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ABSTRACT
Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are
polluted by remnant planetary material, with some WDs being observed to accrete the mass of
Pluto in 106 yr. The short sinking time-scale for the pollutants indicates that the material must
be frequently replenished. Moons may contribute decisively to this pollution process if they are
liberated from their parent planets during the post-main-sequence evolution of the planetary
systems. Here, we demonstrate that gravitational scattering events amongst planets in WD
systems easily trigger moon ejection. Repeated close encounters within tenths of planetary
Hill radii are highly destructive to even the most massive, close-in moons. Consequently,
scattering increases both the frequency of perturbing agents in WD systems, as well as the
available mass of polluting material in those systems, thereby enhancing opportunities for
collision and fragmentation and providing more dynamical pathways for smaller bodies to
reach the WD. Moreover, during intense scattering, planets themselves have pericentres with
respect to the WD of only a fraction of an astronomical unit, causing extreme Hill-sphere
contraction, and the liberation of moons into WD-grazing orbits. Many of our results are
directly applicable to exomoons orbiting planets around main-sequence stars.

Key words: methods: numerical – celestial mechanics – minor planets, asteroids: general –
Moon – planets and satellites: dynamical evolution and stability – white dwarfs.

1 IN T RO D U C T I O N

A number of observed features suggest that not only do planetary
systems exist around white dwarfs (WDs), but that these systems are
dynamically active. These signatures come in three forms: (1) direct
detection of major or minor exoplanets, (2) heavy metal pollution
in WD atmospheres, and (3) debris discs that surround WDs.

Direct detections include the disintegrating minor planet (or plan-
ets) which has been observed orbiting WD 1145+017 with an orbital
period of under 5 h1 (Croll et al. 2015; Vanderberg et al. 2015) and
one very wide orbit (∼2500 au) super-Jovian but sub-brown dwarf
mass companion (Luhman, Burgasser & Bochanski 2011).

WD atmospheres are chemically stratified such that only the
lightest elements do not sink below the convective layer. The sink-
ing time-scales of the heavier elements are so quick (typically days
to weeks) – see fig. 1 of Wyatt et al. (2014) – that the presence
of metals in the atmospheres is referred to as ‘pollution’. Between
one-quarter and one-half of all single WDs in the Milky Way are
metal polluted (Zuckerman et al. 2003, 2010; Barstow et al. 2014;
Koester, Gänsicke & Farihi 2014), a range that is commensurate
with the fraction of Milky Way main sequence (MS) stars which are

� E-mail: mpayne@cfa.harvard.edu (MJP); d.veras@warwick.ac.uk (DV)
1 This planet represents the smallest and quickest substellar body that has
so-far been observed.

thought to host planets (Cassan et al. 2012). The metal pollution al-
most certainly predominantly arises from planetary remnants, as in
WD 1145+017. An accretion origin from the interstellar medium
has been ruled out (Aannestad et al. 1993; Friedrich, Jordan &
Koester 2004; Jura 2006; Kilic & Redfield 2007; Farihi et al. 2010)
as has stellar dredge-up and radiative levitation, based on the effec-
tive temperature range of the surveyed WDs.

In over 35 cases, polluted WDs also harbour an observable de-
bris disc (Zuckerman & Becklin 1987; Gänsicke et al. 2006; Farihi,
Jura & Zuckerman 2009; Dufour et al. 2012; Farihi et al. 2012;
Melis et al. 2012; Bergfors et al. 2014; Wilson et al. 2014; Manser
et al. 2016; Rocchetto et al. 2015). No known debris disc surrounds
an unpolluted WD (see Xu et al. 2015 for one potential excep-
tion), strongly suggesting that the known discs are accreting on to
WDs. The debris discs themselves probably arise from the tidal
destruction of planetesimal-like bodies (Graham et al. 1990; Jura
2003; Debes, Walsh & Stark 2012; Bear & Soker 2013; Veras et al.
2014b, 2015b). Although the radial extent of the discs are well
constrained to lie within the WD’s Roche (or disruption) radius,
the disc mass is unconstrained. Our best constraints on the remnant
planetary mass that is disrupted and accreted instead comes from
DBZ (metal enriched helium dominated) WDs.

DBZ WDs harbour deep convection zones which provide a record
of all the mass accreted over the past Myr or so. The highest accreted
mass is comparable to Pluto’s mass (Girven et al. 2012) within a
Myr. Researchers may obtain other mass estimates through the
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instantaneous accretion rates in DAZ (metal enriched hydrogen
dominated) WDs, assuming that the accretion is in steady state. The
Solar system’s asteroid belt is about three orders of magnitude less
massive than would be necessary to reproduce these accretion rates
(Debes et al. 2012); an exo-Kuiper belt is more likely to reproduce
the observed rate (Bonsor, Mustill & Wyatt 2011), but has trouble
reproducing the observed composition (Gänsicke et al. 2012; Jura
& Young 2014; Xu et al. 2014).

One tantalizing but so far unrealized frontier of extrasolar plan-
etary science is the confirmation and characterization of exomoons
(Kipping 2011; Simon et al. 2012; Awiphan & Kerins 2013; Lewis
2013; Bennett et al. 2014; Kipping et al. 2014). As the next largest
objects after exoplanets in exoplanetary systems, exomoons could
represent a vast and massive population. In the Solar system, the
total mass in moons (∼6 × 1023 kg)2 is greater than the mass of the
planets Mercury and Mars individually, and is more than two orders
of magnitude greater than the total mass of the asteroid belt.

This potentially large exomoon mass reservoir has important im-
plications for the fate of planetary systems. As exoplanet-hosting
stars leave the MS and become giant branch (GB) stars, they shed
between one-half and four-fifths of their mass, expand their radii by
many astronomical unit (au), and increase their luminosity by up to
four orders of magnitude.

Consequently, orbiting bodies are subjected to a plethora of strong
forces with complex implications (Veras 2016). Exoplanets may be
engulfed into the star (Kunitomo et al. 2011; Mustill & Villaver
2012; Adams & Bloch 2013; Nordhaus & Spiegel 2013; Villaver
et al. 2014), collide with each other (Debes & Sigurdsson 2002;
Veras et al. 2013a; Voyatzis et al. 2013; Mustill, Veras & Villaver
2014; Veras & Gänsicke 2015), or escape the system entirely (Veras
et al. 2011, 2014a; Veras & Tout 2012; Adams, Anderson & Bloch
2013). Exoasteroids instead may self-destruct (Veras, Jacobson &
Gänsicke 2014c; Veras, Eggl & Gänsicke 2015c); those that survive
may be dragged (Dong et al. 2010) or perturbed (Bonsor et al. 2011;
Debes et al. 2012; Frewen & Hansen 2014; Bonsor & Veras 2015)
into either the GB star or the resulting WD. Exo-Oort cloud comets
may accrete on to the WD (Alcock, Fristrom & Siegelman 1986;
Veras, Shannon & Gänsicke 2014d; Stone, Metzger & Loeb 2015),
and second-generation planets may even be formed (Perets 2011;
Bear & Soker 2014, 2015; Schleicher & Dreizler 2014; Völschow,
Banerjee & Hessman 2014).

The GB phase can also have lasting effects on the long-term
dynamical stability of the planetary system. Instabilities do not
necessarily manifest themselves until many Gyr after the star has
become a WD. The potential consequences for exomoons have
heretofore been ignored, as the above references focus on exoplanets
and/or exoasteroids. Remedying this neglect may help us better
understand the observable signatures of late dynamical evolution in
exosystems.

The total mass in exomoons is likely to be sufficiently large
that moons liberated from their parent planets can play three crucial
roles in post-MS systems: (1) to achieve an orbit around a WD which
may be detectable by transit (as perhaps in WD 1145+017); (2) to
contribute directly to the polluted matter through collisions with
the WD Roche radius; (3) to contribute indirectly by changing the
orbital architecture through which smaller bodies (such as asteroids)
get perturbed to the WD Roche radius. Consequently, quantifying
the fraction of moons which escape the gravitational pull of their

2 http://www.wolframalpha.com/input/?i=mass+of+moons+in+the+solar+
system

parent planets may represent a crucial consideration in polluted WD
systems.

In this paper, we demonstrate that moons are easily liberated
during the WD phase due to instabilities arising from planet–planet
gravitational scattering. By utilizing the detailed close encounter
output from the simulations in Veras & Gänsicke (2015), we find
that (a) incursions frequently occur well within the Hill sphere of
the parent planet, strongly disrupting any satellites, and in many
cases, ejecting moons, and (b) planets themselves can attain peri-
centres with respect to the WD of only a fraction of an au, causing
extreme Hill-sphere contraction, and the liberation of moons into
WD-grazing orbits. Our results show that planet–planet scattering
helps dissociate moons during the post-MS phases, just as on the
MS phases (Gong et al. 2013). Without this type of scattering,
moons robustly remain bound to their parent planets, regardless of
how tightly packed the planets are (Payne et al. 2013). We do not
consider moon–moon scattering, which represents another potential
vehicle for ejection (Perets & Payne 2014).

In Section 2, we detail how stellar mass loss affects the stability
of a moon. We then characterize important parameters during close
encounters between planets which are scattering in Section 3. In
Section 4, we relate these parameters to the orbital excitation and
escape of moons during planet–planet encounters. In Section 5 we
discuss close-pericentre approaches between planet and WD. We
discuss our results in Section 6, and conclude in Section 7.

2 EFFECT OF STELLAR MASS LOSS
O N M O O N S

First we determine how an exomoon responds to stellar mass loss
from the star. Consider a single moon orbiting a single planet,
which together orbit a single star. Let M�, Mp, and Mm represent the
masses of the star, planet, and moon. Assume M� is time dependent
and small enough (typically less than about 6–8 M�) such that it
will eventually become a WD. Both Mp and Mm are considered to
be fixed.

In order for the moon to orbit the planet and not the star, (i) the
ratio Mm/Mp must be sufficiently small, (ii) the moon–planet dis-
tance rm must be small enough to be within the planet’s gravitational
sphere of influence, and (iii) rm must be large enough that the moon
is outside of the planet’s Roche (or disruption) radius.

Condition (ii) is often satisfied (for prograde orbits) when rm �
0.5rH, where rH is the Hill radius:

rH ≡ ap(1 − ep)

(
Mp

3M�

)1/3

= 2.43 au
( ap

30 au

)( Mp

MJup

)1/3 (
M�

0.6 M�

)−1/3

, (1)

and where ap and ep are the semimajor axis and eccentricity of the
planet with respect to the star. Because this paper is focused on WDs,
in the equations we adopt a fiducial WD mass of 0.6 M�, which
corresponds to a progenitor MS mass of about 1.7 M�, assuming
solar metallicity (Hurley, Pols & Tout 2000; Catalán et al. 2008;
Kalirai et al. 2008).

Condition (iii) is rm > rR, where rR is the Roche radius of the
planet:

rR ≡ CRp

(
ρp

ρm

)1/3

= 5.4 × 10−4 au × C

(
Mp

MJup

)1/3 (
ρm

1 g cm−3

)−1/3

, (2)
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Liberating exomoons in WD planetary systems 219

Figure 1. Example of a post-MS scattering simulation, reproduced from
Veras & Gänsicke (2015), illustrating (a) the orbital expansion of the plane-
tary semimajor axes (by a factor of about 2.6) due to stellar mass loss (from
1.5 to about 0.58 M�; see equation 3) at ∼3 Gyr; (b) the late (>6 Gyr)
onset of planet–planet scattering discussed in Section 3.1, and (c) the peri-
ods of close pericentre approach discussed in Section 5. Note that MS is the
main-sequence phase; GB is the giant branch phase; WD is the white dwarf
phase; RMax is the star’s maximum expansion radius during the GB phase;
Rroche is the Roche breakup radius of the WD.

where Rp is the radius of the planet, and ρp and ρm are the densities of
the planet and moon. The constant C is dependent on the shape, spin,
and composition of the moon, as well as the criteria for disruption
(cracking, deformation, or dissociation). Here, C ranges from 0.85
to 1.89 (Bear & Soker 2013).

Together, equations (1) and (2) illustrate that stable moons can
orbit planets at a range of distances which span several orders of
magnitude in au. When rR < rm � 0.5rH is satisfied, the moon’s
orbit with respect to the planet can be considered fixed and stable.
As the star loses mass, (i) the planet’s orbit will expand, (ii) the
moon’s orbit will remain unchanged (as that orbit is independent of
M�), (iii) the value of rR will remain unchanged, and (iv) the value
of rH will change.

(i) Regarding the first point, as long as the mass loss is isotropic,
the system is rotationally symmetric and angular momentum is
conserved. Consequently, with help from the vis-viva equation, the
equations of motion in orbital elements may be derived (Omarov
1962; Hadjidemetriou 1963; Veras et al. 2011). In the ‘adiabatic’
case, where the averaged equations of motion, denoted by brackets,
can be used (within a few hundred au; see Veras et al. 2011),〈

dap

dt

〉
= − ap

M� + Mp

dM�

dt
> 0, (3)

always. Also, on average, none of the eccentricity, inclination, ar-
gument of pericentre, or longitude of ascending node changes. Al-
though angular momentum is no longer conserved in the anisotropic
mass loss case, for realistic stars the isotropic mass loss approxi-
mation is excellent when planetary orbital separations are less than
about a few hundred au (Veras et al. 2013b). An example of plan-
etary orbital expansion during mass loss is illustrated in Fig. 1 –
reproduced from Veras & Gänsicke (2015) – in which one can see
that the planetary orbits in the pink ‘GB’ strip expand by a factor
of 2.6 due to the stellar mass loss from a 1.5 M� progenitor star.

(ii) Regarding the second point, the moon will move with respect
to the planet, regardless of how the planet is changing its orbit. The
moon will only ‘feel’ the mass loss from the star when the wind
carrying this mass is in-between the moon and planet, effectively

increasing the planet’s mass.3 In Appendix B we demonstrate that
the maximum amount of mass within the orbit of the moon at any
given time is negligible compared to the planet mass itself.

(iii) Regarding the third point, other forces besides mass loss
(such as radiation, and erosion from the stellar wind) could in princi-
ple change the physical state of the planet and moon. Consequently,
the coefficient C in equation (2) might undergo a slight change. But
largely the densities of the moon and planet remain unchanged, and
hence rR remains unchanged too.

(iv) Finally, for the fourth point regarding the change in Hill
radius, we combine the standard equation for the Hill radius (equa-
tion 1) with the isotropic mass loss equations (Hadjidemetriou 1963)
to obtain

drH

dt
= −rH(ap)

(
Mp

3M�

)
dM�

dt

×Mp + M�(4 − 3 cos f ) + (M� + Mp)ep

Mp(Mp + M�)(1 + ep)
. (4)

Because the Hill radius is derived assuming that Mp � M�, we
can write

drH

dt
≈ −rH(ap)

[
4 − 3 cos f + ep

3(1 + ep)

]
1

M�

dM�

dt
. (5)

Both equations (4) and (5) demonstrate that the direct effects of
central stellar mass loss cause drH/dt > 0 always (because dM�/dt <
0).4 Consequently, because a moon’s orbit with respect to its parent
planet remains fixed, moons become more stable due to stellar mass
loss alone. After post-MS mass loss, the value of rm/rH has been
lessened.

We can estimate the change in rm/rH by considering the averaged
(adiabatic) mass loss equations of motion. Assume that the final WD
mass is MWD

� and the initial progenitor stellar mass is MMS
� . In this

case,

rWD
H ≈ aMS

p

(
1 − eMS

p

)( Mp

3MWD
�

)1/3 (
MMS

�

MWD
�

)
. (6)

Consequently,

rWD
H

rMS
H

=
(

MMS
�

MWD
�

)4/3

. (7)

We obtain intuition for the value of MWD
� /MMS

� by creating stel-
lar tracks with the SSE code (Hurley et al. 2000). Assuming solar
metallicity, a Reimers mass loss coefficient of 0.5 on the red GB
phase, and the code’s default superwind prescription on the asymp-
totic GB phase, we find for MMS

� = {8, 7, 6, 5, 4, 3, 2, 1} M� that
rWD

H /rMS
H = {9.83, 9.53, 9.16, 8.55, 7.65, 6.35, 4.57, 2.39}. Hence,

the Hill radius increases by a factor of 2–10 due to post-MS mass
loss, entrenching the moons deeper within the Hill radius. Conse-
quently, liberating moons from this more secure position requires
violent close encounters.

3 SC AT T E R I N G V E L O C I T I E S
A N D I M PAC T PA R A M E T E R S

Having demonstrated that stellar mass loss entrenches moons deeper
within the Hill radius of the parent planet, we now consider the

3 The mass accreted on to the planet itself is negligible; see section 4b(ii) of
Veras (2016).
4 But in Section 5 we examine indirect effects which can cause temporarily
drH/dt < 0 during close pericentre passages between planet and WD.
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susceptibility of these moons to close encounters with other planets.
Although the results in this section are specific to WD systems,
they may provide insight into more general planet–planet scattering
studies.

In this section we examine the spectrum of multiple close en-
counters experienced by planets over the course of billions of years
of evolution, drawing on simulations of a variety of different system
masses and architectures.

3.1 Post-MS scattering sample

We obtain typical scattering velocities and impact parameters by
using the data from the simulations performed in Veras & Gänsicke
(2015), who evolved packed systems of four and 10 planets through-
out all phases of stellar evolution post-formation and demonstrated
that instability can first occur during the WD phase. That paper
extended previous studies modelling the post-MS evolution of two-
planet (Veras et al. 2013a) and three-planet (Mustill et al. 2014) sys-
tems, but with a set of progenitor masses (1.5–2.5 M�) which better
reflect the currently observed WD population (fig. 1 of Koester et al.
2014).

Veras & Gänsicke (2015) simulated five basic types of planetary
system: (i) systems of four Jupiter-mass planets, with the innermost
planet initially at 5 au; (ii) and (iii) systems of four Earth-mass
planets, with the innermost planet initially at 2 and 5 au, respec-
tively; and (iv) and (v) systems of 10 Earth-mass planets, with the
innermost planet initially at 5 and 10 au, respectively.

We consider only those simulations from Veras & Gänsicke
(2015) in which planetary systems first unpacked (became unstable)
after the end of the MS. The fraction of systems becoming unsta-
ble varies according to system architecture: we refer the reader to
Veras & Gänsicke (2015) for further details. An example of such
a simulation is reproduced in Fig. 1, illustrating the late onset of
instability (about 3 Gyr after the star has become a WD). While
planet–planet scattering can occasionally occur on the MS (e.g.
Rasio & Ford 1996), potentially removing exomoons, the results
of Veras & Gänsicke (2015) demonstrate that scattering can begin
during the post-MS phase, ensuring that for such late-scattering
systems, no exomoons will have been removed throughout the MS
and GB phases.

For these simulations, all close encounters between planets within
3rH were recorded. The information obtained in these recordings
were the pericentre distance, q, and the velocities of the planets at
their closest approach. We denote the relative speed at this closest
approach as Vq.

During a close encounter, the planets are on hyperbolic orbits
with respect to each other. Consequently, for this orbit we can
define an impact parameter b and an ‘initial’ velocity V∞ through
(see equations 3 and 6 of Veras & Moeckel 2012)

b = q

[
1 − 2μ

qV 2
q

]−1/2

≈ q + μ

V 2
q

≈ q, (8)

V∞ =
√

V 2
q − 2

μ

q
≈ Vq, (9)

where μ≡ G(Mp + Mf), such that Mf is the mass of the ‘flyby’ planet
(the planet not hosting a moon), and the approximations employed
hold for the typical range of planet–planet encounter parameters
illustrated in Figs 2 and 3.

3.2 Distribution of scattering parameters

We plot the cumulative distributions of q and Vq across all simula-
tions in Figs 2 and 3. These curves provide insight into the dynamics
of close encounters, and are typically not featured in dedicated exo-
planet scattering studies. The distributions of b and V∞ are visually
almost indistinguishable from those of q and Vq and hence are not
shown.

These figures demonstrate that the encounters are penetrative; the
minimum value of q/rH is such that on average, in systems of Earth-
mass planets, each planet experiences at least one close approach
with q/rH � 10−2, while in systems of Jupiter-mass planets, each
planet experiences at least one close approach with q/rH � 5 ×
10−2.

We note that the Earth-mass planets experience nearly two or-
ders of magnitude more close encounters than do the Jupiter-mass
planets. This large difference essentially arises because the Earth-
mass planets do not have the energy to eject one another, so
they are doomed to experience repeated close encounters unless
they eventually collide, where as the Jupiter-mass planets can be
entirely ejected from the system, curtailing the number of close
planetary encounters.

4 E F F E C T O N M O O N S : N U M E R I C A L
SCATTERI NG EXPERI MENTS

Having illustrated the distribution of parameters during the close ap-
proaches amongst planets in post-MS exosystems, we now consider
how destructive these encounters are to orbiting moons.

We perform numerical simulations which model the evolution
of moons after the close encounters experienced by the systems
simulated in Veras & Gänsicke (2015). In Appendix C we take an
analytical approach and determine in what regimes might an im-
pulse approximation be applicable and able to explain our numerical
results.

In this section we examine the effect of a single close encounter
from the numerous such encounters demonstrated to occur in Sec-
tion 3.

4.1 Methodology for integration with MERCURY

Our basic physical scenario consists of a parent planet in an orbit
with ap = 30 au and ep = 0 around a central star of mass 1 M�. We
set the mass of the parent planet at either Mp = MJ or Mp = M⊕
(see Table 1 for simulation parameters).

The parent planet was initialized with a swarm of nm = 104

test-particle moons (Mm = 0). The moons are initialized with (i)
semimajor axes drawn from a uniform distribution in log-space
with Rp < am/rH < 0.5, and (ii) eccentricities drawn from a uni-
form linear distribution between 0 and 1. The semimajor axes and
eccentricity were then jointly constrained to ensure that the initial
conditions have pericentre >Rp and apocentre <0.5rH, p. An exam-
ple of these initial conditions in (am, em)-space is plotted in Fig. 4.
The inclinations were drawn randomly from a uniform distribution
0 < im < 180◦, while �m, ωm, and Mm were all drawn from a
uniform distribution between 0◦ and 360◦.

A second planet, the ‘flyby’ planet, is injected into the simulation
on a trajectory that results in a close encounter with the parent
planet, with a pericentre of q and a velocity at pericentre of Vq. The
flyby planet has mass Mf = Mp.

We set the initial pairwise planet separation distance at 4rH,
then integrated the planets through the close encounter (with the

MNRAS 457, 217–231 (2016)
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Liberating exomoons in WD planetary systems 221

Figure 2. Distribution of close-approach parameters for Jupiter-mass planets (top-left) and Earth-mass planets (top-right). These systems have NP = 4
equal-mass planets initialized such that the innermost planet (prior to mass loss) is at 5 au. The histograms for the same systems are plotted below, illustrating
the average number of encounters per planet with vq (bottom-left) and q (bottom-right). Note that both histograms and cumulative curves are plotted. The
systems of Earth-mass planets experience far greater numbers of encounters, primarily because these systems do not eject planets (whereas the Jupiter-mass
systems do), allowing the Earth-mass planets to experience multiple close approaches over the age of the system. In Fig. 3 below, we provide additional
cumulative histogram curves. The labels A, B, C, X, Y, and Z correspond to the detailed simulations illustrated in Section 4 and Fig. 4, where we examine the
loss of moons during individual close planet–planet encounters.

given values of q and Vq) and continued the integration un-
til the flyby planet receded to a distance ≈4rH from the parent
planet.

On a practical note, finding the initial relative positions and ve-
locities required to achieve a given q and vq at pericentre is slightly
non-trivial. We could have tried to use an approach similar to that
in Veras & Moeckel (2012), but found the heliocentric orbital arcs
to be problematic. Hence we took the simple approach of (i) setting
the planets up at pericentre (close-approach) with the desired q and
Vq (with no moons at this point), (ii) integrating them backwards
(by reversing the relative velocity vector of the flyby planet to that
of the parent planet) until their separation was ∼4rH, (iii) added the
moons to the parent planet, and finally (iv) re-reversed the velocity

of the flyby planet at that point to run them forwards in time through
the close encounter.

The integrations were performed using the Bulirsch–Stoer algo-
rithm from the MERCURY N-body package of Chambers (1999).

4.2 Parameters explored during integrations

We initialized our simulations such that they resulted in close en-
counters with a range of q and Vq, and used the distribution of
close-approach parameters in Fig. 2 as a guide to the appropriate
range to cover. In Table 1 we provide a detailed list of the close-
approach simulations performed and the key parameter variations
for each.
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Figure 3. Distribution of close-approach parameters for different sets of planet–planet scattering simulations. Cumulative histograms for top-left q; top-right
vq; mid-left q/rH; mid-right vq/vRH ; bottom q/vq; the colours denote the different initial conditions: black: MJ, NP = 4, ai = 5 au; red: M⊕, NP = 4, ai = 5 au;
grey: M⊕, NP = 10, ai = 5 au; green: M⊕, NP = 4, ai = 2 au; purple: M⊕, NP = 10, ai = 10 au; we note that the black and red curves above for q and vq are
repeated from Fig. 2 above. We see that on average, (i) a Jupiter-mass planet around a post-MS WD which undergoes late instability will experience ∼100
close encounters with q < 3 rH, of which ∼10 have a time-scale (q/vq) ∼ 10 d, while (ii) a system of unstable Earth-mass planets will experience >104 close
encounters with q < 3 rH, of which 10–104 have a time-scale (q/vq) ∼ 1 d (i.e. there is a broad range, dependent on initial conditions).

Table 1. Parameter variations in numerical integrations of moon perturbations due to flyby encounters with
another planet. We set M� = 1 M�, ap = 30 au, and ep = 0. The period of the planet is ∼164 yr, hence the period
of a moon at am = 0.5rH, p is ∼33.5 yr or 1.2 × 104 d. The total number of simulated moons, nm = 104. The initial
planet–planet separation equals 4rH. The close encounter pericentre is q (au) and the velocity at pericentre is Vq

(au d−1). The total simulation time is tsim (d). Additional definitions can be found in Table A1.

Simulation q Vq Mp rH tsim

Set (au) (au d−1) (au) (d) Notes

A 1.0 × 101 1.0 × 10−3 MJ 2.0 2.5 × 104 Common, little effect
B 1.0 1.0 × 10−3 MJ 2.0 2.5 × 104 Relatively rare, destructive
C 1.0 3.0 × 10−4 MJ 2.0 8.3 × 103 Very rare, highly destructive
X 1.0 1.0 × 10−3 M⊕ 0.3 3.6 × 103 Common, little effect
Y 3.0 × 10−2 3.0 × 10−4 M⊕ 0.3 1.2 × 104 Relatively rare, destructive
Z 1.0 × 10−2 3.0 × 10−4 M⊕ 0.3 1.2 × 104 Very rare, highly destructive

4.3 Results of numerical integrations

In Fig. 4 we plot the initial values of (am/rH, em) of 104 moons in
each the six close encounter simulations described in Table 1. The
variable rH represents the Hill radius of the parent planet. We plot

in red those orbits which survive the encounter and remain bound,
and in black those moons which were ejected. The panels on the
left are for Jupiter-mass planets, while those on the right are for
Earth-mass planets.
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Liberating exomoons in WD planetary systems 223

Figure 4. Plots of the initial values of (am/rH, p, em) for 104 moons in each the close encounter simulations from Table 1. The red dots denote moons which
survive the encounter and remain bound. The black dots are moons which were ejected. The panels on the left are Jupiter-mass planets while the panels on the
right are Earth-mass planets. To guide the eye, we use solid vertical lines to plot the current semimajor axes of the outer regular moon Callisto (grey), the outer
irregular moon S/2003-J-2 (green), and the Moon (purple). We then use dashed lines to plot their relative semimajor axis after the post-MS stellar mass loss
(assuming no tidal evolution), and add arrows to indicate that these limits can be further inward, depending on the degree of stellar mass loss (see Section 2).
It is clear that common but distant encounters of the type simulated in A (top-left) and X (middle-left) have little effect on the moons, while the closer, but
less common (each planet should experience ∼1) encounters simulated in B (top-right) and Y (middle-right) are disruptive, while very close and very rare
encounters such as C and Z are very disruptive. The bottom panel illustrates the survival fraction as a function of semimajor axis, demonstrating that the single
close encounter illustrated in B and Y cause �50 per cent of satellites to be ejected over a large volume of parameter space.
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Figure 5. Average number of planets per system with a given close-approach pericentre. Left: Jupiter-mass planets. Right: Earth-mass planets. Top: results
as a function of absolute pericentre (au). Bottom: results as a function of pericentre scaled by the initial semimajor axis of the inner planet. The dotted lines
illustrated values of 0.33 (Jupiter-mass planets) and 1.0 (Earth-mass planets), respectively, and are merely to guide the eye. We find that around a third of
Jupiter-mass systems will experience a planet scattering to q/ai ≤ 0.1, while every Earth-mass simulation on average experiences at least one planet scattering
to q/ai ≤ 0.1. Hence, the majority of irregular moons would be lost from Jupiter-mass systems, while the Moon would be lost from Earth-mass systems.

It is clear that common but distant encounters of the type sim-
ulated in A (top-left) and X (top-right) have little effect on the
moons, while the closer, but less common encounters simulated
in B (middle-left) and Y (middle-right) are more disruptive. Very
rare encounters of the type plotted in C and Z (bottom-left and
bottom-right, respectively) can eject moons from the vast majority
of the Hill sphere from a single close encounter. We emphasize
that although the encounters in B and Y are indeed less common,
they were deliberately selected so that each planet experiences on
average at least one such encounter that was at least this destructive
(see Fig. 2).

From the histogram at the bottom of Fig. 4, one can see
that single close encounters of the type in simulations B and
Y cause �50 per cent of satellites to be ejected from a large volume
of the Hill sphere. Such encounters would clearly be sufficient to
eject the majority of loosely bound irregular moons, as well as much
more massive objects such as our own Moon.

We emphasize that many of the results obtained herein will apply
directly to MS stars as well as the post-MS WDs we have focused
on. In other words, planet–planet scattering around MS stars will
cause the loss of moons (Gong et al. 2013). A more detailed inves-
tigation of the parameter dependence is warranted in order to gain
an understanding of (a) the cumulative effect of multiple close en-
counters (Fig. 4 illustrates the effect of only a single encounter out
of the many seen in Fig. 3), and (b) when/if moons can survive the
planet–planet scattering process at all stages of the stellar life-cycle.

In Appendix C we provide some analytic approximations to deter-
mine in what regimes might an impulse approximation be applicable
and able to explain our numerical results.

5 D I STRI BUTI ON O F PLANETA RY
PERI CENTRES (WI TH RESPECT
TO T H E W H I T E DWA R F )

In Fig. 1 we find that during the scattering process, the innermost
planet occasionally attains a pericentre (with respect to the central
WD) as low as ∼0.01 au. This has important ramifications for
any moons still orbiting the planet at the point of close-pericentre
approach. Even if no moons have been lost during close planet–
planet encounters of the type modelled in Section 4, at the time
of pericentre passage, the radius of the planetary Hill sphere will
shrink significantly, as rH ∝ q (see equation 1). This shrinkage will
cause any outer moons with am > rH(q) to be lost as the Hill radius
contracts.

To understand the frequency with which close-pericentre ap-
proaches occur, we plot in Fig. 5 the distribution of close pericentre
approaches seen in the scattering simulations of Section 3.1. We
present the results as functions of both the absolute pericentre, q,
and as functions of the pericentre scaled by the initial semimajor
axis of the inner planet, q/ai. The latter is used to indicate the
degree by which the Hill radius of the planet will have shrunk com-
pared to the initial scale of the Hill radius before any mass loss, or
planet–planet scattering took place.

Given the unknown distribution of orbital parameters for exo-
moons, we consider a nominal value of q/ai ≈ 0.1, indicating that
the Hill radius has shrunk by a factor of 10, or that the Hill volume
has shrunk by a factor of 1000. Such a reduction would suffice to
unbind the Earth’s Moon, many of the irregular moons of Jupiter
and Saturn, and would be within a factor of ∼2 of unbinding outer
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Liberating exomoons in WD planetary systems 225

regular moons such as Callisto. I.e. it is a significant reduction that
would act to liberate many moons in the Solar system.

We find that around a third of Jupiter-mass systems will expe-
rience a planet scattering to q/ai ≤ 0.1, while every Earth-mass
simulation on average experiences at least one planet scattering to
q/ai ≤ 0.1. These frequencies would cause the majority of irregular
moons to be lost from the close-approach planet in Jupiter-mass
systems, while the loss of regular moons at smaller am would be
less common. Around systems of Earth-mass planets, the Moon
would be lost at such pericentre approaches.

It is unclear from Figs 4 and 5 whether the close planet–planet
scatterings seen in Fig. 4 are more efficient at liberating exomoons
than the close-pericentre passages illustrated in Fig. 5. Of particular
importance will be understanding the number (and properties) of
close planet–planet scatterings which occur before the first close-
pericentre passage with the WD, as this will dictate whether any
exomoons remain bound to the planet, ready to be ejected into a
WD-grazing orbit.

However, we note that exomoons liberated during planet–planet
scatterings will typically be at large distances from the WD, and
their subsequent fate will presumably entail repeated chaotic scat-
terings (as they are on planet-crossing orbits), making it unclear
just what fraction might ultimately be delivered to the central WD.
In contrast, the moons liberated at close pericentre approach to the
WD may be fewer in number, but importantly, when moons are
lost from the planet, they will automatically occupy orbits about
the WD with a pericentre that is at least as small as the pericentre
of the planetary orbit. Consequently, the moons will naturally be
placed on to orbits that bring them close to the WD, causing them
to become ideal candidates for future tidal disruption and subse-
quent pollution of the WD. We note that the liberated exomoon and
parent planets must occupy crossing orbits, hence future pericentre
passes by the planet will likely cause significant perturbation to the
liberated exomoon’s orbit, potentially scattering it into/through the
Roche surface of the WD.

6 D ISCUSSION

6.1 Fate of liberated moons

We have demonstrated that exomoons will be liberated from plane-
tary orbits, both during close planet–planet encounters and at close-
pericentre passage between the planet and WD. The fate of these
liberated moons remains an open question, as they may, (i) remain
in orbit about the WD; (ii) be scattered out of the system by a planet;
(iii) collide with other moons or planets, fragmenting and adding
to the debris already in the system; or (iv) be scattered within the
Roche radius of the WD.

If (i) occurs, and an exomoon remains in orbit about the WD, the
exomoon may still contribute to pollution of the WD by acting as a
perturbative agent on other smaller bodies in the system, going on
to (e.g.) scatter members of a planetesimal belt on to WD-crossing
orbits in a manner similar to the planet–planetesimal pollution of
WDs studied by Bonsor et al. (2011). We note that such perturba-
tions from exomoons may be particularly efficient, as the exomoons
are likely to be scattered by their parent planets on to rather eccentric
orbits which may initially be in highly non-equilibrium configura-
tions with respect to such a population of small bodies.

If (iii) ultimately occurs, and collisional debris is created, then we
note that as the mass of moons in the Solar system is ∼1000 × more
than two orders of magnitude greater than the mass of objects in the
asteroid belt, the amount of debris created in the system will be large.

Moreover, this large mass of debris will initially occupy unstable
(planet-crossing) orbits and will itself be scattered by planets, with
some fraction possibly being scattered towards the WD.

If (iv) ultimately occurs, and the entire mass of a moon enters
the Roche radius of the WD, then we stress again, that a large
mass exomoon provides a huge reservoir of material to pollute
the WD. We note that it is far more likely for an exomoon to
encounter the Roche surface of a WD than the physical surface of
a WD. Hence it is most likely that in this scenario an exomoon
would be tidally disrupted (similar to the asteroids studied in Veras
et al. 2014b, 2015b), perhaps resulting in an observational signature
qualitatively similar to that seen in the disrupting object(s) around
WD 1145+017 (Vanderberg et al. 2015). A liberated moon which
collides with the WD would likely produce an observable transient
(Bear & Soker 2013; Di Stefano et al. 2015) as well as extreme
levels of photospheric pollution. In DBZ WDs, the mass of this
moon would be retained in the convective layer for up to about a
Myr, providing an easily observable signature.

We note that, as discussed in Section 5, exomoons which are
released at close-pericentre passage between the planet and WD will
naturally have orbits whose pericentre is very close to the Roche
radius of the WD. Subsequent pericentre passes by the planet will
perturb the (now WD-centred) orbit of the liberated moon. Some
such perturbations would completely liberate moons, while others
would cause it to hit the WD Roche surface and be disrupted.

It is clear that the unbinding of exomoons from their parent plan-
ets will initiate a phase of dynamical evolution which is likely to
be strongly chaotic. The unbound exomoons will initially occupy
orbits which cross those of their parent planets, essentially guar-
anteeing strong scattering events will occur during the subsequent
evolution of the system. The exomoons will effectively be test par-
ticles compared to their parent planets, and are likely to be scattered
into orbits that are both highly eccentric and inclined relative to the
initial plane of planetary orbits. However, compared to other typical
small bodies in planetary systems (asteroids, comets, etc.), liberated
exomoons are likely to be significantly more massive, contributing
significantly to the ‘mass budget’ of available subplanet mass ob-
jects in such systems, as well as being able to perturb the other small
bodies.

The specific fate of the exomoons liberated in Sections 4 and
5 will depend on the subsequent details of the dynamical scatter-
ing experienced among the various planets, liberated moons, and
collisional debris in the system. Moreover, the order of events is im-
portant: e.g. exomoons cannot be liberated during close-pericentre
passes with the WD if they have already been liberated during
previous planet–planet encounters at large distances from the WD.

In this present proof-of-principle study, we cannot definitively
quantify the fraction of liberated exomoons which will go on to
eventually occupy WD-grazing orbits and hence we cannot quan-
tify the number which will pollute the atmosphere of the WD. In
follow-up work we intend to elucidate this issue by following the
detailed long-term evolution of the liberated moons as they scatter
throughout the planetary system.

6.2 The population of moons

In addition to the above discussion of the fate of liberated ex-
omoons, we must also mention the uncertainties regarding how
many exomoons will exist, their size distribution, and their orbital
distribution. It is clear that an understanding of these quantities will
be essential if we are to go on to understand what fraction of such
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objects might be liberated by the mechanisms studied in Sections 4
and 5.

While hopes are high that the first exomoon observation will soon
occur (e.g. Kipping et al. 2015 and references therein), all of these
quantities are at present observationally unknown for exomoons
and must be extrapolated from the limited knowledge available to
us from the Solar system.

One could ultimately conceive that the pollution of WDs may
proceed by multiple paths, with the overall fraction of WDs which
are polluted, fWD, Polluted, being composed of contributions due to
the exomoon mechanism studied here, fWD, Polluted, Exomoon, as well
as any-and-all other mechanisms discussed in the introduction,
fWD, Polluted, Other. Hence we can write

fWD, Polluted = fWD, Polluted, Exomoon + fWD, Polluted, Other, (10)

and then decompose the exomoon component into

fWD, Polluted, Exomoon = fWD, MP × fScatter × fLiberate × fPollute, (11)

where fWD, MP is the fraction of WDs with multiplanet systems,
fScatter is the fraction of those systems which experience planet–
planet scattering, fLiberate is the fraction of those scattering systems
which liberate exomoons, and fPollute is the fraction of liberated
exomoons which go on to pollute the WD.

This study effectively demonstrates that fLiberate can be non-zero.
Detailed knowledge of the population of exomoons and/or assumed
forms for their orbital distribution would have to be assumed to
provide more detailed refinements of fLiberate: we defer elaboration
to a future investigation. Our proposed study mentioned at the end
of Section 6.1 (to follow the detailed fate of liberated exomoons)
will effectively quantify fPollute.

We note that observations of WD pollution effectively set
fWD, Polluted ≈ 0.3. We further note that fWD, MP and fScatter are com-
pletely unknown at this point. We emphasize that fScatter is not the
same as the fraction of simulations from (e.g.) Veras & Gänsicke
(2015) which scatter during the WD phase: such simulations were
initialized with conditions which may be far from those present
around real WDs.

6.3 Additional considerations

Gravity may not be the only perturbative force on exomoons. Al-
though GB mass loss does not alter a moon’s orbit with respect
to its parent planet, intense GB radiation could affect its motion.
Despite shadowing effects (see e.g. Rubincam 2013), a small moon
(100 m–10 km) may be spun-up to fission (Veras et al. 2014c). In
this case, the exomoon would become an exoring, and this exoring
would be subject to a similar type of disruption from close encoun-
ters with other planets during gravitational scattering on the WD
phase. If the moon survives spin-up, then GB radiation could alter
its orbit (Veras, Eggl & Gänsicke 2015a), potentially allowing it
to drift closer to the edge of the planet’s Hill radius. Just how the
orbital parameters of the moon would be affected by this radiation
is non-trivial and requires future exploration.

Included under the umbrella term moon are (i) bodies which orbit
entities smaller than planets, and (ii) double planets (two planets
orbiting each other). In the Solar system, centaurs, Main Belt as-
teroids, Jupiter trojans, and trans-Neptunian objects have all been
observed to contain moons. Also, although not yet observed, double
planets may form through close encounters (Ochiai, Nagasawa &
Ida 2014; Lewis et al. 2015). Further, moons of moons of planets
may be formed through a similar mechanism. Although these more

exotic types of moons may contribute negligibly to the total sys-
tem mass, their existence emphasizes the need to consider different
families of bodies in order to determine orbital architectures and
mass reservoirs in WD systems.

Finally, the disrupting object(s) around WD 1145+017 (Vander-
berg et al. 2015) may themselves be liberated exomoons. Further
dynamical studies are needed to determine if the provenance of that
minor planet lay in a post-MS exo-Kuiper belt, or around a planet.

7 C O N C L U S I O N S

Questions remain about the dynamical processes which cause WDs
to be polluted by remnant planetary material. A potentially major
source of extant planetary mass in these systems is exomoons. We
demonstrated in Section 3 that the onset of dynamical instability in
post-MS planetary systems causes planets to experience multiple
extreme close approaches within a tiny fraction of their Hill radii.
We went on to show in Section 4 that exomoons which survive GB
evolution can be easily liberated from their parent planets due to this
gravitational scattering. This result holds despite moons becoming
more entrenched inside their parent planet’s Hill radius due to post-
MS evolution (equation 7). Furthermore, in Section 5 we showed
that moons may also be released directly on to WD-grazing orbits
due to the Hill-sphere contraction experienced by highly scattered
planets with close-pericentre approaches to the WD. The liberation
of exomoons provides another population of objects which may
themselves be thrust into the WD or act as dynamical perturbers for
smaller pollutants.
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APPENDI X A : D EFI NI TI ON O F VARI ABL ES

For the convenience of the reader, we provide in Table A1 a list of
all of the quantities used throughout the paper.
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Table A1. Variables used in this paper.

Variable Explanation

A, B, C, D Labels for the four sets of close encounter simulations
ap Semimajor axis of parent planet
am Semimajor axis of moon’s orbit about parent planet
b Impact parameter between two planets during the planet–planet hyperbolic encounter orbit
bm Impact parameter between moon and flyby planet during the planet–planet hyperbolic encounter orbit
β =Vm, cη

0.5 m, constant of proportionality
C Constant of order unity used in defining rR

�V Kick velocity imparted to the satellite during the planet–planet hyperbolic encounter orbit
�V m,f Kick velocity perturbation imparted to the moon by flyby planet during the planet–planet hyperbolic encounter orbit
�V p,f Kick velocity perturbation imparted to the parent planet by flyby planet during the planet–planet hyperbolic encounter orbit
ep Eccentricity of parent planet
em Eccentricity of moon’s orbit about parent planet
η = am

rH
, moon’s semimajor axis as a fraction of the Hill sphere

ηMin,
Imp

The minimum value of η required to be in the impulsive regime (see equation C18)

ηMin,
Eject

The minimum value of η required for guaranteed ejection in the impulsive regime (see equation C25)

f True anomaly of orbit

g ≡ 1 + 3
(

q
am

)2 ( Vq
Vm,c

)4
, a useful dynamical quantity

G Gravitational constant
im Inclination of moon’s orbit about parent planet
k =q, m/q, ratio of close-approach distances during planet–planet hyperbolic encounter
K Fraction of Hill sphere outside of which moons become unstable
M⊕ Mass of the Earth
MJ Mass of Jupiter
M� Mass of the Sun
M� Mass of star
MMS

� Mass of star on main sequence
MWD

� Mass of star after turning into a white dwarf
Mp Mass of parent planet to moon
Mf Mass of flyby planet
Mm Mass of moon
Mwind Mass of gas from mass-loss wind from WD enclose within orbit of moon
nm Number of moons in close encounter simulations
μ =G(Mp + Mf)
ωm Longitude of pericentre of moon’s orbit about parent planet
�m Longitude of ascending node of moon’s orbit about parent planet
Mm Mean longitude of moon’s orbit about parent planet
Pp Orbital period of parent planet
Pm Period of moon’s orbit about parent planet
q Pericentre of the planet–planet hyperbolic encounter orbit
qm Pericentre of the planet–moon hyperbolic encounter orbit
rm Moon–planet separation
rH Hill radius of parent planet
rMS

H Hill radius of parent planet when star is on MS
rWD

H Hill radius of parent planet after star becomes a WD
rR Roche radius of parent planet
Rp Physical radius of parent planet
ρp Density of parent planet
ρm Density of moon
ρwind Density of mass-loss wind from WD
venc Volume enclosed by moon’s orbit about parent planet
V WD

p,K Circular velocity of planet in orbit around WD
Vq Velocity at pericentre of the planet–planet hyperbolic encounter orbit
V∞ Velocity at infinity of the planet–planet hyperbolic encounter orbit
Vm, c Circular velocity of moon’s orbit about parent planet
Vwind Velocity of wind ejected from WD

APPENDIX B: ENCLOSED MASS WITHIN
M O O N O R B I T

In Section 2 we discussed the effects on the stellar mass-loss wind
on the orbits of moons. We here demonstrate that the mass of wind-

driven material within the orbit of the moon (about the planet) is
negligible compared to the mass of the planet, and hence the orbit
of the moon will be negligibly perturbed.

The enclosed mass within the orbit is Mwind = vencρwind, where
venc is the enclosed volume. Because of stability considerations,
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Venc is maximized when rm ≈ rH/2 and the orbit is circular. Conse-
quently, max(Mwind) = πr3

Hmax(ρwind)/6. To compute max(ρwind),
consider that the maximum mass-loss rate for any star that becomes
a WD is on the order of 10−4 M� yr−1 (see fig. 2 of Mustill et al.
2014). By adopting this mass-loss rate, we can derive max(ρwind) by
assuming a spherically symmetric wind and using equation (5) from
Dong et al. (2010) or equation (54) from Veras et al. (2015a). Con-
sequently, we find max(ρwind) = max(Ṁ�)/(4πa2

Pvwind) = 3.1 ×
10−45

( ap

30 au

)−2
M� m−3, assuming that vwind corresponds to the

escape speed from a typical WD (4 × 103 km s−1). The maximum
enclosed additional mass due to the wind is thus max(Mwind) ∼
5 × 10−8

( ap

30 au

)
MP. Hence the additional enclosed mass due to the

wind is negligible compared to the planetary mass.

APPENDIX C : A NA LY TIC A PPROX IMATIONS

We now present some analytic approximations to shed light on the
numerical simulations of Section 4.

We denote the moon’s post-encounter orbital parameters with
primes. The moon may be destroyed by the planet, or escape the
planet’s grasp (dissociate), if

am(1 − em) ≤ rR, (C1)

am(1 + em) ≥ KrWD
H , (C2)

where K ≈ 1/2 for coplanar prograde satellites, and K ≈ 1 for
coplanar retrograde satellites. In general, computing am and em is
non-trivial. In some cases, however, one might be able to utilize
the impulse approximation. This approximation holds if both the
perturber is quick and the encounter time-scale is shorter than the
moon’s orbital period about the planet (Zakamska & Tremaine 2004;
Veras & Moeckel 2012; Jackson et al. 2014). This condition is(

Vq

Vm,c

)
>

1

2π

(
q

am

)
or

a3/2
m >

b
√

G(Mp + Mm)

2πVq
≈
√

GMp

2π

(
q

Vq

)
, (C3)

where the moon’s circular velocity Vm,c ≡√G(Mp + Mm)/am, and
the last term in parenthesis, representing the pericentre time-scale,
is determined from the close encounter data.

Now we evaluate the maximum possible value of this important
ratio for which the impulse approximation can occur.5 We compute
this quantity at both the Roche radius of the planet (denoted by
the subscript ‘inner’) and the distance beyond which the moon
may escape (denoted by the subscript ‘outer’). Equations (C1) and
(C2) imply that moons can occupy orbits ranging over rR

1−em
< am <

KrWD
H

1+em
, corresponding to a wide range of time-scales. Consequently,

max

(
q

Vq

)
inner

=
(

2π√
GMp

)(
rR

1 − em

)3/2

, (C4)

5 The impulse approximation is valid for arbitrarily small values of q/Vq.
In fact, the impulse approximation is still valid when the perturbing planet
flies inside of the moon’s orbit.

and

max

(
q

Vq

)
outer

=
(

2π√
GMp

)(
KrWD

H

1 + em

)3/2

= aWD
p

vWD
p,K

(
2π√

3

)⎛⎝K
(

1 − eMS
p

)
1 + em

⎞
⎠

3/2

, (C5)

which is not a function of planetary mass.
For Earth- and Jupiter-mass planets, rR ∼ 5 × 10−5 and ∼ 5 ×

10−4 au, respectively. For typical values of aWD
p = 30 au, and ep =

em = 0 we find that

max

(
q

Vq

)
inner,
Earth-mass

∼ 6 × 103 s ∼ 2 h, (C6)

max

(
q

Vq

)
inner,
Jupiter-mass

∼ 1.2 × 104 s ∼ 4 h, (C7)

max

(
q

Vq

)
outer

∼ 3 × 109 s ∼ 90 yr. (C8)

If, as an example, we consider the regular moon Callisto, with
a semimajor axis ∼3 × 10−2rH, J, then using equation (C3), any
encounter satisfying ( q

Vq
) < (3 × 10−2)3/2 × 90 yr ∼ 170 d will be

impulsive. This critical value will be reduced to about 50 d after the
Sun becomes a WD.6

If the impulse approximation can be used, then we can relate the
primed and unprimed variables with the formalism of Jackson et al.
(2014). In particular, we are interested in the semimajor axis and
eccentricity changes due to impulses. Based on their formulae, we
find that equation (C2) is guaranteed to hold, and escape will occur,
if the kick speed |�V | on the satellite exceeds

|�V |
Vm,c

= 1 +
√√√√ 2

1 +
(

KrH
ap

)−1 ≈ 1, (C9)

where the moon’s circular velocity Vm,c ≡√G(Mp + Mm)/am and
the approximation results from typical values of KrH/ap being at
most on the order of 10−2. Note that as the value in parenthesis
approaches infinity, which mirrors the case of em → 1, we recover
the formulae in Jackson et al. (2014) and Veras et al. (2014a).

We derived equation (C9) by considering the extreme cases of
equations (4), (6), and (8) in Jackson et al. (2014). We set em =
0 and considered kick directions that maximized the magnitude of
the kick needed to eject an orbit.

Now we must relate �V to the simulation output from Veras &
Gänsicke (2015), as well as assumptions about the moon’s location.
We proceed by appealing to Rutherford scattering. First consider
that �V is a combination of perturbations from a flyby planet on
both the moon-hosting planet and the moon itself. Denote the re-
sulting kick velocities as �V mf and �V pf . Consequently, when
the flyby star is much closer to the moon, �V ≈ �V mf. Alter-
natively, when the flyby star is much closer to the moon-hosting
planet, �V ≈ �V pf . We focus on these two cases only, and further
assume that the moon is on an initially circular orbit.

6 Jupiter will survive the Sun’s post-MS evolution and expand its orbit
adiabatically (Duncan & Lissauer 1998; Veras & Wyatt 2012); Callisto’s
orbit will remain unchanged but will be further inside Jupiter’s (new) Hill
sphere.
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We derive the kick speed in both cases from equations from page
422 of Binney & Tremaine (1987) as

|�V pf | = 2GMfV∞√
b2V 4∞ + G2(Mf + Mp)2

or

|�V pf |
Vm,c

= 2Mf

Mp + Mm

(
V∞
Vm,c

)

×
[(

Mf + Mp

Mp + Mm

)2

+
(

b

am

)2 (
V∞
Vm,c

)4
]−1/2

(C10)

≈ 2

(
Vq

Vm,c

)[
4 +
(

q

am

)2 (
Vq

Vm,c

)4
]−1/2

(C11)

and

|�V mf | = 2GMfV∞√
b2

mV 4∞ + G2 (Mf + Mm)2

or

|�V mf |
Vm,c

= 2Mf

Mp + Mm

(
V∞
Vm,c

)

×
[(

Mf + Mm

Mp + Mm

)2

+
(

bm

am

)2 (
V∞
Vm,c

)4
]−1/2

(C12)

≈ 2

(
Vq

Vm,c

)[
1 +
(

qm

am

)2 (
Vq

Vm,c

)4
]−1/2

, (C13)

where bm is the impact parameter of the flyby and moon, qm is the
pericentre distance of the flyby and moon, and the approximations
in equations (C11) and (C13) assume Mf ≈ Mp, Mm � Mp, and the
relations from equations (8) and (9). The value of qm is dependent
not only on the semimajor axis of the moon, but also on its location
in its orbit around the planet.

The form of equations (C11) and (C13), which each is a function
of two ratios only, facilitates comparison with equation (C9). Setting
equations (C11) and (C13) each equal to unity defines surfaces of
section which represents the boundary defining where moon escape
is guaranteed to occur. We plot the guaranteed escape regions in
Fig. C1, and remind the reader that these plots are applicable only in
the impulse approximation, where am is large enough that equation
(C3) is satisfied. Moreover, the top plot of Fig. C1 is applicable
when |�V pf | � |�V mf | , i.e.(

q

am

)2

�
(

qm

am

)2

− 3

(
Vq

Vm,c

)−4

, (C14)

while the bottom plot of Fig. C1 is applicable when |�V pf | �
|�V mf | , i.e.(

q

am

)2

�
(

qm

am

)2

− 3

(
Vq

Vm,c

)−4

. (C15)

The figure demonstrates that escape is guaranteed for particular
ranges of Vq/Vm, c. Near-collisions between both planets are highly
destructive to moons, perturbing them out of the system for a range
of Vq/Vm, c that spans a value greater than am/q. Near-collisions
between the flyby planet and moon guarantees escape for a more
restricted range of Vq/Vm, c that spans a factor of a few. Given the

Figure C1. Phase-space locations guaranteeing moon escape when the
impulse approximation holds (equation C3), where we assume that the mass
of the flyby planet is equal to the moon-hosting planet, the moon mass is
about 10−3–10−2 that of the mass of its parent planet, and the dominant kick
imparted to the moon–planet system is on the planet (top panel; equation
C11) or moon (bottom panel; equation C13). Different assumptions about
the moon mass would shift the x-axes on the plots to stay in the appropriate
regions of applicability. These plots suggest that moon escape should be a
common occurrence if planet–planet close encounters occur within 0.5rH

and the pericentre speed between both stars is at least comparable to the
circular speed of the moon.

distribution of close encounters in Fig. 3, we should expect that
moon escape is a common occurrence.

We will find it convenient to define a variable, k, such that qm

≡ kq and we emphasize that k can be greater than or less than 1. We
can then rewrite the limiting cases for equations (C14) and (C15)
as

|�V pf | �=
�

|�V mf | , (C16)

resulting in

k2 �=
�

1 + 3

(
q

am

)−2 (
Vq

Vm,c

)−4

. (C17)

An important simplification for equations (C14)–(C17) comes
from noting that a2

mV 4
m,c = (GMp)2, i.e. it is not a function of am.

In addition, we note that even when the impulse approximation
does not hold, liberation of the moon may still occur, as the impulse
approximation is simply a convenient calculation tool.
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Table C1. Useful derived quantities for the simulations listed in Table 1. Definitions can be found in Table A1.

q/Vq q2V 4
q (GMp)2 g ≡ 1 + 3 (GMp)2

q2V 4
q

|�V pf | ηMin,
Imp

Vm, cη
0.5 ηMin,

Eject

Simulation (d) (au6 d−4) (au6 d−4) (#) (Vq) (#) (au d−1) (#)

A 1.0 × 104 1.0 × 10−10 9.0 × 10−14 1.0 6.0 × 10−2 0.4 3.8 × 10−4 4.0 × 101

B 1.0 × 103 1.0 × 10−12 9.0 × 10−14 1.3 5.1 × 10−1 0.09 3.8 × 10−4 5.5 × 10−1

C 3.3 × 103 8.1 × 10−15 9.0 × 10−14 3.4 × 101 9.9 × 10−1 0.2 3.8 × 10−4 1.6
X 1.0 × 103 1.0 × 10−12 8.0 × 10−19 1.0 1.8 × 10−3 0.09 5.4 × 10−5 9.1 × 102

Y 1.0 × 102 7.3 × 10−18 8.0 × 10−19 1.3 5.5 × 10−1 0.02 5.4 × 10−5 1.1 × 10−1

Z 3.3 × 101 8.1 × 10−19 8.0 × 10−19 4.0 8.9 × 10−1 0.01 5.4 × 10−5 4.1 × 10−2

C1 Linking numerical and analytical results

We now link our numerical results (from Section 4) with the analyt-
ics from Appendix C. We do so as follows: consider the parameter
η, which represents a fraction of the Hill radius (am = ηrH).

For a planet at ap = 30 au, the period of the planet is Pp �
164 yr. The orbital period of the moon about the planet will be
Pm = ( 1

3

)1/2
η3/2Pp ∼ 3.5 × 104η3/2 d. As such, the moon will be

in the impulse regime dictated by equation (C3) if

3.5 × 104η3/2 d >

(
q

Vq

)
or

η � 10−3

⎡
⎣
(

q

Vq

)
d

⎤
⎦

2/3

. (C18)

We tabulate the values of η which satisfy the impulse approximation
for sets A–C and X–Z in Tables 1 and C1.

If we consider the values of q and rH in Tables 1 and C1, then
we see that simulation sets A and X have q significantly exterior to
rH/2, hence are significantly beyond the moons, while sets B and
C have q ≈ rH/2, and hence are right at the edge of the region in
which the moon’s orbit, while Y and Z have q � rH/2, penetrating
deep into the moons’ orbital region. The geometry of these flybys
means that

Geometry ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k2 ∼ 1 for A,

0 < k2 � 4 for B,C,

k2 ∼ 1 for X,

0 < k2 � 36 for Y,

0 < k2 � 256 for Z,

where k = qm/q. We evaluate g ≡ 1 + 3( q

am
)−2( Vq

Vm,c
)−4 from equa-

tion (C17) (see Tables 1 and C1), and find that the relative magnitude
of the kicks will be given by

k2 ∼ g ⇒ |�V pf | ∼ |�V mf | for A, (C19)

k2 �= g ⇒ |�V pf | ∼ |�V mf | for B, (C20)

k2 � g ⇒ |�V pf | ∼ |�V mf | for C, (C21)

k2 ∼ g ⇒ |�V pf | ∼ |�V mf | for X, (C22)

k2 �=
�

g ⇒ |�V pf | �=
�

|�V mf | for Y, Z. (C23)

Hence the dominant perturbation will be of order

|�V | ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∼ |�V pf | ∼ O
(

10−1Vq

)
for A,

∼ |�V mf | ∼ O(Vq) for B, C,

∼ |�V pf | ∼ O
(

10−3Vq

)
for X,

∼ max
(|�V pf |, |�V mf |

) ∼ O(Vq) for Y, Z.

(C24)

We wish to understand whether the condition for ejection in the
impulsive regime in equation (C9) (|�V | � Vm,c) is satisfied for the
cases in equation (C24). Hence we use the η-dependant expressions
for Vm, c = βη−0.5 from Table C1 to find that |�V | � Vm,c implies

η �
(

β

|�V |
)2

. (C25)

We evaluate equation (C25) using the equation (C24) and tabulate
the values of η which will satisfy this ejection criterion for simu-
lation sets A–C and X–Z in Table 1. The tabulated values for ηMin,

Eject

(the minimum value of η required for guaranteed ejection in the
impulsive regime) make clear that this can never be satisfied for A,
C, and X, as ηMin,

Eject
≥ 1.0. In contrast, ejection seems almost guar-

anteed for the majority of moon orbits in Z. However, we note that
significant ejection occurs in simulation set C, despite the major-
ity of moons not being in the impulsive regime, highlighting the
additional insight numerical simulations can provide.

Comparison of the analytic approximations in this section with
the numerical results depicted in Fig. 4 confirms that close planetary
approaches (within the Hill sphere) will efficiently eject moons.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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