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ABSTRACT11

This paper introduces a novel control approach to maximizing the output energy of an12

adjustable slope angle wave energy converter (ASAWEC) with oil-hydraulic power take-off.13

Different from typical floating-buoy WECs, the ASAWEC is capable of capturing wave energy14

from both heave and surge modes of wave motions. For different waves, online determination of15

the titling angle plays a significant role in optimizing the overall efficiency of the ASAWEC. To16

enhance this task, the proposed method was developed based on a learning vector quantitative17

neural network (LVQNN) algorithm. First, the LVQNN-based supervisor controller detects wave18

conditions and directly produces the optimal titling angles. Second, a so-called efficiency19

optimization mechanism (EOM) with a secondary controller was designed to regulate20

automatically the ASAWEC slope angle to the desired value sent from the supervisor controller.21

A prototype of the ASAWEC was fabricated and a series of simulations and experiments was22

performed to train the supervisor controller and validate the effectiveness of the proposed control23

approach with regular waves. The results indicated that the system could reach the optimal angle24

within 2s and subsequently, the output energy could be maximized. Compared to the performance25

of a system with a vertically fixed slope angle, an increase of 5% in the overall efficiency was26

achieved. In addition, simulations of the controlled system were performed with irregular waves27

to confirm the applicability of the proposed approach in practice.28

29

Key Words: Wave energy converter, ASAWEC, oil-hydraulic power take-off, learning vector30

quantitative neural network, control systems.31

32

1. Introduction33

Among various sources of renewable energy, ocean wave energy is important, as it has34

significant potential in many locations, due to its relatively high power density and predictability35
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[1]. Therefore, wave energy conversion technologies have gained more attention to meet the1

increasing demand for electrical power.2

To harvest energy from waves, floating-buoy type wave energy converter (WEC) is the simplest3

and most popular design, and has been a focus of research. To maximize energy extraction from4

waves, the WEC must reach two optimal conditions, amplitude and phase, for each sinusoidal5

incident wave [2]. To satisfy the amplitude condition, the amplitudes of the radiated waves must6

be exactly half that of the incident waves [2,3]. To satisfy the phase condition, the oscillating7

velocity of the body must be in phase with the excitation force on the body. This can be achieved8

using phase control to obtain the resonance condition in which the wave frequency equals the9

natural frequency of the body. Here, two main control strategies, reactive control and latching10

control, are applied to WEC devices. Several interesting works have been reported [4-8]. Although11

phase control is capable of substantially increasing the amount of absorbed energy,12

implementation of this technique in real irregular waves has met both theoretical and practical13

difficulties that have not been satisfactorily overcome [9]. In addition, a phase control strategy14

requires governing equations for the body oscillations that are difficult to derive under real-world15

conditions. Modeling the highly non-linear behavior of both friction and wave characteristics is16

problematic.17

To overcome the difficulty in regulating the power flow of WECs, neural networks (NNs) can18

be used to adaptively control the power-take-off (PTO) mechanisms [10]. As reported in [11,12],19

NNs were used to forecast the wave information in the near future to adjust in advance the PTO20

force. In another study [13], NN was utilized to derive the heuristic relationship between the21

system inputs and the control parameters. Although remarkable results were obtained using these22

approaches, the development and use of the control logic is complex, which restricts their23

applicability. Therefore, a simple and efficient way of maximizing WEC productivity without24

information on system dynamics is required.25

To meet that requirement, this study focuses on a particular type of floating-buoy WEC, which26

was recently introduced: the adjustable slope angle wave energy converter (ASAWEC) [14]. The27

ASAWEC comprises mainly a sliding-buoy structure and a hydrostatic transmission-based PTO28

system. Different from typical floating-buoy designs, which are normally fixed vertically, an29

efficiency optimization mechanism (EOM) was integrated in the ASAWEC to enable adjustment30

of the system slope (or tilting angle) to increase the capture ratio from waves in both heave and31

surge modes. An analytical study of the interaction between waves and a buoy in the horizontal32

and vertical directions was carried out by Heikkinen et al. [15]. The results indicated that by33

combining the two modes to create the cylinder movement, the amount of absorbed energy could34

be increased. In the study by Thinh et al. [14], the effect of non-vertical linear motion of a35
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hemispherical-float wave energy converter was evaluated by both numerical simulations and1

experiments. The sliding angle exerted a significant impact on the energy capture ratio. Therefore,2

this paper aims to develop a simple control approach to maximize energy harvesting capability of3

the ASAWEC by regulating its slope angle. A control scheme that includes a supervisor controller4

and a secondary controller for the EOM mechanism is designed. The supervisor controller is5

constructed using a learning vector quantitative neural network (LVQNN) algorithm to classify6

wave conditions based on limited wave information, and so produces the optimal titling angles.7

The secondary controller with a simple control algorithm is used to drive the EOM mechanism to8

regulate automatically the ASAWEC slope angle to reach the value determined by the supervisor9

controller. In this way, the energy capture ratio is improved.10

The remainder of this paper is organized as follows: in Section 2, the ASAWEC configuration11

is briefly introduced and, a mathematical model is developed for further investigation; in Section12

3, a prototype of the suggested ASAWEC is fabricated and the experimental apparatus is discussed;13

the LVQNN-based on EOM control scheme is constructed and optimized using training data in14

Section 4; the proposed approach is evaluated by both numerical simulations and real-time15

experiments in Section 5; and concluding remarks are provided in Section 6.16

17

2. EOM-Based ASAWEC design and modeling18

19

2.1. EOM-based ASAWEC configuration20

To maximize the ability to harvest energy from waves, an ASAWEC device design is suggested21

in Fig. 1.22
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(3) Hydraulic cylinder (4) Check valves
(5) One-directional hydraulic motor (6) Electric generator
(7) Battery (8) Converter
(9) High pressure accumulator (10) EOM

Fig. 1 Configuration of the proposed ASAWEC1

2

The ASAWEC includes the following two modules:3

 PTO module: converts wave energy into electric energy. This consists of a hydrostatic4

transmission (HST) and an electrical generator. The system interacts with waves through a5

sub-buoy jointed with a sliding shaft. This shaft can slide along sliding bearings or through6

rollers fixed on the device frame. The sliding shaft is then linked in parallel to a non-symmetric7

hydraulic cylinder. To convert mechanical energy into hydraulic energy, the HST is a simple8

hydraulic circuit with a one-directional hydraulic motor, a high-pressure accumulator (HPA),9

check valves and a small oil sump. The mechanical energy of the PTO is transmitted to the10

HST through the large chamber of the cylinder, while the small chamber is connected to the11

oil sump. For safety, a pressure relief valve is used to protect the system from damage due to12

extremely high power waves. Next, a generator block is employed to generate electric energy13

from hydraulic energy. This block comprises an electrical generator, a converter and an14

electricity storage device, such as battery. The output shaft of the hydraulic motor is coupled15

to the generator shaft to generate electricity.16

 EOM module: designed based on the ASAWEC configuration. A linear actuator with an17

appropriate driver is selected as the power source for the EOM. A controller is designed for18

this mechanism in order to adjust automatically the tilting angle of the PTO according to wave19

conditions in such a way that the device can absorb most of the energy from waves.20

During operation, waves force the sub-buoy to move up and down based on the floating-buoy21

concept. Here, only upward motion of the sub-buoy is utilized for energy harvesting. During22

upward motion, the cylinder is retracted and a high-pressure flow is created in the large cylinder23

chamber. This pressurized flow enters the hydraulic circuit through the first check valve (CV1)24

and reaches the inlet of the hydraulic motor. Consequently, in this case the electric generator25

operates to generate electricity. In contrast, during downward motion of the cylinder, the low-26

pressure flow is supplied from the oil sump to fill the large cylinder chamber through the second27

check valve (CV2). The pressure at the hydraulic motor side is not affected in this case. To store28

redundant energy generated by large waves and to facilitate smooth performance of the electric29

generator between upward and downward motion of the sub-buoy, an HPA accumulator is30

employed. Using this HPA, the generator speed does not decrease to zero when the cylinder31

extends, and so, the system performance is improved.32
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1

2.2. Modeling of the ASAWEC device2

3

2.2.1.Equations of motion4

Generally, real ocean wave evaluation can be represented as [16]:5

2expi nft
n

n

x Z dt




  (1)6

where
/2

2

/2
(1/ ) ( )exp , ( 0,1,2,...)

T
i nft

n
T

Z T x t dt n


  , 2 /f T is the fundamental frequency.7

The mean wave power (Pwave) can be described as a function of the mean wave energy density8

and the group velocity [2]:9

wave gP Ec (2)10

where E is the mean wave energy density per horizontal unit area and is computed as:11

2 21

8
k pE E E g H   (3)12

and
gc is the group velocity. For a constant water depth h at near shore locations (neither deep13

nor shallow water), the group velocity is obtained as follows:14

 
( )

2 tanh( ) 2
g p

D kh g
c c D kh

kh 
  (4)15

where  D kh is the depth function:16

   
2

1 tanh
sinh(2 )

kh
D kh kh

kh

 
  
 

(5)17

here k is the wave number and is determined as follows: 2 /k   .18

An analysis of forces acting on the PTO mechanism is shown in Fig. 2. Assume that the PTO19

tilting angle is adjusted to angle WEC
 by the EOM. The movement of the sub-buoy as well as the20

cylinder rod is then on an incline axis tagged as y(t). The buoy motion is then obtained following21

Newton’s second law:22

 cos
WEC u W WEC W u

My F F F F      (6)23

where M is the total mass of the moving parts, mainly the sub-buoy, sliding shaft and piston rod;24

W
 is the direction of the sum of hydrodynamic forces; Fu is the force supported by a control25

device assisting the oscillating body operation; and FW is the sum of hydrodynamic forces acting26

on the cylinder rod.27
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Fig. 2 Analysis of forces acting on the PTO mechanism2

3

The sum of hydrodynamic forces acting on the cylinder rod can be obtained by the following4

relation:5

W Wv WhF F F 
  

(7)6

where andWv WhF F
 

are in turn the hydrodynamic forces in the vertical and horizontal directions.7

In the vertical direction with heave motion [2], the hydrodynamic forces can be derived as:8

Wv ev rv b v f
F F F F F F Mg      (8)9

where Fev is excitation force, Frv is the radiated force acting on the buoy in heave motion (vertical10

direction); Fb is hydrostatic buoyancy force; Fv is the viscosity effect and Ff is the friction effect.11

In the horizontal direction with drag motion [2], the hydrodynamic force is computed as:12

Wh eh rh
F F F  (9)13

where Feh is excitation force; Frh is the radiated force acting on the buoy in surge motion14

(horizontal direction).15

The excitation force can be expressed as in equation (10):16

2 2
w Wh WvF F F  (10)17

18

2.2.2.HST model19

From Fig. 2, the force Fu can be derived as:20

u PTO mf
F F F  (11)21

where Fmf is the total mechanical friction force existing in the system and FPTO is the force22

generated by the fluid in the cylinder:23

1PTO LC T SC
F PA P A  (12)24
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where P1/ALC and PT/ASC are the pressure/section area of the cylinder large and small chambers,1

respectively. These areas are obtained from the piston bore, Dcyl, and piston rod, dcyl, as:2

 2 22

;
4 4

cyl cylcyl

LC SC

D dD
A A

 
  (13)3

In this system configuration, TP is neglected because the small cylinder chamber is connected4

to the tank. Then, the reactive force PTOF is generally determined from the characteristics of the5

HTS:6

1PTO LCF PA (14)7

where 1P is the pressure inside the bore chamber:8

 1
1 2

0

LC cv cv

LC

dP
A z Q Q

dt V A z


  


 (15)9

where  is the bulk modulus of fluid; L is the cylinder stroke, and 1cvQ and 2cvQ are the flow10

rates through check valve 1 and check valve 2, respectively. They are obtained using the following11

equations [17]:12

1 2
1 1 1 2

1 1 2

2( )

0,

cv d o

f

cv

P P
Q C A if P P

Q if P P



 
 




 

(16)13

1
2 2 1

2 1

2( )

0,

t
cv d o t

f

cv t

P P
Q C A if P P

Q if P P



 
 




 

(17)14

where dC is the discharge coefficient, 1oA and 2oA are the working area of each check valve, f15

is the fluid density, tP is the pressure of the fluid inside the tank, and 2P is the pressure in the16

chamber connected to the high-pressure accumulator and can be obtained by the continuity:17

 2
1cv ha m

p ha

dP
Q Q Q

dt V V


  


(18)18

where mQ and haQ are the flow rates through the hydraulic motor and into the HPA, respectively;19

pV is the volume of fluid inside the segment pipe that connects check valve 1 to the input port of20

the motor, and haV is the fluid volume in the accumulator.21

The flow rate haQ and fluid volume haV , which enter the accumulator, are calculated as:22



8

2 0

1

0
0 2 0

2

0,

1 ,
n

ha

if P P

V p
V if P P

p
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  (20)2

where 0V is the accumulator capacity, 0P is the pre-charge pressure, 2P is the inlet gauge pressure3

of accumulator and n is the specific heat ratio.4

And the flow rate via the hydraulic motor is defined as:5

/m m m vQ D   (21)6

where , andm m vD   are the displacement, angular speed and volumetric efficiency of the motor.7

The actual output torque of the motor is given as:8

/ 2m m mpD    (22)9

where, p is the pressure difference between two ports of the motor, and m is the mechanical10

efficiency.11

The electric power generated by the electric generator with overall efficiency
g can be12

evaluated as:13

2 2generator g g g g m mP        (23)14

where and
g g

  are in turn the torque and angular speed of the electric generator.15

16

2.2.3.EOM force analysis17

To drive the shaft-buoy to the optimal angle, an EOM using a linear actuator is integrated into18

the ASAWEC (Fig. 1). To select this actuator, which is capable of raising or lowering the shaft-19

buoy mechanism irrespective of wave lifting force, a moment analysis around the fulcrum “O” is20

carried out for the actuator force and shaft-buoy gravity force (Fig. 3). The moment balance21

equation, therefore, can be derived as follows:22

sin sinWEC LA EOMMg a F b  (24)23

where LAF is the desired force to rotate the shaft-buoy system, and a and b are instant distances24

from the buoy gravity mass center and linear actuator to the fulcrum “O” when the system is at25

angle WEC
 .26

27
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Fig. 3 Detail view and force analysis of system2

3

3. ASAWEC prototype and experimental setup4

5

To investigate the performance of the proposed ASAWEC and the effect of the EOM6

mechanism on energy harvesting efficiency, a mini-scale ASAWEC prototype was produced.7

8

3.1. ASAWEC component selection9

In the ASAWEC design, the buoy (Fig. 4) is of a composite material of which the outer and10

inner radiuses are Rb and rb, respectively. The buoy mass is calculated as:11

       3 3 2 2 2

1

2

3
b s c c b b b b b b b b b

m V V V R r R r h R H R h


   
 

          
 

(25)12

where 1
, and

s c c
V V V are the volumes of the spherical part, cylindrical part and top cover,  is the13

composite density, and hb and Hb are in turn height of the cylinder part and total height of the buoy.14

15

h
b

R
b

H
b

16

Fig. 4 Buoy shape17

18
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Using buoy parameters of 0.6 , 0.55 , 1 , 0.37
b b b b

R m r m H m h m    and 3800 /kg m , the mass of1

buoy is approximated as 200
b

m kg2

Here, a magneto-rheological brake (MR Brake) of which the load torque, MR , is adjustable from3

0 to 5.6Nm is used to represent the electric generator. Based on the model developed in the previous4

section, the key components for the system are as follows:5

From Eq. (22), the motor displacement is:6

3max2 2
11.16 /m MR

m

m m

D cm rev
p p

   

 

 
  
   

(26)7

where, the motor mechanical efficiency and maximum working pressure are8

0.9 and 35
m

p bar    .9

The maximum motor speed should be equal or greater to the maximum MR Brake speed10

(
max

1000
MR

n rpm ). Therefore, a fixed displacement gear motor with OML12.5 series11

manufactured by Danfoss with the following characteristics is selected:12

3

max max
12.5 / , 1280 , 11 ,

m m
D cm rev n rpm T Nm   0.85

m v
   .13

The flow rate required to supply the motor for the maximum generator speed is then obtained:14

max
max 14.71m MR

m

v

D n
Q lpm


  (27)15

Here, the mini-scale ASAWEC is designed for evaluation with single waves of frequency of16

up to 1.5 Hz. Thus, based on the required flow rate, a cylinder with the following parameters is17

used: 0.025 , 0.012 , 0.5D m d m L m   .18

Next, the linear actuator is selected based on the power on demand. From (24), the force LAF19

that must be supplied by this actuator can be calculated as:20

sin

sin
G WEC

LA

POM

F a
F

b




 (28)21

Practical testing on the ASAWEC indicates that, the tilting angle should be limited to 0 to 20o.22

Initial values of the distances a and b corresponding to the initial tilting angle (0o) are 1500 and23

390 mm. The electric linear actuator made by Zhejiang Corp. with the following characteristics is24

used: 0.8kW power, 300mm stroke, and 7000N load capacity.25

The specifications of the main components of the proposed system are summarized in Table26

A1 in the Appendix.27

28

3.2. Experimental apparatus29

30
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Using the components outlined in the previous section, the scaled ASAWEC system with the1

configuration shown in Fig. 2 was fabricated. A photograph of the system is shown in Fig. 5. To2

acquire the necessary information for system management and evaluation, sensors were attached3

to the system. The sub-buoy motion (y) was detected by a cable sensor, while the working4

pressures (P1 and P2) and flow rate (Qm) of the HST were measured by two pressure transducers5

and a flow meter. To assess the output energy capable of generating electricity, a torque transducer6

integrated with a speed sensor was used to obtain the generated torque and speed of the MR brake7

(Tg and ng, respectively). Furthermore, another cable sensor was installed along the linear actuator8

to monitor indirectly the tilting angle of the sliding-buoy system. A personal computer (PC) was9

used to receive signals fed-back from the sensors and derive outputs to control the ASAWEC via10

an NI multi-function card. Software was developed within the Matlab/Simulink environment11

combined with the Real-time Windows Target toolbox to facilitate this task.12

To investigate the performance of the EOM-based ASAWEC, a water tank integrated with a13

wave maker was created (Fig. 6). The specifications of the water tank and wave maker are shown14

in Table A2 in the Appendix.15

16

17

8

6

3

1

11

4

72

5

9

10

18

(a) PTO & EOM (1-Check Valve; 2-Pressure sensor 1; 3-Hydraulic cylinder; 4-Cable sensor 1;19

5-Load cell; 6-Linear actuator; 7-Cable sensor 2; 8-Stell shaft; 9-Fulcrum “O”; 10-Base frame;20

11-Sub-buoy)21
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2; 16-HP accumulator; 17-Flow meter; 18-Pump)3

Fig. 5 Graphical view of the experimental EOM-based ASAWEC4
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Fig. 6 System installation in water tank integrated wave maker6

4. EOM controller design7

8

4.1. EOM overall control concept and secondary controller9

10

In this section, a controller is designed to drive the EOM to optimize the buoy-shaft tilting angle11

according to wave conditions. The control system configuration is depicted in Fig. 7. The12

controller consists of two sub-controllers: a supervisor controller and a secondary controller. The13

supervisor controller is designed using the LVQNN technique to detect each wave condition based14

on the wave information, tagged as Wave , and then, to derive the optimal tilting angle (or desired15

angle) for the ASAWEC, tagged as r . The secondary controller uses a simple proportional-16

integral (PI) algorithm to drive the EOM to change the sliding-buoy mechanism to follow the17

desired angle. As a result, the maximum amount of wave energy can be absorbed.18

19
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Fig. 7 EOM control architecture for maximizing energy performance of ASAWEC2

3

The PI controller was designed based on the model-based PID tuning function of MATLAB.4

Using the system identification toolbox of MATLAB, the EOM model was derived based on the5

input and output data of the linear actuator (driving voltage command and cylinder displacement,6

respectively) installed in the ASAWEC. Next, the resultant EOM model was combined with the7

ASAWEC model to tune the PI controller. As a result, the PI proportional and derivative gains,8

were achieved in turn as: kp = 0.8 and ki = 0.01.9

10

4.2. LVQNN-based supervisory control11

12

4.2.1. Learning vector quantitative neural network13

14

Neural networks (NNs) emulate the activity of biological neural networks. They can learn from15

a set of data and construct weight matrices to represent the learning patterns. This technique16

modifies its behavior in response to the environment and is ideal for unknown expected mapping17

algorithms and when tolerance to faulty input information is required. NNs have been used18

successfully for applications such as pattern classification, decision making, forecasting, and19

adaptive control [18].20

Generally, NNs can be classified according to the learning process: supervised and21

unsupervised learning. Supervised learning is training using the desired responses to given stimuli,22

while unsupervised learning is classification by “clustering” of stimuli, without specified23

responses. LVQNN is a hybrid network that uses advanced behaviors of both competitive learning24

and applies a Kohonen self-organizing map (SOM) or Kohonen feature map for classification.25

Fig. 8 shows the structure of a LVQNN. This LVQNN contains four layers: one input layer26

with m nodes, two hidden layers, and one output layer with n nodes. The first hidden layer is27

termed the competitive layer with S1 nodes, while the second output layer is termed the linear28

layer with S2 nodes, (in this case, S2≡ n).29
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During operation, the competitive layer first maps input vectors into the clusters found by the1

network through a training process. Secondly, the linear layer merges groups of these clusters into2

classes defined by the target data. The total number of clusters in the competitive layer is3

determined by the number of hidden neurons. The larger the hidden layer, the more clusters the4

competitive layer can learn, and the more complex mapping of input to target classes can be5

performed [19,20]. Therefore, with appropriate selection of the structure and training of the6

weighting factors, the LVQNN can classify the information of any system.7
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Fig. 8 Structure of the LVQNN9

The LVQNN is based on the nearest-neighbor method by calculating the Euclidean distance10

weight function, D, for each node, nj, in the competitive layer as follows:11

       
2

1 1 1
1

, , , 1,..,
m

j
i

n D X W j X i W j i j S


    (29)12

where: X is the input vector and W1(j,i) is the weight of node jth in the competitive layer13

corresponding to element ith of the input vector.14

Next, the Euclidean distances are fed into function C which is a competitive transfer function.15

This function returns an output vector o1, with 1 if each net input vector has its maximum value,16

and 0 otherwise. This vector is then input to the linear layer and derives the output vector o2 of17

each element of which corresponds to a node of the output layer and is computed as:18

               
1

2 2 2 1 2
1

, , 1,.., ,
S

W W
j

Y k o k k k n k k k W k j o j k n n S


     (30)19

where: W2(k,j) is the weight of node k in the linear layer corresponding to element j of the20

competitive output vector; and kW(k) is the linearized gain of node k in the linear layer.21

In the learning process, the weights of LVQNN are updated by the well-known Kohonen rule,22

which is shown as the following equation:23

      
      

1
1 1 1

11
1 1 1

IF: is classified correctly
, 1,..,

IF: is classified incorrectly

t t t

t t t

W j W j X W j X
j S

W j W j X W j X









   


  

(31)24
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where  is the learning ratio with positive and decreased with respect to the number of training1

iterations ( iterationn ),
1

iterationn
 2

3

4.2.2. Application of LVQNN to a supervisor controller design4

5

In this study, the LVQNN was employed to design the supervisor controller to distinguish6

different wave conditions in an online manner. In LVQNN, it is important to determine the input7

vector size and the number of data sequences. In general, a better result can be achieved with more8

inputs. However, this makes the network complex and difficult to train. For application to a9

specific water region, the ASAWEC was installed in such a way that its tilting plane was mostly10

parallel to the propagation direction of the wave components that contained the highest power11

density. Therefore, without loss of generality, to enhance the given task, three signals extracted12

from the feedback wave information, Wave —wave fluctuation, hydrodynamic forces in the vertical13

direction FWv and horizontal direction FWh— were used to create the input vector for the LVQNN,14

while the output was a specific wave case used to determine the desired angle (Fig. 9a). To acquire15

this information, a cable sensor and two load cells were installed, in which the axis of load cell16

measurement of the horizontal force was parallel to the ASAWEC tilting plan (Fig. 9b). It should17

be noted that these sensors were not attached to the ASAWEC, being located near the device18

because the sensed wave information should not be influenced by the change in system slope angle.19

Furthermore, the supervisor controller required only the relative wave behavior to classify wave20

conditions, information on transient wave impacts on the system was not required.21

OUTPUT

Desired Angle

Learning Vector
Quantization

Neural Network
(LVQNN)

INPUT

Wave Fluctuation
Horizontal Force

Vertical Force

hWave(k)

22

(a)23

Vertical force Horizontal force

Load cell
Wave propagation

Wave sensor

Cable sensor

24

(b)25

Fig. 9 LVQNN-based supervisor controller:26

(a) Control configuration; (b) Hardware setup to observe wave information27
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1

To classify ocean waves that contain many different frequencies, the output from the supervisor2

controller should be a wave condition (called a class), which is mixed from different waves by3

different mixing ratios. To facilitate this, a so-called smooth switching algorithm was proposed.4

The wave class was determined by the smooth combination of the current class detected by the5

LVQNN (Y) and the previous class as:6

       1 1class t class t Y t       (32)7

where is the forgetting factor.8

Similarly, the desired tilting angle is produced by:9

       1
1r r rclass t Y t

t    


     (33)10

Additionally, to prevent the influence of noise on classification performance, the forgetting11

factor was online tuned with respect to the change in the LVQNN output speed. This factor was12

tuned as follows:13

Step 1: set the initial value of the forgetting factor, 0.5  ; define a small positive threshold,14

1 20    , for the change in LVQNN output speed, Yv , which is defined by the number15

of sampling periods during which Y changes continuously.16

Step 2: for each working step, check Yv and update by comparing Yv with  using the following17

rule:18

+ If: 0Yv  , Then:    1 ;t t  19

+ Else If:  2Yv  , Then:    1 1 / 2t t    and reset 0Yv  ;20

+ Else If:     1 2&Y Yv v t   , Then:    1 1 2t t     and reset 0Yv  ;21

+ Otherwise,    1 .t t  22

In summary, the procedure to design the supervisor controller for application to real waves is23

as follows:24

 Step 1: Observe of ocean waves at the location at which the ASAWEC system will be installed.25

 Step 2: Analyze the observed waves to identify the major frequencies (for example, a set of26

seasonal main frequencies)27

 Step 3: Train the LVQNN using the selected main frequencies (a set of LVQNN classifiers can28

be derived for a set of seasonal main frequencies and a real-time clock can be used to switch29

between these classifiers according to season)30

 Step 4: Input the optimized LQVNN into the supervisor controller to regulate the ASAWEC31

slope.32
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1

4.3. Training of the supervisor controller2

3

4.3.1. Acquisition of data for system performance investigation and training4

In a network-training problem, the prior task is to collect the system behavior data to improve5

the performance of the training process. To perform the investigation, single frequency waves6

whose specifications were shown in Table 1 were selected. Experiments on the ASAWEC were7

then carried out for each wave condition in which the tilting angle was altered smoothly within its8

range, 0 to 20o, using the designed secondary controller (PI). For these experiments, the ASAWEC9

setting parameters were identical and the overall efficiency of the full system was evaluated. As10

described in the previous section, the wave factors necessary for performing the LVQNN input11

vector were recorded for each test case and plotted in Fig. 10. Both the wave elevation and forces12

were differed and therefore, could be used for wave classification.13
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Fig. 10 Data acquisition of three wave factors according to three test cases16

Table 117

Wave specifications and optimal tilting angles18

Wave case
Wave specifications Optimal tilting angle

[degree]Amplitude [m] Period [s]
1 0.12 2.4 6.0
2 0.15 2.8 10.0
3 0.1 1.6 12.0

19
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According to [21], the energy flux over duration T for the shallow water in the water tank can1

be calculated as:2

3/2 2

8
inTank

g H hTb
E


 (34)3

Since, the average energy conversion efficiency of the system is derived as:4

0

T

genereator

ASAWEC

inTank

P

E
 


(35)5

6

The average efficiency curve of the system versus the tilting angle is shown in Fig. 11. It is7

clear that the efficiency differed according to the test case and tilting angle. The angles at which8

system efficiency was maximized for the three wave forms were determined (Table 1). In wave9

case 3, the greatest increase in overall efficiency of 5% was achieved compared to the case in10

which the sliding shaft was fixed in the vertical direction (zero degree, no change in the tilting11

angle).12

Therefore, the supervisor controller was designed to drive the system to the optimal working13

point.14
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Fig. 11 ASAWEC efficiency vs. tilting angle16

17

4.3.2. LVQNN training18

19
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In this section, the training of the LVQNN is discussed. The data acquired in Section 4.3.1 were1

used as the input-output vectors. The wave information and optimal tilting angles data of the three2

test cases (Table 1) were selected for training the LVQNN.3

As mentioned before, determination of a suitable input vector size and number of hidden4

neurons in the competitive layer is critical for practical implementation of the neural classifier.5

Here, the input vector size was defined based on the numbers of sequences of the three wave6

signals (the hydrodynamic forces in the vertical and horizontal directions, the wave frequencies).7

To investigate the performance of the LVQNN with respect to different structures, training was8

performed using the selected data set by varying the number of inputs from 6 to 18, and the number9

of hidden neurons from 20 to 50. After each training process, the correlation between the10

simulation output and target output was taken as indicative of the success of training. The training11

results (goodness of fit [%]) of the LVQNN are shown in Fig. 12 and Table 2. These results indicate12

that the most suitable LVQNN structure comprised 12 nodes in the input vector and 40 nodes in13

the competitive layer. The highest learning success rate was ~86.84% in that case, which was14

sufficient for recognition of wave conditions.15
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Fig. 12 Goodness of fit – 3D map18

19

Table 220

Learning success rate of LVQNN [%]21

Input

Number

Number of nodes in hidden layer

20 25 30 35 40 45 50

6 70.27 71.59 74.62 75.88 76.91 79.08 79.15
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9 72.04 73.71 72.84 76.35 79.98 80.13 79.85

12 72.76 74.23 76.64 80.28 86.84 81.53 80.47

15 71.19 75.77 76.83 80.73 82.06 81.19 80.26

18 71.56 74.49 75.58 77.17 81.43 82.69 83.31

Goodness of fit [%]

1

5. Supervisor control verification2

3

In this section, the capability of the supervisor controller was evaluated using both single4

frequency waves and irregular waves. From the results obtained in the previous section, the5

controller was constructed using the LVQNN with the optimal structure.6

First, verification using single frequency waves by means of numerical simulations and real-7

time experiments is discussed. For the simulations, the three data sets (corresponding to the three8

cases in Table 3) were employed in turn. Then the classifier was operated to detect the wave9

conditions and the optimal tilting angles. Classification performance is shown in Figures 13 to 1510

and compared with the target angles shown in Table 3. These results indicate that the classifier11

could detect the wave conditions and the output reach stably to the optimal angle in a short time;12

e.g., 6o output after ~1.3 s for wave case 1. In test case 2, the optimized controller detected the13

wave condition and the desired tilting angle within 1 s. In test case 3, the time required by the14

controller to make a decision on the wave condition was longer (~2.7 s), because the number of15

wave factors used as controller inputs was limited to 3, and these had similar forms among the16

various wave cases.17

18
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Fig. 13 Simulation verification of the optimized LVQNN with respect to test case 12
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Fig. 15 Simulation verification of the optimized LVQNN with respect to test case 32

3

Next, the real-time ability of the supervisor controller was investigated. The system was4

subjected to each of the three test cases in real-time. The wave classification and angle detection5

results are shown in Figures 16 to 18. The real-time wave detection performance was similar to6

the simulation performance. These results imply that the proposed classifier could detect the wave7

conditions. Therefore, it made precise decisions of tilting angles to maximize the energy harvesting8

capability of the device.9
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Fig. 18 Experimental verification of the optimized LVQNN with respect to test case 34

5

Second, simulations were carried out for irregular waves to demonstrate the applicability of the6

proposed controller for real waves. Herein, irregular waves were simulated using the Pierson-7

Moskowitz spectrum formulation [2, 16]. To utilize the results in Section 4 in which the LVQNN8

was optimized for the wave cases in Table 1, a peak period of 2 s (Tp = 2s), a significant wave9

height of 270 mm (H = 270 mm), and a frequency range of 0.25-0.75 Hz were selected to generate10

the Pierson-Moskowitz wave spectra. Thus, the irregular waves covered the three wave cases in11
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Table 1; therefore, the procedure to derive the supervisor controller (as mentioned in Section 4.2.2)1

was employed. Simulations using the ASAWEC model developed in Section 2 were then2

performed with irregular waves for two cases: using the supervisor controller to regulate the slope3

angle, and with the slope fixed at an appropriate angle. The simulation with the supervisor4

controller was performed first (Fig. 19). The system slope was smoothly varied according to the5

wave variation. Subsequently, the simulated system efficiency was obtained (solid blue line in the6

top sub-plot of Fig. 20). Using the mean value of the desired angle regulation in Fig. 19, the second7

ASAWEC simulation was performed in which the slope angle was fixed at 7o. The simulated8

system efficiency was achieved (dash-dot black line in the top sub-plot of Fig. 20). The difference9

in efficiency due to use of the supervisor controller is depicted in the bottom sub-plot of Fig. 20.10

A maximum improvement in system efficiency of 2.8% was recorded in the irregular wave11

condition. These results demonstrate that system performance could be improved using the12

proposed control methodology.13

14
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Fig. 19 Simulation LVQNN classification result in irregular wave condition16
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3

6. Conclusions4

5

This paper presented a simple approach to maximizing the energy harvesting capability of the6

LVQNN algorithm based ASAWEC. The supervisor controller, optimized by the training data set,7

classified wave conditions and generated the desired tilting angle for the secondary controller. At8

the same time, the PI controller drove the EOM in order to set the ASAWEC at an optimal slope9

angle. The experimental results with regular waves indicated that by using the proposed control10

scheme, a decision on the optimal tilting angle could be made within 2s. At these positions, the11

absorbed energy and energy capture ratio were maximized. In wave case 3, the highest increase in12

overall efficiency of 5% was achieved compared to the case in which the sliding shaft was fixed13

in the vertical direction (without changing the tilting angle). In addition, the applicability of the14

proposed approach in practice was demonstrated by means of simulations of irregular waves.15

Use of the LVQNN-based EOM control system does not require system governing equations16

or information on the transient influence of the waves on the system performance. Therefore, it17

can be applied to any floating-buoy WEC integrated with an EOM mechanism. Future research18

works including real-time tests of the controlled system in irregular waves are now being carried19

out in order to validate the applicability of the proposed method. Then, the suitability of this20

method for other WEC technologies will be evaluated.21

22
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APPENDIX1

Table A12

Component selection for the experimented ASAWEC3

Component Characteristic Value

Floating buoy

Diameter Db = 1.2m

Height Hb = 1m

Mass mb = 200kg

Cylinder

Bore diameter D = 0.025m

Rod diameter d = 0.012m

Length of stroke L = 0.5m

Hydraulic motor Displacement Dm = 12.5cc/rev

Accumulator
Volume Vgas0 = 2.8L

Pre-charge pressure Pgas0 = 5bar

Relief valve Cracking pressure Pcrack = 35bar

Hydraulic oil Effective bulk modulus 1.5 x109 [Pa]

Flow coefficient Discharge coefficient 0.7

MR Rotary brake

Maximum current 1A

Maximum torque 5.6Nm

Maximum speed 1000rpm

Linear actuator

Input voltage 12/24 VDC

Max load capacity 1600 lbs/ 7000N

Stroke length 25mm - 600mm

Speed 6mm/s - 42mm/s

4

Table A25

Water tank and wave maker specifications6

Equipment Specification Value

Water tank

Length 50m

Width 20m

Depth 2m

Wave maker

Maximum wave amplitude 0.5m

Shortest wave period 0.5s

Cylinder number 10

7


