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Abstract

In this thesis, the optimal shape of two-pin arches of constant cross-section is found
analytically using a novel form-finding technique. To find the purely compressed
arches built of masonry and concrete material, the state of static equilibrium is
applied. As the main finding, the momentless two-pin arch shape is derived for the
arches with any span-to-height ratio subjected to its self-weight (SW) and uniformly
distributed load (UDL). The contribution of using momentless arches is shown
through comparing their maximum displacements to those of parabolic shape. The
first failure of the cross-section of the momentless and parabolic arches was then
compared for the same loading. This work is conducted practising the knowledge of
arch response to loading as a function of the chosen form. In this regard, a
comprehensive study of the behaviour of different arch shapes considering different
ratios of uniformly distributed load to self-weight (UDL:SW) is also carried out. The
ideal common arch shape is investigated for minimum combined axial and bending
stresses using the commercial software GSA. The optimal range of span-to-height
ratio of common two-pin arch shapes is also suggested. In general, the best arch
performance is exhibited for the parabolic and catenary arch with span-to-height
ratios between 2—-4 when UDL:SW=21 and UDL:SW<1 respectively. However, the
circular arch demonstrates the least desirable performance with the optimum range
of span-to-height ratio between 4—6. Moreover, approximate methods of two-pin arch
analysis are evaluated, including the masonry design method and virtual work
method suggested by Megson (2006). The effect of the assumptions made by these
methods on the result of analysing two-pin arches is investigated through comparing
their results to those obtained by the second theorem of Castigliano, including full

structural action and the GSA results.
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1. INTRODUCTION

Chapter 1 : Introduction

The form of arch structures and its effects on structural action is explored in this
thesis. This study concerns an analytical determination of an optimal form of arch
structures that are momentless, and their application. The methodology will be
developed for any span (L) to height (h) ratios (L:h) and three different ratios of
uniformly distributed load (UDL) to self-weight (SW). Three categories of loading
comprises UDL:SW>1, UDL:SW=1, and UDL:SW<1, in which each category gives
one functional relationship for the arch shape. The work is preceded by a
comprehensive study of the behaviour of known shapes of arches including catenary,
parabolic and circular forms. Also, different methods of analysis were investigated. In
this regard, approximate methods of analysis, such as the masonry design (Curtin et
al. 2006) and virtual work or energy methods suggested by Megson (Megson 2006)
are evaluated by comparing their results with those obtained by the finite element
analysis using GSA software (http://www.oasys-software.com/products/engineering/
GSA-suite.html), in addition to an accurate method of analysis that includes full
structural action, i.e., strain energy due to bending, shear, thrust and coupling of

bending and thrust (Timoshenko 1986).

1.1. Framework and Motivation

One of the oldest forms of structures in the engineering field is the arch structure.
Masonry arches were first used by the ancient Romans and continue to today with
different applications in many diverse fields. Transporting goods, vehicles and people
from one place to another place has played a significant role in human history. At
times, rivers, mountains and valleys were major barriers for transportation. This is
one of the remarkable reasons why bridges and tunnels have been regularly used

and developed. Since arches support a large amount of applied load in compression,
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arch structures are widely used in constructing bridges and tunnels. Other than
spanning rivers and mountains for a transportation system, arches were used to form
the roofs of large buildings, which is considered at the heart of the evolution of the

vault.

There are about 75,000 masonry arch bridges in the United Kingdom, most of which
are around 100 years old and still in service (Ng 1999). As the transportation system
ages, arch structures may not be fit to withstand the speed, dimensions, loads, and
volume of modern traffic conditions. Because of the increase in traffic load and
speeds, a reliable assessment of the structural response of arch structures is
required. In this regard, the behaviour of known shapes of arches are analysed and
compared with each other. This comparison confirms the best shape from the known
shape of arches based on the applied load. Also, the optimal range of span-to-height
ratio for each shape of the arch is proposed in this study. The criterion of choosing
the best arch and optimal span-to-height ratio causes the structural action within the
arch material to be minimised. Moreover, different methods of analysis are evaluated.
As a result, the accuracy of the approximate methods of analysis is explored through
comparing with the most accurate method, i.e., the Castigliano approach based on

full structural action.

The structural determinacy of arches and type of arch supports plays a determining
role in the analysis of arch structures. Only three-pin arches can be analysed simply
using static. A complicated analysis is required for most arches including two-pin and
fixed ones. The connection of arches at the abutment is of a fixed type and pin-
ended. The first type was more common in traditional design, while the latter is
becoming widespread because of the developing technology in building deliberate
pins. The pin-ended arches can deflect more under loading than fixed-ended arches
with the easier design process for pin-ended arches. Also, arches may be built with

either a variable or constant cross-section. However, not only can designing arches
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with a constant cross-sectional area ease the complexity of design, but also, the cost
of the construction can be reduced. In traditional design, arches were widely
constructed as a filled barrel arch using masonry material. This kind of arch with very
large self-weight could be counted as a brace that would keep the arch from
buckling. The arch can carry the applied load, while the arch rib and the loading are
connected through columns. The reason for great stability and durability of most of
the historical arches was the large self-weight using masonry material as filled barrel
arches that serve to brace it. Therefore, the shape of the arch was not a problem in

the ancient design of arches.

Finding a desirable form of arches has recently become a significant issue in
designing this classical form of structure. The shape of the arch has a direct effect on
the stress that an arch structure will experience under the loading. Also, the cost of
construction and the beauty of arches are directly related to their shape. Apart from
designing suitable arches of known shapes, finding the optimal arch shape leads to
low maintenance cost and favours the construction of new arch structures, both
structurally and aesthetically. Since arch forms transfer dead load as compression
forces, the optimal shape of the arch is one that can carry the loading in pure
compression along the arch axis. However, there is only one optimal arch shape for
any specific loading configuration that may be considered a limiting condition. Also,
because of the behaviour of arch structures in transferring the loads, arch shapes are
well suited to materials with high compressive strength such as masonry and

concrete.

The form of structures was determined from the outset in conventional design (Curtin
et al. 2006; Millais 2005). Nevertheless, a more efficient structure can be shaped if
the form of the structure is considered as a core of the design. The significance of the
shape effect on the behaviour of the structure can be displayed when analysing the

Gerrard Cross tunnel. This tunnel collapsed in 2005. Applying surcharge loading in a
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different sequence was determined as the cause for this failure. Hence, the failure
could have been prevented if the arch had been of a shape less sensitive to

disproportionate loading.

In previous practice, arch forms and their three-dimensional (3D) equivalents, i.e.,
vaults (tunnels), were designed to follow either a parabolic, circular, or catenary
shape. None of these shapes represent an optimal form for the real case of self-
weight plus uniformly distributed load, or variable, imposed loading. Although it is not
possible to optimise the form (shape) for every practical load case, this proposed
research will demonstrate that much improved design recommendations and analysis
methods can be produced. Co