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Abstract 

In this thesis, the optimal shape of two-pin arches of constant cross-section is found 

analytically using a novel form-finding technique. To find the purely compressed 

arches built of masonry and concrete material, the state of static equilibrium is 

applied. As the main finding, the momentless two-pin arch shape is derived for the 

arches with any span-to-height ratio subjected to its self-weight (SW) and uniformly 

distributed load (UDL). The contribution of using momentless arches is shown 

through comparing their maximum displacements to those of parabolic shape. The 

first failure of the cross-section of the momentless and parabolic arches was then 

compared for the same loading. This work is conducted practising the knowledge of 

arch response to loading as a function of the chosen form. In this regard, a 

comprehensive study of the behaviour of different arch shapes considering different 

ratios of uniformly distributed load to self-weight (UDL:SW) is also carried out. The 

ideal common arch shape is investigated for minimum combined axial and bending 

stresses using the commercial software GSA. The optimal range of span-to-height 

ratio of common two-pin arch shapes is also suggested. In general, the best arch 

performance is exhibited for the parabolic and catenary arch with span-to-height 

ratios between 2–4 when UDL:SW≥1 and UDL:SW<1 respectively. However, the 

circular arch demonstrates the least desirable performance with the optimum range 

of span-to-height ratio between 4–6. Moreover, approximate methods of two-pin arch 

analysis are evaluated, including the masonry design method and virtual work 

method suggested by Megson (2006). The effect of the assumptions made by these 

methods on the result of analysing two-pin arches is investigated through comparing 

their results to those obtained by the second theorem of Castigliano, including full 

structural action and the GSA results. 
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1. INTRODUCTION 

1 

Chapter 1 : Introduction 

The form of arch structures and its effects on structural action is explored in this 

thesis. This study concerns an analytical determination of an optimal form of arch 

structures that are momentless, and their application. The methodology will be 

developed for any span (L) to height (h) ratios (L:h) and three different ratios of 

uniformly distributed load (UDL) to self-weight (SW). Three categories of loading 

comprises UDL:SW>1, UDL:SW=1, and UDL:SW<1, in which each category gives 

one functional relationship for the arch shape. The work is preceded by a 

comprehensive study of the behaviour of known shapes of arches including catenary, 

parabolic and circular forms. Also, different methods of analysis were investigated. In 

this regard, approximate methods of analysis, such as the masonry design (Curtin et 

al. 2006) and virtual work or energy methods suggested by Megson (Megson 2006) 

are evaluated by comparing their results with those obtained by the finite element 

analysis using GSA software (http://www.oasys-software.com/products/engineering/ 

GSA-suite.html), in addition to an accurate method of analysis that includes full 

structural action, i.e., strain energy due to bending, shear, thrust and coupling of 

bending and thrust (Timoshenko 1986).  

1.1. Framework and Motivation 

One of the oldest forms of structures in the engineering field is the arch structure. 

Masonry arches were first used by the ancient Romans and continue to today with 

different applications in many diverse fields. Transporting goods, vehicles and people 

from one place to another place has played a significant role in human history. At 

times, rivers, mountains and valleys were major barriers for transportation. This is 

one of the remarkable reasons why bridges and tunnels have been regularly used 

and developed. Since arches support a large amount of applied load in compression, 

http://www.oasys-software.com/products/engineering/
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arch structures are widely used in constructing bridges and tunnels. Other than 

spanning rivers and mountains for a transportation system, arches were used to form 

the roofs of large buildings, which is considered at the heart of the evolution of the 

vault.  

There are about 75,000 masonry arch bridges in the United Kingdom, most of which 

are around 100 years old and still in service (Ng 1999). As the transportation system 

ages, arch structures may not be fit to withstand the speed, dimensions, loads, and 

volume of modern traffic conditions. Because of the increase in traffic load and 

speeds, a reliable assessment of the structural response of arch structures is 

required. In this regard, the behaviour of known shapes of arches are analysed and 

compared with each other. This comparison confirms the best shape from the known 

shape of arches based on the applied load. Also, the optimal range of span-to-height 

ratio for each shape of the arch is proposed in this study. The criterion of choosing 

the best arch and optimal span-to-height ratio causes the structural action within the 

arch material to be minimised. Moreover, different methods of analysis are evaluated. 

As a result, the accuracy of the approximate methods of analysis is explored through 

comparing with the most accurate method, i.e., the Castigliano approach based on 

full structural action. 

The structural determinacy of arches and type of arch supports plays a determining 

role in the analysis of arch structures. Only three-pin arches can be analysed simply 

using static. A complicated analysis is required for most arches including two-pin and 

fixed ones. The connection of arches at the abutment is of a fixed type and pin-

ended. The first type was more common in traditional design, while the latter is 

becoming widespread because of the developing technology in building deliberate 

pins. The pin-ended arches can deflect more under loading than fixed-ended arches 

with the easier design process for pin-ended arches. Also, arches may be built with 

either a variable or constant cross-section. However, not only can designing arches 

http://www.britannica.com/EBchecked/topic/624158/vault
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with a constant cross-sectional area ease the complexity of design, but also, the cost 

of the construction can be reduced. In traditional design, arches were widely 

constructed as a filled barrel arch using masonry material. This kind of arch with very 

large self-weight could be counted as a brace that would keep the arch from 

buckling. The arch can carry the applied load, while the arch rib and the loading are 

connected through columns. The reason for great stability and durability of most of 

the historical arches was the large self-weight using masonry material as filled barrel 

arches that serve to brace it. Therefore, the shape of the arch was not a problem in 

the ancient design of arches.  

Finding a desirable form of arches has recently become a significant issue in 

designing this classical form of structure. The shape of the arch has a direct effect on 

the stress that an arch structure will experience under the loading. Also, the cost of 

construction and the beauty of arches are directly related to their shape. Apart from 

designing suitable arches of known shapes, finding the optimal arch shape leads to 

low maintenance cost and favours the construction of new arch structures, both 

structurally and aesthetically. Since arch forms transfer dead load as compression 

forces, the optimal shape of the arch is one that can carry the loading in pure 

compression along the arch axis. However, there is only one optimal arch shape for 

any specific loading configuration that may be considered a limiting condition. Also, 

because of the behaviour of arch structures in transferring the loads, arch shapes are 

well suited to materials with high compressive strength such as masonry and 

concrete.  

The form of structures was determined from the outset in conventional design (Curtin 

et al. 2006; Millais 2005). Nevertheless, a more efficient structure can be shaped if 

the form of the structure is considered as a core of the design. The significance of the 

shape effect on the behaviour of the structure can be displayed when analysing the 

Gerrard Cross tunnel. This tunnel collapsed in 2005. Applying surcharge loading in a 
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different sequence was determined as the cause for this failure. Hence, the failure 

could have been prevented if the arch had been of a shape less sensitive to 

disproportionate loading.  

In previous practice, arch forms and their three-dimensional (3D) equivalents, i.e., 

vaults (tunnels), were designed to follow either a parabolic, circular, or catenary 

shape.  None of these shapes represent an optimal form for the real case of self-

weight plus uniformly distributed load, or variable, imposed loading. Although it is not 

possible to optimise the form (shape) for every practical load case, this proposed 

research will demonstrate that much improved design recommendations and analysis 

methods can be produced. Consequently, the best form of pin-ended rib concrete 

arches with constant cross-section in which the arch carries the loading in pure 

compression is a focus of this study. Hence, the optimal shape of an arch is 

proposed, using a novel form-finding technique.  

1.2. Research aims and objectives  

A principal aim of this research is to use a form-finding method for arch structures to 

obtain a momentless shape of arches and to present the application of the optimal 

arch shape. It involves analytical calculations and computational modelling aimed at 

producing durable and sustainable design solutions. The grounding of this work is 

shaped through a comprehensive study of the effects of the structural form of arches 

on their structural behaviour. In this regard, the behaviour of the known shapes of 

arches are analysed and compared with each other. Also, different methods of 

analysis are evaluated. This assessment of the known shape of arches advances the 

knowledge of arch response to loading as a function of a chosen arch form. As a 

result, designers can make informed decisions concerning which forms and span-to-

height ratios to use in arch design, in order to minimise the magnitude of structural 
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action effects. The aim can be accomplished by specific set of objectives, listed 

below.  

- To explore the effect of arch form on structural actions and a complete 

assessment of arch behaviour. 

- To compare the behaviour of the known shapes of arches including, 

parabolic, catenary, and circular arches with each other. 

- To find the optimum range of span-to-height ratio of the known shapes of 

arches in which the stress from the combination of bending stress and axial one 

reaches its minimum. 

- To evaluate approximate methods of analysis of arches by comparing them 

with the most accurate method of analysis, i.e., the Castigliano approach based on 

full structural action. 

- To find momentless two-pin arches for any span-to-height ratio and any ratios 

of unifomly distributed load to self-weight. 

- To illustrate the application of the momentless arch as the optimal arch 

shape. 

The novelty of this research is composed of three aspects. Firstly, there is no 

comprehensive study of the effects of arch forms and span-to-height ratio on 

structural action. Secondly, the credibility of the approximate methods of analysis 

currently in use is evaluated, and their inaccuracies are highlighted. Finally, the form-

finding of arch structures itself has not been practised mathematically for two-pin 

arches with a constant cross-section. This is because of the inherent complexity of 

mathematical representation for an optimal structure. The analytical solutions mainly 

offer high accuracy. Therefore, the optimal momentless shape of arches is 
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investigated analytically in this research. The advantage of momentless arch is also 

assessed numerically. 

1.3. Structure of the thesis 

This thesis consists of six chapters starting with an introduction chapter and ending 

with a conclusion chapter. Both the first and last chapters outline the main points 

covered in other chapters.  

 In Chapter 2, current knowledge from and literature on common shapes of 

arches, methods of arch analysis and optimal arch form is reviewed. The form-finding 

technique is reviewed in this chapter.  

 Chapter 3 presents a numerical assessment of the known shapes of arches, 

namely parabolic, circular, and catenary, using GSA finite element software. The 

studied arches are pin-ended concrete ones with a constant cross-section. The 

optimum range of span-to-height ratio for each arch is then investigated. Therefore, 

the best shape amongst the known shapes of arches and optimal L:h ratio are 

obtained when the combined stress is at a minimum. 

 Chapter 4 presents a comparison of different methods of analysis for arch 

structures. These methods are mainly linear elastic ones applied to pin-ended arches 

to calculate their reaction forces. The methods consist of an accurate analytical 

method (the Castigliano approach) and approximate methods such as numerical 

method applying GSA software, the virtual work method described by Megson, and 

masonry design method. Therefore, the validity of the approximate methods is 

explored.  

 Chapter 5 presents the analytical calculation of a momentless arch using 

equations of equilibrium. The optimal shape of the arch is then achieved for any L:h 

ratio and UDL:SW ratio. This will be followed by the application of the momentless 
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arch presented numerically through comparing its deflection and first failure load with 

the ones of the parabolic arch. Hence, the merit of the momentless arch is confirmed. 

 Finally, the main conclusions from the conducted study in this research 

project are reported in chapter 6.  

 This thesis also includes an Appendix section containing:  

- Theoretical analysis of the two-pin circular arch using the Castigliano approach 

(Appendix A).  

- Theoretical analysis of two-pin parabolic arch using the Castigliano approach 

(Appendix B).  

- MATLAB scripts of programming the shape of the momentless arch (Appendix C).  
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Chapter 2 : Literature review 

2.1. Introduction 

The aim of this research project is to investigate the optimal shape of arch 

structures that are momentless, together with their application. This work is carried 

out via an analytical form-finding technique for arches with any span-to-height ratio 

(L:h) and any ratio of uniformly distributed load to self-weight (UDL:SW). 

Investigation of the optimal arch shape is grounded in a comprehensive study of the 

behaviour of different arch shapes. Hence, the effect of the form and span-to-height 

ratio of arches on their structural actions is studied in detail. The focus of this study 

is on two-pin arches with a constant cross-section which are built of masonry or 

concrete material and subjected to static loading. Furthermore, different methods of 

arch analysis involving approximate analytical and numerical methods and the 

accurate analytical method are explored.  

This literature review presents a background on the recent knowledge of the 

performance of arch shapes under applied loading and eventually finding an optimal 

arch shape. Firstly, the arch history is reviewed in Section 2.2. In Section 2.3, ways 

of finding the optimal range of span-to-height ratio and the optimal arch amongst 

common arch shapes are reviewed, followed by multiple analysis methods of arch 

structures in Section 2.4. Then, the current understanding of finding the optimal arch 

shape is provided in parallel with a review of some form-finding and optimization 

methods in Section 2.5. Finally, the findings from the review that inform the author’s 

research are presented in Section 2.6. 
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2.2. History of arches 

The arch is a curved structure with a variety of applications mostly to support or 

strengthen a building by transmitting compressive forces. Historically, arches have 

been made of masonry, then concrete, and lately of steel. The Romans can be 

considered the forerunners in appreciating the benefits of the arch in Europe, 

possibly building the first in the world (Ambrose and Tripeny 2011). Rounded 

arches, also called circular arches, are commonly found in ancient buildings. The 

Roman building constructions relied upon circular arches to span large, open areas. 

One of the Roman Empire’s most impressive works of engineering is the Aqueduct 

of Segovia (Figure 2.1). It was built in the first century AC in Spain and comprised 

166 semi-circular brick-like stone arches (Ambrose and Tripeny 2011).  

 

Figure  2.1. The Aqueduct of Segovia, Spain (http://whc.unesco.org/en/list/311) 

  

Concerning arch bridges, one of the oldest stone arch bridges having a single span 

is found near Smyrna in Turkey, and dates back to the ninth century (Barker and 

Puckett 2007). Mediaeval arches built over rivers in Europe in chronological order 

are: the arch over the river Tagus in Toledo-Spain around 900, over the Main river 

in Wurzburg-Germany around 1140, the Danube in Regensburg-Germany around 

1140, the Moldova in Prague-Czech Republic about 1160, the Thames in London 

http://whc.unesco.org/en/list/311
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around 1180, the Rhone in Avignon-France about 1180, and the Elbe in Dresden-

Germany around 1200 (Proske and Pieter 2009). 

Proske and Pieter (2009) stated that the use of circular arches was remarkable 

during the 14th and 15th centuries in the shape of filled barrel stone arch. In the late 

16th century, the arch building industry entered a new stage of development, when 

new spans exceeded those achieved by the Romans by a large margin. Building 

arches with large spans was practised using other arch forms, although circular 

arches were still being widely used. Arches with large spans were found to be 

feasible when constructed of steel. The development of the knowledge of steel 

arches began in England during the mid-18th century. The first steel bridge was built 

at Coalbrookdale Ironbridge in England in 1781. This bridge was made of a semi-

circular cast-iron rib with constant rectangular cross-section (published in the State 

of Maryland website, 2015). 

2.3. Study of the behaviour of arches 

Researching into the impact of the L:h ratio of two-dimensional parabolic, circular 

and catenary arches on buckling loads, Austin and Ross (1976) produced a 

comprehensive numerical study. In their assessment, the arches were assumed to 

be slender with a constant cross-section, and axial and shear deformations were 

ignored. For this reason, the studied arches could buckle elastically. The authors 

illustrated that the critical horizontal reactions for the asymmetrical buckling modes 

were sensitive to changes in the L:h ratios. Their findings concerned both two-pin 

and fixed arches under vertical point load at the crown and UDL applied across the 

arch axis. They showed that, for L:h ratios between 2 and 5, parabolic arches could 

carry 10–48% higher buckling loads than circular forms, and 9–30% higher buckling 

loads than catenary arches. Hence, from their study it is concluded that parabolic 

arches are preferable to circular and catenary ones when buckling loads are 
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evaluated. Moreover, it was seen that the buckling load of the arches is affected by 

the L:h ratios and the arch shape.  

Later, Harvey and Smith in 1987 defended semi-circular arches as sound and 

aesthetic forms, when they are subjected to surcharge due to ground fill exerting 

horizontal forces. This case is an exception to the general findings, including the 

results presented in this thesis that confirm a circular arch form to be less efficient 

than parabolic or catenary shapes. Since finding the origin and direction of the 

thrust line of arches required difficult calculations for actual loading conditions, a 

microcomputer programme was developed by Harvey and Smith. The program was 

based on the mechanism analysis method in which Rankine’s concept of fill 

pressure was used to design a smooth vertical wall. As an elaborated example, they 

pointed to the test bridge at Bargower, which performed properly under different fill 

pressures. Further, their method, based on the thrust line analysis, is analogical to 

the masonry design method that produces inaccurate results, as discussed in 

Chapter 4 of this thesis. The authors concluded that an ideal arch shape did not 

exist, and that an optimal arch form may be found for each specific loading 

configuration.  

Fairfield and Ponniah (1994) used a series of timber model tests to study the 

behaviour of backfilled arch bridges. In their experimental investigation most of the 

tests carried out involved a parametric study of circular arches, considering various 

fill depths. The research was done to find the impact of the surrounding fill and earth 

pressures on the buried arch bridges. The fill depth at the crown and the load 

location were considered as variables. To achieve this, multiple small timber circular 

arches were constructed in which, to resist a frictional force, a high collapse load 

was applied. They found the collapse load, at the L:h ratio of 2 (semi-circular form), 

to be 20– 45% of the collapse load at the L:h ratio of 4. Thus, the circular arch was 

more efficient at higher L:h ratio, as far as the collapse load’s tolerance of circular 
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arches was concerned. Unfortunately, their assessment was limited to arches with 

L:h ratios of 2 and 4, respectively. In order to compare model tests in the study with 

full-scale bridge tests, Bridgemill and Bargower bridges tested by the University of 

Edinburgh were used. Therefore, the relationship between the model tests and full-

scale bridges was obtained in terms of the collapsed loads, arch densities of the 

model, arch prototype and the linear dimension scale factor. The model tests 

demonstrated that by increasing the fill density, the collapse load increased too 

because of raising the dead weight and the support stiffness.  

Investigating the span-to-height ratio of arches, Bensalem et al. (1998) tested 

circular arches with a constant cross-section and different span-to-height ratios 

subjected to various load conditions. To do so, three finite element analyses were 

applied which found the relationship of the collapse load and the modal 

characteristics of the arches such as; arches’ resonant frequency and mode 

shapes. By disregarding the problem of buckling, steel circular arches with a range 

of span-to-height ratio between 2 and 8 were analysed under different load regimes. 

Firstly, natural frequency analysis was implemented to acquire the natural frequency 

and mode shape of each arch. Then, implicit dynamic analysis was carried out to 

study the behaviour of arches under transient impact loading. These two tests 

investigated the dynamic behaviour of arches that are not of relevance to this study. 

Lastly, a non-linear static analysis was conducted to estimate the load-carrying 

capacities and deflections of arches under vertical loads. It was also noted that, as 

long as the level of loading remains that much lower than the serviceability limit, the 

analysis can be expanded to arches built of other materials. Although the concept of 

collapse load is not in the scope of this research, it is interesting to compare the 

behaviour of circular arches with different L:h ratios. It was shown that the minimum 

collapse load occurred at the L:h ratio of 2 when the arches were subjected to a 

vertical uniformly distributed load. Also, the collapse load of a semi-circular arch 
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was about half of the collapse load when the L:h ratio of the arch was 3. This finding 

shows the sensitivity of the behaviour of the circular arch with a changing L:h ratio. 

The maximum collapse load was found for a L:h ratio between 4 and 5. Moreover, 

because of the low level of loading in their tests, which could not exceed the 

linearity state, they compared their results with those obtained from tests on 

masonry or concrete arches. The comparison demonstrated a fairly good correlation 

for the range of span-to-height ratio which has the highest collapse load. In spite of 

the remarkable findings for the optimal range of span-to-height ratio with the 

criterion of maximum collapse load, only the arches of circular shapes were 

analysed.  

In order to find the actual limits for the L:h ratio of concrete arches in which the arch 

behaviour is assured, Salonga and Gauvreau (2010) studied the behaviour of fixed-

ended rib concrete arch bridges under permanent loading.  Although the behaviour 

of fixed-ended arches is not investigated in this research, studying the difference 

between shallow and deep fixed-ended arches is of particular interest. They studied 

the limit of the L:h ratio in the construction of shallow concrete arches which are 

sensitive to axial deformations. Hence, they proposed the limit of the L:h ratio in 

which the efficient arch behaviour was guaranteed. In this regard, the influence of 

the axial deflections and the bending moments on the shallowness of arches was 

studied. The limit of the shallowness was considered as a conversion between the 

behaviour of fixed arches and fixed beams in their study. Regarding the 

conversional behaviour, a force method was implemented to determine a 

dimensionless ratio which was dependent on axial and flexural rigidity and the 

arch’s height. It was demonstrated that the shallowness ratio was related directly to 

the arch height and had an inverse relation to the radius of gyration of the system. 

The system consisted of a deck plus arch, ignoring the effect of the spandrel 

column. To simplify the analytical calculations of this indeterminate structure, they 
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assumed that the spandrel columns were connected to the arch and deck with pins. 

Also, it was assumed that the flexural rigidity at the crown of the arch is equal to the 

flexural rigidity of the arch projected on the horizontal axis. The lowest shallowness 

ratio to guarantee the effectiveness of the arch was found to be 20. This threshold 

showed that the fixed-ended arch carried most of the uniform loads in axial 

compression.  

2.4. Study of the analysis methods of arches 

The methods of structural analysis have been developing in recent years. Many 

researchers developed assessment tools based on plastic principles, including 

Heyman (1966 and 1969), Harvey and Smith (1987-1991), Blasi and Foraboschi 

(1994), and Gilbert (2007). Other researchers such as Pippard et al. (1936-1968), 

Crisfield (1984), Bridle and Hughes (1989), and Choo and Coutie (1991) analysed 

arches based on “elastic” principles. Many of these methods were based on 

Castigliano’s energy method (1876; 1879). As Harvey et al. (1990) stated the most 

recognized analysis methods were mainly classified as: MEXE, mechanism and 

finite element.    

The MEXE method was an elastic analysis method, initially introduced by the 

Military Engineering Experimental Establishment, using a semi-empirical approach 

based on Castigliano’s theorem and the work carried out by Pippard et al. (1936, 

1938, 1951). A formula was developed based on the arch dimensions to estimate 

the strength of a masonry arch. The arch is required to be parabolic with the L:h 

ratio of 4. The method does not fully capture the spandrel fill strength, or arch 

“thinning”. Moreover, its results were viewed as very conservative and the 

modification factors mainly affected the results from the method. However, the 

MEXE method is categorised as an easy-to-use analysis method in which the 

results can be obtained fast (Harvey et al. 1991). The mechanism method was 
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developed by Heyman (1966 and 1969) and was a straightforward approach for 

plastic analysis of arches (Harvey et al. 1991). The mechanism method identifies 

the location of four hinges with the associated loads applied to the arch. Hence, the 

mechanism related to the minimum load can be found using the equations of the 

equilibrium of forces through an iterative process. Heyman believed that an 

accurate failure load could be achieved in the mechanism method if the input 

parameters had sufficient accuracy. The method also presumed negligible tensile 

strength, infinite Young’s modulus and infinite compressive strength and finally stiff 

abutments. The thrust line was the main means to estimate the maximum load in 

this method. The mechanism method later became the basis of the programme 

used in Archie software (Smith 1991). The location of the thrust line under the 

applied load was given using Archie. Hence, the mechanism could be determined 

when the thrust line touched the edge of the arch. The load-carrying capacity, 

internal forces, zone of thrust, and the worst location for the load to produce the 

fourth hinge were given using this software. The effect of the soil–structure 

interaction was also a programme feature. The programme was easy to use for 

finding collapse load, but all the variable loads and reactions needed to be 

determined proportionally (Ng 1999). Later, Harvey and Smith (1988) extended the 

Heyman method to estimate the minimum arch thickness under a given loading 

condition by introducing the ‘thrust zone’ instead of the term ‘thrust line’. Nowadays, 

finite element (FE) methods dominate structural analysis and it is claimed that their 

use in the analysis of two-pin arches provides solutions in a shorter period of time 

than the classical methods. The finite method provides information regarding: a) 

cracks; b) the stress and deflections history of the arch at design or maximum 

loading condition; c) the spandrel filling effect; d) geometric non-linearity, unlike the 

mechanism and MEXE methods (Ng 1999). Since this review of different methods 

of arch analysis is mostly accompanied with a review of the arch behaviour, some 

arch assessment methods are summarised next. 
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One of the well-known researchers in the field of analysing masonry arch structures 

is Heyman. He (1969) studied the importance of the location of the thrust line within 

the arch on the arch stability. As noted, setting the thrust line entirely in the masonry 

arch rib under all loading conditions leads the purely compressive forces to transmit 

between each two adjacent cross-sections. Additionally, if the thrust line acts at the 

surface, the entire cross-section would have no stress. Otherwise, the cross-section 

of the masonry would experience a tensile force. However, there was a probability 

of hinging action that could lead to a failure when the cross-section involved the 

thrust line completely. Consequently, creating a pattern of hinges which were 

related to the failure mechanism resulted in understanding how the arch could 

develop instability. Hence, the focus of both the theory and experiments in his 

research was to collapse. In this regard, Heyman applied limit principles to the 

masonry arch. After reviewing collapses of some historical masonry arches, it 

turned out that the arch failure caused by the stresses of voussoir arches; however, 

the stresses in voussoir arches were low. The reason of such failure, while stresses 

in arch material are low, is the lack of an appropriate geometrical factor of safety for 

containing a thrust line properly within the arch depth. To demonstrate this notion, 

the pattern of hinges of semi-circular and incomplete circular arches was plotted 

and the required minimum thickness of the arch was determined. As a result, he 

defined a geometrical factor of safety as the ratio of the actual thickness of the arch 

to the minimum one for containing the thrust line. Although this factor had a major 

influence, it was not sufficient to confirm the stability of the arch in which pattern of 

hinges does not lead to a mechanism of collapse. Thus, the strength and the 

resistance of the arch to an imposed load were tested. This could be highlighted 

when a travelling point load was applied to the arch, which could alter the position of 

the thrust line. Heyman illustrated that, by assuming the shape of the arch to have 

an ideal thrust line instead of the existing shape of the arch, a simple analysis could 

be carried out on the influence of moving the point loads. The assumption of this 
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method was that the arch material had an infinite compressive strength. As a 

consequence, the geometrical factor of safety and the thickness of the arch became 

respectively infinity and zero. These properties were known as the plastic theory 

hypothesis. The purpose was to obtain a distance between the thrust line and 

centre-line caused by a travelling load. In this regard, the calculations of simple 

plastic theory were used with the consideration of the formation of hinges which 

turned the arch into a mechanism. The calculations resulted in equality of the work 

done under all loadings on a small motion of the mechanism to the work dissipated 

in the hinges. He then applied this theory to analyse the stone bridge of Lincoln 

Cathedral with a constant cross-section and Ponte Mosca, in Turin, with a variable 

cross-section.  

Bridle and Hughes (1990) explored a tool for elastic assessment of the maximum 

strength of unreinforced arches. In this regard, they proposed a new computer 

programme based on Castigliano’s second theorem to analyse the arches. They 

assumed that the strain energy has contribution from bending action and tangential 

forces. Ideally, the method would be capable of modifying load limits and identifying 

the status of collapse under different loading arrangements in a cost-effective way. 

This could facilitate the durability and maintenance of arches, especially with the 

modern material used in masonry. The programme could calculate the forces, 

bending moments, and deflections according to different load configurations. This 

computer numerical integration technique was also used to evaluate deflection 

integrals under each load increment in an iterative process. The technique 

addressed the non-linearity effect as well. Moreover, an incremental load was 

added to the live load at the end of each convergence and the iteration was re-run 

till the maximum load was found. The method had been tested for Bridgemill arch in 

Girvan. The findings demonstrate that earth forces could be modelled more 

realistically than in the mechanism method. Furthermore, the support’s movement 
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could be considered in the calculations if the initial dead load conditions were 

known. The loading history of the masonry arch could be estimated with evaluation 

of the arch geometry and used in the analyses.  

Smith et al. (1990) introduced an innovative way of arch analysis in the same year 

as Bridle and Hughes. They proposed a practical method, named the three-hinge 

method, for analysing masonry arches subject to working loads. As they cited, there 

are different reasons for the movement of the thrust line from the centre in masonry 

arches, such as shortening of the arch because of the great compression forces or 

the spread of abutment next to the springing. Therefore, masonry arches are likely 

to deform even under permanent actions. This indicated the possibility of the 

formation of three hinges across the arch whose locations are unknown. However, 

the location of the hinges was affected by the magnitude of the live load because of 

producing various lines of thrust. These locations were varied by affecting the traffic 

loads in real arch bridge cases with time. By increasing the magnitude of the load, a 

fourth hinge could be formed, which causes the structure to turn into a mechanism, 

and eventually the arch would collapse. It was stated that the three-hinge method 

and four-hinge mechanism method have the same solution for the ultimate load 

state. Nevertheless, the proposed three-hinge method concentrated on the 

definition and measurement of the serviceability limits in preference to ultimate 

limits. In the three-hinge analysis method, the vertical and horizontal thrust 

components were calculated using static equilibrium at any hinge. The applied 

loading in their calculations involved the fill weight, live loads, and pressure forces 

because of the arch movement. Thus, different lines of thrust could be drawn for the 

entire arch by determining the size and direction of the thrust line at any hinge. 

Consequently, there would be different acceptable static solutions, especially in the 

case of shallow arches. In this regard, the case which produced the minimum 

horizontal thrust by the springing was used in their computer program. The chosen 
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thrust line was also related to the minimum energy in the structure. As a practical 

example, the three-hinge method was applied to the Torksey Bridge in Lincolnshire. 

The results of the three-hinge method showed that the measured collapse load was 

in accordance with the one obtained by the full-scale tests by the UK Transport and 

Road Research Laboratory (TRRL). However, the three-hinge method illustrated the 

behaviour of the arch before its failure. They also simulated the collapses for 

Torksey Bridge due to local crushing by expanding the three-hinge method. 

Moreover, they showed that by decreasing the arch ring thickness, the load that 

causes a mechanism to be formed would be reduced. As another example, the 

Preston-upon-the-Weald Moors Bridge, containing hunching above the springing, 

was simulated using the three-hinge method programme numerical predictions were 

compared with the test results from TRRL. In this example, a significant horizontal 

movement was observed when the load was increased, which indicated the action 

of hunching as an abutment. This caused the height of springing to rise effectively. 

The fourth hinge could not be formed in this case and the structure would survive 

until a significantly large load causes a failure through crushing at the hinge. Again, 

there was a good correlation between the programme and TRRL results. An 

advantage of the three-hinge method is that it can calculate the position and 

magnitude of the thrust line on each abutment. It was shown that the ultimate 

capacity of the arch was greatly influenced by the abutment movements.  

In spite of the existence of plenty of investigations on the methods of arch analysis 

including finding collapse loads, no study before 1994 was found presenting 

analytical methods to estimate the collapse mechanism and relevant loads. At that 

time, Blasi and Foraboschi (1994) offered an analytical collapse approach that 

assumed negligible tensile and shear strengths for a masonry arch based on a no-

tension elastic constitutive model. The minimum principal strain was considered to 

be always positive in their research. Additionally, the strain tensor was the sum of 
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the elastic strain and the inelastic one; the inelastic strain was because of the 

cracking in the arch material by dilatations. They presumed a hinge to be elastic 

when the line of thrust was tangent to the boundary. This thrust line was significantly 

affected by the horizontal thrust at the skewback because of the thrusting function of 

the arch structure. Therefore, the lower and upper horizontal thrust limits of a semi-

circular arch under its own weight, and an UDL, were calculated to prevent collapse. 

The lower and the upper thrust were considered as the minimum and maximum 

values of the thrust. They are obtained by calculating the rotational equilibrium 

equation of any point on the arch. The resultant equation of each thrust was the 

function of the angle of the collapsed hinge. It was also dependent on the span and 

thickness of the arch. There was a possibility of arch collapses when the line of 

thrust lay inside or tangential to the boundary. The former could occur when the 

applied load increased significantly and the latter when a hinge was formed at the 

tangential point. Subsequently, the collapse mechanisms and the intensity of the 

relevant horizontal limit thrusts at the arch’s skewback were regenerated. The 

relation between the spandrel fill and the vertical dead load was shown in their 

analyses when the relevant horizontal action was much smaller than the weight. In 

so doing, they suggested some applicable analytical functions, such as the 

minimum magnitude of the thickness-to-span ratio, the safety margin, and the 

maximum value of uniformly distributed load. They indicated that both the collapse 

mechanism and the limit of the horizontal thrust were defined as a function of the 

loads and the geometry of the arch. Hence, it can be concluded from their study that 

the arch’s geometry has a major impact on the horizontal thrust. To obtain the 

minimum permissible value of the thickness-to-span ratio of the arch, they set the 

lower thrust equal to the upper one. The safety margin of the masonry arch was 

calculated based on the difference from having the upper or lower thrust. Finally, to 

demonstrate the accuracy of this approach, they compared the results of their 
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analytical method with the results of FE analysis. Furthermore, they stated that the 

collapse approach was more reliable than FE for complex boundary conditions. 

Later, Clemente et al. (2001) analysed arch numerically when in pure compression 

and designing the structure by having a series of cells which had a linear elastic 

behaviour in compression, joined with rigid voussoirs. They applied Castigliano’s 

approach and established the equilibrium equations. They used an iterative process 

to find the cross-section of each cell. To study the arch structural behaviour, they 

applied a computational programme to an arch subjected to UDL up to the point of 

collapse when the contribution of the fill material to the arch lateral support was 

ignored. Thus, the arch was divided into n voussoirs with the same length and, 

therefore n+1 joining cells. It was assumed that the two cells near both supports 

behave in the same way as the other cells and that the depth of the arch was 

constant. Therefore, arch stiffness was constant along the arch. Then the bending 

stiffness of the ith cell was written in terms of the modulus of elasticity, the length of 

the rigid voussoir and the thickness of the arch for the unit width of the arch. Thus, 

the equilibrium equation was defined in Lagrangian coordinates. This equation was 

only adaptable for linear elastic structures. It was shown that the cells would be 

cracked when the eccentricity went over 1/6 of the arch depth. The stiffness of 

cracked cells was relevant to the compressed part of the cross-section, i.e., the 

height of the effective cross-section. Furthermore, the effective depth of each cell 

was obtained by iteration. Subsequently, the solution was dependent on the weight 

of the backfill, the shape of the arch involving the thickness-to-span ratio of the arch 

and the arch height. As they concluded, the final solution from this numerical 

method was achieved in a short time and its results were related to the strength and 

modulus of elasticity of the material without using complicated computational 

procedures. 
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Hughes and Pitchard (1998) investigated the impact of dead loads and stresses due 

to serviceability loads on masonry arch bridges, based on both actual 

measurements and the numerical analysis using a cracking elastic model. The 

authors explained how load conditions and the masonry material have change with 

the time. Since the vehicle loads – especially on rail lines – were increased; the 

bridges could have been subjected to a heavier load. On the other hand, the 

material used in the masonry has been deteriorating. As a result, an assessment 

method for masonry arches needed to be developed. The initial stress state, 

deflection and cracking (joint opening) were regarded as the fundamental 

knowledge of a bridge’s serviceability condition. Based on the numerical methods 

used by previous researchers prior to Hughes et al. the initial state of masonry 

arches was not a decisive factor in the estimation of critical load for arch failure. 

However, Hughes and Pitchard declared the possibility of the pre-existence of 

hinges at the abutments in the recent arch assessment theories, in which the initial 

state of the arch was regarded as an important input in the assessment. In this 

regard, an experimental test, named “flatjack”, was carried out in their research. 

This test was initially designed to measure stress in rocks and then extended for 

masonry arches in Italy. The test equipment consisted of a frame and voltage 

displacement transducers. The flatjack test provided information about the arch’s 

initial state. The authors showed the starting stress state on a real arch bridge for 

the first time. Hughes et al. modelled the arch one-dimensionally assuming no 

tension for a geometrically non-linear structure. Consequently, a numerical method 

considering the cracking elastic model with initial stress states was developed. The 

authors compared the experimental findings with numerical results. In conclusion, 

Hughes and Pitchard regarded the initial stress state as an essential parameter for 

masonry arch assessment. Moreover, the model was validated with the 

measurement values. They believed that complex non-linear arches could be 

properly assessed by the elastic cracking analysis method.   
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To find the proper material properties for three specific full-scale masonry arch 

bridges, Fanning and Boothby (2001) analysed the available test results of those in-

service arch bridges. To do so, they applied the three-dimensional non-linear FE 

tool, ANSYS V5.5, to the three masonry arches. The authors referred to difficulties 

in assessing masonry arch bridge behaviour based on empirical formulation in the 

past. One of the reasons was the limitation of the information about the condition of 

masonry arch bridges. Secondly, there was no globally agreed method to assess 

the behaviour of bridges. The first issue was not considered to be a major challenge 

since the observable parameters such as stone quality and geometric profile were 

more important for assessment. The authors address the second issue by using a 

three-dimensional commercial non-linear FE analysis, while reviewing the existing 

assessment methods of masonry arch bridges. They replaced the masonry material 

with a solid element having the same stiffness in modelling the arch bridges. Also, 

significant bending moments were produced because of the distribution of fill 

pressure. Therefore, they included cracks and crushing in the modelling of the 

masonry arches as results of the bending moments that could change the structural 

response to loading. Later, they assessed a structure’s behaviour under different 

load conditions, highlighting the response of the bridges to “truck loading” and the 

need to consider the three-dimensional effects. They compared the results of the 

deflection and displacement of the arch based on the distance of the front axle or 

truck position from the arch crown from their findings with the available results of 

three studied arches. The comparison showed a good agreement between the test 

results and the numerical method. Hence, Fanning et al. concluded that the three-

dimensional FE was an appropriate analysis tool to assess masonry arch bridge 

behaviour with the consideration of fill material, cracking, and crushing of the 

material. 



2. LITERATURE REVIEW 

24 

Ng and Fairfield (2004) modified the conventional mechanism method using the 

deflection-dependent pressure updating algorithm. They assessed Bargower stone 

arch bridge to show the validity of their modification. The reason for this modification 

was triggered by the significant change in the arch profile at the time of failure. Ng 

and Fairfield reviewed the previous research carried out to assess masonry arch 

bridges with the soil material interaction. The authors believed Heyman ignored the 

arch shape deformation and only considered the lateral soil pressure distributed on 

the extrados, whereas the arch profile at the time of the arch failure was different 

from its original shape. Ng and Fairfield modified the four-hinge method assuming 

infinite strength for the arch compression with no tensile stresses. The authors 

plotted the collapse loads of the Bargower arch bridge against its vertical deflection 

under different load lines. The effects of the backfill’s weight, different ultimate 

passive deflection, the backfill’s angle, live dispersal angle and different arch unit 

weights were also analysed. They used the results of centrifuge tests on the soil–

arch system obtained from Hughes et al. (1998) and Burroughes et al. (2001), when 

analysing the effect of changes in the live load dispersal angle. The authors 

concluded that the collapse-load estimation was largely affected by arch deflections. 

Consequently, the weight, angle of shearing resistance, and the ultimate passive 

deflection of the backfill influenced the predicted collapse load.  

For the assessment of the historical masonry arch structures, Gencturk and Kilic 

(2006) used the Discrete Element Method (DEM). They applied DIANA software 

which used a finite element non-linear solver to explore a first century stone arch 

named Titus Tunnel Bridge. This is a semi-circular arch with no filling material for 

binding the stones and it is located in Antakya city in southern Turkey. This bridge 

was built for pedestrians only. Using the DEM, voussoirs were divided into finite 

elements connected by contact surfaces which acted as non-linear finite elements. 

Since adjacent voussoirs were not joined robustly by a binding material, the 
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application of this method to masonry arch and vault analysis was justified. The 

results of DIANA software were compared with the analytical solutions. As a 

benchmark of analytical solutions, the snap-through truss method was used. This 

analytical approach gives two solutions to analyse the problem: one for shallow 

trusses (when Sinθ=θ, and θ is the internal angle of truss at the support with 

horizontal axis) only and the other for both shallow and deep trusses. The results 

from DIANA were compared with results from the snap-through truss work. From 

the information in plots of force-displacement for the different methods they 

concluded that, for problems including geometric non-linearity, DIANA could be 

suitable as long as large rotations were not included (shallow truss). Regarding the 

analytical investigation of masonry arch structures, they considered the geometrical 

factor of safety along with the thrust line. For the line of thrust, they applied 

Heyman’s theory (1982) that assumed the stability of a pure compression structure 

under all possible loads when the line of thrust lies entirely within the masonry 

section. According to Heyman, to contain the entire thrust line within an arch ring, a 

minimum thickness should be determined for the arch cross-section. The minimum 

thickness was also required to find the exact collapse load. To calculate the 

collapse load, two different methods were implemented, the mechanism method for 

asymmetrical loading and the virtual work method for symmetrical loading. To check 

the precision of the arch depth, the thrust line was drawn by programming it into 

MATLAB, as well as the calculations of the collapse load. Their investigation 

indicated that the geometrical factor of safety for Titus Tunnel Bridge was 2.06, 

which confirmed the durability of the bridge. Also, because of its high self-weight 

and low live loads, the semi-circular geometry of this bridge could satisfy the loading 

conditions. Regarding the symmetry of Titus Tunnel Bridge, when a point load was 

applied at the crown, a five-hinge collapse mechanism was estimated. Finally, the 

graphs of the thrust line using the mechanism method and the thickness of the arch 

ring against the collapse load for crown loading for the bridge were presented. 
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Gilbert (2007) highlighted the limit analysis in verifying the arch safety that has been 

transferred from hand calculation into computer-based assessment. The two main 

methods for arch analysis i.e., elastic and plastic, were considered in his research. 

The elastic method was not regarded as a straightforward approach since there was 

no unique computable equilibrium state existing for masonry arches. On the other 

hand, there was only one ultimate state of arch considered whilst assessing the 

plastic method. As a result, there were considerably fewer parameters and initial 

stress input data required. The specific conditions of the arch plastic limit state were 

defined by the “equilibrium”, “mechanism” and “yield” defined. The conditions 

demonstrated the state of the arch when a load (multiplied by a load factor) was 

applied. Ideally, the “uniqueness theorem” required all three pre-defined conditions 

to be satisfied. The resultant factor is for the minimum collapse load factor. There 

was an emphasis on the thrust line, the number of releases for the mechanism and 

the geometrical factors for safety whilst estimating the maximum loading factor. Line 

of thrust and rigid block had been the recognised techniques for masonry arch 

stability analysis until then. The backfill method was branded as the latest 

computational procedure capable of modelling the masonry and soil components. 

Moreover, they stated that three-dimensional masonry arch analysis was a potential 

area for investment in the future because the technique was still expensive and 

difficult to adopt in computer-based analysis.  

Most of the preceding investigations of the behaviour of arches were conducted on 

circular arches. However, the buckling of parabolic arches was studied in many 

cases. In this regard, Moon et al. in 2007 studied the elastic buckling of two-pin 

shallow parabolic arches under vertically distributed loads. Considering a probable 

symmetric mode, which was called the symmetric snap-through mode, for buckling 

of the shallow arches, the conventional buckling hypothesis could expect the 

buckling load to be much higher than the actual buckling of the arch. The reason for 
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this overestimation was because of the large value of the ratio of the pre-buckling 

deformation to the arch’s height. Therefore, the buckling formula for the symmetric 

snap-through mode of a two-pin shallow parabolic arch was found from the non-

linear principal equilibrium equation of it. To obtain the equation of shallow parabolic 

arches subjected to a vertically distributed load, the static mathematical method was 

used. Thus, the common non-linear equilibrium equation of the arch was 

reformulated to achieve the equation of an incremental form for the shallow 

parabolic arch. Also, to find the symmetric buckling load, the shape of the arch was 

assumed to deform symmetrically. Following the reformulation of the equilibrium 

equation, the load–displacement relationship was acquired. Additionally, the 

threshold of different symmetric and asymmetric in-plane buckling modes was 

obtained in terms of the slenderness ratio and the height-to-span ratio. To find the 

threshold of different buckling modes, the dimensionless height term (H) was 

defined as 4h/π2g, in which h is the arch height and g is the radius of gyration of the 

arch cross-section. Thus, the stability, symmetric snap-through, and asymmetric 

buckling of the two-pin parabolic arch were determined for the range of 

dimensionless rise H. Hence, the arch is presumed to be stable for H<π/4, and the 

parabolic arch may have symmetric snap-through buckling for π/4<H<1.85, and 

finally asymmetric buckling may occur when H>1.85. To assess the accuracy of the 

suggested formula, numerical finite element examples were applied, although the 

interactive buckling was ignored. Hence, the findings from the buckling load via this 

novel formula and threshold were in accordance with the results of the numerical 

method. 

Audenaerta et al. (2008) proposed a two-dimensional assessment approach to 

identify distribution of internal forces and displacements in single-span masonry 

bridges under different load conditions. They emphasised the challenges that 

bridges were facing with regard to their complex structure and loading pattern. The 
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authors were trying to develop an assessment algorithm to estimate the ultimate 

load capacity of the structure. Previous attempts to evaluate arch behaviour with 

different load conditions is summarised in their work. The researchers applied both 

two-dimensional and three-dimensional finite element models to investigate the 

structure’s response to vehicle loadings. The transverse distribution of stresses 

across the arch barrel was not considered in the two-dimensional studies. 

Audenaerta et al. compared the two-dimensional assessment method with the 

three-dimensional one. The former was considered as a convenient and efficient 

tool for arch capacity assessment, whereas the latter was more suitable for detailed 

stress distribution and displacements quantification, with more complex arch 

information and resources. The abutment movement and stress distributions under 

different load conditions were also addressed in the approach. Additionally, the 

stiffness loss in masonry cracks was taken into account. This led to more stability in 

their numerical computations. Audenaerta et al.’s approach was called “elasto-

plastic”. There were horizontal, vertical and moments equilibrium equations within 

the analytical model. To limit the horizontal, vertical and abutment movement, a set 

of boundary conditions was also defined. Additionally, the material properties were 

included in the model to capture the initiation of cracks and hinges. Audenaerta et 

al. applied this analytical method to identify the critical point load on the arch, 

ultimate load factor, location of plastic hinges formation, stress distribution and 

abutment displacements levels. The method was validated through comparison with 

numerical results from an elastic/plastic and continuum finite element analysis 

methods. The authors believed that their proposed analytical method was a simpler 

version of two-dimensional plastic analysis and had a more complex finite element 

modelling procedure compared to the existing methods. In other words, the hinges 

formation, in addition to the cross-sectional normal stresses under an increasing 

load factor, was achievable with the proposed analytical model. The method was 
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used in computer software to investigate an arch’s behaviour under both vertical 

and horizontal displacements.  

Drosopoulos et al. (2008) identified the load factor for stone arch failure by using 

finite element work. The modelling methodology considered the contact interfaces, 

while coping with potential cracks. To realize arch non-linearity, the structure was 

modelled as a unilateral contact friction representing that no tension forces can be 

transmitted. Furthermore, they assumed the stone arch bridge material to have no 

tension strength in order to satisfy limit analysis criteria. To indicate crack formation, 

the discretized model of a bridge with a number of interfaces was simulated. The 

authors emphasised the application of iterative techniques for the numerical 

solution. The research also summarised the Heyman collapse mechanism theory 

and limit analysis carried out for discrete structures with a frictional contact 

boundary. Drosopoulos et al. demonstrated how the geometry parameters could 

impact on the mechanical behaviour of the arch. The authors assessed the 

mechanical behaviour of stone arch bridges against two main principles: the arch 

geometry impact on the load factor, and the impact of abutment movement on the 

structure’s behaviour. The applicability of the unilateral contact model to execute 

limit analysis was also proved in the paper. In summary, Drosopoulos et al. 

modelled the structure as a unilateral contact-friction, then estimated the maximum 

load for arch failure, and finally depicted the optimal shape of the arch from the 

parametric analysis results, based on studies carried out on 19 different bridges. 

They also suggested that the approach was applicable for multi-span arches and 

even more complicated structures. The findings of the research were validated 

against Heyman’s results (1982). Drosopoulos et al. concluded that lowering the 

height of the arch leads to the limitation of the arch load factor with a rise in the 

compressive arch failure, whilst deep structures failed according to the fourth-hinge 
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collapse mechanism theory. The authors recommended a study of backfill influence 

on an optimal arch shape as the way forward for future arch studies.    

Pintucchi and Zani (2009) determined the impact of geometric non-linearity on the 

collapse mechanism of circular masonry arches. In their study, the material was 

assumed to have no tension strength and negligible compressive strength. Pintucchi 

and Zani evaluated the collapse load of arches under their self-weight and a 

uniformly distributed load or a vertical load applied at the structure crown. As they 

stated, the slenderness and the equivalent strength of the arch were two decisive 

factors in determining the collapse load. The former was the relation between the 

radius and thickness of the circular arch, and the latter was the relationship of the 

arch geometry to the compressive strength a weight of the arch. An algorithm was 

defined to estimate the critical load condition. The algorithm was developed into 

computational code. Pintucchi and Zani concluded that the resultant value of the 

collapse load was not dependent only on the slenderness and equivalent strength 

parameters but also on something called equivalent stiffness derived from modulud 

of elasticity (E). Thus, the authors applied the limit analysis method to circular 

arches to calculate the multiplier of the collapse load. Moreover, it was presented 

that a collapse load would be reduced because of the destabilizing effect of forces 

such as a decreasing E value, which is in accordance with increasing the size of the 

arch. Furthermore, the reduction of the collapse load would be greater if the 

slenderness of the arch was greater. 

Toth et al. (2009) used the DEM to investigate the impact of the backfill on the 

mechanical behaviour of a multi-span masonry arch. The main applications of multi-

span arches are found in railway and road bridges operating in Europe and around 

the world. The load conditions on these arches have been increasing and, as a 

result, there is a requirement to re-assess the load-bearing capacity of existing 

structures. They assumed a high compressive strength for masonry arch with no 
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tension strength. Both simple conservative (such as MEXE) and computerised (such 

as mechanism and FEM) methods were applied to investigate arch loading 

capacity. The conservative methods usually estimated a loading factor lower than 

the actual value, hence they were not a cost-effective solution. Additionally, Toth et 

al. believed that the conservative method was not suitable in the case of non-

standard geometries. The computerized method such as the FE has been applied in 

two- and three-dimensional arch assessments. However, the computerized method 

was relatively expensive and complicated input data was required. The DEM was 

recognised to have advantages over previous methods since it modelled the arch 

through a “collection of separate blocks”. To achieve an appropriate method of 

masonry analysis, initially the geometry and mechanical properties of a one-span 

bridge model were defined based on experimental results. Then, Toth el al. 

developed a multi-span model from the one-span model using new material. In 

other words, they validated the parameters and mechanical behaviour of the 

Nishida one-span arch bridge using a discrete element FE method to generate the 

multi-span arch model. Then they compared the results of the multi-span structures 

with different backfill materials. The deflections, normal stresses, and plastic mode 

of backfill under different live load cases were estimated. Toth et al. concluded that 

the structure capacity was dependent on the stiffness, friction angle, and cohesion 

of the backfill.   

Gibbons and Fanning (2010) compared five different analysis methods for masonry 

arch bridges. They suggested that these structures needed to be regularly 

reassessed to make sure their loading requirements and material strength were fit 

for purpose. However, there was no globally agreed framework. The modified 

MEXE method, a three-hinge plastic method, a rigid block method and 2D and 3D 

elastic methods were considered amongst the common practices of masonry arch 

bridge assessment. They applied five methods to analyse 10 bridges with spans 
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ranging from 2.4 to 15.2 m in Ireland. The modified MEXE method focused on the 

relation of the arch span and the crown thickness, based on the work of Pippard. 

However, there were some concerns regarding the span length, span-to-height 

ratios, depth of fill and its applicability to short-span bridges. Gibbons and Fanning 

added that the three-hinge plastic and rigid block methods both fell into the plastic 

method category defined by Heyman. The formation of the fourth hinge leading to 

the structure failure was the main principle of the plastic methods. Archie-M and 

Ring were regarded as existing commercial software for the three-hinge plastic 

method and the rigid block method, respectively. The three-hinge plastic method 

was based on the formation of the three-hinge principle developed by Harvey. On 

the other hand, the rigid block method was based on the failure load factor criterion, 

which is for the loading required to form the fourth hinge in the arch, as developed 

by Gilbert and Melbourne (1994). The other assessed method was the elastic one. 

This involved two-dimensional and three-dimensional elastic analyses. In elastic 

method, an equation for the compressive strength to withstand the axial forces and 

bending moments, while having a limited tensile capacity, was used. Consequently, 

the axial forces and bending moments and compressive strength within the arch 

material were calculated. This was an iterative process and continued until the 

maximum axle load was identified. The vertical structural behaviour of the arch was 

also considered in three-dimensional analyses. Consequently, loads and loads 

factor, transverse load distribution, and the earth pressures were evaluated using 

the above-mentioned assessment methods. They concluded that the rigid block 

method and the 3D elastic method provide the user with the best results. Gibbons 

also recommended the impact of the earth's pressure on 2D and 3D elastic 

methods for future work in this field.   

Oliveira et al. (2010) investigated the ultimate load capacity of 59 masonry arch 

bridges in Spain and Portugal. They also compared the historical experimental rules 
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with the geometrical data from the assessed bridges. In this regard, the authors 

chose eight reference bridges to represent the sample. They assumed three classes 

for L:h ratios in which the arch was shallow if L:h≥4, semi-shallow for 2.5≤L:h<4, 

and finally deep when L:h<2.5. It was shown that most of the 59 studied arches 

were in the ‘deep’ category, with spans between 7.5 m and 15 m. More than half of 

the chosen arches were built before the 15th century. However, identifying the 

history and as a result the classification of the arches was sometimes difficult, 

mainly due to maintenance and repair carried out in the past. On the other hand, the 

authors explained that the load conditions of the arches had been changing and 

their materials had been deteriorating. As a result, the ageing bridges might not be 

safe anymore. Oliveira et al. summarised the past two decades activities to assess 

the mechanics of masonry arch bridges in Spain and Portugal. Once the geometric 

profile of arches for one geographical area was identified, the structure’s safety was 

scrutinised, based on their geometry and a simple numerical method. The numerical 

analysis was based on the maximum load that the masonry arch could carry and 

load distribution. They discussed the result of geometrical surveys of eight bridges 

and eventually identified the parameters required to estimate the maximum load 

capacity of both single- and multi-span masonry arch bridges. The shape of the 

arch, thickness of the arch and width of the piers were introduced as empirical rules. 

The paper reviewed the available numerical analysis methods. Oliveira et al. chose 

the rigid block limit analysis as a numerical method for their study. This method 

recognises the load distribution. However, the load capacity of the bridges needed 

to be calculated. Therefore the Ring software was used for masonry arch limit 

analysis. The authors concluded that the crown thickness of the short-span arches 

and the pier width values were greater than the empirical rules had suggested. The 

width of the cross-section-to-span ratio was considered constant for larger span 

arches. Oliveira et al. also concluded that the arch thickness and fill material 

properties had a significant impact on the structure’s load capacity. Having definition 
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of load factor as the ratio of collapse load to live load, assuming a standard vehicle, 

the load factor was greater than 7 for the chosen single- and multi-span arches. 

Hence, the sample was relatively sound against the safety criteria. 

To analyse the single- and multi-ring masonry arches at both ultimate limit and load 

serviceability states, Casas (2011) proposed a methodology for a reliability-based 

format assessment. He reviewed the research into the assessment of masonry arch 

behaviour. The author listed MEXE, maximum stress analysis, the mechanism 

method, Castigliano method and discrete element analysis amongst the numerical 

and semi-empirical ways of estimating the load-carrying capacity of masonry 

arches. Furthermore, he indicated that there were also some developments in 

computer-based analysis such as Archie-M, RING, and DIANA. The static loads, 

self-weight plus UDL, and the arch ring were considered for load condition analysis, 

not the cyclic loading. Moreover, the described methods were all based on a 

deterministic approach. As a result, neither the impact of traffic loads on the 

masonry arch bridges nor other uncertainties were taken into account. An 

assessment method was proposed by the author to investigate the “fatigue failure” 

under normal traffic load. The fatigue failure under cyclic loading was assumed to 

be lower than the ultimate load and its main objective was to assess the long-term 

operability of masonry arch bridges. Casas developed his assessment as a way to 

address uncertainties. He classified the failure of masonry structures into: the 

formation of a fourth hinge, separation of rings in multi-ring arches and finally 

slipping at the foundation. The last item was not discussed in the paper because of 

the lack of the material data and modelling. Casas proposed a reliability method to 

assess masonry arch limit analysis based on the fourth hinge formation and 

mechanism theory. The author validated the proposed methodology findings against 

a single-ring brick masonry bridge in Spain which is composed of five barrel vaults 

of 20m each span.       
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Rizzi et al. (2014) studied the failure mode of a circular masonry arch with a recently 

developed analytical solution. The aim of the study was to investigate the Couplet–

Heyman problem when the circular masonry arch thickness was at its minimum 

under self-weight. They used both analytical and numerical analysis to estimate the 

purely-rotational failure mode. The paper was part of a wider research program 

initiated at the University of Bergamo in 2006. The classical Heyman (1969, 1982) 

solution was an analytical method based on masonry arch limit analysis. The 

solution presented the essential parameters of the five-hinge mechanism failure 

method. On the other hand, the numerical analysis was also developed by the DEM 

within a discontinuous deformation analysis (DDA) framework. There were two other 

DEM categories developed by Cundall and Hart (1992). Rizzi et al. (2014) chose 

DDA mainly because of its efficiency in the static modelling of masonry arches and 

they summarised existing DDA techniques in their paper. The results agreed with 

the analytical solutions. The authors compared the masonry arch critical condition of 

minimum thickness resulting from the analytical method with Heyman’s solution and 

validated their technique against DDA numerical computations. In summary, the 

analytical solutions presented in the paper signified how the minimum masonry arch 

thickness led to the maximum point on the curve in rotational equilibrium. 

2.5. Optimization and form-finding survey 

As a widely accepted fact, decision-making has played a major role in any field of 

human activity. As concerns structural design, optimization techniques facilitate the 

way for a designer to make a decision that achieves the highest advantage from the 

existing resources. Efficient and architecturally appealing arch structures can be 

produced if the form of the structure is set at the heart of the design. Searching for 

the optimum arch shape is necessary to prevent the collapse and deficiency of 

structures such as the collapsed tunnel at Gerrards Cross in 2005 (NCE 2005). 
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Moreover, finding an optimal arch shape leads to a cost-effective structure with high 

strength and efficiency. 

Many researchers have defined structural form-finding. Otto and Rasch (1995) 

described form-finding as a technique which uses optimization methods to find the 

optimal form under a particular load condition. Millais (2005) and Megson (2006) 

defined form-finding as a technique for finding the most efficient shape of a structure 

under a specific load condition. The proposed technique involves physical and 

numerical modelling, and has been applied to a variety of structures, such as shells, 

domes, cable, and fabric membrane structures (Millais 2005). Coenders and Bosia 

(2006) defined form-finding as a “proper architectural and structural shape”. Later, 

Bletzinger (2011) expressed form-finding as “shape finding of equilibrium of forces 

in a given boundary considering specific stress state”. As a popular definition for 

form-finding, the optimal shape of a structure is in a state of static equilibrium. 

One of the basic form-finding methodologies in the field of arch structures is the 

application of hanging models. It was Robert Hooke who first stated an anagram in 

Latin translated as “as hangs the flexible line, so but inverted will stand the rigid 

arch” (Osserman 2010). This philosophy was put into practice by Gaudi (Tomlow et 

al. 1989). Gaudi was well known for his novel forms of vertical and inverted 

catenaries (see Figure 2.2).  

 

 

Figure  2.2. Antonio Gaudi’s hanging model (http://memetician.livejournal.com) 

http://memetician.livejournal.com/201202.html
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To shape catenaries when creating a vault or natural curved arch, Gaudi hung 

different weights on a series of strings and then photographed the shape and 

inverted it to get the required form. Many architects have applied this method in their 

work. Finnish-American architect Eero Saarinen and German-American structural 

engineer Hannskarl Bandel in 1947 designed the Gateway Arch in St. Louis as an 

inverted catenary (Osserman 2010). The stability of catenary arches subjected to 

self-weight only that can transfer only axial forces was explored at the University of 

Stuttgart (Tomlow et al. 1989). Catenary arches subjected to self-weight only 

showed great stability while being rocked in their experimental investigation. 

Inspired by physical hanging models, Kilian and Ochsendorf (2005) applied a well-

known programme named the particle-spring system to find a funicular form that 

could transmit axial forces only. The hanging model was represented by lumped 

masses linked using axial springs in the computational model. Later, they used an 

iterative solver to find the equilibrium state of each mass. Thus the optimal structural 

form was achieved once the whole system was in equilibrium. The technique started 

with two-dimensional funicular forms and expanded to three-dimensional networks. 

In physical modelling, Isler (1994) is renowned for his free-form shell structures. To 

obtain free-form surfaces, Isler has drawn on three novel methods which are: the 

membrane under pressure, the freely-shaped hill, and the hanging cloth reversed. 

He made physical models without using computers and obtained calibrated 

measurements. For shell structures in three dimensions, he used the theory of the 

inverted catenary arch and inflated membrane (Chilton 2012). Some of his works 

are: the creative triangular shells of the Deitingen Sud Service Station in 1968, the 

linked shells on seven supports for the Sicli factory in Geneva in 1969, the hooded 

shells of the air museum at Dübendorf in 1987, and oft-repeated tennis hall and 

swimming pool shells (Oxman and Oxman 2010). 
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Arch form-finding can also be carried out analytically, using mathematical equations. 

One of the early analytical studies into the optimization of arches was carried out in 

1973 by Tadjbakhsh and Farshad. They investigated the possibility of the optimal 

shape of funicular arches when both the bending moment and shear forces are 

zero. The general shape of the arch was defined from the beginning in their study. 

Moving toward form-finding of arches, Farshad (1976) obtained different parametric 

functions for the shape of an optimal arch under static loading, defining multiple 

objectives. The objectives in his research comprised minimizing the arch length, 

arch thrust, and volume of the arch material separately. Consequently, the shape of 

the arches with minimum thrust and minimum length was found individually when 

the arches were of a constant cross-section. In the case of arches with a variable 

cross-section, the objectives were minimized the thrust and the volume of the arch 

material respectively. Later on, Tadjbakhsh (1981) obtained the geometry of a 

momentless arch subjected to self-weight and the deck weight, assuming constant 

axial stress in arches with a variable cross-section. Tadjbakhsh showed that the 

arch shape was independent of the magnitude of the loading in the case of 

uniformly distributed load. However, the cross-sectional area varied in proportion to 

the loading.  

In 1986, Haftka and Grandhi reviewed the optimization methods of two- and three-

dimensional structures. The authors started the survey with a numerical optimization 

that was mainly based on the sizing variable of a structure. Later, Haftka and 

Grandhi considered optimization with shape design variables as a more difficult 

procedure compared to optimization with sizing variables. The authors assumed 

changing in finite element model when the optimization was running. This includes 

changing in coordinate of boundary nodes in finite element model. Haftka and 

Grandhi highlighted the requirement to develop an automated optimization tool 

which took account as the necessary design parameters. Additionally, they 
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emphasised the significance of sensitivity analysis for an optimization. Haftka and 

Grandhi considered calculating accurate stress at the boundary as important 

parameters in shape design optimization. To obtain valid optimization results, the 

design variables had to be selected carefully, especially when they were selected as 

coordinates of boundary nodes. The shape design variables were chosen so as to 

reducing the stresses at the boundary. Their work dealt with changing mesh in finite 

element model when the boundary is changing. The optimization with shape design 

variables controlled the geometry of the structure. They noted to the significant 

impact of changes in shape on the structure performance. The importance of the 

shape effect on the structural action is investigated in the third chapter of this thesis. 

Ding (1986) reviewed the numerical and analytical methods of shape optimization. 

Structural optimization started with model identification, followed by structure 

variables, objective function and boundary determination. He also emphasised the 

shape optimization difference with sizing optimization. Ding reviewed the sizing 

design optimization in which the structure shape was fixed. In other words, sizing 

parameters such as bar cross-sectional or arch thickness were used in the 

optimization to identify the structural shape. Additionally, he extended his research 

to shape optimization, in which the structure’s displacements, stresses and other 

constraints were involved in establishing the boundary for the material in the arch. 

The shape optimization requires extra care since the boundary conditions must be 

chosen in a way to satisfy finite element analysis, while addressing the structure’s 

change during the design process. Ding believed that there was no unique method 

for shape optimization and described different shape optimization methods. He 

referred to analytical methods used for such optimization since 1904 and Michell’s 

works, as well as recently developed numerical methods. There, the design 

variables were node coordinates. He noted to the impact of the arch shape on its 

performance. The finding has assisted researchers in structure design and shape 
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optimization. In Ding’s shape optimization survey, first the objective function was 

defined. Then, different ways of shape representation were summarised. Thirdly, 

the finite element mesh generation and methods of refinement were described. 

Next, the sensitivity analysis and solution methods were offered, and finally the 

author assessed the shape optimization of eight actual structures. Ding emphasised 

shape representation as a decisive factor for shape optimization. The structure 

could be modelled by boundary nodes. The application of coordinates of boundary 

nodes as shape variables was the first method of shape representation mainly 

practised in the finite element method. Although this approach was straightforward, 

the design variables were sometimes too large or there was incompatibility amongst 

boundary nodes. Hence the approach was not regarded as the preferred option. 

Ding named a second way of shape representation by boundary shape as 

“polynomial”. This used control nodes for shape representation, which requires 

fewer design variables. However, there was a possibility of numerical instability in 

high-order polynomial shapes. Finally, Ding introduced “spline function” as another 

way of boundary shape description for shape representation. The advantage of 

splines over polynomials was in high-order polynomials. In other words, a spline 

took advantage of low-order polynomial modelling. As a result, the chance of 

numerical instability was very low. Following the finite element method and 

refinement, Ding explained two ways of sensitivity analysis: discretized finite 

element system differentiation and continuum equations continuation. The 

sensitivity analysis was required to assess the structure’s response when the design 

variables changed. Ding chose the approach relied on differentiation of the 

discretized finite element system in his work. The author used six numerical 

methods to find the optimal shape of different structures such as design of bridge. 

Linear programming (LP), optimality criteria, and the sequence of the approximate 

problem were some of the numerical methods explained. In conclusion, Ding 

explained the applicability of shape optimizing, ranging from dams and bridges to 
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shoulder fillets. The author drew a flow chart describing “the design process of the 

shape optimization”.        

Dopker et al. (1988) developed a structural design sensitivity analysis of an arch’s 

shape. They reviewed curved structures, especially arch bridges, and highlighted 

the challenge of their curvature design. In other words, such structures need to be 

designed in such a way as to satisfy constraint requirements under stress and 

displacement forces. They believed an appropriate “shape design sensitivity 

analysis” would assure the structure’s performance. The shape sensitivity method 

used mathematical programming methods to improve structural design for a given 

boundary and stress state. Dopker et al. explained the past attempts to form a 

unique method for shape design sensitivity analysis, including different design 

variations such as truss, beam, and plate components. As they indicated, Choi and 

Seong (1986) initially formulated the shape design sensitivity for built-up structures. 

However, the curved component was still missing. Moreover, the previous shape 

design sensitivity analyses could not offer a comprehensive method to address 

more than one design component and they were only applicable for one specific 

form of arch. The authors developed the unique method of shape design sensitivity 

analysis to cover the curved component. Dopker et al. used the continuum 

mechanics principle to derive the domain and boundary parameters of a structure 

based on the shape change. They derived shape design sensitivity information and 

analysed the displacement fields. The former was based upon curved beam theory 

and the latter developed according to beam/truss theory. Dopker et al. applied a 

theory of beam-truss to estimate the displacement fields. The authors emphasised 

the good accuracy of straight beam-truss approximation method for displacement 

fields in the case of shallow arches. Dopker et al. concluded that design sensitivity 

analysis was an appropriate method for built-up structures.    
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Vanderplaats and Han (1990) used the force approximation method to optimize the 

shape of both fixed and two-hinged rib arches subjected to combined stress 

constraints, by minimizing the volume of the structures. The ribs of the two-

dimensional arches were assumed to be designed with a finite number of straight 

members. So, the member area and the nodal coordinates were taken as the 

variables in the optimization process. They propounded the necessity of developing 

a new approach for the optimization algorithms because the extent of the number of 

variables and the degree of non-linearity were remarkable in optimization problems. 

Thus, they proposed an iterative optimization approach including two separate 

sizing and coordinate spaces. In this approach, optimization of the member area 

under a predetermined geometry was simultaneous with the optimization of the arch 

geometry. Hence, there was a continuous iteration alternating between area and 

coordinates. For the constraint condition, the calculated combined stress due to the 

bending moment and axial force was set as equal to or smaller than the allowable 

stress. Therefore, an approximate structural analysis was obtained by expanding 

the first-order Taylor series for the axial forces and bending moments at the end of 

the member alongside applying the relevant gradients. To achieve this, a finite 

element analysis was used with the initial structure for the calculation of the 

gradients of axial forces and bending moments. Also, the gradients of member end 

forces, which were integrated into the finite element analysis, were calculated using 

the equation of element stiffness with respect to the considered variables. To solve 

the optimization problem, they used a numerical optimizer programmed in ADS by 

Vanderplaats and Sugimoto in 1986. In order to illustrate the reliability of the force 

approximation method, they presented three numerical examples for both fixed and 

two-hinged arches. The first example showed the optimal shape of two-hinged 

arches with point load at the crown, which became a triangle. For the second 

example, they found an optimal shape of parabolic arches under uniformly 

distributed load for both fixed and two-hinged arches. By assuming the height of the 
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arch as the only geometric variable, they minimized the volume of the parabolic arch 

in this case. The last example was the optimization of the fixed-ended arch under a 

uniformly distributed load having the same variable as the second example. In this 

case, they compared the optimal arch shape from their analysis with the parabolic 

shape. As the result, it was demonstrated that the parabola is the optimal shape of 

arches under uniformly distributed load. Furthermore, the new results for the three 

examples were compared with the findings of the two design space methods 

conducted by Byun and Han in 1984. A plot of the iteration history of the force 

approximation method showed a swift rate of convergence through few finite 

element analyses. This was an advantage of the approach by Vanderplaats and 

Han over the approach of Byun and Han. 

Serra (1994) proposed analytical and numerical approximate solutions for the 

optimal form of funicular arches as a uniformly compressed structure. Serra found 

the shape of the arch with variable cross-section subjected to uniform horizontal and 

vertical loading analytically. It was assumed that the L:h ratio is a minimum in the 

analytical solution, while the limit for this ratio was not given. 

Hsu (1994) investigated the methods of structural shape optimization and identified 

a comprehensive framework to address geometrical modelling, structural 

assessment and optimization. In other words, a computer-based programme was 

formulated to minimize the self-weight of two- or three-dimensional arches. They 

could be analysed with varying geometrical parameters for the structural responses 

of stresses and displacements, to arrive at the optimal structural shape. Ideally, the 

designer is seeking a method to translate structural optimization analysis into a 

mechanical form. The developed optimization algorithms paved the way for 

systematically optimizing structure shapes. Hsu introduces the zero-order algorithm 

in which only function values of the implicit constraints are required to assess three-

dimensional shape optimization. 
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The application of the form-finding process in architecture was done by Otto and 

Rasch (1995) in the second half of the 20th century. Otto is well-known because of 

his lightweight tensile and membrane structures. As he believed, the optimal 

architecture is ethical architecture, including an aesthetic viewpoint, and his works 

were considered as artistic and innovative masterpieces, such as the West German 

Pavilion at the Montreal exhibition in 1967 and the roof of the Munich Olympic Arena 

in 1972. He considered form-finding as a research technique and a way of 

designing natural systems without destruction in nature. Moreover, his main tool for 

working was physical modelling that could be used to simulate the optimized 

solution. He concentrated on tents with a minimal surface area, including soap-film 

experiments, pressure-loaded vault forms, and grid shells stabilized by tension lines 

through careful construction and experimental physical models. Earlier, in 1964, 

Otto established the famous Institute for Lightweight Structures at the University of 

Stuttgart. Accomplished experiments in that Institute have provided detailed 

information for the description of forces, as well as their transpositions, which were 

regarded as the explanation of the form principle. Then, by consuming minimum 

material and energy, any new structure was fitted into its environment. Many form-

finding experiments to obtain natural forms of arches and their three-dimensional 

equivalents such as domes continue to be conducted in the University of Stuttgart. 

They demonstrated a great stability of a natural arch shape subjected to self-weight 

only, which is turned out to be a catenary arch with the momentless shape. 

In 1998 Habbal, used a direct non-smooth analysis method to minimize the maximal 

stress in arch structures. To achieve this, he developed an arch equation for 

formulation of optimum design, using the linear elastic thin shell approach. Firstly, 

he considered the arch structure as an infinite three-dimensional cylindrical body. 

Then, by assuming the arch thickness to be very small with constant loading applied 

across the cylinder axis, the problem became a one-dimensional one using the thin 
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shell theory of Kirchhoff–Love. The stress distribution was obtained from the elastic 

energy function and displacements constraints, which were defined for both fixed 

and simply supported arch ends. Hence, the compliance of the elastic energy 

functional was achieved from the equilibrium equation in terms of the geometrical 

description of the arch and the loading. To optimize the arch structure regarding 

displacements and stress distribution, he modified the shape of the arch structures. 

This optimization process was carried out by applying the cost function theorem to 

two different minimization areas. Cost parameters one was the minimization of the 

maximum stress distribution of the upper surface and the second was the 

minimization of the maximum displacement. In this process, a parabola form was 

first considered, and the optimal shape was identified, when the method converged 

after a number of iterations. Habbal showed that the optimal arch shape obtained 

under uniform and non-uniform distributed loading for the maximum displacement 

cost is different from the one for the maximum stress cost.  

Choi (2002) used a curved beam principle in a linear elastic analytical method to 

assess the design sensitivity of plane arches. He emphasises the importance of 

curved beams in the optimization of different structural shapes. He developed a 

design sensitivity method to analyse the optimization of these structures, and called 

it the “continuum approach” which results in closed-form solution. Choi compared 

the continuum approach with other types for sensitivity analysis such as the finite 

dimensional method in which the sensitivity formula for structural optimization was 

mainly derived from a discrete element. He reviewed the work of Dopker et al. 

(1988) and Chenais et al. (1988). They introduced another method for sensitivity 

analysis using Cartesian coordinates. This time the sensitivity formula was derived 

based on an explicit model of an arch which can move in normal direction. Choi 

explained the drawback of the Dopker et al. and Chenais et al. model in its flexibility. 

In other words, due to variation limitation in the axial direction, the approach was 
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only suitable for shallow arches. He also indicated that Kim and Kwak (1993) had 

taken one further step and tackled the Dopker et al. and Chenais et al. generality 

issue by considering the structure in different segments, each segment representing 

a shallow arch. The continuum approach developed by Choi was initially introduced 

by Dems and Mroz in 1987. First, the curved beam “variational equation”, that is the 

derivation of the variational theory of the equilibrium equation, was formulated, 

followed by the shape variation sensitivity formula using continuum mechanics. 

Next, the resultant sensitivity coefficients were used in a parametric study. In 

summary, the author defined the design sensitivity formulation when stress was 

applied at a local segment of the structure. Choi believed that the proposed shape 

design sensitivity method could be solved numerically, giving accurate results. 

Additionally, the method thoroughly described the shape and its variation. The arch 

length variation was also considered in the analysis. As a result, such 

comprehensive analysis presented better optimal design parameters for complex 

shapes. Lastly, the proposed shape design sensitivity analysis was not limited to 

shallow arches. It could be expanded from linear elements to higher order elements. 

Choi also tried to validate the findings of his sensitivity assessment method with a 

number of examples. He applied the ANSYS finite element analysis tool with just a 

straight line representation. As he stated, ANSYS was more accurate compared to 

other tools in terms of numerical assessment. The author carried out shape 

optimization using his method of analysis for two design problems.       

Griva and Vanderbei (2003) reviewed the recent modelling algorithms and 

assessment methods embedded in modern optimization software. The focus of their 

study was on the large-scale constrained case studies having a large number of 

discretization points. They highlighted the applications of catenary arches in the 

world. The arch optimization was examined analytically against convex and non-

convex formulation. The authors added that the structure should be modelled in a 
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unique mathematical formulation available for numerical traceability. To address the 

curvature problem, they used programme AMPL as a modelling language and also 

LOQO as a non-linear optimization solver. Because it took LOQO a few seconds to 

search for the solution it is the optimization solver. The findings suggested that 

convex optimization was more numerically traceable for an arch with an identified 

mass function. Furthermore, the role of proper modelling in the optimization process 

was emphasised. In other words, the effective arch modelling resulted in a simpler 

and much quicker optimization process. 

Megson (2006) and Millias (2005) noted that when an arch is subjected to only a 

uniformly distributed load, a parabolic form shows zero bending moment, while an 

arch with self-weight only will have a zero bending moment if it follows a catenary 

form. However, in reality, both kind of loads are imposed on the structure, so the 

form in between might present the zero bending moment solution. By reducing the 

bending moment, an arch will resist loading by developing mostly compressive 

forces. The important engineering fact is that tensile forces cannot transfer in the 

case of masonry arches reliably. As bending moments are reduced in masonry 

arches, the internal tensile forces are decreased and it leads to have a more 

durable structure.  

Taysi et al. (2008) proposed a method to optimize arch structures considering 

stress, displacement and weight constraints. They explained the necessity of the 

shape optimization of structures to design a cost-effective arch with large spans and 

the capability to carry heavier loads. On the other hand, smaller cross-sections were 

considered for the beams. Additionally, the authors defined an objective function 

with certain constraints to achieve a more economical solution. It was a challenging 

process for complex structures, since solving optimization with conventional solving 

techniques was almost impossible. Moreover, some of the functions were not 

analytically modelled. The evaluation of functions was carried out point-by-point as 
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far as computer-based programs are concerned. Hence the authors recommended 

evolutionary algorithms (e.g. genetic algorithm (GA)) in the optimization. Such 

techniques evaluate the constraint function and design variables separately. Hence 

they can incorporate discrete variables, such as cross-sections in the optimization 

process. The GA, which works on the basis of the survival of the fittest and 

adaptation, was developed into Lagrangian, hybrid algorithms with fuzzy system 

and neural network forms. Taysi et al. described the optimization method as an 

automated procedure. It incorporates the finite element analysis with parametric 

cubic spline geometry definition, Mindlin–Reissner theory, automatic mesh 

generation and genetic algorithm methods. Moreover, the authors used the 

structure’s thickness and shape variables in the optimization procedures. Such 

parameters were used to identify the natural line of the arch. Ideally, their 

optimization tool produced the best arch thickness and curvature under the 

maximum loading. They scrutinised “bending”, “membrane” and “shear strain 

energy” while running an optimization program. The computer program developed 

based on the proposed method could optimize variable thickness curved beams and 

arches. The authors presented several examples to demonstrate the proposed arch 

optimization method.  

Tyas et al. (2011) proposed a precise geometry for optimal structural arch form 

carrying a uniform load between pinned supports. They found the least-volume 

hybrid structure as an optimal form encompasses a central parabolic section and 

networks of truss bars commencing from the supports. The authors pointed to the 

previous investigations about structural optimization, suggesting that the best 

structural form to carry a uniformly distributed load was the two-pin parabolic arch. It 

was considered that the loads were directly applied either to an arch (in 

compression) or a suspended cable (in tension). Under these conditions, the least-

volume form of structure was achieved when the parabolic funicular made an angle 
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of 30 degrees to the vertical at the support. They set the tensile strengths of 

material and compressive to be the same. The authors assumed that the structure 

was subjected to the UDL and they ignored the structure’s self-weight. The authors 

analytically presented the geometry, stress and displacement fields within the 

structure. They achieved a precise analytical relation for the geometry having 

minimum volume.  

Veendendaal and Block (2012) compared some of the existing form-finding 

methods with each other. The authors first explained how the shape of the structure 

was dependent on the applied forces and then emphasised the significance of form-

finding to address the optimal form. Moreover, they reviewed computational form-

finding that has been developing since 1960. The authors listed “stiffness matrix, 

geometric stiffness and dynamic relaxation” as the three form-finding methods for 

their comparison framework. The basis of stiffness matrix method was the standard 

elastic and geometric stiffness matrices which were formed by the real material 

parameters. The geometric stiffness method was independent of the structural 

material and resulted from the force density method, in which the essential 

parameter in the mathematics was the ratio of force to length. The dynamic 

relaxation method was based on the motion that considered dynamic equilibrium at 

a steady-state. There, the forces transformed to velocities and their acceleration 

was determined by the nodal mass. The authors believed most of the previous 

comparison approaches were qualitative. Additionally, some of them were no longer 

fit for purpose. As they stated, Barnes (1977) compared dynamic relaxation with the 

stiffness matrix method with regard to the “storage requirement” per iteration. The 

findings suggested that dynamic relaxation had better storage capability. 

Veendendaal and Block identified a gap in the accuracy of comparing form-finding 

methods. They tried to find a straightforward comparison framework. Their 

framework was based on “sparse-branch node data”. The way each method 
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identified the internal forces and eventually the stiffness were presented. The 

internal forces and stiffness were considered for both linear and triangular surface 

elements. Moreover, the framework describes the “solver” that each method applied 

in form-finding. In conclusion, Veendendaal and Block introduced an efficient 

comparison framework which assessed the existing form-finding methods based on 

their operating criteria and programming language. Finally, they applied their 

framework to compare the performance of different form-finding methods; firstly to a 

saddle-shaped minimal-length net, secondly to a high-point net, and lastly to a 

minimal surface. They did not consider arch structures in their investigation.    

Concerning the computational form-finding method in conjunction with the 

construction technique, the work of innovative funicular tile vaulting was advanced 

by a group of researchers at the Institute of Technology in Architecture, ETH Zurich 

(Davis et al. 2012). The prototype vault’s form was achieved by the computational 

form-finding method using interactive software Rhino VAULT for thrust network 

analysis (TNA). In doing so, the free-form shapes for funicular vaults that were 

purely in compression were obtained by setting boundary conditions in the software. 

The required boundary conditions to be specified to generate a three-dimensional 

equilibrium solution for the self-weight of the vault were listed as: the general in-

plane form of the structure; the position of the footings; the internal distribution of 

thrust; and the shape of open edge arches. To show the validity of the TNA form-

finding method, they made a three-dimensional full-scale vault prototype from a 

cardboard box falsework system, based on the surface obtained from the TNA form-

finding. Lightweight sandwich constructions of three layers were used as thin tiles in 

compression. They concluded that an artistic shape of compression-only shell 

constructions can be produced by applying simple technology without using 

excessive material. Hence, the method could be applied to the design of new 

optimal funicular masonry structures.  
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Foglar and Křístek (2012) investigated centre line optimization of the buried arch 

bridges. They historically reviewed arches and their applications and highlighted the 

fact that even some Roman-built arch bridges are still in use today. Then, they 

described buried arch bridges and their application in roads and railways. They 

believed that buried bridges with span lengths between 2 and 40 m have frequently 

been used. As they stated, buried arch bridges are cheaper and last longer. The 

loading conditions of buried arch bridges were also described in their research. 

Initially, in the fill compaction stage the arch was subjected to the vertical load of 

self-weight. Then the traffic load was expected to be added to the weight of the fill. 

Foglat and Křístek considered the lateral load condition resulting from soil–structure 

interaction. The authors tried to introduce an optimization method using theoretical 

derivation for the buried arch bridges centre line. Moreover, the geotechnical 

software PLAXIS was applied to numerically model the soil interaction with the 

structure. The calculated soil–structure stresses were used in the format of 

interaction vectors in the method. It was shown that the bending moments reduced 

by 22% in a quarter of the arch span. That reduction was 25% at the arch crown. 

The soil interaction with the structure did not allow Foglar and Křístek to propose a 

uniform reduction of bending moments. The bending moment reduction itself led to 

a decrease of deflection.  

Another research into the optimization of arch structures was conducted by Houšt et 

al. (2013). They used numerical modelling to optimize the shape of buried concrete 

arches. To do so, they applied non-linear finite element simulation with ANSYS. The 

construction layers were situated sequentially through 8 or 9 layers to cover the top 

crown of the arch with agiven geometry. The compaction of the soil and the 

sequential process of construction were considered. Since the self-weight of the soil 

is important to the design of the arch’s cross-section, modelling concluded the 

interaction of the soil and the construction procedure. The objective function was set 
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to reduce the bending moment and bending stresses. They assumed the ideal 

shape for the centre line of an arch is when the arch is momentless. In the case of 

buried arches, because of the combination of horizontal and vertical applied load, 

the bending moment cannot be completely eliminated. Houšt et al. sought the 

geometry for the centre line to produce the minimum bending moment. They used a 

two-dimensional model with the assumption that the permanent load was dominant. 

The live load for traffic was considered to be negligible. Additionally, they ignored 

longitudinal displacements of the arch. As an optimization process, they 

parameterized the arch centre line with a third-degree Bezier curve for half of the 

arch, owing to symmetry. Thus, the problem was analysed by finding the Bezier 

curve for arch’s coordinates. This calculation led to the summation of the maximal 

tangent stresses of the arch to be minimized. They applied a non-linear finite 

element model to specified centre line geometry in order to extract the tangent 

stresses in the arch subjected to live load and loading resulting from erection, 

placement and compaction of backfill. In order to reduce the maximum tensile 

stresses, firstly a genetic algorithm using a MATLAB was implemented to acquire a 

global minimization. Then, the Levenberg–Marquardt method was employed to 

refine the final solution. The optimal shape of buried arch was found parametrically 

for different span-to-height ratios, types of soil, and depths of backfill. It was shown 

that, for any span-to-height ratio, when the dead load was higher than live load and 

the subsoil was sufficiently stiff, the most curved part of the optimal shape of the 

arch was at the crown and the straighter parts were at the bottom of the arch. 

Additionally, the tensile stresses reduced significantly towards finding the optimal 

shape of the arch, when the subsoil was stiffer. Finally, the tensile stresses 

decreased more noticeably in arches with a small span-to-height ratio using this 

optimization method. Furthermore, they applied this method to optimize the shape 

of a reinforced concrete arch culvert which was physically tested at the University of 

Massachusetts. They also compared the bending moment and axial forces of 
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optimal shapes for arches with different thickness. They showed that by reducing 

the arch thickness by about 30%, the maximum tensile stresses reduced to half of 

their initial magnitude. It was demonstrated that by further shape optimization of the 

centre line of the thin arch, the tensile stresses decrease and the upper fibres of the 

arch ring experiences pure compression.  

Koohestani (2014) proposed a new form-finding method by applying discrete 

models and the non-linear force density method for tension membranes. He 

introduced different methods of form-finding for tension membrane structures and 

summarised previous activities such as Veenendaal and Block’s form-finding 

survey. Koohestani believed that the geometric stiffness method is the most 

favourable of the method. Koohestani named other alternatives in the geometric 

stiffness method, such as the updated reference strategy (URS) and natural force 

density method (NFDM). As he stated, the force density method (FDM) was the 

earliest form-finding method in the category of the geometric stiffness approaches. 

The FDM method was initially developed by Linkwitz and Schek and first used for 

form-finding a cable net. The author introduced triangular and quadrilateral finite 

element meshes for his form-finding modelling of the minimal surface membrane. 

The triangular model had been practised by structural designers, while the 

quadrilateral one was proposed as a novel form-finding approach by Koohestani. 

The principle of the quadrilateral computational model was membrane form-finding 

with a non-linear force density method. The structure form-finding was introduced as 

a way of defining a self-equilibrated state of the structure before imposing any 

stress in his study. Koohestani also reviewed fixed point and Newton–Raphson 

iteration methods for discrete modelling and offered a combination method as a 

useful solution. Koohestani eventually validated his method with some popular 

minimal surfaces compared against analytical solutions.  
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Regarding form-finding and optimization investigations, Descamps (2014) proposed 

an optimization method that can manage different design parameters efficiently for 

lightweight structures. First, the author explained the basics of truss layout 

optimization. Then, a method to optimize the structural sizes and system 

connectivity at the same time was programmed. The combined mathematical 

programming and structural mechanics were used to estimate the optimal truss 

geometry and topology in his study. The optimization process was formulated 

separately according to plastic and elastic principles under different loading 

conditions. The method was relatively fast and the optimized solution was obtained 

within 18 minutes in MATLAB with 1414 iterations. The author validated the 

approach against a number of realistic design problems and proved the method’s 

applicability with varying design parameters.  

2.6. Concluding remarks 

Despite the wealth of literature on arch analysis methods, to the best of the author’s 

knowledge, a comprehensive assessment of known shape arches has not been 

done before. In other words, there is no pervasive study of the effects of arch forms 

and span-to-height ratios on structural action. As demonstrated in Section 2.3, 

previous studies concentrated mostly on circular arches. The comparison of the 

response of different arch shapes has not been studied in detail. The optimal range 

of span-to-height ratios at which the combined stress of the bending moment and 

axial force is at the minimum has also not been explored in the literature. However, 

designing the arch with an appropriate shape using the optimum span-to-height 

ratio leads the structure to be more durable and safe in reality. This solution will 

thereby reduce the cost of maintenance. This Section aims to acquire an in-depth 

understanding of the response of known arch shapes to loading and to find the 

optimal range of span-to-height ratios. 
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As reviewed in Section 2.4, there is plethora of methods for arch analysis that are 

based on both elastic and plastic theories. There is also much user-friendly software 

provided to analyse arch structures in a short time. However, there is no 

investigation of the existing approximate analysis methods for arch structures such 

as the masonry design method, and the virtual work method suggested by Megson. 

These two methods of arch analysis are currently in use to analyse two-pin arches. 

However, the assumptions made in these approximate analysis methods lead to 

varying degrees of reliability.  

As far as structural optimization is concerned, there are a large number of 

investigations available using different methods of optimization and form-finding. As 

reviewed in Section 2.5, the form-finding methods have been used for various 

structures, mainly consisting of tensile members such as cables and shells 

structures. Finding the optimal structure shapes has also been developed for 

compressive members such as trusses and arches. In the case of arch shape 

optimization, there has been more concentration on the study of arch dams, buried 

arches, and arches of variable cross-section, which are expensive in practical 

terms. There has been no effort on the analytical investigation of optimal shapes of 

rib two-pin arches with constant cross section. This problem might be due to the 

essential difficulties of mathematical analysis. The novel aspect of the author’s PhD 

work is to develop an optimal shape of arches for any ratio of uniformly distributed 

load to the self-weight. This work involves analytical form-finding, in which the 

principle of zero bending action will be implemented. As the bending moments are 

minimized, the stresses resulting from bending and axial forces are reduced in the 

arch material. A lower level of stress, as the result of an optimal shape, will reduce 

the amount of material required and the cost of the structure. It was seen in the 

literature that most researchers looked for structures with the minimum bending 

moment. However, their attempts were mostly focused on buried arches and arches 

of variable cross-section. This study aims to fill the gap in form-finding of 
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compression structures i.e. two-pin arches. Also, the applicability of the momentless 

arch as the optimum arch shape has not been studied in the literature.  
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Chapter 3 : Analysis of two-pin arches  

3.1. Introduction 

An arch is an impressive structure from an aesthetic point of view and also has 

good durability under environmental loading. It dates back to ancient times but is 

still in wide use today. Despite the extensive literature on arches, there is no 

comprehensive study of the influence of arch forms and the span (L) to height (h) 

ratio (L:h) on their structural action effects. Previous studies (Chapter 2) focused 

predominantly on circular arches or arches with variable cross-sections, which are 

expensive in view of the complexity of construction.  

A comprehensive review of two-pin arches of various forms and their response to 

loading is presented in this chapter. Rib arches of catenary, parabolic and circular 

form respectively are investigated using four typical load cases and L:h ratios 

ranging from 2 to 10. The study is mainly conducted for arches made of concrete or 

masonry material. The effects of form on the structural response of each type of 

arch are presented using finite element analysis provided using GSA software. This 

investigation permitted conclusions to be drawn as to which L:h ratio and shape is 

preferable in design. A crucial goal of this analysis is to give an in-depth 

understanding of the influence of structural form on structural actions. 

3.2. Theory of common arch shapes 

It is possible, using computational or physical form-finding experiments, to show that 

the optimum shape of an arch depends on the predominant loading applied to it 

(Figure 3.1). Thus, provided the arch has a constant cross-section, a circular arch 

(Figure 3.1 (a)) represents the optimum form for the case of a constant radial load, a 

parabolic arch (Figure 3.1 (b)) for a weightless structure under a uniformly 



3. ANALYSIS OF TWO-PIN ARCHES 

58 

distributed load (UDL), and a catenary arch (Figure 3.1 (c)) for the case of self-

weight (SW) only (Proske and Pieter 2009).  

 

Figure  3.1. Optimal arch shape according to different loading patterns (Proske and 
Pieter 2009) 

 

3.2.1. Derivation of arch equations  

By considering L as the span of each arch shape and h as the height of the arch, 

each curve is derived starting with the general equation for the curve, so that the 

arch starts at (0, 0), passes through (L/2, h) and ends at (L, 0), as shown in Figure 

3.2.  

 

Figure  3.2. Circular (a), parabolic (b) and catenary (c) arch shapes 

 

3.2.1.1. Circular form equation 

Starting with the general equation for a circular form (mathwold.wolfram.com):  

222 )()( Rbyax   (3.1) 
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To represent the governing equation for a circle, related to L and h as shown in 

Figure 3.2, constants a, b and R are obtained in terms of L and h. 

Differentiating the general equation of the circle leads to Equ. (3.2). 
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Then, the constant a can be found using the x coordinate of the arch at the midpoint 

of the arch (m) from: 
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Substituting (L/2, h) for the midpoint of the arch into the general equation and using 

a=L/2 gives: h-b=R. Moreover, substituting (0, 0) into the general equation leads to 

a2+b2=R.2 Therefore, b and R are respectively equal to 
h

Lh
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Having a, b and R, the general equation leads to the governing equation form for 

the circular arch, which is given by: 

 

3.2.1.2. Parabolic form equation 

To obtain the governing equation of a parabolic curve in terms of L and h, a similar 

method to that for deriving the circular shape is used. 

The general equation of a parabola is expressed as Equ. (3.5) 

(mathwold.wolfram.com). 
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in which a, b and c are constants. In order to convert a curve to an arch shape, y 

becomes –y. 

 

At the midpoint of the arch (m), 0)2()d/d(  baxxy mm in which xm=L/2 and b=-

aL. Additionally substituting (L/2, h) into the general equation, a and b are given 

respectively as 
2

4

L

h
 and 

L

h4
  . Replacing a, b and c into the equation of general 

form for a parabolic arch gives Equ. (3.7). 

 

3.2.1.3. Catenary form equation 

The general equation for a catenary is )'/cosh(' AxAy  (mathwold.wolfram.com). 

In this equation “A’ ” is a constant which requires the use of an iterative algorithm to 

be found for each curve. To have an arch profile from its curve shape, same as a 

parabola, f(x) must be converted to –f(x), in which y=f(x). The curve defined by this 

equation will cross the y-axis at “-A’.” As seen in Figure 3.2 (c), the arch curve 

passes through (0,0); hence, a constant is required, which is defined as A’+h. By 

considering the maximum point on the arch curve to have the x coordinate of L/2, 

the general equation is derived as Equ. (3.8).  

cbxaxy  2
 (3.5) 
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By substituting any of the three known points of the arch in the above equation and 

using the MATLAB software, “A’ ” is calculated. The MATLAB codes are listed in 

Appendix C. 

3.3. Project description 

In this section the specifications of the studied two-pin arch forms, i.e. circular, 

parabolic, and catenary, are described. 

3.3.1. Arch specifications 

The two-pin arches to be analysed are of a constant rectangular cross-section of 

uniform lineal density, supporting a superstructure of uniform density (UDL) per unit 

span. Their span is 10 m in each case. Concrete is considered as the construction 

material, with the elastic modulus of 27 GPa, density 2400 kg/m3 and the cross-

section size of 300 mm (depth) by 1000 mm (width) which are assumed as the 

inputs of computational analysis using GSA software. To have a real arch 

specification, these cross-sectional dimensions are taken from the Gerrards Cross 

tunnel, although Gerrards Cross was a three-pin arch. A 30 m section of the 320 

m of this tunnel collapsed in 2005 (NCE 2005). The displaced shape of the arch is 

simulated by GSA software, as a linear elastic analysis method considering small 

displacements, using parabolic, catenary, and circular shapes. Comparing the 

displacement shape of the three known shapes of arches subjected to UDL plus 

SW, it was found that the circular form matched the actual failure mode of the tunnel 

(see Figure 3.3). One of the explanations for the destruction of Gerrards Cross 

tunnel considers the altered sequence of applying surcharge loading; instead of 

being placed over the sloping sides of the arch, it was placed on the top first. The 

collapse of this tunnel could probably have been prevented by using an arch form 

that was less sensitive to disproportionate loading. However, in post-failure 

http://en.wikipedia.org/wiki/Structural_failure
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assessments on small-scale arches, the question of form was not raised. The effect 

of arch form on structural behaviour is investigated in this chapter. 

 

 

Figure  3.3. Collapsed section of tunnel at Gerrards Cross (LHS) (NCE 2005) – FE: 
Displacement of circular arch when subjected to a UDL +SW (RHS) 

 

3.3.2 Load cases 

The SW of studied arches with defined specification in Section 3.3.1 is equal to 7.2 

kN/m. In order to achieve different ratios of UDL:SW, multiple load cases are 

applied to the arches, as listed below: 

 A1: UDL of 20 kN/m applied across the full span of the arch plus SW. 

 A2: UDL of 20 kN/m applied across the full span of the arch added to 

SW, plus an additional UDL of 20 kN/m applied to half the span. 

 A3: SW only. 

 A4: UDL of 20 kN/m applied across the full span of the arch only. 

The reason of assuming UDL equal to 20 kN/m is to apply UDL:SW>1 to the arch 

which is a significant load case having a rib arch supporting a deck. The behaviour 

of different arch shapes is also evaluated for other load cases when SW≥UDL in this 

chapter which might be interesting as an architectural view point. It is important to 

consider the anticipated application of an arch when the loads are applied. In 

general, the arch is supposed to support its self-weight, the weight of a 

superstructure, and traffic passing over it. The first two loads are assumed as 
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permanent ones in a design situation and the last one as a variable action. There 

are also other variable loads such as wind and snow loads that are less important to 

consider in the imposing load configurations. The permanent loads are basically 

applied as a UDL across the full span of the arch. In order to apply the variable 

loads, the location of the imposing load has to be determined beforehand. The 

results of preliminary analysis indicated that the loading of half of the span is the 

critical loading pattern of the arches in terms of structural actions. To show this, the 

UDL of 20 kN/m is placed firstly across half the span (Figure 3.4) and secondly on 

the central 40% of the known shape of the arches (Figure 3.5). The maximum 

bending moment values for these load cases plus SW were then compared with the 

relevant results from the combination of SW and the UDL of 20 kN/m applied across 

the full span of the arches (Figure 3.6). Figures 3.4 to 3.6 demonstrate these load 

patterns diagrammatically. The short vectors for applied load displayed in each 

figure are referred to the SW of 7.2 kN/m and the longer vectors are for load of SW 

plus UDL. The studied arches are analysed for L:h ratios between 2 and 10. The 

maximum bending moment results from this analysis are presented in Table 1.  

 

 

Figure  3.4. FE: The load pattern of 20 kN/m UDL applied across the half span of the 
arch plus SW 
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Figure  3.5. FE: The load pattern of 20 kN/m UDL applied across the central 40% of 
the arch plus SW 

 

 

Figure  3.6. FE: The load pattern of 20 kN/m UDL applied across the full span of the 
arch plus SW 

 
Table  3.1. The value of maximum bending moment (kNm) caused by SW plus 
differently positioned UDL of 20 kN/m applied on different arch shapes 

 
L:h 

 Parabolic arch with 
UDL: 

 Catenary arch with 
UDL: 

 Circular arch with UDL: 

Full 
span 

Centre 
span 

Half 
span 

Full 
span 

Centre 
span 

Half 
span 

Full 
span 

Centre 
span 

Half 
span 

2  3.55 12.79 32.99  8.96 22.1 32.81  50.24 51.12 51.74 

3 2.11 13.73 32.33 4.97 18.37 32.05 26.01 30.51 38.89 

4 1.57 14.13 32.17 3.52 16.87 31.55 14.20 23.36 35.00 

5 1.44 14.47 32.20 3.03 16.27 31.47 8.71 20.29 33.26 

6 1.60 14.84 32.34 3.03 16.10 31.82 6.71 18.84 33.21 

7 2.08 15.27 32.57 3.32 16.20 32.18 5.98 18.18 31.57 

8 2.85 15.76 32.86 3.81 16.47 32.56 5.82 17.96 32.05 

9 3.69 16.30 33.22 4.45 16.87 32.98 6.02 18.03 32.55 

10 4.61 16.91 33.62 5.22 17.37 33.42 6.48 18.30 33.06 
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It can be seen in Table 3.1 that in most cases, loading across the half span of the 

arch generates the highest bending moment, which is presumed as the worst case 

for bending moments. As a result, a variable load or ‘patch load’ is applied across 

the half span of the arches as a critical load condition. The relevant studied load 

pattern is shown diagrammatically in Figure 3.7. 

 

 

Figure  3.7. Visual representation of load patterns 

 

3.3.3. Assessment of arch stability over considered L:h ratios 

As stated earlier, the known shapes of arches are analysed for L:h ratios ranging 

from 2 to 10. This range of L:h ratio is chosen based on the common range of L:h 

ratios in which arch bridges have been built using concrete and masonry material 

(Salonga and Gauvreau 2010). The geometries of parabolic, catenary and circular 

arches with L:h ratios of 2, 3, 5, 7 and 10 are shown in Figure 3.8. The geometrical 

differences of each arch form are significant when the L:h ratio is varied from 2 to 5. 

As shown, the geometrical differences of each form then become almost 

indistinguishable above the L:h ratio of 7. The maximum percentage difference 

between the y coordinates of the catenary and parabolic arches for the same span 

is 14% when L:h=2 . It reduces to 2% for an L:h ratio equal to 7.  
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Being more precise in detail, there are still some differences in the geometry of the 

three arch shapes for L:h ratios less than 10. At this ratio, parabolic and catenary 

arches have practically the same geometry. The maximum percentage difference 

between the y coordinates for the same x coordinate of each pair of arch 

geometries is presented in Table 3.2. This table shows that the y coordinates of the 

parabolic and circular forms display the maximum difference.  

 

Figure  3.8. Geometric differences between arches for L:h ratios of 2, 3, 5, 7 and 10 

 

Table  3.2. Maximum percentage difference between the y coordinates of each pair 
of arch shapes 

L:h Parabolic and catenary Parabolic and circular Catenary and circular 

2 14.3% 56.4% 49.2% 

3 8.4% 32.0% 25.8% 

4 5.4% 19.1% 14.5% 

5 3.7% 12.5% 9.1% 

6 2.7% 8.8% 6.3% 

7 2.0% 6.5% 4.6% 

8 1.6% 5.0% 3.5% 

9 1.3% 3.9% 2.7% 

10 1.0% 3.2% 2.2% 
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Decreasing the height of the arches increases the axial deformations and bending 

moments in them. By increasing the external load applied to shallow arches, the in-

plane structural actions such as axial forces and bending moments develop into 

nonlinear mode. This means that the in-plane behaviour of arches can turn into 

either an asymmetric bifurcation or a symmetric snap-through buckling mode 

(Bradford et al. 2007). To obtain the critical value of the intensity of loading (wcr) that 

causes this buckling, the following Timoshenko stability equation for arches can be 

used (Timoshenko and Gere 1961).  

32
L

EI
wcr   (3.9) 

 

In the Equ. (3.9), E and I are: the modulus of elasticity and the second moment of 

area, respectively. The numerical factor γ2 defined by Timoshenko and Gere for 

each L:h ratio. The results of the wcr for the parabolic arch under load case A4 are 

presented in Table 3.3.  

 
Table  3.3. The critical values of the intensity of the load for the parabolic arch under 
UDL only applied across the span of the arch (Timoshenko and Gere 1961) 

L:h γ2 wcr(kN/m) wcr:UDL 

2 38.4 2330 117 

2.5 43.9 2670 133 

3.33 46.5 2820 141 

5 45.4 2760 138 

10 28.5 1730 86 

 

The UDL of 20 kN/m that is the applied load across the full span of the arch can be 

compared with wcr for the parabolic arch in Table 3.3. As shown above, even for an 

L:h ratio of 10 the critical load is 86 times greater than the applied UDL. The same 

can be concluded for other arch forms in this study for the UDL only load case. This 

analysis can be conducted when the general combination of UDL and SW (load 
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case A1) is applied to the arches in the case of a shallow arch. The arch cross-

sectional dimension and material density are given previously in Subsection 3.3.1. 

Since for flat arches UDL and SW are adopted, the imposed load can be presumed 

as the sum of UDL+SW, which is equal to 27.2 kN/m in this study. Therefore, for flat 

arches which Timoshenko and Genre (1961) noted as flat parabolic when L:h>5, the 

loading is still significantly smaller than the critical buckling load. It is concluded that 

arches are stable for the range of L:h ratios between 2 and 10 in this study. 

3.4. Assessment criterion 

There are many parameters that need to be considered when designing a structure. 

The most efficient structural form for a masonry arch is the one that shows the 

lowest bending moment and combined stress due to bending and thrust.  

As bending moments have a direct effect on deflections, shear forces, and 

combined bending moment stresses plus compressive stress, reducing the bending 

moment is likely to produce a more efficient structure. Furthermore, wherever 

bending moment alone or the combination of bending moment and axial force is 

present, there is varying stress over the cross-section. If the stress distribution 

consists of a tensile region, depending on the material and its application, 

reinforcement is required. As concrete or masonry material is the centre of attention 

of this research, it is important to highlight the advantages and disadvantages of the 

properties of them. The benefits of using concrete and masonry materials include 

their flexibility, durability, and high compressive strength, all of which explain their 

extensive use in construction and civil engineering structures. Besides, they can 

amplify the thermal mass of a structure and have a high resistance to fire. Masonry 

or concrete is a non-linear material owing to its weakness in tension. However, it is 

relatively strong in compression. Due to the lack of tensile strength of masonry 

material, minimizing the bending moment also minimizes the internal tensile forces. 
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On the other hand, the fact that arch shapes are a pure compression form is in 

accordance with using concrete/masonry material to construct arch structures.  

The criterion of minimum combined stress is used to evaluate the structural 

performance of arch forms. 

3.5. Methodology 

The methodology concentrates on the influence of arch shape and the span-to-

height ratio on the resulting effect of structural action. It focuses on the form of the 

arch that presents the lowest combined stress – a criterion used to assess whether 

the structure is optimal.  

To analyse the three most common forms of arches, the computational finite 

element method provided by the GSA software is used. This computational method 

is based on the Approximate Minimum Degree algorithm for the static analysis of 

two- and three-dimensional structures. For linear analysis, the stiffness matrix 

method in GSA is used. The static analysis of two-pin arches gives the 

displacement {u} as a solution of the linear system of (3.10). 

}{][}{ 1 fKu   (3.10) 

 

in which [K] is the stiffness matrix of the arch, and {f} is the load or force vector 

derived from the applied load. To find the forces, Timoshenko’s beam theory is 

used, which means that the bending moment in the specific direction is based on 

the stress in that direction.  

The curved structures were modelled by a series of straight elements. In order to 

find a suitable number of elements to model the arch curves, a sensitivity analysis 

was carried out using variation of bending moments in an arch subjected to load 

case A1, as a function of the number of elements used. The circular arch was 
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modelled with between 10 and 110 elements. As shown in Figure 3.9, the change in 

the value of the bending moment at L:h ratio of 80 and 90 at the crown of the 

circular arch is less than 0.1% which is negligible difference. Hence, 81 nodes are 

found to be adequate to represent a given arch shape.  

 

 

Figure  3.9. FE: Sensitivity analysis on circular arch with L:h of 2 
 

To compare the different arch forms, as well as the influence of the L:h ratio on the 

structural action effects, the bending moments, combined stresses, compressive 

forces, displacements, shear forces, horizontal reaction forces, and arch mass are 

studied and presented in subsections 3.5.1 to 3.5.7.  

To validate the results from GSA, all analyses in this chapter was carried out using 

SAP2000 software. Consequently, the same results were obtained compared to 

GSA software. 

3.5.1. Bending moments 

Low bending moments lead to smaller variations in stress distribution, deflection 

and shear forces. Thus, the arch shape and L:h ratio at which the bending moment 

is minimum is assumed as an analysis benchmark in this subsection.   

Variations of the maximum sagging and hogging bending moments with L:h ratios 

and their location for load case A1 are presented in Tables 3.4 and 3.5 respectively.  
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The section dimensions and material properties were given in subsection 3.3.1 with 

constant arch span of 10 m.  The ratio of UDL:SW for each arch shape and the L:h 

ratio are also given in Table 3.4. Concerning load case A1, due to the symmetry of 

the geometry and loading, the locations of the maximum bending moments and 

maximum combined stresses are presented for half of the span in the relevant 

tables.  

In general, the circular arch presents the minimum UDL:SW due to its greater 

weight than the catenary and parabolic arches for the same L:h ratio and UDL. 

 

Table  3.4. Maximum sagging bending moments (kNm), their locations along the 
span (m) and UDL:SW of the parabolic, catenary, and circular arches, load case A1 

L:h Maximum bending moment, (location), UDL:SW  

Parabolic Catenary Circular 

2 3.55, (1.3), 1.878 8.96, (5), 1.857 50.24, (5), 1.768  

3 2.11, (1.4), 2.231 4.97, (5), 2.219 21.44, (5), 2.180 

4 1.57, (1.56), 2.420 3.52, (5), 2.414 12.27, (5), 2.396 

5 1.44, (1.8), 2.529 3.03, (5), 2.526 8.45, (5), 2.517 

6 1.60, (2.4), 2.597 3.03, (5), 2.595 6.71, (5), 2.590 

7 2.08, (3.8), 2.640 3.32, (5), 2.639 5.98, (5), 2.637 

8 2.85, (5), 2.670 3.81, (5), 2.670 5.82, (5), 2.668 

9 3.69, (5), 2.692 4.45, (5), 2.691 6.02, (5), 2.690 

10 4.61, (5), 2.707 5.22, (5), 2.707 6.48, (5), 2.706 

 

The parabolic arch shows the maximum UDL:SW amongst the three arch shapes. 

Comparing the maximum bending moments of the three arches in Table 3.4, the 

one with the lower weight (higher UDL:SW) behaves in a more efficient way. The 

maximum sagging bending moment of the parabolic and catenary arches decreases 

with the increase of L:h from 2 to 5. The trend of decreasing bending moments is 

then reversed above this ratio. In the case of the circular arch, the minimum sagging 

bending moment of 5.82 kNm is observed at L:h=8.  
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Table  3.5.  Maximum hogging bending moments (kNm) and their locations along the 
span (m) of the parabolic, catenary, and circular arches, load case A1 

L:h Maximum bending moment, (location)  

Parabolic  Catenary  Circular  

2 3.52, (5) 8.11, (1.25) 60.96, (0.37)  

3 1.31, (5) 4.64, (1.25) 26.01, (0.87) 

4 0.22, (5) 2.78, (1.25) 14.20, (1.12) 

5 NA 1.64, (1.12) 8.71, (1.12) 

6 NA 0.88, (0.87) 5.67, (0.87) 

7 NA 0.37, (0.62) 3.74, (0.87) 

8 NA 0.07, (0.12) 2.40, (0.75) 

9 NA NA 1.43, (0.8) 

10 NA NA 0.72, (0.62) 
 NA indicates that there is no hogging bending moment. 

 

Comparing the results in Tables 3.4 and 3.5, the maximum sagging and hogging 

bending moments of the catenary and circular arches occurred at approximately the 

same location, contrary to the location of the maximum sagging and hogging 

bending moments of the parabolic arch. Compared to the hogging bending moment, 

the sagging bending moment is dominant for any L:h ratio for parabolic and 

catenary arches. The hogging bending moments of circular arches are higher when 

L:h<6. This shows that the tensile forces in circular arches are higher than 

compression for L:h<6 when the loading is the general combination of UDL and SW. 

It is interesting to compare the bending moments of circular arches with the other 

two forms for high L:h ratios. The differences in geometry of the three arch shapes 

are indistinguishable for L:h above 7 (see Figure 3.8). However, there are still 

differences in the bending moment result. The differences in bending moment 

distribution for the three arches with load case A1 and L:h ratios of 2, 4, and 6 are 

illustrated in Figure 3.10.  
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Figure  3.10. FE: Bending moments of three arches for L:h ratios of 2, 4 and 6 and 
load case A1 
 

The overall change in the maximum bending moment for the three arches is shown 

in Figure 3.11. The L:h ratio for which the absolute value of the maximum bending 

moment reaches its minimum is considered in this subsection as the optimum L:h 

ratio to compare different shapes of arches. To illustrate the optimum range of the 

L:h ratio, diagrams of the maximum bending moment of each curve are given on the 

right hand side of Figure 3.11.  

 

Figure  3.11. FE: The absolute value of maximum bending moment against L:h ratio 
for load case A1 
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The bending moment performance of the three arches is then investigated for load 

case A2 (patch loading), which this load pattern was shown in Figure 3.7. The 

maximum sagging and hogging bending moments and their locations within the 

arches are reported in Tables 3.6 and 3.7. 

 

Table  3.6. Maximum sagging bending moments (kNm) and their locations along the 
span (m) of the parabolic, catenary, and circular arches for load case A2 

L:h Maximum bending moment, (location)  

Parabolic  Catenary  Circular  

2 33.12, (7.81) 32.81, (6.69) 79.33, (5.94)  

3 32.59, (7.69) 30.80, (7.06) 43.80, (6.28) 

4 32.63, (7.69) 30.98, (7.31) 34.70, (6.56) 

5 32.89, (7.69) 31.61, (7.31) 32.30, (6.81) 

6 33.33, (7.56) 32.36, (7.44) 32.02, (6.96) 

7 33.91, (7.56) 33.17, (7.44) 32.53, (7.06) 

8 34.61, (7.56) 34.03, (7.44) 33.37, (7.19) 

9 35.41, (7.56) 34.95, (7.44) 34.33, (7.31) 

10 36.32, (7.56) 35.96, (7.44) 35.42, (7.31) 

 

 
Table  3.7. Maximum hogging bending moments (kNm) and their locations along the 
span (m) of the parabolic, catenary, and circular arches for load case A2 

L:h Maximum bending moment  

Parabolic  Catenary  Circular  

2 30.15, (2.75) 38.27, (1.75) 95.30, (0.75)  

3 30.13, (2.63) 34.73, (2) 56.37, (1.25) 

4 29.97, (2.63) 32.85, (2.13) 43.55, (1.5) 

5 29.67, (2.5) 31.63, (2.25) 37.84, (1.88) 

6 29.23, (2.5) 30.64, (2.25) 34.66, (2) 

7 28.66, (2.5) 29.73, (2.38) 32.59, (2.13) 

8 27.98, (2.38) 28.85, (2.38) 30.99, (2.25) 

9 27.23, (2.38) 27.92, (2.38) 29.62, (2.25) 

10 26.38, (2.38) 26.96, (2.38) 28.34, (2.25) 

 

Comparing the numerical predictions in Tables 3.6 and 3.7 the sagging bending 

moments for the parabolic arch are higher than hogging for any L:h ratio. However, 

the catenary and circular arches present higher hogging bending moments than 
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sagging ones when the L:h ratio is less than 6 and 8, respectively. Concerning the 

results for the maximum bending moment, the parabolic arch is preferred. The 

circular shape is the less desirable form for masonry and concrete arches.  

 

 
Figure  3.12. FE: The absolute value of maximum bending moment against L:h for 
load case A2 

 

The absolute maximum bending moment values of the three arches under load 

case A2 are shown in Figure 3.12. 

In theory, catenary and parabolic arches can be assumed to be momentless for SW 

only, and UDL only, respectively (Megson 2006; Millais 2005). This is true only 

when ignoring the arch shortening/deformation in statical calculations. The FE 

modelling, based on a deformable arch model, where the 2nd order effects are 

included,  produced results that show the catenary arch developing some moments 

for SW only load condition, which increase with the L:h ratio (Figure 3.13). A similar 

observation can be made with respect to load case A4 and the parabolic arch 

(Figure 3.14), which also develops small bending moments. In both of these cases, 

if a non-deformable model were used, the bending moments would be equal to 

zero. 
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Figure  3.13. FE: The absolute value of maximum bending moment against L:h ratio 
for load case A3 (SW only) 

 

 

Figure  3.14. FE: The absolute value of maximum bending moment against L:h ratio 
for load case A4 (UDL only) 

 

The three curves in Figure 3.8 confirm that the geometries of the three arches 

converge above L:h ratios of 7. However, the maximum bending moment of the 

circular shape is approximately 50% more than the parabola and catenary curves 
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for load cases A1, A3 and A4 at this ratio. As a result, small changes in form may 

have a significant influence on the action effects. As expected, the maximum 

bending moment for load case A2 is approximately twice that of load case A1. 

Generally, the maximum bending moment of a circular arch decreases when L:h 

increases to approximately 8 for all load cases. Beyond this ratio, the maximum 

bending moment trend is reversed to increasing, even though this increase is small, 

until the L:h ratio of 10. Therefore, the optimum L:h ratio of a circular arch appears 

to be between 7 and 8 concerning maximum bending moment. The same behaviour 

is observed for parabolic and catenary arches; however, the maximum bending 

moment starts to increase at L:h ratios between 4 and 5. Taking into account all the 

load cases, parabolic arches generally show a lower bending moment than catenary 

and circular arches.    

For every high L:h ratio, an arch becomes a beam. Figure 3.15 illustrates the trend 

of maximum bending moments beyond the L:h ratio of 10. The results of maximum 

bending moments are obtained from analysing the circular arch under different load 

cases due to the similar structural actions of parabolic, catenary and circular arches 

in this range of L:h ratio. The maximum bending moments of the equivalent beam 

with the specification of these arches are 338.8, 463.3, 88.26 and 250 kNm for load 

cases A1, A2, A3 and A4 respectively. Figure 3.15 indicates that the maximum 

bending moments for each load case at L:h ratio of 300 are close to the ones 

calculated for the beam. The FE results showed that the maximum bending 

moments in the three arches at L:h=10 were found to be mostly less than 10% of 

the maximum bending moment of the equivalent beam (when the L:h ratio was 

taken as 300). The latter applies to all load cases. 
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Figure  3.15. FE: The value of maximum bending moments against L:h ratio between 
10 and 300 for all load cases 

 

3.5.2. Combined stresses 

As stated previously, the L:h ratio at which the combined stress due to bending and 

compressive axial force reaches its minimum is considered as optimal in this study. 

The results of the maximum combined stress against the L:h ratio and their location 

within the arch for the three arch shapes and load cases A1 and A2 are reported 

respectively in Tables 3.8 and 3.9. Since the compressive combined stresses are 

higher than tensile ones, the maximum combined stresses presented in these tables 

are compression.  

Comparing the results in Tables 3.4 and 3.5 with the results of combined stresses 

for load case A1 from Table 3.8, the values of both the maximum bending moment 

and maximum combined stress do not occur at the same L:h ratio for each arch 

shape. From Tables 3.8 and 3.9 the results for the maximum combined stress with 

the circular arch differ significantly from the results for the parabola and catenary 

shapes, particularly for L:h ratios below 5. The circular arch shows high sensitivity to 
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changes in the span-to-height ratio and the maximum combined stress reaches a 

minimum value at L:h ratios between 4 and 6. 

 

Table  3.8. Maximum combined stresses (MPa) and their locations along the span 
(m) of the parabolic, catenary, and circular arches for load case A1 

L:h Maximum combined stress, (location)  

Parabolic Catenary Circular 

2 0.69, (1) 0.99, (1) 4.54, (0.5)  

3 0.65, (1) 0.82, (1) 2.24, (1) 

4 0.69, (1) 0.77, (1) 1.52, (1) 

5 0.76, (1) 0.79, (1) 1.25, (1) 

6 0.85, (1) 0.88, (4.75) 1.14, (1) 

7 0.96, (1.5) 1.01, (4.75) 1.18, (4.75) 

8 1.09, (3) 1.15, (4.75) 1.28, (4.75) 

9 1.25, (5) 1.30, (4.75) 1.40, (4.75) 

10 1.42, (5) 1.46, (4.75) 1.54, (4.75) 

 

Table  3.9. Maximum combined stresses (MPa) and their locations along the span 
(m) of the parabolic, catenary, and circular arches for load case A2 

L:h Maximum combined stress, (location)  

Parabolic Catenary Circular 

2 2.70, (7.75) 3.05, (2) 6.92, (0.5)  

3 2.76, (7.75) 2.91, (2) 4.38, (1) 

4 2.88, (7.75) 2.90, (2) 3.63, (1.5) 

5 3.03, (7.75) 2.95, (2) 3.37, (2) 

6 3.20, (7.75) 3.12, (7.25) 3.30, (2) 

7 3.38, (7.75) 3.32, (7.25) 3.30, (2) 

8 3.57, (7.25) 3.53, (7.25) 3.47, (7.25) 

9 3.77, (7.25) 3.73, (7.25) 3.68, (7.25) 

10 3.98, (7.25) 3.95, (7.25) 3.90, (7.25) 

 

The minimum combined stresses of parabolic and catenary arches are observed at 

L:h ratios between 2 and 4 when both UDL and SW are applied. In general, the 

parabolic arch shows a lower bending moment and combined stress than the 

catenary and circular arches. Parabolic arches experience a dramatic increase in 
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combined stress for load case A2 (load case A1 + patch load). Here, their 

performance does not differ much from that of the other two types of arches. 

The arches are made of concrete, a material known to have low tensile strength. 

Therefore, it is worth examining whether the maximum combined stresses become 

tensile. The results are presented in Table 3.10. Assuming the maximum tensile 

strength of concrete to be 3 MPa (for concrete of characteristic strength of ~ 30 

MPa), the results demonstrate that the tensile stresses in all the arches are lower 

than the maximum tensile strength of the material, except for the case of a circular 

arch under load cases A1 and A2 and the L:h ratio of 2. This has implications for 

both the design and the method of analysis, because we cannot assume that the 

material is behaving elastically at this level of tension. However, these are isolated 

load cases, which can be dealt with by using a higher L:h ratio in the design. 

 

Table  3.10. Combined tensile stresses (MPa) of parabolic, catenary, and circular 
arches for all load cases 

L:h  Parabolic arch  Catenary arch  Circular arch 

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

2  NA 1.73 0.17 NA  0.36 2.06 NA 0.43  3.59 5.78 0.92 2.67 

3 NA 1.60 0.01 NA NA 1.73 NA 0.08 1.23 3.14 0.25 0.98 

4 NA 1.48 NA NA NA 1.48 NA NA 0.38 2.18 0.05 0.33 

5 NA 1.36 NA NA NA 1.29 NA NA 0.01 1.67 NA 0.04 

6 NA 1.25 NA NA NA 1.19 NA NA NA 1.33 NA NA 

7 NA 1.14 NA NA NA 1.10 NA NA NA 1.08 NA NA 

8 NA 1.04 NA NA NA 1.01 NA NA NA 0.98 NA NA 

9 NA 0.95 NA NA NA 0.93 NA NA NA 0.90 NA NA 

10 NA 0.87 NA NA NA 0.85 NA NA NA 0.82 NA NA 
 NA indicates that there is no tensile stress. 

 

3.5.3. Compressive force (thrust) 

As an arch is a pure compression form of structure, its axial force is referred to the 

compressive force of arches. It is demonstrated that the differences of maximum 
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axial force (thrust) for the three studied arches are smaller than 5% with a higher 

thrust for parabolic arch than two other shapes. Furthermore, the maximum thrust of 

arches has an almost linear relationship with the L:h ratios. The maximum values of 

thrust for these load cases are also presented in Table 3.11. The location of the 

maximum value of thrust for all load cases is at the arch supports. 

 

Table  3.11. Maximum thrust (kN) for parabolic, catenary, and circular arches 

L:h Load case A1  Load case A2 

Parabolic Catenary Circular Parabolic Catenary Circular 

2 168.8 168 161.2  247 246.5 238.1 

3 178.3 177.3 172.3 260.7 260 255.1 

4 197 196 192.8 285.2 284.4 281.5 

5 220.3 219.3 216.9 315.6 314.8 312.5 

6 246.2 245.4 243.4 349.8 348.9 347 

7 273.8 273.1 271.4 386.3 385.5 383.8 

8 302.5 301.8 300.3 424.5 423.8 422.1 

9 331.8 331.2 329.9 463.8 463.1 461.6 

10 361.5 360.9 359.8 503.7 503 501.6 

 

3.5.4. Displacements and deflections 

The movement of a structure or its components from their original position is always 

important for a designer.  If the deflection of a structure is excessive under a certain 

loading, cracking can occur. Consequently, it is important for a designer to 

determine the displacement and strains caused by the loads. The bending action 

caused by different loads is the primary reason generating the arch displacement. 

However, for a beam with a high cross-sectional area compared to span, shear 

forces are to be considered when calculating the deformation. 

The ratio of the resultant maximum displacement to arch span (u:L) for the three 

types of arches is presented in Figures 3.16 and 3.17 for load cases A1 and A2, 

respectively. The arch has a constant 10 m span and the resultant displacement 

(mm) is the sum of vertical and horizontal components. As expected, the catenary 
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and parabolic arches display lower resultant displacements when the loading is SW 

only (A3), and UDL only (A4), respectively.  

 

 

Figure  3.16. FE: Maximum resultant displacements against L:h ratio, load case A1 

 

 

Figure  3.17. FE: Maximum resultant displacements against L:h ratio, load case A2 

 

It can be seen that the variation of u:L ratio with L:h ratio follows a similar trend for 

load cases A1 and A2. It has been found that the trend for load cases A3 and A4 is 

similar. 
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The circular form, when L:h ratio is between 2 and 5, shows the highest maximum 

resultant displacements compared with the other two forms. For parabolic and 

catenary arches under the load case A1, the difference in displacement between the 

two falls from 50% at the L:h ratio of 2, to 21% at the L:h ratio of 5. In general, the 

parabolic arch shows a lower displacement than the catenary and circular forms. 

The differences between the resultant displacements of the parabolic and catenary 

arches are negligible for load case A2. 

The deformed shapes of circular, parabolic, and catenary arches for load case A1 

and L:h ratios of 2, 4 ,and 6 are illustrated with thick line in Figure 3.18.  

 

Figure  3.18. FE: Deformed shapes of circular, parabolic, and catenary arches for 
load case A1 and L:h of 2, 4, and 6 

 

The catenary and circular arches deform in the same way with the sides deforming 

outwards, but differ significantly from the parabolic arch (see Figure 3.18). This 

indicates that the failure mode of the parabolic arch can be expected to be 

completely different from the failure mode of the other two arches depending on 

arch material. Comparing Figures 3.10 and 3.18, the distribution of the bending 

moment is similar to the displaced form for each arch shape.  
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The parabolic arch deforms in the same way for all load cases A1, A3, and A4. 

However, the magnitudes of displacement are different. With regard to load case A2 

(presence of patch load), the arch displaces much more, and in a different shape 

from that of the other load cases. All three types of arches show a similar deformed 

shape under this load case. At the L:h ratio of 4 the differences in the displaced 

shapes of the arches are small but still significant, and this ratio has therefore been 

chosen to show the deformation of the parabolic arch. The deformed shape of the 

parabolic arch under load case A2 for L:h=4 is shown in Figure 3.19.  

 

 

Figure  3.19. FE: Deformed shape of parabolic arch for load case A2 and L:h = 4  

 

3.5.5. Shear forces 

The absolute value of the maximum shear force against the L:h ratio for load cases 

A1 and A2 is presented in Figure 3.20. 

 

Figure  3.20. FE: Absolute value of maximum shear force against L:h ratio for load 
cases A1 and A2 



3. ANALYSIS OF TWO-PIN ARCHES 

85 

Concerning shear forces, circular arches exhibit a high sensitivity to changes in the 

L:h ratio, where the percentage differences between L:h ratios of 2 and 4 are about 

52% for load case A1 and 29% in load case A2. The catenary and parabolic arches 

show a very similar behaviour for the absolute value of the maximum shear forces. 

The parabolic arch shows a lower shear force than the catenary arch in the case of 

the general combination of UDL and SW (load case A1). In the presence of patch 

loading (load case A2), the parabolic and catenary forms have just 2% difference at 

L:h ratio of 2 and this difference falls to <1% for L:h= 4. Beyond the L:h ratio of 4, 

the maximum shear forces of the catenary and parabolic arches converge towards 

each other. The trends of shear forces for load cases A3 and A4 are similar to load 

case A1. However, the shear forces of the catenary and parabolic arches are 

negligible for load cases A3 and A4 respectively. The trend of the absolute value of 

shear force is analogous to the trend of the absolute values of maximum bending 

moment for all load cases. This conclusion is associated with the close relationship 

between bending moments, shear forces, and deflections. 

3.5.6. Horizontal reaction force 

Figure 3.21 illustrates the horizontal reaction forces in all three types of arches for 

load case A1. The results show a linear dependence on the L:h ratio and slight 

differences in the reactions  for L:h ratios below 5. Above this ratio, the horizontal 

reaction forces are similar in all arches, and yet the maximum bending moments 

(Tables 3.4 and 3.5) and maximum combined stresses (Table 3.7) show significant 

differences. Such behaviour suggests that very small variations in horizontal 

reactions have a substantial influence on the behaviour of each structure.  
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Figure  3.21. FE: The horizontal reaction force against L:h ratio for load case A1 

 

3.5.7. Arch mass 

The masses of the three forms of arches present a non-linear decrement with 

increase in the L:h ratio, see Figure 3.22. For a constant L, it is concluded that the 

L:h ratio is a dominant factor in arch mass. For L:h ratios above 5, the mass of the 

arches varies slightly with change in the L:h ratio. The magnitudes of the mass 

results for each arch shape are very close to the other shapes for any L:h ratio. The 

maximum percentage difference of arch mass is 5.8% for L:h=2 and the circular and 

parabolic forms. Moreover, the percentage difference of arch mass becomes less 

than 1% when L:h≥4. However, the circular arch seems to be slightly heavier, while 

the parabolic form is the lightest arch.  

 

Figure  3.22. FE: Arch mass against L:h ratio for each form 
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3.6. Arches of steel material 

For a general conclusion on the optimal arch form and L:h ratio, a hollow steel 

cross-section with a width of 200 mm, depth of 400 mm, and thickness of 13 mm 

was also analysed using the GSA software. This cross-section gives a flexural 

rigidity EI, that is the same as a concrete solid cross-section. The elastic modulus 

and density of the steel material are assumed to be 205 GPa and 7850 kg/m3 

respectively. It should be noted that the weight of concrete arches is 6 times greater 

than the weight of arches of the steel material with the properties given in this 

section. This means that the UDL:SW ratio of the three forms of arches constructed 

from steel is 6 times larger than the UDL:SW of the three studied shapes of 

concrete arches for any L:h ratio. 

As stated previously, the optimal range to the L:h ratio is found when the maximum 

value of the combined stress reaches its minimum. Results to the absolute values of 

the maximum combined stress against L:h ratio under load case A1 are plotted in 

Figures 3.23 and 3.24 using concrete and steel as the construction material, 

respectively.  

 

Figure  3.23. FE: The absolute value of the maximum combined stresses against L:h 
ratio using concrete material for load case A1 
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Figure  3.24. FE: The absolute value of the maximum combined stresses against L:h 
ratio using steel material for load case A1 

 

The results of the maximum combined stress for the circular arch differ significantly 

from the results of the parabolic and catenary forms, particularly for L:h ratios below 

5 for arches of both steel and concrete material. In general, the maximum combined 

stress reaches its minimum at L:h ratios between 2 and 4 for the parabolic and 

catenary arches under all load cases. Meanwhile, the optimal L:h ratio of the circular 

shape is between 4 and 6. The behaviour of both steel and concrete arches is the 

same under each load case. The magnitudes of the structural actions obtained from 

steel arches are different from those assuming arches built of concrete. The arches 

made of steel shows about 90% higher combined stresses than concrete arches for 

different L:h ratios.  

3.7. Exploring the effect of different ratios of UDL:SW 

The effect of different ratios of UDL:SW on structural actions, such as the maximum 

bending moment, maximum displacement, and maximum combined stress is 

explored in this section. It was stated that the behaviour of arches is affected by the 

shape, L:h ratio and the applied load. The effect of multiple load cases was 

investigated by applying different combinations of SW and UDL to the known 

shapes of arches. Although the considered load cases represent different UDL:SW 

ratios, the effect of the UDL:SW ratios cannot be studied appropriately using those 
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load cases. It was shown in Table 3.4 that the UDL:SW of the three shapes of 

arches increases with the L:h ratio for load case A1. However, the UDL:SW ratio is 

greater than 1 for all L:h ratios for the general combination of SW plus UDL. To 

explore the effect of different UDL:SW ratios, the behaviour of parabolic, catenary, 

and circular arches is studied when UDL:SW>1, UDL:SW=1, and UDL:SW<1. The 

analysis carried out for arches subjected to load case A1 has covered the first load 

condition (UDL:SW>1) so far. To apply the other two load conditions UDL:SW=1 

and UDL:SW<1, the UDL of 7.2 kN/m and 2.6 kN/m are respectively applied across 

the full span of the arches plus SW. The arch specification remains the same as the 

one defined in subsection 3.3.1, which ensures that SW is equal to 7.2 kN per unit 

arc length. Therefore, the maximum bending moment, maximum displacements, 

and maximum combined stress of the parabolic, catenary, and circular arches when 

UDL:SW=2.78, UDL:SW=1, and UDL:SW=0.36 are presented in Tables 3.12, 3.13, 

and 3.14.  

 

Table  3.12. Maximum bending moment (kNm) of parabolic, catenary, and circular 
arches subjected to the general combination of SW plus UDL for different UDL:SW 
ratios 

L:h  UDL:SW=2.78  UDL:SW=1  UDL:SW=0.36 

P
a
ra

b
o
lic

 

C
a
te

n
a
ry

 

C
ir
c
u
la

r 

 P
a
ra

b
o
lic

 

C
a
te

n
a
ry

 

C
ir
c
u
la

r 

 P
a
ra

b
o
lic

 

C
a
te

n
a
ry

 

C
ir
c
u
la

r  

2  3.55 8.96 60.96   3.35 2.61 26.88   3.28 0.96 18.12  

3 2.11 4.97 26.01  1.83 1.49 10.59  1.73 0.61 6.86  

4 1.57 3.52 14.20  1.25 1.08 5.48  1.13 0.51 3.48  

5 1.44 3.03 8.71  1.05 1.03 3.39  0.90 0.55 2.13  

6 1.60 3.06 6.71  1.04 1.18 2.71  0.85 0.69 1.73  

7 2.08 3.32 5.98  1.20 1.49 2.71  0.93 0.92 1.75  

8 2.85 3.81 5.82  1.47 1.86 2.84  1.05 1.19 1.85  

9 3.69 4.45 6.02  1.86 2.23 3.00  1.24 1.46 1.98  

10 4.61 5.22 6.48  2.36 2.66 3.28  1.56 1.76 2.18  
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The circular arch shows a significant variation of maximum bending moment over 

L:h ratios between 2 and 10 in all three load cases. The maximum bending moment 

of the circular arch is at least 5 times greater than those of the parabolic and 

catenary arches at the L:h ratio of 2. The difference in the maximum bending 

moment of the different shapes of arches decreases when the L:h ratio increases. 

The parabolic arch shows the smallest magnitude of the maximum bending moment 

when UDL:SW=2.78. In the case of UDL:SW=0.36, the minimum value of the 

maximum bending moment is observed for the catenary arch with L:h ratios less 

than 8. The difference in the maximum bending moments of the catenary and 

parabolic arches is less than 1 kN/m for the full practical range of L:h ratios, and is 

negligible when UDL:SW=1. 

 

Table  3.13. Maximum displacement (mm) of parabolic, catenary, and circular arches 
subjected to the general combination of SW plus UDL for different UDL:SW ratios 

L:h  UDL:SW=2.78  UDL:SW=1  UDL:SW=0.36 

P
a
ra

b
o
lic

 

C
a
te

n
a
ry

 

C
ir
c
u
la

r 

 P
a
ra

b
o
lic

 

C
a
te

n
a
ry

 

C
ir
c
u
la

r 

 P
a
ra

b
o
lic

 

C
a
te

n
a
ry

 

C
ir
c
u
la

r  

2  0.23 0.46 3.92   0.20 0.17 1.72   0.19 0.08 1.15  

3 0.14 0.30 1.15  0.10 0.13 0.54  0.09 0.07 0.35  

4 0.17 0.28 0.64  0.10 0.14 0.31  0.07 0.08 0.20  

5 0.25 0.32 0.51  0.13 0.16 0.26  0.08 0.11 0.17  

6 0.35 0.39 0.51  0.18 0.20 0.26  0.17 0.13 0.17  

7 0.45 0.49 0.57  0.24 0.25 0.30  0.16 0.17 0.20  

8 0.58 0.60 0.66  0.30 0.32 0.34  0.20 0.21 0.23  

9 0.71 0.73 0.78  0.38 0.38 0.41  0.25 0.26 0.27  

10 0.87 0.88 0.91  0.46 0.46 0.48  0.31 0.31 0.32  

 

The maximum displacements of the catenary and circular arches are about 50% 

and 94% respectively greater than the maximum displacement of the parabolic arch 

for the L:h ratio of 2 when UDL:SW>1. The difference between the maximum 

displacements of the different shapes of arches decreases with increase of L:h ratio. 
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However, the maximum displacements of the parabolic arch remain smaller than the 

maximum displacements of the catenary and circular arches over all L:h ratios when 

UDL:SW>1. The differences between the maximum displacements of the parabolic 

and catenary arches are negligible for UDL:SW=1. Meanwhile, the circular arch 

shows about 88% greater maximum displacement than both the other arch shapes 

for the L:h ratio of 2. This percentage difference becomes smaller when the L:h ratio 

is increased. The difference between the maximum displacements of the catenary 

and parabolic arches is negligible for UDL:SW<1.  

 

Table  3.14. Maximum combined stress (MPa) of parabolic, catenary, and circular 
arches subjected to the combination of SW plus UDL for different UDL:SW ratios 

L:h  UDL:SW=2.78  UDL:SW=1  UDL:SW=0.36 
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2  0.69 0.99 4.54   0.47 0.43 2.28   0.40 0.25 1.55  

3 0.65 0.81 2.24  0.40 0.37 1.08  0.31 0.23 0.71  

4 0.69 0.77 1.52  0.40 0.37 0.74  0.30 0.24 0.49  

5 0.76 0.79 1.25  0.43 0.39 0.62  0.31 0.27 0.41  

6 0.85 0.88 1.14  0.47 0.44 0.57  0.33 0.30 0.38  

7 0.96 1.01 1.18  0.52 0.51 0.60  0.37 0.34 0.40  

8 1.09 1.15 1.28  0.59 0.59 0.66  0.41 0.40 0.44  

9 1.25 1.30 1.40  0.66 0.68 0.73  0.45 0.46 0.49  

10 1.42 1.46 1.54  0.75 0.77 0.81  0.51 0.52 0.55  

 

Similar to the results of the maximum bending moment and maximum 

displacements, the maximum combined stresses for the parabolic arch are smaller 

than for the other two arch shapes when UDL:SW=2.78. Again, the circular arches 

show the highest magnitude of the maximum combined stress amongst the three 

arch shapes for all load conditions. In general, the catenary arch presents lower 

combined stress than the parabolic arch when UDL:SW<1. The differences between 

the maximum combined stresses of the catenary and parabolic arches are 
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negligible when UDL:SW=1, with a slightly lower combined stress for the catenary 

arch when L:h≤7. 

Overall, the parabolic arch is more efficient, exhibiting lower bending, 

displacements, and combined stresses than the other two arches when UDL:SW>1. 

The catenary arch is preferable when UDL:SW<1 considering the minimum 

structural action effect criterion. The differences in the results of structural actions 

are negligible between the catenary and parabolic arches for UDL:SW=1. Finally, 

the circular arch demonstrates the least desirable results for any ratios of UDL:SW.  

3.8. Exploring the effect of arch thickness 

To meet the strength and stability requirements for arch structures with an aesthetic 

effect, some rules were formulated. One of these rules was to assign a thickness for 

the arch that is required for construction stability. Many researchers have proposed 

an empirical formulation to obtain the arch thickness as a function of L depending 

on the type and application of the arch. In 1876, Castigliano stated that thickness of 

the arch can be formulated as L15.0 , based on the minimum thickness referable 

to any kind of arch (Timoshenko 1986). Using Castigliano’s equation gives 470 mm 

to the minimum thickness of the studied arches with L=10 m. Since the thickness 

was assigned as 300 mm from the outset in this study based on the dimensions of 

the Gerrards Cross tunnel, the influence of the thickness of the arch rib on the 

results of the horizontal reaction forces and bending moments is reviewed in this 

section. It has been shown that the parabolic and circular arches are respectively 

the most and least preferable shapes in terms of structural engineering 

performance. For this reason, these two shapes of arches were modelled in GSA 

considering three different thicknesses (d) of 200, 300, and 400 mm. To compare 

bending moments at a specific location, the values of bending moment at the crown 

are reported. The results of the horizontal reaction force (kN) and the values of 
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bending moment (kNm) at the crown of a parabolic arch with L:h ratios between 2 

and 10 under load case A1 are presented in Table 3.15. The same investigation 

was carried out for the circular arch and the results are given in Table 3.16. 

Comparing the GSA outputs in Tables 3.15 and 3.16 it is seen that the horizontal 

reaction force and bending moments increase with increase thickness. In general, 

this effect is independent of the arch form.   

 

Table  3.15. Horizontal reaction force and bending moment at the crown of parabolic 
arch for load case A1 

L:h Horizontal reaction force (kN)  Values of bending moment at the crown 
(kNm) 

d=200mm d =300mm d=400mm d=200mm d=300mm d=400mm 

2 65.62 73.41 81.18  2.43 3.544 4.57 

3 95.63 105.89 116.09 1.00 1.295 1.42 

4 125.98 138.84 151.58 0.35 0.195 0.25 

5 156.48 171.97 187.24 0.07 0.601 1.56 

6 187.03 205.12 222.86 0.42 1.326 2.84 

7 217.58 238.22 258.29 0.75 2.063 4.18 

8 248.10 271.19 293.45 1.09 2.85 5.63 

9 278.56 303.98 328.25 1.45 3.69 7.22 

10 308.94 336.56 362.63 1.84 4.61 8.95 

 

 
Table  3.16. Horizontal reaction force and bending moment at the crown of circular 
arch for load case A1 

L:h Horizontal reaction force (kN)  Values of bending moment at the crown 
(kNm) 

d=200mm d =300mm d=400mm d=200mm d=300mm d=400mm 

2 54.43 60.41 66.37  46.36 50.24 55.14 

3 88.94 98.32 107.66 19.73 21.44 23.57 

4 121.22 133.53 145.75 11.05 12.27 13.82 

5 152.78 167.90 182.84 7.26 8.45 9.96 

6 184.01 201.86 219.41 5.35 6.71 8.39 

7 215.05 235.54 255.58 4.32 5.98 7.95 

8 245.94 268.98 291.37 3.77 5.82 8.17 

9 276.69 302.18 326.77 3.51 6.02 8.83 

10 307.32 335.14 361.75 3.45 6.48 9.80 
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It is seen that the bending moment at the crown of parabolic arch for L:h=4 is 

decreasing when the arch thickness is increasing from 200 to 300 mm. Then, the 

bending moment at arch crown is increasing when the thickness is increasing from 

300 to 400 mm for this L:h ratio. But, the bending moment of parabolic arch with 

thickness of 400 mm is still lower that this action when the thickness of parabolic 

arch is 200 mm. The magnitude of the bending moment at the crown of parabolic 

arch at L:h ratio of 4 is less than 0.4 kNm for all the considered thicknesses. Hence, 

this trend is ignored because of the small magnitude of bending moment at the 

crown of parabolic arch for all assumed thicknesses at this L:h ratio. The effect of 

thickness on the bending moment of the parabolic arch subjected to UDL only (load 

case A4) is shown in Figure 3.25. 

 

 

Figure  3.25. FE: Values of bending moment at the crown of parabolic arch with 
different arch depths for load case A4 (UDL only) 

 

The arch is subjected to UDL only and the effect of thickness in SW is not 

considered In Figure 3.25. Also, the parabolic arch is momentless in theory for any 

L:h ratio when subjected to UDL only. Meanwhile, it can be seen that the bending 

moment at the crown of the parabolic arch increases sharply with the increase of 

thickness especially for L:h ratios above 5. The reason for assuming the parabolic 
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arch is momentless for the UDL only load case is ignoring the section properties 

such as, gyration radius in calculating the horizontal reaction force in static theory.  

3.9. Exploring the effect of shortening of the arch 

In pin-ended arches, a compressive force in an arch rib causes that arch rib to be 

shortened, which will in turn release part of the horizontal thrust. This effect, called 

shortening, is not generally considered in arch analysis. However, in the case of 

shallow arches the shortening effect has a substantial impact on the results of the 

horizontal reaction force. Therefore, depending on the limit of the arch’s 

shallowness, the effect of rib shortening can be either taken into consideration or 

neglected. The effect of shortening the arch rib on the results from arch analysis is 

investigated using GSA in this section.  

3.9.1. Comparison of horizontal reaction force from GSA with other methods 

In a study of the process of changing the horizontal reaction force with increase of 

the L:h ratio, Ghigliotty (2012) conducted a relevant investigation. He assumed that 

a two-pin parabolic arch is subjected to UDL only. A computer program named 

BERNI90 was used to calculate the horizontal reaction force. The software was 

developed in 1990 to analyse frame structures using the finite element approach. In 

this software, the frame elements are considered to possess six degrees of freedom 

and the supports are restrained elastically.  

The horizontal reaction forces of the two-pin parabolic arch with specifications 

defined by Ghigliotty are obtained via GSA software in this section. The horizontal 

reaction force of the two-pin parabolic arch under UDL only is also obtained using 

static theory, and is equal to hwL 82
. In this equation, w is the imposed UDL. The 

shortening effect is not considered when calculating the horizontal reaction force 

using static theory. Consequently, the horizontal reaction forces of the two-pin 

parabolic arch using BERNI90, GSA, and static theory are compared against each 
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other in Table 3.17. The comparison leads to specification of the limit of the L:h ratio 

at which the shortening of the arch rib has a substantial effect on the results of the 

horizontal reaction force. The specification for the studied arch is given in Figure 

3.26 from Ghigliotty study for comparison reason. The span of the parabolic arch 

was a constant 30.48 cm, while h decreased from about 6 m to 0. 

 

Figure  3.26. Arch specification (Ghigliotty 2012) 

 

Table  3.17. Horizontal reaction force (kN) of parabolic arch subjected to UDL only 

h L:h Horizontal reaction force (kN)  

 BERNI90 GSA H=wL
2
/(8h) 

6.10 5 277 277.7 278  

3.05 10 552 552.8 556 

1.52 20 1085 1085 1112 

1.22 25 1338 1338 1390 

0.61 50 2402 2405 2780 

0.30 100 3465 3423 5560 

0.24 125 3571 3517 6950 

0.18 166.67 3456 3388 9267 

0.12 250 2947 2834 13900 

0.06 500 1732 1672 27800  

0 ∞ 0 0 ∞  

 

It can be seen in Table 3.17 that hwLH 82  loses meaning when the L:h ratio 

exceeds 125 and the results from static theory grow to be very unsatisfactory. The 

reason for this deviation is the neglect of the axial deformation of the arch rib in 
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calculating the horizontal reaction force in static theory. The results from both finite 

element analyses demonstrate that the trend of increasing horizontal reaction force 

with the L:h ratio is inverted to decreasing for L:h ratios above 125. The fair 

comparison for the results of the horizontal reaction force from BERNI90 and GSA 

proves the reliability of the results obtained using GSA software. However, the 

results of H obtained using two software slightly diverge for L:h>125 due to the 

numerical error. 

Concerning the shortening effect, to ensure acceptable precision in calculating the 

horizontal reaction force of the arch based on static theory, Gaylord & Gaylord 

(1990) suggested the follow expression having the rib shortening coefficient ν’.  

 

In Equ. (3.11) v’ is an adjustment made to the previous equation used in the past to 

obtain the horizontal reaction force of pin-ended parabolic arches subjected to the 

UDL only. For this reason, the horizontal reaction force obtained using Equ. (3.11) is 

labelled as ‘adjusted’ in this study. The adjustment factor was then applied to obtain 

horizontal reaction forces that are compared with static theory values in Table 3.18.  

The adjusted factor suggested by Gaylord decreases from about 1 to 0 with the 

increase of L:h ratio till the arch becomes a straight beam. Therefore, the horizontal 

reaction force decreases above L:h ratios greater than 125 when the adjustment 

factor is applied to static theory, see Table 3.18. Thus, the results of the horizontal 

reaction force considering this factor are in very good agreement with those from 

GSA. 

For a visual demonstration of the comparison of the horizontal reaction force using 

different approaches, these reactions are plotted against the L:h ratio in Figure 3.27.  
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Table  3.18. Horizontal reaction force (kN) of parabolic arch subjected to UDL only 

h L:h Horizontal reaction force (kN)  

 H= wL
2
/(8h) Adjustment factor  Adjusted static theory 

6.10 5 278 0.998 277  

3.05 10 556 0.994 553 

1.52 20 1112 0.976 1085 

1.22 25 1390 0.962 1338 

0.61 50 2780 0.865 2405 

0.30 100 5560 0.615 3422 

0.24 125 6950 0.506 3516 

0.18 166.67 9267 0.366 3387 

0.12 250 13901 0.204 2833 

0.06 500 27801 0.060 1674  

0 ∞ ∞ 0 0  

 

 

 
Figure  3.27. Comparison of the horizontal reaction forces using different methods 

 

Figure 3.27 illustrates that the results of adjusted static theory match well with the 

results of GSA. Moreover, the results of the horizontal reaction force using BERNI90 

exhibit less than 4% difference with those obtained by GSA for the full range of L:h 

ratios. In addition, the horizontal reaction force increases towards infinity with 

increase of the L:h ratio. Therefore, consideration of the shortening effect is deemed 
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to be crucial when analysing shallow arches. These results are satisfactory, due to 

obtaining a horizontal reaction force of zero once the arch height becomes zero.  

Most arches are constructed with the L:h ratio less than 10. Consequently, an L:h 

ratio limit such as 125 seems inapplicable due to the possibility of elastic buckling at 

this L:h ratio for the studied arch.  

3.9.2. Threshold range of L:h ratio of arch shallowness  

There are many investigations through the typical range of L:h ratios of arches. 

However, there is no valid reference as to the L:h ratio that should be considered 

the limit for the shallowness of arches at which the arch action is assured. Increase 

of the arch shallowness has a transforming effect on the behaviour of pure arch to 

pure beam behaviour. The commonly used range of L:h ratios for arch bridges as 

suggested by Gaylord (1990) and Merrit (1976) was between 4.5 and 6, in which 

there is no need to consider the rib shortening effect. However, there exists a 

concrete arch bridge with the highest L:h ratio equal to 11.2 (Fonesca and Mato 

2005). The practical limits of the L:h ratio of masonry arch structures under 

permanent loads are an essential part of the design. This limit can be presumed as 

the effective behaviour of arch structures, beyond which the arch behaviour is 

reduced due to flexural response. This is because of the linear relationship of arch 

shallowness to axial deflections and bending moments. However, masonry arch 

bridges were frequently built in past centuries at L:h ratios of between 3 and 8 

(Salonga and Gauvreau 2010).  

To find the limit of the shallowness of the arch shapes in this study with the arch 

specifications set out in subsection 3.3.1, Table 3.19 presents the arc length (S) for 

a L of 10 m.  

From Table 3.19, the percentage difference between the arc length and the span 

length of the three shapes of arches becomes less than 1% for L:h ratios above 16. 
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This shows that the arches are becoming so shallow that they can be considered as 

beams in practice for this L:h ratio. Moreover, the arc lengths of the three arch 

shapes are the same for L:h>16, which shows that they do not keep their own 

shape properties. Therefore, the arch shapes in this study are assumed as flat ones 

when L:h>16. Since the arches are analysed for the range of L:h ratios between 2 

and 10, the effect of arch rib shortening is not seen when calculating the horizontal 

reaction force. 

 
Table  3.19. Percentage difference between arch length (S) and horizontal distance 
between the supports (L) of known shape of arches 

L:h  Parabolic arch  Catenary arch  Circular arch 

Arc 
length 
S, 
(mm) 

Percentage 
difference 
between S 
and L 

Arc 
length 
S, 
(mm) 

Percentage 
difference 
between S 
and L 

Arc 
length 
S, 
(mm) 

Percentage 
difference 
between S 
and L 

2  14789 32.38%  14958 33.15%  15708 36.34% 

3 12453 19.70% 12520 20.13% 12740 21.51% 

4 11478 12.88% 11508 13.10% 11591 13.73% 

5 10982 8.94% 10997 9.07% 11035 9.38% 

6 10698 6.52% 10706 6.59% 10725 6.76% 

7 10520 4.95% 10525 4.99% 10536 5.08% 

8 10402 3.87% 10405 3.89% 10412 3.95% 

9 10320 3.10% 10322 3.12% 10326 3.16% 

10 10261 2.54% 10262 2.55% 10265 2.58% 

11 10216 2.12% 10217 2.12% 10219 2.14% 

12 10182 1.79% 10183 1.80% 10184 1.81% 

13 10156 1.53% 10156 1.54% 10157 1.55% 

14 10134 1.33% 10135 1.33% 10136 1.34% 

15 10117 1.16% 10118 1.16% 10118 1.17% 

16 10103 1.02% 10103 1.02% 10104 1.03% 

17 10092 0.91% 10092 0.91% 10092 0.91% 

 

3.10. Concluding Remarks 

It was stated in Chapter 2 that there are some articles in the literature about the 

optimum range of L:h ratio for circular arches. However, no published research was 



3. ANALYSIS OF TWO-PIN ARCHES 

101 

found on analysing the differences in the behaviour of the three studied shapes of 

arches. The results of analysing different arch shapes have shown that circular 

arches represent the least optimal shape over a typical range of load cases and 

span-to-height ratios. They exhibit higher combined stresses, displacements and 

bending moments, particularly for the L:h ratio of 2 (semi-circular arch). This shape 

is also the most sensitive to changes in the L:h ratio for all load cases. The optimum 

L:h ratio for a circular rib arch is between 4 and 6, but the stresses that develop in it 

are still higher than in parabolic or catenary shaped arches. The minimum combined 

compressive stresses in parabolic and catenary arches are observed at L:h ratios 

between 2 and 4, with the parabolic arch exhibiting the best performance. From the 

structural behaviour results of all three arch shapes it is concluded that arches are 

becoming shallow for L:h>5. It was seen that maximum combined stress and 

bending moments are increasing when L:h ratio increases above 5. The L:h ratio in 

which arches are known as flat in this study is 16. The effect of arch thickness on its 

behaviour showed the influence of changing in arch thickness on structural action 

effect when the arch is subjected to UDL only. This result highlighted the importance 

of considering section properties such as, gyration radius when analysing arch 

structures. The parabolic and catenary arch demonstrated lower structural action 

effects when respectively UDL>SW and SW>UDL. As a known fact, parabolic arch 

is momentless if it is subjected to UDL only and the SW is ignored in theory. 

Meanwhile, the catenary arch is considered as a momentless one when subjected 

to SW only. Moreover, for any other loading conditions, the existence of bending 

moments is inevitable for the studied arch shapes. However, it is possible to find a 

momentless arch geometry subjected to both self-weight and UDL. 

Overall, the findings demonstrate that the response of two-pin arch forms to applied 

loading is critically dependent on the arch form and its shape governed by the L:h 

ratio.



4. COMPARISON OF DIFFERENT METHODS OF TWO-PIN ARCH ANALYSIS 

102 

Chapter 4 : Comparison of different methods of two-

pin arch analysis 

4.1. Introduction 

In this chapter the approximate methods, which are currently in use in the analysis 

of two-pin arches are compared with the accurate method. Thus, the potential 

problems of the inaccuracy of the approximate analysis methods can be studied. To 

do so, an energy method based on Castigliano’s second theorem for analysing the 

linearly elastic two-pin arches is explored. The results from the previous chapter 

have shown that circular and parabolic arches represent the least and most optimal 

shapes for typical load cases and L:h ratios. Therefore, the effects of form on the 

structural response of circular and parabolic arches are presented using theoretical 

analysis based on engineering beam theory in conjunction with the Castigliano’s 

second principle (Timoshenko 1986). The analysis was used to varying degrees of 

refinement, i.e., bending action only, bending, thrust and shear, and bending, thrust, 

shear, and coupling between bending and thrust. The results are compared with 

each other, and with approximate methods of analysis, including virtual work, finite 

element solutions provided by GSA, and the masonry design method. In doing so, 

parabolic and circular arches were subjected to the general combination of UDL and 

SW (load case A1, defined in Chapter 3) and UDL only (load case A4). The 

specifications of these arches were defined in subsection 3.3.1 with a range of L:h 

ratios between 2 and 10. The purpose of this analysis is to assess the validity of 

different approximate methods of arch analysis. The effect of different actions of 

strain energy in Castigliano’s theorem is evaluated too.  
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4.2. Theoretical analysis method 

Since the two-pin arch has four components of reactions at the supports, the 

structure is statically indeterminate to degree one, see Figure A.1. Only vertical 

reactions can be obtained from the three equilibrium equations. To find the 

horizontal reaction force, a further equation in addition to equilibrium equations is 

required. This can be obtained using a number of alternative methods. A classical 

method applicable to linear elastic structures is based on Castigliano’s second 

theorem (Timoshenko 1986). In this case, it is possible to consider the strain energy 

U due to bending M, shear F, thrust T and coupling of bending and thrust 

(Timoshenko 1986).  

 

R is the radius of curvature of the structure (varying over the length of the arch, 

except for circular arches), and k is the shear reduction factor on area. The factor k 

is used to correct for the non-uniform distribution of shear over the arch cross-

section. Also, G is the shear modulus, which is equal to )1(2 E  for an isotropic 

material and   is the Poisson’s ratio.  

Using Castigliano’s theorem, the horizontal deflection of an arch (here analysed as 

a curved bar) is equal to the derivative of strain energy with respect to the horizontal 

reaction at a pin. As pin-ended arches are assumed to have no horizontal 

deflections, the derivative of strain energy with respect to the horizontal reaction 

force, as defined by Equ. (4.2), will be zero at the supports (Timoshenko 1986). 
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To study the effect of each term of the strain energy equation, this method is divided 

into three categories in order to analyse the arch structures. They are: 

 Bending action only: in general this assumption is valid when the 

radius of curvature from its centre line is much greater than the cross-

sectional dimensions of a bar. The classic virtual work method leads to the 

same result. 

 Bending action plus the shear and thrust terms: the strain energy is 

assumed to result from the theory of the elastic behaviour of a rib arch, 

which approximates the Euler–Bernoulli assumption.  

 Full structural actions: as above plus a term arising from the coupling 

of bending and thrust term. This analysis is used as a benchmark for the 

results from the approximate methods of analysis. 

The arch forms which are mostly used in design are circular, parabolic, and 

catenary. Due to the close structural response of parabolic and catenary arches for 

general load conditions, this method is applied to the circular and parabolic arches. 

The processes of finding the horizontal reaction force of circular and parabolic 

arches using Castigliano’s second theorem are outlined in Appendix A and 

Appendix B respectively.   

The results of the theoretical analysis are compared with those obtained by FE. 
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(Bending action) (Thrust and shear terms) 

(Coupling of bending and thrust terms) 
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Previous arch analysis based on Castigliano’s theorem (Bridle and Hughes, 1990; 

Clemente et al., 2001) have included some assumptions, such as ignoring the shear 

action because of its small effect on the strain energy equation. The effect of all 

actions are considered and assessed in this study. 

4.3. Approximate analytical methods 

The circular and parabolic arches have been analysed by alternative ‘hand 

calculation’ methods, which use simplifying assumptions to calculate the reaction 

forces. These methods are of two types; the first, based on the virtual work principle 

and presented by Megson (2006), is named ‘virtual work’ in this study; the second is 

the ‘masonry design’ method (Curtin et al., 2006). The effects of the assumptions 

used in these methods are evaluated. Both of these methods are commonly used 

for practical analysis of arch structures. Therefore, examining their underlying 

assumptions will enable designers to become aware of the advantages and 

disadvantages of using them. It is interesting to note that the masonry design 

method has not been changed in the Structural Masonry Designers’ Manual 

between its 1982 and 2006 editions, despite its approximate nature. The reason is 

probably in providing a conservative design solution using masonry design method. 

The two methods are discussed below, starting with the masonry design method. 

4.3.1. Masonry design method 

To calculate the horizontal reaction force using the masonry design method, it is 

assumed that the thrust at the crown runs through the centre of the thickness of the 

arch rib. This leads to having a zero bending moment at its crown, which has a 

remarkable effect on the results of the horizontal reaction force. As a result, the arch 

acts like a three-pin arch in the masonry design method. This method is generally 

used to draw the thrust line of the arch based on the force diagram of Bow’s 

notation. The location of the thrust line within the arch ring then determines the 
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stress zones in the arch. To have dominant compressive stresses in the masonry 

material, the thrust line is required to lie in the middle third of the arch cross-section 

(Curtin et al. 2006). A further approximation in the method is due to the level of 

discretisation of the arch into individual segments to which self-weight and UDL are 

applied, as shown in Figure 4.1. 

 

 
 

Figure  4.1. Masonry design method (arch is divided into several segments) 
 

 

According to the masonry design method, the arch is split into segments with SW 

and UDL applied as a series of point loads, Wi. Therefore, the horizontal reaction 

force, H, is calculated using: 

 

where MA is the bending moment at point A (depending on the loading), xi is defined 

as the horizontal distance between where loads Wi act and A, h is also the height of 

the arch. Having V as the vertical reaction force at point A, the internal bending 

moment for the arch at any arbitrary point p(xp, yp), is expressed as: 
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4.3.2. Virtual work method presented by Megson 

According to this method, the virtual work of all forces acting on a body including 

external and internal force is zero if the body is in static equilibrium. The application 

of the virtual work method to two-pin arches is presented by Megson (2006). When 

applying the virtual work approach to two-pin arches, it is assumed that only 

bending produces displacements and this approach ignores the effect of thrust on 

them. Therefore, the assumption for calculating reaction forces is that arches work 

in bending only. To obtain a real displacement, a virtual force is imposed on a 

deformable body in the virtual work method. In order to have a statically determinate 

structure, a release is chosen at one support (see Figure 4.2). Then the unit load is 

applied to that support, which induces internal forces and displacements.  

Figure  4.2. Application of the virtual work method (using a unit load) to the two-pin 

arch 

 

Thus to find the displacement, the support “B” needs to be released as shown in 

Figure 4.2 (a). The imposed UDL results in deformation, while the horizontal 

reaction force HB is not present. Since the virtual work approach assumes that 

arches work in bending only and ignore thrust, for compatibility with the horizontal 

displacement at support B, ΔB,h is expressed by HB in. 

....])()([ 2211  xxWxxWHyVxM ppppp  (4.4) 
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In Equ. (4.5) ‘a’ ’ is the flexibility coefficient of the arch. To find ΔB,h, a unit horizontal 

load should be imposed at B. The external virtual work of the system, We is given 

by:  

 

 

The internal virtual work, Wi from the derivation of the expression for internal work 

for bending moment leads to: 

 

where MA is the bending moment distribution due to the applied loading and M1 is 

obtained by removing all the external loads and moments and just considering the 

unit horizontal load at the support B. The distance round the profile from A is ‘S’. 

The horizontal displacement at that support can be obtained using work–equilibrium 

relationships, i.e. We = Wi, which yields: 

 

Also the flexibility coefficient is defined using (Megson 2006): 

BhB Ha',   (4.5) 
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Substituting a’ and ΔB,h  from the above equations into Equ. (4.5) and substituting 

M1 for the moment from the unit load enables determination of the horizontal 

reaction force from: 

 

Consequently, the internal bending moment for the arch at any arbitrary point 

p(xp,yp) is expressed as: 

 

where ‘w’ is the uniformly distributed load and ‘V’ is the vertical reaction force which 

can be found from the static equilibrium.  

When analysing arches of shapes other than the semi-circular profile, to avoid 

complicated integrals in the process of finding a horizontal reaction force, the secant 

assumption is required. If the term ds/I in Equ. (4.10) is replaced by a term that is a 

function of either x or y, the solution can be simplified. Assuming an elemental 

length δs of an arch as shown in Figure 4.3, ds will be equal to dxsecθ when 0s  

 

 

Figure  4.3. Elemental length, δs, split into x and y components δx and δy 
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Based on the secant assumption, a second moment of area is assumed to vary 

around the arch profile )sec( 0 II  , in which I0 is the second moment of area at the 

crown of the arch. Therefore, the horizontal reaction force of parabolic and catenary 

arches is obtained from Equ. (4.12). 

The horizontal reaction force from the virtual work method for a linear-elastic system 

is equal to the one obtained from Castigliano’s second theorem assuming bending 

action only. 

4.4. Comparison of different methods of analysis 

The different analysis methods of two-pin arches which were summerized in 

Sections 4.2 and 4.3 are applied to the studied shapes of arches. For this reason, 

the general combination of UDL and SW (load case A1) is applied to the circular 

and parabolic arches, and the previously described methods of arch analysis are 

used. The aim is to compare the results from these methods with the results 

provided by the most accurate method, based on the Castigliano principle and full 

structural action, including the “coupling of bending and thrust” term (Equation 4.2). 

Within the Castigliano-based approach, further comparisons are also given for 

cases of bending action only (M only), and bending+ shear+ thrust (M, F, and T). 

This provides a comprehensive assessment of methods for arch analysis based on 

the findings of previous work.   

The horizontal reaction forces and maximum bending moments in a circular arch 

subjected to load case A1 and analysed by different methods are given in Tables 
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4.1 and 4.2, respectively when L=10 m. The location of the maximum bending 

moment for a circular arch obtained using the different methods is also reported in 

Table 4.2. Table 4.3 presents the maximum thrust of the circular arch for load case 

A1. Table 4.4 gives a comparison of the maximum combined compressive stresses 

of the circular arch from Castigliano’s analysis and from the FE analysis for load 

case A1.  

 

Table  4.1. Horizontal reaction force of circular arch (kN) subjected to the UDL of 20 
kN/m plus SW (A1) 

L:h GSA masonry 
design 

Castigliano 
(M only) 

Castigliano 
(M, F and T) 

Castigliano 
(Full actions) 

2 60.14 70.55 60.44 60.41 60.45 

3 97.80 104.80 98.45 98.32 98.41 

4 132.80 138.46 133.83 133.53 133.67 

5 167.00 172.11 168.46 167.90 168.11 

6 200.70 205.83 202.82 201.86 202.15 

7 234.20 239.61 237.04 235.54 235.89 

8 267.40 273.43 271.19 268.98 269.35 

9 300.30 307.28 305.29 302.18 302.50 

10 333.00 341.16 339.38 335.14 335.27 

 Results from the virtual work method are identical to those from Castigliano, bending 
action only 

 

Table  4.2. Maximum bending moments (M) and their locations along the span (x) of 
circular arch subjected to the UDL of 20 kN/m plus SW (A1) 

L:h GSA  masonry 
design 

 Castigliano 
(M only) 

 Castigliano 
(M, F and T) 

 Castigliano 
(Full actions) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

2 -60.96 0.5  -83.38 0.5  -61.35 0.5  -61.27 0.5  -61.37 0.5 

3 -26.01 1  -35.91 1.0  -25.96 1  -25.76 1  -25.89 1 

4 -14.20 1  -19.46 1.5  -14.56 1  -14.24 1  -14.39 1 

5 -8.713 1  -12.49 1.5  -9.21 1  -8.76 1  -8.92 1 

6 6.71 5  -8.67 1.5  -6.33 1  6.62 5  6.14 5 

7 5.98 5  -6.36 1.5  -4.62 1  5.81 5  5.31 5 

8 5.815 5  -4.86 1.5  -3.52 1  5.56 5  5.09 5 

9 6.02 5  -3.84 1.5  -2.77 1  5.67 5  5.32 5 

10 6.48 5  -3.11 1.5  -2.26 1  6.02 5  5.89 5 
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Table  4.3. Maximum thrust (kN) of circular arch subjected to the UDL of 20 kN/m 
plus SW (A1) 

L:h GSA Castigliano (M 
only) 

Castigliano 
(M, F and T) 

Castigliano 
(Full actions) 

2 161.2 156.55 156.55 156.55 

3 172.3 172.51 172.46 172.49 

4 192.8 193.68 193.50 193.58 

5 216.9 218.35 217.94 218.09 

6 243.4 245.42 244.65 244.88 

7 271.4 274.12 272.85 273.15 

8 300.3 303.98 302.03 302.36 

9 329.9 334.66 331.84 332.12 

10 359.8 365.95 362.03 362.16 

 

 
Table  4.4. Maximum combined compressive stresses of circular arch (σ) and their 
locations along the span of the arch (x) subjected to the UDL of 20 kN/m plus SW 
(A1) 

L:h GSA  Castigliano (M 
only) 

 Castigliano (M, F 
and T) 

 Castigliano 
(Full actions) 

σ(MPa) x(m) σ(MPa) x(m) σ(MPa) x(m) σ(MPa) x(m) 

2 4.54 0.5  3.57 5  3.58 5  3.57 5 

3 2.24 1  1.74 5  1.77 5  1.75 5 

4 1.52 1  1.22 5  1.27 5  1.24 5 

5 1.25 1  1.05 5  1.12 5  1.09 5 

6 1.14 1  1.01 5  1.11 5  1.08 5 

7 1.18 5  1.03 5  1.17 5  1.14 5 

8 1.28 5  1.09 5  1.27 5  1.24 5 

9 1.40 5  1.16 5  1.38 5  1.36 5 

10 1.54 5  1.25 5  1.52 5  1.51 5 

 

In general, the results of Castigliano with bending, shear, and thrust are in good 

agreement with those obtained from FE. There are small differences between the 

results of these two methods, such as the location of the maximum combined stress 

for L:h lower than 6. Since the results of the virtual work method and Castigliano 

with bending action only are the same, the virtual work method results are not 

separately given in the above tables. In Table 4.1 the horizontal reaction force of the 
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circular arch grows with the L:h ratio for load case A1. The masonry design method 

gives the horizontal reaction force as the maximum, while the minimum of this force 

is obtained from Castigliano’s theorem based on bending, shear, and thrust. The 

horizontal reaction force of Castigliano with bending action only is the maximum 

when Castigliano’s approach with different categories is investigated. However, 

Castigliano based on bending, shear, and thrust calculates the horizontal reaction 

force as the minimum amongst the three categories of Castigliano’s theorem. The 

maximum bending moment values of the circular arch for load case A1 decrease 

when the L:h ratio is increased from 2 to 8 using FE, Castigliano’s approach based 

on bending, shear, and thrust, and Castigliano’s approach with full structural action. 

Then, the decreasing trend of the maximum bending moment is reversed to 

increase above this ratio using these methods of analysis (see Table 4.2). The 

maximum bending moment in the circular arch has a decreasing trend over the full 

range of L:h ratios when masonry design, virtual work, and Castigliano’s theorem 

based on bending action only are applied. Also, these methods produce the 

maximum bending moment as hogging for the full range of L:h ratios. However, the 

maximum bending moment becomes sagging after an L:h ratio of 5 when other 

methods of analysis are applied. The location of the maximum bending moment of 

the circular arch using all methods is near the supports when the L:h ratio is below 

6. The location of the maximum bending moment is seen near the supports for L:h 

ratios between 2 and 10 using masonry design, virtual work, and Castigliano with 

bending action only. But, this location is at the crown of the circular arch for L:h≥6 

using other methods. Furthermore, the masonry design method predicts the 

maximum bending moment as the highest in comparison to the other methods of 

analysis for L:h ratios between 2 and 7. The minimum value of this bending moment 

is given by Castigliano due to bending, shear, and thrust when the L:h ratio is 

between 2 and 5. The results of the maximum bending moment of the circular arch 

using all the methods in Table 4.2 show the sensitivity of the circular arch to 
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changes in the L:h ratio. Table 4.3 presents the thrust of the circular arch using 

different methods of analysis for the general combination of UDL and SW applied 

across the full span of the arch (A1). The masonry design method is neglected in 

Table 4.3 due to the large differences of the results obtained using this method and 

other analysis methods. The thrust values are the maximum when Castigliano with 

bending action only is used, while Castigliano based on bending, shear, and thrust 

gives the minimum thrust. The maximum combined compressive stresses are 

presented in Table 4.4. It can be seen that FE and Castigliano with bending, shear, 

and thrust produce the maximum combined compressive stress amongst all the 

methods. Again, the masonry design method is not being evaluated in Table 4.4. 

Castigliano with bending action gives the minimum combined stress values. The 

location of maximum combined stress using Castigliano’s theorem is at the crown. 

However, the location of the maximum combined stress obtained from FE is near 

the supports for L:h≤6, while above this ratio the location of the maximum combined 

stress is at the crown. The same analysis was carried out for the parabolic arch and 

the results are presented in Tables 4.5 to 4.8. 

 

Table  4.5. Horizontal reaction force of parabolic arch (kN) subjected to the UDL of 
20 kN/m plus SW (A1) 

L:h GSA masonry 
design 

Castigliano 
(M only) 

Castigliano 
(M, F and T) 

Castigliano 
(Full actions) 

2 72.97 72.70 73.46 73.41 73.45 

3 105.30 105.50 106.04 105.89 105.95 

4 138.10 138.76 139.17 138.84 138.93 

5 171.10 172.27 172.60 171.97 172.08 

6 204.10 205.92 206.20 205.13 205.27 

7 237.00 239.66 239.91 238.22 238.39 

8 269.80 273.47 273.68 271.19 271.38 

9 302.40 307.31 307.50 303.98 304.19 

10 334.90 341.18 341.35 336.56 336.79 

 Results from the virtual work method are identical to those from Castigliano, bending 
action only 
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It is seen that similar to the circular arch, the horizontal reaction force of a parabolic 

arch (Table 4.5) grows when the L:h ratio is increased from 2 to 10. 

 

Table  4.6. Maximum bending moments (M) and their location along the span (x) of 
parabolic arch subjected to the UDL of 20 kN/m plus SW (A1) 

L:h GSA  masonry 
design 

 Castigliano 
(M only) 

 Castigliano 
(M, F and T) 

 Castigliano 
(Full actions) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x 
(m) 

M 
(kNm) 

x  
(m) 

2 -3.55 5  5.29 1.5  -3.79 5  -3.54 5  -3.72 5 

3 2.11 1.25  2.74 1.5  1.84 1  2.08 1.5  1.97 5 

4 1.57 1.25  1.66 1.5  1.14 1  1.56 1.5  1.44 1.5 

5 1.44 1.25  1.10 1.5  0.77 1  1.41 1.5  1.29 1.5 

6 1.60 1.75  0.78 1.5  0.55 1  1.59 2.5  1.42 2 

7 2.08 2.75  0.58 1.5  0.41 1  2.07 4  1.86 3.5 

8 2.85 4.75  0.45 1.5  0.32 1  2.85 5  2.61 5 

9 3.69 4.75  0.36 1.5  0.26 1  3.70 5  3.46 5 

10 4.61 4.75  0.29 1.5  0.21 1  4.63 5  4.39 5 

 

 
Table  4.7. Maximum thrust (kN) of parabolic arch subjected to the UDL of 20 kN/m 
plus SW (A1) 

L:h GSA Castigliano (M 
only) 

Castigliano 
(M, F and T) 

Castigliano 
(Full actions) 

2 168.8 169.92 169.89 169.91 

3 178.3 179.49 179.39 179.43 

4 197 198.34 198.1 198.16 

5 220.3 221.95 221.45 221.54 

6 246.2 248.4 247.51 247.62 

7 273.8 276.7 275.23 275.38 

8 302.5 306.25 304.02 304.19 

9 331.8 336.70 333.48 333.68 

10 361.5 367.80 363.34 363.56 
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Table  4.8. Maximum combined compressive stresses of parabolic arch (σ) and their 
location along the span of the arch (x) subjected to the UDL of 20 kN/m plus SW 

L:h GSA  Castigliano (M 
only) 

 Castigliano (M, 
F and T) 

 Castigliano (Full 
actions) 

σ(MPa) x(m) σ(MPa) x(m) σ(MPa) x(m) σ(MPa) x(m) 

2 0.69 1  0.69 1  0.70 1  0.69 1 

3 0.65 1  0.64 0.5  0.65 1  0.65 1 

4 0.69 1  0.68 0.5  0.69 1  0.69 0.5 

5 0.76 1  0.75 0.5  0.76 1  0.76 0.5 

6 0.85 1  0.83 0.5  0.86 1  0.85 1 

7 0.96 1.5  0.92 0  0.97 1.5  0.96 1.5 

8 1.09 3  1.02 0  1.10 3  1.10 2.5 

9 1.25 5  1.12 0  1.26 5  1.24 5 

10 1.42 5  1.23 0  1.43 5  1.41 5 

 

Comparing the equivalent set of results in Tables 4.1 and 4.5, the horizontal 

reaction force for a parabolic arch at L:h=2 is about 17.5% higher than the semi-

circular arch using the different methods of analysis, except for the masonry design 

method. This difference decreases when the arches become shallower, and the 

parabolic arch shows about 0.5% higher horizontal reaction force than the circular 

one for L:h=10. In the case of masonry design method the differences is < 1% for 

L:h>2. This shows a weakness in using the masonry design method for analysing 

arches in which the effect of the arch form is not being recognized. The horizontal 

reaction force is at its maximum using Castigliano’s theorem with bending action 

only and the virtual work method for the parabolic arch and load case A1. The effect 

of including the coupling term in the results of the horizontal reaction force obtained 

from Castigliano’s theorem increases with the increase of the L:h ratio from 2 to 7 

when compared with Castigliano’s theorem due to bending, shear, and thrust. This 

trend is similar for both parabolic and circular arches. Above the L:h ratio of 7, the 

differences between the horizontal reaction force obtained from Castigliano with full 

structural action and Castigliano with bending, thrust, and shear decreases. 

Obviously, when the different methods of analysis are compared, the findings of the 
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FE method are analogous to those acquired using Castigliano’s theorem when the 

strain energy is arising from bending, shear, and thrust (see Tables 4.2 to 4.6). The 

value of the maximum bending moment of parabolic and circular arches decreases 

with the increase of the L:h ratio when masonry design, virtual work, and Castigliano 

due to bending action only are applied to analyse the arches. This proves the 

deficiency of using these methods for analysing arch structures. The decreasing 

trend of the maximum bending moment with the increase of the L:h ratio is 

unsatisfactory for a high value of L:h ratio when applying these methods. But, the 

decreasing trend of the maximum bending moment is reversed to increasing using 

FE and Castigliano’s method derived from other actions in addition to the bending 

term. Therefore, once the height becomes very small, the bending moment 

becomes greatest owing to the behaviour of a curved beam in elevation rather than 

the behaviour of a pure arch. The optimal range of the L:h ratio of the parabolic 

arch, with the minimum value of the maximum bending moment, occurs at the L:h 

ratio of about 5 using the FE method, Castigliano’s theorem based on bending, 

thrust, and shear, and Castigliano’s theorem with full structural actions. The thrust of 

the parabolic arch using the considered methods of analysis is higher than the 

thrust of the circular arch (from Tables 4.3 and 4.7). But the difference between the 

magnitude of the thrust of parabolic and circular arches becomes less with the 

increase of the L:h ratio. It can be seen from Tables 4.3 and 4.7 that the thrust of 

the parabolic arch is less than 1% higher than the circular one for L:h ratios above 

6. Similar to the results of the horizontal reaction force in the case of using 

Castigliano’s theorem, the thrust of the circular and parabolic arches is the 

maximum and minimum when Castigliano is based on bending action only and 

bending, shear, and thrust respectively. Moreover, the effect of the coupling term is 

less than 0.1%, which is negligible over the full range of L:h ratios when comparing 

the last two columns of Table 4.3 and similarly in Table 4.7. The maximum 

combined compressive stresses for the parabolic arch are presented in Table 4.8, 
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while the masonry design method is ignored because of the great difference of the 

results calculated from the masonry design method and other methods. Using all 

methods, the location of the maximum combined stress of the parabolic arch is near 

the supports for L:h ratios less than 8. Then this location moves to the crown, 

except in the case of Castigliano with bending action only, which from Table 4.6 

gives the location of the maximum combined stress near the supports for all L:h 

ratios. It is interesting that the trend of decreasing maximum combined stress with 

increase of the L:h ratio reversed when applying Castigliano with bending only for 

both the circular and parabolic arches. The reason for this finding is the significant 

effect of increasing thrust with the L:h ratio in the calculation of the combined 

stresses. This confirms the necessity of considering the thrust action of the arch 

through its analysis. The maximum combined stress reaches its minimum at L:h 

ratios of 6 and 3 for the circular and parabolic arches individually using FE and the 

Castigliano approach (see Tables 4.4 and 4.8). The trend of change in the 

combined stress with increasing L:h ratio is the same for all categories of the 

Castigliano approach. However, the differences between the magnitude of the 

maximum combined stress from Castigliano with bending action only and the other 

two categories of Castigliano increase from less than 1% to about 13% and 18% 

when the L:h ratio increases from 2 to 10 in the case of the parabolic and circular 

arches, respectively. Over the full range of L:h ratios the effect of the coupling term 

is less than 2% and 3% for the parabolic and circular arches when Castigliano with 

bending, shear, and thrust is compared with Castigliano with full structural action. 

Since the maximum combined stress and maximum bending moment of the 

parabolic arch reach their minimum for L:h ratios between 2 and 4 and L:h ratios 

between 3 and 5, respectively, the effect of each term of the strain energy in 

Castigliano’s theorem is examined for L:h=4. The results from the Castigliano 

approach based on bending, shear, and thrust give horizontal reactions that are 

0.24% lower than the horizontal reaction force in the case of bending action. The 



4. COMPARISON OF DIFFERENT METHODS OF TWO-PIN ARCH ANALYSIS 

119 

term including shear and thrust actions has a 27% and 1.4% greater effect on the 

maximum bending moment and maximum combined compressive stress than 

Castigliano’s theorem and bending action only at the L:h ratio of 4. The results are 

listed in Tables 4.6 and 4.8., which shows this effect increases with increasing L:h 

ratio.  

To assess the effect of the coupling term on the parabolic arch, the structural 

reactions resulting from Castigliano based on full structural action and Castigliano 

arising from the linear combination of bending, shear and thrust are compared. The 

coupling term causes the horizontal reaction force to be 0.06% higher at L:h=4 (see 

Table 4.5), while the maximum bending moment and combined compressive stress 

from Tables 4.6 and 4.8 are lower by 7.4% and 0.4% at this geometric ratio. 

Generally, the bending/thrust coupling term has a slightly decreasing effect on the 

results of the bending moments from the Castigliano method including bending, 

shear, and thrust terms. Similar to the circular arch, the results from Castigliano due 

to bending action only match the results from the virtual work method. The 

favourable comparison of numerical prediction from GSA with the calculations from 

Castigliano’s approach, considering bending, shear, and thrust shows the validity of 

the FE model to reliably simulate the response of parabolic and circular arches. 

Comparing the results of the horizontal reaction force with the maximum bending 

moment suggests that even a 0.1% change in the value of the horizontal reaction 

force leads to a 10% change in the value of the maximum bending moment in the 

arch structures in this study.  

The results of the horizontal reactions obtained from the Castigliano approach are 

next to be compared with those calculated using static theory. To do so, no SW is 

applied to the parabolic arch (load case A4 defined in Chapter 3). The horizontal 

reaction force (H) for a parabolic arch under UDL only obtained from static theory is 

equal to wL2/8h, which causes the parabolic arch to become momentless. The 
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comparison of the horizontal reaction force obtained from the methods used in this 

research and static theory for the parabolic arch subjected to load case A4 is given 

in Table 4.9. The same comparison is carried out for the maximum bending 

moments in the parabolic arches obtained from the aforementioned methods for 

load case UDL only. The results are presented in Table 4.10.  

 

Table  4.9. Horizontal reaction force of parabolic arch (kN) subjected to the UDL of 
20 kN/m only 

L:h GSA masonry 
design 

Castigliano 
(M only) 

Castigliano 
(M, F and 
T) 

Castigliano 
(Full actions) 

Static theory 
H=wL

2
/(8h) 

2 49.97 50 50 49.97 49.99 50 

3 74.9 75 75 74.89 74.94 75 

4 99.77 100 100 99.76 99.8 100 

5 124.6 125 125 124.54 124.6 125 

6 149.2 150 150 149.22 149.3 150 

7 173.8 175 175 173.77 173.9 175 

8 198.2 200 200 198.18 198.3 200 

9 222.5 225 225 222.42 222.6 225 

10 246.5 250 250 246.49 246.7 250 

 Results from the virtual work method are identical to those from Castigliano, bending 
action only 

 

Table 4.6 shows that the horizontal reaction forces calculated from statics is in 

agreement with calculation by the masonry design and virtual work methods, and 

the Castigliano approach presuming bending action only. This is because in the 

energy approach (Castigliano based on bending action only and virtual work) the 

horizontal reaction force (H) is obtained from Equs. (4.13) and (4.14). Substituting 

the bending moment at any cross-section of the arch, which is  into 

Equs. (4.2) and (4.12) in the case of using Castigliano’s theorem and virtual work 

respectively. 

 

HyMM  0
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Table  4.10. Maximum bending moment in parabolic arch (kNm) subjected to the 
UDL of 20 kN/m only 

L:h GSA masonry 
design 

Castigliano 
(M only) 

Castigliano 
(M, F and T) 

Castigliano 
(Full actions) 

Static theory 
H=wL

2
/(8h) 

2 0.17 0 0 0.17 0.05 0 

3 0.36 0 0 0.35 0.21 0 

4 0.61 0 0 0.60 0.44 0 

5 0.93 0 0 0.92 0.75 0 

6 1.31 0 0 1.31 1.13 0 

7 1.76 0 0 1.76 1.58 0 

8 2.28 0 0 2.28 2.10 0 

9 2.87 0 0 2.86 2.69 0 

10 3.52 0 0 3.51 3.34 0 

 Results from the virtual work method are identical to those from Castigliano, bending 
action only 

 

The horizontal reaction force is given as below. It should be noted that when 

applying virtual work Equ. (4.2), only the first term for flexural energy is taken into 

account. 

where y is the parabolic function of  )()4( 2 LxxLh  . 

Accordingly, the parabolic arch is momentless for any L:h ratio using these methods 

(see Table 4.10). When arches become shallow the arch behaviour transfers to that 

of a horizontal beam. Hence, there would be a moment for shallow arches and it is 

predicted that the bending moments will grow with increase of the L:h ratio in the 
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case of shallow arches. The reason for having a zero bending moment for all L:h 

ratios of the parabolic arch under UDL when using masonry design, virtual work, 

and the Castigliano principle with bending action only is that these methods ignore 

the section properties for non-deformable bodies. Since in the linear elastic small 

displacement static theory it is presumed that the structure remains undeformed, the 

moments are not estimated well by this theory for shallow arches. For the problem 

analysed  the maximum bending moment is < 1 kNm for L:h ratios < 6 using GSA 

and the Castigliano approach with bending, shear, and thrust, and the Castigliano 

approach with full structural action. This can be taken as a negligible moment. 

Therefore, the parabolic arch can be considered as momentless using all the 

methods of analysis when L:h<6. Since the optimum range of the L:h ratio with the 

criterion of minimum combined stress is found to be between 2 and 4, it can be 

recommended for practice to use the parabolic arch generally in this L:h ratio range.  

In general, concerning the masonry design method, the assumption that an arch 

acts like a three-pin arch has a significant impact on the results of bending moment; 

in particular, once bending moments are considered near the crown of the arch. The 

number of discretisations of the arch into segments also produces a numerical error. 

In the case of applying the virtual work method to two-pin arches, the assumption 

that displacements are only caused by bending inevitably leads to inaccuracies in 

the computed horizontal reaction forces. As shown in Tables 4.1 to 4.10, the results 

from FE work strongly correlate with those obtained from Castigliano’s theory due to 

bending, shear and thrust. Finally, despite the ‘reasonable agreement’ of the 

numerical prediction for the horizontal reaction force, the same cannot be said of the 

bending moment and combined compressive stress; the results have shown that the 

different analysis methods predicted different values of the maximum bending 

moment and maximum combined stress at different locations within the arch. 

Overall, it can be concluded that, when having an arch behaviour (L:h<6 for the 
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parabolic arch in this study due to producing zero bending moment when the 

parabolic arch is subjected to the UDL only load case), static analysis assuming the 

arch as a rigid unreformed body is applicable, while, in the case of shallow arches, 

the moments are not estimated well by linear elastic static theory. 

4.5. Exploring the thickness effect on horizontal reaction force using 

the Castigliano approach 

The effect of the arch thickness on the horizontal reaction force and bending 

moment was studied in Section 3.8 using GSA analysis. Regarding this effect, the 

different terms in the Castigliano principle were assessed. The results obtained 

using Castigliano’s approach are then compared with the FE results. Next, the 

horizontal reaction force of circular and parabolic arches with 200, 300, and 400 mm 

thickness are calculated.  

Table  4.11. Horizontal reaction force (kN) of circular arch with different thicknesses 
(mm) using Castigliano approach with different categories (A1) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 54.44 60.44 66.44  54.43 60.41 66.37  54.45 60.45 66.47 

3 89.00 98.45 107.91  88.94 98.32 107.66  88.98 98.41 107.83 

4 121.34 133.83 146.32  121.22 133.53 145.75  121.27 133.67 146.02 

5 153.01 168.46 183.92  152.78 167.90 182.84  152.86 168.11 183.24 

6 184.41 202.82 221.22  184.01 201.86 219.41  184.13 202.15 219.96 

7 215.67 237.04 258.40  215.05 235.54 255.58  215.19 235.89 256.25 

8 246.86 271.19 295.51  245.94 268.98 291.37  246.09 269.35 292.08 

9 278.00 305.29 332.59  276.69 302.18 326.77  276.82 302.50 327.38 

10 309.11 339.38 369.65  307.32 335.14 361.75  307.37 335.27 362.05 

 

The analysis is conducted for the general load combination of UDL and SW (load 

case A1), and UDL only (load case A4) conditions. The same procedure is carried 

out to calculate the bending moment at the crown of the circular and parabolic 

arches. The results of the horizontal reaction force are presented in Tables 4.11 and 
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4.12 for load case A1. In this analysis, the strain energy is derived, firstly upon 

bending action only (M only), then due to bending, shear, and thrust action (M, F, 

and T), and finally with full structural action.  

 
Table  4.12. Horizontal reaction force (kN) of parabolic arch with different 
thicknesses (mm) using Castigliano approach with different categories (A1) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 65.64 73.46 81.28  65.62 73.41 81.18  65.63 73.45 81.25 

3 95.69 106.04 116.38  95.63 105.89 116.09  95.66 105.95 116.21 

4 126.12 139.17 152.23  125.98 138.84 151.58  126.02 138.93 151.75 

5 156.74 172.60 188.47  156.48 171.97 187.24  156.53 172.08 187.46 

6 187.47 206.20 224.94  187.03 205.12 222.86  187.09 205.27 223.13 

7 218.27 239.90 261.54  217.58 238.22 258.29  217.65 238.39 258.61 

8 249.12 273.68 298.24  248.10 271.19 293.45  248.18 271.38 293.81 

9 280.00 307.50 335.00  278.56 303.98 328.25  278.65 304.19 328.65 

10 310.90 341.35 371.80  308.94 336.56 362.63  309.04 336.80 363.07 

 

For load case A1 the results of bending moment at the crown of the circular and 

parabolic arches are then reported in Tables 4.13 and 4.14. It can be seen that 

changing the arch thickness has the same effect on both the circular and parabolic 

arches, except for bending moment at the crown of parabolic arch and a L:h ratio of 

4. (L:h =4 is highlighted in the Table  4.14) 

Table  4.13. Bending moment at the crown (kNm) of circular arch with different 
thicknesses (mm) using Castigliano approach with different categories (A1) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 46.29 50.54 54.78  46.36 50.72 55.14  46.26 50.48 54.66 

3 19.56 21.14 22.72  19.73 21.57 23.57  19.62 21.29 22.99 

4 10.75 11.57 12.39  11.05 12.31 13.82  10.91 11.97 13.13 

5 6.79 7.30 7.80  7.26 8.43 9.96  7.09 8.01 9.14 

6 4.69 5.02 5.36  5.35 6.62 8.39  5.15 6.14 7.47 

7 3.43 3.67 3.92  4.32 5.81 7.95  4.11 5.31 6.99 

8 2.62 2.80 2.99  3.77 5.56 8.17  3.58 5.09 7.27 

9 2.06 2.21 2.35  3.51 5.67 8.83  3.37 5.32 8.14 

10 1.67 1.79 1.90  3.45 6.02 9.80  3.41 5.89 9.50 
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Table  4.14. Bending moment at the crown (kNm) of parabolic arch with different 
thicknesses (mm) using Castigliano approach with different categories (A1) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 2.53 3.79 5.06  2.43 3.54 4.57  2.50 3.72 4.92 

3 1.20 1.79 2.39  1.00 1.29 1.42  1.08 1.50 1.83 

4 0.69 1.03 1.38  0.35 0.19 0.25  0.44 0.42 0.18 

5 0.45 0.67 0.89  0.07 0.60 1.56  0.03 0.37 1.12 

6 0.31 0.47 0.62  0.42 1.33 2.84  0.32 1.09 2.38 

7 0.23 0.35 0.46  0.75 2.06 4.18  0.65 1.82 3.72 

8 0.18 0.27 0.35  1.09 2.85 5.63  0.99 2.61 5.18 

9 0.14 0.21 0.28  1.45 3.70 7.22  1.36 3.46 6.77 

10 0.11 0.17 0.23  1.84 4.63 8.95  1.75 4.39 8.50 

 

The horizontal reaction forces for both arch shapes increases with increase of the 

arch thickness for all categories of Castigliano, as seen by the results in Tables 4.11 

and 4.12. This increment falls from about 10% to 7% as the L:h ratio grows from 2 

to 10. The effect of each term of the Castigliano approach is significant when 

bending moments are considered at the crown of the circular and parabolic arches. 

Comparing the numbers in Tables 4.13 and 4.14 it is seen that the effect of using 

different arch thicknesses on the bending moments at the arch crown is far greater 

for the parabolic arch than the circular one. In the case of bending action only and 

the circular arch, each 100 mm increase in the arch thickness results in a roughly 6–

8% increase in the bending moment, while this increase lessens with growth of the 

L:h ratio. The bending moment at the crown of the parabolic arch increases 

constantly, by 33% and 25% for all L:h ratios, when the thickness of the arch 

changes from 200 to 300 mm and from 300 to 400 mm respectively for Castigliano 

with the bending action considered. It is found that the bending moment at the 

crown of the parabolic arches is decreasing on increasing arch thickness at L:h ratio 

of 4, using Castigliano approach with full structural actions. Also, the bending 

moment is decreasing when the thickness is increasing from 200 to 300 mm using 

FE and Castigliano theorem based on bending, thrust and shear forces. This trend 
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is ignored due to the low level of bending moment at the crown of parabolic arch for 

L:h ratio of 4. The bending moment at the crown of both types of arch decreases 

with increase of the L:h ratio when the strain energy in the Castigliano principle with 

bending action only. When the thickness of the arch is increased by 100 mm, 

coupling of bending and thrust generally has a decreasing effect on the bending 

moments at the crown of both the circular and parabolic arches compared with 

Castigliano due to bending, shear, and thrust. The coupling term has the maximum 

effect when the thickness of the arch is changed, for L:h ratio of 5for the parabolic  

and 8 for the circular arch. Above these ratios, the effect of the coupling term on the 

crown bending moment starts to decrease. Also, it is seen from the tabulated results 

that the bending moment at the crown of the circular arch reaches its minimum at 

different L:h ratios for load case A1 when the arch thickness is increased. The same 

can be said in the case of the parabolic arch. From Table 4.13 the minimum 

bending moment is seen to occur at a L:h ratio of between 9 and 10 for the circular 

arch and an arch thickness of 200 mm, whereas the location where the bending 

moment reaches its minimum changes to L:h equal to 8 or 7 for thicknesses of 300 

or 400 mm, respectively. Similarly, the location of the minimum bending moment at 

the crown of the parabolic arch is L:h=5 for an arch thickness of 200 mm. Then this 

location moves to the L:h ratio equal to 4 for the 400 mm arch thickness. In order to 

evaluate each category of Castigliano when there is no self-weight, the effect of 

changing the thickness is studied when the self-weight of the arch is ignored. Tables 

4.15 and 4.16 list the horizontal reaction forces of circular and parabolic arches for 

load case A4.  

For load case A4 Tables 4.17 and 4.18 illustrate the variations in bending moment 

at the crown of the circular and parabolic arches.  
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Table  4.15. Horizontal reaction force (kN) of circular arch with different thicknesses 
(mm) using Castigliano approach with different categories (A4) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 42.44 42.44 42.44  42.43 42.42 42.40  42.44 42.44 42.44 

3 70.08 70.08 70.08  70.04 69.99 69.92  70.06 70.04 70.00 

4 96.36 96.36 96.36  96.26 96.13 95.96  96.30 96.22 96.12 

5 122.10 122.10 122.10  121.91 121.67 121.33  121.97 121.81 121.59 

6 147.60 147.60 147.60  147.26 146.84 146.27  147.35 147.05 146.64 

7 172.94 172.94 172.94  172.41 171.75 170.84  172.53 172.01 171.30 

8 198.20 198.20 198.20  197.41 196.43 195.07  197.53 196.70 195.54 

9 223.41 223.41 223.41  222.28 220.88 218.96  222.36 221.08 219.30 

10 248.57 248.57 248.57  247.02 245.11 242.49  247.02 245.11 242.49 

 

Table  4.16. Horizontal reaction force (kN) of parabolic arch with different 
thicknesses (mm) using Castigliano approach with different categories (A4) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 50 50 50  49.98 49.97 49.94  50 49.99 49.98 

3 75 75 75  74.95 74.89 74.81  74.97 74.94 74.89 

4 100 100 100  99.89 99.76 99.57  99.92 99.82 99.69 

5 125 125 125  124.79 124.54 124.18  124.83 124.62 124.33 

6 150 150 150  149.65 149.22 148.61  149.70 149.32 148.80 

7 175 175 175  174.45 173.77 172.83  174.51 173.89 173.04 

8 200 200 200  199.19 198.18 196.79  199.25 198.32 197.03 

9 225 225 225  223.85 222.42 220.47  223.92 222.58 220.74 

10 250 250 250  248.43 246.49 243.83  248.51 246.66 244.13 

 

 
In contrast with load case A1, the horizontal reaction forces of the parabolic and 

circular arches reduce with the increasing thickness for load case A4, although this 

reduction is very small. 
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Table  4.17. Bending moment at the crown (kNm) of circular arch with different 
thicknesses (mm) using Castigliano approach with different categories (A4) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 37.79 37.79 37.79  37.85 37.92 38.02  37.79 37.79 37.79 

3 16.39 16.39 16.39  16.53 16.70 16.94  16.46 16.54 16.65 

4 9.11 9.11 9.11  9.36 9.67 10.09  9.26 9.45 9.70 

5 5.79 5.79 5.79  6.18 6.66 7.33  6.05 6.37 6.82 

6 4.01 4.01 4.01  4.57 5.26 6.22  4.41 4.91 5.61 

7 2.94 2.94 2.94  3.70 4.64 5.94  3.53 4.27 5.29 

8 2.24 2.24 2.24  3.24 4.47 6.16  3.09 4.13 5.57 

9 1.77 1.77 1.77  3.03 4.58 6.71  2.93 4.36 6.33 

10 1.43 1.43 1.43  2.98 4.89 7.51  2.98 4.89 7.51 

 

Table  4.18. Bending moment at the crown (kNm) of parabolic arch with different 
thicknesses (mm) using Castigliano approach with different categories (A4) 

L:h Castigliano (M only)  Castigliano (M, F and T)  Castigliano (Full actions) 

d=200 d=300 d=400 d=200 d=300 d=400 d=200 d=300 d=400 

2 0.00 0.00 0.00  0.08 0.17 0.30  0.08 0.05 0.08 

3 0.00 0.00 0.00  0.16 0.35 0.63  0.16 0.21 0.36 

4 0.00 0.00 0.00  0.27 0.60 1.07  0.27 0.44 0.78 

5 0.00 0.00 0.00  0.41 0.92 1.63  0.41 0.75 1.33 

6 0.00 0.00 0.00  0.58 1.31 2.31  0.58 1.13 2.01 

7 0.00 0.00 0.00  0.78 1.76 3.10  0.78 1.58 2.80 

8 0.00 0.00 0.00  1.02 2.28 4.01  1.02 2.10 3.71 

9 0.00 0.00 0.00  1.28 2.86 5.04  1.28 2.69 4.73 

10 0.00 0.00 0.00  1.57 3.51 6.17  1.57 3.34 5.87 

 

It was expected that the horizontal reaction of arches does not change when the 

thickness of the arch in each category of the Castigliano approach is varied in the 

case of the UDL only load condition. But, this is true, just for case of Castigliano and 

bending action only. This shows the effect of thickness in the calculation of the 

horizontal reaction force when thrust, shear and the coupling of bending and thrust 

are all taken into account. The reason for the change in the horizontal reaction force 

with the changes in arch thickness when the arch is assumed to be weight-less, 

relates to the gyration of radius, which is considered in the other categories of 
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Castigliano’s theorem in addition to the bending action only category. Subsequently, 

as can be seen in Equ. (4.15), changing the thickness (d) of the rectangular cross-

section of the arches in this study affected the gyration of radius (g2), hence, all the 

terms related to the gyration radius in the strain energy will be changed.  

 

The horizontal reaction force decreases when increasing the arch thickness for both 

types of arches for load case A4 (see Tables 4.15 and 4.16). However, this 

decrease is less than 1% for the full range of L:h ratios for both arches. The bending 

moment at the crown of the circular arch is the same for any arch thickness for 

Castigliano and bending action only in the case of the UDL only load condition. 

Since the parabolic arch is momentless under UDL only, the Castigliano approach 

with bending action only presents the bending moment of the parabolic arch at the 

crown as zero. Meanwhile, the bending moment at the crown of the parabolic arch 

from Table 4.18 increases with the arch thickness when the structure is deformable. 

This bending moment is mostly < 1 kNm for L:h ratios less than 5 which is negligible 

for practice. The behaviour of change in the bending moment at the crown for both 

the circular and parabolic arches is similar to load case A1.  

Moreover, changing the depth of the arch rib causes the UDL to self-weight 

(UDL:SW) ratio to change. The changing of the UDL:SW ratio with the arch rib 

thickness is shown in Figure 4.4. As a result, the relation of the UDL:SW ratio and 

the horizontal reaction force (H) is found from comparing results in Figure 4.4 and 

Table 4.16.  
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Figure  4.4. The UDL:SW ratio against L:h ratio for different rib thicknesses of a 
parabolic arch subjected to 20 kN/m UDL only 

 

In general, change in the UDL:SW ratio has a major impact on the value of the 

horizontal reaction force. As displayed in Figure 4.4, increase in the L:h ratio causes 

the UDL:SW ratio to grow as well, which is associated with the decreasing trend of 

the arc lengths. In this study when thickness is 300 mm, the range of change in the 

UDL:SW ratio is between 1.87 and 2.7 for L:h from 2 to 10. It can also be seen that 

reducing the UDL:SW ratio, which is preceded by increasing the thickness of the 

arch rib for each L:h ratio, causes the horizontal reaction force to increase. Finally, it 

is concluded that increasing the arch thickness generates a higher bending moment 

for the arch to resist. This finding is applicable to any arch form, L:h ratio, and 

applied load. However, increase in the arch thickness results in higher bending 

moments when the L:h ratio is increased. Therefore, reducing thickness leads to a 

reduction in the bending moment. The thickness has to meet the minimum limit for 

design based on material choice in order to carry the design loading safely over the 

design working life.   
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4.6. Exploring the shortening effect 

It is seen that the horizontal reaction force of the arches obtained using all the 

analysis methods has an increasing trend with L:h ratios from 2 to 10. The force 

also increases for any load case and any arch thickness with increase of the L:h 

ratio. Tables 4.1, 4.5, 4.9, and 4.11 show this the rising horizontal reaction force for 

load cases A1 and A4. But, as shown in Section 3.9 this reaction force for the 

parabolic arch for the UDL only load case, obtained using the FE method, will 

decrease for L:h ratios > 125. It was stated in Section 3.9 that the reason for this 

force decrease is related to the shortening effect. To explore whether the analysis 

methods include the effect of arch shortening or not, the horizontal reaction forces 

for the parabolic arch with the specifications defined in subsection 3.3.1 and load 

case A1 are calculated for L:h ratios ranging from 2 to infinity. Table 4.19 compares 

the results from this parametric study. 

As stated previously, the results from Castigliano with bending action only and the 

virtual work method are identical. It can be seen from the information in Table 4.19 

that the horizontal reaction force increases with ratio L:h when applying the methods 

of the masonry design, virtual work, and Castigliano with bending. The effect of rib 

shortening is not considered in these aforementioned methods. It can be concluded 

that the predictions using any of these methods are not satisfactory for shallow 

arches. 

The outcome is analogous for the results of the horizontal reaction force when using 

elastic linear static theory. The 1427 kN reaction force of the parabolic arch under 

load case A1 reaches its maximum at 1434 kN for the L:h ratio of 85 in the case of 

applying Castigliano with bending, shear, and thrust, Castigliano with full structural 

action, and the FE method. For higher ratios the force starts to decrease until it 

vanishes when the shallow arch becomes a horizontal beam. Since shallow arches 

have approximately the same geometry, this conclusion can be applied to all types 
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of arch shapes. This analysis was also conducted for the parabolic arch and load 

case A4. The trend of changing horizontal reaction force with L:h ratio, when 

ignoring SW,  matches the findings when considering load case A1. Therefore, the 

FE method, like the Castigliano approach due to bending, shear, and thrust, and 

Castigliano with all structural actions, involves the effect of rib shortening. This 

conclusion can be generalized for any load case and all three types of arches.  

 

Table  4.19.  Horizontal reaction force of parabolic arch (kN) subjected to the UDL of 
20 kN/m plus SW (A1) using different methods of analysis 

L:h GSA masonry 
design 

Castigliano 
(M only) 

Castigliano 
(M, F and T) 

Castigliano 
(Full actions) 

2 72.97 72.70 73.46 73.41 73.45 

20 642.20 680.60 680.68 644.35 644.77 

40 1106.00 1360.30 1360.34 1110.57 1111.03 

60 1349.00 2040.20 2040.23 1354.94 1355.12 

80 1425.00 2720.15 2720.17 1432.44 1432.26 

85 1427.00 2890.14 2890.16 1434.44 1434.18 

90 1424.00 3060.13 3060.15 1431.51 1431.17 

100 1406.00 3400.12 3400.14 1414.06 1413.59 

120 1342.00 4080.10 4080.11 1349.95 1349.29 

200 1017.42 5070.70 6800.07 1027.59 1026.75 

300 742.70 7606.10 10200.05 747.86 747.13 

400 574.40 10141.90 13600.04 579.48 578.89 

500 467.50 12678.17 17000.02 470.81 470.31 

 

4.6.1. Shortening effect of flat arches 

It was shown in Chapter 3 that the arches in the range of L:h ratios between 2 and 

10 have their own shape properties which cannot be presumed as flat ones which 

could carry 90% of the applied load by developing bending moment. But for an in-

depth exploration of both the arch behaviour and the analysis method, the 

shortening effect is discussed in the case of flat arches in this section. It was 

illustrated in Section 3.9 that the general form of Castigliano’s approach (having full 

structural action for arches and with bending, shear, and thrust for beams) to 
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analyse arches involves the effect of rib shortening. Furthermore, the FE method in 

this research, which is based on Timoshenko’s beam theory, includes a shortening 

effect as well. The arches were analysed using these methods for L:h ratios above 

500. It was observed that the horizontal reaction force becomes smaller when 

increasing the L:h ratio beyond 500. There was no specific value for the L:h ratio at 

which the horizontal reaction force becomes zero. Also, the arch is expected to 

become a straight beam rather than a curved beam at the L:h ratio of 500. As a 

result, the horizontal reaction force at L:h=500 should be lower than the values 

given in Table 4.19. Consequently, there should be appropriate consideration of 

shallow arches. According to the theory, for a two-pin flat arch the last two terms of 

the general equation for the strain energy, i.e., Equ. (4.1), can be ignored 

(Timoshenko 1986). The strain energy is then expressed based on the bending and 

axial compression actions. As a result, the governing equation to calculate the 

horizontal reaction force or the thrust of the flat arch (Timoshenko 1986).  

Concerning a flat arch, a compression force T is assumed to be equal to the 

horizontal reaction force H. With this assumption and substituting expression for M 

into Equ. (4.16), the horizontal reaction force is by (Timoshenko 1986). 

 

where g2 is the gyration of radius of the arch cross-section and M0 is the bending 

moment calculated for a beam equivalent to the arch subjected to the same loading. 

The second term in the denominator of Equ. (4.17) corresponds to the effect of the 
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longitudinal compression or shortening in the flat arch. There is no specific 

approach to find the L:h ratio in which the arch can be counted as flat. But, as 

discussed in subsection 3.9.2, arches in this research are taken to be flat when L:h 

exceeds 16. Thus, Equ. (4.17) is applied to find the horizontal reaction force of the 

studied arches with L:h>16. The horizontal reaction force of the circular arch for 

load case A1 is found using Castigliano with bending action only, Castigliano with 

bending and thrust action, and the Castigliano approach for flat arches, i.e., from 

Equ. (4.17) when L:h>16. The horizontal reaction forces using these methods are 

plotted in Figure 4.5. It can be seen that the force is very different for the case of flat 

arches. Equ. (4.17) has not been used in this previous PhD work because of the 

upper limit on the L:h ratio of 10. 

 

 

Figure  4.5. Effect of rib shortening to calculate the horizontal reaction force of a two-
pin circular arch based on Castigliano’s theory for load case A1 

 

Figure 4.5 shows that the horizontal reaction force using Castigliano’s method due 

to bending action only as given by dashed line increases with ratio L:h. When thrust 

action is also considered the trend given by the long dash dot line has reversed 

when ratio L:h reaches about 80. The same behaviour was seen in subsection 3.9.1 
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when the horizontal reaction force was obtained from FE analysis. Figure 4.5 also 

illustrates that the horizontal reaction force of the arch decreases dramatically when 

Equ. (4.17) is applied for the flat arch case. Also, as the arch height is reduced to 

0.1 m, the horizontal reaction for the 10 m span shallow arch vanishes. Meanwhile, 

the acquired horizontal reaction force when the strain energy is based on bending 

and thrust action is >1000 kN for the L:h =100. Therefore, obtaining the limit of the 

arch shallowness allowed a conclusion to be drawn as to which equation is required 

to find the horizontal reaction force.  

Results for the horizontal reaction force using all of the analysis methods are very 

close to each other when the L:h ratio < 10. One conclusion this finding establishes 

is that there is no need to consider rib shortening effect for the working range of L:h 

ratios in this study. This is because the arches are not considered as flat ones in 

this range of L:h ratios. Furthermore, the importance of taking the thrust and shear 

action into account in Castigliano’s method in order to calculate the horizontal 

reaction force is greater for higher L:h ratios. It has been shown that small changes 

in the horizontal reaction force have a significant influence on the results of 

structural action effects such as, bending moment, combined stresses, and 

displacements.  

4.7. Concluding Remarks 

In this chapter different analysis methods were compared against each other. As the 

findings from analysis of different arch shapes using multiple methods show, the 

resulting effects of structural actions are notably influenced by both the arch shape 

and the span-to-height ratio.  

Comparing the different methods of arch analysis, it was shown that Castigliano’s 

approach considering strain energy due to full structural actions is a comprehensive 

analysis method. This method was used to validate the approximate methods of 
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arch analysis. Therefore, GSA software is deemed to be a credible analysis method 

for arch structures. However, arch shapes are modelled by means of series of 

straight lines in this finite element analysis software, which unavoidably led to some 

numerical approximations. The results from the approximate analytical methods 

were also unsatisfactory because of the assumptions made in their models for the 

arch problem. When the masonry design method is taken into consideration, the 

assumption that the arch acts like a three-pin arch has a significant impact on the 

results. In particular, once the internal moments are considered near the crown of 

the arch, the effect of this assumption is highlighted. Furthermore, the assumption 

that arches work only in flexural, in order to find the reaction forces, inevitably leads 

to inaccuracies related to the results acquired using the virtual work method. In 

addition, for arches with other than a semi-circular profile, to avoid complicated 

integrals in the process of finding the horizontal reaction force, the second moment 

of area (I value) of the cross-section is assumed to vary across the span of the arch.  

The effect of arch thickness on the horizontal reaction force and bending moment at 

arch crown was studied. Consequently, it was demonstrated that generally bending 

moment at the crown increases with increase of the arch thickness. It was 

correspondingly shown that the effect of introducing rib shortening into Castigliano’s 

theory should be considered when calculating the horizontal reaction force of flat 

arches. The limit of the ratio L:h from subsection 3.9.2 at which an arch is assumed 

to become a curved beam in elevation is 16 in this study. 

Moreover, good agreement has been achieved between the results produced by 

GSA finite element simulation and analytical treatment based on Castigliano’s 

principle with full structural action. The worst performing analysis method to predict 

arch behaviour is masonry design.  
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Chapter 5 : Analytical form-finding of two-pin arch  

5.1. Introduction 

The focus of this investigation is on the prediction of the shape for momentless 

arches involving an analytical form-finding approach. The purpose of studying the 

behaviour of known shapes of arches in the Chapters 3 and 4 was the basis of 

finding the optimal arch shape. This exploration is carried out for two-dimensional 

pin-ended arches with a constant cross-section. In the traditional procedure of 

designing an arch structure, the shape is determined from the outset (Curtin et al. 

2006). However, this method of design may lead to an inefficient form. The optimal 

form of arches is required, not just to prevent the collapse under the applied load, 

but to make them durable and safe under environmental loading as well as cost 

effective and aesthetically pleasing. So far, it has been shown in previous chapters 

that the structural response is directly related to the shape of the arch as well as the 

L:h ratio. The fact that small changes in the arch shape may have a major effect on 

the behaviour of the arch was also discussed. It was demonstrated in Section 3.7 of 

that the parabolic arch produces the minimum magnitude of bending moment, 

combined stresses, and maximum displacements when the uniformly distributed 

load (UDL) is greater than the self-weight (SW), that is, UDL:SW > 1, for the full 

range of L:h ratios. Hence, when the deck weight or UDL is much greater than the 

arch weight or SW, the parabolic form is preferred in design, using the criterion of 

minimum bending moments and minimum combined stresses. In contrast, it was 

shown in Chapter 3 that the structural actions of the catenary arch are smaller than 

two other known shapes of arches when UDL:SW < 1. In particular, when the 

weight of the arch significantly exceeds UDL, the catenary arch is the preferable 

form of arch, assuming a purely thrust structure as a principle of optimality. It was 

also shown in Section 3.7 that, in the case of UDL:SW = 1, the parabolic arch 
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behaves similarly to the catenary arch. The aforementioned comparisons illustrated 

which arch shape is preferable under a given load condition. 

The optimal forms of arch structures that are momentless are determined in this 

chapter. To find the optimal form of structures, structural optimization is a well 

known approach which relies on science and is generally based on existing rigid 

structures. However, form-finding requires creativity as well as engineering science 

in favour of finding an optimal form. The form-finding methodology presents new 

insights and advances impressive prospects for the safe and durable design of arch 

forms. Pin-ended arches are to be subjected to static loading, including the general 

combination of SW and UDL. An analytical method that was presented by Brew 

(2013) was used by the author to obtain numerical predictions for the form-fining of 

momentless arches for any L:h ratio and three categories of UDL:SW ratios. The 

categories are: (1) UDL:SW > 1 or the UDL-dominant condition; (2) UDL = SW; (3) 

UDL:SW < 1 or the SW-dominant condition. Each category gives one functional 

relationship for arch shape as a function of loading.  

To find the momentless arch shape, it is assumed that any point on the arch is in 

equilibrium. The equilibrium equations consist of equilibrium in the x and y 

directions, and rotational equilibrium is used to demonstrate the necessary and 

sufficient condition for a momentless arch. In this regard, the principle of zero 

bending action will be applied in rotational equilibrium, which ensures zero shear 

force when establishing the vertical equilibrium equations. The vertical equilibrium 

equation is then solved by an iterative process with the characteristic of the optimal 

known shape arch for considered boundary conditions and load case as initial 

inputs. The optimal two-pin rib arch is investigated based on the assumption that the 

weight of the supporting structure between arch and deck is negligible. The arch 

structure is presumed to be stiff enough that linear elastic deflections under 

imposed loading do not have an impact on the arch profile. Finally, the preference of 
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using the momentless arch is shown through comparing its maximum deflection and 

first failure of the arch cross-section with those for the parabolic arch in the case of 

UDL:SW > 1. 

5.2. Optimality criterion of two-pin arches  

The efficiency of arches is when they transmit loads to the foundations in 

compression. The optimal shape of arch can be achieved when the bending 

moments are diminished. This leads to an arch that resists loading by developing 

compressive forces in a state of pure compression. A momentless arch is suitable 

when using concrete as a construction material because of its relatively strong 

compressive strength. Moreover, decreasing the magnitude of the bending moment 

in arches leads to a smaller stress distribution, deflection, and shear forces. 

Since arch structures are diagnosed as compressive forms, a momentless shape of 

arch has to be considered as the optimal form. It has been stated previously in 

subsection 3.5.1 that, in theory, catenary and parabolic arches are assumed to be 

momentless for SW only and UDL only, respectively, and, therefore, they may be 

assumed to have an optimal form (Megson, 2006; Millais, 2005). This is true only 

when ignoring arch shortening and actual deformation. As a result, for the combined 

load cases, where SW and UDL are together actions on the arches, none of the 

known shapes represent the optimal arch form with the criterion of a zero bending 

moment distribution. The existence of bending moments is inevitable for known 

shapes of arches when both SW and UDL are applied to them. Although obtaining 

an optimal form for each probable load case is not feasible, momentless arches can 

be derived by using a form-finding technique for different ratios of UDL:SW. The 

resultant purely thrust structure should take as an intermediate arch shape between 

the parabola and catenary shapes. 
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5.3. Equilibrium of any point on the arch 

The two-pin arch to be analysed is taken to be a rib arch of constant cross-section 

with uniform linear density (q) for the SW. The arch is supporting a superstructure of 

uniform density (w) per unit span for the UDL. The pins are assumed to be non-

yielding supports and the section is presumed to be materially and geometrically 

uniform. The arch profile with the general imposed loading and the horizontal and 

vertical reactions H and V, respectively, at the pins is shown in Figure 5.1. As can 

be seen in this figure, the applied loading and the geometry of the arch are 

presumed to be symmetric about the crown of the arch. Therefore, the vertical 

reaction at the left support, VA, is equal to the vertical reaction at the right support, 

VB. Similarly, the horizontal reaction forces at the left support, HA, and at the right 

support, HB, are equal because of the symmetry. Because of the geometry and 

loading symmetry, the analysis can be conducted for half of the arch, from support 

A to the arch crown. The arch is assumed to act as an elastic rib and the 

displacements are assumed to be small. Figure 5.2 shows the sign convention for 

thrust, T, which is parallel to the tangent line of the arch curve, the shear force, F, 

and the bending moment, M, for an infinitesimal piece of arch length, ds. The 

infinitesimal piece of arch length can be defined in terms of infinitesimal horizontal 

and vertical directions as ds2=dx2+dy2. With the use of the definition of y’ as dy/dx, 

the infinitesimal piece of arch length can be expressed as xys d'1d 2 . Since 

ds represents an infinitesimal piece of the arch length, the total length of arch can 

be achieved by integrating ds over the full length S from the left support to the right 

one. Consequent, the total length of arch is defined as  

L

xyS
0

2 d'1 , where L is 

the span length of the arch. The analytical methodology from Brew (2013) that is 

presented in Sections 5.3 and 5.4 gives the primary Equs. (5.1) to (5.4) and (5.11). 
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All the mathematical solutions reported in this chapter using these equations are 

from the author’s work.   

 

 

Figure  5.1. The two-pin arch specification 

 

 

Figure  5.2. Sign convention of the forces acting on the infinitesimal piece of the arch 

 

The vertical reaction of the arch can be calculated from static equilibrium. From 

Figure 5.1, the vertical equilibrium of the arch yields the vertical reaction force of the 

arch as: 

 

where w and q are, respectively, the deck weight per unit span length and the self-

weight of the arch per unit arc length. 
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From Figure 5.3, the slope of a smooth curve is tanα and it is equal to dy/dx=y’ 

(mathworld.wolfram.com). Moreover, from trigonometry, dy/ds=sinα and 

dx/ds=cosα. Since ds is a function of y’, sinα and cosα can be written in terms of y’; 

that is, 2'1'sin yy 
 
and 2'11cos y . 

 

 

Figure  5.3. Trigonometry of the arch slope 

 

The general equations of static equilibrium at point P can be used to obtain the 

thrust, shear, and bending moment acting on the right hand side of the arch element 

AP (see Figure 5.4). 

 

Figure  5.4. The forces acting on the arch segment AP 

 

In above figure, η is the variable defined alongside the x-axis for calculating the 

lever arm for arch length ds relative to arch SW. The vertical and horizontal 

equilibrium of segment AP yields the shear force, F, and thrust, T. Also, the bending 
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moment at point P is given by the rotational equilibrium of segment AP about point 

P. Vertical, horizontal, and rotational equilibrium gives: 

 

To find T and F, Equs. (5.2) and (5.3) should be solved together, via. 

 

Subsequently, the thrust T can be obtained by substituting F from Equ. (5.5) into 

Equ. (5.3) in parallel with using trigonometry. The expression is: 

 

Substituting the vertical reaction force V from Equ. (5.1) into Equs. (5.4), (5.5), and 

(5.6) gives the bending moment, shear force, and thrust, respectively, as: 
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The derivative of the bending moment equation with respect to x is presented by 

Equ. (5.10). 

 

The derivative of the bending moment with respect to x provides the shear force 

(Krenk and Hogsberg 2013). 

Therefore, to have a momentless arch, it is required that the shear force in the two-

pin rib arch becomes zero everywhere within the span. Having thrust force 

everywhere, the arch will be a pure thrust structure.  
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5.4. Geometry of the momentless arch  

The shape of the optimal arch is now investigated when both SW and UDL are 

applied using the general Equ. (5.8). It is expected that having a zero shear force 

when UDL and SW are applied will not lead to a closed form solution. A parametric 

solution for coordinates x and y is presented in subsections 5.4.1 and 5.4.2 from 

applying the analytical approach by Brew (2013).  

 

To drop the integral from Equ. (5.12), the equation is differentiated with respect to 

the x.  

 

5.4.1. Finding the ‘x’ coordinate of the momentless arch 

To solve the above second-order differential equation for the x coordinate, another 

parameter t is defined to simplify the integrals as ty ' ; hence 

'ddd'd'' txtxyy  . Therefore, the general integral for x is given by: 

  02/d
'1

1
0

2/

2


















  LxwsqyH

y
F

L

x

  02/d'1

2/

2   LxwyqyH

L

x

  

 

(5.12) 

 











 

2

2

2/

2

'1''

0'1'02/d'1

y
H

q

H

w
y

wyqyHLxwyqyH

x

L



 

 

(5.13) 














2

2

1

d
)(1

d

d
'

t
H

q

H

w

t
txt

H

q

H

w

x

t
t  

(5.14) 



5. ANALYTICAL FORM-FINDING OF TWO-PIN ARCH 

146 

Therefore, x can be expressed in terms of t by solving the integral above. The 

general form of x(t) when applying the boundary condition that at x = L/2, y = h is 

found to be: 

It can be seen from the Equ. (5.15) that the solution for x depends upon the term

22 wq  . Obviously, x(t) has a real answer when 022 wq , which means 

UDL:SW < 1. However, to get a real solution, in the case of 022 wq , which 

gives UDL:SW > 1, tan-1 is to be replaced by tanh-1 in the process of integrating. To 

simplify the integral, w/q is replaced by k, which is a known parameter since the 

loading is defined from the beginning. Hence, the function of x is written in terms of 

k. The solutions for x for different ratios of UDL:SW are given next.   

 

 For UDL:SW < 1, which is the SW-dominant loading condition (k2 < 1), 

 

 For UDL:SW = 1 or (k2 = 1), 
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 For UDL:SW > 1, which is the UDL-dominant loading condition (k2 > 1), 

 

5.4.2. Finding the ‘y’ coordinate of the momentless arch 

In this subsection, Equ. (5.13) is solved for the y coordinate using the transformation 

that y’ = t; thus, tt
t

x
ty d..

d

d
)(  . dx/dt from Equ. (5.14) is substituted into the 

equation representing y(t). Solving the integral for y in terms of t with the boundary 

condition, that t = 0 for y = h, leads to:  

 

As can be seen from Equ. (5.19), it is applicable for any ratio of UDL to SW. 

5.4.3. Finding the shape of momentless arch 

Using Equs. (5.16) to (5.19) it is noted that the x and y coordinates are for half of the 
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arch shape is that the value of t must be found. Then, the horizontal reaction force H 

can be determined by having t and k as known values, and using the appropriate 

boundary conditions. Now by using Equ. (5.19) and Equs. (5.16) to (5.18) the arch 

shape can be obtained for different UDL:SW ratios. It was stated previously that k = 
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2

1
tanh

11
tanh

1
)(sinh)(

2

1

22

1

2

1 L

k

t

k

k

t

t

k

k
t

q

H
tx 


















































































  (5.18) 

h
tqw

qw

q

w
t

q

H

t
H

q

H

w

tt
ty 




































  2

2

2 1
ln11

1

d.
)(  (5.19) 



5. ANALYTICAL FORM-FINDING OF TWO-PIN ARCH 

148 

crown of the arch is zero; that is, t(x = L/2) = 0. Moreover, the maximum magnitude 

of t occurs at the supports because the slope of the arch has its maximum value at 

these points. Then t can be specified for each nodal location on the arch’s shape by 

choosing the number of equally spaced nodes from A to B in Figure 5.1. The 

procedure involves dividing the difference between the maximum value of t and zero 

by the number of nodes in half the span. Each node will have a specific t value. The 

number of nodes can be defined by a designer on the basis of the desired numerical 

accuracy. The horizontal reaction force, H, which is another determinative 

parameter for finding the optimal shape of the arch, can be calculated from the 

boundary condition at A of x = 0 then y = 0. This indicates that finding H is 

associated with calculating the maximum value of the t parameter. The essential 

requirement for finding the geometry of the momentless arch is calculating the t 

parameter at the supports of the optimal arch. To find the maximum value of the t 

parameter (tmax), the condition at A is applied to the Equ. (5.19) for y coordinate and 

to the Equs. (5.16) to (5.18) depends upon the ratio of UDL:SW for x coordinate. 

Then, dividing Equs. (5.16) to (5.18) with x=0 by Equ. (5.19) with y=0 yields an 

equation in which the only unknown is tmax. The outcome of applying the boundary 

condition at A to the x and y coordinates for the optimal arch for any load condition 

is calculated by the author.  

 

 When UDL:SW < 1 or k2 < 1,  
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 When UDL:SW = 1 or k2 = 1, 

 

 When UDL:SW > 1 or k2 > 1, 

 

It can be seen that H has been removed by dividing x by the y coordinate, and so 

Equs. (5.20) to (5.22) are independent of this unknown parameter. Moreover, since 

ratio L:h and ratio UDL:SW are defined from the beginning the equation can be 

solved. The three equations are nonlinear in terms of an unknown parameter tmax 

that can be calculated using an iterative process. The initial value of tmax for the 

required iteration depends on the ratio of UDL:SW. As stated previously, parabolic 

and catenary arches are likely to behave more efficiently when UDL:SW > 1 and 

UDL:SW < 1 respectively. Also, in the case of the loading condition of UDL:SW = 1, 

parabolic and catenary arches behave similarly. Therefore, the initial value of tmax is 

derived from the governing equation of the parabolic arch when UDL:SW ≥ 1. 

Meanwhile, the equation of an inverted catenary is used to find the initial value of 

tmax for UDL:SW < 1. The initial value of tmax can be obtained as below. 
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5.4.4. Determination of the initial value of tmax when UDL:SW ≥ 1 

In this case, the governing equation of a parabolic arch,  2

2

4
xLx

L

h
y  , is applied 

to find the initial value of tmax, in which t is equal to y’. Subsequently, t can be 

determined for x = 0 at the arch support, which gives its maximum initial value, 

which can be used to solve Equs. (5.21) and (5.22). Applying the boundary 

condition at A to the governing equation for t gives: 

 

It can be seen that the initial value of tmax is related to the L:h ratio, which is a known 

value. To find the desired value of tmax, Equs. (5.21) and (5.22) can be solved using 

the iterative process with the initial value for tmax from Equ. (5.23). Hence, the 

required value of tmax can be achieved using an iterative process programmed in 

MATLAB (Appendix C).  

5.4.5. Determination of the initial value of tmax when UDL:SW < 1 

The equation of the inverted catenary is applied when the load case is SW-

dominant. The function of the catenary arch is given by 
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It is seen in Equ. (5.24) that the initial value of tmax depends only upon the span of 

the arch and constant A’ when the self-weight of the arch is greater than the 

imposed UDL. 

5.4.6. Determination of horizontal reaction force 

Once tmax is known, H can be calculated using any of Equs (5.16) to (5.18) for each 

load case with the boundary condition of x = 0 or using Equ. (5.19) with y = 0. Here, 

the governing equation for the y coordinate when y = 0 is applied to find the 

horizontal reaction force. H for any ratio of UDL:SW can be calculated from: 

 

Since only H is required to determine the shape of the rib arch, the geometry of the 

momentless arch can be found. The whole process of finding the form of the 

momentless arch for any L:h ratio and any ratio of UDL:SW is programmed in 

MATLAB, as listed in Appendix C.  

5.5. Comparing the geometry of the momentless arch with known 

shapes of arches 

It was shown in Figure 3.8 the differences in the geometry of known shapes of 

arches become indistinguishable when the L:h ratio is increased. It is known that, 

small changes to the geometry have a significant effect on arch structural response. 

To compare the geometry of the momentless arch with known shapes, the 

geometries for circular, parabolic, and catenary arches with specification introduced 

in subsection 3.3.1 are plotted in Figure 5.5, for L:h ratios of 2, 3, and 5. Since the  
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three geometries is become similar as the L:h ratio increases, using a higher L:h 

ratio than S has little effect. The best behaviour of parabolic and catenary arches 

was found for an L:h ratio between 2 and 4 for constant L=10 m. Only half of the 

arch need to be modelled because of the symmetry of the arch material, and UDL. 

As stated, the arch specification is taken from arches studied in Chapter 3, which 

had SW equal to 7.2 kN/m with a UDL of 20 kN/m applied across the full 10 m span 

of the arch. The imposed loading for which the shape of the momentless arch is 

obtained is load case A1. Since load case A1 consisted of a general combination of 

SW plus a UDL of 20 kN/m the ratio of UDL:SW is 2.78. For this problem, the 

MATLAB file in Appendix C was run with k2 > 1, in combination with changing h for 

the three cases of L:h=2, 3, or 5. The shapes of circular, catenary, and parabolic 

arches are plotted in Figure 5.5 with the momentless arch for the same 

specifications.  

 

Figure  5.5. Geometry differences between momentless arch and known shapes of 
arches for L:h ratios of 2, 3, and 5 when UDL:SW > 1 

 

From the curves in the Figure 5.5, it is seen that the geometry of the momentless 

arch when UDL:SW > 1 is much closer to the geometry of the parabolic arch for all 

considered L:h ratios. However, the differences between the geometries of arches 
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are less than 7% for an L:h ratio of 5. To perform a deeper investigation when 

comparing the geometry of the momentless arch with known shapes of arches, 

different ratios of UDL:SW are applied to them. In this regard, firstly an UDL of 7.2 

kN/m is applied to all arches, which gives UDL:SW = 1 (k2 = 1). Secondly, to 

achieve UDL:SW < 1, a UDL of 3 kN/m is imposed over the full span of the arch (k2 

< 1). The shape of the momentless arch is then obtained using the MATLAB 

program shown in Appendix C for each load case. The geometries of the half-

arches are then plotted for an L:h ratio of 2 in Figure 5.6 and compared with each 

other.  

 

Figure  5.6. Geometry differences between momentless arch and known shapes of 
arches for UDL:SW = 1 and UDL:SW < 1 when L:h = 2 

 

It is seen that the geometry of the momentless arch is between the geometry of the 

parabolic and catenary arch shapes when UDL = SW. As a result, the optimal 

shape of arch for the general combination of UDL plus SW is the shape between the 

parabolic and catenary forms but far from a circular shape. From the above figure, it 

can be seen that the geometry of the momentless arch becomes close to the 

catenary form when k2 < 1 (UDL:SW < 1). This also validates the calculated shape 

for the optimal arch, as it was shown in Section 3.7 that the best arch performance 

is achieved by the catenary arch when the SW of the arch is much greater than the 

imposed UDL. Meanwhile, the parabolic arch form is the best shape due to the 

criterion of the minimum bending moment for UDL:SW > 1. As previously stated, the 
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obtained momentless shape is optimal because the bending moment and shear 

forces are zero everywhere along the arch. This is illustrated in Figure 5.7. It can be 

seen in this figure that the loading can be carried using only axial forces in the arch 

and that the arch shows purely thrust behaviour. Consequently, the deflection of the 

arch and the combined stress due to the axial forces and bending moments will be 

lower than those of known shapes of arches.  

 

 

Figure  5.7. Diagram of forces in optimal arch shape subjected to UDL plus SW 
(Salonga 2010) 
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5.6. Case study 

The excellence of the momentless arch is investigated in this section. To illustrate 

the advantages of using the momentless arch instead of known shapes of arches, 

the behaviour of the parabolic arch and the momentless one are compared when 

UDL:SW > 1. It is also noted that the parabolic arch is the best known arch shape 

for this load case. To assess the structural behaviour, the deflection and the first 

failure of the concrete section of the parabolic arch are compared with those of the 

momentless arch. 

To compare the structural response of the momentless arch with known shapes of 

arches, a rib concrete arch bridge is chosen and analysed. The analysis is carried 

out for a hypothetical bridge with some of the basic dimensions of the studied arch 

are taken from a concrete arch-bridge traffic overpass in Daugavpils in Latvia 

(Taurenis et al. 2013). This bridge is a carriageway with a parabolic shape and was 

constructed in 2011 to improve the transportation infrastructure. To have a more 

pronounced difference between the geometries of the parabolic arch and the 

momentless form, the L:h ratio is assumed to be equal to 3. Regarding other 

assumptions, the bridge is considered as a two-pin arch bridge with a constant 

cross-section. The loading configuration is estimated based on EN1991-2: 2003 for 

a highway bridge in a harsh urban environment. The span of the arch (L) is 60 m, 

and to have an L:h ratio of 3, the height of the arch (h) is 20 m. The deck width is 

13.5 m, consisting of a 9 m carriageway with two sidewalks of 1.5 m. The deck is 

linked to the arch rib with the support of piers (vertical members). The distance 

between piers is 6.5 m, except over the middle interval at the crown where the 

sepaqration is 8 m. The arch bridge is made of C50/60 concrete with a covering of 

asphalt concrete for both carriageway and sidewalks. The properties of this type of 

concrete consist of 25 kN/m3 cylinder weight per unit volume and modulus of 

elasticity (Ec) of 37 GPa. The specified concrete compressive strength is 50 MPa. 
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To find the ratio of UDL to SW, the weight of the arch rib, arch deck and piers are 

estimated. The weight of the deck and piers is presumed to comprise the UDL 

applied to the rib arch. Moreover, the traffic load is calculated and estimated as the 

imposed UDL. The ratio of UDL:SW is therefore specified. Previously in Section 3.7, 

it was shown that the parabolic arch is the best known shape of arch when the 

loading condition is UDL-dominant. Therefore, in the case of UDL:SW > 1, the best 

known shape of arch will be compared with the momentless form. The parabolic 

arch and the momentless one are then modelled in SAP2000 (2012). The arches 

are then analysed for the general combination of SW and UDL having the same 

cross-section and similar properties. Thus, the required reinforcement for the 

parabolic and momentless arches can be calculated using the results of forces and 

bending moments from FE using SAP2000 software for linear static analysis 

assuming small displacements.  

 

Figure  5.8. Shape of the studied arch bridge 

 

The general shape of the arch is given in Figure 5.8. Although most dimensions and 

specifications are taken from a real overpass bridge, many assumptions are made, 

especially when calculating the applied load. The dimensions of the arch are 

reasonable in reality; for this hypothetical illustrative example. The reason is that the 
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effect of the shape of the arch on its resistance is going to be assessed. As the first 

step, the loading is calculated as below.  

5.6.1. Calculating the weight of the arch rib 

Based on the geometry data of the arch overpass in Daugavpils, the cross-section 

of the rib arch is 5000 mm wide (ba) and about 650 mm thick (d). Hence, the 

effective depth of the arch cross-section (da) is considered to be equal to 600 mm. It 

is assumed that the thickness of the arch is constant over the full span of the arch. 

The specific weights of steel and concrete are taken as 78 and 25 kN/m3, 

respectively, based on EN1991-1-1:2002. To estimate the weight of the arch rib, it is 

assumed that the cross-section of the arch is made of concrete material with the 

minimum required steel reinforcement of 0.2% in the tension zone of the cross-

section. The weight of the arch rib is the summation of the weight of the minimum 

steel reinforcement plus the concrete and the calculation for the reinforcement is 

based on a conventional reinforced concrete design (Mosely et al. 2007). 

The As(min) is then calculated as the maximum of 0.00016f’c
2/3bada=6515 mm2 and 

0.0013 bada=3900 mm2 that results the weight of steel and concrete part to be 

respectively 6515×10-6×78=0.51 kN/m and (5×0.65-(6515×10-6))×25=81.1 kN/m, 

where A denotes the area and the subscripts S and C indicate steel and concrete 

material respectively. According to EN1990: 2000, the weight of the arch rib can be 

obtained using partial factors for concrete and steel weights equal to 1.35 and 1.2, 

respectively. The factored weight of the arch (SW) is to be Aarch=1.2AS+1.35AC 

=110.1 kN/m. Pier and weight of concrete weight of steel kN 

5.6.2. Calculating the weight of the vertical members (piers) 

Based on the information from the traffic overpass bridge in Latvia (Taurenis 2013), 

the width of the piers is 4500 mm and their thickness is 400 mm. To avoid large 
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bending moments, the vertical members are assumed to be flexible. For this reason, 

to have enough flexibility in the longitudinal direction, the piers are linked to the deck 

and arch rib using hinge connections. The specifications of concrete and steel 

material are the same as those considered for the arch rib. Therefore, the weight of 

steel and concrete for each pier is estimated, as for the arch cross-section to be the 

maximum of 0.00016f’c
2/3bada=3421 mm2 and 0.0013 bada=2047.5 mm2 that results 

the weight of steel and concrete part to be respectively 3421×10-6×78=0.27 kN/m 

and (4.5×0.4-(3421×10-6))×25=45 kN/m, 

Consequently, the weight of each pier can be calculated knowing the height of each 

pier; H1 to H10 was given in Figure 5.8. The weight of piers consists of the weight of 

concrete and steel. The steel reinforcement is estimated as the minimum required 

area for the cross-sections. Similarly to the rib arch calculation, the weight of each 

pier can be obtained as below. The chosen value for each pier is similar to the 

height value that is shown in Figure 5.8. 

 kN6.134394.52.199035.1

kN94.52227.0: steel ofweight 

kN9902245: concrete ofweight 

:10and1Pier

10,1 









W

 

kN6.87185.32.124.64235.1

kN85.3272.1427.0: steel ofweight 

kN24.642272.1445: concrete ofweight 

:9and2Pier

9,2 









W

 

kN4.51427.22.137935.1

kN27.2422.827.0: steel ofweight 

kN379422.845: concrete ofweight 

:8and3Pier

9,2 









W
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The arrangement of the applied loads resulting from the pier effect is visualized in 

Figure 5.9. 

 

Figure  5.9. Configuration of the applied loads on the pin-ended arch because of the 
piers 

 

To estimate the effect of piers with the UDL, the parabolic arch subjected to its SW 

and applied point loads was analysed in SAP2000. Then, multiple magnitudes of 

UDL plus SW were applied to the parabolic arch and modelled in SAP2000 as FEA. 

kN8.2712.12.125.20035.1

kN2.145.427.0: steel ofweight 

kN25.20045.445: concrete ofweight 

:7and4Pier

7,4 









W

 

kN14464.02.110635.1

kN64.0356.227.0: steel ofweight 

kN106356.245: concrete ofweight 

:6and5Pier

6,5 









W
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It was seen that a UDL of 264 kN/m can be assumed to be the applied loading, 

replacing the effect of the 10 piers over the bridge’s span. Hence, the piers effect is 

estimated with UDL, as a similar behaviour of the arch occurs under both types of 

loadings. If the number of piers is high enough for them, they can be considered as 

a continuous wall in reality. Thus, the weight and effect of the continuous wall 

representing the pier effect can be seen in the relevant equations in Section 5.3 

when investigating the general case to find the optimal arch shape. Here, to apply a 

UDL and an SW to the arch, this simplification is used. The combination of SW and 

UDL of 264 kN/m gives maximum hogging and sagging bending moments similar to 

the ones when the arch is subjected to the point loads from the effect of piers and 

SW. A diagram of the bending moment of a parabolic arch subjected to the 

combination of SW and the pier effect (as point loads) is presented in Figure 5.10. 

Figure 5.11 shows the bending moment diagram of a parabolic arch under SW plus 

a UDL of 264 kN/m applied across the full span of the arch.  

Comparing the two figures below, the bending moment behaviour of the parabolic 

arch in this study is the same under two different loadings. Consequently, the piers 

are replaced by a UDL of 264 kN/m.    

 

 

Figure  5.10. SAP2000: Bending moment of parabolic arch subjected to SW plus 
point loads from piers 
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Figure  5.11. SAP2000: Bending moment of parabolic arch subjected to SW plus 
UDL of 264 kN/m 

 

5.6.3. Calculating the weight of the deck (superimposed dead load) 

The deck width is 13500 mm, which consists of a 9000-mm carriageway and two 

pavements of 1500 mm. The surface layer of the deck consists of asphalt with a 

thickness of 100 mm. The weight of this thickness of asphalt and the weight of the 

parapet are taken as 2.2 kN/m2 and 0.5 kN/m, respectively, based on the EN1991-2: 

2003. It is assumed that a steel beam supports a 200-mm concrete deck; hence, the 

weight of the steel beam is assumed to be 15 kN/m. The weight of concrete is 

calculated as 0.2×13.5×25=67.5 kN/m. The weight of the deck is estimated as the 

UDL applied across the full span of the arch as: 

WDeck=1.2WParapet+1.35WSurfacing+1.35WConcrete+1.2WSteel=150 kN/m. 

5.6.4. Calculating the traffic load 

In reality, the axle loading from vehicles has a great impact on the loading 

configuration. However, for the purpose of comparison between the behaviour of 

parabolic and momentless arches, the traffic load must be applied on both arches 

as the UDL in this section under some assumptions. According to Table 4.1 of the 

EN1991-2: 2003, the carriageway of 9000 mm has three lanes, each with the 

national lane width of 3000 mm. The load model 1 (LM1) is assumed for the effect 
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of traffic in ultimate limit state (ULS). This load model involves a double-axle 

concentrated load and a uniformly distributed load of αqqk . αq is the adjustment 

factor and is assumed to be equal to 1 due to the absence of a specification. To 

analyse the arches under the UDL-only condition, the effect of variable loads is not 

considered. Hence, a UDL of 9 kN/m2 for two lanes and 2.5 kN/m2 for the other lane 

is imposed on the arch based on Table 4.2 of EN1991-2. The loading for the 

remaining width of 1500 mm is referred to as αqqk. The UDL applied to the 9000-mm 

carriageway plus the remaining width of 1500 mm is calculated as 

kN/m25.655.15.235.2239 UDL . 

There are also pavements of 1500 mm with a characteristic UDL of 5 kN/m2. Hence, 

another applied UDL for the carriageway is equal to mkNUDL /1525.15  . 

In total, all live imposed loads on the arch bridge are estimated by the summation of 

the above two values of UDL, which is equal to 80.25 kN/m. In order to ignore the 

concentrated load, the UDL of 93 kN/m is applied to arches as a traffic load.  

5.6.5. Arch model 

From subsection 5.6.1, the self-weight of the arch rib was estimated to be equal to 

110.1 kN/m. The imposed load on the arch rib was approximated as a summation of 

the weight of piers and the deck plus traffic load. The weight of piers is obtained by 

summation of Equations 5.38 to 5.42 in Section 5.6.2. The weights of the deck and 

traffic were calculated in Sections 5.6.3 and 5.6.4, respectively. Therefore, 

accumulating the estimated UDL from Sections 5.6.2 to 5.6.4 gives a total UDL of 

507 kN/m, which is considered as the load applied to the arches in this study. 

Having an SW of 110.1 kN/m and a UDL of 507 kN/m, the ratio of UDL:SW is 4.6. 

Therefore, the behaviour of the best known shape of arch, that is, a parabolic arch, 

is compared with the momentless form for this loading configuration. The parabolic 

arch is then modelled with the specification defined in SAP2000 and subjected to its 
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SW plus UDL of 507 kN/m from the live load and accumulated weight of the deck 

with piers. The reason for using SAP2000 instead of GSA software is the limitation 

of the new version of GSA software in modelling arches with more than 50 nodes. 

Similarly to GSA software, the curve is modelled using straight elements such as 

beams in SAP2000. Thus, sensitivity analysis is carried out to find what number of 

nodes is sufficient for modelling a parabolic arch bridge. Therefore, the parabolic 

arch is modelled and analysed using different numbers of nodes/straight elements 

for a combination of SW equal to 110.1 kN/m and UDL of 507 kN/m. To perform the 

sensitivity analysis, the results of the maximum and minimum bending moment 

when the parabolic arch is modelled with 31 nodes or 30 straight elements, 61 

nodes, 103 nodes, and finally 121 nodes are given in Table 5.1.  

 

Table  5.1. Maximum/minimum bending moments in parabolic arch when modelled 
in SAP2000 using different numbers of nodes 

Number of 
nodes used 
for modelling 

    Bending 
moment 
(kNm) 

31  max   1265.7 

 min   –1208.1 

61  max   1113.7 

 min   –1003.4 

103  max   1081.6 

 min   –958.8 

121  max   1076.5 

 min   –952.3 

 

The maximum bending moment of the parabolic arch is sagging and is located at 

both sides of the arch. Comparing the maximum sagging bending moment of the 

parabolic arch subjected to UDL plus SW, the percentage difference between the 

maximum sagging bending moments of the arch modelled with 61 and 31 nodes is 

12%. The percentage difference between the maximum sagging bending moments 

of the arch modelled with 61 and 103 nodes decreased to 2.88%. Then, increasing 
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the number of nodes from 103 to 121 nodes caused the maximum sagging bending 

moment to decrease by 0.47%, which can be considered negligible. Therefore, the 

trend of the change in maximum bending moment becomes roughly a straight 

horizontal line when the arch is modelled with more than 103 nodes. The x and y 

coordinates for parabolic and momentless arch are given in Table 5.2 for half span. 

 

Table  5.2. Coordinates of parabolic and momentless arch for the half span 

n Parabolic arch  Momentless 
arch 

 n Parabolic arch  Momentless 
arch 

x(m) y(m) x(m) y(m)  x(m) y(m) x(m) y(m) 

1 0.00 0.00  0.00 0.00  27 15.29 15.19  14.83 14.97 

2 0.59 0.78  0.55 0.74  28 15.88 15.57  15.43 15.36 

3 1.18 1.54  1.10 1.46  29 16.47 15.93  16.02 15.73 

4 1.76 2.28  1.65 2.18  30 17.06 16.28  16.62 16.09 

5 2.35 3.01  2.20 2.88  31 17.65 16.61  17.22 16.43 

6 2.94 3.73  2.76 3.57  32 18.24 16.92  17.82 16.76 

7 3.53 4.43  3.32 4.25  33 18.82 17.22  18.42 17.07 

8 4.12 5.11  3.87 4.91  34 19.41 17.51  19.02 17.37 

9 4.71 5.78  4.43 5.56  35 20.00 17.78  19.62 17.65 

10 5.29 6.44  5.00 6.20  36 20.59 18.03  20.23 17.92 

11 5.88 7.07  5.56 6.82  37 21.18 18.27  20.83 18.17 

12 6.47 7.70  6.13 7.44  38 21.76 18.49  21.44 18.40 

13 7.06 8.30  6.70 8.03  39 22.35 18.70  22.04 18.62 

14 7.65 8.90  7.27 8.62  40 22.94 18.89  22.65 18.83 

15 8.24 9.47  7.84 9.19  41 23.53 19.07  23.26 19.01 

16 8.82 10.03  8.41 9.75  42 24.12 19.23  23.87 19.18 

17 9.41 10.58  8.99 10.30  43 24.71 19.38  24.48 19.34 

18 10.00 11.11  9.56 10.83  44 25.29 19.51  25.09 19.48 

19 10.59 11.63  10.14 11.34  45 25.88 19.62  25.71 19.60 

20 11.18 12.13  10.72 11.85  46 26.47 19.72  26.32 19.71 

21 11.76 12.61  11.31 12.34  47 27.06 19.81  26.93 19.80 

22 12.35 13.08  11.89 12.81  48 27.65 19.88  27.54 19.87 

23 12.94 13.53  12.48 13.27  49 28.24 19.93  28.16 19.93 

24 13.53 13.97  13.06 13.72  50 28.82 19.97  28.77 19.97 

25 14.12 14.39  13.65 14.15  51 29.41 19.99  29.39 19.99 

26 14.71 14.80  14.24 14.57  52 30 20  30 20 
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Here, n denotes the node numbers and 103 nodes or 102 straight elements are 

chosen to model the arches. As a result, parabolic and momentless arches are 

analysed for the general combination of SW and UDL while modelling in SAP2000 

using 103 nodes. The required reinforcement of both arches can be obtained using 

forces and bending moment results found from the analysis of arches by SAP2000. 

5.6.6. Calculating the required reinforcement  

Having f’c as the concrete strength, the concrete design stress in compression, fcd, is 

equal to ccf '85.0 , where γc is the concrete partial factor of safety and is equal to 

1.5 (Mosely et al. 2007). Since f’c for C50/60 concrete is equal to 50000 kN/m2, the 

design concrete strength is calculated as 28.3 MPa. It was also previously stated 

that the width of the arch cross-section, ba, is equal to 5000 mm. Therefore, the 

minimum reinforcement for both parabolic and momentless arches in the tension 

and compression zones can be calculated:  

1) The minimum reinforcement area for the tension zone of the cross-section 

for both parabolic and momentless arches was calculated in Section 5.6.1 as 

6515 mm2. 

2) The minimum reinforcement area for the compression zone of the cross-

section of the parabolic and momentless arches is:

2

(min)(min)2 mm6500002.0  sas AdbA  

It is seen that the minimum required reinforcements are calculated to be about 6515 

and 6500 mm2, respectively, for the lower and upper parts of the cross-section. 

Therefore, the minimum required reinforcements in the tension and compression 

zones are almost similar and are taken as 6515 mm2. Then, the required 

reinforcement of the arch cross-section for maximum bending moment can be 

obtained as follows. It should be noted that although the bending moment is zero 

everywhere for a momentless arch in theory, the momentless arch shows bending 
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moments when using SAP2000. However, the maximum bending moment obtained 

using SAP2000 for the momentless arch is negligible in comparison with the 

maximum bending moment of the parabolic arch. From Table 5.3, the maximum 

bending moment produced by SAP2000 for parabolic arch is 95% more than 

momentless arch. Moreover, the maximum bending moment is only seen for the 

longest straight element of the momentless arch curve, which is at arch crown, and 

the bending moments decrease for short elements. Hence, bending moments occur 

for the momentless arch because the arch is modelled using straight elements in 

the software, but the magnitude of the maximum bending is small. The maximum 

sagging and hogging bending moments in both arches obtained from a SAP2000 

analysis are presented in Table 5.3.  

 
 
Table  5.3. Maximum bending moments of both arches obtained from SAP2000 

Maximum bending moment (kNm) Parabolic arch Momentless arch 

Maximum sagging bending 1082 57 

Maximum hogging bending –959 0 

 

The design ultimate bending moment (Mrd) for the cross-sections of the parabolic 

and momentless arches is equal to kNm15120'168.0 2

rd  bdfM c . It is seen in 

Table 5.2 that the design bending moment (Md) of the parabolic arch from SAP2000 

is equal to 1082 kNm. Based on the concrete design, if Mrd > Md, the cross-section 

needs to be singly reinforced, which means no reinforcement is desired in the 

compression part of the cross-section. It was calculated that the minimum 

compressive reinforcement needs to be 6500 mm2.  

To calculate the essential bars in the tension zone of the arch cross-section, the 

lever arm z is calculated first. Thus, assuming the effective depth of the cross-
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section to be equal to 600 mm, the lever arm z for flexure is obtained for this section 

as mm49282.0)45.04.0(  dddz . 

Hence, the required reinforcement of the parabolic arch in the tension zone can be 

calculated as: 
2

(min)S
d

S mm5056
87.0

 A
zf

M
A

yk

 

where fyk is the steel strength, which is assumed to be equal to 500 MPa. It is seen 

that the reinforcement calculated for the parabolic arch is less than the minimum 

reinforcement of the cross-section. The same can be concluded in the case of the 

momentless arch and obviously the minimum reinforcement is considered for the 

momentless arch. Therefore, the minimum reinforcement of 6515 mm2 is applied for 

both parabolic and momentless arches in both compression and tension zones. 

Consequently, 32 bars of 18-mm diameter with a bar spacing of 150 mm are 

considered in both the upper and lower sections of the arch cross-section. The 

confinement bars are assumed to be 12 mm in diameter with a bar spacing of 150 

mm. The same configuration for confinement bars is assigned for parabolic and 

momentless arch shapes. The reason for having low reinforcement for the parabolic 

arch in theory refers to the usage of arch shapes in design that have less bending 

moment than beams.  

Although the geometry of the momentless arch is close to the geometry of the 

parabolic arch for UDL:SW > 1, small differences in the geometry of arches lead to 

significant differences in result and structural actions. The difference in the 

geometry of these arches also has an effect on the designed dimension of the arch 

cross-section. The length of the parabolic arch (S’) is found to be equal to 74717 

mm when the arch is modelled using straight elements, while the length of the 

momentless arch (S) is equal to 74792 mm. Therefore, if the concrete volumes of 

the parabolic and momentless arches are supposed to be equal, then the cross-



5. ANALYTICAL FORM-FINDING OF TWO-PIN ARCH 

168 

sectional depth of the momentless arch can be reduced. However this reduction is 

negligible in this study. 

To compare the behaviour of the momentless arch with the parabolic one for the 

applied loading, the deflections and first failures of the arch cross-section of both 

arches are compared with each other in the following sections. 

5.6.7. Comparing the deflections of parabolic and momentless arches 

To compare the deflection of the parabolic arch with that of the momentless one, it 

is assumed that both arches are of the same material and have similar general 

properties. Both arches are subjected to a UDL of 507 kN/m plus SW. The self-

weight of the two arches are assumed to be the same and equal to the value 

calculated in subsection 5.6.1. Then the parabolic and momentless arches are 

modelled in SAP2000 and analysed for the general combination of SW and UDL. 

The deflections of the parabolic and momentless arches are shown in Figures 5.12 

and 5.13. 

 

 

Figure  5.12. SAP2000: Deformed shape of parabolic arch subjected to UDL of 507 
kN/m plus SW of 110.1 kN/m 
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Figure  5.13. SAP2000: Deformed shape of momentless arch subjected to UDL of 
507 kN/m plus SW of 110.1 kN/m 

 

The thin line represents the original shape of the arch and thick line is for the 

deformed shape. It can be seen that the momentless arch deforms vertically and 

maintains its original geometric shape under the applied load. The maximum 

displacement of momentless arch is seen at its crown equal to -8 mm. However, 

parabolic arch deforms noticeably with the maximum displacements equal to -15 

mm at both sides of the arch.  

The maximum vertical displacement of the momentless arch is about half of that of 

the parabolic one. It is expected that the true maximum displacement for the 

momentless arch will be smaller than that obtained owing to the SAP2000 modelling 

of the momentless arch having straight finite elements. In order to have the same 

vertical displacement with the momentless and the parabolic arches, the thickness 

of the cross-section of the momentless arch is decreased gradually. The required 

thickness is that when the maximum displacement in the z direction reaches -15 

mm is chosen. Table 5.4 reports the vertical displacements (u) for momentless 

arches having different thicknesses (d) from 0.35 to 0.65 m. 
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Table  5.4. Maximum displacements of momentless arch obtained from SAP2000 
using different arch thicknesses (d) 

Momentless arch  
thickness(m) 

u in z direction 
(mm) 

0.65 –8.205 

0.45 –11.695 

0.40 –13.068 

0.35 –14.785 

 

As can be seen, decreasing the thickness of the momentless arch cross-section 

makes the maximum displacement increase. This is in accordance with the study 

carried out by Altunişik et al. (2015).  In reality the thickness of the arch should meet 

the minimum limit of arch thickness. Since the momentless arch is compared with 

the parabolic option, the former thickness can decrease without considering design 

regulations. It is observed that the maximum displacement in the z direction for the 

cross-section of the momentless arch with a thickness of 0.35 m is close to that of 

the parabolic one with a thickness of 0.65 m. Nevertheless, the parabolic arch 

displays 1.5% more displacement in the z direction than the momentless arch. It is 

also seen that the displacement in the x direction does not vary significantly with 

decreasing d. Overall, the momentless arch experiences almost 50% less 

deflection. To have the same deflection, the momentless arch thickness for a 

constant rectangular cross-section can be approximately half of the thickness in the 

parabolic arch. It should be noted that the parabolic arch has the minimum 

deflection compared to circular and catenary arches for this load case, that is, 

UDL:SW > 1. 

The reduction in momentless arch thickness leads to the arch mass decrease. The 

momentless arch shape mass is equal to 619 kNs2/m for d=0.65m. To have a 

similar maximum vertical displacement, the momentless arch mass is reduced to 

334 kNs2/m with d=0.35m. The mass reduction is important for the construction cost 

and material saving. 
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5.6.8. Comparing the first failure of the cross-sections of the parabolic and 

momentless arches 

One of the reasons for searching for an optimized shape of the arch is to establish 

greater resistance. In other words, a favourable arch structure is one that carries a 

specified design load case or cases for the minimum weight of the construction 

material. Concerning other applications of the momentless arch, the first failure of 

the section of the momentless arch is evaluated with the first failure of the section of 

the parabolic arch. The first failure of arch cross-section is emerged under ultimate 

load beyond the initial yield.  

For the first step of finding the failure of these arches, the OpenSees program 

(http://OpenSees.berkeley.edu/) was used. OpenSees is an interactive Tool 

Command Language (Tcl) software framework in which the commands can be 

changed at any time and performed at the MS-DOS/Unix prompt. This program 

works in parallel with MATLAB as a post-processing tool generated by means of Tcl 

scripting language. Each Tcl command is bound with a C++ procedure. Therefore, 

this finite element analysis is executed to simulate the response of the arch 

structure to the applied loading. Both parabolic and momentless arches are 

modelled using straight elements, which are defined as displacement-based beam-

column elements. Since this programme performs as displacement control, the 

displacement increased by 1 mm at the crown of the arch. As a result, the required 

structural responses are achieved at each displacement increment using 

OpenSees. The first input to the OpenSees program is the nodes that define the 

arch curve. Parabolic and momentless arch shapes are established by the positions 

of x-y nodes, as described in subsection 5.6.5. The other input is the material 

where, arches are assumed to be reinforced concrete. The area of the 

reinforcement for arch cross-section is assumed to be 193396 mm2 that gives 

As=95%Ac. The amount of reinforcement is considered for both arch shapes for 

http://opensees.berkeley.edu/
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comparison reason having the same section across arch length. However, the 

momentless arch doesn’t require any reinforcement. Having set the pin as arch 

constraints in the program, the third input is the nodal masses. The nodal masses 

are produced by the summation of nodal weight caused by SW and UDL at each 

individual node. The final step is the introduction of the desirable outputs that 

involve reactions, displacements, all forces, and bending moments. Furthermore, a 

final vertical displacement of 10000 mm at the crown of the parabolic and 

momentless arches is chosen in the OpenSees programme. The MATLAB file for 

this analysis can be run for a targeted vertical displacement at the arch crown. 

Finally, the reactions, forces, and bending moments at the nodes are obtained at 

each displacement for parabolic and momentless arches.  

The second step of finding the first failure of the arch cross-section is accomplished 

by using an interaction curve between the axial forces and bending moments. 

Hence, the obtained axial forces and bending moments from OpenSees are plotted. 

This diagram is plotted for each displacement. To do so, a programme was written 

in Excel as “Visual Basic” that only requires a vertical displacement at the arch 

crown as input and gives a diagram of the axial force and bending moment for that 

displacement. The interaction curve of the arch cross-section can be plotted based 

on finding some points on the curve such as, the points relevant to the squash load, 

decompression, balance, and pure moment (EN1992-1-1: 2004). These points are 

calculated using dimension, reinforcement, and material properties of the cross-

section for each arch. The generated interaction curve of each arch is then plotted 

on the same diagram of axial force and bending moments. To have a safe cross-

section, the diagram of axial forces and bending moments of the arch must be 

under the interaction curve of the arch cross-section. Therefore, the displacement at 

which the diagram of axial forces and bending moments from OpenSees crosses 

the interaction curve of the cross-section is considered as the first failure of the 
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cross-section. The parabolic arch shows the first failure of the cross-section when 

the vertical displacement at the arch crown is 3950 mm; see Figure 5.14. 

Meanwhile, from Figure 5.15, the first failure of the cross-section of the momentless 

arch is seen for a vertical displacement of 5200 mm at the arch crown.  

 

Figure  5.14. Comparison of the interaction curve of the parabolic arch cross-section 
and diagram of the axial force and bending moment results from OpenSees when 
the vertical displacement at the arch crown is 3950 mm 

 

 

Figure  5.15. Comparison of the interaction curve of the momentless arch cross-
section and diagram of axial force and bending moment results from OpenSees 
when the vertical displacement at the arch crown is 5200 mm 
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The green, purple, and blue straight lines in Figures 5.14 and 5.15 connect the 

minimum eccentricity, decompression, and nominal balance points to the origin. The 

minimum eccentricity point shows the maximum moment strength at the maximum 

axial compression load permitted by Eurocode. The decompression point shows 

compression and moment strength at zero strain in the tension side reinforcement. 

The nominal balance point presents compression and moment strength at 50% 

strain in the tension side reinforcement. The interaction curve crosses the axial 

force axis at the squash load point that gives the axial compression at zero moment. 

The interaction curve also crosses the bending moment axis at pure moment point 

when the axial force is zero. 

Although the interaction curve of the parabolic arch is similar to that of the 

momentless arch, the axial force and bending moment diagrams from OpenSees 

are completely different for these two arches. According to the OpenSees results, 

the total load that causes first failure of the parabolic arch is 211992 kN. First failure 

of the momentless arch is initiated at 221722 kN. Comparing the first failures of the 

parabolic and momentless arches, the momentless arch could carry 5% higher load 

before reaching the first cross-sectional failure.  

5.7. Concluding Remarks 

An analytical form-finding procedure that can optimize shape is used to find the 

shape of a momentless two-pin arch. The shape of the momentless form has been 

investigated using equilibrium equations from Brew (2013) for a pin-ended arch with 

constant cross-section. The geometry of the momentless arch is then obtained 

using the equation of zero shear force having axial force only for any L:h ratio.  

A functional relationship is found that represents the x and y coordinates individually 

for the three categories of loading, that is, UDL:SW < 1, UDL:SW = 1, and UDL:SW 

> 1. The unknown parameters in the governing equations of x and y coordinates is 
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solved by iterative method using the boundary condition. The parabolic arch 

function is used to calculate the initial value in the case of UDL:SW > 1. Meanwhile, 

the initial value in the iterative procedure of finding the x and y coordinates is 

chosen from the equation of a catenary arch when UDL:SW < 1. Consequently, the 

geometry of the optimal arch is given as a function of loading for any L:h ratio and 

any ratio of UDL:SW via the analytical form-finding technique. However, the effect of 

arch shape is more tangible for arches of L:h≤5.  

The application of the momentless arch was shown by comparing a momentless 

arch and a parabolic one in a theoretical case study. This study was carried out for 

UDL:SW > 1, when the parabolic arch is the best known arch shape. The 

momentless arch was compared with the parabolic arch, both made of concrete 

which is relatively weak in tension subjected to the same loading for L:h=3.  

Case study shows that the maximum vertical displacement of momentless arch to 

be almost half of the maximum vertical displacement of the parabolic arch for a 

similar load case. To have the same maximum displacement, the thickness of the 

momentless arch could be reduced to half of its initial value. This leads to mass 

reduction in the case of momentless arch down to about half on its initial mass. 

From case study, momentless arch could also carry 5% greater load before 

reaching the first cross-sectional failure compared to the parabolic form under the 

same conditions. The momentless arch shows this first failure for 24% higher 

vertical displacement at the arch crown compared to the parabolic one.  

Overall, the comparison confirmed the superiority of using the momentless arch in 

practice which demonstrates the significant effect of shape on structural response. 
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Chapter 6 : Discussion and Conclusions  

The core of this research is finding the momentless shape of a two-pin arch with the 

use of static equilibrium, highlighting the excellence of its application, which has not 

been attempted hitherto. This work has been preceded by the assessment of known 

shapes of arches that advances understanding the behaviour of two-pin arches as a 

function of chosen arch form. A comprehensive assessment of known arch shapes 

and a comparison of their structural performance are carried out numerically, which 

has not hitherto been done. The degree of credibility of approximate analysis 

methods of two-pin arches consisting of masonry design (Curtin et al. 2006) and 

virtual work based on bending action only (Megson, 2005), is also evaluated for the 

first time. 

In this chapter, the principal findings of the author’s PhD work in association with the 

effect of arch form on its structural action and the optimal form of two-pin rib arches 

are presented. The general behaviour of a two-pin arch of constant cross-section is 

presented in Section 6.1. Section 6.2 scopes a comparison of two alternative 

approximate methods of arch analysis with a numerical method using GSA software 

and the second theorem of Castigliano. A concise review of analytical finding of the 

form of a momentless two-pin arch and the application of a momentless arch are 

given in Section 6.3. Section 6.4 is used to present conclusions from the new 

contribution to knowledge and understanding. Finally, various research areas for 

future work are presented in Section 6.5. 

6.1. Discussion of the general behaviour of the two-pin arch 

The behaviour of two-pin arches of known shapes was studied comprehensively 

and compared to each other in Chapter 3. Although the behaviour of a circular arch 

and comparison of the buckling load of known arch shapes have been investigated 



6. DISCUSSION AND CONCLUSION 

177 

widely, the inclusive performance of arch structures based on their structural form 

has received little attention. The collapse of Gerrards Cross Tunnel (NCE 2005) in 

2005 was an example of the importance of choosing the best arch shape, 

depending on load cases during execution and operation   

Common arch shapes including catenary, parabolic and circular forms with constant 

cross-sections of concrete were statically analysed numerically using GSA finite 

element software for different ratios of UDL:SW, and for L:h ratios between 2–10 in 

Section 3.5. According to the Timoshenko stability equation (Timoshenko and Gere 

1961), the arches were stable for the considered applied loading. The arches were 

then modelled using 80 straight elements following a sensitivity analysis for the 

variation of bending moments. The criterion of developing minimum combined 

stress due to bending and thrust was used to find the optimal common arch shape 

and best range of L:h ratio. The three arch forms were evaluated using four different 

load cases. The maximum sagging bending moment with parabolic and catenary 

arches reduced when L:h increased from 2 to 5 and for higher ratios the maximum 

bending moments increased. The minimum sagging bending moment of circular 

arch was observed at L:h = 8. It was seen that increasing the L:h ratio to 300 led the 

maximum bending moment to grow and be close to that of the equivalent horizontal 

beam. The maximum sagging and hogging bending moments for the catenary and 

circular arches occurred at approximately the same location which are respectively 

at arch crown and at both sides, different for the parabolic arch. The sagging 

bending moments of parabolic and catenary arches are greater than the hogging 

ones for any L:h ratio. However, in the case of the circular arch, the maximum 

hogging bending moment was higher than maximum sagging bending moment 

when L:h < 6, showing the dominance of tensile forces when the loading was a 

general combination of uniformly distributed load (UDL) and self-weight (SW). The 

absolute value of maximum bending moment of the parabolic and catenary arches 

reached its minimum for an L:h ratio between 4–5; this ratio was between 7–8 for 
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the circular arch. The displacement and shear forces for the arches gave 

distributions over the arch shape that are similar in shape to that of the bending 

moment. Since the deformation of the parabolic arch with UDL+SW was different to 

the catenary and circular arches, the parabolic arch is expected to fail with the 

different mode. The deformed shape of each arch was similar for any load condition, 

excluding the patch loading condition. The geometry of different arch forms became 

almost identical for L:h ratios abovef 7. However, it was shown that thereremains 

differences in the structural response, even at the L:h ratio of 10. One important 

finding from the author’s work is that small changes in shape may noticeably affect 

the structural results. The presence of tensile stress in the arch was inevitable when 

the load case had the patch load over half of the arch length. In general, the 

maximum stress for the parabolic and catenary arches had its minimum when 2 < 

L:h < 4; it was between 4–6 for the circular arch. This range of L:h ratios was 

referred to as the optimal ratios. To generalise this result, the arch made of a hollow 

steel cross-section that had the same second moment of area as the concrete solid 

cross-section was analysed with load case UDL+SW. Although the magnitude of the 

combined stresses from the steel arch was different to that of the concrete one, the 

overall behaviour was the same.  

The relation between the maximum thrust of the arches and the L:h ratios was 

almost linear, with the maximum value of thrust at the supports. The difference in 

the horizontal reaction forces for the three arch shapes was indistinguishable when 

ratio L:h exceeded 5. There were noticeable differences for the bending moments 

and combined stresses. This indicates the importance of calculating the horizontal 

reaction force. Since the horizontal reaction force has an increasing linear relation 

with increasing L:h ratio, a lower L:h ratio is preferable to design for this action. It 

has been shown that the arch mass is not largely affected by shape, and that it 

decreases with increasing L:h ratio. The best range of L:h ratios assuming mass 
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saving will be between 4–5. The structural performance of an arch shape with 

increasing L:h was observed to be similar for each load case i.e., any ratio of 

UDL:SW. The values of the maximum bending moment, maximum displacements 

and maximum combined stress for the parabolic, catenary, and circular arches 

when UDL:SW > 1, UDL:SW = 1, and UDL:SW < 1 can be used to demonstrate the 

preference for the parabolic or catenary shape when UDL:SW > 1 and UDL:SW < 1, 

respectively. Results for catenary and parabolic arches when UDL:SW = 1. The 

circular arch gave the least desirable results for any ratios of UDL:SW. From the 

parametric studies in Chapter 3, it can be concluded that the circular and the 

parabolic arches are the least and most preferable shapes, respectively, for typical 

load cases and L:h ratios. A new finding is that the bending moment and horizontal 

reaction increase in magnitude with arch thickness, except for the parabolic arch 

with ratio L:h = 4 and load case UDL+SW.  

Exploring the end-shortening effect shows that the horizontal reaction force 

obtained from static theory (Merritt 1976) increases with L:h ratio. However, it is 

critical to consider the effect of arch shortening when analysing shallow arches. As 

a known fact (Megson, 2005; Millais, 2005), the parabolic arch, when subjected to 

UDL only, is momentless, while the catenary arch when subjected to SW only, is 

considered to be momentless. The findings from the FE work show that catenary 

and parabolic arches do develop some moments for the UDL only and SW only load 

cases. Bending moment is found to increase with L:h ratio in both arches and, in 

particular, when L:h is > 5.  

Finally, the arc length was compared to the arch span. It was seen that the 

percentage difference between the length and span of each arch was less than 1% 

for L:h > 16.  
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6.2. Discussion of the comparison of different methods of analysis 

Different methods for the analysis of two-pin arches have been explored extensively 

in the past. However, the credibility of some existing analysis methods based on 

approximate models such as the masonry design and virtual work (depending on 

bending action only) had not yet been investigated. The effect of the assumptions 

made by these methods on the structural response of two-pin arch was explored in 

Section 4.3. 

To find the horizontal reaction force for circular and parabolic arches, different 

methods of analysis were applied in Section 4.4. The methods involved: a 

theoretical analysis based on the second Castigliano principle; FEM using GSA 

software; virtual work (Megson, 2006) and the masonry design (Curtin et al., 2006). 

The studied arches were subjected to the general combination of SW plus UDL. 

When using Castigliano’s theorem, to assess the effect of different actions in the 

strain energy formulation, the methodology was applied to divide the analysis: 

bending action only; bending plus shear and thrust action terms; full structural 

actions for the combination of bending, shear, thrust and coupling of bending and 

thrust. It was demonstrated that the shear and thrust contributions have an 

increasing effect on the maximum bending moment and maximum combined 

compressive stress, relative to the solution with bending action only. When 

evaluating different terms in Castigliano’s approach, the differences in the combined 

stresses < 5% for L:h < 8, which is considered negligible. Generally, the presence of 

the bending/thrust coupling term slightly decreased the bending moments 

calculated.  

Alternative analytical methods of virtual work and masonry design are based on a 

number of assumptions, with varying degrees of credibility. The effect of these 

assumptions was evaluated. In the masonry design method, it is assumed that the 

thrust at the crown passes the arch thickness centre that leads the arch to act like a 
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three-pin arch. This assumption has a significant impact on the resultant bending 

moment results; mostly near the crown of the arch. Furthermore, the level of 

discretisation over the arch’s length into individual segments (to which SW and UDL 

are applied) is another approximation. It was shown that, generally, the results of 

structural actions obtained from using this method deviated significantly from those 

calculated using other methods. In the case of the virtual work approach, it is 

assumed that displacements are produced only by bending and so, the effect of 

thrust on arch deformation is ignored. Also, when analysing any arch other than 

those having a semi-circular profile, to avoid complicated integrals in the process of 

finding a horizontal reaction force, the secant assumption is used.  

The results of the horizontal reactions obtained from the Castigliano approach were 

compared to those calculated from applying static theory to a parabolic arch 

subjected to UDL only. The horizontal reaction obtained confirmed that the parabolic 

arch shape is momentless for this load case. This is in agreement with the results 

calculated from the alternative analysis method and the Castigliano approach, using 

bending action only. This finding was due to the analysis methods ignoring the 

section properties because the arch is assumed to be non-deformable. Because 

arches are deformable the moments were not estimated well by applying these 

methods, in particular, when the L:h > 5. The results from the masonry design 

method and other methods depending on bending action only do not have adequate 

numerical precision in predicting arch structural action effects. 

The good correlation between the results obtained from FE and Castigliano’s theory 

due to bending, shear and thrust showed the validity of using GSA in the PhD work 

(providing a sufficient number of straight elements are used to model a two-pin 

arch). Different values of maximum bending moment and maximum combined 

stresses at different locations were obtained when using different methods of 

analysis. 
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In general, the horizontal reaction and bending moment at the crown of parabolic 

and circular arches subjected to a general load combination of SW and UDL are 

seen to increase with arch thickness. Probably, analysing the arches for other load 

case predominantly for patch loading could show the effect of each term of strain 

energy more specifically. The horizontal reaction forces of the studied arches 

decreased slightly with increasing arch thickness when only UDL was applied, 

although this action was found to be a constant with Castigliano having bending 

action only. This was due to a change in the gyration of radius with thickness, when 

other actions to bending were considered in the strain energy formulation. 

Concerning the shortening effect, the horizontal reaction force obtained from the 

alternative methods and Castigliano with bending action only is seen to grow 

linearly with increasing L:h ratio. This outcome led to unsatisfactory results in the 

case of shallow arches, with the horizontal reaction force starting to decrease when 

L:h > 80 when using FE and Castigliano’s method, with other actions in addition to 

bending.  

6.3. Discussion of the optimal shape of two-pin arch 

Despite many studies on structural optimisation, the optimal shape of a two-pin rib 

arch with constant cross section has not been investigated analytically based on the 

state of static equilibrium, probably because of the essential difficulties of 

mathematical analysis. The analytical form-finding of two-pin arch structures 

considering full structural actions of bending, shear, and thrust has not hitherto been 

published. The contribution of the momentless arch as an optimal two-pin rib arch 

form is presented here for the first time in Section 5.6.  

As was shown in Chapter 3, the form of the arch can have a crucial influence on 

structural actions, which will inherently impair the long-term durability and safety of 

the arch made of masonry or concrete. The shape of the optimal two-pin arch with 
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constant cross-section was derived analytically using a form-finding approach based 

on the work done by Brew (2013). It is known that none of the circular, parabolic or 

catenary arch shapes is an optimal form when the arch is subjected to both SW and 

UDL. The geometry of the momentless arch was determined using the state of the 

static equilibrium of the arch (Brew, 2013). Therefore, the equation of shear force, 

which is the derivative of the moment equation, for any arbitrary point on the arch, 

was set to zero. The method was developed for any L:h ratio and any ratio of 

UDL:SW. The geometry of the optimal arch was found as one functional relationship 

representing the y coordinate for any UDL:SW ratio, and corresponding to the x 

coordinate for the three load cases of: UDL:SW < 1; UDL:SW = 1, and UDL:SW > 1. 

The functional relationships expressing the x and y coordinates involved the 

horizontal reaction force as an unknown parameter. The author made calculations 

by applying an iterative process with constraints for a two-pin arch. To find the initial 

values of the defined variable for finding the horizontal reaction force, the geometry 

for a parabolic and for a catenary arch was taken as an initial value for UDL:SW ≥ 1 

and UDL:SW < 1, respectively. The process was coded in MATLAB. Starting with 

the ratios L:h ratio and UDL:SW the shape of the optimal momentless two-pin arch 

could be determined. The momentless arch application was then investigated 

numerically. First, the maximum displacement of momentless and parabolic arches 

was compared against each other for the same load and conditions, where UDL:SW 

> 1. Since the parabolic arch performed best for this load case against catenary or 

circular arch shape: the momentless arch compared to the best-known arch shape. 

To do so, both arches were modelled in SAP2000 software using 102 straight 

elements. The parabolic arch deformed significantly, while the momentless arch 

kept its geometry. Furthermore, the maximum displacement of the parabolic arch 

was about twice that of the momentless arch. This was followed by a study on the 

first failure of the cross-section for concrete arches using the OpenSees 

programme. Calculated was the internal response for each 1 mm increment in 
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vertical displacement at the arch crown. The bending moment and axial forces 

calculated using OpenSees were then plotted using Visual Basics in Excel and 

compared to the M-N interaction curve for the arch cross-section. The comparison 

showed the contribution of the momentless arch in practice.  

6.4. Conclusions 

The principal conclusions are as follows: 

 The response of two-pin arch forms to applied loading is critically dependent 

on the arch form and its shape governed by the L:h ratio. 

 Circular arches are very sensitive to variations in ratio L:h and large 

differences in the arch’s bending moments and combined (bending + thrust) 

stresses compared to parabolic and catenary arch forms.  

 The minimum compressive stresses in parabolic and catenary arches were 

observed for L:h ratios between 2 and 4. Although the optimum L:h ratio for 

a circular arch, using the minimum combined stress criterion, is between 4 

and 6, the stresses developed are still higher than with parabolic or catenary 

arches. This finding is acceptable when the arch is of masonry, concrete, or 

steel. 

 Circular arches exhibit relatively high combined stresses and bending 

moments, particularly for the L:h ratio of 2 (i.e. a semi-circular arch). 

 The difference of arch mass for different arch shapes is negligible when L:h 

≥ 4. Moreover, the arch mass decreases when L:h is increased. The author 

recommends that an L:h ratio of about 4 can be chosen to save mass while 

also preserving the arch’s structural efficiency. 
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 Even a 0.1% change in the value of the horizontal reaction of three known 

arch shapes can lead to a 10% change in the value of the maximum bending 

moment. 

 The outcome of approximate methods for predicting bending moments is not 

positive, because of the limitations from the assumptions made in the 

analysis. It is noted that, these methods are currently used by design 

engineers to obtain the reaction forces in two-pin rib arches. 

 Different analysis methods predict different values of maximum bending 

moment at different locations in the arch. 

 For a rigorous analysis method the author formulated the Castigliano’s 

approach (Timoshenko, 1986) that involved strain energy due to full 

structural actions (bending, shear, thrust, and coupling of bending and 

thrust).  

 By using the full analysis it was found that by coupling thrust and bending 

there is a slightly decrease in the bending moments when compared with 

Castigliano’s method without the coupling.  

 The magnitude of the horizontal reaction force at the supports, and bending 

moment at the crown of the circular arch is found to grow on increasing the 

arch thickness for all L:h ratios, using any method of analysis and for all load 

conditions.  

 The bending moment at the crown of the parabolic arch decreases on 

increasing arch thickness at an L:h ratio of 4 using Castigliano’s method with 

full structural actions with both SW and UDL. This finding is opposite to what 

is found with other L:h ratios.  
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 The masonry design and other methods relying on bending action only 

produced the least reliable results. One reason for the prior performance is 

that these methods do not involve the effect of rib shortening. 

 The results confirmed a known fact that the parabolic arch performs best for 

the load case of UDL >> SW, and the catenary for load case UDL << SW 

(Millais 2005), when minimizing the maximum bending moment and 

combined stresses are considered. In reality, when SW and UDL are 

combined, neither of known arch shapes represents an optimal form under a 

range of loading cases and L:h ratios. 

 The optimal shape of two-pin rib arches that is momentless is obtained for 

any ratio of UDL:SW and L:h using an analytical form-finding technique 

(Brew, 2013). 

 Case study shows that the maximum vertical displacement of momentless 

arch was found to be almost half of the maximum vertical displacement of 

the parabolic arch under the same load conditions when UDL:SW > 1. 

 The momentless arch could carry greater loads to have the first cross-

sectional failure than the parabolic arch for UDL:SW > 1 and the same load 

conditions in the case study. 

6.5. Recommendations for future work 

6.5.1. Further work on form-finding of arch structures 

It would be interesting to expand the conducted work of analytical form-finding of 

two-pin arches to their three-dimensional equivalent of arches, such as domes and 

vaults/tunnels. Exploring the form of an optimal vault and domes has demonstrated 

the validity of the findings in this dissertation for the third dimension. Moreover, the 

structural behaviour could be evaluated for the effect of the third dimension. This 
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project will also give an in-depth understanding of the structural action of domes and 

vaults. Hence, the form-finding of tunnels and vaulted structures could be carried 

out in isolation as a novel topic. It is expected that this proposed research area will 

also indicate the significant effect of small changes to structural form on the 

structural behaviour; in particular, the stresses produced within the structure 

material.  

This study was also carried out for static loading when the uniformly distributed load 

was applied across the full span of the arch. Therefore, another potential research 

area is the application of the proposed analytical form-finding technique for two-pin 

arches and 3D dome and vault structures under transient loading. In this regard, the 

effect of dynamic loading on structural response could comprehensively be 

assessed. Thus, a vast amount of information could be collected to provide for arch-

based structures that could carry their self-weight and transient loading. The project 

will test the hypothesis of ideal shapes of arch-based structures as momentless 

forms for variable loading, which advances their safety and durability compared to 

the existing equivalent structures. The contribution of finding the optimal form while 

applying variable loads could be studied for real cases with the criterion of finding 

the minimum collapse load. In view of the proliferation of studies on the collapse 

and buckling load of arches subjected to dynamic loading, the results of the 

proposed shape could then be compared to the available results of the 

corresponding form. This project could be defined separately for two-pin and fixed-

ended arches, and also three-dimensional designs of arch structures. The effect of 

the imposed transient load on finding the optimal form of arch-based structures 

could be explored in parallel with considering the appropriate structural materials.  

The work here was mainly analytical, which required numerical calculation to 

achieve the ultimate solution. On the other hand, an experimental approach could 

provide a solution that is more easily understood, due to the visualisation of 
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practical aspects. A new prospective project could be defined as finding the optimal 

form of two and three-dimensional arch structures individually using experimental 

tools.  

6.5.2. Further work on different methods of analysis 

The arches were analysed in Chapter 4 using the second theorem of Castigliano 

when strain energy was based on full structural action for static load. This work 

could be examined for other load cases, such as that involving patch loading, e.i., a 

uniformly distributed load applied on half of the arch span. The difference of 

applying different analysis methods might also be highlighted more in the presence 

of the patch load. Thus, more research could be carried out on the topic of different 

methods of arch analysis, indicating the amplitude of the different results. This work 

may lead to finding a specific load condition in which the obtained results using 

different analysis methods differ significantly from each other.  

6.5.3. Further work on computational analysis of arch structures 

Each form of common shape of arch, including catenary, parabolic, and circular, 

showed similar behaviour for the considered range of UDL:SW ratios. Only the 

magnitude of structural response varied when UDL:SW was changed in that 

determined range. It is however also possible to find a certain value of UDL:SW 

ratio, beyond which the arch behaves differently. This work also indicates the effect 

of UDL:SW on structural behaviour. Moreover, possible further effort lies in the 

comprehensive computational analysis of two- and three-dimensional arch 

structures under their self-weight and transient load conditions. Stress analysis of 

arch structures under static and dynamic loads could allow the designers to make 

informed choices in design using the appropriate arch form. 
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Glossary 

Approximate method A computational method which is based on 

assumptions to simplify the problem 

Arch ring The curved member that is the major supporting 

component in an arched structure. A single span arch 

may built of single- or multi-ring 

Arch structure A curved (concave down) structure spanning 

between two supports that carries a large amount of 

applied load in compression 

Axial deflection Arch structures can resist compressive stresses 

which produce compressive strains. These strains 

cause axial deflection and reduction in arch height 

because of crown deflection. This height reduction 

generates additional compressive forces in the arch. 

Castigliano second 

theorem 

The theorem used to calculate horizontal reaction 

force of statically indeterminate arch. The 

displacement at a point is equal to the derivative of 

strain energy with respect to a force acting at the 

point 

Catenary shape The shape of an inextensible chain that hangs under 

its own weight  

Combined stress Combination of axial stress and bending one  

Coupling term The term refers to the combination of axial force and 

bending moment in strain energy equation  

Elastic material The material that its deformation is in proportion to 

the applied load and the deformation is recoverable 

when the applied force is removed 

Flat arch The arch with high L:h ratio that could carry the most 

applied load (90%) using bending moments 

Form Correspondent to shape 

Form-finding A technique that uses optimization methods to find 

the optimal form of structure under a particular load 

condition (Otto, 1995) 

Funicular Derived from Latin word for “rope”. A cable subjected 

to load deforms depending upon the load. The 

acquired form is called funicular 

Funicular structure A structure that is in equilibrium state by adopting a 

form corresponding to the applied load 

GSA Finite element structural analysis software used to 



Glossary 

190 

analysis arch structures 

Hogging bending moment The bending moment results in convexity upwards in 

beam which generates tension in top fibres of the 

beam; also called negative bending moment 

Hunching Consisting large coarse sandstone blocks possibly 

cemented together behind the arch above the 

springing  

Load case Illustrates the load situations used in analysis   

L:h ratio The ratio of span to height of the arch 

Masonry design method A design method used for arches laid out in the 

Structural Masonry Designers’ Manual (Curtin et al, 

2006) 

Momentless Having bending moment equal to zero within the 

structure 

OpenSees Finite element analysis software used in this study to 

simulate response of the arch 

Optimal shape An efficient structural shape that transfers loads while 

the magnitude of action effects is relatively small 

Parabolic shape The shape of a weightless chain that carries a 

uniformly distributed load along its span  

Rib arch 

 

An economical design in which the voussoirs are 

replaced by discreet arch rings. Rib arches comprise 

of either closed spandrels, with the ribs supporting 

solid spandrel walls, or open spandrels, with columns 

rising from the extrados to support the deck structure  

Sagging bending moment The bending moment results in concavity downwards 

in beam which generates compression in top fibres of 

the beam; also called positive bending moment 

SAP Finite element structural analysis software used to 

analysis arch structures 

Semi-empirical method A method used empirical corrections and data in 

parallel with additional approximations to speed up 

the calculations 

Sensitivity analysis An analysis to assess structure response when 

design variable changes 

Shallow arch The arch with high L:h ratio which is sensitive to axial 

deformation 

Shearing resistance angle It is a soil friction angle that derived from Mohr-

Coulomb failure criterion and it is used to describe 

the friction shear resistance of the soil 
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Shortening  Increasing compressive forces in pin-ended arches 

due to increasing L:h ratio causes arch rib to be 

shortened 

Slender When the cross-sectional dimensions of the arch are 

small compared to the radius of curvature of arch 

centre line 

Springing Points/level at which the arch begins to rise from its 

supports 

State of static equilibrium When forces acting on an object which is at rest are 

balanced 

Structural action effect The resulting effects of structural actions such as; 

bending moments, displacements, and stresses 

Ultimate passive 

deflection of soil 

The deflection that is necessary to mobilize earth 

ultimate passive pressure. This pressure is the 

highest limiting lateral pressure developed at the 

onset of shear failure in the direction opposite to the 

direction of acting earth pressure 

Virtual work method An analysis method to calculate the horizontal 

reaction force of statically indeterminate structures 

Voussoir A wedged shape element typically a stone that used 

to construct arch structures 
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Appendix A: Theoretical analysis of a two-pin circular 

arch using Castigliano’s approach 

The circular rib arch of uniform lineal density q supporting a superstructure of 

uniform density w per unit span is analysed using the second theorem of 

Castigliano. The half of two-pin circular arch with the loading applied to it and all 

forces acting along the arch is presented in Figure A.1. Thrust, shear, and bending 

action are denoted with T, F, and M at point P along the length in this figure. The 

height, half span length and the radius of the circular arch are shown by h, l=L/2, 

and R. Therefore b=R-h=RSin(ɣ), in which ɣ is defined as the angle between the 

arch support and horizontal axis. The coordinates of the origin are set at the left 

support of the arch. The angles are defined in the figure below, in which angles θ 

and φ are related to the infinitesimal length of arch ds, and angle β is related to the 

location of arbitrary point P. Because of the symmetry in loading and in arch 

geometry, the analysis is carried out for half of the arch span starting from the left 

support (point A) to the crown of the arch. 

 

Figure A. 1. The two-pin circular arch specification 
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The important parameter is the span-to-height ratio, which is demonstrated as 

L:h=r. The radius of circular arch (R) can be found from the intersecting chord 

theorem as below. 

Substituting l=L/2 and L:h=r gives the radius of the circular arch in terms of the arch 

span and L:h ratio. 

To calculate the vertical reaction force (V), the vertical equilibrium of the circular 

arch subjected to its self-weight (q) and uniformly distributed load (w) is used. 

To find the horizontal reaction force (H), a further equation in addition to the 

equilibrium equations is required due to the arch’s statical indeterminacy of degree 

one. This equation can be obtained using Castigliano’s theorem for a linear elastic 

structure. Hence, H is found by setting the partial derivative of the strain energy, U, 

with respect to H, to zero, i.e., 0




H

U
. 

The assumption made to derive the strain energy is that the rib arch behaves 

elastically in a manner that roughly approximates the Euler–Bernoulli assumption. 

However, coupling of bending and thrust is also considered in the strain energy 

derivation in this study. Hence, the strain energy is a linear combination of terms 

arising from bending, shear, thrust, and the coupling of bending and thrust. The 

strain energy from the Castigliano method is then obtained by integrating full 

structural actions over the entire arch length S. To explore the effect of each term in 

  









l

h

h

ll
R

h

l

l

h

l

R
lhRh

2

2
2 2

 (A.1) 

R

l
and

r

rL
R 1cos

2

24









   (A.2) 

  
















 






2
0

2
2220

arch
qRwlVqRwlVFy  (A.3) 



APPENDIX A 

201 

Castigliano’s theorem, the strain energy can be assumed based on firstly bending 

action only, secondly bending, shear, and thrust, and finally full structural action. In 

this appendix the strain energy arises from the full structural action which can be 

used as a base for other investigations, as given in Equ. (A.4). 

The positive sign in the moment/axial force coupling term is appropriate when the 

axial force is compressive. Since the arch shapes are assumed concave down, the 

sign of coupling term is considered as positive. The horizontal reaction force is 

calculated assuming that the section is materially and geometrically uniform, and 

that the pins are of non-yielding supports.  

where E is the Young’s modulus, A- the cross-section area, k- the shear reduction 

factor on area to account for the non-uniform distribution of shear over the arch 

cross-section, and G- the shear modulus. Assuming isotropic linear elasticity,

)1(2 


E
G , where  is the Poisson’s ratio.  

The bending moment M, thrust T, and shear force F can be determined with the use 

of equations of equilibrium for any arbitrary point P shown in Figure A.1. The 

vertical, horizontal, and rotational equilibrium at point P yields Equs. (A.6), (A.7), 

and (A.8) respectively. 
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To solve the integral in the rotational equation, dR is substituted for ds; hence, the 

above integral in Equ. (A.8) becomes   cossin RRqR    which leads to Equ. 

(A.9). 

Therefore, Equs. (A.6) to (A.8) are rewritten using 


 
2

. 

From Equ. (A.3), 







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

2
qRwlV . Substituting for V in the above equations 

and re-arranging gives 
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To find the thrust and shear force, Equs. (A.13) and (A.14) are solved with each 

other. 

Therefore, the derivative of bending, thrust, and shear with respect to the horizontal 

reaction are respectively:  cos,sin, 








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



H

F

H

T
y

H

M
. Substituting these 

derivatives and M, T, and F from the above equations in Equ. (A.5) yields the 

required equation to find H.  
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To find H, Equ. (A.18) is grouped on the terms with H.  

To find H, Equ. (A.19) is grouped on the terms with H, as H=N/D, where N and D 

are expressed below. 

Substituting cosRlx  , bRy  sin , and dd Rs   and then using the 

symmetry (i.e., β from the left support to the arch crown and from the arch crown to 

the right support is respectively in the range of  2, and   ,2 ), both N 
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and D have a common factor, 2R, which will drop out from the equation presenting 

H. Then N and D can be expressed in terms of an independent variable  . 

 

Now to find N and D, the above integrals are solved for. The lower limit of  is ɣ 

and the upper limit is π/2. To do so, the integrals are split. 
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1. Numerator part  
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Expanding N 1.4 results in Equ. (A.26) as below. 
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2. Denominator part  
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Consequently, N is the summation of Equs. (A.24), (A.25), (A.26), and (A.27) and D 

is the summation of Equs. (A.28), (A.29), (A.30), and (A.31). Therefore, H for the 

general case when full structural actions are assumed in Castigliano’s theorem can 
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be found by dividing N by D, presented as

   43214321 DDDDNNNNDNH  . It can be seen from the split 

equation above that dividing Equs. (A.24) by (A.28), in which are presented the N1 

and D1 respectively, leads to the horizontal reaction force when the strain energy is 

based on bending action only, i.e.,    11 DNH  . This horizontal reaction is the 

same as the one obtained from virtual work method presented by Megson. To find 

the horizontal reaction force when the strain energy in Castigliano’s theorem is the 

linear combination of bending, shear, and thrust terms, the summation of Equs. 

(A.24), (A.25), and (A.26) is divided by the summation of Equs. (A.28), (A.29), and 

(A.30), i.e.,    321321 DDDNNNH  . 

The studied circular arch in Chapter 4 is analysed using Castigliano’s theorem when 

the strain energy results from the full structural action. From Chapter 4, w=20000 

N/m, q=7200 N/m, L=10 m, k=0.845, υ=0.2, I=0.00225 m4, and E=2.7e10 Pa. 

Applying the above equations to the circular arch leads to finding the horizontal 

reaction force for L:h ratios from 2 to 10 as presented in Table A.1. 

  
Table A. 1. Horizontal reaction force of circular arch (N) subjected to load case A1 

L:h h(m) R ɣ=cos
-1

(l/R) N D H 

2 5 5 0 1.95E-05 3.23E-10 60452.11 

3 3.33 5.42 0.39 1.09E-05 1.11E-10 98408.81 

4 2.5 6.25 0.64 6.67E-06 4.99E-11 133669.8 

5 2 7.25 0.81 4.45E-06 2.64E-11 168107.2 

6 1.67 8.33 0.93 3.16E-06 1.56E-11 202146.1 

7 1.43 9.46 1.01 2.35E-06 9.97E-12 235892.4 

8 1.25 10.62 1.08 1.82E-06 6.74E-12 269352.9 

9 1.11 11.8 1.13 1.44E-06 4.77E-12 302496.4 

10 1 13 1.18 1.17E-06 3.5E-12 335274.2 

 

It can be seen from the table above that the results of the horizontal reaction force 

of the circular arch are the same as those presented in the last column of Table 4.1.
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Appendix B: Theoretical analysis of a two-pin 

parabolic arch using Castigliano’s approach 

The two-pin parabolic arch to be analysed is geometrically and materially symmetric 

and subjected to the symmetric loading of the general combination of UDL plus SW, 

see Figure 5.1. The arch is of linearly elastic material with non-yielding supports. To 

find the horizontal reaction force of this parabolic arch using Castigliano theorem, 

the half of arch is analysed, hence, the starting point of the analysis is set at the left 

support. The arch with the external and internal forces is demonstrated in Figure 

5.4. In that figure, η is substituted by  here which is the variable defined alongside 

the x-axis. 

The general equation of the parabolic arch is cbxaxy  2
 in which a, b and c 

can be obtained using boundary conditions. Therefore, the equation of parabolic 

arch considering y(0)=0, and y(L/2)=h is )(4 2 LxxLhy  . Accordingly, to 

adapt the procedure of finding the horizontal reaction force for the parabolic arch, 

the length of the infinitesimal piece of the arch curve, ds, is defined depending on 

the angle of inclination of the x direction. Hence, the arch length (S) can be 

calculated as below.
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 The derivative of parabolic arch equation with respect to the x then gives

)21(4' LxLhy   . Followed by, sin(α) and cos(α) for 0≤α ≤π/2 are calculated 

using trigonometry.  

A radius of parabola is different for every point of the curve other than its mirror 

point on the axis of symmetry. The radius of parabolic arch is: 

Similar to Appendix A, the vertical reaction force (V) of two-pin arch can be found 

from the equilibrium equations of the arch as shown in Equ. (B.4). 

The thrust, shear, and bending moment at any arbitrary point on the arch are then 

derived from the three equilibrium equations i.e. vertical, horizontal, and rotational 

equilibrium.  

To calculate T and F, Equs. (B.5) and (B.6) should be solved together, thus thrust 

and shear force are obtained and presented in Equ. (B.8) and (B.9) individually. 
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Also, substituting vertical reaction force from Equ. (B.4) in the equation of bending 

moment leads Equ. (B.7) to be simplified and presented as Equ. (B.10). 

As it was explained in Appendix A, the two-pin arches are statically indeterminate 

and a further equation is required to obtain the horizontal reaction force (H). This 

supplementary equation can be acquired using Castigliano’s theorem for a linear 

elastic arch, see Equ. (A.5). In this regard the derivative of T, F, and M with respect 

to H is obtained. 
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Substituting F, T, and M from Equs. (B.8), (B.9), and (B.10) and their derivations 

from Equ. (B.11) into Equ. (A.5) yields to calculating horizontal reaction force such 

as;
D

qQwW
H


 . In this equation, w and q are UDL and SW respectively as 

shown in Figure 5.1. Derivative of strain energy with respect to H is shown below. 
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On grouping the terms with H leads to: 
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Substituting x
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y   and using x in the range of 

(0, L/2), gives the total equation becomes as below in which all terms have a 

common factor 
2

2
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1)(
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L

h
  which drops out of the equation. On grouping 

the terms with H and using x as an independent variable, denominator and 

numerator (H=N/D) are found where numerator is the combination of W (terms 

related to SW) and Q (terms related to UDL). In equations below, 1/g2 is assumed 

as A/I, in which g is the radius of gyration of the cross-section.  
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Where C1, C2, and C3 are defined next. 
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The W terms are calculated as below where W1 is bending term, W2 is thrust and 

shear term, and W3 and W4 are coupling terms. 
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The Q terms regarding SW includes Q1 and Q2 as bending terms, Q3, Q4, and Q5 

as thrust plus shear terms and Q6, Q7, Q8, and Q9 as coupling terms.  
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Then denominator (D) of H equation is derived as a combination of D1 for bending 

term, D2 and D3 for thrust and shear terms, and D4 for coupling term. 
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The parameters used in above equations were defined previously in Appendix A.  

Therefore, the horizontal reaction force of the parabolic arch when strain energy is 

based on full structural action is obtained by substituting Wi, Qi, and Di into Equ. 

(B.12). 

The horizontal reaction force of parabolic arch when strain energy is the linear 

combination of bending, thrust, and shear can be calculated from Equ. (B.13). 

Finally, the horizontal reaction force when strain energy is based on bending action 

only is calculated from Equ. (B.14). 

The studied parabolic arch in Chapter 4 is analysed using Castigliano’s theorem 

when the strain energy results from the full structural action. Therefore using Equ. 

 
 

4321

987654321

4321
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H



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(B.12) leads the horizontal reaction force of the parabolic arch to be obtained 

considering full structural action, when w=20kN/m, q=7.2kN/m, L=10m, k=0.845, 

υ=0.2, 1/g2=133.33m-2, see Table B.1. 

 
  
Table B.  1. Horizontal reaction force of parabolic arch (kN) subjected to load case 
A1 

L:h h(m) S D W Q H 

2 5 14.79 10943.72 27354.13 35650.35 73.45 

3 3.33 12.45 4402.29 16495.04 18960.18 105.95 

4 2.5 11.48 2374.90 11853.51 12898.14 138.93 

5 2 10.98 1489.10 9278.88 9815.55 172.08 

6 1.67 10.70 1022.88 7636.82 7948.13 205.27 

7 1.43 10.52 747.06 6495.39 6691.76 238.39 

8 1.25 10.40 570.24 5654.41 5786.12 271.38 

9 

10 

1.11 

1 

10.32 

10.26 

450.02 

364.53 

5008.26 

4495.85 

5100.85 

4563.39 

304.19 

336.79 

 

It can be seen from the table above that the results of the horizontal reaction force 

of the parabolic arch are the same as those presented in the last column of Table 

4.5. 

Once the horizontal reaction force is found, the location of maximum bending 

moment can be calculated. In order to find the combined compressive stress, the 

substantial stress is considered at the outer surface of the arch beam cross-section. 

The combined stress (σ) is presented in Equ. (B.15) in which T and M are 

substituted from Equs. (B.9) and (B.10). 

where z’ is the distance of the surface from neutral axis in this equation. The 

location of maximum combined compressive stress then can be obtained. 

A

T

I

Mz


'
  (B.15) 
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Appendix C: Programming the momentless shape of 

two-pin arch 

The geometry of the momentless arch is obtained using MATLAB code below that 

gives x and y coordinate of momentless arch by choosing a number of required 

nodes for the half of the arch; from left support to the mid-span. It is also assumed 

that L:h ratio, and loading are defined values. Using this code, the shape of the half 

of the arch will be plotted. The written program for A’ when k2<1 with the initial value 

of A’ equal to 3, gives the constant for catenary arch form for any L:h ratio. 

However, A’ is replaced by Acat in MATLAB script to avoid error when the program 

is running. 

 

n= n ; %(number of nodes till half span) 

L= L; 

h= h ; 

w= w; 

q= q; 

r=L/h; 

k=w/q; 

  

if (k^2)<1  

      

Acat=3; 

  

y1=0; 

x1=0; 

L=L; 

h=h; 

r=L/h 

   

for i= 1: 100 
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b= Acat; 

F= y1-h + b*cosh((L/2)/b)-b; 

F1=cosh((L/2)/b) - (((L/2)*sinh((L/2)/b))/b) -1; 

Acat = b- (F/F1); 

i=i+1; 

if abs(F/F1)<0.00000000001;  

break 

end 

end  

  i 

format long 

Acat 

tmax0=sinh(L/(2* Acat)) 

syms tmax; 

Ft= (asinh(tmax)+(k/(1-k^2)^(0.5))*(atan(tmax*k/((1+tmax^2)^(0.5)*(1-k^2)^(0.5)))-
atan(tmax/(1-k^2)^(0.5))))/((1+tmax^2)^(0.5)-1+k*log((k+1)/(k+(1+tmax^2)^(0.5)))); 

options= optimset('TolX',1e-18); 

[tmax exitflag output]=fzero(@(tmax)eval(r/2-Ft), tmax0,options); 

tmax 

H=(q*h)/(k*log((k+1)/(k+(1+tmax^2)^(0.5)))+(1+tmax^2)^(0.5)-1) 

  

for i=2 : n+1; 

     

tsash=tmax/(n) 

t0=tmax 

  

t(1)=tmax-tsash 

t(i)=t(i-1)-tsash 

%Then for n number of nodes, n x and y should be found for each t…means t0 has 
x=0 and y=0 from below equations and t1… 

  

x(1)= (-H/q)*(asinh(t0)+(k/(1-k^2)^(0.5))*(atan(t0*k/((1+t0^(2))^(0.5)*(1-k^2)^(0.5)))-
atan(t0/(1-k^2)^(0.5))))+(L/2); 

y(1)=(-H/q)*((1+t0^(2))^(0.5)-1+k*log((k+1)/(k+(1+t0^2)^(0.5))))+h; 

  

x(i)= (-H/q)*(asinh(t(i-1))+(k/(1-k^2)^(0.5))*(atan(t(i-1)*k/((1+t(i-1)^(2))^(0.5)*(1-
k^2)^(0.5)))-atan(t(i-1)/(1-k^2)^(0.5))))+(L/2); 

y(i)=(-H/q)*((1+t(i-1)^(2))^(0.5)-1+k*log((k+1)/(k+(1+t(i-1)^2)^(0.5))))+h; 
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i+1; 

  

format short  

disp(x) 

disp(y) 

plot(x,y,'r') 

  

end 

  

else 

     

    if k^2>1 

tmax0=4/r; 

syms tmax; 

Ft=(asinh(tmax)+(k/(k^2-1)^(0.5))*(-atanh(tmax *k/((1+ tmax ^2)^(0.5)*(k^2-
1)^(0.5)))+atanh(tmax /(k^2-1)^(0.5))))/((1+ tmax ^2)^(0.5)-1+k*log((k+1)/(k+(1+ 
tmax ^2)^(0.5)))) 

options= optimset('TolX',1e-18); 

[tmax exitflag output]=fzero(@(tmax)eval(r/2-Ft), tmax0,options); 

tmax 

H=(q*h)/(k*log((k+1)/(k+(1+tmax^2)^(0.5)))+(1+tmax^2)^(0.5)-1) 

  

for i=2 : n+1; 

     

tsash=tmax/(n) 

t0=tmax 

t(1)=tmax-tsash 

t(i)=t(i-1)-tsash 

%Then for n number of nodes, n x and y should be found for each t…means t0 has 
x=0 and y=0 from below equations and t1… 

   

x(1)=(-H/q)*(asinh(t0)+(k/(k^2-1)^(0.5))*(-atanh(t0*k/((1+t0^(2))^(0.5)*(k^2-
1)^(0.5)))+atanh(t0/(k^2-1)^(0.5))))+(L/2); 

y(1)=(-H/q)*((1+t0^(2))^(0.5)-1+k*log((k+1)/(k+(1+t0^2)^(0.5))))+h; 

   

x(i)=(-H/q)*(asinh(t(i-1))+(k/(k^2-1)^(0.5))*(-atanh(t(i-1)*k/((1+t(i-1)^(2))^(0.5)*(k^2-
1)^(0.5)))+atanh(t(i-1)/(k^2-1)^(0.5))))+(L/2); 

y(i)=(-H/q)*((1+t(i-1)^(2))^(0.5)-1+k*log((k+1)/(k+(1+t(i-1)^2)^(0.5))))+h; 
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i+1; 

  

format short  

disp(x) 

disp(y) 

plot(x,y,'b') 

  

end 

     

    else 

         

       %if (k^2)=1 

  

tmax0=4/r; 

syms tmax; 

Ft=((1/tmax)*((1+tmax^2)^(0.5)-tmax*asinh(tmax)-1))/(1-
(1+tmax^2)^(0.5)+log((1+(1+tmax^2)^(0.5))/2)) 

options= optimset('TolX',1e-18); 

[tmax exitflag output]=fzero(@(tmax)eval(r/2-Ft), tmax0,options); 

tmax 

H=(q*h)/(-log((1+(1+tmax^2)^(0.5))/2)+(1+tmax^2)^(0.5)-1) 

  

for i=2 : n; 

     

tsash=tmax/(n) 

t0=tmax 

t(1)=tmax-tsash 

t(i)=t(i-1)-tsash 

%Then for n number of nodes, n x and y should be found for each t…means t0 has 
x=0 and y=0 from below equations and t1… 

  

x(1)=(H/q)*((1/t0)*((1+t0^2)^(0.5)-t0*asinh(t0)-1))+(L/2); 

y(1)=(H/q)*(log((1+(1+t0^2)^(0.5))/2)+1-(1+t0^2)^(0.5))+h; 

  

x(i)=(H/q)*((1/t(i-1))*((1+t(i-1)^2)^(0.5)-t(i-1)*asinh(t(i-1))-1))+(L/2); 

y(i)=(H/q)*(log((1+(1+t(i-1)^2)^(0.5))/2)+1-(1+t(i-1)^2)^(0.5))+h; 
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i+1; 

  

format short  

disp(x) 

disp(y) 

plot(x,y,'g') 

  

end 

       end 

    end 

     

Here, 41 nodes were chosen to plot the half of the arch. Moreover, the span and 

height of the arch are taken from studied arches in subsection 3.3.1 equal to 10 m 

and 5 m (L:h=2) with SW=7.2 kN/m and UDL=20 kN/m. Therefore, the arch will be 

plotted when k2>1.  

 

 

Figure C. 1. The shape of the momentless arch when UDL:SW>1 for half of the arch 

 


