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Abstract: Multiscale approach based explicit analytic predictions are obtained for the transversely 

isotropic properties of shale rock considering the multi-inclusion and interfacial transition zone (ITZ) 

effects. Representative volume elements (RVEs) are utilized to describe the material’s hierarchical 

microstructures from the nanoscale to the macroscale. A new multilevel micromechanical 

homogenization scheme is presented to quantitatively estimate the material’s transversely isotropic 

properties with the multi-inclusion and ITZ effects. The ITZ is characterized by the interphase material, 

whose effects are calculated by modifying the generalized self-consistent model. Furthermore, the 

explicit form solutions for the transversely isotropic properties are obtained by utilizing the Hill 

polarization tensor without numerical integration and the standard tensorial basis with the analytic 

inversions of fourth-rank tensors. To verify the proposed multiscale framework, predictions obtained via 

the proposed model are compared with experimental data and results estimated by the previous work, 

which show that the proposed multi-scaling approaches are capable of predicting the macroscopic 

behaviours of shale rocks with the multi-inclusion and ITZ effects. Finally, the influences of ITZ and 

inclusion properties on the material’s macroscopic properties are discussed based on the proposed 

multiscale framework. 
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1 Introduction 

Shale rock is especially critical for success of many fields of petroleum engineering and may also 

be important for the development of sustainable nuclear waste storage solutions [1,2].  

Owing to the direct economic importance of shale rock, many efforts have been dedicated to model 

the material’s mechanical properties, which can be mainly classified into two categories. The first 

category focuses on the empirical formulations to evaluate the properties of shale rock [3-8]. For 

examples, Dewhurst et al. presented the empirical strength prediction for preserved shales [3]; 

Farrokhrouz et al. proposed the empirical estimation of uniaxial compressive strength of shale 

formations [4]; Sayers used the clay-particle orientation distribution function to characterize shale 

elastic-anisotropy in dynamic measurements [5]. These formulations are obtained by means of 

laboratory or site tests, which is the phenomenological way to formulate the behavior of shale rock. The 

main limitation of such traditional approach is that it requires the extensive and costly experimental 

programs to characterize the material’s properties. An attractive alternative to handle this kind of 

problem is provided by the framework of micromechanics, which reduces the laboratory expenses, 

meanwhile helps us throw light on the relations between the material’s complicated microstructures and 

the macroscopic properties of shale rock [9-14]. For instances, Hornby et al. proposed a theoretical 

framework to predict the effective elastic properties of shale rocks based on the effective-medium 

method and found that the anisotropy of shale macroscopic elasticity was attributed to shape, orientation, 

and connection of the solid and fluid phase [9]. Giraud et al. used the Hill tensor to estimate the effective 

poroelastic properties of transversely isotropic rock-like composites [10]. Bobko et al. employed a 

strength homogenization approach to interpret the nanoindentation results and developed scaling 

relationships for indentation hardness with clay packing density [12]. Guo et al. presented a shale rock 

physics model for analysis of the brittleness index, mineralogy and porosity in Barnett shale [13]. 

Despite many attempts, progress in developing consistent micromechanics models that link 

mineralogy at the nanoscale to macroscopic properties of shale rock has been limited, due to the lack of 
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experimental data on the fundamental elastic properties of shale elementary building blocks, and links 

between those properties, morphology and macroscopic properties [15]. Recently, Ortega et al. proposed 

a multiscale framework to predict the transversely properties of shale rock with the self-consistent 

method and only the quartz inclusion is considered [15]. Actually there are many types of inclusions, 

such as quartz, calcite and dolomite, in the shale rock [9-14]. And the inclusions are not perfectly 

bonded to the matrix phase of shale rock, which implies that there are interfacial transition zones (ITZs) 

[16-19]. To address these issues, in this extension we propose a multiscale (from nanoscale to 

macroscale) predicting framework for the shale rock’s transversely isotropic properties considering the 

multi-inclusion and ITZ effects with a new multilevel micromechanical homogenization scheme. 

Furthermore, in contrast with the composites containing isotropic phases, very few explicit analytical 

results can be found in literatures related to three-dimensional matrix composites with anisotropic 

components due to the significant mathematical difficulties appearing in such problems [20]. In our 

work, the standard tensorial basis [20] and the Hill polarization tensor without numerical integration [10] 

are modified to get the explicit form solutions for the transversely isotropic properties of the shale rock 

with multi-inclusion and ITZ effects. 

The rest of this paper is organized as follows. The fundamentals of continuum micromechanics are 

introduced firstly in Section 2. Section 3 presents a multiscale model of shale rock based on the 

material’s microstructures. In Section 4, new multilevel micromechanical homogenization procedures 

are proposed to estimate the effective transversely isotropic properties of shale rock. The ITZ effects are 

quantitatively considered by modifying the generalized self-consistent model. Furthermore, explicit 

form solutions for the effective transversely isotropic properties of shale rock are obtained by utilizing 

the Hill polarization tensor without numerical integration and the standard tensorial basis. Numerical 

examples including experimental validations and comparisons with existing micromechanical models 

are presented in Section 5, which also discusses the influences of multi-inclusions and ITZs on the 



 

4 

macroscopic properties of shale rock based on our proposed micromechanical framework. And some 

conclusions are reached in the final section. 

2 Fundamentals of continuum micromechanics 

2.1 The effective properties of the composite 

One goal of continuum micromechanics is to estimate the effective elastic properties of the material 

defined over the representative volume element (RVE). The RVE is based on a ‘mesoscopic’ length 

scale, which is considerably larger than the characteristic length scale of particles (inhomogeneities) but 

smaller than the characteristic length scale of a macroscopic specimen [21]. Take a two-phase composite 

as an example, the effective elastic stiffness tensor C*  of the composite is defined through 

* :=σ C ε                                                                          (1) 

with 

( ) ( ) ( )
0 1

1 1

V V V

d d d
V V

⎡ ⎤
≡ = +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫σ σ x x σ x x σ x x                                (2) 

 ( ) ( ) ( )
0 1

1 1

V V V

d d d
V V

⎡ ⎤
≡ = +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫ε ε x x ε x x ε x x                                      (3) 

where V  is the volume of an RVE, 0V  is the volume of the matrix, and 1V  is the volume of the 

inhomogeneity.  

The effective elastic properties depend on the corresponding elastic moduli, the volume fraction of 

each constitute component, and the microstructures (e.g. the spatial distribution of the components) of 

the specific composite [22]. Due to the complex microstructures, many approximations instead of the 

exact solutions for these effective properties are developed in accordance with Eshelby’s work [23-25]. 
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2.2 The Eshelby solution and the polarization tensor 

Eshelby derived the elastic field inside and outside an ellipsoidal inclusion in an infinite medium, 

and proposed the celebrated equivalent inclusion principle to relate the elastic inclusions and 

inhomogeneities [23-25]. The main theory behind the idea can be summarized as below: Let’s consider 

an ellipsoid inhomogeneity (particle with properties different from those of the homogeneous matrix) 

embedded in an infinite matrix. According to Eshelby’s equivalence principle, the perturbed strain field 

( )ʹε x  induced by inhomogeneity can be related to specified eigenstrain ( )*ε x  by replacing the 

inhomogeneity with the matrix material (or vice versa). That is, for the domain of the inhomogeneity 

with elastic stiffness tensor 1C , we have 

( ) ( ) ( )0 0 *
1 0: :ʹ ʹ⎡ ⎤ ⎡ ⎤+ = + −⎣ ⎦ ⎣ ⎦C ε ε x C ε ε x ε x                                 (4) 

with 

( ) ( )*:ʹ =ε x S ε x                                                         (5) 

where 0ε  is the uniform strain field induced by far-field loads for a homogeneous matrix material only. 

S  is the Eshelby tensor associated with the inhomogeneity, which can be represented by the Hill 

polarization tensor P  as 0:=S P C , and 0C  and 1C  are the stiffness tensors of the matrix and the 

inhomogeneity. For details see [26]. 

For a real material, there are usually many different inhomogeneities in the RVE. Therefore, it is 

difficult to obtain the exact perturbed strain field due to so many randomly distributed inhomogeneities 

that influence each other. Through making a set of assumptions, different micromechanical methods 

such as the Mori-Tanaka method [27,28], the self-consistent method [29] and Ju’s method [21,34-38] 

have been derived based on the Eshelby solutions to estimate the effective properties of heterogeneous 

materials.  
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3 Multiscale representation of hierarchical structures of shale rock 

3.1 Hierarchical structures of shale rock 

Shale rocks are heterogeneous in nature and generally consist of different constituents or phases, 

such as clay material, quartz and calcite. Further, the constituents of materials can be treated as 

homogeneous at a certain length scale, but when observed at a smaller length scale, the constituents 

themselves may become heterogeneous, i.e. a multiscale phenomenon for heterogeneous shale rock 

materials [9-15]. According to [13], the components of shale rocks should include clays, kerogen, cracks, 

pores, quartz, calcite and dolomite. The rock properties are dependent on the microstructure parameters 

such as the orientation of clay platelets and cracks, pore/crack connectivity and shale mineralogical 

composition, including quartz, calcite and dolomite [11]. There are many other researches that 

characterize the microstructures and properties of shale rock at different length scales [30-33].  

3.2 Multiscale models of shale materials 

Due to these heterogeneous and multiscale natures, it is usually impractical and often impossible to 

describe all the precise characters of the microstructure of shale rocks. To characterize the material’s 

heterogeneous and multiscale features, a new multiscale model is proposed based on [2] to represent the 

hierarchical and heterogeneous structures of shale rock by taking multi-inclusions, such as quartz, calcite 

and dolomite, and the ITZs into considerations, as exhibited in Fig. 1.  

Similar with [2], the fundamental scale of shale materials is assumed to be the scale of elementary 

clay particles, which can be defined by scale ‘0’; at scale  ‘I’, the material can be seen as porous clay 

composite. The characteristic size of scale ‘II’ is in the sub-millimeter and millimeter range, and the 

material is composed of porous clay fabric intermixed with an abundant population of poorly sorted 

detrital grains. The multi-inclusions and their ITZs are considered at this scale. The shale rocks are 

represented by homogenous material at the macroscopic scale, denoted by scale ‘III’. On the basis of 
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this multiscale model, the macroscopic properties at scale ‘III’ of the shale materials can be 

characterized by the microstructures at lower length scales. 

4 Multilevel homogenization approach for estimating the effective properties of shale rock  

4.1 Multilevel homogenization schemes for shale rock 

Based on the previous works [34-49], a new multilevel micromechanical homogenization 

framework is proposed to quantitatively estimate the transversely isotropic properties of shale rock with 

multi-inclusion and ITZ effects, as displayed in Fig. 2. Specifically, the first equivalent matrix made up 

of the pores and clay particles are reached with the first level homogenization, as exhibited in Fig.2.a. 

The ITZ effects are taken into consideration by the second level homogenization as shown by Fig.2.b, 

through which different types of equivalent inclusions are obtained when different silt inclusions, such 

as quartz, calcite and dolomite, are considered. By adding the different types of equivalent inclusions 

into the equivalent matrix step by step, the effective properties of the (1+i)th equivalent matrix and shale 

rock can be calculated by the (2+i)th and (2+n)th level homogenizations, respectively, as displayed in 

Fig.2.c. Here i = 1,2…n, which represents the type of the silt inclusion. n means the sum of all silt 

inclusion types. 

4.2 Properties of the porous clay composite 

According to [50,51], when a two-phase composite is considered, the effective elastic stiffness 

tensor can be reached as follows: 

( )( )
12 1*

1
0r r

r
r
c

−
−

=

− + =∑ C C P                                            (6) 

Where rc  and rC is respectively the volume fraction and the stiffness tensor of the rth component 

(including the matrix phase and the inclusion phase; here different phases mean materials with different 
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physical properties); *C  is the effective stiffness tensor of the two-phase composite; and rP  is the Hill 

polarization tensor, which can be expressed via the known Eshelby tensor. For details, see [26]. 

Let’s define pC  and cC as the stiffness tensors of the pores and clay particles, respectively. 1eC  

signifies the effective stiffness tensor of porous clay composite, which is the first equivalent matrix in 

our paper. The effective properties of the porous composite can be reached according to Eq.(6): 

( )( ) ( )( )
1 11 1

1 1 0p c
p p e c c ec c

− −− −
− + + − + =C C P C C P                           (7)  

;        p c
p c

p c c p

V Vc c
V V V V

= =
+ +

                                           (8)  

Where pc  and cc  are respectively the volume fraction of the micro-pores and clay particles; pV  and cV  

( pP  and cP ) are the volume (Hill polarization tensors) of the micropores and clay particles, respectively.  

4.3 Properties of the equivalent inclusions with the ITZs 

Take the calcite inclusion as an example. There are ITZs between the calcites and the porous clay 

composite. LetΔ  signify the thickness of ITZ and r  represent the radius of the calcite inclusion. For 

simplification, the ratio of / ( )r r +Δ  for each calcite is supposed to be constant. To quantitatively 

calculate the ITZ influence on the equivalent inclusion’s properties, the three-phase model proposed by 

Christensen and Lo [52], known as the generalized self-consistent model, is employed by modifying its 

inner- and outer-layer phases into the calcite inclusion and the ITZ, respectively. Accordingly, the 

effective bulk modulus and shear modulus for the equivalent inclusion can be expressed as follows:  

1

1

1 1 1
1

1 1 1

( ) (3 4 )
3 4 3(1 ) ( )eca

ca it it it
it

cait it it

K K KK K K K K
φ µ

µ φ
− +

= +
+ + − −

                                       (9) 

2

1 1

0eca eca

it it

A B Cµ µ
µ µ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ + =                                                         (10) 
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where 

2
1 1

2
1 1 1

1 1

10/3 7/3
1 1

5/3
1 1

8 1 (4 5 ) 2 63 1 2  

+252 1 50 1 (7 12 8 )  +4(7 10 )

ca ca

it it

ca ca
it it it

it it

A α β α γ

β β β γ

µ µ
ν η φ η η η φ

µ µ

µ µ
η φ ν ν η φ ν η η

µ µ

⎡ ⎤⎡ ⎤ ⎛ ⎞
= − − − − +⎢ ⎥⎜ ⎟⎢ ⎥

⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤
− − − − + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦  

           (11)

1
1 1

1 1 1
1 1

10/3 7/3
1 1

5/3
1 1

4 1 (1 5 ) 4 63( 1) 2

504 1 150 1 (3 ) +3(15 7)

ca ca
it

it it

ca ca
it it it

it it

B α β α γ

β β β γ

µ µ
ν η φ η η η φ

µ µ

µ µ
η φ ν ν η φ ν η η

µ µ

⎡ ⎤ ⎡ ⎤
= − − − + − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
− − + − − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

               (12) 

10/3 7/3
1 1 1

1 1

2
1 1

1 1

5/3
1 1

4 1 (5 7) 2 63( 1) 2

+252 1 25 1 ( 7) 3(7+5 )

ca ca
it

it it

ca ca
it it

it it

C α β α γ

β β β γ

µ µ
ν η φ η η η φ

µ µ

µ µ
η φ ν η φ ν η η

µ µ

⎡ ⎤ ⎡ ⎤
= − − − − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
− + − − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

                      (13) 

with 

1 1
1 1 11 (49 50 ) 35 ( 2 )+35(2 )ca ca

it it
ca ca cait it itα

µ µ

µ µ
η ν ν ν ν ν ν−

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
= − + − −                 (14)

1 1

8 45 7ca ca

it it
caβ

µ µ
µ µ

η ν
⎡ ⎤ ⎡ ⎤

− +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= +                                           (15) 

1 1
1
[8 10 ] (7 5 )ca

it it
it

γ
µη ν ν
µ

= − + −                                          (16) 

1

3r
r

φ ⎛ ⎞= ⎜ ⎟+ Δ⎝ ⎠
                                                              (17) 

where 1φ  is the volume fraction of the calcite phase in the two-phase composite composed of the calcite 

and the ITZ. caK , caµ and caν  (
1itK , 1itµ and 1itν  ) are bulk modulus, shear modulus and Poisson's ratio for 

the calcite (the ITZ), respectively. ecaK  and ecaµ  are the bulk modulus and shear modulus for the 

equivalent calcite inclusion, respectively. Similar homogenization procedures can be performed to take 

the other inclusions’ ITZs into consideration. 
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4.4 Properties of shale rock with multi-inclusion and ITZ effects 

In this section, three different types of silt inclusions are taken as examples to illustrate our 

proposed multilevel homogenization scheme. Let eqC , ecaC  and edC  respectively represent the stiffness 

tensor of the equivalent inclusion for quartz, calcite and dolomite. 

Firstly, take the quartz and its ITZ as the first type of inclusion in the first equivalent matrix. 

According to [50,51], the properties of the second equivalent matrix composed by the first equivalent 

matrix obtained after the first level homogenization and the equivalent quartz inclusion(made up of the 

quartz and its ITZ ) calculated by the second level homogenization can be reached by the following 

expression 

( )( ) ( )( )
1 11 1 1

2 1 1 2 0eq e
eq eq e e e ec c

− −− −
− + + − + =C C P C C P                                  (18)  

with 

1
1 1

1 1

;    ;     ;    eq e
eq e eq q qITZ e p c

eq e eq e

V Vc c V V V V V V
V V V V

= = = + = +
+ +

                                      (19)  

where eqc  and 1 ec  are respectively the volume fraction of the equivalent quartz inclusion and porous 

composite; eqV  and 1eV ( eqP and 1eP ) are the volume(Hill polarization tensor) of the equivalent quartz 

inclusion and porous composite, respectively; 2eC  is the effective stiffness tensor of the second 

equivalent matrix, qV  and qITZV  is the volume of quartz inclusions and their ITZs.  

Secondly, when the calcite inclusion is added, the effective properties of the composite made up of 

the porous composite, the quartz, calcite and their ITZs can be obtained by  

( )( ) ( )( )
1 11 1 2

3 2 2 3 0ec e
ec ec e e e ec c

− −− −
− + + − + =C C P C C P                              (20)  

with 
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2           p c q qITZca caITZ
ec e

p c q qITZ ca caITZ p c q qITZ ca caITZ

V V V VV Vc c
V V V V V V V V V V V V

+ + ++
= =

+ + + + + + + + + +
                         (21)  

where ecc  and 2 ec  ( ecP and 2eP ) are respectively the volume fraction (Hill polarization tensor) of the 

equivalent calcite inclusion and the second equivalent matrix; 3eC  is the effective stiffness tensor of the 

third equivalent matrix, caV  and  caITZV  are the volume of calcite inclusions and their ITZs.  

Thirdly, the properties of the composite consisting of the porous composite, the quartz, the calcite, 

the dolomite and their ITZs can be calculated with the third equivalent matrix, which can be expressed 

as follows: 

( )( ) ( )( )
1 11 1 3

4 3 3 4 0ed e
ed ed e e e ec c

− −− −
− + + − + =C C P C C P                                 (22)  

with 

3          p c q qITZ ca caITZd dITZ
ed e

p c q qITZ ca caITZ d dITZ p c q qITZ ca caITZ d dITZ

V V V V V VV Vc c
V V V V V V V V V V V V V V V V

+ + + + ++
= =

+ + + + + + + + + + + + + +
         (23)  

where edc  and 3 ec  ( edP and 3eP ) are respectively the volume fraction (Hill polarization tensor) of the 

equivalent dolomite inclusion and the third equivalent matrix; respectively; 4eC  is the effective stiffness 

tensor of the forth equivalent matrix, dV  and  dITZV   are the volume of dolomite inclusion and its ITZ.  

As for the other kinds of inclusions, the multilevel homogenization scheme can be similarly applied. 

If no other silt inclusions are taken into consideration, 4eC  will be the effective stiffness tensor for the 

shale rock with the multi-inclusion and ITZ effects. 

4.5 The explicit form solutions for the effective properties with the ITZ 

According to [2], the transversely isotropic properties of shale rock are mainly due to the 

transversely isotropic properties of the clay particles at nanoscale. For the transversely isotropic matrix 

or inclusions, the solutions for the micromechanical equations, like Eq. (6), become much more complex 
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than isotropic materials [10,14,20]. For easy applications, the following mathematical treatments are 

utilized to obtain the explicit form solutions for the effective transversely isotropic properties of shale 

rock.  

On the one hand, the method provided by Giraud et al. [10] is utilized to obtain the Hill polarization 

tensor P for the spherical inclusion in a transversely isotropic solid. This method is based on the 

analytical expressions of Eshelby’s tensor S  developed by Withers [53] and the relations between these 

two tensors [10]. The components of the tensor P  for a transversely isotropic medium can be calculated 

based on the following expressions [10]: 

If *
13 13 442 0C C C− − ≠ , 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2 2
1 1

11 1 12 1
1 1

2 2
3 2 5

13 2 33 2
1 1

22
3 23

44 2 1
1

3 33 1,    
2 4 2 4

 ,     2

31 1 2  +
4 8

i i i i
i i

i i i i i i
i i

i i i i
i

DI DI
P A I i P A I i

P k A I i P k A I i

D I
P k A I i k I i

ν ν

ν ν

ν
ν

= =

= =

=

ʹ ʹ= + = −

ʹ ʹ= = −

ʹ= + −⎡ ⎤⎣ ⎦

∑ ∑

∑ ∑

∑

                         (24) 

with 

 

( )

( ) ( )

13 44
1 1 2 2 2 2

2 1 33 44

2 2
44 1 33 44 2 33

1 22 2 2 2 2 2
2 1 1 33 44 2 1 2 33 44

,   ,    2 ,    
4

,          
8 8

i i i i i i i i
C CA B A B A k A A A

C C

C C C CA A
C C C C

ν ν ν
π ν ν

ν ν

π ν ν ν π ν ν ν

+
ʹ ʹ ʹ= − = = − = − =

−

− −
ʹ ʹ= =

− −

                       (25) 

If *
13 13 442 0C C C− − = , 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

13 13
11 1 1 1 12 1 12 1 1 1 12 1

13 44 13 44

2 2 11
13 1 1 1 2 12 33 1 1 1 2 12

13 44

2 44
44 1 1

13 44

3 1 6 3 ,     1 2 3
4 4

 2 3 1 1 4 ,      4 3 1 1 4

3 3

C CD DP B I B I I P B I B I I
C C C C

CP B I I I P B I I I
C C

CP B I
C C

ν ν

ν

⎛ ⎞ ⎛ ⎞
= − + = − −⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞
⎡ ⎤= − + + = − −⎢ ⎥⎜ ⎟⎣ ⎦ +⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − + +⎢ ⎥⎜ ⎟

+⎝ ⎠⎣ ⎦
( ) ( ) ( ) ( )

2
2 2131 1

1 2 1 1 12 3 2
13 44

1 1 4 1 3   
2 8

CB DI B I I
C C

ν
ν ν

⎛ ⎞
+ + + +⎜ ⎟

+⎝ ⎠

       (26) 
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with 

( )

( ) ( )

1
13 444

1 2 11 33 1 2 1 2 1 2 1
11 44

44 11
1 2 1 1 2 12 3

11 1 13 44 44 1 1 13 44

/ ,      1,      ,     
16

1 1,     
16 16

C CC C k k R R B B
C C

C CA A B B B B
C C C C C C

ν ν ν
π

π ν π ν ν

+
= = = = = = = −

ʹ ʹ ʹ ʹ= − = = − = = = −
+ +

               (27) 

where 

( )

( )( ) ( )( )

( )( )

1
21 2

* 11 44 662
13 11 33 3

13 44 44 3 44

1 1
* * * *2 2
13 13 13 13 44 13 13 13 13 44

1
33 44 33 44

1
* * 2
13 13 13 13 44

2
33 44

/ 1,     ,      ,     
4

2 2
4 4

2
4

i
i
C C CC C C k D
C C C C

C C C C C C C C C C
C C C C

C C C C C C
C C

ν
ν

π ν

ν

ν

⎛ ⎞−
= = = = ⎜ ⎟+ ⎝ ⎠

⎡ ⎤ ⎡ ⎤− + + + − −
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤− + +
⎢ ⎥= −
⎢ ⎥⎣ ⎦

( )( )
1

* * 2
13 13 13 13 44

33 44

2
4

C C C C
C C

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥⎣ ⎦

                              (28) 

where 11C , 12C , 13C , 33C , 44C  and 66C  are the components of the stiffness tensor of the transversely 

isotropic medium, and the explicit expressions for ( )1I i , ( )2I i and 12I  can be found in [10]. 

On the other hand, the special tensor basis T  [14] is employed to simplify the fourth-rank tensors 

calculations. The operations of analytic inversion and multiplication of fourth-rank tensors are 

conveniently done with this tensor basis. See Appendix A for details. 

 With the solution of the Hill polarization tensor P  and tensor basis T , Eqs. (29)–(36) can be 

obtained by equating each component to zero in Eq. (6) as follows: 

( )* * *2
11 12 11 12 1 6

1 2

/
0

r r r r

r r
r

C C C C P
c

=

⎛ ⎞+ − − Δ +
⎜ ⎟ =
⎜ ⎟Δ⎝ ⎠

∑                                  (29) 

( )

1
2

*
2*

1 66 66

1 0
2

r
r r

r
c P

C C

−

=

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟−⎝ ⎠

∑                                        (30) 

( )* *2
13 13 1 3

1 2

/
0

r r r

r r
r

C C P
c

=

⎛ ⎞− Δ −
⎜ ⎟ =
⎜ ⎟Δ⎝ ⎠

∑                                       (31) 
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( )

1
2

*
5*

1 44 44

1 0r
r r

r
c P

C C

−

=

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟−⎝ ⎠

∑                                        (32) 

( )* *2
33 33 1 1

1 2

/ 2
0

r r r

r r
r

C C P
c

=

⎛ ⎞− Δ +
⎜ ⎟ =
⎜ ⎟Δ⎝ ⎠

∑                                    (33) 

with 

( )( ) ( )2* * * *
1 11 12 11 12 33 33 13 132r r r r rC C C C C C C CΔ = + − − − − −                           (34) 

( ) ( ) ( )
2* * * *

33 33 11 12 11 12 13 13* * *
2 1 6 4

1 1 1

2
2

r r r r
r r r r

r r r

C C C C C C C C
P P P

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− + − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ = + + − −
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ Δ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

              (35) 

( )* * * * * * * * * * * *
1 11 12 2 66 11 12 3 4 13 5 44 6 33/ 2,   2 ,   ,   4 ,   r r r r r r r r r r r r rP P P P P P P P P P P P P P= + = = − = = = =               (36) 

where 11
rC , 12

rC , 13
rC , 33

rC , 44
rC  and 66

rC  are the components of the stiffness tensor of the rth phase in the 

transversely isotropic medium, *
11C , *

12C , *
13C , *

33C , *
44C  and *

66C  are the components of the stiffness tensor 

of the homogenized transversely isotropic media; and *
11
rP , *

12
rP , *

13
rP , *

33
rP , *

44
rP  and *

66
rP  are the 

components of the Hill polarization tensor of the rth phase in the homogenized transversely isotropic 

media. The other micromechanical equations, such as Eqs.(7) ,(18), (20) and (22) can be similarly 

solved. 

5 Verification and discussions 

5.1 Comparison with the existing results 

Both the experimental data [15] and the existing estimations [14] are employed to verify our 

proposed multiscale framework. The model parameters of [15] are utilized as the input, and are 

composed of the material properties of the elementary phases present in shale rocks, including the five 

independent constants of the clay particle and the elastic properties of quartz. Since there are few 

experimental data available for the authors on the ITZ between the quartz and the porous composite, 
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three different types of ITZ parameters, as shown in Table 1, are employed as examples to verify the 

capacity of our proposed multiscale framework. 

Fig. 3(a) shows comparisons among our predicting results, the experimental data of specimen G-01 

[15] and results obtained by [14]. It can be found that our predicting results are the same as those of [14] 

when the ITZ properties are the same as those of the inclusions. Furthermore, it can be seen that the 

estimations correspond better with the experimental data by considering the ITZ effects. Similar 

conclusions can be reached when other specimens are employed as comparisons. See details in 

Figs.3(b)–(c). 

Through the comparisons with the experimental data and the results obtained by the existing 

models, it can be verified that our proposed multiscale framework, including the multiscale 

representations for the material’s microstructures, multilevel homogenization scheme and the explicit 

form solutions for the transversely isotropic properties, is both feasible and capable of predicting the 

mechanical performance of shale rock with the ITZs. 

5.2 Discussion on the influence of the ITZs  

The properties of shale rock are influenced by the ITZs. It should be noted that the exact values for 

ITZ thicknesses and properties are not discussed in this section. Here, we focus on the quantitative 

influence of the specified ITZ thicknesses and properties on the material’s macroscopic properties. As in 

Section 5.1, only the quartz inclusion is considered and three types of ITZs are employed as examples to 

illustrate the quantitative influence of the properties of the ITZs upon the mechanical performance of the 

shale rocks. The properties of the three types of ITZs are listed in Table 1. With the change of the ITZs, 

the properties of the shale rock will vary accordingly. 

Figs. 4(a)–(b) present the variations in the mechanical properties of the equivalent inclusion 

composed of the ITZ and quartz inclusion with the increasing volume fraction of the ITZ. It can be seen 

that the properties of the equivalent inclusion gradually decrease when the ITZ has a lower bulk 
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modulus and shear modulus. When the properties of the ITZ are the same as those of the quartz, 

implying the perfect bonding, the properties of the equivalent inclusions remain constant. This result is 

reasonable in that there are no ITZ effects when the ITZ has the same performance as the quartz 

inclusions. 

Figs. 5(a)–(b) display the variations in the components of the shale rock’s stiffness tensor with 

different ITZs. It can be seen that the values of the stiffness tensor become smaller when the ITZ is not 

as strong as the quartz inclusions with the increase of the ITZ’s volume fraction (or the increase of its 

thickness). When the type 3 ITZ is taken into consideration, the properties of the shale rocks reduce 

dramatically. This is because the type 3 has the lowest ITZ property values.  

It can be concluded from the above that the quantitative effects of the ITZ on the material’s 

macroscopic properties can be predicted by modifications to the three-phase sphere model using our 

proposed multiscale approach. And the thickness (which determines the ITZ volume fraction) and 

properties of the ITZ affect the properties of the equivalent inclusions greatly, which will lead to a 

decrease in the values of the shale rocks’ properties when the ITZs are imperfect.  

5.3 Discussion on the influence of the multi-inclusions 

There are many components in shale rock, such as quartz, calcite and clays. From the viewpoint 

of our proposed multiscale framework, this implies that there are many types of inclusions in the porous 

matrix. The properties of the inclusions may influence the shale rock properties. For simplicity, the ITZ 

effects are not taken into consideration here. 

Three types of inclusions, including quartz, calcite and dolomite, are employed as examples to 

illustrate their quantitative influence on the shale rock properties based on our proposed multiscale 

framework. The bulk modulus and shear modulus of quartz are 37.9GPa and 44.3GPa [15]. These two 

values are 77 GPa and 32 GPa, and 95 GPa and 45 GPa for the calcite and dolomite, respectively [54]. 
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With these three types of inclusion, four different volume proportions are considered as examples, as 

shown in Table 2. The sum of volume fractions of these three types of inclusions is denoted by 3tc . 

Figs. 6 (a)–(b) present the variations in the mechanical properties of the shale rock with different 

inclusions. The effective properties improve gradually with the increase of inclusions volume fractions. 

The dolomite seems to enhance the rock stiffness better than the other two inclusions, as it enjoys the 

highest properties.  

Further, the influences of homogenization sequences are identified for different types of inclusions. 

Let’s assume that the inclusions are only the calcite and dolomite. There are two homogenization 

sequences when our proposed multilevel homogenizations scheme is utilized. One is to perform the 

former and the latter homogenization with the calcite and the dolomite, respectively; the other is the 

opposite order. The volume ratios of these two inclusions are 10:1, 1:1 and 1:10 in this example.  

Figs. 7(a)–(b) display the variations in the mechanical properties of the shale rocks with different 

inclusion volume fractions using two different homogenization sequences. It can be seen that the 

predicting results are very near to each other with different homogenization sequences when different 

inclusion volume proportions are considered.  

In summary, the properties and volume fractions of the inclusions play an important role in the 

mechanical properties of the shale rock materials. However, the identifications show that there are no 

meaningful differences between the two predicting results using different homogenization sequences 

when our proposed multilevel homogenization schemes are performed. 

6 Conclusions 

This paper proposes a multiscale framework to quantitatively predict the transversely isotropic 

properties of shale rock with the multi-inclusion and ITZ effects. In the proposed framework, multiscale 

models are proposed to describe the shale rock microstructures from the nanoscale to the macroscale. A 

new multilevel micromechanical homogenization scheme is presented to quantitatively estimate the 
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transversely isotropic properties of shale rocks with the multi-inclusion and ITZ effects. The explicit 

form solutions for the transversely isotropic properties are obtained by utilizing the Hill polarization 

tensor without numerical integration and the standard tensorial basis. Moreover, our predicted results are 

compared with the available experimental data and predicting results of the existing model. The 

influences of the multi-inclusions and ITZs on the material’s macroscopic properties are discussed using 

the proposed multiscale framework. From this study, the following main conclusions can be drawn: 

(1) Comparisons with the available experimental data and the existing estimations show that our 

proposed multiscale framework is both feasible and capable of predicting the transversely isotropic 

properties of shale rock with the multi-inclusion and ITZ effects in an explicit form.  

(2) With a better ITZ performance, the equivalent inclusions and the shale rock enjoy higher 

effective mechanical properties. When the properties of the ITZs are the same as those of their 

inclusions, results estimated by the existing model can be obtained by the developed framework. 

(3) The volume fractions and properties of the multi-inclusions, such as quartz, calcite and dolomite, 

play important roles in determining the macroscopic properties of shale rocks. However, the 

homogenization sequences of different inclusions have little effects on our predicting results. 
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Appendix A   Properties of tensorial basis T  

According to Levin and Markov [14], and Sevostianov et al. [20] the convenience of the tensorial 

basis is in the following properties: 
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1. If a general transversely isotropic symmetric fourth rank tensor C  is expressed in the T-basis. 

2 1 2 3 4 5 6
1 2 3 4 5 6

1
2

C C C C C C⎛ ⎞= + − + + + +⎜ ⎟
⎝ ⎠

C T T T T T T T                                       (A1) 

with  

( )1 1111 1122 2 1212 3 1133 4 3311 6 3333/ 2,   2 ,   ,   ,   C C C C C C C C C C C= + = = = =                   (A2) 

the inverse tensor 1−C is determined by the expression 

1 2 1 2 3 4 5 66 3 4 1

2 5

21 1 4
2 2
C C C C

C C
− ⎛ ⎞= + − − − + +⎜ ⎟Δ Δ Δ Δ⎝ ⎠
C T T T T T T T                             (A3) 

where ( )1 6 3 42 CC C CΔ = −  . 

2. If two tensors C  and  D  are given in the T-basis, then the contraction of these tensors over two 

indices is defined as 

( ) ( )

( ) ( )

2 1 2 3
1 1 3 4 2 2 1 3 3 6

4 5 6
4 1 6 4 5 5 6 6 4 3

12 2
2

1                 2 2
2

ijmn mnkl ijkl ijkl ijkl ijkl

ijkl ijkl ijkl

C D C D C D T C D T T C D C D T

C D C D T C D T C D C D T

⎛ ⎞= + + − + +⎜ ⎟
⎝ ⎠

+ + + + +

                       (A4) 
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Fig. 1.  The multiscale models for shale rocks with multi-inclusions and ITZs. 
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 Homogenization

(a) Homogenization to get the first equivalent matrix

Clay matrix The first equivalent matrixPores

Equivalent inclusionsITZ
Silt inclusions

Homogenization

(c) Homogenizations to get the equivalent shale rock

The second equivalent matrix The first equivalent matrixThe first equivalent inclusions

(b) Homogenization to get the equivalent inclusions

 Homogenization

The (i+1)th equivalent matrix
.
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The ith equivalent inclusion
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Fig. 2.  A homogenization framework for the properties of the shale rock with multi-inclusions and ITZs, 

with i representing the type of the equivalent inclusion ( i=1,2,…n, where n is the sum of all the 

inclusion types, and the (n+1)th equivalent matrix is the equivalent shale rock with multi-inclusions and 

ITZs) 
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(c) 

Fig. 3.  Comparison of the effective properties among our predictions, the experimental data and the 

existing estimations, where -1,-2 and -3 represent predicting results using the first, second, and third 

types of ITZ properties, respectively;
 pc  denotes the volume fraction of the micro-pores in the porous 

clay composite. 
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(a) The effective bulk modulus of the equivalent quartz inclusions denoted by eqK   
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(b)  The effective shear modulus of the equivalent quartz inclusions denoted by eqµ  

Fig. 4. The influence of different ITZs on the effective properties of the equivalent inclusions, where -1,-

2 and -3 represent predicting results using the first, second, and third types of ITZ properties, 

respectively; ITZφ  means the volume fraction of ITZ in the equivalent inclusions. 
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(a) C11 and C33 
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(b) C12 and C13 

Fig. 5.  The influence of different ITZs on the effective properties of shale rocks, where -1,-2 and -

3 represent predicting results using the first, second, and third types of ITZ properties, respectively; ITZφ  

means the volume fraction of ITZ in the equivalent inclusions. 
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(a)  C11 
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(b) C33 

Fig. 6.  The influence of different inclusions on the effective properties of shale rocks, where -1,-2 ,-3 

and -4 represent predicting results using the first, second, third and fourth types of volume proportions, 

respectively; 3tc  denotes the sum of volume fractions of quartz, calcite and dolomite inclusions.  
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(a) C11 
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(b) C33 

Fig. 7.  The influence of homogenization sequences on the effective properties of shale rocks, with S1 

representing the first homogenization sequence which is to perform the former and the latter 

homogenizations with the calcite and the dolomite inclusions, respectively; with S2 representing the 

opposite sequence; with ratios in the bracket denoting the volume proportions between the calcite and 

the dolomite inclusions, tc  denotes the sum of volume fractions of calcite and dolomite inclusions 
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Table 1 Properties of ITZ between the quartz inclusion and matrix 

 

 Bulk modulus (GPa) Shear modulus (GPa) 
Type 1 37.9 44.3 
Type 2 37.9*0.5 44.3*0.5 
Type 3 37.9*0.1 44.3*0.1 
 

 

Table 2  The volume proportions for the three types of inclusions 

 Quartz Calcite Dolomite 
Proportion 1 1 1 1 
Proportion 2 10 1 1 
Proportion 3 1 10 1 
Proportion 4 1 1 10 

 

 
 

 


