
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/86799 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/39537
mailto:wrap@warwick.ac.uk


Learning based Forensic Techniques for

Source Camera Identification

by

Ruizhe Li

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Computer Science

March 2016



Contents

Acknowledgments iv

Declarations v

Abstract vi

Abbreviations viii

List of Tables 1

List of Figures 2

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Source Camera Identification . . . . . . . . . . . . . . . . . . . . . . 2

1.3 SPN-based Source Camera Verification and Identification . . . . . . 5

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Reference Images Corrupted by Scene Details . . . . . . . . . 7

1.4.2 Source Camera Identification in Large Database . . . . . . . 9

1.5 Objectives of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Literature Review 16

2.1 Image Acquisition Process . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 SPN Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Denoising Algorithm . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 SPN Enhancement . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Reference SPN Estimation . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 SPN Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



2.4.1 Similarity Measurement . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Detection Threshold . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Reference Images Corrupted by Scene Details . . . . . . . . . 39

2.6.2 Source Camera Identification in Large Databases . . . . . . . 40

Chapter 3 Reducing the Impact of Scene Details in Source Camera

Verification 44

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Context Adaptive Reference SPN Estimator . . . . . . . . . . . . . . 47

3.2.1 SPN Quality Measurement . . . . . . . . . . . . . . . . . . . 49

3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Parameter Settings and Discussion . . . . . . . . . . . . . . . 56

3.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 57

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 4 A Compact Representation of Sensor Pattern Noise 65

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 PCA-based Feature Extraction Algorithm . . . . . . . . . . . . . . . 67

4.2.1 Training Set Construction . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Feature Extraction in the PCA Domain . . . . . . . . . . . . 72

4.2.3 Enhanced Feature Extraction in the LDA domain . . . . . . 75

4.2.4 Source camera identification using the Proposed Method . . . 76

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Parameter Settings and Discussion . . . . . . . . . . . . . . . 80

4.3.3 Distributions of Intra-class and Inter-class Correlations . . . 82

4.3.4 Comparison of the Overall ROC Curves . . . . . . . . . . . . 84

4.3.5 Some Observations in Real-World Scenarios . . . . . . . . . . 87

4.3.6 Comparison of Computational Complexity . . . . . . . . . . . 88

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 5 Incrementally Updated Feature Extraction for Source Cam-

era Identification 92

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ii



5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 102

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 6 Random Subspace Method for Source Camera Identifica-

tion 108

6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 RSM-based Source Camera Identification System . . . . . . . . . . . 109

6.2.1 Random Subspace Method . . . . . . . . . . . . . . . . . . . 109

6.2.2 Random Subspace Construction . . . . . . . . . . . . . . . . 111

6.2.3 Random Feature Extraction . . . . . . . . . . . . . . . . . . . 112

6.2.4 Identification by Majority Voting . . . . . . . . . . . . . . . . 113

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 117

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 7 Conclusions and Further Works 125

7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

iii



Acknowledgments

First and foremost I would like to express my deepest sense of gratitude to my

supervisor Prof. Chang-Tsun Li, who has been constantly supportive and inspiring

during my PhD study. His great personality, unlimited patience and tolerance has

educated me a lot more than scientific research.

I wish to express my sincere thankfulness to my annual progress panel mem-

bers Dr. Victor Sanchez, Dr. Arshad Jhumka and Prof. Yongjian Hu for their

guidance and valuable suggestions on my research.

I would also like to thank the colleagues at the University of Warwick, Dr.

Yu guan, Dr. Xingjie Wei, Dr. Yi Yao, Mr. Ning Jia, Mr. Xin Guan, Mr. Alaa

Khadidos, Mr. Xufeng Lin, Mr. Qiang Zhang, Mr. Roberto Leyvac, Mr. Shan Lin

and Mr. Ching-Chun Chang for their kindness not just inside the lab.

I would like to express my deepest gratitude to my parents, Mr. Dongyang

Li and Ms. Xin Ji for their love, understanding and encouragement throughout my

life, which give me the strength to chase whatever I want. To my wife, Ms Lin Lin

for being my side, and all the inspirations and love she brings to my life.

Last but not least, to my friends, Mr. Yile Liu, Ms. Simin Tian, Mr. Boyang

Peng, Mr. Chengyu Yu, for making my graduate life more bearable and full of fun.

iv



Declarations

I hereby declare that this dissertation entitled Learning based forensic techniques

for source camera identification is an original work and has not been submitted for

a degree or diploma or other qualification at any other University.

v



Abstract

In recent years, multimedia forensics has received rapidly growing attention.

One challenging problem of multimedia forensics is source camera identification, the

goal of which is to identify the source of a multimedia object, such as digital image

and video. Sensor pattern noises, produced by imaging sensors, have been proved

to be an effective way for source camera identification. Precisely speaking, the

conventional SPN-based source camera identification has two application models:

verification and identification. In the past decade, significant progress has been

achieved in the tasks of SPN-based source camera verification and identification.

However, there are still many cases requiring solutions beyond the capabilities of

the current methods. In this thesis, we considered and addressed two commonly

seen but less studied problems.

The first problem is the source camera verification with reference SPNs cor-

rupted by scene details. The most significant limitation of using SPN for source

camera identification is that SPN can be seriously contaminated by scene details.

Most existing methods consider the contaminations from scene details only occur

in query images but not in reference images. To address this issue, we propose a

measurement based on the combination of local image entropy and brightness so as

to evaluate the quality of SPN contained by different image blocks. Based on this

measurement, a context adaptive reference SPN estimator is proposed to address

the problem that reference images are contaminated by scene details.

The second problem that we considered relates to the high computational

complexity of using SPN in source camera identification, which is caused by the

high dimensionality of SPN. In order to improve identification efficiency without

vi



degrading accuracy, we propose an effective feature extraction algorithm based on

the concept of PCA denoising to extract a small set of components from the orig-

inal noise residual, which tends to carry most of the information of the true SPN

signal. To further improve the performance of this framework, two enhancement

methods are introduced. The first enhancement method is proposed to take the

advantage of the label information of the reference images so as to better sepa-

rate different classes and further reduce the dimensionality. Secondly, we propose

an extension based on Candid Covariance-free Incremental PCA to incrementally

update the feature extractor according to the received images so that there is no

need to re-conduct training every time when a new image is added to the database.

Moreover, an ensemble method based on the random subspace method and majority

voting is proposed in the context of source camera identification to tackle the perfor-

mance degradation of PCA-based feature extraction method due to the corruption

by unwanted interferences in the training set.

The proposed algorithms are evaluated on the challenging Dresden image

database and experimental results confirmed their effectiveness.
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Chapter 1

Introduction

1.1 Background

Nowadays, digital imaging devices, such as digital cameras, camcorders and cameras

embedded in smart phones, are widely used in the modern world. In 2014, more than

1 billion imaging devices have been produced and sold. As a consequence, over one

trillion digital images were taken in that year. With such enormous amount of digi-

tal images, the use of digital images as critical evidences in the fight against crime is

increasing, making multimedia forensic investigations more frequent and important.

Typically, multimedia forensics includes source device identification, source-oriented

images classification, integrity verification or forgery detection, authentication, etc.

Source camera identification is a very important branch of multimedia forensics,

which aims to prove whether a given image or video was taken by a specific imaging

device. This technique has been utilized to identify the origin of digital images or

videos in many forensic cases, such as child pornography, movie piracy, proof of own-

ership, terrorist investigations, etc. For example, in an investigation of a child sexual
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abuse case [1], a person was accused of taking a set of child pornography images,

while this suspect refused to plea guilty and claimed that these child pornography

images in his smart phones were downloaded from internet and not taken by him.

The police applied a source camera identification technique and proved that these

images were indeed taken by the suspect’s smart phone. The suspect was finally

convicted after a short trial.

1.2 Source Camera Identification

In order to trace the source of digital images or videos, many efforts have been

made in the task of source camera identification. These proposed techniques can be

roughly divided into three categories:

• Metadata. The simplest technique for identifying the source camera is to use

the metadata embedded by the source camera [2]. For example, exchangeable image

file (EXIF) [3] is a format for storing metadata in image and audio files. The EXIF

header contains information of camera manufacturer, camera model and conditions

under which the image was taken (exposure, date, time, etc.). The EXIF header is

encoded in ASCII text, it can be directly read in the binary file or easily extracted by

using many common photography tools, such as Adobe Photoshop and IrfanView.

One can use this metadata to identify the model of the source camera (but not

the specific camera). However, along with the wide use of these photography tools,

header data can easily be changed or removed by users. In addition, metadata

may not be available if the image is re-saved in a different format or re-compressed.

For these reasons, metadata is not expected to be a reliable indicator of the image

source.
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• Watermarking. Another possible solution to the source camera identification

problem is to use the digital watermark embedded in the image by the camera,

which carries information about the source camera, the time when the image was

taken, and even a biometric data of the person taking the image. There are a

few camera manufacturers offering cameras with watermarking capabilities, which

is called “Secure Camera”, such as Epson PhotoPC 700/750Z, 800/800Z, 3000Z and

Kodak DC-200, DC-260, DC-290 [4]. Such cameras transparently insert a digital

watermark to each image or video they capture, thus one can determine whether a

given image is taken by a specific secure camera by matching the watermark from

the given image and the specific secure camera. This technique is very useful for

proving ownership of a copyright work in the case with secure cameras, while it is

of no help in tracking the source when images are taken by other cameras.

• Manufacturer Specific Technique. The third set of techniques relies on the

intrinsic characteristics of digital cameras left in the image. Generally speaking,

any traces left in the image by the processing components of the image acquisition

pipeline have the potential to link the images to the source camera, such as sen-

sor pattern noise (SPN) [5–14], lens aberration [15, 16], colour filter array (CFA)

interpolation artifacts [17, 18], JPEG compression [2, 19], and the combination of

several intrinsic characteristics [20, 21]. Among these traces, SPN has been proved

as the most effective way for source camera identification, and has attracted the

most attention in the research area. Compared with other intrinsic characteristics,

SPN has several remarkable advantages:

1. Uniqueness. Every image or video taken by the same sensor exhibits the

same SPN pattern, while any two imaging sensors would exhibit uncorrelated

3



SPN patterns even when they are from the same silicon wafer [6].

2. Generality. SPN is present in every digital image and video that captured

by imaging sensors, regardless of the camera optics, settings, or the scene

content [22].

3. Universality. All digital imaging sensors would exhibit SPN pattern, such

as charge-coupled devices (CCD) sensor [23, 24], complementary-metal-oxide

semiconductor (CMOS) sensor [25], junction field-effect transistor (JFET) sen-

sor and CMOS-Foveon X3 sensor [6].

4. Stability. SPN is stable in time and under a wide range of physical conditions,

such as ambient temperature or humidity [22].

5. Robustness. SPN can survive from a series of operations performed on the

image such as blurring, scaling, compression, and even printing and scanning.

Moreover, it is often beyond the capability of normal camera users to manip-

ulate or remove this fingerprint from digital images or videos.

Due to these advantages, the SPN-based sensor fingerprint is quite popular in several

digital forensic applications, such as source camera identification, image clustering,

forgery detection, etc. In this thesis, our research interest is particularly focused on

the area of the SPN-based source camera identification.
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1.3 SPN-based Source Camera Verification and Identi-

fication

Precisely speaking, the conventional SPN-based source camera identification has

two application models: verification and identification. Source Camera Verification

(SCV) is the task that conducts one-to-one comparison to verify whether a given

image or video is taken by a specific imaging device. It is especially useful in the

court of law for addressing the question: Is this image taken by the claimed camera?

In order to verify that a query image was taken by a camera, we first need to extract

the SPN from the query image and estimate the reference SPN for the camera. Then

the similarity between the query SPN and reference SPN is calculated. The decision

is finally made by comparing the obtained similarity score with a predetermined

threshold.

On the other hand, source camera identification (SCI) is the task that search-

es a database for an enrolled camera or SPN fingerprint to match the query image,

i.e., one-to-many comparison. The goal of SCI is to answer the question: Which

camera in a database has taken the query image? Different from verification, the

identification system conducts multiple one-to-one comparisons between the query

SPN and a lot of reference SPNs from the database, and returns a single match

(the best match) as the most probable association with the query sample. Fig 1.1

shows the flowcharts of the SPN-based source camera verification and identification.

As illustrated in Fig. 1.1, both the verification and identification system consist of

three main stages: SPN extraction, reference SPN estimation and SPN matching,

the details of which will be presented in Chapter 2.
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Figure 1.1: The flowcharts of source camera verification and identification system.

1.4 Challenges

The SPN-based source camera identification has been studied for more than a decade

by the multimedia forensic community. Many existing SPN-based methods in the

literature can accurately link digital images or videos to the specific cameras that

acquired them. However, there are still many cases requiring solutions beyond the

capabilities of the current methods. In this thesis, we select the following two

existing problems as the research topic since they are both commonly seen and less

studied.
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1.4.1 Reference Images Corrupted by Scene Details

In real-world applications, SPN can be easily contaminated by many interferences,

which would decrease the identification accuracy. Those interference factors can be

roughly summarised into two categories. On the one hand, SPN can be affected by

the characteristics produced in the imaging acquisition process, such as shot noise,

read-out noise, quantization noise, CFA interpolation artifacts, etc [6]. Most middle-

end and high-end cameras have the capability to suppress these contaminations, thus

the impact of these contaminations is relatively low for the identification result,

especially in the uncompressed high quality images. However, it is difficult to fully

remove these contaminations.

On the other hand, SPNs can be contaminated by image content, i.e., scene

edges and textures. As mentioned in [9], both SPN and scene textures appear as

the high-frequency signal, thus in the SPN extraction stage not only the true SPN

components but also the trace of scene textures would be extracted. The interference

of scene textures can be very serious as its magnitude is usually far greater than

that of the true SPN signal in the noise residual [9]. Moreover, it is very common

in real-world environments as most normal images would contain a certain amount

of scene textures. But this contamination can be easily avoided. For example, if

we have access to the camera to be identified, we can use it to take some images of

smooth scenes, such as blue sky and flat wall. By doing so, we can actively avoid

the acquired images from contaminations of scene textures and consequently extract

some clean SPNs. Examples of SPNs extracted from different kinds of images are

shown in Fig. 1.2. Fig. 1.2 (a) and (b) are a blue sky image and an image with

strong scene details taken by a Canon IXUS70, respectively. Fig. 1.2 (c) and (d)
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(a) (b)

(c) (d)

Figure 1.2: (a) A blue sky image. (b) An image with strong scene details. (c) The
SPN extracted from the image (a). (d) The SPN extracted from the image (b). Note
the intensity of (c) and (d) has been down scaled 3 times for visualization purpose.

are the SPNs extracted from Fig. 1.2 (a) and (b) by using the method proposed

in [6], receptively. Compared to Fig. 1.2 (b), Fig. 1.2 (a) has much fewer scene

textures so that its corresponding SPN (Fig. 1.2 (c)) is much less contaminated by

scene textures. Therefore, images with smooth regions help to obtain better SPNs.

However, in real-world environments, we may face the problem that the camera

to be identified is absent. For example, a person is suspected of taking images

with some illegal content (e.g., child pornographic, terror related) while he/she has

8



already abandoned or hidden his/her camera. Under this circumstance, there is no

smooth images available for the police to estimate a clean reference SPN for the

missing camera. But it is highly conceivable that the images from the suspect’s

Facebook or Flickr accounts are probably taken by the missing camera so that the

police can estimate an SPN from such images to represent the missing camera. If

any SPNs from the images with illegal content are found to be matched with this

estimated SPN, the police can convict this suspect guilty. However, the images from

Facebook or Flickr are very likely to be natural images with varying scene details.

As a result, the SPN extracted from such images might be severely contaminated,

which might lead to a false matching result. Therefore, a challenging problem is

that: is it possible to estimate a trustworthy SPN from images with varying scene

details so as to represent the missing camera?

1.4.2 Source Camera Identification in Large Database

Another challenging problem relates to the high computational complexity of a

SPN-based SCI systems. This problem occurs due to the high dimensionality and

random nature of the SPN fingerprints. Here we provide an example to explain

this problem. A person is apprehended for suspiciously taking pictures of children

near an elementary school, while he/she claims he/she is an amateur photographer

pursuing a hobby. The police plans to estimate a reference SPN for his/her camera

and search a large database of known child pornography images to check whether

any existing clusters in this database match with this reference SPN. Ideally, this

problem can be solved by matching this estimated SPN against all the SPNs of

the clusters in the database, but the process would require a linear search over the
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whole database. Considering the fact that most images today have more than 106

pixels and there can be tens of thousands of SPN fingerprints in the database, thus

making the computational complexity of a direct search prohibitively high. In this

case, the challenging part is that is it possible to solve this problem more efficiently?

Although the SPN-based technique has been well studied by the research community,

relatively fewer works are devoted to address this problem. Thus, research into the

task of performing source camera identification more efficiently is very important

and necessary.

1.5 Objectives of Thesis

In the view of the above-mentioned challenges, in this thesis, we explore the fol-

lowing two scenarios. The first scenario is effective source camera verification with

reference images corrupted by scene details. As mentioned above, the reference SP-

N estimation is one of main stages in the framework of SPN-based source device

identification. Although there have been several studies dedicated to improving the

performance of SPN based source camera identification, an efficient method for esti-

mating the reference SPN from images with scene details is still lacking. In order to

address this problem, we propose a novel approach for estimating reliable reference

SPN from natural images so as to improve the performance of source camera veri-

fication. In addition, we consider the situation that the number of reference images

taken by the same camera is inadequate (N < 50), which is a case most of the cur-

rent works do not take into account. Experimental results show that this method

achieves better performance than the schemes based on the averaged reference SPN,

especially when only a few reference images are used.
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The second scenario is efficient source device identification in large database.

Apart from identification accuracy, efficiency is also an important aspect of a source

device identification system, especially when a sizeable database is involved. Intu-

itively, there are two ways to reduce the computational complexity. The first one

is to organize and index the large database into a search tree so that there would

a smaller number of SPN matching to be done. Another one is to find a compact

representation of normal sized SPN so that even a linear search over the whole

database can be performed. In the literature, some efforts have been made in these

two directions. However, while many methods have improved the efficiency, they

undesirably decrease the identification accuracy at the meantime. In the light of

this limitation, we aim at improving the computational efficiency of source camera

identification without degrading the identification accuracy. We employ the concept

of PCA denoising [26–28] in the task of SPN-based source camera identification. An

effective feature extraction algorithm based on this concept is proposed to extract a

small set of components from the noisy SPN, which tends to carry most information

of the true SPN signal. In order to extract components that better represent the

true SPN signal rather than other noises, a training set construction procedure is

proposed to facilitate a more accurate estimation of the feature extractor. In order

to further improve the performance of this framework, two enhancement methods

are introduced. Given the fact that investigators normally have the class label of

the reference images in database, the first enhancement method is proposed to take

the advantage of the label information of the reference images to better separate

different classes and further reduce the dimensionality. Secondly, in real-world ap-

plications images taken by new cameras may be added to the database. In this

11



case, it is infeasible to re-conduct training every time when a new image arrives. To

overcome this limitation, we propose an extension based on Candid Covariance-free

Incremental PCA (CCIPCA) to incrementally update the feature extractor accord-

ing to the received images.

However, the performance of the PCA-based feature extraction method de-

grades when there are some unwanted interferences contained by the training set,

such as the artifacts introduced by scene details, CFA interpolation and JPECG

compression. It is because the eigenvectors that generated from the training process

can be corrupted by these interferences. Some leading eigenvectors are very likely

to represent the interfering components rather than the true SPN signal. More-

over, it is difficult to locate or remove the corrupted eigenvectors from the feature

space. Accordingly, it is difficult to train a reliable feature extractor by using a

noisy training set. To address this problem, we propose a camera identification

framework based on the random subspace method and majority voting. The ex-

perimental results show that this proposed solution is able to suppress the impact

of unwanted interferences, consequently enhancing the identification accuracy. The

main contributions are summarised in details as follows:

1. We propose a measurement based on the smoothness and brightness to evaluate

the quality of each SPN block for the reference SPN estimation. Based on this

measurement, a reference SPN estimator is proposed to address the problem

that the reference images are contaminated by the scene details [29]. Instead

of treating each SPN block equally for the reference SPN estimation, we weight

each SPN block according to its quality. We also consider the situation that the

number of reference images from each camera is inadequate (N < 50), which is
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a case most of the current works do not take into account.

2. We employ the concept of PCA denoising in the task of source camera identifica-

tion. A PCA-based feature extraction (PCAFE) algorithm is proposed to address

the issue of prohibitively computational complexity caused by the high dimen-

sionality of SPN [30, 31]. In order to extract components that better represent

the true SPN signal rather than other noises, a training set construction method

is also proposed to minimize the impact of the interfering artifacts in the training

set. In addition, we proposed an extension based on the discriminate analysis

method to take the advantage of the label information of the reference images,

so as to better separate different classes and further reduce the dimensionality.

3. We propose a method based on CCIPCA [32] for incrementally updating the

eigenvectors of the PCA-based feature extractor according to the new received

images. It is an extension of the aforementioned PCAFE method, which is used

to address the costly computation of re-conducting training caused by PCAFE

whenever a new image arrives.

4. We point out the performance of PCAFE decreases when the training set is noisy

and less representative. To address this problem, we propose an ensemble solution

based on the random subspace method (RSM) [33] for the SPN-based source

camera identification. This method can improve the identification accuracy by

combining a large number of weak identifiers in the decision level (i.e., by using

the majority voting).
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1.6 Thesis Outline

Chapter 1 provides a brief review of varying techniques used for source camera

identification, which can be roughly divided into three categories: metadata, digital

watermarking and the intrinsic characteristics of digital cameras. Among these

techniques, the advantages of using SPN to solve the source camera identification are

briefly described. This background knowledge is important for further discussions

in this thesis. The next chapter depicts the three main stages of the SCV and

SCI system, and summarizes the related works which have been devoted in them.

Chapter 3 through to 6, the main contributions to the field are elaborated. These

include reducing the impact of scene details in reference SPN estimation (Chapter

3), representing SPN in a compact manner (Chapter 4), feature extractor with

incremental update capability for fast source camera identification (Chapter 5) and

the random subspace method in source camera identification (Chapter 6). Chapter

7 summarises the achievements of this thesis and presents some future research

directions.

1.7 List of Publications

We provide the publication list for my PhD research on SPN-based source camera

identification as follows:

1. R. Li, and C.-T. Li, Y. Guan, “Incremental Updating Feature Extraction for

Camera Identification”, in Proc. IEEE International Conference on Image Pro-

cessing (ICIP), Quebec city, Canada, September 27-30, 2015.
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Table 1.1: Thesis chapters and the corresponding publications.

Thesis Chapters Papers Content

Chapter 3 Paper 5 Context adaptive reference SPN estimator

Chapter 4 Paper 3, 4 PCA-based feature extraction

Chapter 5 Paper 1 Incrementally updated feature extraction

Chapter 6 Paper 2 RSM-based SCI system

2. R. Li, C. Kotropoulos, C.-T. Li, and Y. Guan, “Random Subspace Method

for Source Camera Identification”, in Proc. IEEE International Workshop on

Machine Learning for Signal Processing, Boston, USA, Sept. 17-20, 2015.

3. R. Li, and C.-T. Li, Y. Guan,“A Compact Representation of Sensor Fingerprint

for Camera Identification and Fingerprint Matching”, in Proc. IEEE Internation-

al Con- ference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane,

Australia, April 19-24, 2015.

4. R. Li, and Y. Guan, C.-T. Li, “PCA-based Denoising of Sensor Pattern Noise

for Source Camera Identification”, in Proc. IEEE China Summit&International

Conference on Signal and Information Processing, Xi’an, China, July 9-13, 2014.

5. R. Li, and Y. Guan, C.-T. Li, “A Reference Estimator based on Composite

Sensor Pattern Noise for Source Device Identification”, in Proc. IS&T/SPIE

Conference on Media Watermarking, Security, and Forensics, San Francisco, US-

A, February 2 - 6, 2014.

Some chapters of this thesis (i.e., Chapters 3-6) are related to the aforemen-

tioned papers, as listed in Table 1.1.
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Chapter 2

Literature Review

In this chapter, we firstly review image acquisition process of an ordinary digital

camera so as to better explain what SPN is and why SPN can be applied as a

camera fingerprint to solve the source camera verification and identification problem.

Generally, both processes of source camera verification and identification consist of

three main stages: SPN extraction, reference SPN estimation and SPN matching.

In Section 2.2, these three steps are described in details and relevant approaches

proposed for these three steps are also reviewed. In Section 2.3, we introduce some

common performance metrics for evaluating the performance of the SPN-based SCV

or SCI system. Finally, we discuss the limitations of the current approaches and

analyse the two problems mentioned in Chapter 1.

2.1 Image Acquisition Process

Image acquisition is actually a process of converting the incident light into a digital

signal representation of the scenery. Typically, the process of acquiring an image

16



Figure 2.1: A simplified depiction of an imaging pipeline within a digital camera.

with an ordinary digital camera is illustrated by the diagram of Fig. 2.1 [34]. The

light from the scene entering a camera is first filtered by the lens and an anti-aliasing

filter [35] before reaching the imaging sensor. The most important and expensive

part of a digital camera is the imaging sensor. Since the elements of imaging sensor

are monochromatic, each sensor element can only capture one colour value [36], such

as red (R), green (G), or blue (B). As a result, the imaging sensor can not separate

colour information. Therefore, a colour filter array is required to be built above the

imaging sensor so as to help with separating the colour information. After colour

filtering, the light is captured by the elements of imaging sensor and converted into

individual pixels that comprise the image. Later, a demosaicing operation, which is

tailored for the type of colour filter array by the camera manufacturer, takes place

to calculate the missing colour values for each pixel so as to generate a full-colour

image (with intensities of all three primary colours at each pixel). This is followed

by a sequence of post-processing operations, such as white balancing operation,

colourimetric interpretation, and gamma correction [37]. At the end, the generated

image is compressed and saved in the camera’s memory.

Among various stages of image acquisition process described above, the sen-

sor imaging operation is the most important one, and it is the stage where sensor
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pattern noise is produced. In this stage, each element of the imaging sensor would

capture the incident light and convert it into an individual digital pixel. Due to the

non-homogeneity of silicon wafer, normally different sensor elements have different

sensitivity to light. As a result, even if the imaging sensor takes an image of an

absolutely evenly lit scene, the resulting image would still exhibit slight variations

in the intensity between the individual pixels [38]. Such variations between indi-

vidual pixels form a noise pattern, which is called the sensor pattern noise. As

reported in [6], if a camera takes multiple images of exactly the same scenery, the

SPN patterns left in these images would stay approximately similar. It indicates

that every image or video taken by the same sensor would exhibit the same SPN

pattern. In addition, because of the imperfections during the sensor manufacturing

process, even two imaging sensors made from the same silicon wafer would exhibit

uncorrelated SPN patterns. As a result, the SPN produced by each sensor is unique.

Due to these proprieties, the SPN pattern can be viewed as a unique fingerprint of

a digital camera. Its uniqueness allows SPN to distinguish not only different camera

models of the same brand, but also individual cameras of the same model.

Sensor pattern noise consists of two main components: fixed pattern noise

(FPN) and photo-response non-uniformity (PRNU) noise [39]. FPN refers to pixel-

to-pixel differences when the sensor array is not exposed to light. It is primarily

caused by dark currents. FPN is an additive noise, thus some middle-end and high-

end cameras can automatically suppress this noise by subtracting a dark frame from

every image they take [24]. On the other hand, PRNU noise is the discriminative

part of SPN. The PRNU noise is a multiplicative noise [6], and its amplitude de-

pends on the brightness of the observed image. Generally speaking, the brighter
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the observed image is, the stronger the PRNU noise would be. However, the PR-

NU noise cannot be present in completely saturated images or image areas because

the pixels were filled to their full capacity, thus a saturated image would carry no

information about the PRNU noise. For the same reason, the PRNU noise is very

weak in dark areas, leaving the FPN as the dominant component of the SPN.

2.2 SPN Extraction

As mentioned in Chapter 1.3, in order to verify whether a query image was taken

by a specific camera using SPN, three main steps are required: SPN extraction,

reference SPN estimation and SPN matching. In this section, we first introduce the

SPN extraction step, the purpose of which is to extract the SPN from the query

image. In [6], Lukas et al. modelled the output of a camera in a simplified form:

I = (1 + K)I(0) + Θ = I(0) + I(0)K + Θ, (2.1)

where I(0) is the sensor output in the absence of noise. The multiplicative factor

K refers to the PRNU factor (K < 1). I(0)K thereby represents the discriminative

part of SPN, which is the signal of interest. Θ is the composite of independent

random noise components, which includes the dark current, shot noise, read-out

noise, and quantization noise. In the rest of this thesis, matrices are shown in

capital bold; vectors are presented in bold lower-case; operations and variables are

in element-wise.

In order to extract the signal of interest I(0)K from the observed data I, the

host signal I(0) should be removed. However, the noiseless image I(0) is generally

unknown as most camera manufacturers do not allow user to access the raw sensor

19



output. Nevertheless, it is possible to obtain an approximation to the noiseless

image I(0) by using a denoising algorithm, Î(0) = F (I), where Î(0) is a denoised

version of the image I, F indicates the denoising algorithm. Therefore, SPN can be

estimated as the noise residual between the observation I and its denoised version

Î(0). For example, by subtracting the denoised version Î(0) from the observation I,

we can extract an approximation of SPN as

X = I− F (I) = I− Î(0)

= I(0) − Î(0) + I(0)K + Θ = IK + Ξ, (2.2)

where X is the noise residual where the true SPN signal is present. The noise Ξ

is a sum of Θ and the additional noise terms introduced by the denoising filter.

From this equation, we can deduce that the closer the denoised version Î(0) is to the

noiseless image I(0), the purer SPN signal would be extracted in the noise residual

X. Therefore, the performance of an SPN extractor is primarily determined by the

choice of the denoising algorithm F .

2.2.1 Denoising Algorithm

Since the denoising algorithm plays an important role at determining the quality

of the extracted SPN, the potential choices for the denoising algorithm is worth

further discussing. According to the works proposed by the previous researchers,

there are three most popular techniques: Mihcak filter [40], SPN predictor based on

context adaptive interpolation (PCAI) [11,12] and block-matching and 3D filtering

(BM3D) [8].
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Mihcak Denoising Filter

In [6], Lukas et al. pointed out that SPN is a high-frequency signal in an image,

thus they proposed to transform the noisy image I into wavelet transform domain

and apply a wavelet-based denoising filter (Mihcak denoising filter [40]) to extract

the SPN components from the high frequency wavelet coefficients of I. Since this

method [6] was the firstly proposed in literature for SPN extraction, we refer it as

“Basic” method in this thesis.

As mentioned in [6], the authors had tested with several denoising filters and

eventually decided to use the Mihcak denoising filter as it provided the best re-

sults. The underlying hypothesis of this method is that the high-frequency wavelet

coefficients of a noisy image can be modelled as an additive mixture of a locally

stationary i.i.d. signal with zero mean (noise-free image) and a stationary white

Gaussian noise (WGN) signal with variance σ20 (i.e. the SPN). Based on this hy-

pothesis, the Mihcak denoising filter is built in three steps. In the first step, the

input noisy image is processed by the wavelet decomposition. In the second step, the

local image variance is estimated. Finally, the local Wiener filter is used to obtain

an estimate of the denoised image in the wavelet domain. The individual steps are

described as follows:

Step 1. Wavelet decomposition. Calculate the fourth-level wavelet decomposition of

the noisy image with the 8-tap Daubechies QMF. We describe the procedure

for one fixed level (it is executed for the high-frequency bands for all four

levels). Denote the vertical, horizontal, and diagonal subbands as h(i, j),

v(i, j), d(i, j), where (i, j) runs through an index set J that depends on the
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decomposition level.

Step 2. Local variance estimation. In each subband, estimate the local variance

of the noise-free image for each wavelet coefficient using the Maximum A-

Posteriori Probability (MAP) estimation [41] for four sizes of a square m×m

neighbourhood Nm (where m ∈ {3, 5, 7, 9}), such as

σ̂2m(i, j) = max

0,
1

m2

∑
(i,j)∈Nm

h2(i, j)− σ20

 , (i, j) ∈ J. (2.3)

The local variance of the noise-free image σ̂2(i, j) is obtained by taking the

minimum of the four variances

σ̂2(i, j) = min(σ23(i, j), σ25(i, j), σ27(i, j), σ29(i, j)), (i, j) ∈ J. (2.4)

Step 3. Wiener filtering. In each subband, denoise the wavelet coefficients by using

a pixel-wise adaptive Wiener filter based on the estimated local variance

from the neighbourhood of each pixel, such as

hden(i, j) = h(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ20
, (2.5)

where σ̂2(i, j) is the estimated variance of the noise-free image and σ20 is

the variance of the WGN signal. Similarly, vden(i, j), and dden(i, j) can be

obtained in the same way, where (i, j) ∈ J . By repeating Steps 1-3 for each

level and each colour channel, a denoised image can be finally obtained in

the spatial domain by applying the inverse wavelet transform to the denoised

wavelet coefficients.
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Notice that the parameter σ0 is still unknown. As reported in [6], σ0 is normally set

to σ0 ∈ {1, ..., 6} so as to better extract the SPN signal, and within this range, the

choice of σ0 has a relatively low impact on the final identification results. But for

the images with large noise components, such as images with strong scene details

and images which are highly compressed, setting σ0 to a relatively large value would

make sure that the filter extracts a substantial part of the SPN. For this reason, we

have chosen σ0 = 4 in all the following experiments of this thesis. Based on the Eq.

(2.2), this Basic method can be simply formulated as follows

X = DWT−1{DWT (I)− F [DWT (I)]}, (2.6)

where DWT is the discrete wavelet transform, and DWT−1 is the inverse wavelet

transform. F is the Mihcak denosing filter, which is constructed in the wavelet

domain using the Wavelab package [42].

PCAI Predictor

In [12], Wu et al. proposed an edge adaptive predictor based on the context adaptive

interpolation (PCAI) to extract SPN. Since the scene texture is the most serious

source that contaminates the true SPN signal, this PCAI method was designed

mainly to suppress the impact of scene texture. The context adaptive interpolation

(CAI) method [43] is an interpolation method which can predict the texture within

an image by using the local neighbouring information. However, subtle signal, such

as SPN, is not very likely to be accurately predicted in the output by this method.

Thus the difference between the predicted value and actual value can better suppress
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the impact of image edges while preserving the SPN components at the same time.

• The CAI interpolation method. Assume that p is the central pixel and

t = {n, s, e, w}T is the vector of neighbouring pixels. The CAl interpolation method

would predict an approximation p̂ for the pixel value p according to its neighbouring

information t. More specifically, the CAl method firstly scans the whole image and

classifies each pixel (according to its local region) into four categories: smooth,

horizontally-edged, vertically-edged and other. In the smooth region, a mean filter

is used to estimate the central pixel; in edged regions, the interpolation is done along

the edge; otherwise a median filter is applied. The predicted pixel value p̂ can be

formulated as follows [43]

p̂ =



mean(t), (max(t)−min(t) ≤ 20)

(n+ s)/2, (|e− w| − |n− s| > 20)

(e+ w)/2, (|n− s| − |e− w|) > 20)

median(t), (otherwise).

(2.7)

In Eq. (2.7), the central pixel, which is predicted according to different types of edge

regions, is classified by the four-neighbouring pixel values with a threshold value.

According to [12], this threshold is set to be 20 via the extensive experiments. In [11],

the CAI method is extended by using of the eight-neighbouring pixels (including

four diagonally-edged pixels), which is called as “CAI8”. By doing so, the authors

claimed that the predicted result p̂ would have less prediction error [11].

• The PCAI predictor. In [11], an edge adaptive SPN predictor is proposed

based on this CAI8 method, which is referred to as “PCAI8” for short in this thesis.
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This PCAI8 predictor is built in two steps as follows.

Step 1. Firstly, the CAI8 method is applied as the desnoising filter F in Eq. (2.2).

Then, the difference D between the predicted result and original image can

be calculated in the spatial domain as follows

D = I− CAI(I), (2.8)

where CAI(I) is a pixel-wise prediction of the original image I. The CAI

method can only predict the scene texture of I but not the SPN components.

Therefore, the scene texture would be suppressed in the difference D while

the SPN components would be well preserved.

Step 2. In order to further suppress the impact of the scene texture and extract a

more accurate SPN, a pixel-wise adaptive Wiener filter is then preformed

as follows [11]

X(i, j) = D(i, j)
σ20

σ2(i, j) + σ20
, (2.9)

where X is the eventual output of the PCAI8 predictor and the noise resid-

ual that contains the SPN components. σ2 indicates the estimated local

variance of the noise residual D and σ20 is the variance of the WGN signal,

i.e. the SPN. The local variance is estimated by using the MAP estimation,

which is similar to Eq. (2.4) and (2.5). The parameter σ0 is also set to be

4 in order to extract a consistent level of the SPN.

Since the CAI method can predict texture accurately according to different local

regions, the PCAI method is usually superior to Mihcak filter on extracting SPNs
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from the images with strong scene details [43]. However, due to the pixel-wise

interpolation, this method is more computationally complex.

BM3D Denoising Filter

In [8], Chierchia et al. proposed to replace the Mihcak filter with a more recent tech-

nique, namely the block-matching and 3D filtering (BM3D) [44], in order to extract

SPN. BM3D works through grouping 2D image patches with similar structures into

3D arrays and collectively filtering the grouped image blocks. The sparseness of the

representation due to the similarity between the grouped blocks makes it capable

of better separating the noiseless image and noises. This filter is constructed using

two steps as follows:

Step 1. Basic estimate. The input noisy image is processed by successively extract-

ing the reference blocks from the image (in a sliding-window manner, e.g.,

8× 8).

a) Block-wise estimates. For each reference block in the noisy image, find

the blocks that are similar to the currently processed one and then stack

them together in a 3D array (group). Then, apply a 3D transform to the

formed group, attenuate the noise by a hard-thresholding of the transform

coefficients, invert the 3D transform to produce estimates of all grouped

blocks, and return the estimates of the blocks to their original positions.

b) Aggregation. Compute the basic estimate of the true-image by a weighted

averaging of all the obtained block-wise estimates that are overlapping.

Step 2. Final estimate. Using the basic estimate, perform improved grouping and
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collaborative Wiener ltering.

a) Block-wise estimates. For each block, use block-matching within the basic

estimate to find the locations of the blocks similar to the currently processed

one. Using these locations to form two groups (3D arrays), one from the

noisy image and one from the basic estimate. Then, apply a 3D transform

on both groups. Perform Wiener filtering with σ0 = 4 on the noisy one using

the variance of the basic estimate as the true variance. Produce estimates

of all grouped blocks by applying the inverse 3D transform on the filtered

coefficients and return the estimates of the blocks to their original positions.

b) Aggregation. Compute a final estimate of the true image by aggregating

all of the obtained local estimates using a weighted average.

Generally speaking, among the three aforementioned SPN extraction methods, the

BM3D method can slightly outperform the Basic and PCAI8 method on SPN ex-

traction. For the example in Fig. 2.2, (a) shows an image with strong scene details.

(b), (c) and (d) are the noise residuals extracted from the image of (a) by using

the Basic, PCAI8 and BM3D method, respectively. By comparing (b), (c) and (d),

we can see that the BM3D method can better suppress the impact of scene details

than the Basic and PCAI8 counterparts. It is because both of the Mihcak filter and

PCAI8 predictor estimate the variance of noise-free image by using only the local

neighbourhood information, while the estimate of BM3D filter is obtained by collab-

oratively aggregating the estimates from multiple non-local blocks. The denoising

output F (I) from BM3D filter is, therefore, closer to the true noise-free image I0.

The source code for this BM3D filter is available online at [45].
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(a) (b)

(c) (d)

Figure 2.2: (a) An image with strong scene details. (b) The noise residual extracted
from the image (a) using the Basic method. (c) The noise residual extracted from
the image (a) using the PCAI8 method. (d) The noise residual extracted from the
image (a) using the BM3D method. Note the intensity of (b), (c) and (d) has been
downscaled 3 times for visualization purpose.

Moreover, there are some SPN extraction methods proposed in allusion to

eliminating specific contaminations. For example, Li et al. [10] introduced a colour-

decoupled PRNU (CD-PRNU) extraction method to prevent the interpolation noise

from propagating into the physical components. They extracted the PRNU noise

patterns from each colour channel and then assembled them to get the more reliable
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CD-PRNU. In [46], Al-Ani et al. developed another image denoising algorithm for

SPN estimation. The authors claimed that involving a large number of pixels at the

denoising operation to approximate a single pixel would result in a considerable level

of unwanted correlation between neighbouring pixels in the extracted noise residual.

As a result, the obtained noise residual cannot well manifest the characteristic of the

true SPN components. In order to suppress the correlation between neighbouring

pixels in the extracted noise residual, they proposed to produce a noise estimate of

SPN at a pixel via subtracting this pixel by one adjacent pixel which has a close

value.

2.2.2 SPN Enhancement

As shown in Eq. (2.2), the extracted noise residual contains not only the true SPN

components but also some unwanted interferences, such as random noise compo-

nents, scene details, CFA artifacts, etc. Thus it leaves room for further enhance-

ment.

In [9], Li pointed out that the contaminations from scene details is the most

serious one among these interferences, the magnitude of which is far greater than

that of true SPN signal. Since the scene details also account for the high-frequency

components of I, it would mix with the true SPN signal and be extracted into

the noise residual at the same time. As shown in Fig. 2.2, the scene textures

appearing in Fig. 2.2 (a) propagate through the three SPN extraction methods into

the noise residual and contaminate the true SPN signal. Although BM3D filter is

reported that can better suppress the impact of scene details, there are still some

scene textures left in the noise residual. Involving such interferences in the noise
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(a) (b)

Figure 2.3: (a) The noise residual extracted by using the Basic method. (b) The
enhanced version of (a) by using the Model 5 in [9]. Note the intensity of (a) and
(b) has been down scaled 3 times for visualization purpose.

residuals would lead to two noise residuals being correlated even though they are

derived from different cameras. As a result, it would increase the false identification

rate. To overcome this limitation, Li [9] proposed an SPN enhancer to attenuate the

impact of scene details so as to enhance the true SPN signal in noise residual. The

hypothesis underlying his SPN enhancer is that the stronger a signal component in X

is, the less trustworthy the component should be, and thus it should be attenuated.

According to this hypothesis, the author provided 5 spatial-domain based enhancing

models aiming at assigning less significant weighting factors to strong components

of X so as to attenuate the interference of scene details. Here is an example shown

in Fig. 2.3, where Fig. 2.3 (a) is the noise residual extracted by using the Basic

method, and Fig. 2.3 (b) is the enhanced version of (a) by using the Model 5 in [9].

We can clearlys see that the trace of scene details left in Fig. 2.3 (a) has been

significantly suppressed in Fig. 2.3 (b). It suggests that this enhancement scheme

can be applied as the post-processing method after the SPN extraction so as to
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enhance the purity of the SPN components in the noisy noise residual.

In [47], Lawgaly et al. proposed an enhancement method based on the Un-

sharp Masking technique [48], which aims to amplify the high frequency content of

the SPN in images. This method can strengthen the SPN present in images and

consequently enhance the SPN components in the estimated noise residuals. It can

be applied as a pre-processing method performed before the SPN extraction.

Moreover, there are some methods proposed to suppress the contamination

caused by JPEG compression. In JEPG compression, non-overlapping 8× 8 pixels

blocks are coded with the discrete cosine transform (DCT) independently [49]. As a

result, aggressive JPEG compression would cause blocky artifacts in the extracted

noise residual. In [50, 51], Alles et al. proposed a method to suppress the JPEG

block artifacts by averaging neighbouring 8 × 8 pixels block into one macro ele-

ment on both the query noise residual and reference SPN. By doing so, the sizes

of the query noise residual and reference SPN are decreased. While this method

can attenuate the impact of JPEG blocky artifacts, it also suppresses the true SPN

components. In [52], Chen et al. proposed a more robust method to remove the

JPEG blocky artifacts by transforming the extracted noise residual into the discrete

Fourier transform (DFT) domain and suppressing the Fourier coefficients with ex-

tremely larger magnitude. By doing so, they claimed that not only JPEG blocky

artifacts but also other artifacts which manifest themselves as peaks in the Fourier

domain (e.g., artifacts due to colour filter array interpolation and other hardware

or software operations) can be suppressed.

Certainly, the methods for SPN extraction and SPN enhancement can be

combined for performance gains. For instance, one can apply BM3D or PCAI8
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algorithm to extract the raw noise residual, and then enhance it with the help of

Li’s models [9].

2.3 Reference SPN Estimation

The reference SPN estimation step aims at estimating a reference SPN pattern for

the camera in question. In [6], Lukas first proposed to estimate the reference SPN

R for a camera by averaging N noise residuals extracted from the reference images

taken by that camera, such as

R =
∑N

i=1
Xi/N. (2.10)

Generally speaking, random noises presented in different images are normally quite

different, while the true SPN components will be the same as long as these images

are taken by the same camera. Therefore, the random noise components (e.g. shot

noise, read-out noise and quantization noise) can be averaged out in R while the

true SPN components are accumulated. It is obvious that the larger the number

of images N is, the more random noise components we can suppress. As suggested

in [6], it is optimal to set N > 50. It is worth noting that if the camera to be

identified is available, it is better to use the low-variation images such as blue sky

and flat field images for reference SPN estimation, so that we can actively avoid the

contaminations caused by scene details. By doing so, we actually incorporate our

prior knowledge of SPN to refine the estimated result.

In [7], Chen et al. proposed a maximum likelihood method to estimate the

reference SPN. As shown in Eq. (2.2), the discriminative part of SPN, i.e., PRNU,
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is a multiplicative noise, thus the goal of this method is to estimate the reference

PRNU factor K for a camera. They assume that the pixels of the noise term Ξ is

zero-mean Gaussian noise with variance σ2 and independent from the signal IK. Let

{Ii}Ni=1 be the reference images from camera C. For each image Ii, i = 1, 2, ..., N,

the Eq. (2.2) can be re-written as:

Xi

Ii
= Ki +

Ξi

Ii
, where Xi = Ii − F (Ii). (2.11)

Finally, the reference PRNU factor for camera C can be estimated by the Maximum

Likelihood estimation:

K̂ =

∑N
i=1 XiIi∑N
i=1 I2i

. (2.12)

Now given a query image Iq, this method [7] would regard the term IqK̂ as the

reference SPN left in image Iq by camera C.

In [53], Hu et al. pointed out that the components of the reference SPN with

larger values are more robust. Therefore, instead of using the full-size reference SPN,

authors only select a small number of the largest components from it as the reference.

Moreover, they also record the location information of these largest components so

that they can select the corresponding components from the query SPN to perform a

matching. This method works very well when the reference SPN is clean. However,

its performance would degrade when the reference SPN is contaminated by scene

details, because the large components in such a contaminated SPN is more likely to

be associated with scene details rather than true SPN components.

To further refine the estimated reference SPN, Chen et al. [7] proposed two

preprocessing operations, zero-mean (ZM) and the Wiener filter (WF) in the dis-
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crete Fourier transform (DFT) domain, to remove the artifacts caused by camera

processing operations from the reference SPN. The ZM procedure is to remove the

artifacts introduced by CFA interpolation, row-wise and column-wise operations of

sensors or processing circuits. The objective of the WF procedure is to suppress the

visually identifiable patterns in the ZM processed signal. These two pre-processing

operations can be summarized as follows

RWF = DFT−1(DFT (RZM )− F (DFT (RZM ))), (2.13)

in which DFT is the discrete Fourier transform, DFT−1 is the inverse discrete

Fourier transform. F is the Wiener filter with the variance obtained as the sample

variance of the magnitude of the DFT (RZM ).

In [54], another reference SPN pre-processing approach, namely the Spec-

trum Equalization Algorithm (SEA), is recently proposed to suppress the periodic

artifacts, such as CFA interpolation artifacts, JPEG blocky artifacts and diagonal

artifacts, from the estimated reference SPN. The authors claimed that the peaks

appearing in the DFT spectrum are probably originated from the periodic artifacts

and unlikely to be associated with the true SPN. Therefore, by detecting and sup-

pressing the peaks in the DFT spectrum, the reference SPN of better quality can

be obtained.
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2.4 SPN Matching

Once both query SPN and reference SPN are obtained, the SPN matching step is

finally performed to measure the similarity between the query SPN and the reference

SPN so as to decide whether the query image was taken by the camera in question.

This problem can be treated as a binary-hypothesis test with the two hypotheses [55],

which are defined as

H0 : X 6= R(the query image is not taken by the suspect camera)

H1 : X = R(the query image is taken by the suspect camera)

Then a correlation-based detector is used to make the decision between H0 and H1

by comparing the correlation ρ(X,R) to a pre-calculated threshold τ . The detector

decides H1 when ρ > τ and H0 when ρ < τ .

2.4.1 Similarity Measurement

For this type of problem, the normalized cross-correlation (NCC) is usually used as

the similarity measurement (detection statistics) to measure the similarity between

the query noise residual and the reference SPN, which is defined as:

ρ (X,R) =

∑N
i=1

∑N
j=1

(
X(i, j)−X

) (
R(i, j)−R

)∥∥X−X
∥∥ · ∥∥R−R

∥∥ , (2.14)

where X and R are the mean value of X and R, N ×N is the size of X and R, and

‖·‖ is the L2 norm. Later, Goljan et al. [56] pointed out that the normalized cross-

correlation is sensitive to the influence of periodic noise contaminations, therefore

they proposed another similarity measurement, peak-to-correlation energy (PCE)
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ratio [57], to suppress periodic noise contamination, such as

PCE(X,R) =
C2

RX(0, 0)
1

N2−|A|
∑

(i,j)/∈AC
2
RX(i, j)

, (2.15)

where C2
RX is circular cross-correlation between the two fingerprints X and R, A is a

small area around (0, 0), and |A| is the size of A. In the real-world applications, when

the final decision will be served as a vital piece of evidence in a crime investigation,

a low false positive rate (FPR) is usually required so as to ensure a low probability

of wrong accusation. Therefore, Kang et al. [13] proposed a more sophisticated

detection statistic, i.e., the correlation over circular correlation norm (CCN), to

further reduce the FPR of a source camera identification system, such as

CCN(X,R) =
CRX(0, 0)√

1
N2−|A|

∑
(i,j)/∈AC

2
RX(i, j)

. (2.16)

2.4.2 Detection Threshold

The accuracy of a SCV or SCI system is defined by true positive rate (TPR) and

false positive rate (FPR). True positive rate is the probability of deciding H1 while

hypothesis H1 is true, and false positive rate is the probability of deciding H1 while

H0 is true. Investigators usually require an SCV or SCI system to have a sufficiently

low FPR so as to ensure a low probability of wrong accusation in some real-world

applications, such as child pornography cases. Therefore, the detection threshold τ

is estimated according to a required FPR.
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According to Eq. (2.2), we simplify and rewrite it into a vectorized form as:

x = x̂ + ξ, (2.17)

where x indicates the noise residual, x̂ presents the true SPN signal and ξ is WGN.

Following the assumptions of [58], we assume that the noise residuals to be matched

are normally distributed random sequences with zero mean and unit variance such

that x = {xi} = {x̂i+ξi}, i = 1, ...,m, where ξi ∼ N (0, σ2), x̂i ∼ N (0, 1−σ2) and m

is the length of the vectorized noise residual. We also assume that SPNs of two dif-

ferent cameras are statistically independent. According to the central limit theorem

(CLT) [59], the NCC values for independent vectors follow the Gaussian distribu-

tion. Therefore, from the independence of SPNs assumption, the distribution of the

NCC values for non-matching SPNs (under hypothesis H0) can be approximately

estimated as a normal distribution with zero mean and variance equal to 1/m, i.e.,

ρH0 ∼ N (0, 1/m). Given a detection threshold, the false positive rate Pfp for SPN

can be obtained via Neyman-Pearson hypothesis approach [60] as follows

Pfp = Q(τ
√
m), (2.18)

where Q is the complementary cumulative density function of a normal random

variable N(0, 1). Given a required Pfp, the detection threshold can be obtained via

an inverse operation as

τ =
Q−1(Pfp)√

m
, (2.19)

where Q−1 is a scaled inverse error function.

37



2.5 Performance Metrics

In the scenario of SPN-based source camera verification, the receiver operating char-

acteristic (ROC) curve is usually applied to evaluate the accuracy of a source camera

identification system. The ROC curve is a graphical plot that illustrates the per-

formance of a binary classifier system as its discrimination threshold is varied [61].

The curve is created by plotting the true positive rate against the false positive rate

at various threshold settings.

• The true positive rate is the rate at which the comparison between two matched

SPNs are correctly accepted by the system as the true match.

• The false positive rate is the rate at which the comparison between two non-

matched SPNs are erroneously accepted by the system as the true match.

In [13], Kang et al. proposed an overall ROC curve which can evaluate an

average performance of a source camera identification system on different cameras.

To draw the overall ROC curve, the number of true positive decisions and false

positive decisions are first recorded for each camera respectively. A true positive

occurs if hypothesis H1 is accepted when the query image is indeed taken by the

camera in question. A false positive occurs if H1 is accepted while the query image

is not taken by the camera in question. These numbers are then summed up to

calculate the true positive rate Ptp and false positive rate Pfp. If the numbers of

images captured by each camera are exactly the same, we can simply calculate the

overall TPR and overall FPR for a threshold as follows

Ptp =

∑c
i=1D

i
tp

T
, Pfp =

∑c
i=1D

i
fp

(c− 1)T
, i = 1, 2, ..., c, (2.20)
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Table 2.1: Two typical contamination cases

Query Reference Scenario Application

Contaminated Uncontaminated Proof of
ownership,
copyright
protection

Child pornography,
movie piracy

Contaminated Contaminated Law
enforcement,
police
and security

Criminal and terrorist
investigation,
detection of networks
for sharing images

where c is the number of cameras, T is the total number of query images, Di
tp andDi

fp

are the number of true positives and the false positives of camera Ci, respectively.

By varying the detection threshold from the minimum to the maximum value, we

can obtain the overall ROC curve.

2.6 Challenges

2.6.1 Reference Images Corrupted by Scene Details

Most of the current methods assume that the contaminations from scene details only

exist in the query images while the reference images are relatively clean. However,

this assumption may not hold in real-world scenarios as this contamination may

occur in both query and reference images. Table 2.1 summarises two common cases

a source camera identification system may encounter in the real-world applications.

Most of the current methods consider the first case that the reference SPN is uncon-

taminated while the second case has not yet received much attention. To address

this problem, we will introduce our proposed algorithm which is able to deal with

contaminations in the reference set in the next chapter.
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2.6.2 Source Camera Identification in Large Databases

The methods proposed in different modules can be combined together to achieve a

very high accuracy. However, when a large database is concerned, the SPN-based

identification system presents its unique set of challenges, which revolve around two

main issues. The first issue relates to the high dimensionality of SPN. As a result,

main memory operations like loading of SPN takes considerable amount of time. At

the same time, each SPN needs a fairly large amount of space for storage. Further-

more, since the SPN looks more like random signal, compression is not very effective.

Typically, the SPN extracted from a 10 megapixel image may take up to 50 MB

of space even after compression. The second issue is the computational complexity

of the matching algorithm. The matching process involves vector operations which,

when combined with the high dimensionality of data, becomes a critical concern.

In order to address the issue of prohibitively computational complexity caused

by the high dimensionality of SPN, many efforts have been made in recent years.

The proposed methods in the literature can be divided into two categories. The

methods of the first category attempt to reduce the number of correlations so that

there is a smaller number of multiplications to be done. In [62, 63], Bayram et

al. proposed to organize a database of reference SPNs into a binary search tree.

In such a binary search tree, each leaf node represents a reference SPN from the

database. Each internal node is the composite SPN which is composited from all

the reference SPNs at the leaf nodes in the subtree beneath it. This composite SPN

is defined as the normalized sum of all the reference SPNs beneath it. By organizing

all the reference SPNs in such a tree, it allows matching multiple reference SPNs in a

single verification process. For example, if a query SPN looks for a matched reference
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SPN in a binary search tree, it traverses the tree from root to leaf, matches with

the SPN at each node of the tree and makes decision. If the decisionss is positive,

the searching is then continued in the subtree beneath it. But if the decision is

negative, then no more comparisons are needed. On average, this means that each

comparison allows the operations to skip about half of the rest tree so that each

retrieval takes time proportional to the logarithm of the number of the reference

SPNs stored in the tree. Compared to the method based on linear search, this

method is more computationally effective. However, there is a trade off between

efficiency and accuracy. Since the probability of error increases with the number of

reference SPNs in a tree, this method is much less accurate than the method based

on the linear search, especially when a large number of reference SPNs are stored in

a single binary tree. Thus, it requires to construct multiple binary search trees so as

to maintain a desirable identification accuracy. As a result, this method eventually

requires to calculate a (L/t) log t number of correlations, where L is the number of

all the reference SPNs and t is the number of the reference SPNs in each tree.

Approaches of the second category aim to lower the computational com-

plexity by compressing the large-sized SPN. In [64–66], the authors introduced a

fingerprint digest as a possible solution. The authors assume that the larger com-

ponents (in magnitude) of a reference SPN is more reliable than the small ones and

thus should be used in correlation detection while the small components can be dis-

carded. Thus, this fingerprint digest is primarily formed by keeping only k elements

of a reference SPN with the highest energy values and their locations. As a result,

the dimensionality of this fingerprint digest is lower than that of the normal-sized

SPN. Since the complexity of calculating the correlation is proportional to the size
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of SPN, the method based on fingerprint digest would boost the matching efficiency

by N2/k times, where N2 is the size of the normal-sized SPN (e.g., N2 = 5122 and

k = 50000). An improved search strategy based on fingerprint digest is proposed

in [67] and [68].

In [69], Bayram et al. proposed to represent an SPN by binarizing the values

of each pixel. Essentially, the authors only use the sign information of each element

of the query or reference SPN and completely disregard the magnitude information.

Therefore, by performing this method, each element of a real-valued SPN would

be binarized into either −1 or +1. As a result, a binarized SPN only requires 1

bit to store each element, while a real-valued SPN requires 64 bit for each element.

Although this method does not reduce the dimensionality of SPN, it can considerably

reduce the storage requirements and speed up the time of loading SPN to memory

so that indirectly boost fingerprint matching process. However, this method would

inevitably cause the degradation in matching accuracy due to loss of information

caused by binarization.

Valsesia et al. in [70–72] proposed to compress the sensor fingerprint via

a random projection. This method is based on the Johnson-Lindenstrauss (JL)

lemma [73]. The JL lemma states that a small set of points in a high-dimensional

space can be embedded into a space of much lower dimension in such a way that

distances between the points are nearly preserved. Based on this concept, a random

matrix can be found which satisfies the JL lemma. Then, an N2-dimensional SPN

is projected into an m-dimensional subspace, with m < N2, by using the obtained

random matrix. By doing so, the dimensionality of the original SPN can be reduced

from N2 to m. However, the method also causes penalties to the matching accuracy
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during compressing the SPN.

As shown above, many efforts have been made to improve the efficiency

of source camera identification in recent years. However, the results showed that

while these compressing methods bring significant computation reduction, they al-

so undesirably decrease the identification accuracy in the meantime. In the light

of this limitation, we will introduce our algorithms which aims at improving the

computational complexity of source camera identification without degrading the

identification accuracy in the following chapters.
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Chapter 3

Reducing the Impact of Scene

Details in Source Camera

Verification

3.1 Problem Statement

Typically, the reference SPN of a camera is normally estimated by averaging multi-

ple clean SPNs extracted from the blue sky images taken by that camera. However,

in practical environments investigators may only have some natural images with

strong scene details rather than blue sky images for the reference SPN estimation.

As mentioned before, SPN can be severely contaminated by scene details. Thus,

with such contaminations in the reference SPN, it may lead to a false identification.

For example, Fig. 3.1 shows the estimated inter-class (in red colour) and intra-class

(in blue colour) Probability Density Functions (PDFs) of the correlation coefficients
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ρ between query and reference SPNs. When both query and reference images are

blue sky images (Fig. 3.1 (a)), the intra-class and inter-class distributions are well

separated so that it is easy for investigators to set a decision threshold and achieve

an accurate identification. However, when both query and reference images contain

significant scene details (Fig. 3.1 (b)), the intra-class and inter-class distributions

are almost mixed together, making it more difficult to draw an accurate decision.

Although there have been several studies dedicated to improving the performance

of the SPN-based source camera verification, the problem of estimating trustwor-

thy reference SPN from images with strong scene details is still less studied. In

order to solve this problem, a context adaptive reference SPN estimator is proposed

in this chapter to further improve the performance of source camera verification.

Moreover, we consider the situation that the number of reference images of the

questioned camera is limited (i.e., 15 reference images per camera), which is a case

most current works do not take into account. Experimental results show that the

proposed method achieves better performance than the schemes based on the aver-

aged reference SPN, especially when only a few reference images are used.

The rest of this chapter is organized as follows. In the next section, we first

introduce a metric which can measure the quality of the SPNs extracted from dif-

ferent image regions. In Section 3.2, the proposed reference estimator is introduced

in details. Experimental results are reported and discussed in Section 3.3. Finally,

the conclusion is set out in Section 3.4.
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Figure 3.1: Intra-class and inter-class PDFs of the normalized cross-correlation value
calculated from SPNs extracted from different kinds of images (a) low-variation
images, such as blue sky and flat wall images (b) Images containing scene textures.
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3.2 Context Adaptive Reference SPN Estimator

Although the SPN extracted from images with strong scene details can be severely

contaminated, it is possible that not all the regions within an image contain strong

scene details. As shown in Fig. 3.2 (a), images with strong scene details may

still have some smooth regions that just like the blue sky or flat wall. Needless to

say, such smooth regions contain SPNs with better quality than the regions with

strong scene details. Considering the variety of SPN quality within any ordinary

images with scene details, we therefore propose to construct a more reliable reference

SPN estimator. A simple example is presented in Fig. 3.2 to briefly explain this

idea. Fig. 3.2 (a) shows four images with strong scene details, while there are still

some smooth regions within each of these images. Fig. 3.2 (b) presents the SPNs

extracted from the image Fig. 3.2 (a). In order to estimate a reliable SPN from

these 4 images, first of all we roughly divide each image into 4 blocks. Therefore,

for each location, e.g., left-top corner, we would have 4 image blocks from these

4 images. In terms of smoothness, we mark out the optimal image block in red

among all the image blocks from the same location. Then we collect the SPN from

these optimal image blocks to form a composite SPN, i.e., Fig. 3.2 (c). As shown

in Fig. 3.2(b), the SPNs extracted from these optimal blocks contain fewer scene

details than the SPNs extracted from other image blocks. Thus, the composite

SPN (as presented in Fig. 3.2(c)), which is made up by the optimal SPN blocks

from different locations, contains fewer scene details than any original SPNs in Fig.

3.2(b). In the same manner, we can generate another 3 composite SPNs by using

the rest SPN blocks left in Fig. 3.2 (b). It is not difficult to deduce that the quality
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(a)

(b)

(c)

Figure 3.2: (a) Four natural images with scene details. All the four images are
taken by the same camera. (b) Four SPNs extracted from the images in (a). (c) A
composite SPN consists of blocks collected from the SPNs in (b).
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of these 3 new generated SPNs would be worse than the that of the one present in

Fig. 3.2(c). Considering that the conventional averaging method treats all the SPN

blocks equally, we therefore can obtain a more reliable reference SPN by assigning

higher weights to the composite SPNs with SPN blocks collected from smoother

image regions.

3.2.1 SPN Quality Measurement

To achieve the aforementioned idea, we first introduce a measurement to evaluate

the quality of the SPNs extracted from different image blocks. As mentioned in [7],

there are two main factors that are most crucial in determining the quality of the

SPN in an image block.

The first factor is the amount of scene details contained in an image block.

Generally speaking, an image block that contains fewer scene details would be a

smoother region and thus can provide a cleaner SPN. This concept has been vali-

dated in Fig. 3.2. In this work, we use the image entropy as the measurement to

describe the amount of scene details in an image. Entropy is a statistical measure

of randomness that can be used to characterize the degree of details in images [74].

The image with high entropy value would have a great deal of contrast from one

pixel to the next, such as images of heavily cratered areas on the moon, while the

images with low entropy value would have very little contrast and large number of

pixels with the same or similar intensity values, such as those containing a lot of

blue sky or flat wall [75]. An image that is perfectly flat would have an entropy of

zero. Therefore, the image block with lower entropy value would contain SPN with
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better quality. The entropy of an image block is calculated as follows

E(Ib) = −
255∑
k=0

pklog2pk, (3.1)

where k is a gray level of a pixel, pk is the probability of the gray level k in the

image region Ib.

The other determinative factor is the image brightness/luminance. As men-

tioned in Chapter 2, the discriminative part of SPN, i.e., PRNU, is a multiplicative

noise. From the Eq. (2.2), the extracted noise residual X can be simply modelled

as

X = IK + Ξ, (3.2)

where IK presents the true SPN term and Ξ is a mixture of noises. From Eq. (3.2),

we can see that the amplitude of the true SPN IK is proportional to the luminance

of its source image I. Thus, the brighter the image I is, the stronger the true SPN

term IK would be. Under this circumstance, strengthening the true SPN IK would

relatively lower the impact of the additive noise term Ξ. Therefore, the image

block with higher brightness would contain stronger SPN. It is worth mentioning

that the brightness of I should be as high as possible but not saturated because

saturated pixels are filled to their full capacity (i.e., I[i] ≈ 255) and thereby carry

no information about the SPN signal. It is also clear that the pixels of very dark

regions would have very low magnitude (i.e., I[i] ≈ 0) so that the SPN signal from

dark regions would be very weak (i.e., IK[i] ≈ 0). Therefore, the SPNs extracted

from dark and saturated regions should not be taken into account for the reference

SPN estimation.
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Considering both of the two determinative factors mentioned above, we pro-

pose a measurement Q to evaluate the quality of the SPN extracted from different

image blocks, which is modelled as

Q(Ib) =


B(Ib)
E(Ib)

, if 10 < B(Ib) < 245

0, otherwise

(3.3)

where B(Ib) is the average brightness of image block Ib, E(Ib) is the entropy of Ib.

According to Eq. (3.3), a smooth and bright image block would be assigned with a

high quality score. As mentioned above, the SPNs extracted from dark and saturated

regions are very weak. Therefore, according to our experiments, the image block

Ib, with B(Ib) 6 10 or B(Ib) > 245, is assigned with the lowest quality score, i.e.,

Q(Ib) = 0. As shown in Fig. 3.3, an example is used to validate the feasibility of the

proposed measurement. Fig. 3.3 (a) shows an image taken by a Canon Ixus70, and

Fig. 3.3 (b) is the SPN extracted from Fig. 3.3 (a) by using the Basic method [6].

There are two image blocks (marked by red block) in Fig. 3.3 (a). The one on the

right side is a smooth region with high luminance, and its SPN quality score Q is

22.81. The left one is a region with strong scene details, thus it has a relatively low

quality score, i.e., 8.56. Since we have the source camera, we can estimate the ground

truth (i.e., the true SPN) for these two image blocks. By subtracting the ground

truth from the extracted SPNs, we can approximately estimate the contaminants left

in these two SPN blocks. Thus, the signal-to-noise ratio (SNR) for these two SPN

blocks can be calculated. As indicated by the obtained quality score, the smooth

image block has a higher average SNR, i.e., 5.83dB, which is much higher than the

one with scene details, i.e., -11.37dB.
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(a)

(b)

Figure 3.3: (a) An image taken by Canon Ixus70. (b) The noise residual extracted
from (a) using the Basic method. Note the intensity of (b) has been downscaled 3
times for visualization purpose.
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3.2.2 Methodology

Based on the measurement introduced in the last section, the proposed reference

SPN estimator can be built in the following five steps. The details for each step are

described as follows:

1. SPN extraction. Assume there are a set of images {Ii}Ni=1 taken by the same

camera. In the case of colour images, we perform the SPN extraction on each

colour channel. For each Ii, we extract the SPNs XR
i , XG

i and XB
i in spatial

domain from the red, green and blue channel respectively by using one of the

SPN extraction method mentioned in Section 2.2, such as the Basic method [6]

X
(R,G,B)
i = DWT−1{DWT (I

(R,G,B)
i )− F [DWT (I

(R,G,B)
i )]}, (3.4)

where DWT is discrete wavelet transform and F indicates the Michat filter [40].

The obtained XR
i , XG

i and XB
i are then combined into a grayscale SPN Xi by

applying the common RGB-to-gray conversion, such as

Xi = 0.299XR
i + 0.587XG

i + 0.114XB
i . (3.5)

2. Segmentation. In this step, we first divide each full-sized image Ii and SPN

Xi into M non-overlapping image blocks {Ib
ij}Mj=1 and SPN blocks {Xb

ij}Mj=1 in

the same manner. Thus, each image block Ib
ij is associated with its SPN block

Xb
ij , where j is their location label. The size of each image block and SPN block

is S.

3. SPN quality evaluation and ranking. We evaluate the SPN quality score
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Qij for each image block Ib
ij by using the Eq. (3.1). Then the obtained quality

score Qij is assigned to the corresponding SPN block Xb
ij . For each location

j, the SPN blocks {Xb
ij}Ni=1 from N images are sorted in the descending order

according to their quality score Qij . By doing so, the SPN block with a higher

quality score would have a higher ranking value (with 1 as the highest).

4. SPN composition. The SPN blocks from different locations with the same

ranking value are combined to form a composite SPN. By repeating this process

N times, N composite SPNs {X̂i}Ni=1 can be generated, each with the ranking

value i. By doing so, we would generate not only the composite SPNs containing

clean SPN blocks, but also the composite SPNs which are full of scene details

(e.g., the composite SPNs with lower ranking value). These low-quality SPNs are

also taken into account for the reference SPN estimation because they can still

contribute on suppressing random noise, especially when the number of available

reference images is inadequate.

5. Weighting. Instead of treating all SPNs equally, we assign higher weight to

the composite SPN with higher ranking value. The weighting factor ωi for the

composite SPN X̂i is calculated as follows

ωi =
2(N + 1− i)
N(N + 1)

, i ∈ [1, N ]. (3.6)

Finally, the reference SPN R is estimated as

R =

N∑
i

ωiX̂i, i ∈ [1, N ]. (3.7)
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It is worth noting that different settings of block size S might affect the estimation

of the reference SPN R. Intuitively, applying a smaller S is more likely to achieve a

more accurate estimation. The reason is that the quality score Q depicts the average

SPN quality of an image block, thus Q would reflect the SPN quality of an image

block more accurately when the block size becomes smaller. However, when the

block size is too small, the computational cost would be exorbitant. More details

about the settings of S would be discussed in Section 3.3.2.

3.3 Experiments and Discussion

3.3.1 Experimental Setup

In this work, 16 cameras from the Dresden Image database [76] were chosen and

used in our experiments. A total of 2400 images from 16 cameras are involved in this

experiment, each camera is responsible for 150 image. These 16 cameras belong to 4

camera models and each camera model has 3 or 5 devices. The information of these

cameras are listed in Table 3.1. All images are natural pictures with strong scene

details, which were taken under a wide variety of natural indoor and outdoor scenery.

For each camera, we randomly separate 150 images into two sub-image datasets,

namely the reference dataset and test dataset, with 30 and 120 images, respectively.

The images in the reference dataset are used for reference SPN estimation while

images in the test dataset are used as test samples. To avoid the vignetting effects

[77], all the experiments are performed on the image blocks of three fixed sizes

cropped from the center of the full size images, which are 128× 128, 256× 256 and

512× 512 pixels respectively. We extract noise residuals from three colour (i.e., red,
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Table 3.1: 16 Cameras involved in our experiments.

Cameras Resolution Cameras Resolution

Canon Ixus70 A 3072× 2304 Samsung L74wide A 3072× 2304

Canon Ixus70 B 3072× 2304 Samsung L74wide B 3072× 2304

Canon Ixus70 C 3072× 2304 Samsung L74wide C 3072× 2304

Nikon CoolPixS710 A 4352× 3264 Olympus mju 1050SW A 4352× 3264

Nikon CoolPixS710 B 4352× 3264 Olympus mju 1050SW B 4352× 3264

Nikon CoolPixS710 C 4352× 3264 Olympus mju 1050SW C 4352× 3264

Nikon CoolPixS710 D 4352× 3264 Olympus mju 1050SW D 4352× 3264

Nikon CoolPixS710 E 4352× 3264 Olympus mju 1050SW E 4352× 3264

green and blue) channels and combine them by using Eq. (3.5).

3.3.2 Parameter Settings and Discussion

The proposed method has only one parameter that need to be set, namely, the

size of image and SPN block S. As mentioned in Section 3.2.2, different settings

of S might affect the estimation of reference SPN. On the one hand, applying a

smaller size would make the SPN estimator more adaptive to scene textures so

that it might improve the accuracy of reference SPN estimation. On the other

hand, when a small block size (e.g., 16 × 16 pixels) is applied, the computational

complexity of the proposed method can be prohibitive. Intuitively, there is a trade-

off between accuracy and efficiency. In order to find a proper setting of S, the

proposed method is tested on three different SPN blocks sizes (i.e., S = 16 × 16,

32 × 32 and 64 × 64 pixels). From Table. 3.2, we can see that the TPR of the

proposed method performed on the small image block (i.e., S = 16 × 16 pixels) is

just slightly larger than that on the large image blocks. It indicates the performance

of the proposed method is not very sensitive to different settings of S. Considering
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Table 3.2: The TPR (with the FPR fixed at 10−3) of different methods with respect
to different settings of S.

Method
The size of image/SPN block (pixels)

16× 16 32× 32 64× 64

Basic+Proposed 0.346 0.333 0.327

BM3D+Proposed 0.425 0.413 0.405

the fact that using a small block size would cause more computational cost, therefore

we recommend setting S = 64 × 64 pixels as it is 2 and 4 times faster than using

S = 32× 32 and S = 16× 16 pixels.

3.3.3 Performance Evaluation

In this work, the overall ROC curve [13] is used to present the performance of the

proposed method. In order to validate the feasibility of the proposed method, we

compare it with the traditional averaging method in conjunction with two different

SPN extraction methods, i.e., Basic [6] and BM3D [8]. In this work, we consider

the situation that the number of reference images per camera is inadequate (i.e.

N < 50), which is a case most current works do not take into account. Therefore,

we estimate the reference SPN for each camera by only using N = 15 and N = 30

images from the reference dataset. For each camera, the SPNs extracted from the

120 testing images of this camera are used as the positive samples and the SPNs

obtained from the rest 1800 testing images of the other 15 cameras are deemed as

the negative samples. Therefore, we would have 120 × 16 positive and 1800 × 16

negative samples from all the 16 cameras in total. To get convincing results, all these

positive and negative samples are used together to draw the overall ROC curve.
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Figure 3.4: The overall ROC curves of difference methods with 15 reference images
based on images with size of 256× 256 pixels.
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Figure 3.5: The overall ROC curves of difference methods with 30 reference images
based on images with size of 256× 256 pixels.
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Figure 3.6: The overall ROC curves of difference methods with 15 reference images
based on images with size of 512× 512 pixels.
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Figure 3.7: The overall ROC curves of difference methods with 30 reference images
based on images with size of 512× 512 pixels.
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The overall ROC performance of different methods with respect to different

image sizes and different numbers of reference images are shown in Fig. 3.4 - Fig.

3.7. In this experiment, Basic/BM3D+Proposed indicates that SPNs are extracted

by using Basic/BM3D, and reference SPN is estimated by using the proposed SPN

estimator; and Basic/BM3D+Averaging means that reference SPN is estimated

by the traditional averaging method. In the real-world applications, a low false

positive rate is usually required so as to ensure a low probability of wrong accusation.

Therefore, in order to show the details of the ROC curves with a low FPR, the

horizontal axis of all the overall ROC curves are plotted in the logarithmic scale.

As shown in Fig. 3.4 - Fig. 3.7, the proposed method (red curves) outperforms

the traditional averaging method regardless of the image size, the SPN extraction

method and the number of reference images. It indicates that the proposed method

is more reliable than the traditional averaging method on estimating reference SPN

from a noisy image. Moreover, by comparing Fig. 3.6 with Fig. 3.7, we can

see that the proposed method is more superior to the averaging method when the

number of reference images is small (i.e., N = 15). These observations suggest

that the proposed method can bring additional performance gains to a verification

system when reference images are contaminated by scene details and the number

of reference images is limited. It is worth mentioning that the BM3D method

consistently outperforms the Basic method on the overall ROC performance. As

mentioned in Section 2.2.1, this is because the BM3D method is superior to the

Basic method on suppressing the impact of scene details.

Table 3.3 shows the TPR of different methods at a low FPR of 10−3. Sim-

ilar to the observation in the overall ROC curve analysis, the proposed method
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Table 3.3: The TPR (with the FPR fixed at 10−3) of different methods with respect
to different number of reference images on different image sizes.

Method
256× 256 512× 512

15 30 15 30

Basic+Averaging 0.165 0.244 0.337 0.401

Basic+Proposed 0.234 0.329 0.416 0.439

BM3D+Averaging 0.276 0.348 0.442 0.498

BM3D+Proposed 0.319 0.405 0.555 0.549

consistently achieves higher TPR than the averaging method under all conditions.

Moreover, we can see that when the number of reference images decreases from 30

to 15, the TPR of proposed method drops more slowly than the averaging method

especially on the large image size (i.e., 512 × 512 pixels). For example, on the

512 × 512 pixels images, the TPR of Basic+Averaging degrades by 15.96% (from

0.401 at N = 30 to 0.337 at N = 15), while the TPR of Basic+Proposed only drops

by 5.23% (from 0.439 at N = 30 to 0.416 at N = 15). More specifically, for B-

M3D+Proposed on the 512× 512 pixels images, the TPR at N = 15 is even slightly

larger than that at N = 15. It implies that the proposed method is more reliable

than the traditional averaging method when the number of the available reference

images is limited.

3.4 Conclusion

In this chapter, we introduced a measurement based on the local image entropy and

luminance to evaluate the SPN quality of different image blocks for the reference

SPN estimation. Based on this measurement, a novel reference SPN estimator is

proposed to improve the performance of source camera verification. By weighting
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the SPN blocks according to their corresponding quality, the proposed estimator

can estimate a more reliable reference SPN from the limited number of images with

scene details. Experimental results show that our method achieves better results

than the traditional averaging method, especially when there are only few reference

images (N = 15) available. These results suggest that the proposed reference SP-

N estimation method is more practical for solving the problem of source camera

verification with the reference images contaminated by scene details.
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Chapter 4

A Compact Representation of

Sensor Pattern Noise

4.1 Problem Statement

In literature, many efforts have been devoted in the SPN-based SCI system, which

allows the current SCI system almost achieve a perfect identification accuracy. How-

ever, the SPN-based SCI system presents its unique set of issues, which relate to the

high dimensionality of SPN. The dimensionality of SPN is as great as that of the

original image. As a result, not only each SPN needs a fairly large amount of space

for storage, but memory access would also take considerable amount of time. More-

over, SPN matching involves vector operations and the complexity is proportional

to the size of SPN. Thus with a large number of reference SPNs in the database to

be matched, the complexity of the matching step would become a critical concern.

In order to address the high complexity issue, many efforts have been made in

recent years. The methods in literature can be roughly divided into two categories.
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The methods of the first category attempt to reduce the number of correlations so

that there is a smaller number of multiplications to be done. In [62, 63], Bayram

et al. proposed to organize a database of reference SPNs into a binary search tree.

Each internal node in a binary tree is represented by an SPN composited from all

the SPNs at the leaf nodes in the subtree beneath it. By applying this method, the

total number of correlations to be calculated is significantly reduced.

The approaches of the second category aim to lower the computational com-

plexity by compressing SPN. In [64–66], the authors introduced a fingerprint digest

as a possible solution. This fingerprint digest is primarily formed by keeping only the

k elements of the fingerprint with the highest energy values. This results in N2/k

times reduction in terms of computation time. In [69], Bayram et al. proposed to

represent an SPN by binarizing the values of each pixel. Valsesia et al. in [70, 71]

proposed to compress the sensor fingerprint via a random projection.

However, while these compression methods can bring significant computation

reduction, they also undesirably decrease the identification accuracy. In the light of

this limitation, in this chapter, we aim to improve the computational efficiency of

SCI without degrading the identification accuracy. We employ the concept of PCA

denoising [26–28, 31] in the task of SCI. An effective feature extraction algorithm

based on this concept is proposed to extract a small set of components from the

original noise residual, which tends to carry most of the information of the true

SPN signal. While this algorithm is based on the assumption that the training set

is well representative of the population so that an effective feature extractor can be

learned. Unfortunately, the noise residuals in the training set can be contaminated

by many sources of interference, making the training set less representative. To
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learn a robust feature extractor from the noisy training data, in this work we further

propose a training set construction procedure and provide its theoretical basis. We

also give more details and discussion of the feature extractors, and treat it as a

general post-processing framework on other SPN methods. It is evaluated in term

of effectiveness and efficiency on a much larger dataset. We also test this framework

on some challenging cases, e.g., all the reference SPN are extracted from images

with significant scene details (a form of distortion to the SPN), which are scenarios

barely considered by previous works.

The rest of this chapter is organized as follows. In Section 4.2, we present

the proposed training dataset construction procedure and the feature extraction

method in details. Then, the proposed source camera identification method is sum-

marized. Extensive experimental evaluations are provided in Section 4.3. Section

4.4 concludes.

4.2 PCA-based Feature Extraction Algorithm

Generally speaking, the high-dimensional data would not only incur a costly com-

putation but also tend to contain more redundancy and interfering components. For

simplicity, we write Eq. (2.2) as the sum of the true SPN term and unwanted noises,

given by

X = X(0) + Ξ, (4.1)

where X(0) is the SPN term, Ξ is an additive mixture of the unwanted interfer-

ences, which may include image scene details noises (referred to as contaminated

images), and the artifacts introduced by color interpolation, JPEG compression,

67



camera processing operations [7], etc. The former can be image-scene-specific, while

the latter can be shared among cameras of the same model or sensor design, so they

are non-unique, less discriminant and redundant. To improve the performance of

SCI systems, one intuitive way is to suppress these artifacts Ξ.

PCA [78] is a well-known unsupervised learning method, which minimizes

the reconstruction error using a linear transformation, can be used to learn compact

representation. This method has been widely used for the purposes of denoising

[26, 28], dimensionality reduction [79], feature extraction [80], etc. Compared with

the data-independent dimensionality reduction method random projection, PCA

projection matrix has to be learned based on a training data, and it generally has

higher performance in classification tasks [81]. In this work, we attempt to find a

PCA transformed domain where the true SPN signal is well represented. Ideally, by

projecting the extracted noise residuals into this domain, a small set of coefficients

that contain most of the representative information of the true SPN signal can be

extracted.

4.2.1 Training Set Construction

In order to identify such a transformed domain, a representative training set needs

to be established in advance. PCA is to find an optimal transformed domain that

better represent the primary signal shared among the training samples. So if SPN

appears as the most representative signal among the training samples, it would be

better represented in the obtained domain. However, some contamination (e.g.,

scene details) can be more dominant than SPN in the noise residual (as shown

in Fig. 4.1(b)). Without removing these strong contamination from the training

68



set, the obtained domain is more likely to represent these noisy components rather

than the true SPN. To avoid this situation, we propose the following strategies to

minimize the impact of unwanted noises in the training set:

1. Training sample selection. To build the training set, if we have the access

to the cameras in database, we give the priority to the noise residuals extract-

ed from flatfield images (e.g., blue sky). Such images are more similar to the

evenly lit scene and contain less scene details so that these images can better

exhibit the changes caused by SPN. In many real-world scenarios, the cameras

in question may not be in the investigator’s possession, making it impossible for

the investigator to use the cameras to take flat-field images. Instead only some

images with varying scene details taken by those camera are available (e.g., from

someone’s Facebook account). In this case, our strategy is to suppress the impact

of scene details by averaging. Considering the fact that scene details presented in

different images are normally different, we can generate a more smoother sample

by averaging several noise residuals of the images taken by the same camera.

By repeating this process several times, we can finally generate a set of training

samples, which are more representative.

We also model the afore-mentioned contamination-removal process based on Eq.

(4.1). In this context θ represents the scene details noises, while X̂ is the sum

of SPN and some non-unique artifacts (e.g., CFA pattern and JPEG blocky

artifacts), which will not suppressed by in this stage. Given that, for a camera

with N reference images, each pixel’s mean and variance in the reference SPN

can be expressed as µX = X̂ + 1
N

∑N
i θi, and σ2X = E[(θi − 1

N

∑N
j θj)

2], i =

1, 2, ..., N, respectively. For a camera if we average the SPNs of a random subset
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of T out of the N reference images for L times, then according to Eq. (4.1) we

will have

X′l = X̂ +
1

T

T∑
t

θlt, l = 1, 2, ..., L. (4.2)

The new mean and variance for each pixel can be expressed as follows

µX′ = X̂ +
1

LT

L∑
l

T∑
t

θlt, (4.3)

σ2X′ =
1

L

L∑
l

(
1

T

T∑
t

θlt −
1

LT

L∑
l

T∑
t

θlt)
2. (4.4)

In Eq. (4.4), the term 1
LT

∑L
l

∑T
t θlt can be approximated as the mean of the

scene details θ̄ = 1
N

∑N
i θi when the product of T and L is large. For simplicity,

in this work we set L = N to generate as many samples as the original data. In

this case, if we set T → N , the term 1
T

∑T
t θlt of Eq. (4.4) also converges to the

mean of the scene details θ̄ = 1
N

∑N
i θi, which makes σ2X′ → 0, hence suppressing

the interference of scene details.

2. Training sample enhancement. Besides scene details, some non-unique arti-

facts such as CFA pattern and JPEG blockiness may also lead to an inaccurate

training. Since these artifacts in the images taken by the cameras of same model

or brand are similar (with small variance), they would survive from the averaging

operation. Nevertheless, as shown in [54], these artifacts cause peaks in the DFT

magnitude spectrum, while the SPN signal appears as a flat spectrum without

salient peaks. Therefore, by suppressing the peaks present in the DFT spectrum,

these artifacts can be effectively suppressed and the quality of the true SPN in

noise residual can be thereby enhanced.
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Assume there are n reference images {{Iij}Ni=1}cj=1 taken by c cameras {Cj}cj=1,

each responsible for N images such that n = cN . According to the two strategies

above, we summarize the proposed training set construction as follows:

1) Extract 2D noise residuals {{Xij}Ni=1}cj=1 from the W×W center blocks cropped

from these n reference images.

2) For each camera Cj , randomly select T images of noise residuals from {Xij}Ni=1

for averaging.

3) Detect and suppress the peaks of the averaged noise residual in the DFT mag-

nitude specturm via SEA [54]. Then concatenate the 2D output into a column

vector as a training sample xij . Note that we use Xij to represent 2D noise

residuals and xij to represent their 1-d version.

4) Repeat the process in Step 2 and 3 L times for each camera to form the training

set {{xij}Li=1}cj=1 ∈ Rm, where m = W×W .

In Step 2, we randomly select T images from each camera for averaging. As discussed

above, it is preferable to set T to a larger value so as to better attenuate the

impact of scene details and random noise. However, since the CFA pattern and

JPEG blockiness are shared among the images taken by the camera, the averaging

operation would also inevitably enhance these two artifacts in each training sample.

However, the peaks caused by these artifacts are consequentially more distinct in the

DFT spectrum and they can be more easily and accurately detected. Given that,

setting T to a large value would also help SEA to achieve a more accurate peak

detection in Step 3, which may consequently increase the effect of enhancement.
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More details about how the setting of T affects performance is discussed in Section

4.3.2.

4.2.2 Feature Extraction in the PCA Domain

PCA is performed to seek a set of orthonormal eigenvectors {vk}mk=1 and their

associated eigenvalues {λk}mk=1 of the covariance matrix S given by

S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T = AAT , (4.5)

where A = 1√
n

[x1 − x̄, . . . ,xn − x̄] ∈ Rm×n and x̄ is the global mean estimated

by x̄ = 1
n

n∑
i=1

xi. The eigenvectors vk and eigenvalues λk are obtained by solving

the eigenvalue decomposition Svk = λkvk, in which k = 1, ...,m. Noting that the

dimensionality of SPN vector can be extremely high (e.g., m > 107). Therefore,

directly decomposing S ∈ Rm×m would incur a prohibitively computational cost

(with a complexity O(m3)). To make PCA feasible for the high-dimensional SPN,

we apply a fast method instead of computing these eigenvectors when m� n.

Assume vk
′ is the unit eigenvector of ATA ∈ Rn×n with eigenvalue λ′k, and

then we can obtain ATAvk
′ = λk

′vk
′. Multiplying both sides by A, we have

AAT (Avk
′) = λk

′(Avk
′), (4.6)

where Avk
′ are the eigenvectors of AAT = S with eigenvalues λk

′. Thus, instead of

decomposing matrix S directly, we can calculate the eigenvectors vk
′ by decomposing

a smaller matrix ATA ∈ Rn×n. Then the objective vk can be obtained via vk =

Avk
′. As long as n < m, computing eigenvectors via this way would be more

efficient than the traditional one. The obtained {vk}nk=1 are normalized and sorted
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in the descending order according to their associated eigenvalues λ1 > λ2 > ...λn.

Then a transformed domain can be built as Mpca = [v1, ...,vn] ∈ Rm×n. After that,

we can apply Mpca to noise residual x (defined in Eq. (5)) through

y = MT
pcax = MT

pca(x(0) + Ξ)

= MT
pcax

(0) + MT
pcaΞ = y(0) + Ξy, (4.7)

where y(0) and Ξy are the transformed versions of the SPN term and the noise term,

respectively. Now the problem is recast as estimating y(0) from the noisy y. Gen-

erally speaking, in a PCA transformed vector (i.e., y), most energy of the primary

signal among the training set would concentrate on the first several elements of y,

while the energy of noise would be distributed in y much more evenly. Therefore,

only retaining the first several elements of y while discarding the rest would preserve

the energy of the signal of interest and suppress the energy of noises. Following this

concept, the eigenvectors with the d largest eigenvalues are selected to form a feature

extractor Md
pca = [v1, ...,vd] ∈ Rm×d, with d satisfying

d = min{d′ |
∑d′

i=1
λi/
∑n

i=1
λi > 98%}. (4.8)

Based on this feature extractor Md
pca, we can obtain a new feature with much lower

dimensionality by

yd = (Md
pca)Tx = (Md

pca)Tx(0) + (Md
pca)TΞ

= y(0)d + Ξd
y, (4.9)

where yd is the dimensionality reduced version of y. According to the feature
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(a) (b) (c)

Figure 4.1: (a) An image taken by Olympus mju 1050SW. (b) The noise residual
extracted from (a) using the Basic method. (c) The reconstructed version of (b)
via the proposed method. Note the intensity of (b) and (c) has been down scaled 5
times and up scaled 2 times, respectively, for visualization purpose.

vector yd and feature extractor Md
pca, we can easily obtain a reconstructed SPN in

the spatial domain via the inverse PCA transform as follow

x′ = (Md
pca)yd, (4.10)

where x′ is an approximation of the original x. If our assumption is correct, noise

Ξy should be suppressed by the PCA-based feature extraction. As a consequence

the reconstructed x′ should contain less noises and have a higher signal-to-noise

ratio (SNR) than the original noise residual x.

To validate this point, we demonstrate the behaviour of our feature extrac-

tor with a simple example. As shown in Fig. 4.1(b), the image content appearing

in Fig. 4.1(a) propagates through the Wiener filter into the noise residual. While

after performing the proposed feature extraction and inverting the PCA transform,

the artifacts caused by scene details have been significantly suppressed in the recon-

structed SPN, which can be clearly seen in Fig. 4.1 (c). Then, we calculate the SNR

of the signal of interest (i.e., the true SPN) respectively to the contamination left

in the noise residual (Fig. 4.1(b)) and the contamination in the reconstructed SPN
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(Fig. 4.1(c)). First, the true SPN x(0) is estimated by averaging 50 noise residuals

extracted from blue sky images. According to Eq. (5), the noises Ξ in the noise

residual Ξ in the noise residual and the reconstructed SPN can be approximately

estimated by subtracting the true SPN x̂ from the observed data. Then, the SNR

can be calculated according to 10 log10
var(x(0))
var(Ξ) . As expected, the reconstructed SP-

N has a much higher average SNR (4.3 dB) than the original noise residual (-15.5

dB), which further validates our assumption.

4.2.3 Enhanced Feature Extraction in the LDA domain

In the task of SCI, the class label of the images in database are usually known.

By taking advantage of this label information, we can further extract a more dis-

criminant feature by using a supervised learning method, i.e., linear discriminant

analysis [82, 83]. The purpose of LDA in this work is to build an enhanced fea-

ture extractor Mlda, which would better separate different classes. This optimal

feature extractor can be obtained by maximizing the ratio of the determinant of

the between-class scatter matrix Sb to the determinant of the within-class scatter

matrix Sw

Mlda = arg max
J

∣∣∣∣ JTSbJ

JTSwJ

∣∣∣∣ , (4.11)

where the within-class scatter matrix Sw is defined as Sw =
∑c

j=1

∑L
i=1(yi − µj)(yi − µj)

T .

yi is the i-th sample of class j, µj is the mean of class j, c is number of classes, and

L is the number of samples in each class. The between-class scatter matrix Sb is

defined as Sb=
1
c

∑c
j=1 (µj − µ)(µj − µ)T where µ represents the mean of all classes.
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Algorithm 4.1. PCA-based Source Camera Identification

Symbols:
m: The dimensionality of the normal-sized SPN;
L: The number of training samples per camera;
c: The number of cameras;
n: The number of total training samples (n = L× c).

1. Perform the training set construction procedure (refer to Section 4.2.1) to gen-
erate a set of training samples {{xij}Li=1}cj=1 ∈ Rm.

2. If m � n (in most cases), use the fast method mentioned in Section 4.2.2 to
estimate the eigenvectors {vk}nk=1 and the eigenvalues {λk}nk=1.

3. Preserve the eigenvectors with the first d largest eigenvalues while discarding
the rest to build the feature extractor Md

pca = [v1, ...,vd] ∈ Rm×d.

4. Extract PCA-SPNs from all the training samples {{xij}Li=1}cj=1 and the query

noise residual xq as: yd
ij = (Md

pca)Txij , yd
q = (Md

pca)Txq.

5. Estimate the reference PCA-SPN for camera Cj by: yd
Cj

= 1
L

∑L
i=1 yd

ij .

6. Calculate the NCC value ρ(yd
q ,y

d
Cj

) between query yd
q and each reference yd

Cj

using Eq. (2.14).

7. Accept H0 if ρ(yd
q ,y

d
Cj

) < τy, otherwise accept H1.

With the feature extractor Mlda, a (c− 1)-dimensional vector z can be obtained

z = MT
lday

d = MT
lda(Md

pca)Tx, (4.12)

where z is another compact version of the noise residual x.

4.2.4 Source camera identification using the Proposed Method

The camera identification process using the proposed compact features are summa-

rized in the following Algorithm 4.1 and 4.2. We call the feature vector yd and z

produced by Algorithm 4.1 and 4.2 as “PCA-SPN” and “LDA-SPN” respectively
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Algorithm 4.2. LDA-based Source Camera Identification

1.-4. Same as the Step 1-4 of Algorithm 1.

5. Use the PCA-SPNs {{yd
ij}Li=1}cj=1 as training samples to estimate the transfor-

mation matrix Mlda using Eq. (12).

6. Extract LDA-SPNs from all the training samples {{yd
ij}Li=1}cj=1 and the query

yd
q as: zij = MT

lday
d
ij , zq = MT

lday
d
q .

7. Calculate the NCC value ρ(zq, zCj ) between query zq and each reference zCj

using Eq. (2.14).

8. Accept H0 if ρ(zq, zCj ) < τz, otherwise accept H1.

in the rest of this chapter. As mentioned earlier, the complexity of calculating cor-

relation is proportional to the dimensionality of the features. Considering that the

size of PCA-SPN yd ∈ Rd and LDA-SPN z ∈ Rc−1 are both much lower than the

original noise residual x ∈ Rm, using either yd or z as the replacement of the original

x would lead to an improvement of roughly m/d or m/(c−1) times gain in speed in

the matching phase. In addition, given a required false positive rate, the detection

thresholds τy and τz for the PCA-SPN yd and LDA-SPN z can be determined by

using the Neymann-Pearson criterion approach [58], respectively.

4.3 Experiments

In this section, we carry out experiments on the Dresden image database [76] to

validate the feasibility of the proposed methods. First we evaluate and discuss some

main parameters, which play key roles in the proposed method. Significant perform

gain is achieved by using the proposed training construction process, which can sup-

press the unwanted noises. After that we plot the histogram of intra-class and inter-

77



class correlations to demonstrate the effectiveness of PCA/LDA features. Based

on several popular SPN algorithms, we also use our method as a post-processing

framework, and the experimental results demonstrate substantial performance gain

in terms of overall ROC curve. We also consider some real-world scenarios with lim-

ited training data, and find that we may take advantage of the contaminated images

as training data when there are limited number of flatfield reference images. Finally,

the performance in terms of computational efficiency of the proposed methods are

also reported.

4.3.1 Experimental Setup

In this work, images taken by 36 cameras from Dresden image database are chosen

and used. As listed in Table 4.1, we can see these 36 cameras are from 15 different

models and each model may have 1 to 5 devices. A total of 7200 images from

these 36 cameras are involved in our experiments. Each camera has 200 images,

including 150 images with varying scene details (i.e., contaminated images) and 50

flatfield images. In our experiments, we consider two scenarios with different types

of reference images (i.e., flatfield/contaminated reference), as shown in Table 4.2.

All the images used in this work are in 512× 512 pixels, and unless state otherwise,

we use image blocks cropped from the center of the full size images so as to the

avoid the vignetting effect [77]. For each image block, we extract noise residuals

from three color channels (i.e., red, green and blue channel) and combine them by

using the following linear combination to form a grayscale version, such as

x = 0.299xR + 0.587xG + 0.114xB, (4.13)
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Table 4.1: 36 Cameras involved in our experiments

Camera Models Num of devices Resolution

Canon Ixus55 1 2592× 1944

Canon Ixus70 3 3072× 2304

Olympus mju 1050SW 5 3648× 2736

Pentax OptioA40 4 4000× 3000

Pentax OptioW60 1 3648× 2736

Praktica DCZ5.9 5 2560× 1920

Rollei RCP 7325XS 3 3072× 2304

Samsung L74wide 3 3072× 2304

Samsung NV15 3 3648× 2736

Sony DSC H50 2 3456× 2592

Sony DSC T77 4 3648× 2736

Sony DSC W170 2 3648× 2736

Table 4.2: The setup of two SCI scenarios

Scenario
Reference Images per

Camera
Query Images per

Camera

1 50 flatfield images 100 contaminated images

2 50 contaminated images 100 contaminated images

where xR, xG and xB are the noise residuals extracted from red, green and blue

channel respectively.

In our experiments, the noise residuals extracted by the methods in [6] (Ba-

sic), [44] (BM3D), [9] (MLE) and [11] (PCAI8) are served as the original features.

SEA [54] is applied to enhance the reference SPNs for the original SPN and the train-

ing samples for PCA-SPN and LDA-SPN. The existing SPN compression method

(SPN digest [66]) is performed for the algorithm comparison with the proposed

methods. NCC defined in Eq. (2.14) is used to measure the similarity in the SCI

tasks.
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Figure 4.2: The TPR (with the FPR fixed at 10−3) of the PCA-SPN obtained from
BM3D w.r.t. different setting of parameter T and different reference types.

4.3.2 Parameter Settings and Discussion

In this work, one of the most important parameter is the number of noise residuals

used to estimate a training sample T (also referred to as the random subset size).

As discussed in Section 4.2.1, we set T to a relatively large number (i.e., T → N ,

and N = 50) so as to better attenuate the impact of scene details and random

noises. Fig. 4.2 depicts the sensitivity of performance (i.e., True Positive Rate TPR

at the False Positive Rate FPR 10−3) w.r.t. T in the two SCI scenarios described

in Table 4.2. We can see that generally the performance (based on PCA-SPN from

BM3D features) is not very sensitive when T is at the range [20, 48], and it improves

with an increasing value of T , reaching the peaks when T = 48 for both scenarios,

i.e., when with flatfield/contaminated reference. It is worth noting the result with

T = 1 is the case without training set construction, and the corresponding large

performance margin (e.g., when compared with T = 48) indicates the effectiveness
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Table 4.3: The dimensionality d of PCA-SPNs obtained from different SPN methods
w.r.t. different setting of T and different reference types.

Method
Flatfield Contaminated

T = 20 T = 48 T = 20 T = 48

Basic 1042 609 1159 867

MLE 1013 605 1138 863

BM3D 1029 598 1148 848

PCAI8 1066 663 1148 860

of our proposed training construction process, especially for contaminated reference.

It is also interesting to see the TPR drops dramatically when T >= 49, since when

T → N (N = 50), all the obtained training samples from the same camera become

similar. Especially, when T = N all the training samples from the same camera

would become exactly the same. In this case, we literally have only one training

sample per camera, and the training set is not large enough to learn the effective

feature representation [84], which is also experimental validated in Section 4.3.5.

For the best effect of unwanted noises suppression, we set T to 48 throughout the

rest of this chapter.

It is also very interesting to discuss d, the dimensionality of PCA-SPN in dif-

ferent cases, which is determined by the variance PCA aims to preserve (i.e., 98% in

this work). Clearly, we prefer d to be as small as possible compatible with accurate

identification. From the experiments, we found that d is determined by three factors,

which are the percentage of the total variance retained in Eq. (4.8), the dimension-

ality of original SPN m, and the quality of the training set. As described in Eq.

(4.8), we keep the top d eigenvectors corresponding to the 98% of the total variance.

Table 4.3 shows the dimensionality d of the PCA-SPNs obtained from different SPN
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extraction methods with respect to different setting of T (i.e., T = 20 and T = 48),

for two types of reference images. In both scenarios (flatfield/contaminated training

set), we can see that the dimensionality d of PCA-SPNs decrease when T is larger.

One reason is that, with a larger T , according to Eq.(4.4) we can see the quality

of the training set tend to be better (i.e., lower σ2X′), thus the energy of the true

SPN signal is more clustered in the transformed domain. As a result, the feature

extractor require less leading eigenvectors to cover the 98% of the total energy so

that the extracted PCA-SPN consequently has a lower dimensionality. Therefore, a

training set with better quality would lead to more compact PCA-SPN. Similarly,

flatfield reference (with better training sample quality) also tends to have a much

compacter representation than the contaminated counterpart, as shown in Table

4.3.

4.3.3 Distributions of Intra-class and Inter-class Correlations

We evaluate the effectiveness of different features in terms of inter/intra-class cor-

relations, which are histograms measuring the similarities of the match/non-match

SPN pairs. A clear separation between intra-class and inter-class distributions indi-

cates a feature with the high discriminant ability. Experiments are conducted using

three different features (i.e., original SPN, PCA-SPN, and LDA-SPN) in the two

SCI scenarios (with flatfield/contaminated reference as listed in Table 4.2). Results

are reported in Fig. 4.3, from which we can see the means of intra-class correla-

tions are significantly increased by using PCA-SPN and LDA-SPN, when compared

with the results based on original SPN. Specifically, for the two SCI scenarios, the

application of PCA increases intra-class correlation mean from 0.046 to 0.564 for

82



-0.02 0 0.02 0.04 0.06 0.08 ρ

0

100

200

300

400

500

600

Count

Inter-class
Intra-class

-0.2 -0 0.2 0.4 0.6 0.8 ρ

0

100

200

300

400

500

600

Count

-0.2 -0 0.2 0.4 0.6 0.8 ρ

0

100

200

300

400

500

600

Count

-0.02 0 0.02 0.04 0.06 0.08 ρ

0

100

200

300

400

500

600

Count

-0.2 -0 0.2 0.4 0.6 0.8 ρ

0

100

200

300

400

500

600

Count

-0.2 -0 0.2 0.4 0.6 0.8 ρ

0

100

200

300

400

500

600

Count

Figure 4.3: Distributions of the inter/intra-class correlations w.r.t. different fea-
tures (i.e., original SPN, PCA-SPN and LDA-SPN from left to right) and different
reference types (1st row: flatfield reference and 2nd row: contaminated reference).

the flatfield reference while from 0.033 to 0.412 when only given the contaminated

images as reference. The means of intra-class correlations can be further boosted

by LDA-based features owing to its supervised-learning nature, to 0.883 and 0.838,

respectively in the two aforementioned scenarios.

The increase of the intra-class correlation means shifts the intra-class distri-

bution rightwards, which contributes positively to a clearer separation between the

intra/inter-class similarity distributions. However, the variance of the inter-class

correlation is also improved when applying PCA-SPN and LDA-SPN. For example,

for the flatfield reference, the inter-class variance for PCA-SPN and LDA-SPN are

7.8× 10−4 and 6.8× 10−3, much larger than that of the original feature, 5.4× 10−6.

However, they are trivial when compared to the displacements of the means of

the intra-class correlation (i.e., 0.564 − 0.046 = 0.518 and 0.883 − 0.046 = 0.837)

away from the inter-class means, suggesting the benefits of applying PCA-SPN and

LDA-SPN on the SCI tasks. This is clearly reconfirmed by in Fig. 4.3, where the
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overlapping area between intra-class and inter-class distributions of PCA-SPN and

LDA-SPN are much smaller, making the two distributions more separated (espe-

cially with LDA-SPN).

In addition, as shown in the first columns of Fig. 4.3, the resulting intra-class

correlation distribution of the original feature has small peaks in the overlapping

area, which is mainly due to the small negative correlation exhibited among the

matching SPN pairs. This small correlation is probably caused by the strong con-

taminations from scene details in some query images. Nevertheless, as clearly shown

in the figures from the last two columns, this small peak is suppressed in the intra-

class distribution of PCA-SPN and LDA-SPN. As a result, the overlapping area is

decreased substantially. Moreover, since the separation is mainly caused by the right

shifting of the intra-class distribution, which has a major influence on the False Re-

jection Rate (FRR), therefore PCA-SPN and LDA-SPN have particular advantage

in the situations where low FRR is preferred.

4.3.4 Comparison of the Overall ROC Curves

We can use the aforemention methods (training construction and feature extraction)

as a general post-processing procedure for existing methods. For evaluation, here we

report the results in terms of overall ROC curves for four popular SPN algorithms

(i.e., Basic [6], BM3D [44], MLE [9] and PCAI8 [11]) combined with and without the

proposed post-processing method. Moreover, since our method aims to compress the

size of SPN, we also present another SPN compression method, i.e., SPN Digest [66],

for the comparison purpose. The SPN digest is primarily formed by retaining the

top k largest elements from a m-dimensional SPN (k < m). Therefore, the SPN
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Figure 4.4: Overall ROC curves comparisons among different types of features,
i.e., original SPNs, SPN Digests, PCA-SPNs and LDA-SPNs for the contaminated
reference.

digest has a dimensionality of k, which is lower than that size of the normal-sized

SPN. Moreover, the digest of a reference SPN not only contains k large elements

but also the corresponding location information of these elements, which is used to

extract a digest from the same locations of each query SPN. In this experiment, we

set k/m equal to 10% and 20%.

Fig. 4.4 and Fig. 4.5 show the overall ROC performance for all the methods

in the two SCI scenarios described in Table 4.2, i.e., with flatfield/contaminated

reference images. In real-world forensic applications, it is often necessary to ensure

a sufficiently low FPR, and for highlighting purpose we plot the horizontal axis of

the ROC curve in the logarithmic scale. Specifically, the black, green, yellow, red
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Figure 4.5: Overall ROC curves comparisons among different types of features, i.e.,
original SPNs, SPN Digests, PCA-SPNs and LDA-SPNs for the flatfield reference.

and blue curves indicate the performance of original SPNs, SPN Digest-10%, SPN

Digest-20%, PCA-SPNs and LDA-SPNs, respectively. In both SCI scenarios, we

can see SPN Digest has a very close result with the original SPN when 20% of the

top largest elements are retained, but its performance degrades rapidly when this

amount is reduced to 10%. It indicates a trade-off between compression ratio and

identification accuracy for the SPN Digest technique. On the other hand, the LDA-

SPNs (blue lines) constantly achieves the best ROC performance regardless of the

SPN extraction algorithms and the type of reference images, while the PCA-SPNs

(red line) always take the second place. This observation indicates the superiority

of our method over SPN Digest on the ROC performance. Moreover, the dimen-
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Table 4.4: TPR (%) of different features at the FPR of 1 × 10−3 with different
number of flatfield reference images.

Flatfield Contaminated

#Ref. per Class: 50 30 10 50

O
ri

gi
n

a
l Basic 91.8 90.9 85.7 86.9

MLE 89.6 88.7 84.3 79.9

BM3D 94.5 93.7 90.0 92.9

PCAI8 86.2 85.1 81.6 83.1

D
ig

es
t Basic 91.9 91.0 86.1 87.4

MLE 88.7 88.1 83.1 79.5

BM3D 94.6 93.7 89.8 92.1

PCAI8 86.3 84.4 80.8 83.2

P
C

A
-S

P
N Basic 93.5 92.8 89.3 89.9

MLE 93.7 91.7 86.7 83.0

BM3D 95.8 95.1 92.3 94.8

PCAI8 88.9 86.8 83.0 85.2

L
D

A
-S

P
N Basic 94.9 94.3 90.5 92.3

MLE 94.6 93.5 88.3 85.9

BM3D 96.3 95.8 93.0 95.8

PCAI8 91.2 88.8 84.6 89.8

sionality of SPN Digest-20% for 512 × 512 blocks are 52429, which is much higher

than that of PCA-SPN and LDA-SPN (as shown in Table 4.3). Considering both

aspects, we can conclude that both PCA-SPN and LDA-SPN are superior than the

SPN Digest in terms of compression ratio and identification accuracy, and the exper-

imental results suggest that it can be used as a general post-processing framework

for various SPN methods.

4.3.5 Some Observations in Real-World Scenarios

In controlled environment, normally SCI tasks with the flatfield reference would

outperform the contaminated one significantly, as shown in Fig. 4.4 and Fig. 4.5.
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However, in real-world scenarios there may exist the case that only a few flatfield

reference images (e.g., images from the target user’s Facebook account) are avail-

able, or not at all. We evaluate some of these cases and report the TPR (at the

FPR of 1× 10−3) in Table 4.4. We can see the performance degrades rapidly with

the decreasing of the flatfield reference. In some extreme cases (when # flatfiled

= 10), it may be more beneficial to use contaminated images to train the effective

features (e.g., PCA/LDA-SPN) before performing classification. Due to the limi-

tation (only 50 flatfield and 150 contaminated images available per camera) of this

dataset, larger-scale experiments are required to evaluate the effectiveness of the use

of contaminated images as reference (for training), which will be our future work.

4.3.6 Comparison of Computational Complexity

In this section, we evaluate the efficiency of the SCI system, based on the pro-

posed feature extraction framework. This experiment is performed on a simulated

database, which contains 180 cameras derived from the 36 cameras in Table 4.1. To

simulate the reference SPNs of 180 cameras, we assume SPNs extracted from two

different positions are independent. We first estimate the full-sized reference SPN

for each camera in Table 4.1. Then we crop 5 SPN blocks from different locations of

each full-sized reference SPN. We deem the 5 cropped SPN blocks as reference for 5

different cameras, so that eventually we obtain 36×5 reference SPNs in total. Table

4.5 shows the running time of matching 500 query noise residuals to the simulated

180 cameras with respect to different types of features. In this case, the size of the

original SPN, SPN Digest, PCA-SPN and LDA-SPN are m = 262144, k = 52429,

d = 2484 and c− 1 = 179, respectively. This experiment is conducted on the same
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Table 4.5: Computational cost (Seconds) of SPN Digest-20% and different types of
features produced by BM3D.

Features
I/O

Operations
Feature

Extraction
Matching Total

Original SPN 2.01 0 365.58 367.59

SPN Digest 1.28 37.51 49.17 87.96

PCA-SPN 52.91 127.41 5.07 185.39

LDA-SPN 2.00 11.42 3.06 16.48

Table 4.6: The size (MB) of data required to be loaded for SPN Digest-20% and
different types of features produced by BM3D.

Features
Data Size

Feature Extractor References vectors

Original SPN 0 MB 344.61 MB

SPN Digest 68.91 MB 68.91 MB

PCA-SPN 2062.03 MB 1.23 MB

LDA-SPN 342.61 MB 0.24 MB

PC with an Intel Core i5 3.20GHz processor and 16G RAM. To quantify the effi-

ciency of an identification system, three factors are considered in this experiment.

The first factor is “I/O operations”, which includes the cost of loading the references

and the feature extractor into memory for processing. The second one is “Feature

Extraction”, indicating the time spend on extracting SPN Digest, PCA-SPNs or

LDA-SPNs from 500 query noise residuals. The third factor is the time cost of

calculating the similarity between the 500 queries and the 180 references, which is

referred to as “Matching”. The overall computational cost is presented as “Total”.

As shown in Table 4.5, PCA-SPN incurs the highest computational cost in

I/O operations. It is because the data needs to be loaded into memory not only

includes the 180 m-dimensional reference vectors but also an m × d-dimensional

89



feature extractor. As shown in Table 4.6, PCA-SPN needs a relatively small space

to store its 180 reference vectors (1.23 MB) but a huge space for the feature extractor

(2062.03 MB). With such a huge amount of data in total, it is not surprising to see

that PCA-SPN has the highest cost in I/O operations. LDA-SPN also need to

load a feature extractor into memory, but its size is only m × (c − 1) so that the

space it occupies is much smaller than that of PCA-SPN, which is 342.61 MB.

Moreover, since the size of LDA-SPN is only c−1, it needs a negligible space for the

180 reference vectors (0.24 MB). Although in this experimental setting, the total

storage requirement of LDA-SPN (342.85 MB) is only slightly lower than that of

the original SPN (344.61 MB), it is obvious that this margin will grow in a linear

manner w.r.t. increasing number of cameras.

SPN Digest has the smallest storage requirement among these 4 types of

features. As mentioned earlier, a digest of a normal-sized SPN consists of not only

the k top largest elements but also the corresponding position information of these

k elements. This location information will be used to extract a digest from each

query SPN so that the location information of each reference digest can be seen as

a feature extractor. Therefore, when using SPN Digest, the data needs to be loaded

includes not only 180 k-dimensional reference digests but also 180 corresponding

k-dimensional feature extractors, which take up a space of 137.82 MB in total. This

observation indicates the superiority of SPN Digest in terms of storage requirement.

As a result, SPN Digest achieves the lowest computational cost in I/O operations.

As mentioned in [64], the process of matching a query feature with all the

references in the database has complexity proportional to the product of the num-

ber of references in the database and the dimensionality of each feature. Since the
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number of references in the database is fixed, LDA-SPN, which has the lowest di-

mensionality, therefore requires the least computational cost in matching process.

PCA-SPN takes the second place, followed by SPN Digest and Original SPN. Al-

though LDA-SPN, PCA-SPN and SPN Digest incur extra computational cost in the

feature extraction process, but with all aspects taken into account we can see that

replacing Original SPN with LDA-SPN, PCA-SPN or SPN Digest can significantly

reduce the overall computational cost. Note that the computational cost of reference

estimation, PCA/LDA training and estimating a digest from a reference SPN are

not counted in this experiment as all of these process can be performed off-line.

4.4 Conclusion

In this chapter, we introduce and evaluate the concept of PCA de-noising in the SCI

task. Based on this concept, an effective framework for de-noising and compressing

the full-sized SPN is proposed. For better effect, we also propose a training set

construction method that minimizes the impact of the interfering artifacts, which

play an important role in learning effective feature extractors that is insensitive

to various unwanted noises. Both theoretical derivations and experimental results

suggest that our methods can be used as a general post-processing framework for

effective and efficient source camera identification. It is worth mentioning that the

proposed framework also achieves very competitive performance on the challenging

tasks when only contaminated reference is available, which is usually the case in

real-world applications.
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Chapter 5

Incrementally Updated Feature

Extraction for Source Camera

Identification

5.1 Motivation

In our previous chapter, a PCA-based feature extraction (PCAFE) method was

proposed to boost the performance of the SPN-based source camera identification

system. However, there is a limitation of this method, that the trained feature

extractor cannot well represent the cameras (classes) that are not involved in training

process. More precisely, to train a feature extractor that can well represent every

camera in a database, it requires all the cameras to be available before the training

process is performed, otherwise the PCAFE based identification system would fail in

identifying the cameras that are not involved in training. Fig. 5.1 shows a difficult
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Figure 5.1: Distribution of the intra-class and inter-class correlation values obtained
from Camera A (covered in training) and B (not covered by training) on image block
with size of 256× 256 pixels.

example which can not be correctly identified by the PCAFE-based system. In this

example, Camera A is involved in training, while Camera B is not. By comparing

the results in the two figures, we can see that the PCAFE-based system works well

when the camera is involved in the training, but fails to separate the intra-class and

inter-class correlations when the camera is not covered by training. However, in

real-world scenarios, we may face the case that images taken by new cameras are

continuously added to the database. In this case, the PCAFE-based system requires

to re-conduct a training that includes these new received images so as to maintain

the identification accuracy. As mentioned earlier, training is actually a process

of computing the eigenvectors and eigenvalues of the sample covariance matrix by

using a numerical method, such as the power method and the QR method [85].

Thus, the training process can incur a costly computation and exorbitant memory-

requirement burden when sample size and sample number are both large. As a

result, it is very inefficient to repeat training every time when new sample arrives.

To address this problem, an incremental method is usually applied to compute the
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principal eigenvectors for data arriving sequentially, where the estimate of principal

eigenvectors are updated by each arriving data. Motivated by this, in this chapter,

we propose an incremental learning method to extend the PCAFE based system so

as to accommodate the new images and update the feature extractor incrementally.

5.2 Problem Statement

The topic of incremental learning has been studied for more than two decades by the

machine learning community. In the literature, many incremental learning meth-

ods [86–93] have been proposed to incrementally update eigenvectors without es-

timating the covariance matrix. These methods take the samples sequentially and

compute the new set of eigenvectors based on the previous eigenvectors and the

new received samples. Among these methods, candid covariance-free incremental

principal component analysis (CCIPCA), introduced in [90,91], is known to be the

fastest in convergence rate and lowest in computational complexity especially for

high-dimensional data, which maybe an efficient solution in our case.

Unlike the common features with a structural outline (e.g., human face),

SPN is a kind of noise-like signal which has more random and complex variations.

Therefore, it is impossible to compact its energy into a few number of principal

components. In fact, hundreds of eigenvectors are normally required to cover the

variations of an even small-sized SPN database. Moreover, the generation of new

SPN samples may cause an increase in the variations of the database. As a result,

a representative feature extractor would require more eigenvectors to capture the

variations after new SPN samples of new class arrive. As shown in Table 5.1, one can

see that the number of eigenvectors increases when the number of cameras/classes
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Table 5.1: Dimensionality of PCA-SPN with respect to the number of cameras
involved in training process on image blocks with size of 512× 512 pixels.

Number of cameras

4 6 8 10

Dimensionality 124 186 248 307

in the database are increased.

However, the traditional CCIPCA method [91] performs well on adjusting

the direction of the existing eigenvectors, but not on generating new eigenvectors

according to the new samples. Geometrically speaking, for a new received data,

CCIPCA would first pull the existing eigenvectors toward the direction of new data

by a small amount [91]. Then, it would simply absorb the new data as a new

eigenvector. By dong so, this new generated eigenvector actually would overfit the

current new sample. As a result, it would be difficult for the following new samples to

pull it back. In the view of this limitation, we propose a method to improve CCIPCA

so as to estimate a more reliable feature extractor according to the incrementally

received images.

5.3 Proposed Method

Assume that we have already trained a feature extractor M = [v1,v2, ...,vd] from an

initial database, and there are n new samples {xi}ni=1 continuously received. d is the

number of eigenvectors contained by the initial feature extractor M. Without loss of

generality, we assume that xi has a zero mean (the mean is incrementally estimated

and subtracted out). Given a new sample xi, we first match it with the classes in
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the initial database. If it is detected as an unknown class, we would perform two

steps to update the eigenvectors of the initial feature extractor M.

In the first step, the traditional CCIPCA method [91] is applied to update

the existing eigenvectors according to the new samples. For each new sample, each

eigenvector of the initial feature extractor M would be updated once, thus they

would be updated n times in total. In the rest of this chapter, Mi and v1(i) indicate

the feature extractor and the 1st eigenvector after updated by the first i samples,

respectively. Since the eigenvectors should be orthogonal to each other, we generate

the new sample in a complementary space to update the eigenvectors so as to keep

orthogonality [91]. For example, when the i-th sample xi arrives, in order to update

the 1st eigenvector v1(i−1) of the current feature extractor Mi−1, we first subtract

from the sample xi its projection on v1(i− 1) as follows

xi(1) = xi(0)− v1(i− 1)[v1(i− 1)Txi(0)]

= xi(0)− xi(0)Tv1(i− 1)v1(i− 1), (5.1)

where xi(0) = xi. The obtained residual, xi(1), which is in the complementary

space of v1(i − 1), would then be used to update the 1st eigenvector v1(i − 1) of

the current feature extractor Mi−1. According to [91], the way to update the 1st

eigenvector v1(i− 1) according to the obtained residual xi(1) can be expressed as

u1(i) =
di−1 + l

di−1 + 1
v1(i− 1) +

1− l
di−1 + 1

xi(1)xi(1)Tv1(i− 1) (5.2)

and

v1(i) =
u1(i)

‖u1(i)‖
, (5.3)
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where v1(i) indicates the new estimate of the 1st eigenvector based on the last

estimate v1(i−1), and the new sample xi. di−1 is the number of eigenvectors in the

current feature extractor Mi−1, which is calculated as

di−1 =


d0, i = 1,

d0 + i− 1, otherwise,

(5.4)

where d0 = d. The reason for Eq. (5.4) would be explained in the second step.

Noting that in Eq. (5.2)

xi(1)Tv1(i− 1) (5.5)

is a scalar, therefore

1− l
di−1 + 1

xi(1)xi(1)Tv1(i− 1) (5.6)

is actually a scaled vector of xi(1). According to Eq.(5.2), u1(i) is essentially a

weighted combination of the last estimate of the 1st eigenvector v1(i − 1) and the

scaled vector of xi(1). Therefore, geometrically speaking, u1(i) is obtained by pulling

the last estimate v1(i− 1) toward the direction of the new sample xi(1) by a small

amount. Moreover, in Eq. (5.2), di−1+l
di−1+1 is the weight for the last estimate v1(i− 1),

and 1−l
di−1+1 is the weight for the new sample, where l is a weighting parameter

(0 < l < 1). Simply speaking, the last estimate v1(i − 1) is responsible for the

existing samples in database. Therefore, with the presence of l, more weights are

assigned to the existing samples so that the effect of the existing samples would not

fade out quickly.

After generating v1(i), xi(2) would be calculated (using Eq. (5.1)) to update

the 2nd eigenvector v2(i−1) so as to estimate v2(i) (using Eq. (5.2)) in the next iter-
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ation step. By performing the aforementioned progresses to update each eigenvector

of Mi−1, we can eventually obtain a feature extractor M′
i = [v1(i),v2(i), ...,vdi−1

(i)],

which would be further updated in the second step.

In the second step, we propose a new method to generate an eigenvector for

extending the dimension of the current feature extractor M′
i according to the new

sample xi. Different from the traditional CCIPCA method [91], which directly keeps

the new sample xi(0) as a new eigenvector, our idea is to use the residual of sample

xi(0), which is left in the complementary space of M′
i, as the new eigenvector. This

residual contains the information of the new sample xi(0), which the current feature

extractor M′
i cannot well represent. So using it as the new eigenvector, the updated

feature extractor Mi (obtained from Eq. (5.9)) would be able to represent the new

sample xi(0). Moreover, using this residual rather than the new sample xi(0) as

the new eigenvector would make the updated feature extractor Mi less overfit the

new sample xi(0). It would provide us a more accurate estimation on the feature

extractor especially when there are several new received samples taken by the same

camera. This residual is calculated by subtracting from the sample x1(0) by its

projection on M′
i, such as

ri = x1(0)−M′
i(M

′
i
T
xi(0)). (5.7)

The obtain residual ri is normalized as

r′i =
ri
‖ri‖

. (5.8)

Then we extend the dimension of the current feature extractor M′
i by keeping the
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Algorithm 5.1

Input: the initial feature extractor M0 = [v1(0),v2(0), ...,vd(0)], the new received
SPN vectors {xi ∈ RN2×1}ni=1;

Output: the updated feature extractor Mn=[v1(n),v2(n), ...,vd(n)];

Initializing d0: d0 = d;

for i = 1 to n do

Step 1: Adjust current eigenvectors:

Initializing xi(0): xi(0) = xi;

for k = 1, 2, ..., di−1 do

xi(k) = xi(k − 1)− xi(k − 1)Tvk(i− 1)vk(i− 1);

uk(i) = di−1+l
di−1+1vk(i− 1)+ 1−l

di−1+1xi(k)xi(k)Tvk(i− 1);

vk(i) = uk(i)
‖uk(i)‖ ;

end for

Step 2. Generate a new eigenvector:

Initializing M′
i: M′

i = [v1(i),v2(i), ...,vdi−1
(i)].

Calculating the residual of xi(0) in the complementary space of the current M′
i:

ri = xi(0)−M′
i(M

′
i
Txi(0));

Normalising r′i: r′i = ri
‖ri‖ ;

Updating M′
i by adding ri as a new eigenvector: Mi = [M′

i ri];

Updating di: di = di−1 + 1.

end for

normalized r′i as a new basis vector, such as

Mi = [M′
i r′i], (5.9)

where Mi is the new estimate of the feature extractor based on the last estimate

Mi−1 and the new sample xi. Note that the obtained feature extractor Mi contains

di eigenvectors, where di = di−1 + 1 = do + i.

By repeating the aforementioned two steps whenever a new sample arrives,

we are able to obtain an updated feature extractor Mn = [v1(n),v2(n), ...,vd+i(n)].
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These two steps are summarised in Algorithm 5.1.

In the Step 1, vk(0) indicates the k-th order eigenvector of the initial fea-

ture extractor M0, and vk(i) is the k-th eigenvector after updated by the first i

SPN samples. xi(0) is the i-th new sample, and xi(k) is the i-th sample after sub-

tracted by the projections on the first k−1 eigenvectors, i.e., v1(i),v2(i), ...,vk−1(i).

Comparing to the original method proposed in [91], the main contributions of our

method are summarised as follows:

1. We redesign the weighting scheme in Eq. (5.2) so as to make the traditional

CCIPCA method [91] feasible for the SPN-based source camera identification.

Note that the setting of l actually determines the retaining rate of the old and

new data. In Eq. (5.2), the original method [91] proposed to set l as a negative

parameter so that more weight would be assigned to the new data. By doing

so, although the updated feature extractor would fit the new data faster, the

effect of old data would also fade out more quickly. In our case, we prefer the

updated feature extractor to represent the new data without diluting the effect

of the existing cameras. Therefore, we set 0 < l < 1 to prevent the system

from assigning too much weight to the new sample and diluting the effect of

old cameras. Here, we empirically chose l = 0.6 via the extensive experiments,

Moreover, the feature extractor would be adjusted once whenever a single sample

is received. Therefore, in order to avoid too many adjustments caused by a signal

camera, we suggest to use at maximum 5 samples from each new camera for

updating.

2. With a new sample received, the original method [91] directly absorbs it as a
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new eigenvector. By doing so, the new eigenvector would well represent the

new sample but probably not the existing cameras in database. To address this

problem, we propose to use the residual r of new sample x left by the current

feature extractor M′ as a new eigenvector. By doing so, firstly it can make sure

that the new obtained eigenvector does not overfit the new sample. Secondly,

the residual left by M′ is complemented by M, where M = [M′ r], thus the

obtained M can represent both old and new data.

5.4 Experiments

5.4.1 Experimental Setup

In this work, the noise residuals extracted by the methods in [7] (MLE) and [11]

(PCAI8) are used as the original features. The experimental works are conducted

on the Dresden Image Database [76]. A total of 1600 images from 8 cameras are

involved in our experiments, each responsible for 200. These 8 cameras belong

to 3 camera models, which are listed in Table 5.2. For each camera, we have 50

low-variation images for training and 150 images with scene details for testing.

Hence there are 150× 8 intra-class and 1050× 8 inter-class samples in total. In our

experiments, MLE/PCAI8+8C-PCAFE indicates that SPNs are extracted by using

MLE/PCAI8, and the feature extractor is trained by using samples from all the 8

cameras in the training set; 5C-PCAFE means the feature extractor is estimated by

only using samples from the 5 existing-cameras in the training process; and 5(3)C-

CCIPCAFE denotes that samples from the 5 existing-cameras are first applied to

estimate the initial feature extractor and samples from the 3 added -cameras are
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Table 5.2: 8 Cameras involved in our experiments.

Cameras Resolution Satatus

Canon Ixus70 A 3072× 2304 existing

Canon Ixus70 B 3072× 2304 existing

Nikon CoolPixS710 A 4352× 3264 existing

Samsung L74wide A 3072× 2304 existing

Samsung L74wide B 3072× 2304 existing

Canon Ixus70 C 3072× 2304 added

Nikon CoolPixS710 B 4352× 3264 added

Samsung L74wide C 3072× 2304 added

then sequentially received to update the initial feature extractor via the proposed

CCIPCA-based feature extraction (CCIPCAFE) method.

5.4.2 Performance Evaluation

A straightforward way to evaluate the performance of a method is to measure how

well it separates the distributions of the intra-class and inter-class samples. Fig.

5.2 shows the histograms of correlation values calculated from features extracted

using different methods. Fig. 5.2 (a), (b) and (c) indicate the performance of MLE,

MLE+8C-PCAFE and MLE+5(3)C-CCIPCAFE, respectively. Generally speaking,

the increase of the intra-class means would shift the intra-class distribution right-

wards and contribute positively to a clearer separation between the intra-class and

inter-class distributions. By comparing Fig. 5.2 (a) with Fig. 5.2 (b) and Fig. 5.2

(c), we can see that the intra-class mean has been significantly increased after the

feature extraction (Notice the difference of the X-axis range present in three figures).

Therefore, it suggests that the features extracted by PCAFE and CCIPCAFE are

both superior than their original feature.

Moreover, the smaller inter-class variance leads to the two distributions more
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Figure 5.2: Histograms of the correlation values calculated from features extracted
using different methods ((a) MLE, (b) MLE + 8C-PCAFE and (c) MLE + 5(3)C-
CCIPCAFE) on the image blocks sized 256× 256 pixels.
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separable from each other. By comparing Fig. 5.2 (a) and Fig. 5.2 (b), we can

see that the inter-class distribution (in green colour) of 5(3)C-CCIPCAFE looks

wider than that of 8C-PCAFE in Fig. 5.2 (b), which means 5(3)C-CCIPCAFE has

a larger inter-class variance. This observation indicates that PCAFE outperforms

CCIPCAFE. While it is not surprising to see CCIPCAFE has a worse performance

than PCAFE as estimation error would inevitably occur during updating the feature

extractor by using incremental method. In fact, the performance of 8C-PCAFE is

the upper bound of 5(3)C-CCIPCAFE.

Next we compare the performance of different methods in terms of the over-

all receiver operating characteristic (ROC) curve. The corresponding experimen-

tal results are shown in Fig. 5.3 and Fig. 5.4, where curves for MLE/PCAI8,

MLE/PCAI8+8C-PCAFE, MLE/PCAI8+5(3)C-CCIPCAFE and MLE/PCAI8+5C-

PCAFE are highlighted in black, red, blue and green colours, respectively. From

these results, we can see that:

1. As expected, both PCAFE (red curves) and CCIPCAFE (blue curves) can boost

the conventional SPN extraction methods (black curves) on the overall ROC per-

formance. This is because these two feature extraction methods help to exclude

the redundancy and interfering features from the noise residuals that extracted

by MLE and PCAI8.

2. The overall ROC performance of 5C-PCAFE is the worst among the four meth-

ods. The reason is that the feature extractor is trained by using samples only

from the 5 existing-cameras, thus this feature extractor is not accurate enough to

represent the rest 3 added -cameras. As a result, there would be a large number of

104



False positive rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e 
po

si
tiv

e 
ra

te

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Overall ROC curves, 256x256 pixels

MLE+5C-PCAFE
MLE
MLE+5C-CCIPCAFE
MLE+8C-PCAFE

Figure 5.3: The ROC curves of different features based on MLE.
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Figure 5.4: The ROC curves of different features based on PCAI8.
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Table 5.3: Computational cost (seconds) of different methods on updating a single
camera to a database with 10, 20 and 40 cameras, respectively.

Training time (Seconds)

10+1 cameras 20+1 cameras 40+1 cameras

PCA 2.91 9.65 45.84

CCIPCA 0.85 0.86 0.86

false positives from these 3 added -cameras. Although repeating a training that

includes these 3 added -cameras can regain the accuracy, it would incur costly

re-computation especially when the number of training sample is huge. There-

fore, our CCIPCA-based method is proposed to improve the efficiency. Table 5.3

shows the computational cost of different methods on updating a single camera

(with 5 samples). As expected, the proposed CCIPCAFE is much more efficient

on updating feature extractor according to new cameras, especially when the size

of original database is large.

3. The overall ROC performance of 5(3)C-CCIPCAFE feature is slightly lower than

that of 8C-PCAFE. This is a good indication that the proposed incremental

updating approach can not only significantly improve the updating efficiency,

but also well preserve the identification accuracy.

5.5 Conclusion

In our previous chapter, the PCAFE method was proposed to extract a feature set

with much lower dimensionality from the original noise residual. However, this algo-

rithm requires all cameras to be available before feature extractor being estimated.

As a result, it would incur costly computation of re-conducting training whenever a
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new camera arrives. To solve this problem, an extension based on CCIPCA [91] is

proposed to incrementally update feature extractor so as to accommodate the newly

received cameras. The experimental results show that both PCAFE and the CCIP-

CAFE are able to boost the conventional SPN extraction methods on the overall

ROC performance. It not only validates that PCAFE can serve as a post-processing

scheme to improve the performance of the conventional SPN extraction methods,

but also suggests that when facing a real-time online identification, the CCIPCA-

based feature extraction method is an effective extension which can significantly

reduce the computational complexity while preserving the identification accuracy.
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Chapter 6

Random Subspace Method for

Source Camera Identification

6.1 Problem Statement

In Chapter 4, the PCA-based feature extraction (PCAFE) was introduced to extract

discriminative features from the noise residuals. As mentioned before, there is a lim-

itation of this method that its performance decreases when the training set is noisy.

As we know, SPN can be contaminated by many sources of interferences. When

the training samples contain strong interferences (i.e., scene textures), it would be

difficult for the training process to capture the variations of true SPN. As a result,

the trained eigenvectors are very likely to capture the information of unwanted in-

terferences rather than the true SPN. It is the main reason that the performance

of PCAFE decreases. To address this problem, in Chapter 4, we proposed a train-

ing set construction method to minimize the impact of the interfering artifacts In

this chapter, we propose another solution based on the random subspace method
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(RSM) to build a more robust model that generalizes to training data with varying

interferences.

6.2 RSM-based Source Camera Identification System

6.2.1 Random Subspace Method

For the learning based methods, there are two common problems: the training data

is less representative, and the training set has large dimensionality-to-sample ratio

(also known as “curse of dimensionality”) [94]. In [95], Ho proposed a random sub-

space method to address these problems. RSM is defined as an ensemble classifier

that consists of several weak classifiers, each operating in a subspace of the original

feature space, and outputs the final classification decision by aggregating the results

from these individual classifiers. A subspace is constructed by randomly selecting

few dimensions from the original feature space, so that each subspace would have

much lower dimensionality. Then, a classifier is performed on each subspace for

labelling. For each subspace, only the selected dimensions would contribute to the

classification result. Since each subspace ignores some dimensions of the original

feature space, the corresponding result would be less sensitive to the difference be-

tween query samples and training samples in the unselected dimensions [95]. The

mislabelling problem may occur in some random subspaces, while the performance

of their combination can be much better, especially when the dataset has a large

number of features and not too few samples [96]. Therefore, the final classification

decision is determined by combining all the decisions associated with the correspond-

ing subspaces. Many ensemble combination rules for combining multiple classifiers
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Figure 6.1: The flowchart of the RSM-based SCI system.

have been proposed in [97], such as sum rule [98,99], majority voting [100–102], etc.

The concept of RSM has already been successfully applied in many applica-

tions. In [98] and [103], Wang et al. employed RSM in the context of face recog-

nition. They proposed to use eigenfaces [104] as candidates to construct random

subspaces for random features extraction. In [105], Kuncheva et al. employed RSM

to classify the functional magnetic resonance imaging (fMRI) data so as to address

the overfitting problem caused by the extremely large dimensionality-to-sample ra-

tio. In [100–102], Guan et al. proposed an ensemble method based on RSM to

reduce the effect of covariate factors for gait recognition. In [106], Marin et al.

applied RSM to deal with partial occlusions for human detection in still image. In

this chapter, we introduce the RSM model in the context of the SPN-based source
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camera identification so as to suppress the impact of contaminations in the training

samples. The proposed RSM-based SCI system consists of three main stages: ran-

dom subspace construction, random feature extraction and camera identification by

majority voting. A flowchart of the proposed RSM-based SCI system is shown in

Fig. 6.1.

6.2.2 Random Subspace Construction

Assume that there are n images {Ii}ni=1 taken by c cameras {Cj}cj=1 in the database

and each camera has taken nj images. The random subspaces can be constructed

by the following three steps.

1. We first extract the SPNs from these images by using one of the denoising filters

introduced in Section 2.3. The obtained SPNs are utilized as the input SPN

samples. Note that SPNs are extracted from N×N -pixels blocks cropped from

the centre of the full-sized images. All the obtained SPNs are reshaped into

column vectors denoted as {xi ∈ RN2×1}ni=1.

2. Due to the high dimensionality of the SPN samples, PCAFE is then applied to

reduce the dimensionality. Given the SPN vectors {xi}ni=1, the covariance matrix

S can be estimated as follows

S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T , (6.1)

where x̄ = 1
n

n∑
i=1

xi. The eigenvectors of the matrix S and the corresponding eigen-

values can be computed via the fast eigen decomposition method mentioned in

Section 4.2. Then, the leading d = min{d′ |
∑d′

i=1 λi/
∑n

i=1 λi > 98%} eigenvec-
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tors with non-zero eigenvalues are retained as the feature space M = [v1, ...,vd] ∈

RN2×d.

3. Each retained eigenvector in M is utilized as a candidate eigenvector to build

the random subspaces. A random subspace R can be constructed by randomly

selecting m (m < d) eigenvectors from these candidates, i.e., R = [v′1, ...,v
′
d],

where v′ is the eigenvector randomly selected from M. By repeating L times

of randomly selecting subsets from M, L random subspaces {Rl ∈ RN2×m}Ll=1

would be finally generated.

6.2.3 Random Feature Extraction

The obtained random subspaces can be used as random feature extractors. Given

a query SPN sample xq, a low-dimensional SPN feature vector yl
q can be extracted

by projecting xq on the subspace Rl, such as

yl
q = RlTxq, l = 1, 2, ..., L. (6.2)

These obtained SPN feature vectors {yl
q}Li=1 would be used in the following identi-

fication process. Note that the dimensionality of feature is reduced from N2 to m

after the random feature extraction.

To estimate the reference feature for each camera, firstly we perform the

random feature extraction (Eq. (6.2)) on all the training samples {xi}n=1. As a

result, each training sample xi would be represented as a set of features {yl
i}Ll=1.

Then in the subspace Rl, we can estimate the reference feature yl
Cj

for the camera
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Cj by averaging all the features belong to that camera, such as:

yl
Cj

=

∑nj

i=1 yl
i

nj
, j = 1, 2, ..., c, (6.3)

where nj is the number of features belonging to the camera Cj .

6.2.4 Identification by Majority Voting

Based on the obtained query and reference features, the following steps are adopted

to decide that the query sample is taken by which camera in the database.

1. In each subspace, an identifier is first applied to match the query sample with

all the cameras (classes) in database. Essentially, each matching is a process of

verifying whether the query sample is taken by the camera Cj , which can be

deemed as a two-channel hypothesis test [55] problem as follows

H0 : yl
q 6= yl

Cj
(the query image is not taken by the camera Cj),

H1 : yl
q = yl

Cj
(the query image is taken by the camera Cj), j ∈ [1, c].

(6.4)

Then a correlation-based detector is established to make the decision between

H0 and H1 by comparing the correlation ρ = corr(yl
q,y

l
Cj

) to a pre-determined

threshold τ . The detector decides H1 when ρ ≥ τ and H0 when ρ < τ . For

this type of problem, all the similarity measurements mentioned in Section 2.5

can be used as the detection statistics here. However, considering that several

matching processes are required to be performed in each subspace and the number

of subspaces can be very large (e.g., L = 600), the matching efficiency becomes

a crucial factor. As reported in the previous works [9] and [54], the normalized
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cross-correlation (NCC) is the most efficient for the SPN matching. Therefore,

we adopt NCC here to measure the similarity between the query feature yl
q and

the reference feature yl
Cj

, which is calculated as follows

corr
(
yl
q,y

l
Cj

)
=

(
yl
q − yl

q

) (
yl
Cj
− yl

Cj

)
∥∥yl

q − yl
q

∥∥∥∥∥yl
Cj
− yl

Cj

∥∥∥ , j ∈ [1, c]. (6.5)

where ‖·‖ is the L2 norm, yl
q and yl

Cj
are the means of yl

q and yl
Cj

, respectively.

By doing so, the identifier in each subspace would output a decision for each

camera on whether the query sample is taken by this camera. By repeating

the aforementioned processes in each subspace, L decision would be eventually

generated for each camera from all the identifiers.

2. After the first step, we represent the obtain decisions according to a binary func-

tion, such as

ωl
j =


1, corr(yl

q,y
l
Cj

) ≥ τ,

0, otherwise,

(6.6)

where ωl
j is the decision score for the camera Cj , which is generated from the

identifier in the subspace Rl. For each camera, we then sum up the corresponding

decision scores obtained from all the identifiers, such as:

Ωj =
∑L

l=1
ωl
j , j ∈ [1, c]. (6.7)

The final identification decision can be made through majority voting [107], the

114



optimal camera C∗ is finally chosen as:

C∗ = arg max
j

Ωj >
L

2
, j ∈ [1, c] . (6.8)

It is worth mentioning that only the camera with a final score Ω > L/2 would

be chosen as the optimal camera. If the final scores of all the cameras are lower

than L/2, the system would determine that the query image was not taken by

any cameras in database.

6.3 Experiments

6.3.1 Experimental Setup

In this work, images taken by 10 cameras from Dresden Image Database [76] were

chosen and used in our experiments. These 10 cameras belong to 4 camera models,

each camera model has 2∼3 different devices. The information of these cameras

are listed in Table 6.1. A total of 1500 images from 10 cameras are involved in the

experiments, where each camera responsible for 150 images. All these images are

natural images containing a wide variety of natural indoor and outdoor scenes. For

each camera, 50 images are used for training and the remaining 100 are used as

query images for testing. Thus, there are 100× 10 intraclass and 900× 10 interclass

correlation values in total. We extract all the noise residuals from the luminance

channel as it contains information of all the three channels. The experiments are

performed on the image blocks of three fixed sizes cropped from the centre of the

full size images, which are 128× 128, 256× 256 and 512× 512 pixels, respectively.

In this work, the noise residuals extracted by the Basic method [6] and P-
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Table 6.1: 10 Cameras involved in our experiments.

Cameras Alias Resolution

Canon Ixus70 A C11 3072× 2304

Canon Ixus70 B C12 3072× 2304

Canon Ixus70 C C13 3072× 2304

Nikon CoolPixS710 A C21 4352× 3264

Nikon CoolPixS710 B C22 4352× 3264

Samsung L74wide A C31 3072× 2304

Samsung L74wide B C32 3072× 2304

Samsung L74wide C C33 3072× 2304

Olympus mju 1050SW A C41 3648× 2736

Olympus mju 1050SW B C42 3648× 2736

CAI8 [11] are used as the original features. NCC, as defined in Eq. (2.15), is

used to measure the similarity between the reference feature and the query feature.

In order to evaluate the feasibility of the proposed method, these original features

are given as inputs for the PCA-based feature extraction method [31] and the pro-

posed method for the performance comparison. Hereafter, Basic/PCAI8+PCA and

Basic/PCAI8+RSM indicate that the noise residuals are firstly extracted by Ba-

sic/PCAI8 method and the PCA-based feature extraction or the proposed RSM is

performed afterwards.

6.3.2 Parameter Settings

There are only two parameters in the proposed method, namely, the dimension of

random subspace m and the number of random subspace L. Fig. 6.2 and Fig. 6.3

show how the true positive (false positive) rate of the method Basic+RSM varies

for different values of m and L, respectively. As shown in Fig. 6.2, the performance

of the proposed method improves by increasing the number of random subspaces

L. Since the performance tends to be stable when L > 400 and there is a trade-

116



off between the performance and computational complexity, we set L = 400 in the

following experiments.

Fig. 6.3 indicates the sensitivity of the proposed method to the parameter

m, where m is the dimension of each random subspace and d is the size of the entire

feature space T . Note that m ∈ [1, d] and the performance of the proposed method

is as same as that of the PCA-based extraction method [31] when m = d. Therefore,

from Fig. 6.3 we can see that as long as m/d < 1, the proposed method can achieve

a higher true positive rate than the PCA-based extraction method. In addition,

from both Fig. 6.2 and Fig. 6.3 we can see that the performance of the proposed

method is not sensitive to L and M . In the rest of this chapter, we empirically set

L = 400 and m/d = 0.45, because these values yield the best result.

6.3.3 Performance Evaluation

In this work, the overall receiver operating characteristic curve [13] is applied to

compare the performance of different methods, as shown in Fig. 6.4, Fig. 6.5 and

Fig. 6.6. To get convincing results, all the 100 × 10 intraclass and 100 × 10 × 9

interclass samples from 10 cameras are used together to draw the overall ROC

curve. It is worth mentioning that the overall ROC curve for the proposed method

is obtained in a slightly different manner with the one mentioned in Section 2.5.

For a given detection threshold, we count the number of true positive decisions and

the number of false positive decisions for each camera in each subspace respectively,

and sum them up to obtain the total number of true positive decisions and false

positive decisions so as to calculate the true positive rate Ptp and false positive rate

Pfp. Specifically, as the numbers of images captured by each camera are exactly the
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same, we can simply calculate the Ptp and Pfp for a threshold as follows

Ptp =

∑c
j=1

∑L
l=1 T l

j

T
,Pfp =

∑c
j=1

∑L
l=1FL

j

(c− 1)T
, i = 1, 2, ..., c, (6.9)

where c is the number of cameras, L in the number of subspaces and T is the number

of query images from all cameras. T l
j and F l

j are the true positive decisions and false

positive decisions made in the subspace Rl with respect to camera Cj , respectively.

By varying the detection threshold from the minimum to the maximum value, we

can finally obtain the overall ROC curve for the RSM-based method.

In Fig. 6.4, Fig. 6.5 and Fig. 6.6, the black, blue, and red lines indi-

cate the overall ROC performance of Basic/PCAI8, Basic/PCAI8+PCA, and Ba-

sic/PCAI8+RSM, respectively. In order to show the detail of the ROC curves with

a low FPR, the horizontal axis of all the overall ROC curves are plotted in the

logarithmic scale. As analysed above, the performance of PCAFE would decrease

when the training set is noisy. But from Fig. 6.4, Fig. 6.5 and Fig. 6.6, we can

see that as the post-processing method, PCAFE still can boost the performance of

the conventional SPN extraction methods even when the training set are full-filled

with scene textures. And this performance gain is more significant when PCAFE is

performed on the image block with larger sizes (i.e., 512×512 pixels). On the other

had, the proposed RSM method (red lines) constantly achieves the best performance

regardless of the size of the image blocks and the SPN extraction algorithms. This

observation indicates the superiority of the RSM method over PCAFE on the ROC

performance. Based on these results, we can conclude that the PCAFE method

can improve the conventional SPN extraction methods even when the training set
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Table 6.2: Computational cost (Seconds) of different methods on image blocks with
size of 512× 512 pixels.

Features
Feature

Extraction
Matching Total

Basic 0 4.29 4.29

Basic+PCAFE 2.82 0.03 2.85

Basic+RSM 3.96 19.43 23.39

is noisy, and it can be further improved by the proposed RSM method.

Then we evaluate the computational complexity of the SCI identification

system based on the proposed methods. Table 6.2 shows the time cost of different

methods to match 100 query noise residuals to the aforementioned 10 cameras on

512 × 512 image blocks. This experiment is conducted on the same PC with an

Intel Core i5 3.20GHz processor and 16G RAM. To quantify the efficiency of an

identification system, two factors are considered in this experiment. The first one

is “Feature extraction” indicating the time cost for PCAFE and RSM to extract

features from 100 query noise residuals and 10 reference SPNs. The second factor

is “Matching” which relates to the time spent on calculating 100 × 10 normalized

correlations. The overall computational cost is represented as “Total”. The time

cost of training and reference estimation are not counted in this experiment as both

of them can be performed off-line.

Both PCAFE and RSM require to extract features from the noise residuals,

so it is not surprising to see that they require more time in the feature extraction

process. The complexity of computing correlation is proportional to the size of the

feature vectors. The dimensionality of features extracted by PCAFE is lower than

that of the original SPN, thus PCAFE can dramatically reduce the time spent on
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the matching process. The dimensionality of features extracted by RSM m is much

lower (i.e., m/d = 0.45), but since the RSM method requires to preform matching

in each of the 400 subspaces, it is reasonable to see that SEA requires more running

time in matching stage. From the overall computational cost, one can deduce that

RSM requires more computational cost than other two methods. Although the

RSM-based method can bring performance gain to identification accuracy, from

this experiment we can see that it also incurs extra cost in computation.

6.4 Conclusion

In Chapter 4, a PCA-based feature extraction method was proposed to extract a

feature set with much lower dimensionality from the original noise residual. Howev-

er, the performance of this algorithm degrades when the training set is noisy. It is

because the eigenvectors that generated from the training process can be corrupted

by the unwanted interferences. Some leading eigenvectors are very likely to represent

the interfering artifacts rather than the real SPN signal. Moreover, it is difficult to

locate and remove these corrupted eigenvectors from the feature space. To address

these problems, an ensemble solution based on RSM is presented to eliminate the

impact of various contaminations. The experimental results show that the proposed

RSM-based method achieves a superior overall ROC performance than several SPN

extraction methods and the PCA-based feature extraction method. However, the

proposed RMS-based method would inevitably bring extra efficiency cost to an SCI

systems. Therefore, it suggest that the proposed method is more suitable for the

cases that a lower false identification rate is preferred.
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Chapter 7

Conclusions and Further Works

7.1 Thesis Summary

In this thesis, we first investigated different methods for the task of source camera

verification and identification. In particular, we focused on the sensor pattern noise

based matching techniques. SPN is a unique pattern deposited in every image and

video taken by a sensor. Due to this uniqueness, SPN can be used as the camera

fingerprint. In the past decade, although there has been significant process in the

tasks of SPN-based source camera verification and identification, the performance of

existing methods is still unsatisfactory in some cases. In this thesis, we considered

and addressed two commonly seen but less studied challenges.

The first challenge is the source camera verification with reference images

corrupted by scene details. The most significant limitation of using SPN for source

camera verification is that SPN can be seriously contaminated by scene details,

e.g., textures and edges. Most existing methods assume that the contamination

from scene details only occurs in query images but not in reference images, which
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is because that forensic investigators normally have access to the camera to be

identified. Thus they can use this camera to take some low-variation images, e.g.,

blue sky images, for the reference SPN estimation. However, this assumption may

not hold in the real-world applications, as contamination from scene details may

exist in both query and reference images. These two typical contamination cases

should be both considered when designing a real-world source camera verification

system. Therefore, to address this less studied issue, we proposed a context adaptive

reference SPN estimator.

The second challenge we considered is high computational complexity of using

SPN in source camera identification, especially when a sizeable database is involved.

The SPN-based method has a limitation in source camera identification. This lim-

itation occurs due to the high dimensionality of SPN fingerprints. Many efforts

have been made to improve the efficiency of source camera identification in recent

years. While these methods can somehow improve the identification efficiency, they

also undesirably decrease the identification accuracy at the same time. In order

to improve efficiency without degrading accuracy, we propose an effective feature

extraction algorithm based on the concept of PCA denoising to extract a small set

of principal components from the noisy SPN. We also proposed two extensions, i.e.,

incrementally updating method and random subspace method, to further improve

the performance of this framework. Detailed description of the works involved in

this thesis are given as follows:

In Chapter 2, we provided a detailed literature review on the state-of-the-art

methods that have been proposed in the SPN-based source camera verification and

identification. By analysing the existing methods, we pointed out two challenging
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problems which are commonly seen but not well solved.

In Chapter 3, we first proposed a measurement to evaluate the SPN quality

of each image block for the reference SPN estimation. This measurement is de-

termined according to both local entropy and local brightness of an image. Based

on this measurement, a reference SPN estimator was then proposed to address the

aforementioned problem that reference images are contaminated by scene details.

Comparing to the traditional method, we proposed to assign higher weights to the

SPN blocks with better quality, rather than to treat every SPN block for the refer-

ence SPN estimation equally. In the experimental part, we considered the situation

that the number of reference images from each camera is inadequate, which is a case

that most current works do not take into account. Experimental results showed that

the proposed method achieved higher performance in terms of the ROC curves than

the methods based on the averaged reference SPN, especially when the number of

reference images is inadequate.

In Chapter 4, we introduced the concept of PCA denoising in the task of

source camera identification. An effective feature extraction algorithm based on

this concept was proposed to compress SPN so as to address the prohibitively com-

putational complexity caused by the high dimensionality of SPN. For better effect,

we also propose a training set construction method that minimizes the impact of

the interfering artifacts, which play an important role in learning effective feature

extractors that is insensitive to various unwanted noises. Moreover, considering

that investigators normally have the access to the label information of the database,

an enhancement approach based on LDA was adopted to take the advantage of

the availability of label information to better separate different classes and further
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reduce the dimensionality. Experimental results showed that this method not on-

ly significantly improved the efficiency of source camera identification systems but

also boosted the performance of several SPN extraction methods on identification

accuracy. It suggested that the proposed PCA-based feature extraction (PCAFE)

method can be used as a general post-processing scheme for the conventional SPN

extraction methods to further improve the SCI system.

In Chapter 5, we proposed an extension of the PCAFE method for incremen-

tally updating feature extractor so as to accommodate the newly received images.

The PCAFE method has a major limitation that it cannot well represent the classes

(cameras) which are not covered by the training set. In other words, a representative

feature extractor can be estimated only if all the cameras have samples involved in

the training process. When images taken by new cameras are continuously added

to the reference image set, PCAFE requires to re-conduct training so as to ensure

the identification accuracy. However, this process is computationally exorbitant. In

order to avoid costly computation of re-conducting training whenever a new image

arrives, we proposed an extension based on the candid covariance-free incremental

PCA (CCIPCA) to incrementally update feature extractor according to the new re-

ceived images. Compared with the PCAFE method, the proposed CCIPCA-based

feature extraction method can significantly reduce the computational complexity for

updating new samples with only a slight decrease in the identification accuracy.

In Chapter 6, to further suppress the impact of various interferences in train-

ing samples, we proposed a solution based on the random subspace method. In

this algorithm, we first applied PCAFE to estimate a feature space that can bet-

ter represent SPN. Then we constructed a large number of random subspaces by
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randomly splitting the obtained feature space into subsets. In each subspace, we

performed an identification process and record the identification result. Majority

voting was finally applied to make the final identification decision according to the

results obtained from all subspaces. Experimental results showed that the proposed

RSM based method outperformed the PCAFE method when dealing with a noisy

training set.

7.2 Future Works

In this thesis, we have done some works for addressing the challenges in the SPN-

based source camera verification and identification system, while more works are yet

to be done in order to further improve them. Here we list some possible new lines

of investigation for future research.

1. In the proposed PCAFE method, the full sized SPN is used to train the fea-

ture extractor. As a result, directly decomposing the covariance matrix is too

computationally complex to be performed, thus we have to apply a fast eigen

decomposition method. When the number of training samples is large, this fast

method can also be inefficient. Therefore, we plan to divide every full sized SPN

training sample into many non-overlapping SPN blocks. Then we can gather the

SPN blocks from the same location but different training samples and use them

to train a local feature extractor. By doing so, we actually divide the original

covariance matrix into many small matrices and decompose them respectively,

which is a possible way to reduce the computational cost and memory burden.

For each location, we can perform a verification by using the query and reference
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features extracted by the corresponding local feature extractor. Then, majority

voting can be applied to make the final decision according to the results obtained

from all locations. Moreover, we can also apply the measurement that we pro-

posed in Chapter 3 to evaluate the SPN quality of each block from the query

SPN. Based on the obtained quality score of each query SPN block, we can as-

sign a corresponding confidence to the decision obtained from that SPN block so

as to achieve a more accurate identification.

2. In the proposed RSM based identification system, the extracted random features

are directly used for identification. However, these extracted features may be

redundant and less discriminant. It is because the random feature extractors are

trained in an unsupervised manner, without using the label information. As a

result, these extracted features may lead to low performance in terms of both com-

putational cost and identification accuracy. These leave room for improvement.

Our further plan is to take advantage of the label information of a database and

employ supervised learning method, such as uncorrelated LDA (ULDA) [108,109]

and IDR/QR [79], for each subspace so as to extract more discriminant features.

3. One of the disadvantages of SPN is that its detection is very sensitive to syn-

chronization [22]. For example, if the image under investigation has been slightly

cropped or scaled, the direct verification would not succeed. To address this

problem, a brute force search is required to estimate the re-sampling parameters

so as to invert the geometrical transformation and then detect the SPN finger-

print. However, the complexity of brute force search can be exorbitant. Although

the technique described in [110] may help us to alleviate the computational com-
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plexity of brute force searches, the searches would inevitably increase the FAR.

In the view of this limitation, we will explore new ways to address this problem.

For example, the problem of an SPN saved in different resolutions can be viewed

as the problem of an object with multiple views. In many computer vision appli-

cations, the same object can be observed at different viewpoints, such as human

face and gait [111,112]. However, the observations from different viewpoints can

not be compared directly since the samples from different views may lie in quite

different spaces. To address this problem, a Multi-view Discriminant Analysis

(MvDA) method [113, 114] was recently proposed to obtain one common space

where observations from two different views can be compared. Thus, it can be a

possible solution to tackle the problem that images are saved in different resolu-

tions or even compressed with different JPEG quality factors, which is worthy of

further research.
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[89] M. Artač, M. Jogan, and A. Leonardis, “Incremental PCA for on-line visu-

al learning and recognition,” in IEEE International Conference on Pattern

Recognition, 2002, vol. 3, pp. 781–784.

[90] Y. Zhang and J. Weng, “Convergence analysis of complementary candid incre-

mental principal component analysis,” Dept. of Computer Science and Eng.,

Michigan State University, Tech. Rep. MSU-CSE-01-23, 2001.

[91] J. Weng, Y. Zhang, and W.S. Hwang, “Candid covariance-free incremental

principal component analysis,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 8, pp. 1034–1040, 2003.

[92] Y. Li, “On incremental and robust subspace learning,” Pattern recognition,

vol. 37, no. 7, pp. 1509–1518, 2004.

[93] D. Skocaj and A. Leonardis, “Weighted and robust incremental method for

subspace learning,” in IEEE International Conference on Computer Vision,

2003, pp. 1494–1501.

[94] Y. Guan, Covariate-invariant gait recognition using random subspace method

and its extensions, Ph.D. thesis, University of Warwick, Coventry, UK, 2015.

[95] T. K. Ho, “The random subspace method for constructing decision forests,”

IEEE Transactions on Pattern Analysis Machine Intelligence, vol. 20, no. 8,

pp. 832–844, 1998.

[96] R. Bryll, R. Gutierrez-Osuna, and F. Quek, “Attribute bagging: improving

accuracy of classifier ensembles by using random feature subsets,” Pattern

Recognition, vol. 36, no. 6, pp. 1291–1302, 2003.

[97] J. Kittler and F. Roli, “Multiple classifier systems,” Lecture Notes in Com-

puter Science, 2002.

140



[98] X. Wang and X. Tang, “Random sampling lda for face recognition,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

2004, vol. 2, pp. 259–265.

[99] N. V. Chawla and K. W. Bowyer, “Random subspaces and subsampling for

2-D face recognition,” in IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2005, vol. 2, pp. 582–589.

[100] Y. Guan, C.-T. Li, and Y. Hu, “Random subspace method for gait recogni-

tion,” in IEEE International Conference on Multimedia and Expo Workshops,

Jul. 2012, pp. 284–289.

[101] Y. Guan, C.-T. Li, and S. D. Choudhury, “Robust gait recognition from

extremely low frame-rate videos,” in IEEE International Workshop on Bio-

metrics and Forensics, 2013, pp. 1–4.

[102] Y. Guan, C.-T. Li, and F. Roli, “On reducing the effect of covariate factors

in gait recognition: A classifier ensemble method,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 37, no. 7, pp. 1521–1528,

2015.

[103] X. Wang and X. Tang, “Random sampling for subspace face recognition,”

International Journal of Computer Vision, vol. 70, no. 1, pp. 91–104, 2006.

[104] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

1991, pp. 586–591.
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