAAAGAGAACGAAGGAGGTGACAAAATGGTACTTGATCTAAAAAGATTGCGA
SpT252      CAGTTCTCAAAAGAGAACGAAGGAGGTGACAAAATGGTACTTGATCTAAAAAGATTGCGA
            ************************************************************

SpT5        GCCGAAAGAATTGCTTGTGGAATACACAAGATGAAATGGCTAATTTAATGGGATGGAA
SpT252      GCCGAAAGAATTGCTTGTGGAATACACAAGATGAAATGGCTAATTTAATGGGATGGAA
            **********************************************************
</pre></body></html>
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5.4. Introduction of mutations in the operator sequence 

The positions where to introduce mutations in the operator were carefully chosen. 

Indeed, the operator was found within the cro repressor gene and maintaining the 

integrity of this gene was crucial for the mutated phage to be able to enter the lytic 

cycle. To achieve this, point mutations were introduced by modifying the third 

nucleotide of each codon covered by both halves of the palindrome (Table 5.1). This 

way, the operator sequence was changed while the coding sequence was maintained.  

 

The codon usage of staphylococcal phages was taken into account to introduce 

appropriate mutations. According to a study looking at codon usage in 40 

staphylococcal phages, the Gln, Phe, Glu and Asn codons covered by the operator 

were minor codons (Bishal et al., 2012). Minor codons correspond to low-abundance 

tRNA species and, as such, influence gene expression rate. In Saccharomyces 

cerevisiae they are frequently encountered in genes expressed at low levels (Raué et 

al., 1990). In E. coli, rare codons are found within the first 25 codons of genes 

associated with essential cellular functions and were shown to have an inhibitory 

effect on gene expression (Chen and Inouye, 1994). Codon selection and 

optimisation have been used to improve protein expression in E. coli (Burgess-

Brown et al., 2008) and zebrafish (Horstick et al., 2015). Here, the introduction of 

mutations in the operator changed minor codons into major codons. This would 

theoretically lead to a higher expression level of the cro repressor gene once one or 

several of these mutations were introduced in a phage. Since the objective of this 

work was to produce virulent mutants that systematically enter the lytic cycle, it was 

not considered a problem. Changing major codons into minor codons are likely to 

have more deleterious effects. The Ser codon present in the sequence was already a 

major codon and was replaced by another major codon. 
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Table 5.1: Five single-base mutations (orange) were introduced in both halves of the operator 

sequence (blue). Each DNA probe contained one mutation and was called after the amino acid which 

codon was modified (orange). 

 

Probe name Sequence 

SpT5_op 
             Gln    Phe   Ser    Lys    Glu    Asn   

(…) CAG TTC TCA AAA GAG AAC GA (…) 

SpT5_Gln 
             Gln    Phe   Ser    Lys    Glu    Asn   

(…) CAA TTC TCA AAA GAG AAC GA (…)  

SpT5_Phe 
             Gln    Phe   Ser    Lys    Glu    Asn   

(…) CAG TTT TCA AAA GAG AAC GA (…)  

SpT5_Ser 
             Gln    Phe   Ser    Lys    Glu    Asn   

(…) CAG TTC TCT AAA GAG AAC GA (…)  

SpT5_Glu 
             Gln    Phe   Ser    Lys    Glu    Asn   

(…) CAG TTC TCA AAA GAA AAC GA (…)  

SpT5_Asn 
             Gln    Phe   Ser    Lys    Glu    Asn   

(…) CAG TTC TCA AAA GAG AAT GA (…)  
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The five mutations were tested and three were found to prevent protein binding: Phe, 

Glu and Asn mutations (Figure 5.7). Interestingly, the Ser mutation that changed a 

base situated in the spacer had little effect on binding. This indicated that the spacer 

was not as critically involved (if at all) as the palindrome itself in the binding 

reaction. 

 

 

Figure 5.7: Three mutations, Phe, Glu and Asn, were found to prevent protein binding. The Gln 

mutation led to partial inhibition of protein binding. For each probe: left lane = no lysogen cell lysate 

and right lane = presence of lysogen cell lysate. 

 

The Gln mutation led to partial inhibition of protein binding. Out of interest, the 

interaction between the SpT5_Gln probe and lysogen cell lysate was further studied. 
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5.5. Further tests with the SpT5_Gln probe 

Competition assays were performed with radiolabelled wild-type (SpT5_op) and 

mutated (SpT5_Gln) probes. Both were exposed to lysogen cell lysate and 

challenged with increasing concentrations of unlabelled probes (Figure 5.8). It was 

shown that cold SpT5_Gln had little effect on protein binding to hot SpT5_op: a shift 

was still visible when adding 250 ng of cold mutated probe. On the other hand 25 ng 

of cold SpT5_op probe were enough to completely inhibit binding to the mutated 

probe. These results indicated that the affinity of the binding protein was higher for 

the SpT5_op probe than for the mutated probe. 

 

 

Figure 5.8: (A) SpT5_Gln had little effect on protein binding to hot SpT5_op: a shift was still visible 

when adding 250 ng of cold mutated probe. 1 = free SpT5_op, 2 to 7 = SpT5_op + lysogen + 0, 2.5, 5, 

25, 50 and 250 ng of cold SpT5_Gln. (B) 25 ng of cold SpT5_op probe were enough to completely 

inhibit binding to the mutated probe. 1 = free SpT5_Gln, 2 to 7 = SpT5_Gln + lysogen + 0, 2.5, 5, 25, 

50 and 250 ng of cold SpT5_op. 

 

5.6. Cloning and expressing the SpT5 cI repressor gene in E. coli 

All the experiments described above were performed using cell lysate and not 

purified protein. It was not possible to be sure that the protein responsible for the 

interaction was the bacteriophage CI repressor. To unequivocally confirm that the CI 

repressor was binding to the operator sequence, the cI repressor gene was cloned and 

expressed in E. coli (Figure 5.9 and section 2.32). 

Figure 5.9 (next page): The SpT5 cI repressor gene was cloned and expressed in the E. coli 

BL21(DE3)pLysS strain following two subcloning steps using the E. coli JM109 strain. At steps 1 and 

7 bases corresponding to the cI repressor gene are green, and the initiation and stop codons are in 

bold. 

 

(A) 
1     2     3    4    5    6     7 1    2     3    4    5     6    7          
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Cell lysates of IPTG-induced cultures, non-induced cultures and cells containing the 

empty pET28A plasmid were run on a polyacrylamide gel to confirm that the 

recombinant protein was effectively expressed (Figure 5.10). An additional band 

around 15 kDa, the theoretical size of the cloned phage repressor (section 2.34), was 

seen in the lysates of IPTG-induced cultures. This confirmed that the cloned cI 

repressor gene was expressed following IPTG induction. 

 

 

Figure 5.10: Cell lysates of IPTG-induced cultures (1, 2 and 3), non-induced cultures (4, 5 and 6) and 

cells containing the empty pET28A plasmid (7, 8 and 9) were run on a polyacrylamide gel. An 

additional band (shown with arrows) was seen in the lysates of IPTG-induced cultures. Its size (15 

kDa) corresponded to the theoretical size of the phage repressor. This confirmed that the repressor 

was effectively expressed following IPTG induction. 

 

5.7. Testing the binding ability of the recombinant CI repressor expressed in 

E. coli 

After cloning the SpT5 cI repressor gene into E. coli and expressing the recombinant 

protein through IPTG induction, the DNA probes SpT5_op and SpT5_mir were 

exposed to cell lysates from IPTG-induced culture, non-induced culture and cells 

containing the empty cloning vector (Figure 5.11, A). A shift was observed in the 

presence of induced and non-induced cell lysates. After IPTG induction, the phage 

repressor was highly expressed and a high quantity of SpT5_op probe was bound by 

the recombinant protein. Consequently the quantity of emitted radiation was high and 

this made the corresponding shift (Figure 5.11, A, well 4) appear larger than the shift 

obtained with non-induced cell lysate (Figure 5.11, A, well 5). The fact that binding 

was observed with cell lysate from non-induced culture indicated that leaky gene 

expression occurred. Exposing SpT5_op to cell lysate from cells with the empty 
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cloning vector did not result in any shift and no shift was obtained when using 

SpT5_mir. These results confirmed that the DNA-binding protein responsible for the 

observed interaction was the CI phage repressor. 

 

To check the specificity of the interaction between the operator and the recombinant 

repressor, a competition assay was carried out using radiolabelled SpT5_op, cold 

SpT5_op and non IPTG-induced cell lysate (Figure 5.11, B). The phage repressor 

was too highly expressed in the IPTG-induced cell lysate for a competition assay to 

be performed successfully (Figure 5.11, C). Similarly to Figure 5.4, the shift 

decreased significantly at high concentrations of cold probe (250 ng) confirming the 

specificity of the interaction between the recombinant repressor and the operator 

sequence. 

 

 

Figure 5.11: (A) A shift was observed when exposing SpT5_op to cell lysates of E. coli cultures 

expressing or not the SpT5 CI repressor. No shift was seen with SpT5_mir. 1 = DNA + non-lysogen 

(E045), 2 = DNA + lysogen (E045 lys SpT5), 3 and 7 = free DNA, 4 and 8: DNA + IPTG-induced 

culture, 5 and 9 = DNA + non-induced culture, 6 and 10 = DNA + E. coli with empty cloning vector. 

(B) Competition assay: the shift decreased significantly at high concentrations of cold SpT5_op 

confirming the specificity of the interaction. 1 = free SpT5_op, 2 to 7 = SpT5_op + non-induced 

lysate + 0, 2.5, 5, 25, 50 and 250 ng of cold SpT5_op. (C) Competition assay with IPTG-induced cell 

lysate: the shift did not decrease at high concentrations of cold SpT5_op. 1 = free SpT5_op, 2 to 7 = 

SpT5_op + induced lysate + 0, 2.5, 5, 25, 50 and 250 ng of cold SpT5_op. 
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5.8. Studying the structure of the SpT5 CI repressor 

The secondary structure of the SpT5 CI repressor was predicted with the Phyre2 

online tool based on the cI repressor gene’s translated DNA sequence. The obtained 

structure was compared with crystal structures of the N-terminal domain of the CI 

repressor from the lactococcal phage TP901-1 (Frandsen et al., 2013) (Figure 5.12) 

and the N-terminal domain of the CI repressor from phage λ (Figure 5.13), both 

found in the Protein Data Bank (PDB) (section 2.35). Comparison with CI repressors 

from staphylococcal phages was not possible because crystal structures were not 

available in the PDB. 

 

 

Figure 5.12: (A) The N-terminal domain of the CI repressor from the lactococcal phage TP901-1 is 

shown in complex with its operator half-site. N-ter: N-terminal end, C-ter: C-terminal end. α-helices 

were numbered from N-ter to C-ter. (B) The predicted structure of the SpT5 CI repressor is shown in 

the same position relative to the TP901-1 operator half-site. The four α-helices that were similar to the 

TP901-1 repressor are shown in ribbons. (C) When both structures were superimposed, helices 1, 3 

and 4 aligned almost perfectly with each other. The N-terminal and C-terminal ends of only the SpT5 

CI repressor are indicated. 

 

The N-terminal domain of the TP901-1 phage CI repressor constitutes the protein’s 

DNA binding domain and is essential for site-specific recognition. The domain is 

composed of five α-helices that form a compact globular domain. Helices 2 and 3 

form a Helix-Turn-Helix (HTH) unit, a highly conserved structural motif found in 
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DNA-binding proteins (Pedersen et al., 2010). The structure chosen to illustrate this 

was crystallised in complex with its operator half-site. Helix 3 fitted into the major 

groove of the DNA highlighting its role in the protein-DNA interaction (Figure 5.12, 

A). The SpT5 CI repressor exhibited a similar structure at its N-terminal end. It was 

composed of four tightly folded α-helices and helix 3 seemed to fit into the major 

groove of the DNA similarly to helix 3 in the TP901-1 repressor (Figure 5.12, B). 

This was consistent with the identification through blastp search of an HTH-like 

motif near the N-terminal end of the SpT5 repressor. It was noted that helix 2 was 

much shorter in the SpT5 repressor than in the TP901-1 repressor. When both 

structures were superimposed, helices 1, 3 and 4 aligned almost perfectly with each 

other (Figure 5.12, C). This strongly suggested that the SpT5 repressor had one DNA 

binding domain at its N-terminal end. 

 

The C-terminal end of the SpT5 repressor could not be compared with the C-terminal 

domain of the TP901-1 repressor because no crystal structure was available in the 

PDB. However, it is known that the TP901-1 CI repressor binds operators as a dimer 

(Johansen et al., 2003) and that the C-terminal part is required for oligomerization of 

the protein. It is also known that the C-terminal part of the protein is likely to be 

partially unfolded and more flexible because it was shown to be much more sensitive 

to proteolysis than the N-terminal domain (Pedersen et al., 2010). One can 

hypothesise that, similarly to the TP901-1 repressor, the SpT5 repressor binds as a 

dimer to its operator and that its C-terminal end is involved in protein 

oligomerization. One monomer can interact with only one operator half-site and, as 

shown earlier in this chapter, mutations in either half of the SpT5 operator led to 

disruption of repressor binding (Gln and Phe in one half, Glu and Asn in the other 

half). This suggested that the SpT5 repressor does indeed form dimers. Added to this, 

the possibility that the C-terminal end may be partially unfolded might have made 

structure prediction difficult. This would explain the disorganised shape of the SpT5 

repressor C-terminal end. 

 

Following comparison with the TP901-1 repressor, the predicted structure of the 

SpT5 repressor was compared with the N-terminal domain of the phage λ CI 

repressor. Similarly to the TP901-1 repressor, the N-terminal domain mediates 

operator binding and is composed of five α-helices, two of which (helices 2 and 3) 
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form a HTH unit (Beamer and Pabo, 1992). The structure chosen in the PDB was 

crystallised as a dimer in complex with its full operator site. Helices 3 and 3’ fitted 

into the major grooves of the DNA where the bases of the operator were situated, and 

helices 5 and 5’ extended out from the globular domain to form part of the dimer 

interface (Figure 5.13, A). 

 

Once again, the SpT5 CI repressor exhibited a similar structure at its N-terminal end 

with helix 3 seemingly fitting into the major groove of the DNA (Figure 5.13, B). 

When both repressors were superimposed, helices 1, 2, 3 and 4 aligned almost 

perfectly with minor differences in length and orientation (Figure 5.13, C). The C-

terminal domain of the λ CI repressor mediates dimerization as well as interaction 

between two dimers bound to adjacent operator sites (cooperative binding, see 

section 1.4.2.b.iii). It is formed by a highly twisted seven-stranded β-sheet (Bell and 

Lewis, 2001). This structure is very different from the predicted structure of the 

SpT5 repressor’s C-terminal end. Again, it is possible that the prediction is wrong or 

it is possible that the C-terminal end folds in a completely different way. It may even 

remain partially unfolded in the absence of a second monomer.  

 



 

 

122 

 

Figure 5.13: (A) A dimer of N-terminal domains of the λ CI repressor is shown in complex with its full operator site. N-ter, N-ter’: N-terminal ends, C-ter, C-ter’: C-terminal 

ends. α-helices were numbered from N-ter to C-ter. (B) The predicted structure of the SpT5 CI repressor is shown in the same position relative to the λ operator site. The four 

α-helices that were similar to the λ repressor are shown in ribbons. (C) When both repressors were superimposed, helices 1, 2, 3 and 4 aligned almost perfectly with minor 

differences in length and orientation. The N-terminal and C-terminal ends of only the SpT5 CI repressor are indicated. 
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In spite of structural similarities, the amino-acid sequences of the three CI repressors 

were very different from each other (Figure 5.14 and section 2.36). A few conserved 

amino acids (aa) were identified in the N-terminal domain of all three CI repressors 

where the HTH motif was situated. A RecA-dependent auto-cleavage site is situated 

in the linker region between the N-terminal and C-terminal domains of the λ CI 

repressor, more precisely between residues 111 and 112 (Pabo et al., 1979). A 

similar auto-cleavage site might be present in a similar region in the other two 

proteins but the lack of sequence similarity did not allow any conclusive prediction. 

 

The C-terminal domains of the λ and TP901-1 CI repressors were aligned and some 

similarities could be seen. No residues from the C-terminal end of the SpT5 CI 

repressor were aligned to these regions because the SpT5 protein was much shorter 

than the other two: 109 aa, 180 aa and 237 aa for the SpT5 repressor, the TP901-1 

repressor and the λ repressor respectively. Other staphylococcal phage CI repressors 

identified through blastp search were of similar short sizes (109-110 aa). This 

difference in size may suggest that the C-terminal end of the SpT5 repressor and 

staphylococcal phage repressors fold differently in order to fulfil the same role as in 

other CI repressors, i.e. dimerization and multimerization.  
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Figure 5.14: The amino acid sequences of the λ, TP901-1 and SpT5 CI repressors were very different 

from each other. Residues corresponding to helix-turn-helix motifs were underlined. The N-terminal 

domains of the λ (1-92 aa) and TP901-1 (1-74 aa) CI repressors are circled in red. The C-terminal 

domains, involved in oligomerization, of the λ (136-237 aa) and TP901-1 (138-180 aa) CI repressors 

are boxed in blue. A RecA-dependent auto-cleavage site is situated in the linker region of the λ CI 

repressor between residues 111 and 112 (black triangle). (*) = single, fully conserved residue, (:) = 

residues with strong similar properties, (.) = residues with weak similar properties. 

 

5.9. Conclusions 

When random mutagenesis approaches were unsuccessful for the isolation of virulent 

mutants of the phages, it was decided to attempt site-directed mutagenesis of the 

operator region, a DNA sequence involved in the genetic switch between lysis and 

lysogeny and recognised by the CI phage repressor. A putative operator was found in 

the form of a palindromic sequence in the genome of phage SpT5. EMSA showed 

that specific binding occurred between a DNA probe containing the putative operator 

sequence and lysogen cell lysate. This confirmed that the identified sequence was an 

operator and that a lysogen-specific factor, hypothetically the SpT5 CI repressor, was 

responsible for the observed binding. 

 

The characteristics of the SpT5 operator sequence were slightly different from other 

phage operators. Firstly, it was found within the cro repressor gene; operators 

involved in the control of the lysogeny-lysis genetic switch like in phage λ are often 

situated between the cro and cI promoters (Ptashne et al., 1980). Secondly, only one 

<html><head></head><body><pre style="word-wrap: break-word; white-space: pre-
wrap;">CLUSTAL O(1.2.1) multiple sequence alignment

Lambda_CI       MSTKKKPLTQEQLEDARRLKAIYEKKKNELGLSQES-------VADK--MGMGQSGVGAL 51
TP901-1_CI      MKTD----------TSNRLKQIMAE----RNLKQVDILNLSIPFQKKFGIKLSKSTLSQY 46
SpT5_CI         MRSND--------EIITIIKSAMKE----QNLSLSE-------LARR--AGIAKSAVSRY 39
                * :.              :*    :      *.  .       .  :    :.:* :.  

Lambda_CI       FNGINALNAYNAALLAKILKVSVEEFSPSIAREIYEMYEAVSMQPSLRSEYEYPVFSHVQ 111
TP901-1_CI      VNSVQSPDQNRIYLLAKTLGVSEAWL----------MGFDVPMVESSKIE--------ND 88
SpT5_CI         LNLTREFPLNRAEDFAKALSISTEYL----------LGFDNSGQSQQQDNL----AAHLD 85
                .*  .     .   :** * :*   :          :        . : :         :

Lambda_CI       AGMFSPELRT---FTK----------------GDAERWVSTTKKASDSAFWLEVEGNSMT 152
TP901-1_CI      SENIEETITVMKKLEEPRQKVVLDTAKIQLKEQDEQNKVKQIEDYRLSDEYLEEQI---- 144
SpT5_CI         GDFSEDELAKIKEFAEM-----------VRKSRDK------------------------- 109
                .   .  :     : :                 *                          

Lambda_CI       APTGSKPSFPDGMLILVDPEQAVEPGDFCIARLGGDEFTFKKLIRDSGQVFLQPLNPQYP 212
TP901-1_CI      ---SKASAYGGGQLND------------------NDKEFFKRLLKNTLKEKIDK------ 177
SpT5_CI         ------------------------------------------------------------ 109
                                                                            

Lambda_CI       MIPCNESCSVVGKVIASQWPEETFG 237
TP901-1_CI      -----------GDL----------- 180
SpT5_CI         ------------------------- 109
                                         
</pre></body></html>

 

 

 

 

 

 

 

 

 

 

 



 

 125 

single palindrome was identified in the SpT5 genome when other temperate phages 

have up to three operators in the cro-cI intergenic region (Hochschild and Ptashne, 

1986). It is possible that evolution selected for operators located within coding 

sequences in S. pseudintermedius phages, in what case such an operator would be 

expected to be present within the cI repressor gene in SpT5. This operator would be 

the Cro repressor-binding site. It was proposed that this operator sequence would be 

similar to the one identified within the cro repressor gene, based on the fact that a 

consensus sequence can often be derived from all the operators present in one phage 

genome (Citron et al., 1989). However, a similar palindromic sequence or any 

sequences with elements of symmetry were not found when examining the cI 

repressor gene by eye. Further analyses of the SpT5 genome to look for palindromes 

or similar sequences with the help of various programmes were not successful either. 

 

It is possible that operators in S. pseudintermedius phages are not all similar and 

some may not have elements of symmetry. Asymmetric operators were identified in 

the genome of the temperate mycobacteriophage L1 (Ganguly et al., 2007). DNase I 

footprinting analysis could be performed to identify more operator sites in the SpT5 

genome (Das et al., 2009). In this test, DNA regions suspected to contain operator 

sites are subjected to DNase I digestion in presence of saturating amounts of DNA-

binding proteins, i.e. CI or Cro repressors in this case. Regions recognised by the 

repressors are protected from digestion. The digestion patterns of DNA with and 

without the repressors are then compared to find where the proteins bind. 

 

Once the operator was identified, point mutations were carefully chosen in a way that 

changed the operator sequence without disrupting the coding sequence of the cro 

repressor gene. Three mutations led to the absence of binding between dsDNA 

probes and the hypothetical CI repressor. If these mutations were introduced in the 

genome of phage SpT5, they should lead to a virulent phenotype. Site-directed 

mutagenesis itself was not performed because the PhD project was coming to an end 

and developing a protocol for modifying phage SpT5 might not be trivial. Two 

options were considered: the introduction of single-stranded (ss) pieces of DNA 

containing the desired mutation into cells lysogenized with SpT5 or the transfection 

(transformation with viral DNA) of non-lysogenised cells phage genomic DNA 

along with the same mutated ssDNA. In both cases, the successful modification of 
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the phage genome would rely on strand invasion. In this situation the ssDNA is 

expected to anneal with its complementary region in the phage genome (i.e. the 

operator sequence) forming a D-loop (D for displacement) (Noirot and Kolodner, 

1998). The formation of such D-loops is known to generate active replication forks 

where the invading strand acts as a primer for DNA synthesis (Kogoma, 1996). This 

would result in the incorporation of the ssDNA in the genome and gene conversion. 

Any mismatches created by the presence of mutated bases in the ssDNA should be 

resolved with a 50% chance for the mutated base to be either kept or lost (Figure 

5.15). The use of a large molar excess of ssDNA should increase the mutation rate. 

 

 

Figure 5.15: In site-directed mutagenesis through strand invasion and replication, (A) ssDNA 

hybridises with its complementary region forming a D-loop (D for displacement). (B) Both strands are 

replicated, resulting in the incorporation of the ssDNA. (C) Mismatches created by the presence of 

mutated bases (in red) in the ssDNA are resolved with a 50% chance for the mutated base to be either 

kept or lost. 

 

The transformation of SpT5 lysogens with ssDNA alone could be performed through 

classic electroporation. Gram-positive bacteria, like S. pseudintermedius, are in 

general more resistant to DNA transformation than Gram-negative bacteria. The 

exterior peptidoglycan layer acts as a physical barrier for the DNA, making 

transformation of Gram-positive bacteria more challenging. Despite this, protocols 

for electroporation-mediated transformation of Staphylococcus species were 

successfully developed (Löfblom et al., 2007, McNamara, 2008). Another challenge 

for the transformation of Staphylococcus species is the presence of restriction-
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modification systems that digest foreign DNA. Specific lineages of S. aureus were 

found to possess such a system (Sau1) that blocks horizontal gene transfer (Waldron 

and Lindsay, 2006). It was hypothesised that inhibiting Sau1 may allow genetic 

manipulation of the relevant S. aureus strains. Similarly to S. aureus, S. 

pseudintermedius may have restriction-modification systems that make 

transformation more difficult. 

 

For the introduction of ssDNA + phage genomic DNA it may be better to use 

protoplasts, where the cell wall was digested. It may help overcome some of the 

problems encountered in electroporation-mediated transformation especially when 

trying to introduce a piece of DNA as big as a phage genome. However, the possible 

presence of restriction-modification systems within the cells would still be an issue.  

 

The advantage with both approaches (transformation of normal cells or protoplasts) 

compared to usual bacterial transformation is that there is no need to regenerate 

bacterial cells. The expected result is a modified phage and not a modified cell. 

Transformed cells would simply be cultivated in presence of the phage’s lysogen. 

Modified phages (i.e. lytic mutants) would be expected to burst out of the 

transformed host and infect the neighbouring cells thanks to their ability to overcome 

homoimmunity. A low level of gene conversion would therefore not be a problem 

because obtaining a single plaque from a single mutant, derived from a single 

successful conversion event, would be enough to amplify it through further 

cultivation. 

 

The protocols available in the literature for both methods were developed for 

Staphylococcus species that were not S. pseudintermedius. Developing a protocol for 

this particular species might have required extensive optimisation and it was 

estimated that this would not fit within the timeframe of the PhD project. 

 

The SpT5 CI repressor was further studied. First, its gene was cloned and expressed 

in E. coli, and EMSA confirmed that it was the protein binding to the identified 

operator. Secondly, its tertiary structure was predicted and compared with the crystal 

structures of the λ and TP901-1 CI repressors. This study showed that the SpT5 

repressor had a DNA-binding domain at its N-terminal end characterised by a helix-
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turn-helix unit, a structural motif typical of DNA-binding proteins. This observation 

was consistent with the EMSA results. The secondary structure of the C-terminal end 

remained uncertain. It might be partially unfolded like the C-terminal domain of the 

TP901-1 phage repressor and it possibly mediates dimerization of two CI repressor 

monomers similarly to the C-terminal domain of the TP901-1 and λ repressors. It 

would be interesting to perform crystallography on the SpT5 CI repressor with or 

without DNA to determine how it interacts with its operator site. It would also be 

good to crystallize the protein as a monomer or a dimer to visualise the 

conformations of the C-terminal end when it is free and when it interacts with 

another monomer. 
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Chapter 6 Bioinformatics analyses of the four selected S. pseudintermedius 

phage genomes (SpT5, SpT152, SpT252 and SpT99/F3) 

 

6.1. Introduction 

Over the past decade, the development and improvement of sequencing technologies 

has enabled the fast, cheap and reliable sequencing of entire genomes. Sequencing 

methods are currently classified into three categories, or three “generations”. First-

generation sequencing, also called the chain-termination method, was develop by 

Sanger in 1975 (Sanger and Coulson, 1975). The Sanger method is still used 

nowadays for the sequencing of short pieces of DNA such as PCR products or 

plasmids. The length of a DNA fragment that is sequenced in one go, also called a 

read, is 800 bases on average. The main limitation of the Sanger method is the small 

amount of DNA that can be processed per unit of time (Schadt et al., 2010). 

 

To overcome the low throughput of the first-generation method, second-generation 

sequencing (SGS) methods were developed and were made commercially available 

for the first time in 2005. Much higher throughput is achieved with SGS by 

sequencing a large number of DNA molecules in parallel (van Dijk et al., 2014). The 

first step consists of fragmenting the DNA template to build a library of nucleic acids 

(Figure 6.1). The fragmentation can be physical (e.g. sonication) or biochemical 

(enzyme-based treatments). During a tagging step, adapters (synthetic 

oligonucleotides of a known sequence) are ligated to the extremities of each DNA 

fragment, also called insert (Figure 6.2), and the library is clonally amplified through 

PCR performed with primers recognising the adapter sequences. 
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Figure 6.1: The preparation of (1) DNA template for sequencing involves (2) fragmentation, (3) the 

ligation of adapters and (4, 5) PCR amplification with primers recognising the adapter sequences. (6) 

Sequencing with the Illumina MiSeq platform consists in the sequential incorporation of nucleotides 

and emission of a fluorescent signal. Data analysis is then needed to determine the sequence of the 

DNA template. 

 

 

Figure 6.2: During library preparation from genomic DNA, DNA fragments, also called inserts, are 

produced. Adapter sequences (orange and green) are ligated to each extremity of the insert. Reads are 

produced through sequencing either from one end (single-end read) or both ends of the insert (paired-

end reads). 

 

The four phage genomes (SpT5, SpT152, SpT252 and SpT99/F3) were prepared for 

whole-genome sequencing with the Nextera XT DNA Library Preparation kit 

(Illumina). With this kit both DNA fragmentation and tagging are carried out 

simultaneously by a modified transposase (= tagmentation). The biological role of a 

transposase is to mediate the integration and excision of mobile genetic elements 

called transposons (Muñoz-López and García-Pérez, 2010). Importantly, 

transposases do not usually insert upstream of terminal bases (Dr Andrew Millard, 

personal communication). This detail is crucial for the interpretation of some of the 

results presented in this chapter. 
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Sequencing of the phage genomes was performed with the Illumina MiSeq platform, 

one of the most commonly used SGS platforms. It relies on the sequential 

incorporation of nucleotides and emission of a fluorescent signal to obtain nucleic 

acid sequence from the amplified library (Grada and Weinbrecht, 2013). The read 

length obtained with SGS is much shorter than with the Sanger sequencing method: 

from 100-150 bp, up to 250-300 bp nowadays. 

 

Third-generation sequencing (TGS) methods are based on the direct inspection of 

single DNA molecules. These methods aim at overcoming some of the shortcomings 

of SGS methods, such as PCR amplification that can introduce errors in the template 

sequence as well as amplification bias (Schadt et al., 2010). Most of these 

technologies are still in development and their advantages are expected to be speed, 

much longer read length and reduced costs. 

 

Following sequencing with SGS, a huge amount of data is produced and must 

undergo several analysis steps. Raw sequence data first undergoes preprocessing to 

remove the adapter sequences and low-quality reads. The assembly of sequencing 

reads is carried out by mapping the data against a reference genome or by de novo 

assembly using algorithms that determine the best successive combination of 

sequencing reads based on the overlaps observed between reads (Baker, 2012). 

 

Once whole genomes are obtained, genome annotation is performed to further study 

their characteristics. Gene prediction is the first step of a genome annotation pipeline. 

It is carried out with programmes such as Prodigal (Hyatt et al., 2010) that base their 

prediction on the presence of start and stop codons. The predicted genes are then 

translated and their putative products are aligned to protein databases using fast 

sequence alignment tools like BLAST (Richardson and Watson, 2013). It is best to 

use curated databases such as SwissProt for this step. 

 

Genome assembly and annotation of the phage genomes were performed by Dr 

Witold Kot and Dr Andrew Millard respectively (sections 2.17 and 2.18). The 

annotated genomes were then aligned with each other to compare their genetic 

organisation. 
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The four genomes were also studied in more details to determine if they had distinct 

cohesive ends or if they were circularly permuted without distinct genome ends. As 

described in section 1.4.2.a.iv, this characteristic is a consequence of the dsDNA 

phage packaging strategies. The genomes of phages with cohesive ends have distinct 

ends at identical locations in the sequence whereas the ends of circularly permuted 

genomes “move” along the sequence and contain terminal repeats. Based on these 

characteristics, it was attempted to predict whether the four phage genomes were 

circularly permuted or had cohesive ends through a bioinformatics approach. A PCR 

experiment was then performed to confirm (or not) the predictions. 

 

A bioinformatics approach was also used to investigate further the characteristics of 

the atypical SpT99/F3 genome, and try and explain the unusual features of this phage 

described in section 3.4.2. 

 

6.2. Study of the genetic organisation in the Warwick phages 

To compare the four phage genomes in more details and study genome organisation, 

they were aligned using the programme Easyfig (Figure 6.3). Easyfig uses BLAST to 

create linear comparisons of multiple genomic regions ranging from single genes to 

whole prokaryote chromosomes (Sullivan et al., 2011). Here, Easyfig produced an 

alignment using the GenBank files obtained after annotation of the assembled phage 

genomes. The annotation led to the identification of coding DNA sequences (CDSs) 

and the determination of the putative function of their product based on similarity 

with the SwissProt protein database (Table 6.1). 
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Figure 6.3: The four phages exhibited a level of similarity regarding genome organisation. CDS are shown as arrows and putative functions are indicated by colour coding. A 

BLAST similarity scale is shown at the bottom right. Details of putative functions are given in Table 6.1. 

SpT152 

SpT252 

SpT5 

SpT99/F3 

DNA replication 
DNA packaging 

Host lysis 
Lysogeny 

Head-tail connection DNA transcription 
Capsid genes 

Tail genes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 20 21 23 24 25 26 27 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 23 21 22 24 25 26 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Unknown function 

1



 

 

134 

Table 6.1: Proteins of similar putative functions, when their function could be predicted, were encoded in the four phage genomes. Correspondence between CDSs and 

numbers are shown in Figure 6.3. A description of the proteins’ function in the phage life cycle can be found in sections 1.4.2.a and 1.4.2.b. A search in the UniProt database 

described the phage Mu protein F as a putative capsid morphogenesis protein. 
 

CDS 

number 

Bacteriophages 

SpT152 SpT252 SpT5 SpT99/F3 

1 Integrase Tail length tape-measure protein Tail length tape-measure protein Integrase 

2 Helix-turn-helix protein Tail protein Tail protein Helix-turn-helix protein 

3 Excisionase Tail endopeptidase Tail endopeptidase ssDNA binding protein 

4 ssDNA binding protein Capsid protein Capsid protein DNA replication protein 

5 Replication initiation protein Endolysin precursor Endolysin precursor Holliday junction resolvase 

6 Helicase Holin Holin dUTPase 

7 Holliday junction resolvase Cell wall hydrolase precursor Cell wall hydrolase precursor Transcriptional activator 

8 dUTPase Integrase Integrase Terminase, small subunit 

9 Transcriptional activator CI repressor CI repressor Terminase, large subunit 

10 σ70 factor Cro repressor Cro repressor Portal protein 

11 Terminase, small subunit Excisionase Excisionase Prohead protease 

12 Terminase, large subunit ssDNA binding protein ssDNA binding protein Capsid protein 

13 Portal protein Replication initiation protein Replication initiation protein Head-tail connector protein 

14 Phage Mu protein F-like protein Helicase Helicase Head-tail joining protein 
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CDS 

number 

Bacteriophages 

SpT152 SpT252 SpT5 SpT99/F3 

15 Capsid protein Holliday junction resolvase Holliday junction resolvase Tail protein 

16 Capsid protein dUTPase dUTPase Tail length tape-measure protein 

17 Tail protein Transcriptional activator σ70 factor Tail protein 

18 Head-tail connector protein σ70 factor Terminase, small subunit Endolysin 

19 Tail protein Terminase, small subunit Terminase, large subunit  

20 Tail length tape-measure protein Terminase, large subunit Portal protein  

21 Tail protein Portal protein Phage Mu protein F-like protein  

22 Tail endopeptidase Phage Mu protein F-like protein Capsid protein  

23 Endolysin precursor Capsid protein Capsid protein  

24 Holin Capsid protein Tail protein  

25 Cell wall hydrolase precursor Tail protein Head-tail connector protein  

26  Head-tail connector protein Tail protein  

27  Tail protein   
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The whole-genome alignment produced with Easyfig concurred with the alignment 

obtained with Mauve (section 3.4.4.b). SpT252 and SpT5 were very similar to each 

other with only a few differences in the middle of the genomes. The most obvious 

difference was seen between CDSs 13 in SpT252 and SpT5, both were annotated as 

DNA replication initiation proteins. SpT152 showed a slightly lower level of 

similarity and SpT99/F3 exhibited very little similarity with the other phages. On 

average 67 CDSs were predicted for each genome and the putative function of their 

products was determined for around 36% of them (25% for SpT99/F3). Such a low 

proportion of annotated genes is not unusual when annotating phage genomes. 

Current databases are still largely incomplete when it comes to phage genes and 

proteins, and this led to a majority of CDSs to be annotated as “hypothetical protein”. 

 

In each genome, groups of CDSs with similar function or associated with the same 

molecular process were identified. Genes of the same functional group were usually 

situated next to each other in the genome and the position of each group of genes 

relative to the other ones was similar in all four genomes. Genes involved in 

lysogeny were followed by genes involved in DNA replication, then DNA 

transcription, DNA packaging, structural genes coding for capsid, head-tail joining 

and tail proteins, and host lysis. 

 

Regarding genes involved in DNA transcription, it was interesting to see that a CDS 

coding for a σ70 factor was identified in three genomes out of four. The sigma factors 

of σ70 family are components of the bacterial RNA polymerase (RNAP) holoenzyme. 

They direct the core RNAP to specific promoter elements (Paget and Helmann, 

2003). The presence of a CDS coding for a σ70 factor suggested that these phages do 

not encode their own RNAP, and redirect the host RNAP towards their genome by 

replacing the host σ70 factor, similarly to the Bacillus subtilis phage SPO1 that 

encodes a regulatory protein, gp28, that is homologous to σ factors from E. coli and 

B. subtilis (Costanzo and Pero, 1983, Gribskov and Burgess, 1986). The absence of a 

phage RNAP gene was not confirmed because the function of numerous CDSs 

remained unknown. However, the phage single subunit RNAP (ssRNAP) gene, 

found in the T7 phage and its relatives, is well conserved (Cermakian et al., 1997) 

and should theoretically be easily identified by annotation programmes. It is 

therefore unlikely that the phages studied here encode their own RNAP. 
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In SpT152 and SpT99/F3, CDS 2 was annotated as helix-turn-helix protein. HTH 

motifs are typically found in DNA-binding proteins such as CI repressors involved in 

the maintenance of lysogeny (section 5.8). CDS 2 was situated between the integrase 

and the excisionase genes in SpT152. It was also found in a location similar to that of 

the SpT5 and SpT252 cI repressor genes in both SpT152 and SpT99/F3. It was 

therefore reasonable to propose that CDS 2 in SpT152 and SpT99/F3 coded for an 

analogue of CI repressors. 

 

In SpT5 and SpT252, the genome organisation was similar to SpT152 and SpT99/F3 

except that some groups of genes (structural and host lysis genes) seemed to have 

shifted from one end of the genomes to the other. This could be the result of genomic 

rearrangements or it may indicate that the genomes were circularly permuted. In the 

latter case the genome ends were chosen arbitrarily by the programme during the 

assembly process. 
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6.3. Were the four phage genomes circularly permuted or with cohesive ends? 

6.3.1. Bioinformatic prediction based on read coverage across the genomes 

Whether a genome is circularly permuted or has cohesive ends can be tested 

experimentally or it can be predicted it using a bioinformatic approach. The latter 

approach is possible when using sequencing data obtained after preparing DNA 

libraries with the Nextera XT DNA Library Preparation kit. As mentioned in section 

6.1, this kit relies on transposase activity to fragment and tag DNA at the same time. 

Transposases do not usually insert upstream of terminal bases meaning that they are 

less likely to insert transposons within the distinct ends of cohesive genome termini. 

This results in a lower tagmentation rate in terminal regions and fewer sequencing 

inserts being produced. This affects the coverage of these regions after sequencing. 

The coverage describes the average number of reads that align to, or “cover”, known 

references bases, e.g. an assembled genome. In the case of a genome with distinct 

ends, coverage should be much lower over cohesive termini than over the rest of the 

genome because fewer reads are produced. In the case of a circularly permuted 

genome, coverage should be more even over its entire length (Rihtman et al., 2016). 

This property was used to try and predict in silico whether the phage genomes were 

circularly permuted or had cohesive ends. 

 

To do the prediction, the method described in section 2.39 was used to produce 

diagrams illustrating read coverage across each phage genome (Figure 6.4). 
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Figure 6.4 (C and D on next page): Read coverage was very irregular across the phage genomes. It clearly dropped towards the ends of the SpT152 genome. (A) SpT5, (B) 

SpT252, (C) SpT152 and (D) SpT99/F3 (coverage higher than 2000x not shown). 
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Coverage was very erratic across the four genomes. A flatter line would usually be 

expected, even though it is known that coverage can be biased depending on GC 

content and the chosen library preparation method (Rhodes et al., 2014). Overall the 

average coverage was 600x. The definition of sufficient coverage depends on the 

application, but in general for phage genomes having coverage higher than 50x does 

not offer any particular advantage (Dr Andrew Millard, personal communication). 

The average coverage of the Warwick genomes was therefore very high. The highest 

coverage value (6000x) was seen with SpT99/F3. In fact, coverage across this 

genome was very unusual. Half of the genome had coverage below 600x and the 

other half had above 2000x coverage. This unusual pattern and its possible causes 

were further discussed in section 6.4. 

 

SpT5 and SpT252 had coverage profiles similar to each other. This was to be 

expected because these phages were very similar to each other. One area of low 

coverage in comparison to the average coverage was observed between 13,000 and 

14,000 bp in both genomes (down to 32x in SpT252 and 12x in SpT5). Sequence 

analysis of this region revealed that it had a GC content of 25%. The GC content of 

the whole genomes was 35%, which was similar to the expected GC content of their 

staphylococcal host (Rosypal et al., 1966). The transposase used in the Nextera 

system was shown to have a preference for insert sites within A-T rich regions. This 

meant that regions with very low GC content (25% and below) were targeted by the 

transposase more often than other regions in the phage genomes and this led to some 

loss of signal and low coverage. The use of the Nextera XT DNA Library 

Preparation kit might therefore not be ideal for low GC genomes. It was however 

shown to be able to produce good quality DNA library for genomes down to 29% 

GC content (Lamble et al., 2013). 

 

Coverage at the ends of the SpT152 genome dropped to a very low value (1x). This 

suggested that this genome had distinct cohesive ends. For SpT5, SpT252 and 

SpT99/F3, coverage value did not drop as drastically and remained around 200 to 

300x. This indicated that these genomes might be circularly permuted. 
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6.3.2. Bioinformatics prediction based on read alignment across genome ends 

Another way to predict whether genomes have cohesive ends or are circularly 

permuted is to determine if reads can align to both ends of a genome at the same 

time. If this is the case, this means that both arbitrarily chosen “ends” of the genome 

were sometimes connected when DNA was fragmented and the genome is probably 

circularly permuted. To show this, the four genomes were cut in half and both 

original ends were pasted together in a fasta file. The alignment of sequencing reads 

with the cut-and-pasted version of each genome was studied (section 2.40). 

 

Numerous reads mapped or were paired across both “ends” of the SpT5, SpT252 and 

SpT99/F3 genomes suggesting once again that they were circularly permuted (Figure 

6.5). These results concurred with the previous prediction based on read coverage. 

No reads mapped directly across the ends of SpT152 genome but three pairs of reads 

were paired across that region. This meant that on very few occasions inserts 

spanning over both ends of the genome were produced. The fact that the SpT152 

genome had cohesive ends could therefore not be determined for certain with this 

bioinformatic approach. 
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Figure 6.5 (C and D on next page): Sequencing reads (blue lines) either aligned or were paired (pairing shown with grey lines) across both ends of the (A) SpT5, (B) SpT252 

and (D) SpT99/F3 cut-and-pasted genomes. The original first base of each genome is shown with a vertical red line. No reads mapped directly across the ends of the (C) 

SpT152 genome but three pairs of reads (shown with arrows) were paired a that region. 
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6.3.3. Confirmation of the bioinformatic predictions through PCR 

To confirm the predictions from in silico analysis, PCR was performed with primers 

complementary to each theoretical end of the phage genomes (Figure 6.6). 

 

 

Figure 6.6: PCR was performed with primers complementary to each theoretical end of the phage 

genomes on phage DNA (1, 4, 7 and 10), on the corresponding lysogen’s DNA (2, 5, 8 and 11) and 

water as a control (3, 6, 9 and 12). PCR amplification was seen with all sets of primers on both phage 

and lysogen’s DNA. The size of the PCR product for SpT152 (~500 bp) was different from the 

expected size (818 bp). 

 

PCR amplification was seen with all sets of primers on both phage and lysogen’s 

DNA. For SpT5, SpT252 and SpT99/F3 this result confirmed the bioinformatics 

prediction; these genomes were most probably circularly permuted. 

 

It was thought that SpT152 did not have a circularly permuted genome. This meant 

that no PCR amplification was expected on phage DNA because the genome ends 

should be defined and separate from each other in phage particles. On the other hand, 

PCR amplification was expected on the lysogen’s DNA because the genomes of 

siphoviruses, including those with cohesive ends, undergo circularisation once they 

enter a host cell. Genomes are then cut open at a different site before integration into 

the host’s genome (section 1.4.2.b.ii). PCR amplification should therefore be 

possible on lysogen’s DNA because the ends observed in phage particles are joined 

together in the corresponding prophage. 

 

PCR amplification was seen on both the phage and the lysogen’s DNA indicating 

that SpT152 was likely to have a circularly permuted genome. The discrepancy 
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between the in silico prediction and the experimental result may be due to the fact 

that the GC content in the theoretical terminal regions was extremely low (19%) 

compared to the rest of the genome (35%). This probably explained why read 

coverage dropped so drastically in those regions, similarly to the regions with low 

coverage in the SpT5 and SpT252 genomes. The very low coverage in that region of 

the SpT152 genome may also have led to assembly errors and this would explain 

why there is a discrepancy between the expected size (818 bp) and the obtained size 

(~500 bp) of the PCR product. 

 

To look for the presence of sequence repeats associated with circularly permuted 

genomes, alignments of the phage genomes with themselves were performed with 

Easyfig. The software identified sequence match between the ends of SpT152 

suggesting once more that it may be circularly permuted (Figure 6.7). The poor 

quality of the sequence in these regions prevented the drawing of any definitive 

conclusions regarding terminal repeats. Such sequence matches were not found in 

SpT5, SpT252 and SpT99/F3. The presence of sequence repeats at the end of the 

SpT152 genome may constitute another possible explanation for the discrepancy 

between the expected size (818 bp) and the obtained size (~500 bp) of the PCR 

product. Primers were designed to be complementary to each theoretical end of the 

SpT152 genome and when calculating the expected size of the PCR product the 

length of the repeats was included (Figure 6.8, A). In reality, PCR amplification 

occurred on different genome permutations where sequence repeats were not present 

between both primer sites (Figure 6.8, B) leading to a shorter actual PCR product. 
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Figure 6.7: (A) Sequence matches were observed between both “ends” of the SpT152 genome when aligning it with itself using Easyfig. (B) These sequences matches were 

even more visible when aligning the cut-and-pasted version of SpT152 genome with itself (section 6.3.2). Raw fasta sequences were used for this, hence the absence of CDSs. 

The position in the genome is indicated in base pairs at the top and bottom of the figure. A BLAST similarity scale is shown in the middle. 

 

1 41,087 

1 22,401 41,087 22,400 

(A) 

(B) 



 

 

148 

 

 

Figure 6.8: (A) Primers (in red) complementary to each theoretical end of the SpT152 genome (here represented with letters) were designed. When calculating the expected 

size of the PCR product (black arrow) the length of the terminal repeats (in bold) was included. (B) In reality, PCR amplification occurred on different genome permutations 

where sequence repeats were not present between both primer sites leading to a shorter PCR product. 
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6.4. Further study of the SpT99/F3 genome 

SpT99/F3 stood out among the four phages because of its phenotypic and genotypic 

characteristics. It was able to form plaques on only a few strains out of the 72 

available S. pseudintermedius strains. The lysate titres usually obtained with 

SpT99/F3 (108 PFU/mL) were lower than with the other phages (109 PFU/mL and 

higher). SpT99/F3 lysates produced through plate wash were systematically 

concentrated to reach a high titre. Amplification in liquid culture was never achieved. 

Most importantly, PFGE performed with SpT99/F3 genomic DNA revealed the 

presence of several bands when only one band would be expected (section 3.4.2). 

 

One hypothesis to explain this result was the possible presence of a second phage 

(and maybe more) in the SpT99/F3 lysate. When electron microscopy (EM) was 

performed to observe this phage’s morphology, two populations were seen according 

to Ian Hands-Portman, who helped with taking EM pictures. One type is depicted in 

section 3.4.5 and was of a similar size as SpT5, SpT152 and SpT252. The other 

population was much bigger and much more rare. Unfortunately, no picture of these 

giant phages was found in our records. This observation, even if it could not be 

verified, pointed towards the presence of at least two types of phages in SpT99/F3 

lysate. 

 

Another piece of evidence supporting the two-phage population hypothesis was the 

drastic change in read coverage across the SpT99/F3 genome (Figure 6.4, D). The 

fact that coverage was much higher over one half of the genome indicated that this 

half was overrepresented compared to the other one. One possible explanation for 

this was that the SpT99/F3 genome was a chimera of two genomes stuck together 

during the assembly process. The low coverage region (1 to 18,500 bp) would 

correspond to a phage present in low abundance and the high coverage region 

(18,500 to 40,750 bp) would correspond to a high-abundance phage. To prove that 

the SpT99/F3 genome was not a chimera created in silico, PCR was performed with 

primers recognising DNA sequences situated on either side of the region with the 

change in coverage (Figure 6.9, A). PCR amplification was seen on phage and 

lysogen’s DNA indicating that within the population there were at least some 

individuals where the two regions were connected and were part of the same genome 

(Figure 6.9, B). 
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Figure 6.9: (A) Primers recognising DNA sequences on either side of the region with the change in 

coverage were used to show whether SpT99/F3 was a chimera of two genomes created during genome 

assembly. F = forward primer in region with 50x coverage. R = reverse primer in region with 3000x 

coverage. (B) PCR amplification was seen on SpT99/F3 DNA and DNA from its lysogen indicating 

that the two regions with difference in coverage were connected at least in some individuals within the 

population. 1: SpT99/F3, 2: S56F3, C-: water negative control. 

 

Considering these results, another possibility would be that part of the phage 

population carried the entire genome and while another part of the population carried 

only half of it. In that case the high coverage over one half of the genome would be 

due to the added abundance of DNA from both types of phages. This situation would 

resemble the P2/P4 system. P2 is a temperate phage that infects E. coli. Its genome 

contains all the genes necessary for lytic growth and lysogeny. P4 is a satellite of the 

P2 phage. It can establish lysogeny in the absence or presence of P2 but it depends 

on the P2 helper genes for all the morphogenesis functions (Briani et al., 2001). Its 

genome does not contain structural genes or genes required for cell lysis (Eriksson, 

2005). There were two major differences between the P2/P4 system and the two 

potential SpT99/F3 genomes. Firstly, the high coverage region covered the second 

half of the SpT99/F3 region (from CDS 8, see Figure 6.3). This would mean that one 
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genome contained all the genes necessary for lytic and temperate lifestyles, similarly 

to the P2 phage, and the other genome, unlike P4, only contained structural genes 

and gene required for cell lysis. Secondly, P2 and P4, unlike the two potential 

SpT99/F3 genomes, have genomes that show little homology with each other (Deho 

and Ghisotti, 2006). 

 
6.5. Conclusions 

Following whole-genome sequencing with the Illumina MiSeq platform, the four 

genomes were assembled and annotated. The putative function of most of the 

identified CDSs remained unknown. To try and improve the original annotation, a 

second round of annotation was performed with Prokka using a reference database of 

all known viral proteins instead of SwissProt. This did not lead to any significant 

improvement. A lot of work remains to be done to enrich databases with well-

characterised phage proteins. Nevertheless, it was possible to identify clusters of 

genes with similar function or involved in the same biological processes. This type of 

genome organisation (with succession of lysogeny – replication – packaging – head – 

tail – lysis genes) was observed in Staphylococcus aureus temperate phages (Xia and 

Wolz, 2014) as well as Streptococcus phages and dairy phages (Obregon et al., 2003, 

Brüssow and Desiere, 2001). It is therefore probably a common type of genome 

organisation among temperate phages of the low GC Gram positive cocci. 

 

The observation of the phages with electron microscopy revealed that they exhibited 

a typical Siphoviridae morphology (section 3.4.5). This family of phages is known to 

contain linear DNA (Ackermann, 2006) and regarding DNA packaging strategies, 

both cohesive genome ends and headful packaging (associated with circularly 

permuted genomes) are observed in temperate phages belonging to this family 

(Catalano et al., 1995, Birdsell et al., 1969, Marrero and Yasbin, 1986). 

Bioinformatic approaches based on read coverage and read mapping suggested that 

SpT5, SpT252 and SpT99/F3 had circularly permuted genomes and that SpT152 had 

a genome with cohesive ends. For the first three phages, PCR amplification across 

the “ends” of their genomes confirmed the bioinformatic predictions but no terminal 

repeats, characteristic of circularly permuted genomes, were found. For SpT152, 

PCR amplification occurred and putative terminal repeats were identified in the 

genome sequence refuting the in silico prediction. 
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The results presented in this chapter showed that the in silico predictions were not 

always reliable. This was probably due to the quality of the sequencing data 

especially for SpT152 where extremely low coverage led to assembly errors. The 

Nextera XT DNA Library Preparation kit is not well suited for low GC genomes and 

the S. pseudintermedius phage genomes have proven even more AT rich than 

expected based on the GC content of their host. It would therefore be beneficial to 

perform sequencing of these genomes with a different method and compare both 

results. The genome sequences obtained with the Nextera + MiSeq method were still 

accurate enough to allow the successful design of phage-specific primers (section 

4.2) and sequence study in Chapter 5. 

 

Phage SpT99/F3 exhibited unusual phenotypic and genotypic features. The analysis 

of the sequencing data seemed to support the idea that two or more phages were 

present in SpT99/F3 lysate. A small PCR test showed that the two halves of the 

assembled genome were connected at least in part of the population. It would be 

beneficial to sequence the genome of this phage again as well as observing it in 

electron microscopy one more time to check if the same results were obtained. 

Another experiment that could be performed is quantitative PCR with primers 

annealing to the region with change in coverage and primers annealing to the left and 

right of that region. A ratio of 1:1:1 would suggest that all three regions are present 

in equal quantities and are part of one single genome. If different ratios were 

observed, it would suggest that the assembled genome presented in this chapter is not 

representative of the entire population and some individuals carry only parts of that 

genome in their capsid. 
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Chapter 7 The ecology of S. pseudintermedius and its phages 

 

7.1. Introduction 

To successfully isolate phages, choosing the right source of phages is important and 

is based on the fact that phages and their host co-reside in the same type of 

environment. Co-residence was shown to occur between phages and hosts that live or 

survive in the environment such as cyanobacteria (Huang et al., 2015) or bacterial 

species resulting from human or animal faecal contamination of wastewater 

(Wangkahad et al., 2015, Yahya et al., 2015). Water and soil are known to be 

environmental reservoirs of Mycobacteria (Makovcova et al., 2014, Lecuona et al., 

2016, Mohanty et al., 2016), some species of which can cause serious diseases in 

humans and animals. Mycobacteriophages were isolated from the same sources 

(Froman et al., 1954, Carroll and Avio, 1975, Teng et al., 2015). Vibrio cholerae and 

cholera phages can both be present in river waters and were shown to influence each 

other’s population dynamics in a study in Bangladesh. Researchers found that 

seasonal outbreaks of cholera inversely correlated with the prevalence of cholera 

phages in rivers (Faruque et al., 2005). 

 

In the above examples, the isolated phages were often virulent but temperate phages 

infecting the same hosts exist as well (Pedulla et al., 1996, Woods and Egan, 1974, 

Beilstein and Dreiseikelmann, 2008). For other bacterial hosts, the situation is 

sometimes different. The human pathogen Clostridium difficile that causes 

nosocomial antibiotic-associated diarrhoea was shown to carry diverse prophages in 

its genome (Shan et al., 2012) and so far only temperate phages of this host have 

been isolated even though it can also be found in the environment (Zidaric et al., 

2010, Hargreaves et al., 2013). It was hypothesised that the ability of C. difficile to 

undergo sporulation may select for lysogenic infections over lytic infections and this 

would explain why lytic phages of this bacterium have not been found (Hargreaves 

and Clokie, 2014). Phages infecting Staphylococcus aureus, an opportunistic 

pathogen that colonises the skin of humans and animals and causes nosocomial 

infections in clinical settings, are often temperate (Deghorain and Van Melderen, 

2012). They were shown to contribute to pathogenesis and the spread of virulence 

genes in the S. aureus population (Blair and Carr, 1961a, Xia and Wolz, 2014, Moon 

et al., 2015). Lytic phages infecting this bacterium have also been isolated such as 
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phage K (O'Flaherty et al., 2004), SA11 (Kim and Myung, 2012) or phiIPLA35 and 

phiIPLA88, two phage that are lytic due to mutations in the lysogeny functions 

(Garcia et al., 2009). The origin of phage K remains unclear (O'Flaherty et al., 

2005), SA11 was isolated from wastewater and the phiIPLA phages were found in 

milk. S. aureus usually resides on the skin so co-residence of staphylococcal phages 

and their host is less easy to justify in these types of samples. It is possible that the 

milk and water used in those experiments were contaminated with animal sources. 

 

S. pseudintermedius, like S. aureus, is an opportunistic pathogen that resides on the 

skin of animals, dogs in particular. Several studies showed that the bacterium is 

present on the skin of healthy dogs (section 1.3.1). S. pseudintermedius has been 

identified as the main causative agent of skin infections. Consequently this type of 

infection is strongly associated with the presence of the pathogen on the skin: a study 

showed that 70% of dogs referred with bacterial pyoderma to a dermatology practice 

in Canada carried S. pseudintermedius on their skin (Beck et al., 2012). This study 

also showed that microorganisms other than S. pseudintermedius, such as S. aureus 

(identified in 6.4% of dogs in that study), were present on the skin and could cause 

infections in dogs. 

 

No information was available in the literature about phages of S. pseudintermedius 

and their ecology in the environment, and because of this a range of environmental 

samples was screened for the presence of these phages. Skin swabs were included in 

the screening based on the principle of co-residence of phages and their host on the 

skin of healthy dogs and dogs suffering from pyoderma. Dog faecal samples were 

screened too following the successful isolation of S. pseudintermedius phages from 

this type of samples in Denmark (section 3.2.1). The hypothesis that motivated the 

choice of these samples was that dogs might swallow S. pseudintermedius, and its 

phages if present, when licking the skin. If the bacterium and its phages survived the 

journey in the intestinal tract they would subsequently be found in faeces. A few 

water and soil samples were included in the screening in case S. pseudintermedius 

phages were found in the environment like some S. aureus phages. After screening 

more than 100 samples in total, the isolation of S. pseudintermedius phages from 

environmental samples remained unsuccessful (section 3.2.2). 
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A study was therefore undertaken to gain knowledge about the prevalence of S. 

pseudintermedius and its phages in the different types of samples described above. It 

was hoped that once a method of detection was developed it would help determine 

whether or not samples contained phages and/or their host, constituting a pre-

screening tool to identify potential sources of phages and speed up the process of 

phage isolation. Until now the prevalence of S. pseudintermedius has only been 

studied on the skin. The proposed study would generate data about the prevalence of 

S. pseudintermedius in other types of samples. It could prove whether or not the 

bacterium was actually present in faeces and whether it could survive in the 

environment. 

 

As described in the section 1.3.2, S. pseudintermedius is usually identified through 

biochemical tests (e.g. coagulase activity) and PCR amplification of the 

thermonuclease (nuc) gene following an initial cultivation step. However, to study 

the ecological reservoirs of a bacterial species, molecular culture-independent 

approaches are generally the most sensitive and specific assays. PCR-based methods 

were used in a variety of situations such as the detection of bacteria in plants (Kamle 

et al., 2013), food (Strohmeier et al., 2014, Wang et al., 1997), human (McDowell et 

al., 2001, Johnson et al., 2000) and animal (Cheema et al., 2007) samples. Viruses 

can be detected too (Allen et al., 1999). 

 

A PCR-based screening method was therefore developed to detect S. 

pseudintermedius and its phages. It consisted in whole-DNA extraction from dog 

samples and PCR amplification with primers specific for S. pseudintermedius or its 

phages. Several methods for DNA extraction were compared, and end-point PCR 

and quantitative PCR were tested. Indeed, qPCR assays can improve the sensitivity 

and the specificity of the method of detection as well as providing information about 

the load of a pathogen in a sample (Horváth et al., 2013). 

 

Quantitative PCR can be performed following two methods: SYBR Green or 

TaqMan®. The SYBR Green master mix contains a dye that becomes a hundred 

times more fluorescent when binding to dsDNA compared to its fluorescence in 

solution. The quantity of measured fluorescence is proportional to the quantity of 

dsDNA produced during the PCR reaction. The TaqMan® method involves the use of 
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a probe that binds to the region between both primer sites. The probe has a 

fluorescent dye at one end and a quenching dye at the other end so no fluorescence is 

observed when the probe is intact. During the PCR reaction the TaqMan® probe is 

degraded by the Taq polymerase 5’ to 3’ exonuclease activity and the fluorescent dye 

is released. The signal is proportional to the quantity of amplicon produced in the 

reaction. TaqMan® and SYBR Green methods have been compared previously in a 

range of applications and were found to be either equivalent in terms of sensitivity 

(Paudel et al., 2011, Tajadini et al., 2014) or the TaqMan® method proved to be 

superior (Matsenko et al., 2008, Gunel et al., 2011). In general, the use of a 

TaqMan® probe adds specificity to the assay and is therefore considered preferable, 

especially when working on complex samples such as faeces. The expected 

sensitivity of an assay for the detection of a pathogen ranges from 1000 to less than 

ten genome copies per gram of sample depending on the application (Leal et al., 

2014, Nagpal et al., 2015). In this study the aim was to detect 100 genome copies per 

gram of sample (or per swab). 

 

The temperate phage carriage of S. pseudintermedius strains was studied as well. 

Temperate phages were successfully isolated through mitomycin C exposure and co-

culture in this project, prophages were identified in the genome of the E140 strain 

and other S. pseudintermedius strains (Moodley et al., 2013, McCarthy et al., 2015) 

supporting the idea that prophages might be widespread in the S. pseudintermedius 

population. To investigate this, a PCR-based screening was performed to look for the 

presence of prophages in S. pseudintermedius strains. 

 

Finally the ecology of one particular phage, SpT5, was looked into in more detail to 

identify the bacterial strain of origin of this phage. It was not known where SpT5 

came from because it was isolated through co-culture of seven bacterial strains 

together (section 3.3.1). 
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7.2. Detection of S. pseudintermedius 

7.2.1. Development of an end-point PCR assay 

7.2.1.a. Choice of primers 

S. pseudintermedius and other Staphylococcus species are very closely related and 

primers targeting the nuc gene and discriminating between all of them through end-

point PCR were developed previously (Sasaki et al., 2010). They were tested on 

DNA from S. pseudintermedius (strain E140) and other Staphylococcus species to 

check their specificity (Figure 7.1). From then on, DNA and cells from the E140 S. 

pseudintermedius strain were used in the experiments. This strain was chosen 

because it was sequenced (Moodley et al., 2013) and this provided useful 

information such as genome size for the design of experiments. 

 

Figure 7.1: PCR amplification was seen on S. pseudintermedius (Pse) and not on S. intermedius (Int), 

S. delphini (Del) and S. aureus (Au) genomic DNA when using primers specific for S. 

pseudintermedius. C-: water negative control. 

 

PCR amplification was seen only on S. pseudintermedius DNA. The high specificity 

of the primers was confirmed. The second fainter band visible on the gel was 

sequenced and it matched specifically S. pseudintermedius when aligned against the 

NCBI ‘nr’ database. It was decided to use these primers for the detection of S. 

pseudintermedius through end-point PCR. 
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7.2.1.b. Choice of DNA extraction methods 

For DNA extraction from faeces, the FastDNATM Spin Kit for Soil (MP 

Biomedicals) and the QIAamp® Fast DNA Stool Mini Kit (Qiagen) were compared 

(Figure 7.2). DNA was extracted in triplicates from two different samples with both 

kits. 10 µL of the resulting DNA was run on a gel to estimate the efficiency of 

extraction of both kits. 

 

 

Figure 7.2: DNA extraction with the FastDNATM Spin kit was successful with all three replicates of 

sample 2. Some DNA was also seen in one replicate of sample 1. No DNA was visible on the gel after 

extraction with the QIAmp® stool kit. 

 

The results showed that the QIAmp® Fast DNA Stool Mini Kit was not efficient at 

extracting DNA from faeces. DNA was successfully extracted from one sample out 

of the two that were tested with the FastDNATM Spin Kit. The extracted DNA 

appeared as a smear when run on an agarose gel. This meant that DNA was sheared 

during the process of extraction. However, there should still be pieces of DNA big 

enough for PCR amplification to be performed successfully. The FastDNATM Spin 

Kit was already routinely used in the lab for the purpose of DNA extraction from 

faeces. It was therefore used for further development. 

 

For DNA extraction from skin swabs, the Chemagic STAR kit for Nucleic Acid 

Isolation (PerkinElmer) and the NucleoSpin® Tissue kit (Macherey-Nagel) were 

tested. Swabs were initially sterile so the only way to compare the efficiency of both 

kits was to spike swabs with known numbers of S. pseudintermedius cells (E140 

strain) and extract DNA. This was directly coupled with the determination of the 

Sample 1 Sample 2 Sample 1 Sample 2 

QIAmp® stool kit  FastDNATM Spin kit 
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sensitivity of the PCR assay because the quantity of DNA extracted from spiked 

swabs was not high enough to be visible directly on a gel prior to amplification. 

 

7.2.1.c. DNA extraction from spiked samples and PCR amplification 

To determine how sensitive the end-point PCR assay was, faecal samples and swabs 

were spiked with known numbers of S. pseudintermedius cells (sections 2.41 and 

2.42), DNA was extracted and PCR was performed. Faecal samples were spiked in 

triplicate with 108 cells and DNA was extracted with the FastDNATM Spin kit. It was 

suspected that end-point PCR might not be sensitive enough for the detection of S. 

pseudintermedius in faeces. To obtain preliminary results regarding the sensitivity of 

the assay, samples were only spiked with a high number of cells. 

 

Regarding swabs, the objectives of the experiment was to compare both DNA 

extraction kits as well as determining the sensitivity of the PCR assay. To do this, 

swabs were spiked with a wider range of cell numbers (low: 103, medium: 105 and 

high: 108 cells). DNA was subsequently extracted with either the Chemagic STAR 

kit or the NucleoSpin® Tissue kit. The efficiency of extraction was evaluated based 

on PCR amplification (Figure 7.3). 
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Figure 7.3: (A) PCR amplification was seen in only two out of three replicates for faecal samples 2 

and 3, and no amplification was visible in sample 1 despite the high number of S. pseudintermedius 

cells added to the samples. (B) With both kits, PCR amplification was observed only on DNA 

extracted from swabs spiked with 108 S. pseudintermedius cells. C+: positive control. C-: water 

negative control. 

 

PCR amplification was seen in only two out of the three replicates for faecal samples 

2 and 3, and no amplification was seen in sample 1 despite the high number of S. 

pseudintermedius cells added to the samples. This suggested that the end-point PCR 

assay was not sensitive enough for the detection of S. pseudintermedius in faeces. 

Regarding swabs, the obtained results were the same for both kits: amplification was 

seen when spiking swabs with a number of cells and no amplification was observed 

at lower numbers of cells. The NucleoSpin® Tissue kit was chosen to perform 

subsequent DNA extraction from swabs because it was readily available in the lab. 

 

The PCR assay was further optimised to try and improve its sensitivity. Parameters 

such as the BSA concentration and the annealing temperature were modified. The 

addition of dimethyl sulfoxide (DMSO) and the dilution of samples, particularly 

relevant for faecal samples that may contain PCR inhibitors, were tested as well. 

Loading more of the PCR reactions on agarose gels to make bands more visible was 
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tried too. In spite of all these tests, amplification was only observed with samples 

spiked with 108 cells. The end-point PCR assay was not sensitive enough. To 

overcome this problem, a qPCR assay for the detection of S. pseudintermedius was 

developed. 

 

7.2.2. Development of a qPCR assay 

When performing qPCR, it is usually recommended to have an amplicon size of 100 

to 200 bp. The amplicon in the end-point PCR assay was 926 bp long. Primers 

specific for the S. pseudintermedius nuc gene with a 180 bp-long PCR product were 

therefore designed (section 2.46). It was not possible to design a TaqMan® probe 

specific for S. pseudintermedius because the target region between both primers was 

too similar in all SIG members. The qPCR assay was developed using the SYBR 

Green master mix (section 2.47). Optimisation was performed to improve the 

sensitivity of the assay on pure genomic DNA of S. pseudintermedius. A serial 

dilution from 100,000 to zero genome copies/µL was tested and the assay allowed 

the detection of 100,000 down to one genome copy/µL within 40 qPCR cycles when 

adding 10 µL of template DNA (Figure 7.4). The same serial dilutions were used as 

standard concentrations when performing further qPCR experiments (seven 

standards and one negative control). 

 

Figure 7.4: The detection of 100,000 down to one S. pseudintermedius genome copy/µL (tested in 

triplicate) was achieved within 40 PCR cycles. The same standard curve was used for subsequent 

qPCR experiments. Ct = threshold cycle. 
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To make sure that correct amplification was taking place, 10 µL of each standard 

qPCR reaction was loaded on a gel to check the size of the resulting amplicons 

(Figure 7.5, A and B). As expected the PCR product was 180 bp long for each 

reaction. No bands were seen with samples containing ten or one genome 

copy(ies)/µL because the DNA concentration was below the detection limit of the 

ethidium bromide-stained agarose gel. The qPCR machine was much more sensitive 

and could detect amplification. 

 

In parallel of this experiment, the specificity of the qPCR assay was tested on S. 

pseudintermedius and other closely related species. 106 genome copies/µL were 

detected as expected and 180 bp-long amplicons were seen on a gel after PCR 

amplification on the three S. pseudintermedius strains that were tested (Figure 7.5, B, 

C and D). No amplification was detected and no bands were observed for the S. 

intermedius, S. delphini and S. aureus strains. This confirmed that the qPCR assay 

was specific for S. pseudintermedius. 
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Figure 7.5: (A) and (B) A 180 bp-long PCR product was observed when loading 10 µL of each qPCR 

standard reactions, as expected. The quantity of DNA in samples containing ten and one genome 

copy(ies)/µL was below the detection limit of the agarose gel. (B) and (C) 180 bp-long amplicons 

were seen after PCR amplification on S. pseudintermedius strains (E018, E045 and ED99) but not on 

S. intermedius (Int), S. delphini (Del) and S. aureus (Au). (D) 106 genome copies/µL were detected in 

the S. pseudintermedius samples and no amplification was detected on the other Staphylococcus 

strains. 

 

To determine the detection limit of the qPCR assay on faecal samples and swabs, 

these were spiked in triplicate with known numbers of S. pseudintermedius cells 

(from 108 to 102 cells). DNA extracted with the chosen methods and qPCR was 

performed. The number of genome copies per microliter was calculated with the ABI 

7500 software and then expressed in either genome copies per gram of faeces or 

genome copies per swab (Figure 7.6). 
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Figure 7.6: (A) For samples spiked with 108 and 107 cells per gram of faeces, the detected numbers of 

genome copies was the same as the numbers of cells added to the samples. When spiking faeces with 

106 cells per gram of faeces and below, DNA recovery was less efficient (one to 1.5 log units lower 

than expected) or inexistent (no detection at all). (B) The detected numbers of genome copies per 

spiked swab were at least three log units lower than expected. Below 106 cells per swab, no 

amplification was detected. 

 

Faecal samples were spiked with 108 to 102 cells per gram of faeces. After DNA 

extraction and qPCR it was possible to study the detection limit of the assay as well 

as the recovery of genome copies compared to the original number of cells added to 

the sample. For samples spiked with 108 and 107 cells per gram of faeces, DNA 

recovery was good because the detected numbers of genome copies were the same as 
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the number of cells added to the samples. When spiking with 106 cells per gram of 

faeces, DNA recovery was not as good because the detected numbers of genome 

copies were one to 1.5 log units lower than expected. Below 106 cells per gram of 

faeces, DNA recovery was poor or inexistent. When spiking with 105 and 104 cells 

per gram of faeces, DNA amplification was detected in only one out of the three 

replicates. Below 104 cells per gram of faeces, no DNA amplification was detected at 

all. This meant that the detection limit of the qPCR assay following DNA extraction 

from faecal samples with the FastDNATM Spin kit was 106 cells per gram of faeces. 

The objective was to reach a detection limit of 102 cells per gram of faeces (section 

7.1). 

 

Regarding spiked swabs, DNA recovery was very poor in general. The detected 

numbers of genome copies were at least three log units lower than expected. Added 

to this, no amplification was detected at all for swabs spiked with less than 105 cells 

per swab. This strongly suggested that the DNA extraction method was not optimal.  

 

7.3. Detection of S. pseudintermedius phages 

7.3.1. Development of an end-point PCR assay 

In parallel to the development of an assay for the detection of S. pseudintermedius, it 

was attempted to detect its phages as well. The integrase gene was very similar in all 

of the isolated phages except SpT99/F3 so it was chosen as an end-point PCR target 

(Figure 7.7). 

Figure 7.7 (next page): The integrase gene was very similar in all of the isolated phages except 

SpT99/F3 as shown by an alignment of the integrase genes performed with the online tool Clustal 

Omega. T99F3 = SpT99/F3, L8 = SpL8, L10.5 = SpL10.5, L11 = SpL11, T152 = SpT152, T252 = 

SpT252 and T5 = SpT5. 
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09/10/2014 15:32Alignments < Clustal Omega < EMBL-EBI

Page 1 of 4http://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalo-I20141009-153031-0154-86203607-oy

Clustal Omega
Tools > Multiple Sequence Alignment > Clustal Omega

Results for job clustalo-I20141009-153031-0154-86203607-oy

CLUSTAL O(1.2.1) multiple sequence alignment

T99F3      atgagtgttagaaaatacg------gtaataaatggtattatgattttggatacgaaggt 54
L8         atgccggtgtacaaagacgacaaaagcgataaatggtactttactgttagatacaaagat 60
L10.5      atgccggtgtacaaagacgacaaaagcgataaatggtactttactgttagatacaaagat 60
L11        atgccggtgtacaaagacgacaaaagcgataaatggtactttactgttagatacaaagat 60
T152       atgccggtgtacaaagacgacaaaagcgataaatggtactttactgttagatacaaagat 60
T252       atgccggtgtacaaagacgacaaaagcgataaatggtactttactgttagatacaaagat 60
T5         atgccggtgtacaaagacgacaaaagcgataaatggtactttactgttaggtacaaagat 60
           ***.  ** :..*** ***      * .********** *:*..* **.*.***.***.*

T99F3      a---------------aacgatataaaaagaaaggttttaaaaccaaacgtgaagccact 99
L8         atttacggcaataacaaaaggaaattaaaacgaggatttaagactaaacgtgaggctaaa 120
L10.5      atttacggcaataacaaaaggaaattaaaacgaggatttaagactaaacgtgaggctaaa 120
L11        atttacggcaataacaaaaggaaattaaaacgaggatttaagactaaacgtgaggctaaa 120
T152       atttacggcaataacaaaaggaaattaaaacgaggatttaagactaaacgtgaggctaaa 120
T252       atttacggcaataacaaaaggaaattaaaacgaggatttaagactaaacgtgaggctaaa 120
T5         atttacggcaataacaaaaggaaattaaaacgaggatttaagactaaacgtgaggctaaa 120
           *               **.*.:*:::***...***:*****.** ********.** *.:

T99F3      ------gaagctgaaacaatagctaaaaataaactaatgcaaggtataa-ttatcaacaa 152
L8         agcgcagaagctgaatttttaacagaa-gtcaacgaaggctatagtgattcgaacacata 179
L10.5      agcgcagaagctgaatttttaacagaa-gtcaacgaaggctatagtgattcgaacacata 179
L11        agcgcagaagctgaatttttaacagaa-gtcaacgaaggctatagtgattcgaacacata 179
T152       agcgcagaagctgaatttttaacagaa-gtcaacgaaggctatagtgattcgaacacata 179
T252       agcgcagaagctgaatttttaacagaa-gtcaacgaaggctatagtgattcgaacacata 179
T5         agcgcagaagctgaatttttaacagaa-gtcaacgaaggctatagtgattcgaacacata 179
                 *********: ::**.*:.** .*.*** ** **:* . : *:   *:**..:*

T99F3      taaaagttcttt-tatc--------gattattatgaacagtggatgga----agtcaaca 199
L8         tgaatatacattttatcattatttagacaatagtgacctgcggcctaaaactagaaaacg 239
L10.5      tgaatatacattttatcattatttagacaatagtgacctgcggcctaaaactagaaaacg 239
L11        tgaatatacattttatcattatttagacaatagtgacctgcggcctaaaactagaaaacg 239
T152       tgaatatacattttatcattatttagacaatagtgacctgcggcctaaaactagaaaacg 239
T252       tgaatatacattttatcattatttagacaatagtgacctgcggcctaaaactagaaaacg 239
T5         tgaatatacattttatcattatttagacaatagtgacctgcggcctaaaactagaaaacg 239
           *.**:.*:*:** ****        ** :**:.***.*:* **.  .*    **:.***.
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09/10/2014 15:32Alignments < Clustal Omega < EMBL-EBI

Page 2 of 4http://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalo-I20141009-153031-0154-86203607-oy

T99F3      aaaagggcgtaattacagacaaagcttatcaaacatacgttaatgctataaaacaattca 259
L8         gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
L10.5      gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
L11        gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
T152       gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
T252       gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
T5         gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
           .****.*..*.*:****.**  :**:***.****. *.***:. **:        .:***

T99F3      agaa-------atttctctatactgaaaacctagacga----t-attac-tttgaataat 306
L8         agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
L10.5      agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
L11        agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
T152       agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
T252       agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
T5         agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
           ***:       ***:***:. *.  **:.**:***  :    : .*::* *:**.*****

T99F3      ttcacaacaatttt---ttatcgaaaattcttaaaatggtatggtgataatcatgcgaca 363
L8         atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
L10.5      atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
L11        atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
T152       atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
T252       atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
T5         atcaattcttttaacagcgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
           :***.::*::**::     . **:*.      **::****.:**  :***:   * *  .

T99F3      gaatcagttaaaaaaatacacaattgtcttaa-agcagcgctatccgacgctatgcaaga 422
L8         ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
L10.5      ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
L11        ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
T152       ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
T252       ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
T5         ttatcaat------tatgctaaaaagtattttggattgcgc--a---------------- 433
            :****.*      :**.*:.**::**.**:: .. :****                   

T99F3      agggcttatttataaagaccctacttataaa------gctattgtaaaagggaaaaagcc 476
L8         --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
L10.5      --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
L11        --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
T152       --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
T252       --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
T5         --------------tcgacccaactatatcaattaaacctatc---ccacgtactaagcc 476
                         :.*****:***::::.*       ****    ..* * *.:*****

T99F3      tag-ccagccagaagaagacaaatttatgagtatagcagattataaaaaattgaaaaatt 535
L8         taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
L10.5      taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
L11        taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
T152       taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
T252       taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
T5         taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtgt--aa 520
           **. ***.          **::::* *****:.:*   **:*:*.**. ** *:.:  ::

T99F3      atgtggcaaatgtccctactcaatcatatttgtttatctacattttagt-tataacagga 594
L8         aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
L10.5      aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
L11        aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
T152       aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
T252       aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
T5         aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
           *:*:.* *.*:*:.*.:..  :***. .:   : *** ***:** ::** *:::*****:

T99F3      gctcgttttggtgaagttcaaaaat---taacaactgatgactta------------g-- 637
L8         ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
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T99F3      aaaagggcgtaattacagacaaagcttatcaaacatacgttaatgctataaaacaattca 259
L8         gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
L10.5      gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
L11        gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
T152       gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
T252       gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
T5         gaaagagaatgaatacaaac--tgcatataaaaccgaagtttgggca--------catca 289
           .****.*..*.*:****.**  :**:***.****. *.***:. **:        .:***

T99F3      agaa-------atttctctatactgaaaacctagacga----t-attac-tttgaataat 306
L8         agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
L10.5      agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
L11        agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
T152       agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
T252       agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
T5         agatgaacaaaattactcagcaac-aatgccaagagttcagaaagtatcttatggataat 348
           ***:       ***:***:. *.  **:.**:***  :    : .*::* *:**.*****

T99F3      ttcacaacaatttt---ttatcgaaaattcttaaaatggtatggtgataatcatgcgaca 363
L8         atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
L10.5      atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
L11        atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
T152       atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
T252       atcaattcttttaacagtgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
T5         atcaattcttttaacagcgcgcgtac------aatttggtcagggtttaaa---gtg--g 397
           :***.::*::**::     . **:*.      **::****.:**  :***:   * *  .

T99F3      gaatcagttaaaaaaatacacaattgtcttaa-agcagcgctatccgacgctatgcaaga 422
L8         ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
L10.5      ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
L11        ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
T152       ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
T252       ttatcaat------tatgctaaaaagtattttggattgcgc--g---------------- 433
T5         ttatcaat------tatgctaaaaagtattttggattgcgc--a---------------- 433
            :****.*      :**.*:.**::**.**:: .. :****                   

T99F3      agggcttatttataaagaccctacttataaa------gctattgtaaaagggaaaaagcc 476
L8         --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
L10.5      --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
L11        --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
T152       --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
T252       --------------tcgacccaactatatcaattaaacctatt---ccacgtactaagcc 476
T5         --------------tcgacccaactatatcaattaaacctatc---ccacgtactaagcc 476
                         :.*****:***::::.*       ****    ..* * *.:*****

T99F3      tag-ccagccagaagaagacaaatttatgagtatagcagattataaaaaattgaaaaatt 535
L8         taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
L10.5      taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
L11        taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
T152       taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
T252       taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtat--aa 520
T5         taaaccaa----------actttatgatgagagaa---gaatttgaag-atcgtgt--aa 520
           **. ***.          **::::* *****:.:*   **:*:*.**. ** *:.:  ::

T99F3      atgtggcaaatgtccctactcaatcatatttgtttatctacattttagt-tataacagga 594
L8         aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
L10.5      aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
L11        aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
T152       aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
T252       aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
T5         aagaagtagaagaacaaga-ttatcggga---actatttactttgatgttttatacaggt 576
           *:*:.* *.*:*:.*.:..  :***. .:   : *** ***:** ::** *:::*****:

T99F3      gctcgttttggtgaagttcaaaaat---taacaactgatgactta------------g-- 637
L8         ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
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L10.5      ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
L11        ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
T152       ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
T252       ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
T5         ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
             :.*: * ** ****  .:...:*   *:: .**:**  **:::            *  

T99F3      -atttcattaataacacga------------ttcatttaagag------gtacaaagaca 678
L8         atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
L10.5      atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
L11        atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
T152       atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
T252       atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
T5         atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
            ::* *** *****.****            :**. * ** *       * .*:**.***

T99F3      gtaacatcagatcgtatagtcgatgtcccgagtgaagacatgagggttttaaaaagaaca 738
L8         gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
L10.5      gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
L11        gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
T152       gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
T252       gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
T5         gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
           *::* :**:**: .******. .* *.** *.: ::.:**:  *..:* *:*:.:****.

T99F3      atgac----tgaaatgccaattaacat-------ga---a-tagacaatt--gtttaata 781
L8         ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
L10.5      ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
L11        ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
T152       ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
T252       ctaccaacgtgaaaaacagatgaacaaatattttgatgaacgaaactattttatatttgg 815
T5         ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
           .*..*    *****:.*..** ****:       **   *  *.**:***  .*:*:: .

T99F3      caggctattctctaataacaaacaatgcagtaacaaaaatacttcaaaaattctgtttag 841
L8         cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
L10.5      cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
L11        cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
T152       cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
T252       cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
T5         cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
           *.*.**:  * ****:  **::.:*  **  ::**:***                     

T99F3      aaaataaattaggaaatttc-------actctacatgcaataagacacacacattgctct 894
L8         aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
L10.5      aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
L11        aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
T152       aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
T252       aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
T5         aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
           ***:*:** :***.::** *       *  .*******..******* :** **  .***

T99F3      tatctattgcatggcggtgtatcaatttactatat---atctaaaaggcttggtcacgct 951
L8         tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
L10.5      tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
L11        tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
T152       tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
T252       tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
T5         tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
           ** ***  ..**..******* .:**:*:* ::.*   ***:::** **   **** ***

T99F3      aatat---caaaacaacgttagaagtatattctcatctgttagaagagactcaggtcgaa 1008
L8         caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
L10.5      caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
L11        caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
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L10.5      ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
L11        ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
T152       ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
T252       ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
T5         ttaagagtcggcgaagcgatggctttagtttggacagactacaataaatataaaaaagaa 636
             :.*: * ** ****  .:...:*   *:: .**:**  **:::            *  

T99F3      -atttcattaataacacga------------ttcatttaagag------gtacaaagaca 678
L8         atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
L10.5      atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
L11        atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
T152       atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
T252       atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
T5         atatccatcaataaaacgatggacatctctaatcggtcaatataccctcggcctaaaaca 696
            ::* *** *****.****            :**. * ** *       * .*:**.***

T99F3      gtaacatcagatcgtatagtcgatgtcccgagtgaagacatgagggttttaaaaagaaca 738
L8         gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
L10.5      gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
L11        gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
T152       gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
T252       gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
T5         gatagttctgaagatatagtacctttacctaaatttatcaat-gaaatgttatctgaacg 755
           *::* :**:**: .******. .* *.** *.: ::.:**:  *..:* *:*:.:****.

T99F3      atgac----tgaaatgccaattaacat-------ga---a-tagacaatt--gtttaata 781
L8         ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
L10.5      ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
L11        ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
T152       ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
T252       ctaccaacgtgaaaaacagatgaacaaatattttgatgaacgaaactattttatatttgg 815
T5         ctaccaacgtgaaaaacagatgaacaaatattttgatgaacaaaactattttatatttgg 815
           .*..*    *****:.*..** ****:       **   *  *.**:***  .*:*:: .

T99F3      caggctattctctaataacaaacaatgcagtaacaaaaatacttcaaaaattctgtttag 841
L8         cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
L10.5      cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
L11        cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
T152       cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
T252       cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
T5         cggacttgcccctaaa--cattatagccatgttcataaa--------------------- 852
           *.*.**:  * ****:  **::.:*  **  ::**:***                     

T99F3      aaaataaattaggaaatttc-------actctacatgcaataagacacacacattgctct 894
L8         aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
L10.5      aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
L11        aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
T152       aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
T252       aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
T5         aaatttaacaaggcttttcctaattatagcatacatgccctaagacattcatatgcatct 912
           ***:*:** :***.::** *       *  .*******..******* :** **  .***

T99F3      tatctattgcatggcggtgtatcaatttactatat---atctaaaaggcttggtcacgct 951
L8         tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
L10.5      tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
L11        tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
T152       tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
T252       tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
T5         tacctagcaaataacggtgtagatatattcgtactacaatcattaatgc---gtcatgct 969
           ** ***  ..**..******* .:**:*:* ::.*   ***:::** **   **** ***

T99F3      aatat---caaaacaacgttagaagtatattctcatctgttagaagagactcaggtcgaa 1008
L8         caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
L10.5      caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
L11        caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
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T152       caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
T252       caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
T5         caaataaccgaaacaatggg-tacgtatagtc--attt------atatactcagaaa--- 1017
           .*:**   *.****** *    *.***** **  ** *      * * ******.:.   

T99F3      gaaaaacaaaaaactattaacttgatt-aaaagtatgtaa 1047
L8         ---aaacatgatgccatagccatttttgacgagtaa---- 1050
L10.5      ---aaacatgatgccatagccatttttgacgagtaa---- 1050
L11        ---aaacatgatgccatagccatttttgacgagtaa---- 1050
T152       ---aaacatgatgccatagccatttttgacgagtaa---- 1050
T252       ---aaacatgatgccatagccatttttgacgagtaa---- 1050
T5         ---aaacatgatgccatagccatttttgacgagtaa---- 1050
              *****:.*:.* **:..*:* :** *..****:    

PLEASE NOTE: Showing colors on large alignments is slow.
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The integrase primers were tested on phage and bacterial DNA (Figure 7.8). 

 

Figure 7.8: Amplification was seen on phage and bacterial DNA when using primers targeting the 

phage integrase gene. Amplification of bacterial DNA indicated the presence of prophages in the 

tested bacterial strains. 1: SpT5, 2: SpT152, 3: SpT252, 4: SpT99/F3, 5: E045, 6: E045 lys SpT5, 7: 

E140, 8: AB252, 9: JZ152, 10: E139, 11: ED99, 12: S56F3, 13: E018, C-: water negative control. 

 

Amplification was seen on phage DNA but also on bacterial DNA indicating the 

presence of prophages. The integrase gene is essential for establishing lysogeny and 

since only genomes of temperate phages were available to design primers, it was 

difficult to target genes that were not present in prophages. There was no 

amplification in ED99 supporting the fact that it is prophage-free (Ben Zakour et al., 

2011). As expected, no amplification was visible for SpT99/F3. This confirmed that 

a level of variability existed among phages and the set of primers may not capture 

the whole diversity of S. pseudintermedius phages. 

 

The development of an end-point PCR assay for the detection of phages in swabs and 

faeces was not carried out because of all the issues encountered during the 

development of a similar method for the detection of S. pseudintermedius. Time was 

lacking for extensive optimisation. Instead, PCR screening was performed with the 

already available primers to obtain information about the prevalence of prophages 

within S. pseudintermedius strains. 
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7.3.2. Colony PCR for the detection of prophages 

7.3.2.a. Phage-specific PCR to look for prophages similar to the four selected 

phages (SpT5, SpT52, SpT152 and SpT99/F3) 

The host range of bacteriophages can vary greatly. Some phages can infect several 

bacterial genera (Bielke et al., 2007, Meaden and Koskella, 2013, Weigele et al., 

2007), often they are limited to one species of bacteria and some phages can only 

infect a few strains within one species. In the case of the S. pseudintermedius phages 

isolated in this project the host range was very narrow, restricted to less than half (in 

the case of SpT99/F3 less than a quarter) of the 72 strains that were tested in total 

(Table 3.6). Bacterial resistance to phage infection is achieved by using restriction-

modification systems, by using CRISPR-Cas systems or by not expressing the phage 

receptor. The presence of a prophage in the chromosome also confers resistance to 

phage infection to lysogens through homo/heteroimmunity (section 1.4.2.b.v). 

 

To test whether lysogeny was widespread in S. pseudintermedius and could explain 

the narrow host range of the tested phages, primers specific for the Warwick phages 

(sections 2.37 and 4.2) were used to screen S. pseudintermedius strains for the 

presence of prophages in their genome. For each phage, 28 strains (MRSP and 

MSSP, not necessarily the same ones for each phage depending on their host range) 

that did not support phage growth were selected and screened through colony PCR 

with the corresponding Warwick phage-specific primers (Table 7.1). A known 

lysogen and the strain used to amplify each phage in the lab were included in the 

screening as positive and negative controls respectively. 

Table 7.1: PCR screening of S. pseudintermedius strains that did not support phage growth with 

Warwick phage-specific primers revealed that only a few strains contained a similar prophage in their 

genome. 

 

Phage name 
Number of PCR-positive S. pseudintermedius 

strains / total number of tested strains 

SpT5 2 / 28 

SpT252 3 / 28 

SpT152 1 / 28 

SpT99/F3 1 / 28 
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PCR screening revealed that for each phage only a few strains (up to three out of 28) 

contained a similar prophage in their genome. The absence of phage growth on the 

bacterial strains used in this experiment was probably not due to the presence of 

prophages in most cases. Other mechanisms such as restriction-modification systems 

may explain the narrow host range of the Warwick phages. 

 
7.3.2.b. PCR screening to look for other prophages 

To extend the search for prophages, the primers targeting the integrase gene were 

used to perform colony PCR on all the bacterial strains used in the previous Warwick 

phage-specific test. Again, known lysogens and amplification strains were included 

in the experiment as positive and negative controls respectively. Results obtained 

with phage-specific PCR were included (positive if amplification was observed for at 

least one phage-specific set of primers) and based on these results alone the 

theoretical presence of an integrase gene was deduced. The actual results of the 

integrase PCR screening were then compared to the theoretical ones (Table 7.2). 

Table 7.2: The comparison of theoretical and obtained results for integrase gene PCR showed a lack 

of correspondence for some of the 40 S. pseudintermedius strains that were tested. Second column: 

results obtained with phage-specific PCR, (+) = strain was positive for at least one phage, (-) = no 

PCR amplification for any phage. Third column: theoretical results for integrase gene PCR, based on 

phage-specific PCR results, (+) = PCR amplification should be observed, (-) = no PCR amplification 

should be seen. Fourth column: obtained results for integrase gene PCR, (+) = PCR amplification, (-) 

= no amplification. 
 

S. pseudintermedius strains 
Result for phage-

specific PCR 

Theoretical result 

for integrase gene 

Obtained result for 

integrase gene 

E029 - - + 

E046 + + + 

E052 + + + 

E075 + + + 

E086 - - + 

E140 - - + 

E018 - - - 

E020 - - - 

E022 - - - 

E025 - - - 

E122 - - - 

E125 + + - 
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S. pseudintermedius strains 
Result for phage-

specific PCR 

Theoretical result 

for integrase gene 

Obtained result for 

integrase gene 

E135 - - - 

E069 - - - 

AB178 - - - 

AB255 - - - 

AB316 - - - 

08BKT - - - 

HK14 - - - 

Y1 - - - 

S56C3 - - - 

S56D2 + + - 

S56H7 - - - 

S57E7 - - - 

S60D7 - - + 

S61H5 - - + 

S61I9 - - + 

S62A2 - - - 

S63G7 - - - 

S66E5 - - - 

S76I4 - - - 

JZ22 - - - 

JZ31 - - - 

JZ133 - - - 

JZ151 - - - 

JZ170 - - - 

JZ208 - - - 

JZ220 - - - 

AB561 - - - 

AB564 - - - 

Amplification 

strains 

E045 - - - 

E139 - - - 

ED99 - - - 

Lysogens 

E045 lys 

SpT5 
+ + + 

AB252 + + + 

JZ152 + + + 

S56F3 + - - 
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Theoretical and actual results were consistent for E046, E052 and E075 suggesting 

the presence of functional prophages in these strains. E125 and S56D2 were positive 

for Warwick phage-specific PCR but negative for integrase gene, indicating the 

presence of possibly defective prophages in their genome. E029, E086, E140, 

S60D7, S61H5 and S61I9 were negative for Warwick phage-specific PCR and 

positive for integrase gene. This suggested that they contained prophages different 

from the four Warwick phages. Regarding the controls, the amplification strains 

were negative for Warwick phage-specific PCR and integrase gene as expected. The 

lysogens were positive for both Warwick phage-specific PCR and integrase gene as 

expected, except S56F3. Primers were designed to target the integrase gene present 

in all the isolated phages (Warwick and Danish) except SpT99/F3. This phage had an 

integrase gene in its genome that was identified later. This explained the absence of 

PCR amplification in its lysogen (S56F3). No other strains were only positive for 

SpT99/F3. 

 

Such PCR-based experiments have limitations. First, PCR inhibition can occur when 

performing colony PCR leading to false negatives. The fact that amplification was 

systematically seen in the positive controls suggested that this did not happen. 

Secondly, false positives can occur too, especially when the region to amplify is 

short as it is the case with the SpT5 PCR product (125 bp). Thirdly, screening 

through PCR for a single gene gives no indication of whether or not this gene is part 

of a functional prophage. The integrase genes identified in S. pseudintermedius 

strains may be the remnants of degenerated prophages. Finally, targeting only one 

gene may not capture the whole diversity of S. pseudintermedius phages. For 

example, phages similar to SpT99/F3 were not targeted in this study. Still, this 

simple experiment gave an idea of how widespread phages other than SpT99/F3-like 

phages were. An integrase gene was detected in 11 out of 45 strains (E045 lys SpT5 

was not included as it was isolated specifically for this project – see section 4.2. 

ED99 was not included either because it was a known prophage-free strain). This 

indicated that prophages similar to temperate phages isolated in this project were not 

very common. 

  



 

 174 

7.3.2.c. Looking for the strain of origin of phage SpT5 

SpT5 was isolated through co-culture in Denmark with a mix of seven S. 

pseudintermedius strains so the strain of origin (or lysogen) of this phage was not 

known at the time of isolation (section 3.3.1). To overcome this problem, a lysogen 

of this phage was isolated during the project. Primers specific for the SpT5 genome 

were designed and used to confirm the state of lysogeny of E045 lys SpT5 through 

colony PCR (section 4.2). The same primers were then used to screen the seven 

strains present in the mix from which SpT5 originated to try and identify the strain of 

origin of this phage (Figure 7.9). 

 

 

Figure 7.9: (A) PCR amplification with SpT5-specific primers was seen on S. pseudintermedius 

strains E133 and E045 lys SpT5 (positive control). 1: E018, 2: E022, 3: E025, 4: E122, 5: E133, 6: 

E140, 7: S61H5, 8: E045 lys SpT5, 9: E045 (negative control) and C-: water negative control. (B) 

PCR amplification with primers targeting the SpT5 immunity region was not seen on E133. 1: E133, 

2: SpT5 and C-: water negative control. (C) No shift was observed when exposing the SpT5_op DNA 

probe to E133 cell lysate. 1: free DNA, 2: DNA + E133 and 3: DNA + E045 lys SpT5.  

 

When performing colony PCR on the seven strains present in the co-culture mix, 

amplification was seen on E133 (Figure 7.9, A). This was surprising because SpT5 

was able to form plaques on E133 (Table 3.6) and a phage cannot normally grow on 

its own lysogen. To confirm whether or not E133 was an SpT5 lysogen, primers 

targeting the phage immunity region were designed and PCR was performed on 
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genomic DNA. In this case no amplification was seen on E133 indicating that it was 

not lysogenized with SpT5 (Figure 7.9, B). This result was confirmed through gel 

shift assay. When the SpT5_op DNA probe was exposed to E133 cell lysate, no shift 

was observed (Figure 7.9, C). The CI repressor was therefore absent from the cell 

lysate and E133 was not a lysogen of SpT5. The strain of origin of this phage could 

not be identified. SpT5 is very similar to the Danish phages and it was isolated in 

Denmark in the same lab where the Danish phages were themselves isolated and 

handled. It is therefore possible that SpT5 came from the laboratory environment 

rather than one of the tested bacterial strains. 

 

7.4. Conclusions 

Following the unsuccessful attempts at isolating S. pseudintermedius phages from 

environmental samples, a study of the prevalence of the pathogen and its phages in 

these samples was undertaken. Samples were chosen for phage isolation because it 

was proposed that S. pseudintermedius was present in them and that phages would 

co-reside with their host. However, there was no proof that the bacterium or its 

phages were present in the samples screened in this project. Developing a method for 

the detection of S. pseudintermedius and its phages would therefore provide a pre-

screening tool to identify potential sources of phages and speed up the process of 

phage isolation. The study would also generate data about the ecology of the 

bacterium in a more general context than just the skin of dogs. 

 

The development of an end-point PCR assay for the detection of S. pseudintermedius 

was attempted using primers that were already available in the literature. 

Amplification was seen only when samples were spiked with 108 cells per swabs or 

per gram of faeces. The assay was not sensitive enough. To overcome this problem, a 

qPCR assay was developed. When tested on pure S. pseudintermedius DNA, the 

qPCR assay could detect a concentration as low as 10 genome copies/µL but when 

spiking faecal samples or swabs DNA recovery was generally poor and signal was 

not detected below 105 cells per swab or per gram of faeces. 

 

Further optimisation for the detection of S. pseudintermedius and its phages was not 

carried out because of a lack of time and a number of issues associated with sample 

collection. Indeed, while the method of detection was developed, contact was taken 
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with several veterinary practices to start collecting samples (skin swabs and faeces) 

to make sure they would be available without delay once the assay was optimised. 

Sample collection was slow because dermatology cases presented only sporadically 

in regular vet practices and veterinarians sometimes forgot to collect samples. 

 

There was also concern over the possibility to access truly positive samples from 

confirmed S. pseudintermedius pyoderma. Confirming the presence of the pathogen 

in skin lesion is time-consuming and was not done systematically. A certain number 

of samples were collected from putative pyoderma. The lack of known positive 

samples meant that it was not possible to know the load of pathogen that could be 

expected in a given sample. The arbitrary detection limit of 100 genome copies per 

gram of samples may not be low enough. Enrichment could be performed to amplify 

the pathogen before detection and in that case the original load of bacteria could not 

be determined. 

 

Other issues were related to the use of swabs for sample collection. Ideally, the load 

of bacteria should be expressed in genome copies per gram of sample. However, 

with swabs it is difficult to know how much sample was collected. In a small 

experiment, swabs were weighed before and after swabbing. It was found that they 

did not gain weight and might even lose weight if swab material was left on the skin. 

The detection of S. pseudintermedius and its phages in those samples would 

therefore be limited to information about presence or absence without information 

about the load. Another problem was the impossibility to do true replicates of each 

swab. When a study is based on environmental thus variable samples, replicates are 

essential (King et al., 2015). When swabbing, the microbiome at the surface of the 

skin was disturbed and swabbing a second time would not represent the same 

microbiome. To overcome this problem, samples could be collected from different 

areas on the body of one dog and these would count as replicates. 

 

Regarding the detection of S. pseudintermedius phages, the study was focused on the 

ecology of temperate phages instead of looking for phages in dog samples. A colony-

PCR screening performed with Warwick phage-specific primers or primers targeting 

the integrase gene revealed that 11 strains out of the 45 (24%) that were tested 

contained prophage genes. This suggested that lysogeny was not widespread in the S. 
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pseudintermedius population. In comparison, studies on lysogeny in other 

Staphylococci including S. aureus showed the presence of temperate phages in up to 

80% of the tested strains (Rountree, 1949, Blair and Carr, 1961b, Matsuzaki et al., 

2003). The fact that lysogeny was not very common in S. pseudintermedius 

suggested that the narrow host range of the Warwick phages was not due to 

homo/heteroimmunity in most cases. In another study about prophage carriage in S. 

aureus, eight different families of bacteriophages were defined based on their 

integrase gene alone (McCarthy et al., 2012). It was possible that S. 

pseudintermedius strains contained other prophages that harboured different 

integrase genes that were not targeted by the designed primers.  

 

Regarding the ecology of phage SpT5, the same colony-PCR approach was used to 

identify its strain of origin. A few experiments showed that SpT5 could not be traced 

back to one of the strains used in the co-culture experiment that led to its isolation. It 

might have come from the laboratory environment where other S. pseudintermedius 

phages were previously handled. 
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Chapter 8 Summary and discussion 

 

8.1. Summary of the results presented in this thesis 

8.1.1. Isolation of S. pseudintermedius phages and Vir mutants 

The isolation of phages infecting S. pseudintermedius was attempted from a variety 

of samples (wastewater, dog faeces and skin swabs). The objective was to find lytic 

phages adapted for phage therapy but this proved unsuccessful. The isolation of 

temperate phages through co-culture and mitomycin C induction yielded almost 

twenty phages that were characterised genetically and phenotypically. Four phage 

candidates, SpT5, SpT152, SpT252 and SpT99/F3, were kept for further tests. 

Random mutagenesis and multiple passaging approaches were used to produce Vir 

mutants from these four phages. When this remained unsuccessful, site-directed 

mutagenesis was considered as the next best option for the production of Vir 

mutants. For this purpose, an operator was found in the SpT5 genome and mutations 

leading to absence of CI repressor binding were identified. These mutations should 

lead to a virulent phenotype when introduced in the SpT5 genome. 

 

8.1.2. Study of the biology of S. pseudintermedius phages 

The study of the predicted tertiary structure of the SpT5 CI repressor led to the 

identification of a helix-turn-helix domain typical of DNA-binding proteins. 

Bioinformatics analyses of the four phage genomes revealed that they exhibited a 

genetic organisation similar to other phages infecting Gram-positive cocci with 

clusters of genes involved in the same biological processes (e.g. virion assembly, 

host lysis, lysogeny). It was also suggested that they have circularly permuted 

genome corresponding to a headful packaging system and that SpT99/F3 lysate may 

contain more than one type of phages. A study of the ecology of S. pseudintermedius 

and its phages was initiated and later discontinued because of problems encountered 

during method development. The genome of S. pseudintermedius strains was 

screened for prophages through a PCR-based approach. The experiment indicated the 

presence of prophage genes in one fourth of the tested strains (11 out of 45 strains 

tested in total). 
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8.2. Suggestions for future work 

8.2.1. Further study of the biology of S. pseudintermedius phages 

A few suggestions were made in the previous chapters to pursue the work on the 

biology of S. pseudintermedius phages: DNase I footprinting to identify other 

operators in the SpT5 genome (section 5.9), crystallisation of the SpT5 CI repressor 

to explore its structure (section 5.9) and the use of antibiotics different from 

mitomycin C to maybe induce different families of phages from S. pseudintermedius 

lysogens (section 3.5). It was also suggested to perform electron microscopy 

observation and genome sequencing on phage SpT99/F3 along with qPCR on several 

regions of its genome to try and understand its unusual characteristics (section 6.5). 

 

8.2.2. Further steps towards phage therapy 

8.2.2.a. Ensuring the absence of harmful genes in future therapeutic phages 

Regarding the development of phage therapy, one important step is to check the 

genome of phage candidates for the presence of undesirable genes such as antibiotic 

resistance genes or toxin genes (Skurnik and Strauch, 2006). Temperate phages are 

more likely to contain such genes. Shiga toxin phages infecting E. coli are one 

example of temperate phages that can convert bacteria into dangerous toxin-

producing pathogens (Brussow et al., 2004). The genome annotation performed with 

Prokka (an online programme that predicts the function of genes and uses the 

manually curated SwissProt database as a reference, see section 6.2) on the four 

selected phage genomes did not identify such genes, however a lot of coding 

sequences remained of unknown function (Figure 6.3). The use of specially designed 

programmes such as ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) or Island 

Viewer (http://www.pathogenomics.sfu.ca/islandviewer2/resources.php) may help 

find harmful genes if they are present. 

 

8.2.2.b. Site-directed mutagenesis for the production of Vir mutants 

The next step is the introduction of the point mutations identified through gel shift 

assay into the genome of SpT5 through one of the approaches described in section 

5.9: the transformation of SpT5 lysogens with mutated ssDNA of the operator region 

or the transfection of non-lysogens with the phage genome and the same mutated 

ssDNA at the same time. Even though phages are known to evolve quickly, it is not 

expected that they would readily revert to a temperate phenotype because there 
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should be no selective pressure for them to do so. Added to this, in the event of a Vir 

mutant reverting to lysogeny over the course of a treatment, it is expected that the 

other non-revertant phages administered at the same time would still be capable of 

killing the newly lysogenized host. 

 

It is also useful to test the host range of the Vir mutant because it is likely to change 

compared to the parent phage. It is hoped that the host range will be broader because 

Vir mutants can infect lysogens. However, the prophage screening study (section 

7.3.2.b) suggested that lysogeny is not hugely widespread in the S. pseudintermedius 

population (11 out 45 strains tested positive for the presence of prophage-associated 

genes). Overcoming homoimmunity may therefore not be enough to significantly 

broaden the spectrum of the phage. One possibility would be to further mutagenize 

the Vir mutants to obtain host range mutants that could be combined in a cocktail. A 

similar experiment was successfully performed on an S. aureus Vir mutant phage 

(Rapson, 2002). 

 

8.2.2.c. In vitro testing 

Once a phage or phage cocktail with satisfactory host range is obtained, its efficacy 

should be tested in vitro against a range of S. pseudintermedius strains (ST68 and 

ST71 strains in particular). Some studies showed that the in vitro virulence of a 

phage does not always correlate with its effect in vivo because the environment is 

much more complex and the bacterial state, including expression of the phage 

receptor, may be different (Kropinski, 2006, Tsonos et al., 2013, Henry et al., 2013). 

It is therefore recommended to move on to in vivo studies whenever possible to 

evaluate the efficacy of phage therapy against pyoderma in more realistic conditions.  

 

8.2.2.d. In vivo testing 

8.2.2.d.i. Animal model and purification of the phage preparation 

A mouse model of S. pseudintermedius skin infection was developed at the Statens 

Serum Institute in Denmark and could be used for the in vivo studies (Prof. Luca 

Guardabassi, personal communication). It is important to ensure the purity of the 

phage preparation before it is applied on animal skin. Indeed, crude phage lysates 

may contain toxins, whole live cells or cell membrane components that could be 

dangerous or could trigger inflammatory reactions. They have to be removed before 
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in vivo application of the phage product. The traditional phage purification method 

involving precipitation with polyethylene glycol (PEG) followed by separation on a 

cesium chloride (CsCl) gradient can yield high concentration of phage with a 

satisfactory level of purity (Merril et al., 1996). However, it is time-consuming and it 

cannot be easily scaled-up for the production of bigger quantities of culture required 

for commercial applications. Other methods have been proposed to purify phages. 

These involve a succession of centrifugation and filtration steps, along with 

chromatographic procedures, which aim is to produce a phage suspension with as 

few non-phage contaminants as possible (Gill and Hyman, 2010). Alternatively, 

some advocate a minimalist approach to purification where the aim is merely to 

remove living bacteria and toxins through filtration and chromatography. Phages are 

then left in a mixture of non-toxic biomolecules and media components 

(Merabishvili et al., 2009). In any case, the first step after successful production of a 

“pure” phage product is to assess its potential adverse effects, e.g. inflammation, by 

applying it on non-infected skin. Once the safety of the product is confirmed, its 

ability to clear an infection can be tested. 

 

8.2.2.d.ii. How to administer phages 

In a study on experimental phage therapy of burn wounds, a phage suspension was 

sprayed onto the area to treat. The authors reported the tendency of the liquid to run 

off the wound and recommended the use of a suitable carrier such as a phage-

containing gel or a phage-impregnated membrane similar to PhagoBioDerm (section 

1.2.2) (Rose et al., 2014). Both approaches could be tested for the delivery of phages 

onto pyoderma lesions. The dose of phages needed for clearing the infection has to 

be determined. Due to the ability of phages to multiply in situ as long as the host is 

present, a low initial dose may be sufficient. This so-called “active” phage therapy 

relies on the self-amplifying and self-limiting (as amplification stops when the host is 

not present anymore) properties of phages to reach the appropriate dose (Loc-

Carrillo and Abedon, 2011). These properties also offer the possibility for single-

dose treatment, or at least less frequent applications, which would make the 

treatment of pyoderma more convenient and easier to comply with. 
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8.3. Phage therapy for the treatment of pyoderma: issues and options 

8.3.1. Using temperate phages in phage therapy: is it safe? 

The results obtained during this PhD project showed that developing phage therapy 

for a particular indication is not always a straightforward process. The fact that only 

temperate phages were found was an important hurdle. The possibility to use virulent 

mutants of these phages was explored and discussed in this thesis. There is concern, 

expressed by some members of the phage community, regarding the ability of 

modified temperate phages to recombine with prophages present in the hosts they 

infect. Given that it was suggested that temperate phages play a major role in the 

transfer of genetic material between S. pseudintermedius strains (McCarthy et al., 

2015, Couto et al., 2016), this could lead to the transduction of potentially harmful 

genes from one host to another. However, if transductants are produced they should 

still be killed by the Vir mutant phage that infected them, given their strictly lytic 

nature (Abedon et al., 2011). This, along with checking the absence of harmful genes 

in the genome of the Vir mutant, should ensure the safety of the treatment. 

 

Engineered temperate phages can also be used therapeutically as delivery systems for 

genes encoding bactericidal proteins (Westwater et al., 2003) or genes conferring 

sensitivity to antibiotics to combat resistant pathogens (Yosef et al., 2014). Another 

alternative is to use phage enzymes, such as the endolysin, instead of whole phages. 

Studies showed that some endolysins applied externally are able to degrade the cell 

wall of Gram-positive bacteria in vitro and in vivo (Fischetti, 2010). Both options 

could also be considered for the treatment of pyoderma. However, these approaches 

lose the self-amplifying and self-limiting properties of using intact phages, which are 

important advantages of phage therapy (section 8.2.2.d.ii). 

 

8.3.1.a. Limited knowledge about the exact pathogenesis of pyoderma 

S. pseudintermedius has been identified as the main causative agent of bacterial 

pyoderma. It is known is that this bacterium is found on the skin of healthy dogs, that 

it is also found in pyoderma lesions and that it expresses virulence factors favouring 

adherence to and invasion of skin cells (Pietrocola et al., 2015). However, the exact 

pathogenesis of pyoderma is not known. Other bacteria, e.g. E. coli, Proteus spp. and 

Pseudomonas spp. (Ihrke, 1987, Dowling, 1996), may be involved and this may 
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influence the outcome of phage therapy that would target only S. pseudintermedius, 

hence the importance to know as much as possible about the etiology of the disease. 

One solution would be to use phages topically along with a systemic application of 

antibiotics that have a broader spectrum of action. The synergistic effect of phages 

and antibiotics to kill bacteria was demonstrated in vitro and in vivo on S. aureus 

(Kirby, 2012, Chhibber et al., 2013), and could be useful in the case of pyoderma. 

 

8.3.2. Using S. pseudintermedius phages for prophylaxis 

In human medicine, the contamination of the hospital environment is known to play 

a role in the transmission of pathogens such as MRSA (Mitchell et al., 2014). The 

decontamination of the environment is essential to reduce the incidence of MRSA 

nosocomial infections. Added to this, there is a relation between carriage of S. 

aureus, usually in the nares, in human patients and the occurrence of surgical site 

infections (Levy et al., 2013). To reduce the incidence of S. aureus infections, the 

nasal decolonisation of patients is recommended (Coates et al., 2009). A study 

showed that phages have the potential to decontaminate fomites (Jensen et al., 2015) 

and a review suggested that they could be used to prevent MRSA infections through 

nasal decolonisation (Mann, 2008). 

 

The prophylactic use of S. pseudintermedius phages could therefore be considered 

for the decontamination of the skin of dogs before surgery or to limit transmission 

through direct contact with other animals (e.g. during an overnight stay at the 

practice). The decontamination of surfaces at veterinary practices with phages may 

be possible as well, however there is a lack of study to show that S. pseudintermedius 

survives in the environment. Only one study was conducted recently to determine the 

presence of S. pseudintermedius other than on the skin of dogs. It showed that S. 

pseudintermedius was occasionally found on clothing worn by veterinary personnel 

(Singh et al., 2013). 
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Appendix A 

 

A.1. How to determine the sequencing read coverage across phage genomes (on 

Macintosh computer) 

The installation of BWA-MEM, Samtools, Qualimap and their corresponding binary 

files beforehand is required. 

Go to Terminal and type (words in italic must be replaced by relevant folder and file 

names): 

cd WorkingFolder (with .fas and .fastq files) 

bwa index –a bwtsw SpTX_genome.fas 

bwa mem –t 1 SpTX_genome.fas SpTX_R1.fastq SpTX_R2.fastq > SpTX_aln.sam 

samtools view –b –S SpTX_aln.sam > SpTX_aln.bam 

samtools sort –m 1000000000 SpTX_aln.bam sorted_SpTX_aln 

cd QualimapFolder 

./qualimap 

and open sorted_SpTX_aln.bam 

Open the coverage across genome plot, right click > Export plot data. This creates a 

.txt file. Copy data from the .txt file into an Excel file to produce diagrams of 

coverage across genome. 
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Appendix B 

 

B.1. Additional electron microscopy pictures of the four Warwick phages 
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