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Abstract

Foot-and-mouth disease (FMD) is a highly infectious disease affecting cloven-hoofed

ruminants. FMD is endemic across Asia, Africa and South America and, as demon-

strated by the 2001 outbreak in the UK, can cause devastating epidemics in FMD

free countries.

A comprehensive dataset comprising the births, deaths and farm-to-farm

movements of almost fifty million cattle was made available to us by the Turkish

authorities. In chapter 2 we discuss the processing, cleaning and analysis of this

dataset. Cattle movement networks were built using farms as nodes and the farm-

to-farm movements as edges before performing a network analysis.

The richness and completeness of the Turkish data set is not generally avail-

able to modellers. In chapter 3 we implement various sampling strategies to determ-

ine the quantity of network data required to give accurate epidemiological predic-

tions, using the British cattle trade network as a case study.

In chapter 4 we introduce community detection as a method for analysing the

cattle movement networks of both the UK and Turkey. This analysis goes beyond

the calculation of the farm level statistics calculated in chapter 2 and seeks to find

higher order structures in these networks.

Chapter 5 develops a within farm model of FMD by drawing on outbreak data

from two farms of different sizes in Turkey. This model is parametrised by running

a Bayesian inference scheme on the smaller of the two farms. Simulations were then

performed on both farms using the inferred posterior parameter distributions.
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Chapter 1

Foot-and-Mouth disease and the

modelling of infectious disease

I recollect a singular contagion of the year 1514 which affected only

oxen; it first showed itself in the district of Frioli, then gradually

extended to northern Italy and thence reached our country. At first the

ox went off its feed without any obvious cause, but if the herdsmen

looked into the mouth a certain roughness and small pustules were

noted on the palate and the whole oral cavity. It was necessary at once

to isolate the infected beast from the rest of the herd, otherwise all

became affected. Gradually the disease descended to the shoulders and

thence to the feet, and almost all the beasts in which this happened

recovered, but when it did not, they usually died.

Hieronymus Fracastorius [1546]

Foot-and-mouth disease (FMD) is a highly infectious, viral disease which

affects cloven-hoofed ruminants. Primarily cattle, buffalo, sheep, goats and pigs are

affected but antelope, deer and bison have also been infected[Arzt et al., 2011a,b].

The disease manifests as blisters on mouth, feet, nose and udders of the infected

animal.

In regions of the world where FMD is endemic there are large numbers of

cattle which act as a reservoir and though small ruminants can play an important

role in the transmission process it is not known if FMD can be maintained without

a large cattle population [OIE, 2012].

There are seven serotypes of FMD and it is generally accepted that infec-

tion with one serotype does not confer immunity against another [Mardones et al.,

2010], though there is no evidence to suggest that an animal can be infected by two
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serotypes at the same time. Each of these serotypes is further divided into multiple

strains.

In this thesis we examine the techniques for predicting the size and extent

of FMD epidemics in the UK and build a model to aid in our understanding of

endemic FMD in Turkey. This introduction aims to put FMD in context and intro-

duces immunity and vaccination of which a basic understanding is necessary before

embarking on the development of mathematical models.

1.1 FMD in a global context

Hieronymus Fracastorius described an infectious disease of cattle with symptoms

resembling the disease we know as FMD. Fracastorius’ account was dated 1514

suggesting that FMD is at least 500 years old. We shall describe the current state

of FMD. Though a detailed and fully referenced history of FMD during the 20th

century is available in Jamal and Belsham [2013]i.

Member nations of the OIE are given an FMD status which is updated on

the OIE website [OIE, 2015], figure 1.1. The entire EU and Kazakhstan, North

America, Oceania, Japan and regions of both South America and the south of Africa

are currently classified as free from FMD without vaccination. The majority of the

South American continent is FMD free with vaccination while Africa and Asia do

not have an official status for FMD. FMD is endemic across Asia and most of Africa.

In general FMD is not fatal and most animals will recover though they may

suffer from reduced milk yield and lameness [Grubman and Baxt, 2004]. However

due to the efforts to contain the disease and international trade bans on countries

without FMD free without vaccination status the economic costs of the disease

are estimated at between US$6.5 million and US$20 million a year. These large

economic losses due to endemic FMD tend to hit the world’s developing countries

the hardest where more people are directly dependent on livestock. A breakdown of

the effects of FMD and estimates of their associated costs is given in Knight-Jones

and Rushton [2013].

The impact of FMD is not limited to developing countries where the disease

is endemic. Over the course of the past 15 years there have been several incur-

sions of FMD into traditionally disease free countries which have had devastating

consequences to the agricultural sectors and the wider economies of the affected

countries. The most widely documented of these was the 2001 outbreak in the UK

[Anderson, 2002]. During this outbreak a total of 10 million cattle and sheep were

iFor a pre-20th century picture try Greenwood [1927] which comes with a map.
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Figure 1.1: OIE member countries’ offical FMD status map last updated in May
2015. This map is reproduced from the OIE website.

culled and the crisis was estimated to have cost the UK US$16 billion [Anderson,

2002; National Audit Office, 2002]. Other notable epidemics have occured in the

Miyazaki prefecture of Japan [Nishiura and Omori, 2010] and in South Korea both

in 2010 [Yoon et al., 2015].

Whilst FMD is a global disease not all of the seven serotypes are ubiquit-

ous (figure 1.2). Serotype O is the most common and the most studied - it was a

strain of O that caused the UK 2001 outbreak - and is seen in all regions suffering

from FMD. Described as pandemic, serotype O is designated as the PanAsia strain

which was confined to India until the late 1990s. Since 1996, serotype O has spread

across most of Asia, through the Middle East and into Africa and South America. A

comprehensive list of the dates of outbreaks of serotype O across the world is avail-

able in Jamal and Belsham [2013] with more detailed discussion and classification

of regions that have been infected by different strains of O available in Rweyemamu

et al. [2008].

The next most common serotype is A followed by Asia-1 which has not yet

been seen in Africa or South America. There are three strains dubbed SAT-1, SAT-2

and SAT-3 which have emerged from the Southern African Territories and have not

been seen outside of Africa. The SAT strains differ from the pan-Asian strains in

that they do not appear to rely on a reservoir of domestic cattle to persist and

can be maintained in African buffalo. The seventh serotype, C, has had not been
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Pool 1 (O, A, Asia 1) 

Pool 2 (O, A, Asia 1)  

Pool 3 (O, A, Asia 1) 

Pool 4 (O, A, SAT1, 2)  

Pool 5 (O, A, SAT1, 2) 

Pool 6 (SAT1, 2, 3)  

Pool 7 (O, A)

Figure 1.2: Geographical distribution of seven pools of foot-and mouth disease vir-
uses. Serotype O FMDV is the most widely distributed serotype of the virus (in 6
of the 7 indicated virus pools) whereas, in contrast, SAT3 is only present in pool
6 (within southern Africa). The Asia-1, SAT1 and SAT2 serotypes also have quite
limited geographical distribution. However, individual countries can have multiple
serotypes in circulation at the same time and hence it is necessary to be able to
determine which serotype is responsible for an outbreak if vaccination is to be used.
Countries which are normally free of the disease (marked in yellow) can still suffer
incursions of the virus which can have high economic costs. Reproduced from Jamal
and Belsham [2013]

reported since 2005 in Ethiopia and may now only exists in laboratories [Jamal and

Belsham, 2013].

1.2 Transmission and diagnosis

Outbreaks of FMD are normally associated with the movement of infected animals

(either domestic or wild) and their subsequent contact with susceptible animals or

through indirect transmission of contaminated products. Airborne transmission has

also been suggested given the correct environmental conditions [Grubman and Baxt,

2004]. As cattle are believed to be the main drivers of the disease and as the data

we have available from both Turkey and the UK only pertains to cattle we shall

focus on the disease process in cattle only.

After being exposed to FMD virus a cow enters a latent period during which

the cow is infected but is not infectious [Arzt et al., 2011b]. Latent is often syn-

onymous with incubation but for FMD there is a difference. The incubation period

generally refers to the time from exposure to symptomatic or clinical, while a cow
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infected with FMD may become infectious sub-clinically [Charleston et al., 2011].

All secretions and excretions of an infectious cow may contain FMD virus,

including respired air. After acute infection cattle recover though in some cattle the

virus may persist these cattle are descriped as being in a carrier state. There is no

experimental evidence that cattle in a carrier state can transmit the virus to näıve

cattle [Grubman and Baxt, 2004].

Animals are first diagnosed clinically; symptoms include a high fever and

excessive salivation and the formation of vesicules mainly in the mouth and between

the digits of the feet. These symptoms are not just signs of FMD and can also be

brought about by other diseases such as vesicular stomatisis. Laboratory tests are

therefore also necessary to correctly diagnose FMD and to classify the serotype and

strain of the virus.

1.3 Vaccination and immunity

Control of infectious disease both in humans and animals has been practised for

centuries. The goal of any control measure is to to break the transmission chain

between the infected host and the rest of the susceptible population. There are two

obvious ways to achieve this; either remove the infected host or directly protect the

population.

Removing the infected host can be achieved through isolation in the form of

quarantine. The word quarantine comes from the Venetian dialect quranta giorni -

forty days, and relates to the forty days ships and vistors to the city of Dubrovnik

has to spend in isolation for fear of the Black Death in the 14th century. The practice

of quarantine itself dates further back to at least biblical times, Leviticus 14-46:

“All the days wherein the plague shall be in him he shall be defiled; he is

unclean: he shall dwell alone; without the camp shall his habitation be”

In the veterinary world quarantine is not always feasible and removal of the

infected host is often carried out by culling of not only the identified infected host

but also the host’s contacts whose disease status may be unknown. In the 2001 UK

outbreak this strategy of culling not only the infected host’s farm but also culling

contiguous premises (CPs) and other farms identified as dangerous contacts (DCs)

was the adopted [Tildesley et al., 2009], and ultimately successful, control strategy,

though one that was and remains highly controversial [Kitching et al., 2005]. The

costs of culling however are very high, both economically with compensation being

paid to affected farms, and politically as piles of burning, slaughtered cattle conjure

an emotive image.
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While culling can be highly effective in the containment of an epidemic of

FMD it is generally politically infeasible in a country such as Turkey, where FMD is

endemic. In the endemic situation where the goal is to lower the disease burden until

eventual eradication, control must be practised through improved animal health

practices and mass vaccination campaigns.

A global strategy for the control of FMD has been composed jointly by the

OIE and FAO [FAO and OIE, 2012]. The FMD Progressive-Control-Pathway (PCP)

is a key feature of this strategy and acknowledges that vaccination will be the main

control strategy [Sumption et al., 2012].

1.3.1 The mechanism of vaccination

The FMD virus enters infects healthy cells in the animal, it then replicates. During

replication the FMDV linear RNA is used to create structural proteins (SP) and

non-structural proteins (NSP). The NSP aid production of SP and when the infec-

tious virus is produced within an infected cell NSP are left in the cell [Doel, 2003;

IAEA and FAO, 2007], for a schematic see figure 1.3.

Vaccine is produced in a laboratory by the inactivation of the FMD virus

which is then purified of NSP. Thus, if a cow has been injected with a well purified

vaccine it will test positive for antibodies to SP but negative to antibodies of NSP.

A cow will only test positive to NSP if it has acquired infection naturally and is

actually in a recovered, not vaccinated stated. Recent advances in the production

of vaccines have therefore allowed for the development of a test which distinguishes

between cattle that have been naturally infected with FMD and those that have

been vaccinated [IAEA and FAO, 2007; Paton et al., 2014]. This test is of vital

importance to countries seeking to gain or regain the moniker ‘free from FMD with

vaccination’ from the OIE.

Vaccines are serotype and strain specific and must be manufactured based

on what form of FMD is prevalent in a region. It is possible to vaccinate against

multiple serotypes simultaneously by producing polyvalent vaccines [Doel, 2005;

Knight-Jones, 2014].

Vaccines have an associated efficacy which is the reduction in a attack of vac-

cinated individuals compared to unvaccinated individuals, under ideal conditions.

This is tested for in clinical trials. However as field work does not take place under

ideal conditions vaccine effectiveness (VE) must be calculated instead [Knight-Jones

et al., 2014b]. VE is associated with how well the vaccine matches the circulating

strain of FMD, the receiver animal’s vaccination history, storage of the vaccine, ad-

herence to the cold-chain, purification and delivery of the vaccine, and the vaccine’s
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The new infectious virus leaves the cell leaving behind NSPs

RNA is read and proteins are produced

NSPs aid the SPs in assembly

Infectious virus infects the cell

Figure 1.3: Sequence of events in a FMD infected cell. A healthy cell is infected by
FMD virus, RNA is read and both structural (blue) and non-structural (pink) pro-
teins are produced. The non-structural proteins (NSPs) aid the structural proteins
(SPs) in assembling new FMD virus. The new infectious virus leaves the cell but
NSPs are left behind. Figure inspired by IAEA and FAO [2007].
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efficacy.

Due to these factors the vaccine effectiveness must be determined by field

studies. One such field study, carried out in Turkey, comprised the PhD work of

Theo Knight-Jones [Knight-Jones, 2014; Knight-Jones et al., 2014a] in which he

determined that the FMD Asia-1 TUR 11 vaccine had a VE of 69% [95% CI: 50%

to 81%].

It is recommended that calves be vaccinated between 2-4 months and then

again one month later [Doel, 2003], this dose course is prescribed to ensure successful

vaccination if the first dose were to fail due to maternally derived immunity (see

1.3.2) . Protection from a course of vaccination typically last 6 months [Doel, 2005],

as such mass vaccination campaigns in Turkey are generally carried out twice a year

[Knight-Jones, 2014].

1.3.2 Maternally derived immunity

A calf whose mother has sufficient antibodies to FMD virus will derive some level

of immunity to the virus. This maternally derived immunity (MDI) to FMD virus

has been reported to persist in calves for up to 5 months [Kitching and Salt, 1995],

though this will of course be strain dependent.

MDI will successfully prevent calves from become infected with FMD. Un-

fortunately these antibodies can also prevent the calf being successfully vaccinated.

MDI levels can wane sufficiently so that that calf can become infected by FMD while

still being high enough to prevent the calf developing an adequate immune response

to vaccination [Doel, 2005; Kitching and Salt, 1995].

Indeed due to loss of MDI before successful vaccination in FMD outbreaks

in both Turkey [Knight-Jones, 2014] and Bolivia [Gonzales et al., 2014] the age at

which cows were most at risk to FMD was calculated as between 6-18 months.

Humans and other primates receive their mother’s antibodies through the

placenta. However, this is not the case for calves. Calves receive antibodies through

colostrum which is contained in their mother’s milk. As such, depriving a calf of its

mothers milk will prevent the calf from gaining the maternally derived antibodies

and hence from becoming immune, allowing for vaccination at a very young age

[Roeder and Taylor, 2007].

1.3.3 Infection induced immunity

For some diseases after an individual has ceased to be infectious they may immedi-

ately be susceptible to reinfection, for other diseases once an individual has ceased
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being infected they can never be reinfected and are said to be recovered, having

gained immunity to the disease. However for some diseases this immunity may

wane, individuals will eventually cease to be protected and may be reinfected.

It is not clear how immunity wanes in cattle previously infected with FMD.

Doel [2005] reports that cattle reinfected with a homologous strain of FMD remained

immune to reinfection six months after the initial infection, while other earlier stud-

ies report some cattle remaining immune for 4.5 - 5.5 years after infection. A recent

study by Pomeroy et al. [2015] in Cameroon found that immunity to serotype O

lasted on average 3.8 years while for serotype A they concluded that immunity was

lifelong.

1.4 Infectious disease modelling

The study of infectious diseases through mathematical modelling lays its foundations

in the early work by Sir Ronald Ross Ross [1911] an Indian born British medical

doctor who won the Nobel prize for showing that mosquitoes are the host vector for

malaria. Ross [1911] showed that instead of having to eradicate all mosquitoes in

order to eradicate malaria it would enough to reduce their number below a certain

threshold.

Disease modelling became more mathematically rigorous with the introduc-

tion of an ordinary differential equation (ODE) model by Kermack and McKendrick

[1927]. Interest in infectious disease modelling waned slightly during the middle

part of the 20th century but was revitalised by several authors most notably by Roy

Anderson and Robert May [Anderson and May, 1979a,b]. Most work during the

last two decades of the 20th century focused on theory with many influential papers

and books being published, [Anderson and May, 1991; Dietz, 1993]. While theory

is still being developed the increased availability of computer power has led much

research to be focused on large, stochastic simulations rather than the solving of

deterministic equations.

One quantity of particular interest in the study of infectious disease is the

basic reproductive number denoted as R0 (for a history of R0 see Heesterbeek [2002].

This is defined as the average number of secondary cases arising from one infected

individual in an entirely infectious population. It is clear that if R0 < 1 the disease

must die out. A great deal of effort is invested in the calculation of R0.

The most typical model of infectious disease is a compartmental model. In-

dividuals are placed in a compartment corresponding to their disease status and

they progress through the compartments according to some rates. The SI model is
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Figure 1.4: Depiction of an assortment of compartmental models for disease spread.
Transitions between classes in each model are shown by different styles of line. The
SI model by dotted lines, the SIS model by red lines, the SIR model by thick lines,
the SEIR model by dashed lines, and the SEIRS by blue lines. The rate at which
each transition occurs is given above the line.

the most simple of these models; individuals are susceptible (S) until they become

infectious (I) with some rate λ. If we allow for individuals to recover (or die) from

the disease then the model becomes SIR with R indicating the recovered state. Al-

ternatively we can allow individuals to immediately become susceptible again, SIS.

The length of time an individual spends on average in the I state is known as the

infectious period, T. Individuals will cease to be infectious at some rate γ = 1/T .

The basic models can easily be made more complex depending on the disease

being studied. For many diseases there is a latent period during which the individual

has been infected but is not yet infectious. This class is donated by E for exposed

and creates the SEIR model. Individuals will move from exposed to infectious at a

rate σ.

Waning immunity can also be considered by allowing recovered individuals

to become susceptible again, which they will do at a rate w. Incorporating waning

immunity creates the SIRS or the SEIRS model. Figure 1.4 graphically depicts the

models discussed so far.

The rate of infection λ is typically a function of the number of infected

individuals in the population while the other rates γ, σ, and w are independent.

1.4.1 ODE models

Once a model has been decided on it is possible to write down a system of ordinary

differential equations (ODEs) that describe the rate of change of the proportion of

individuals in each compartment. The system of ODEs for the SIR model is given
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below and was first written down by Kermack and McKendrick [1927]

dS

dt
= −βIS (1.1)

dI

dt
= βIS − γI (1.2)

dR

dt
= γI (1.3)

and we enforce that S+I+R = 1 so that the total size of the population. Examining

equation 1.2 we note that if at the start of the epidemic the fraction of susceptible

individuals S(t = 0) is less than γ/β then dI
dt < 0 and the epidemic will die-out.

If on the other hand S(t = 0) > γ/β then the rate of change of proportion of

infected individuals is positive so the epidemic will take-off. The ratio of the rate of

infection to the rate of recovery therefore defines the the basic reproduction number

R0 =
β

γ
. (1.4)

In the form considered above the SIR equations have assumed the population

is closed, there are no births or natural deaths, this assumption is valid if the

time-scale of the epidemic if much less than that of a natural lifespan. However, in

the case of endemic disease we must include demography to allow for a changing

population such that:

dS

dt
= ν − (βI − µS) (1.5)

dI

dt
= βIS − (γ + µ)I (1.6)

dR

dt
= γI − µR (1.7)

where we have ν is the birth rate and µ death rate. We can once again derive

an expression for R0 with the death rate effectively acting to increase the rate of

recovery and decrease R0,

R0 =
β

γ + µ
. (1.8)

Now that we have a population that changes through time we can calculate the

criteria for the diseases becoming endemic, by searching for fixed points (S∗, I∗, R∗).

Setting 1.6 to zero we obtain,

I∗(βS∗ − (γ + µ)) = 0 (1.9)
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which has two solutions, I∗ = 0 which is the disease free state or

S∗ =
γ + µ

β
=

1

R0
(1.10)

implying the proportion of susceptible individuals required for a disease to become

endemic is inveresly proportional to R0. The second fixed point for I∗ is

I∗ =
µ

β
(R0 − 1), (1.11)

since I∗ ≥ 0, R0 again acts as a threshold condition that in order to have an endemic

state R0 must be greater than one.

With the importance of the basic reproductive number established we now

seek ways to control the disease by effectively reducing R0 to be below one.

1.4.2 Herd immunity

In order to eradicate a disease it is not necessary to vaccinate the entire susceptible

population, it is enough to vaccinate a proportion of the the population, p. This

can be easily shown by editing the birth rate in equation 1.5 to be

ν ′ = ν(1− p) (1.12)

which is balanced by a including a νp term in equation 1.7. After a change of

variables we can solve the equations to write down a modified basic reproduction

ratio

R′
0 = (1− p)R0. (1.13)

Imposing R′
0 < 1 gives the the threshold proportion of the population that must be

vaccinated at birth to eradicate the disease

pc = 1− 1

R0
. (1.14)

This phenomenon which allows for the theoretical eradication of disease is

known as herd immunity and a review of its standing in the literature is given by

Fine [1993].

This calculation for pc comes with some caveats and assumptions. While

vaccinating pc of the population will lead to eradication, the time-frame for this

eradication is not explicit, it may take many generations for herd immunity to be

realised. A perfect vaccine which does not wane with time has been implicitly
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assumed, while some vaccines do confer lifetime immunity many do not and hence

the entire population may have to be constantly vaccinated to prevent resurgence

of the disease.

The estimate for R0 also has to be accurate, a slight underestimation can

lead to a drastic increase in the numbers that must be vaccinated. So far only

two diseases rinderpest in cattle [Roeder and Taylor, 2007] and smallpox in humans

have been eradicated, both of these eradications required coordinated vaccination

programmes.

For FMD vaccination can be used in two ways, either reactively in the case

of an outbreak, or as a prophylaxis conducted as part of an ongoing campaign to

control and eradicate the disease.

1.4.3 Heterogeneity in mixing

As discussed so far the models we have presented all make one key assumption; that

of homogeneous mixing. We have assumed that every member of the population

mixes with each other at the same rate, thus every individual has the same risk of

acquiring infection regardless of which individuals are infected. For human popula-

tions our intuition tells us that this assumption must be false. A politician on the

campaign trail can interact with hundreds of people in a day, while a PhD student

writing their thesis may have no social interaction at all.

Heterogeneity in contact structure can be introduced into disease modelling

in a variety of ways. The main drivers of seasonal flu are school aged children.

Through surveys it is possible to estimate how much mixing exists between school

aged children and adults. The ODEs can then be extended to include this with the

mixing between the age groups being encoded in a transmission matrix.

1.5 Network models

A natural way to introduce heterogeneity is to use network models. Networks can

either be artificially created or assembled from data.

In disease terms a network is a collection of nodes that represent the base

infectious unit. They can represent humans, animals, households, farms or any other

division. The nodes are contacted to each other through edges which represent paths

of possible transmission, generally through direct contact.

The network is encoded in an adjacency matrix, A. The most basic network
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has symmetric, binary edges, encoded simply in the adjacency matrix as

Aij = Aji =

1, if a link between i and j exists

0, otherwise.
(1.15)

An epidemic can then be simulated through the network by setting one (or more)

nodes to be infectious. The nodes connected to the seed node can then become

infected either deterministically or stochastically. The disease can then propagate

through the edges of the network infecting susceptible nodes. In this way it is

obvious that the structure of the network will greatly influence the spread of the

disease.

1.5.1 Edge direction and weight

The simple binary network can be an appropriate representation of a data source.

For some social media networks such as Facebook or LinkedIn each link between

members is reciprocated, whilst for others such as Twitter one member can connect

to another without that connection being returned. This is a directed network and

is easily encoded in an adjacency matrix

Aij =

1, if a link from j to i exists

0, otherwise.
(1.16)

We can note that the number of links in the directed graph is the sum over all rows

and columns of A but in the directed case the number of links will be this sum

divided by two.

Binary networks (with and without direction) give each edge that exists the

same value and thus has the same level of importance in the network. In a disease

context this may not be appropriate, we may want to adjust the strength of an edge

to account for the relative risk of transmission along different links. These edges are

said to be weighted and can also be encoded into an adjacency matrix

Aij = wij (1.17)

where wij is the weight (which may be zero) of a link from j to i.
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1.5.2 Dynamic networks

A network does not have to be static. Edges can come and go (or increase and

decrease in weight) as connections are made and broken. In both the modelling

and analysis of livestock networks it is important to consider what time frame most

represents the data [Vernon and Keeling, 2009]. The network could be constructed

daily but then any models may suffer from random effects, if on the other hand the

network is constructed yearly then important seasonal patterns may be missed.

1.5.3 Network analysis

Not only can we simulate the spread of a disease on a network but we can also study

the structure of the network itself. This analysis can allow us to identify nodes and

edges that may by targeted for removal or vaccination [Christley et al., 2005]. The

statistics that we compute from networks may also be compared across different

networks.

Reviews of network analysis techniques as applied to livestock disease have

been performed by Dubé et al. [2009] and Mart́ınez-López et al. [2009] while a

comprehensive review on networks and infectious disease epidemiology in general

was written by Danon et al. [2011]. A general introduction to networks from a more

mathematical perspective is the book by Newman [Newman, 2010].

In chapter 2 we will discuss a variety of different network statistics and

compute them for the cattle movement network in Turkey. The robustness of these

statistics and ability of disease modelling to accurately predict epidemic size and

spread when limited data is available is examined in chapter 3. A novel analysis of

both networks will be undertaken in chapter 4 where we introduce the notion of a

community in a network and perform community detection on the networks.

1.6 Modelling livestock disease

So far we have reviewed infectious disease modelling in a general sense. Much of

what has been described has been motivated with its application to human disease.

However the basic tenets of epidemiological theory remain true. First a decision as

to whether the farm or the animal will be the basic epidemiological unit must be

made. This decision will influence the choice of which classes should be considered

and how heterogeneities in the contact structure should be accounted for.
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1.6.1 FMD in 2001

Prior to the 2001 UK outbreak of FMD livestock models were not widely studied.

This changed dramatically during the outbreak where modellers played a key in the

control of the epidemics through advise to policy-makers.

Three main modelling groups put forward models. The Imperial model [Fer-

guson et al., 2001a,b] is deterministic, solving a set of ordinary differential equa-

tions. Interspread [Morris et al., 2001] is a highly detailed stochastic simulation

model incorporating 54 parameters. The Keeling model [Keeling et al., 2001] is also

stochastic but has a simpler structure than Interspread. A detailed discussion of

the three models can be found in Kao [2002] and Keeling [2005a].

Since the 2001 outbreak other countries have developed models to investigate

hypothetical outbreaks of FMD. NAADSM [Schoenbaum and Disney, 2003] and

DADS [Bates et al., 2003] where both developed for the US, with DADS also recently

being adopted for Denmark [Boklund et al., 2013]. Ausspread [Garner and Beckett,

2005] was developed for Australia while Interspread was refined as Interspread Plus

[Stevenson et al., 2013] and is commercially available. Comparisons between various

combinations of these models have been carried out by Dubé et al. [2007] and Halasa

et al. [2014].

We now discuss in more detail the Keeling model which has the advantage

over the Ferguson model of being stochastic, thus providing a range of possible

epidemic trajectories, but has a more transparent structure than Interspread.

1.6.2 The Keeling model

The Keeling model treats the farm as the basic epidemiological unit and models

the spread of infection between farms based on the spatial locations and livestock

demographics of the farms involved. Each farm i has an associated susceptibility

Si and infectiousness Ii which are determined by the number of cattle ncattle
i and

number of sheep nsheep
i and the relative susceptibility and infectiousness of that type

of livestock

Si = scattlencattle
i + ssheepnsheep

i (1.18)

Ii = icattlencattle
i + isheepnsheep

i . (1.19)
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The transmission process is stochastic such that on any day the probability of a

farm i becoming infected is determined by the equation

Pi = 1− exp

−Si

∑
j∈infectious

IjK(dij)

 (1.20)

where K(dij) is the spatial kernel which defines how a farms infectiousness decreases

with distance from a susceptible farm. The sum is over all infectious farms, creating

an infectious pressure on the susceptible farm rather than explicitly having one farm

infect another. The kernel subsumes all routes of transmission allowing for rapid

parametrization of the model and calculates Euclidean distance between farms.

This work has had many extensions. Variations of the kernel using quickest

route and shortest distance between farms were tested by Savill et al. [2006], though

no benefit to using the original Euclidean distance was found. The the form of Si and

Ii in original Keeling model assumed that a farms susceptibility and infectiousness

increased linearly with farm size. While larger farms will have potentially more

infectious contacts than smaller farms this original assumption would make a farm

with 100 animals 100 times more infectious than a farm with 1 animal. Tildesley

et al. [2008] added and fitted power-laws to equation 1.19 to

Si = scattle[ncattle
i ]ps + ssheep[nsheep

i ]pc (1.21)

Ii = icattle[ncattle
i ]qs + isheep[nsheep

i ]qc . (1.22)

where ps, pc, qs, qc < 1 decreasing the effect of large farms sizes on the rates of

infection.

In a formal parametrization of the model under a Bayesian framework Dear-

don et al. [2010] made use of the extension by Tildesley et al. [2008] as well as

reshaping the kernel with a distance cut-off but introducing a ‘spark’ term to ac-

count for long range infection.

The original work of Keeling et al. [2001] was used to great effect during

the 2001 outbreak since then the model and its various extensions have primarily

used to experiment with control strategies and to assess the strategies implemented

during the outbreak.

During the 2001 outbreak vaccination was not considered a viable control

option. Since then many studies have been carried to determine the optimal control

strategy. Keeling et al. [2003] considered both prophylactic and reactive vaccination

while Tildesley et al. [2006] sought the optimal radius around a farm for reactive

vaccination. The effect of pre-emptive culling during the outbreak was examined by
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Tildesley et al. [2009]

Of course FMD is not the only livestock disease which has come to the at-

tention of modellers. BSE [Kao et al., 2002], scrapie [Kao et al., 2007] and E-coli

[Zhang et al., 2010] have been investigated but of particular interest is bovine tuber-

culosis (BTB). BTB is endemic in the UK and has drawn a lot of focus recently with

regard to the controversial implementation of a badger cull by the UK government.

BTB differs drastically from FMD in that it has a very long latent period, leading

to significantly different dynamics.

The model by Brooks-Pollock and co-workers [Brooks-Pollock et al., 2014]

has differed from the FMD models and the approach of Green et al. [2008] in that

the animal rather than the farm has been used as the basic epidemiological unit.

Transmission occurs between cattle on a farm and from local spread. Cattle move

between farms thus infecting new farms if the cow in question is in the latent or

infectious compartment. The CTS is once again used to determine which cattle

should be moved.

We will follow the more traditional approaches of the previous FMD models

when considering epidemics of livestock disease in the UK (chapters 3 and 4) and

set the farm as our basic epidemiological unit. However, when we turn our attention

to endemic FMD in Turkey in chapter 5 we will focus on the within herd dynamics

of FMD outbreaks and model individual cattle.

1.6.3 Cattle movements

The 2001 FMD outbreak and the Keeling model [Keeling et al., 2001] have given

rise to a wealth of literature and fascinating insights on how to model the spread

of FMD. However, it must be stressed that the Keeling model captures the 2001

outbreak following the enforcement of a movement ban, thus spread is generally

localised. An in depth investigation has since revealed that FMD was imported by

a farmer in Norwich who moved pigs to market, from there it spread across the UK.

The outbreak was detected sometime after this and thus the initial spread of the

infection was due to movement of livestock [National Audit Office, 2002].

Owing to this fact more recent models tend to incorporate livestock move-

ments explicitly into the model, with some, though not all also including a spatial

kernel as another route of transmission, [Kao et al., 2006] . Generally the farm is

still kept as the base epidemiological unit with farms becoming infected through

both the cattle movement network and through local spread, though the question of

how to best deal with movements cancelled in the event of a movement ban remains

an open one.
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The availability of the cattle tracing system (CTS) in the UK has afforded

modellers accurate data to build these network based models. The CTS came into

being in 1998 following the outbreaks of bovine spongiform encephalopathy (BSE)

and was mandated by EU law which required all member states to have a computer-

ised tracing system. All commercial movements of every cow, including movements

through a market are included. Since the 2001 outbreak the quality of this data has

increased as recording became compulsory for all cattle [Green and Kao, 2007].

Modellers can make requests to Defra for extracts of the CTS data. This can

come as individual movements charting the full history of each cow, or as a table

of batched movements giving the off-holding, on-holding, date of movement and the

number of cattle moved in the batch.

This CTS data has allowed for a detailed analysis of the cattle trade network

in the UK, [Green et al., 2006; Kao et al., 2006; Kiss et al., 2006; Tildesley et al.,

2011], which will be discussed in chapter 2. As recording of cattle movements is a

European directive studies have also been carried out in Sweden [Nöremark et al.,

2009], Italy [Bajardi et al., 2012], and France [Dutta et al., 2014; Rautureau et al.,

2012]. We will also perform an analysis on the Turkish cattle movement network.

While the availability of CTS is a great asset to those modelling livestock

disease in the UK, not all countries have the resources to maintain such a detailed

system. In chapter 3 we assess the viability of making epidemic predictions if only

a partial sample of such data were available.

1.7 Aims of the thesis

The purpose of this thesis is to analyse the cattle movement data from Turkey in

the context of FMD with the goal of aiding the Turkish authorities in the control

and eventual eradication of the disease. Each chapter contributes towards this goal.

First we introduce the data and discuss its quality and the processes of cleaning the

data. By applying network analysis we can find identify if there has been inherent

changes in the trade of cattle in Turkey which could be drivers that may reduce or

enhance the spread of FMD.

Chapter 3 serves a dual purpose. By focussing on the UK, a country that

we know to have near complete cattle trade data, we can explore how close to

completeness a data set must be for us to be confident that any analysis of that

network will be robust. Secondly in exploring various sampling techniques we aim

to give policy makers a tool for guiding data collection should the collection of

complete data be too costly.
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We further enhance our knowledge of both the British and Turkish cattle

movement networks by applying community detection methods to these networks.

In doing this we seek to gain deeper insights into the network structure than those

afforded us by traditional network analysis. We also aim to explore community

detection as a a technique to predict which groups of farms are likely to become

infected in an epidemic adding another tool to the policy makers arsenal alongside

locally, regionally, or nationally targeted control measures.

In constructing a within herd model of FMD we build on the modelling

literature, adapting existing compartmental models to suit the epidemiology of the

disease taking into account the cattle farming practices in Turkey. By focusing

within herd we seek to gain a handle on the key parameters that influence the

spread of FMD in an endemic setting.
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Chapter 2

The data

“It is a capital mistake to theorise before one has the data.”

Sir Arthur Conan Doyle, A Study in Scarlett [1887]

After consultation with the Turkish Veterinary authorities facilitated by the

European Commission for foot-and-mouth disease (EuFMD) we were given access

to data from the TurkVet database. In this chapter we will explain how the data

were processed and cleaned. We will also analyse these data statistically, graphically

and using networks.

The most resolved cattle farming unit in Turkey is the holding of which

there are over 2,990,582 and the birth, movement and death data are recorded at

this resolution. For comparison the UK has approximately 70,000 cattle farms. The

number of animals on these holdings can range from fewer than 5 to over 500. As

many of these holdings are small the basic epidemiological unit for recording disease

spread in Turkey is not the holding but the epiunit. An epiunit is a village or a

neighbourhood comprised of several holdings. For simplicity when comparing with

the UK and other countries we will refer to an epiunit as a farm. Histograms of the

number of holdings per farm are shown in figure 2.1 as is the number of births per

holding in 2010.

2.1 Raw data

First we created a database in PostgreSQL to handle the large quantities of move-

ment data available from the TurkVet database. The basis behind an SQL based

database is to create tables of data and to link and query these tables appropriately.

The bulk of the data came in the form of a .dmp file from TurkVet. This file was

extracted into 1491 .xls files, each of which had 65,535 lines of movement data save
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Figure 2.1: Histograms of the number of holding per farm (left) and number of
births per holding in 2010.

the last file that had 30,613 giving a total of 97,677,566 lines of data. The column

headings for each of these are given in table 2.1.

# Column Heading Description

1 Animal ID Cattle ear-tag number
2 From Province The province of origin
3 From District The district of origin
4 From Neighbourhood The farm of origin
5 To Province Mistake here, this is actually the holding of ori-

gin
6 To District The district of destination
7 To Neighbourhood The farm of destination
8 To Holding The holding of destination
9 Departure date The date of departure
10 Arrival date The date of arrival

Table 2.1: Data fields in the event database

The cattle ear-tag is unique to each cow. These consist of a two character

country code followed by twelve digits. For the case of Turkey the first two digits

indicate the province of the cow’s birth. The country code for Turkey is TR.

The TurkVet database records cattle movement and cattle birth. Births are

indicated by the origin and destination holding being the same. Separating the
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Figure 2.2: Cow TR420001738341 taken at a cattle market in Konya by the author
in January 2014. The Turkvet records made available to us show that this cow was
born on the 25th January 2011.

births from the movements gives us 49,870,920 movements and 47,806,646 births.

The departure date and arrival date are the same for 45,443,954 movements

≈91% of all movements. Of the remaining 4,426,966 entries, 255,061 arrived the

day after departure and another 1,758,918 in the following week. However 7,684 are

recorded as arriving before departure. It would appear that most of the remainder

of the discrepancies arise due to clerical error. For instance 15 cattle supposedly

arrived 21,195 days (sixty years) before departure but on querying this we find that

the departure date was given as 17/12/2066 with arrival date as 17/12/2006. For

other cases when it is less obvious which is the correct date to consider we can

look at the other movements by the cattle, choosing the date that ensure causality.

Batches of cattle moved on the same day between the same holdings seem to have

the same errors, finding and fixing the error for one cow should enable fixing for all.

2.1.1 Death data

The next substantial piece of data we have available are cattle death records. This

came in a similar format to the event data and when extracted from the .dmp file

gave 159 .xls files with approximately 65,535 lines in each, giving 10,394,299 death

records in total. The headings for each column are given in table 2.2.

The fourth column indicates the cause of death and these are given in table

2.3. Of these causes #8 accounts for almost 7 million of the 10 million deaths and

refers to cattle slaughtered en masse at a slaughter house. The next most common

with 1.6 million records was #3 which is unknown. Animals specifically killed for

the Kurban festival #10 account for almost 1 million more records.
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# Column Heading Description

1 Eartag Cattle ear-tag number
2 Death Type Cause of death
3 Holding Holding where the animal died
4 Death date Recorded date of death

Table 2.2: Data fields in the death database

# Turkish Rough Translation

1 ‘ANAFLAKTIK SOK’ Anaphylactic shock
2 ‘AYIRIP OLDURME’ Take the killing
3 ‘BILINMEYEN’ Unknown
4 ‘DOGAL OLUM’ Natural death
5 ‘HASTALIK SONUCU’ As a result of disease
6 ‘KANSER’ Cancer
7 ‘KAZARA OLUM’ Accidental death
8 ‘KESIMHANEDE IMHA’ Disposal slaughterhouse
9 ‘KOMBINADA KESIM’ Combined cutting
10 ‘KURBANLIK KESIM’ Kurban sacrifice
11 ‘TASIMA SIRASINDA OLUM’ Death during transport
12 ‘ITLAF’ Cull
13 ‘SAHSI KESIM’ Individual cutting
14 ‘SAHSI IMHA’ Individual disposal

Table 2.3: Causes of death with rough translation

2.2 Processing the data

To begin the process of data cleaning and data analysis the vast sums of data were

imported into a custom made database run through PostgreSQL version 9.3.5. The

large number of events (births, movements and deaths) made handling these data

through conventional software such as MatLab impossible due to memory limita-

tions. SQL based databases use tables as their main data storage containers. A

table was created for each of the three event types. From these initial tables we

could combine entries to create a separate table which would give summary inform-

ation on each individual animal, such as ear-tag, date and place of birth, number of

moves and date and place of death. Joining the event tables together gave 49,307,854

unique cattle ear-tags.

When creating the tables it is good practice to create a primary-key for that

table which uniquely indexes every row in that table. Another table was created to

hold the indexes for each of the events in the other tables along with the index for
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# Births # IDs Proportion

0 1588845 0.032
1 47641339 0.966
2 69926 0.001
3 6637 0.000
4 474 0.000
5 250 0.000
6 291 0.000
7 87 0.000
8 2 0.000
9 3 0.000

Table 2.4: Number of recorded births per ear-tag.

the animal involved in that event. This table had 108,071,865 entries one for each

event and was vital for the quick referencing of events across the different tables.

Now that a ‘cattle’ table and an ‘events’ table existed it was possible to begin

identifying events that needed to be cleaned. A routine was put in place in MatLab

that would query each individual animal from the database and return all events

that animal was involved in. The events would then be checked to make sure that

they happened chronologically between holdings, and that the chain of holdings was

consistent. Cattle which had errors such as the event chain being broken, multiple

births or deaths were identified, to be dealt with later.

2.2.1 Births

In theory cattle ear-tags are unique so there should never be more than one recorded

birth per ear-tag. As seen in table 2.4 the majority of cattle in the database, 96.6%,

have a birth record. Of the remainder, 3.2% have no birth record, 0.1% have two

and 7,519 cattle (less than 0.001%) have multiple birth records.

The temporal distribution of the birth records can now be explored. This can

be done at different resolutions, first the number of births recorded yearly (figure2.3).

The number of records has grown steadily since 2000 with a figure of 4-5 million

births a year being recorded consistently since 2006. The pre-2000 data show some

records which clearly contain errors, with two cattle showing as being born in 1900.

The latest birth date was 8th March 2013. We now focus on the birth records from

2006 to 2012.

Cattle are bred seasonally so we would expect to see seasonal variation in

the number of birth records. In figure 2.4 the birth records from 2006 to 2012 are
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Figure 2.3: Bar chart showing the number of births recorded per year. The leftmost
bar accumulates all records before the year 2000. The 2013 records date until 8th

March.

broken down monthly. The greatest number of births are recorded in January for

the years 2006 to 2010. February and March also have high numbers of records

apart from in 2009 when the peak month was May. The number of birth records

in every month is seen in the stacked bar chart (figure 2.5). This shows that the

accumulative number of births is higher at the start of the year with a minimum

around August.

The final resolution we can probe is the number of birth records per day.

Figure 2.6 shows the number of birth records per day from 2007 to 2012. The most

striking feature of these bar charts is the spike that appears on the 1st January every

year and the smaller spikes that appear on the first day of every other month. These

spikes show a clear reporting bias presumably arising from veterinarians or farmers

not recording the exact birth date correctly.

The extent of this bias can be seen in figure 2.7. Here we plot a histogram

of the proportion of births recorded on the first of the month in each farm. For

comparison with a random day we also make the same plot but for births recorded

on the 25th of the month.

If all days were equal one would expect the proportion of births on any given

day to be distributed around 1
30 = 0.333 with farms with few births populating the

tails of this distribution. We can see that this is the case for births on the 25th
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Figure 2.5: Bar chart showing the number of births recorded per month for the
years 2006-2012.
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Figure 2.7: Histograms of the number of births per farm recorded on the 1st and
25th of the month.

with the distribution tightly centred around 0.2, while for the 1st the distribution is

wide with the majority of farms recording 40% or higher of their births on the 1st.

Indeed many farms record all of their births on the 1st.

2.2.2 Death records

Death records do not appear to have been kept as well as the birth records. The

number of deaths per year are plotted in figure 2.8 and are much less than the

number of births, indicating an increase in the yearly cattle population. Indeed

comparing figure 2.3 and figure 2.8 we would expect the cattle population to have

increased by at least 2 million cattle a year since 2007, yielding a total increase of

over 12 million cattle by the end of 2012. However, the official statistics state the

cattle population has actually dropped slightly from 14 million in 2007 to 12 million

in 2012i.

2.2.3 Movement records

The movement data can be analysed in the same way as the birth records. However,

we can choose to focus on either individual cattle moved between farms or on batches

of cattle moved. The distribution of batch size from 2007 to 2012 is plotted in figure

ihttp://www.turkstat.gov.tr
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Figure 2.8: Number of annual death records from 2007 to 2012.

2.9. Over 60% of the batches contain only one cow with another 35% of cattle being

in batches of size two to ten.

The Kurban festival

The Kurban festival (‘Kurban Bayramı’) is an Islamic festival which honours Abra-

ham’s willingness to sacrifice his son Issac ii. Abraham’s gesture is commemorated

through the sacrifice of animals. The meat from these animals is often distributed

amongst the poor.

The Kurban festival moves each year but in the years we are considering

it falls between October and December. Large numbers of cattle are moved to

urban areas in the weeks leading to the festival in preparation for slaughter. We

would expect to see peaks in the movement data corresponding to movement for

this slaughter.

Seasonality in the movement records

With the majority of cattle being moved in such small batches we will focus on the

number of batches rather than the number of cattle. At the monthly level we see

that the number of movements is seasonal with one peak in April and May and

a second peak in October and November, figure 2.10. Though the Spring peak is

iihttps://en.wikipedia.org/wiki/Eid_al-Adha
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Figure 2.9: Distribution of batch sizes from 2007 to 2012.

generally higher than the Autumn peak for the number of batches, more cattle are

moved in the Autumn, this is shown for the 2012 movements in figure 2.11 and for

all years in appendix A (figure A.2).

By plotting the number of movements per day (figure 2.12) we see that the

reporting bias evident in the birth data does not present itself in the movement

data. Weekly variation can be identified with a dip at the weekends.

2.3 Cleaning the data

Using the database we were able to check each cow’s movement history to see if any

errors were present. As the model will be built on daily time-steps we wanted to

ensure that no two events occurred on the same day. An example of how we altered

the movement records for one cow is explained below with the original and edited

history given in table 2.5.

First this cow has two recorded birth entries. Both these births take place

at the same holding but at different dates. We choose to keep the second entry.

Records are reordered such that the from-holding on one record matches the

to-holding on the previous record. In this example, as the to-holding in 3 is the same

as the from-holding in 4 and both records occur on the same day we can merge the

two movements together. In most cases the record would just have been edited.

However we note further that the from-holding in 3 is the same as the to-holding in

4. Merging these creates a loop, so we completely remove both the records.
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Figure 2.10: Bar chart showing the number of movements recorded per month for
the years 2076-2012.
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Figure 2.11: Monthly number of cattle moved and number of batches 2012.

32



Day of the year

N
u
m
b
er

of
m
ov
em

en
t
re
co
rd
s
(
×

10
5
)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30
2007

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30
2008

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30
2009

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30
2010

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30
2011

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30
2012

Figure 2.12: Bar chart showing the number of movements recorded per day for the
years 2007-2012.
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Original

# from to date

1 birth 1842444 01/02/2006
2 birth 1842444 14/05/2007
3 1842444 1813237 27/09/2007
4 1813237 1842444 27/09/2007
5 1842444 1813237 14/05/2008
6 1813237 1829052 31/05/2008
7 1829052 death 31/05/2008

Altered

# from to date

2 birth 1842444 14/05/2007
5 1842444 1813237 14/05/2008
6 1813237 1829052 31/05/2008
7 1829052 death 01/06/2008

Table 2.5: History of cow TR460000323069

Now that records 3 and 4 are deleted record 5 becomes the next record in the

sequence, the from-holding in 5 matching with the to-holding in 2. Record 6 then

follows record 5. Record 7 is a death record and this has the same date as record

6. We could merge these records but that would change the farm where the death

was recorded. Instead we simply add a day to the date record.

This process was carried out systematically for all cattle which had a non-

causal event history.

2.4 Visualising the data

In order to visualise the data on a map we first had to find out where every farm

was. A .xls file (file1 ) was supplied with the movement and death data. This file

contained a row for every farm that appeared in the database; 55,193 in total. These

farms were identified with an ID number ranging from 1-55,193. The name of the

Neighbourhood of the farm was supplied as were the district and province names

along with district and province ID numbers.

As well as file1 three other .xls files were also supplied. Two files file2 and

file3 contained coordinates for the neighbourhoods; file2 contained the same inform-

ation as file1 for 55,088 neighbourhoods but also included latitude and longitude for

27,730 of these. Latitude and longitude for 39,347 neighbourhoods was contained

in file3 but in this file there were no IDs for the neighbourhoods and districts (only

names). A final file (file4 ) contained large ruminant population numbers for 47,801

neighbourhoods from 2010 with longitude and latitude for 26,858 of them.

Neighbourhoods across the different data sets were matched by ID where

available and string matching was then used to match the remaining entries. For

those neighbourhoods that did not have a specified longitude and latitude a protocol
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Figure 2.13: District level map showing the number of holdings in each district of
Turkey. Provinces are outlined in bold.

was written in Python to query Google Maps with neighbourhood names. Latitude

and longitude were extracted from these queries.

Across all files with a provincial ID that ID corresponded to a standard

licence plate IDs for the 81 provinces. District identification proved slightly more

problematic. According to Wikipedia iii there are 957 districts of Turkey, from the

files we listed there are 980 districts and the shape-file we were supplied had 928

districts.

Each province in Turkey has a central district in charge of administration.

Discrepancies between the data sources occur depending on if this central district

has been subdivided or not. By referring to the Wikipedia list of districts and those

given by the shape-file it was possible to assign each neighbourhood to a district and

cross check this using the latitude and longitude coordinates for that neighbourhood.

An example of the maps we can create is given in figure 2.13. This figure

shows the number of holdings in each of the 928 districts of Turkey. The background

satellite image is taken from Google Maps.

2.4.1 Movement maps

The map of the holdings (figure 2.13) gives us some idea of the spatial spread of cattle

around Turkey, though as holding size and farming practices will vary throughout

the country this map may not give the best indication of disease risk.

iiihttps://en.wikipedia.org/wiki/List_of_districts_in_Turkey
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Figure 2.14: The number of movements from each district in Turkey for the year
2010. This includes the within district movements. Note that the colour scale is
non-linear so as to show more variation between areas of high and low movement.

As we have identified in the introduction movement of animals is the main

driver of the spread of FMD. Insight can therefore be garnered by plotting where

animals move from and to. At a district level we can also examine which areas

are most likely to trade locally or engage in long distance trades which can lead to

nationwide outbreaks.

Figure 2.14 shows the number of movements originating in each district for

the year 2010. There is a lot of activity along the West coast of the country and

in the North-East. The South-Eastern Anatolia region near the Syrian and Iraqi

border has little activity as do parts of the Mediterranean and Black Sea coasts. A

similar map for the movements into each district highlights the same spatial patterns

and is provided in appendix A (figure A.1). The same trends were also seen in the

other years analysed.

Changing movement patterns

Movement patterns in Turkey appear to have shifted between 2007 and 2012 with

a higher proportion of movements occurring within districts than was previously

the case. Indeed in 2007 67% of movements were intra-provincial. For 2008 and

2009 this figure stayed relatively constant at 68% and 67% respectively. The shift

occurred in 2010 when 70% of movements were intra-provincial and has risen to

74% in 2011 and 77% in 2012. The percentage of within district movements has

increased even more dramatically from 32% in 2007 to almost 50% in 2010. As
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Intra-district Intra-provincial Total moves Cattle moved

2007 32% 67% 2.5m 7.2m
2008 32% 68% 2.6m 8.1m
2009 34% 67% 2.3m 6.6m
2010 41% 70% 2.1m 5.9m
2011 44% 74% 2.4m 7.2m
2012 49% 77% 2.2m 7.9m

Table 2.6: Table summarising the numbers of movements and cattle moved for
each year as well as the percentage of movements that were intra-district and intra-
provincial.

Figure 2.15: The difference between the proportion of intra-provincial movements
for each district between 2007 and 2012. Darker colours indicate a high increase in
the proportion of intra-provincial movements.

summarised in table 2.6 this increase in local level movement comes despite the

number of movements remaining largely constant.

This increase in intra-provincial movements between 2007 and 2012 is shown

in figure 2.15. Most districts undergo an increase in intra-provincial movements of

between 5% and 15%, though some districts in the South East of Eastern Anatolia

do report a decrease.

Borders and cities

Mapping the movement data allows us to identify hotspots in the country which

receive many more cattle than they produce. One would expect such areas to be

urban and represent the large cities.
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Figure 2.16: The proportion of long range movements received by district against the
total number of movements destined for each district. Dark spots indicate Istanbul,
Ankara in the centre of Central Anatolia, Izmir on the Aegean coast and the border
with Syria and Iraq in the South.

We can map the proportion of long range movements that a district receives

to highlight areas that mainly import cattle. Here we define a long range movement

as a movement that did not originate in the district itself, its neighbouring districts,

nor the districts that neighbour its neighbouring districts.

The map of long range movements is shown for 2010 in figure 2.16. The urban

centres of Istanbul, Ankara and Izmir are easily identified. As well as highlighting

the three largest cities in Turkey this map also identifies the border with Syria and

Iraq as receiving a high proportion of long range movements. This region is sparsely

populated. Indeed as identified through discussion with the Turkish Ministry of

Food, Agriculture and Livestock this situation arises from a disparity between the

price of cattle in Turkey and across the border.

As cattle were more expensive in Syria and Iraq, cattle would be moved

to the border. These movements are legal and were thus recorded in the TurkVet

database. The cattle would then be illegally moved across the border.

Similar maps of long range movements pick out the cities and borders, though

the extent of movement to the border seems to have waned by 2012.
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Figure 2.17: Distribution of the lifespan of cattle based on cattle with a recorded
dates of birth and death.

2.5 Demography

A clear problem with the data is the under reporting of deaths. Using the cattle

that had both a recorded birth and a recorded death we can built a distribution to

describe the lifespans of cattle in Turkey, figure 2.17. There is a peak at 19 months

and almost 24% of cattle died between 18 and 24 months. The age cattle live to

drops off quickly after 20 months with very few cattle living beyond 15 years.

This distribution can be used to project how long a cow will live based on its

ages and allows us to assign dates of death to all cows that have no death record.

We do this by counting the number of cattle with a birth record but no death record

born in every month from December 2012 counting back to January 2000, Nm.

Drawing from a multinomial distribution with Nm trials and the probabilities

described by normalising the curve shown in figure 2.17 we can model how many

cattle born in a certain month will die in every subsequent month. We can store this

information in a matrix E where each element Em,d is the number of cattle born in

month m that we estimate will die in d months time and
∑

dEmd = Nm.

We also count the number of cattle with both a birth and a death record

and store this information in a second matrix R which is equivalent to E with

the elements Rm,d representing the number of recorded births in month m with a

recorded death d months later. We then sum the recorded and estimate life span

matrices to give a total life span matrix T = E+R. A row of this matrix gives the
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Figure 2.18: Age distribution of cattle in Turkey from the data, edited using the
lifespan distribution combined with survival analysis, and a theoretical distribution
that directly using the cumulative distribution of the lifespan distribution.

lifespan distribution for all cattle born in that month.

Finally, we can use T to obtain the age distribution for all alive cattle at any

month by creating a new matrix A such that

Am,d =
∑
j

Tm+d−1,j . (2.1)

The m = 1 row for this matrix gives our estimated age distribution for cattle alive

in December 2012.

The results of this modelling of the age distribution are given in figure 2.18.

This approach removes many older cattle and allows for the natural seasonality of

the data to remain. We can now calculate the total number of cattle we expect to

be alive at the end of December 2012, this comes to 13.0 million.

An alternative approach would have been to directly apply the cumulative

lifespan distribution scaling by the number of cattle born in December 2012. This

theoretical distribution has no capacity to take into account seasonality. This the-

oretical approach estimates the number of cattle alive in Turkey to be 12.8 million.

These population estimates will vary depending on which month is used as

the present day. We can sum over the columns of A to give a population estimate

for each month. In figure 2.19 we calculate the population estimates for each month

from December 2012 back to January 2010. Our estimates are compared with the
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Figure 2.19: Population estimates for each from December 2012 back to January
2010. These estimates are broken down into numbers of calves (less than 12 months
old), young cattle (between 12 and 24 months old), and old cattle (greater than 24
months old). The number of cattle as estimated by the Turkish Statistical Institute
is also given.

estimates from the Turkish Statistical Institute (TSI)iv, table 2.7. The TSI estimates

only offer one total number for the year but the date of this estimate is not known.

We can see that our estimates for August 2012 matches up with the TSI estimate

of 14 million cattle. While our 2012 estimates are close to the TSI estimates we

appear to over estimate the cattle population in 2011 and 2010 by approximately 2

million cattle each year.

The TSI also breaks the cattle population down into age demographics

defined as calves, young cattle and old cattle, where calves are less than 12 months

old, young cattle are between 12 and 24 months old, and old cattle are greater than

24 months old. We can compare the age distributions we calculated at each month

to see where the disparity between our estimates and the TSI figure lies.

Our population estimate for 2012 successfully captured the number of cattle

in Turkey as recorded by the TSI. Examining the demography for the year shows

that we successfully predicted the number of young cattle in the country with the

ivhttp://www.turkstat.gov.tr
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age TSI min max

2012

calves 3,396,668 4,185,861 5,521,545
young cattle 3,623,197 3,280,538 3,932,011
old cattle 6,895,047 5,085,384 5,640,158
total 13,914,912 13,049,982 14,599,054

2011

calves 3,152,597 4,180,656 5,256,592
young cattle 3,177,779 3,433,763 4,282,091
old cattle 6,055,961 4,669,373 5,173,728
total 12,386,337 12,932,204 13,928,826

2010

calves 2,796,966 4,568,113 5,441,021
young cattle 3,028,406 3,240,515 3,748,983
old cattle 5,544,428 4,385,956 4,58,3871
total 11,369,800 12,802,074 13,146,477

Table 2.7: Comparison of the number of cattle in each age demographic from the
Turkish Statistical Institute with the minimum and maximum from our estimates.

TSI estimate of 3.6 million lying with the range of 3.2 - 3.9 million predicted by

our model. However discrepancies occur in the other two age demographics; our

predicted range for the number of calves is 4.1-5.5 million with the TSI estimate

falling well below this at 3.4 million while our predicted range for the number of

old cattle is 5.1-5.6 million which falls significantly short of the TSI number of 6.9

million. These results are given in table 2.7 along with the results for 2011 and

2010.

Our estimates ultimately derive from the lifespan distribution given in figure

2.17. The peak of this distribution occurs at 19 months as we are successfully

predicting the numbers of young cattle defined as being between 12 and 24 months

old this would suggest that the peak of this distribution is in the correct place.

The underestimation in the number of older cattle could be due to death

records being less accurate the further back in time we go, hence leading to a the

number of cattle in the tails of the distribution being less than it should be. This

in turn would lead to a re-normalisation of the distribution which may account for

the overestimation in the number of calves.

While these approaches to choosing which cattle should still be alive are

useful in providing us with estimates of the cattle population they do not provide

dates on which cattle should have died. This data must be generated in order to

simulate past outbreaks successfully. In chapter 5 we explicitly model outbreaks in
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two Turkish farms. In that chapter we discuss methods for extrapolating dates of

death based on movement data and lifespan distributions specific to these farms.

For national scale modelling we would extend these techniques to each farm.

We can also attempt to remove the bias of first of the month reporting; this

can be done in a number of ways. One method would be to reassign the birth days

of a proportion of the cattle born on the first of the month to days in the following

month. For cattle born on the first day of the year we can redistribute a proportion

of their birth dates based on the average numbers of births per month. Care must

be taken to ensure that cattle are not moved or die before their new birth date.

A second method would be to use the date of a cow’s first move and then

work backwards based on the distribution of ages at which cattle have their first

move. This method would only apply to those cattle with a recorded move but it

can also be used to assign a birth date to the few cattle with no birth record.

2.6 Outbreak data

As well as the cattle level data discussed above we were also provided with FMD

outbreak data. This data consisted of 9,282 farm level outbreaks from January 2001

to July 2012. The locations of these outbreaks were referenced by farm name rather

than a farm identity number as provided in the TurkVet movement data. These two

data sets had to be reconciled by string matching in the same way as the geo-location

data previously.

The majority of the outbreaks have been serotyped as type O, type A or

Asia-1, though 2,847 have not been serotyped. A histogram of the number of out-

breaks per month is shown in figure 2.20. From this we can see that type A and O

have been the dominant strains of FMD in Turkey for the past decade. Asia-1 is not

persistent and had died out in Turkey by 2002, however the strain has re-emerged

in 2012.

An analysis of FMD outbreaks in Turkey from 1990 to 2002 was carried out

by Gilbert et al. [2005]. The authors used the number of outbreaks in each province

per year to check for spatial and temporal correlations for each of the three serotypes

of FMD circulating in Turkey. The authors found that all three serotypes persisted

spatially in certain provinces namely Ankara and Ezurum; as we have seen from the

movement maps above Ankara and Ezurum are key areas in the cattle movement

trade.

Gilbert et al. [2005] also built a meta-population model to test various pos-

sible covariates of disease status in the provinces. The authors did not have move-
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Figure 2.20: Total number of outbreaks per month from 2008 until 2011. The
monthly number of outbreaks are divided into the number of each serotype.

ment data available, so instead, they used meat production-demand discrepancy as

a surrogate for cattle movement. Cattle numbers, proximity to infected provinces,

and meat production-demand discrepancy were found to be associated with FMD

occurrence in a province. We do not repeat the analysis of Gilbert et al. [2005] here

and instead focus our analysis on the movement of cattle between farms, districts

and provinces.

2.7 Network data

As mentioned in the introduction livestock movement data can be used to create a

network. The nodes for this network will be farms and the edges will be movements

between these farms. We will create a weighted and directed network described by

an adjacency matrix such that

Aij = wij (2.2)

where wij is the weight (which may be zero) of a link from j to i. For the calculation

of some network statistics it may be necessary to force the network to be symmetric

Aij = Aji.

As with the analysis of the raw numbers of movements it is important to con-

sider different temporal resolutions for the data. For Turkey we have daily movement

data for 6 years, and could in theory, create 2,192 daily networks. Analysing these

daily networks would be tedious and would probably not bring much insight. On the

other extreme is to aggregate all movements and create one network, this network

44



would be easy to analyse but would be unable to highlight seasonal trends.

We must also decide how to weight the network. There are three options;

frequency weighted - each edge is weighted by the number of batches of cattle that

move between two farms, cattle weighted - each edge is weighted by the number of

cattle that move between two farms, and binary - each edge is one or zero determined

by any movement of cattle between two farm.

From a data collection point of view it is easier to record the number of

batches rather than the number of cattle moved. From a modelling point of view it

is unclear which is the correct approach to take. If one believes that increasing the

number of animals in a batch does not increase the potential for disease transmission

much above the baseline expected by a single movement than it is legitimate to focus

on the number of batches rather than the number of cattle.

2.7.1 Network statistics

We will now describe a collection of network statistics traditionally applied to the

analysis of livestock networks. As we introduce each statistic we will discuss its

implications on disease spread and calculate its value for the Turkish cattle network.

Further discussion of all of these statistics can be found in the book by Newman

[2010].

Degree distribution

The degree ki of node i in a network is the number of edges connected to it. For

a directed graph there will be two degree measures: an in-degree, kini and an out-

degree, kouti . The degree of each node can easily be calculated by summing rows or

columns from the adjacency matrix

kini =
N∑
j=1

Aij , koutj =
N∑
i

Aij . (2.3)

If the network is symmetric then kini = kouti = ki. The total number of edges in a

directed network is

m =
N∑
i=1

kini =
N∑
j

koutj =
∑
ij

Aij . (2.4)

The degree distribution of a network is of particular interest in the study

of networks. The degree distribution is used to categorise types of networks. One

of the most common degree distributions is a power law degree distribution which

can describe a scale-free network. Scale free networks arise when there is a very
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Figure 2.21: Frequency weighted in and out degree distribution from 2007 to 2012.

heterogeneous contact structure; most nodes have a low degree with a few nodes

having a very high degree. Examples of such networks are discussed in Albert and

Barabási [2002] and include: academic citation networks, the world wide web, food

webs and sexual contact networks.

In a scale free network the fraction of nodes, P (k) with degree k will be

described by

P (k) ∼ k−γ , 2 < γ < 3. (2.5)

The most famous method for reproducing networks with a power law distribution

is the preferential attachment model of Barabási and Albert [1999]. Many networks

are said to fit this power law distribution, most famously the world wide web.

Difficulties can arise in fitting a power law to a distribution that appears scale free

due to large fluctuations in the tail of the power law [Clauset et al., 2009].

The frequency weighted in and out degree distributions for the annual Turk-

ish networks are shown in figure 2.21. These distributions demonstrate fat tails

which are indicative of scale free networks. Annually there is little variation in the

shape of the in-degree and out-degree distributions. There is however a consistent

variation between the shape of the in-degree and out-degree distributions for a given

year. The in-degree distributions have more bulk for low-degree nodes with 40% of

farms having 10 or fewer in-movements while only 25% of farms have 10 or fewer

out-movements.
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Degree correlations and assortativity

Degree correlations are important for the spread of disease [Danon et al., 2011].

One of the most basic measures of degree correlation applied to a directed network

is that of the correlation between in-degree and out-degree. We use the Pearson

correlation coefficient ρ(α, β) where α, β ∈ {in, out} to quantify this correlation,

ρ(α, β) =
covariance(α, β)

standard deviation(α)× standard deviation(β)
. (2.6)

High positive values of ρ(in, out) indicate that the in-degree and out-degree

are correlated. Thus, there will be farms that are both heavily involved in the buying

and selling of cattle. These farms are both likely to become infected and to spread

the infection to other farms Kiss et al. [2006].

We can also examine the correlation between a farm’s degree at one point

in time with other time points. This will indicate if there is a shift in the temporal

trading pattern. We investigate the correlations between in-degree and out-degree

from 2007 to 2012. These results will populate four matrices R(α, β) with entries

R(α, β)ij = ρ(α(i), β(j)) (2.7)

where i, j ∈ 2007 : 2012. We note that R(α, β) = R(β, α)t, and ρ(α(i), α(i)) = 1.

Figure 2.22 shows all four of these matrices. What is most notable is that

two blocks seem to form within each matrix; R(in, in) and R(out, out) for the years

2007-09 are highly correlated with each other but not with the following three years.

The first three years have an average ρ(in, in)=0.98 while their correlation with the

following 3 years drops to 0.57 on average.

Within the same year the average correlation between in-degree and out-

degree is R(in), out)ii = 0.76. This lies within the range of values that [Kiss et al.,

2006] reported for the sheep movement network on Great Britain.

The correlations calculated above describe individual nodes. We will now

turn our attention to higher level correlations in the interaction of nodes with their

immediate neighbours.

If similar nodes in a network connect to each other more frequently than

they connect to dissimilar nodes we describe that network as being assortative; if

the converse is true and similar nodes were connected to dissimilar nodes more often

than to similar then the network is disassortative.

In social networks we may describe people as similar categorically by race

or job title or we can describe their similarity numerically by age or income. These
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Figure 2.22: The four color maps indicated the correlations between in-degree
and out-degree correlations across the years 2007 to 2012 using annual frequency
weighted networks. The scale ranges from 0 to 1 with white indicating a 1. The
lower plot shows the assortativity coefficients as defined by equation 2.8 for each
year.
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measures of similarity require an additional layer of information separate to the

network. One way we can classify nodes as similar that is entirely network dependent

is by using the node’s degree. Thus we can call a network assortative if nodes with

high degree connect to other high degree nodes and nodes with low degree connect

to other low degree nodes.

This notion of degree assortativity is particularly relevant to the study of

networks in an epidemiological context as it has been shown that epidemics can

spread quicker on assortatively mixed networks while control is easier to implement

on a dissasortatively mixed network [Kiss et al., 2006].

For an undirected network degree assortativity is measured using the Pearson

correlation function. The assortativity value ranges from -1 for a totally dissortat-

ive network to +1 for a totally assortative network. For directed networks this

concept was extended by Foster et al. [2010] who introduced four measure of degree

assortativity:

rin-in the assortativity between the in-degree of the incident node and the in-degree

of the target node

rin-out the assortativity between the in-degree of the incident node and the out-

degree of the target node

rout-out the assortativity between the out-degree of the incident node and the out-

degree of the target node

rout-in the assortativity between the out-degree of the incident node and the in-

degree of the target node.

By letting α, β ∈ {in, out} where kαi and lβi are the α-degree and the β-degree

of the source and target nodes for edge i respectively, we can define assortativity

measures using Pearson’s correlation coefficient

r(α, β) =
M−1

∑
i(k

α
i − k̄α)(lβi − l̄β)√

M−1
∑

i(k
α
i − k̄α)2

√
M−1

∑
i(k

β
i − k̄β)2

(2.8)

where M is the number of edges in the network and k̄α = M−1
∑

i l
α
i .

The assortativity measures are plotted in the lower half of figure 2.22. As

with the values of ρ the values for the assortativity measures undergo change with

time from the first three years considered to the second three. Initially each of

the four measures begins slightly negative and within a tight range. From 2010 the
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B CA

Figure 2.23: There are two shortest paths from A to C both passing through B along
the black edges and nodes this will increase B’s betweenness centrality (as described
by equation 2.11) by 1

2 + 1
2 = 1. Node C acts as a bridging node between the two

groups of nodes that would otherwise be disconnected. Many of the shortest paths
in the network will pass through C which will give it a high betweenness centrality.

measures become positive and the range between them widens, particularly between

r(in, in) and r(out, out).

Despite their temporal variation the values of these measures still lie in a

reasonably narrow range −0.06 < r(α, β) < 0.06 indicating the network is neither

strongly assortative or dissasortative. However, the switch from negative to positive

values could be indicative of a structural change in the network that may be result

in disease outbreaks being more difficult to control.

Paths in the network

A path in the network is any ordered set of nodes such that every consecutive node

in the set is connected by an edge. Edge weight is not taken into account but the

direction can be. The average path length can be calculated as can the distribution

of path lengths. There will not necessarily be a path between every pair of nodes

in the network but for those that have a path the shortest path between the pair is

also of interest. The shortest path is not necessarily unique as illustrated in figure

2.23.

Connected components

If a path exists for every pair of nodes in the network the network is said to be con-

nected. When this is not the case the network is disconnected, but groups of nodes

that form connected sub-networks are called connected components. For directed

graphs there will be two types of connected components; strongly connected com-

ponents (SCCs) and weakly connected components (WCCs). A group of nodes form

a strongly connected component if paths that obey edge direction exists between
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Figure 2.24: This network has two strongly connected components. If edge direction
was ignored the entire network would form a connected component; in the directed
case it forms two weakly connected components.

every node in that group. A group of nodes form a weakly connected component

if paths exist between every node in that group regardless of edge direction. An

example of connected components for a directed network is shown in figure 2.24.

If the largest strongly connected component contains a sizeable fraction of

the nodes of the networks it is known as the giant strongly connected component

(GSCC). For the Turkish network a GSCC component exists. We will compute

all of the network measures for nodes contained within the GSCC. This increases

computational speed and removes nodes with low or sometimes zero degree which

are poorly connected and would have negligible influence on disease dynamics.

We computed the size of the GSCC for each month from January 2007 to

December 2012. As seen in figure 2.25 there is a clear biannual trend. The first

peak of each year occurs in spring when new young cattle are born and moved to

pasture. The second peak corresponds to the Kurban festival.

Similar seasonal trends appear in the French cattle network [Dutta et al.,

2014] and the British cattle network Vernon [2011], both of which have a peak in

the Spring and a second peak near the end of the year.

The number of movements each month mirrors the size of the GSCC and is

also shown in figure 2.25. Increased movement during these biannual peaks leads to

greater opportunity for disease spread. The size of the GSCC acts as a lower bound

on the maximum outbreak size.

Each month many farms have no movements at all. The number of inactive

farms is inversely correlated to the size of GSCC and can be quite large, figure 2.25.

Unless otherwise stated we will only consider statistics relating to the farms within

the GSCC so that farms that are inactive do not affect average statistics.

The average binary degree within the GSCC is plotted in figure 2.26. The

biannual trend exhibited by the GSCC size is again apparent in the average de-

gree. Following the analysis of Kiss et al. [2006] on the UK sheep network we
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Figure 2.25: The number of moves in the full network and the size of the gi-
ant strongly connected component (GSCC) are plotted for each of the frequency
weighted monthly networks from January 2007 to December 2012. The number of
inactive farm is also shown. The months at which the Kurban festival occurred in
each year are shown for reference.

also present the proportion of links that are bi-directional (that is are reciprocated

between farms). Disease spread is hindered by the presence of a large proportion of

bi-directional links.

The range of the proportion of bi-directional links is rather narrow from 0.06

to 0.16 when compared to the UK sheep network which ranged from 0.1 to 0.6 but

is close to that observed for the French cattle network which varied from 0.13 to

0.16. The inverse correlation between this proportion and the average degree within

the GSCC observed by Kiss et al. [2006] is also observed here.

Notable too is the reduction in the proportion of bi-directional links between

the first three years and the second three; another sign of a structural change in the

network. One would expect that a decreased proportion of bi-directional links could

lead to an increase in clustering in the network.

Clustering

If a group of nodes in a network are highly connected to each other we speak of

them as forming a cluster. The quantification of clustering comes from counting

the number of triangles in a network. Triangles are important as they indicate

transitivity between nodes. There are two types of clustering; global clustering and

local clustering.
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Figure 2.26: The proportion of links within the GSCC that are bi-directional are
shown for the binary monthly networks from January 2007 to December 2012. The
months at which the Kurban festival occurred in each year are shown for reference.

Global clustering φ is a straightforward count of the triangles in the network

divided by the number of connected triplets in the network. The adjacency matrix

for a symmetric binary network when raised to a power l conveniently counts paths

of length l, for example A3
ij = 4 means there are 4 paths of length 3 between nodes

i and j. The diagonal elements of Al
ii correspond to the number of paths of length

l that start and finish at i. Hence,

φ =
trace(A3)

||A2|| − trace(A2)
(2.9)

where the trace(A) is the sum of the diagonal elements of A and ||A|| is twice the

total number of edges in A. This formula is true for undirected graphs. For directed

graphs it will only count cycles as triangles.

As its name suggests the global clustering defines how clustered the entire

network is. At a local level we can also define a clustering coefficient that counts

how often the neighbours of a node are also neighbours themselves. This measure

was introduced by Watts and Strogatz [1998] to describe small-world networks. The

local clustering coefficient for node i is

Ci =
all triangles formed by i

all possible triangles i could form
. (2.10)

an average can be taken over all nodes to give an average local clustering coefficient,
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Figure 2.27: Node C has three neighbours A, B and D; C is connected to B and B
is connected to D while A and D are not connected. This gives C a local clustering
coefficient of CC = 2

3 . The Ci’s for the other nodes are CA = CD = 1,CB = CC = 2
3 .

The average local clustering coefficient C = 5
6 which is not equal to the global

clustering φ = 6
10 = 2

3 . If we were to reweight every Ci by di(di − 1) and then
average then C = φ.

C. This formula is easily extended to directed networks by considering directed

triangles, 8 of these are possible for a triplet of nodes.

The average local clustering coefficient, C is in general not equal to φ. For

some small networks like the one shown in figure 2.27 they can be the same but in

general they are not. C tends to be dominated by low degree nodes as they have

small denominators and thus may give a poor representation of the clustering of the

network [Newman, 2010].

The effect of clustering on epidemics has been discussed in [Keeling, 2005b].

Here the author showed that the structure of random networks with the same average

degree has a bearing on epidemic dynamics. Initially higher clustering can lead to

increases in the calculated R0 however as the pool of susceptible nodes is depleted

through further generations networks with higher φ show a lower asymptotic value

for R0.

Box plots of the local clustering coefficients for annual networks are plotted

in figure 2.28. The range is quite large with many farms having a Ci of 0 or 1. Farms

at these extremes will have low degree. The median value and the interquartile range

for Ci for the first three years are higher than for the second three years.

At a monthly level the transition in the Ci values is again observed, figure

2.29. As mentioned above the mean value of Ci has been proposed as a measure of

global clustering [Watts and Strogatz, 1998], and is plotted on top of the box plots

for Ci. However, as discussed by Newman [2010], this average can be dominated by

low degree nodes and may not reflect the macroscopic behaviour of the network.

To gain a better understanding of the global behaviour of the network we
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Figure 2.28: Box plots showing the local clustering coefficients for farms in the
GSCC for each annually constructed network from 2007 to 2012.
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Figure 2.29: Box plots showing the local clustering coefficients for farms in the
GSCC for each monthly constructed network from 2007 to 2012. The mean local
clustering coefficient is plotted for each GSCC as is the global clustering coefficient.
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also calculate φ for each of the monthly networks, figure 2.29. The range of φ is

small (between 0.02 and 0.06) but again a change is apparent in the latter three

years examined. It is interesting to note that if the network were undirected then

weighting each Ci by di(di − 1) before averaging we can recover φ.

Despite the average of the local clustering coefficient not necessarily being

suitable for a global analysis of the network; the distribution of individual clustering

coefficients still reveals important local information. Nodes with with low Ci have

neighbours who do not share many edges in common, node i could therefore control

the flow of information to its neighbours. Thus, Ci can act as a measure of node

centrality.

Betweenness centrality

A large portion of research into networks is dedicated to finding the most important

nodes in a network [Newman, 2010]. Importance is obviously a subjective idea and

as such different centrality metrics have been proposed according to how importance

has been defined. We have already come across node degree which, if importance

was defined in terms of the number of connections a node has, would act as the

degree centrality of the network.

A more refined measure of importance might be to consider not the number

of connections a node has but how well the node facilitates connections between

groups of other nodes. In a livestock disease context the important nodes may be

the ones that make relatively few trades but whose trades are between two groups of

farms that otherwise might be disconnected. Betweenness centrality b(i) attempts

to measure this type of importance by counting how often a node lies on the shortest

path between every other pair of nodes,

b(i) =
∑

i 6=j 6=k

σ(i)jk
σjk

(2.11)

where σ(i)jk is the number of shortest paths from node j to node k passing through

node i and σjk is the total number of shortest paths from j to k.

We note that equation 2.11 is not just a sum over the number of shortest

paths from j to k that pass through i but that it is normalised by the total number

of paths from j to k. In this way if there are two shortest paths between a pair of

nodes then each gets a weight of 1
2 . Furthermore, if there are three shortest paths

between j and k and two of them pass through i then this will contribute 2
3 to b(i).

An example of betweenness centrality for a network without edge direction is given

56



Jan ’07 Jan ’08 Jan ’09 Jan ’10 Jan ’11 Jan ’12
0

0.5

1

1.5

·10−3

B
et
w
ee
n
es
s
ce
n
tr
al
it
y

inter quartile range
median
mean

Figure 2.30: The normalised betweenness centrality for farms in the GSCC for the
cattle networks constructed monthly. The median and mean values are plotted as is
the interquartile range. For clarity values outside this range have not been plotted.

in figure 2.23.

We can also normalise b(i) for comparison with other networks. To do this

we divide by (N − 1)× (N − 2) which is the highest number of shortest paths that

could pass through one node in a directed network.

The monthly betweenness centrality for Turkey is plotted in figure 2.30.

There is once again a change in the values between the first and second set of

years, with the betweenness centrality increasing. The mean value is outside the

interquartile range indicating that a few nodes with high centrality dominate the

average value.

The betweenness centrality offers a more global perspective of a nodes cent-

rality than local clustering though a slight inverse correlation between the two is

observed. There is a seasonal trend in b(i) that was not evident in Ci. Many nodes

having high betweenness centrality can facilitate fast spread of infection through the

network but may make control efforts easier could be targeted to these nodes.

2.7.2 Discussion of network statistics

A definite change in some of the calculated network properties is evident between

the years 2006-09 and 2010-12; while the component size and number of edges have

not changed, reciprocity has decreased meaning edges are less likely to be shared.

We see that the assortativity has increased implying that previously edges were
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shared between small and large farms but now farms are tending to trade slightly

more with farms of their own size. How these formerly reciprocal edges are now

being placed will determine the network statistics.

The edges that were previously being reciprocated between the large and

small farms are now being used to connect large farms to other large farms and

small farms to other small farms. This could be the cause of the reduction in

clustering coefficients for small farms as collectively small farms share few edges

between them and are less likely to form triangles. Conversely, large farms are now

being connected more often possibly completely cycles and causing an increase in

global clustering. Large farms connecting more regularly to each other will place

more of these farms on the shortest paths across the network and will increase the

betweenness centrality.

The statistics calculated above are at a node level and effectively attempt to

establish the importance of nodes via some centrality measure. In chapter 4 we will

introduce the concept of community structure which looks beyond these measures

and attempts to group nodes which share edges together to give a higher order

structure. We will implement this analysis for the cattle networks of both the UK

and Turkey.
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Chapter 3

Modelling livestock disease with

partial data

3.1 Introduction

In the UK, an annual livestock census records the location and species composition

of all livestock farms. Births, deaths and movements of animals are recorded for

individual cattle via the Cattle Tracing Scheme (CTS) and for batches of other live-

stock via the Animal Movements Licence Scheme (AMLS). Such data have driven

the development of sophisticated models to capture and predict the spread of live-

stock diseases such as FMD [Ferguson et al., 2001a; Green et al., 2006; Ortiz-Pelaez

et al., 2006; Tildesley et al., 2008], bovine tuberculosis [Brooks-Pollock and Keeling,

2009; Green et al., 2008] and E-coli [Zhang et al., 2010].

However, many countries around the world do not routinely collect farm-level

data, or they are not readily available for research owing to issues regarding privacy.

For example, in the USA, the National Agricultural Statistics Service (NASS) carries

out an agricultural census every 5 years. In order to preserve anonymity for farmers,

all data are aggregated at the county level and therefore precise locations of livestock

farms are unknown. Furthermore, movement data are held at the individual state

level and there is no requirement for livestock movements to be recorded unless

movements are out of state [Buhnerkempe et al., 2013]. In the UK, the poultry

industry infers movements between holdings using targeted sampling of premises

based upon their function and size. This method predominantly targets large farms

and therefore does not accurately capture the demographic characteristics of the

underlying farm population [Nickbakhsh et al., 2011]. Therefore, it is important to

understand the ability of models to predict the potential for disease spread through
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livestock movements when only a partial sample of the network is available.

Partial network data is a well-known problem and has been studied extens-

ively in social sciences and other fields such as epidemiology in human and livestock

diseases. While the amount of data available to modellers is increasing, so too are

privacy concerns. In order to predict the risk of disease spread in humans across large

spatial scales, detailed movement networks must be established. These networks can

be informed using commuting and migration data available from population censuses

[Danon et al., 2009; Pindolia et al., 2013; Wesolowski et al., 2013]. These data cap-

ture long term trends but may not be appropriate at predicting movements over

a shorter time scale and therefore can be complemented by the inclusion of other

information such as mobile phone data. Mobile phone records track locations and

times that individuals make and receive calls and therefore can act as a proxy for

shorter scale movement patterns [González et al., 2008; Wesolowski et al., 2013].

Whilst full access to these data sets is not readily available, previous work indicates

that partial samples may be sufficient to accurately predict the risk associated with

disease spread across these networks [Pindolia et al., 2013; Tizzoni et al., 2014].

In situations where only partial network information are available, it may

be necessary to reconstruct the network. Different approaches can be applied to

construct contact networks. The most basic methods involve random sampling

of nodes, i.e. individuals or farms [Stumpf et al., 2005] or random sampling of

edges (i.e. links between nodes). However, it may be possible to capture the key

properties of a network more efficiently using an approach such as snowball sampling.

Snowball sampling is typically used in situations where the target population is small

and hard to find. A number of sampled individuals from the target population

are asked to nominate a set number of other people from the target population

[Goodman, 1961]. This method has been used previously to identify networks of

sexual contacts for HIV positive individuals [Kendall et al., 2008]. In the case of

livestock, when there may be knowledge regarding the size of farms or number of

aggregated movements from a farm (per year), a targeted sampling approach could

be used where larger farms or farms with the highest number of movements are

sampled. When specific network characteristics, such as age-structures, are included

in the construction of networks this improves the quality of the constructed network

[Fumanelli et al., 2012]. Previous studies have shown that subsets of networks are not

always representative of the whole network in some cases (e.g. scale-free networks

[Stumpf et al., 2005]). Therefore, caution is needed when networks are constructed

with partial data.

In previous work Tildesley et al. [2010] demonstrated that even in the absence
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of precise locations of farms, accurate predictions of the impact of interventions is

possible. We aim to develop an understanding of the predictive power of mathemat-

ical models when only a subset of the network information is available. We develop

a model to simulate the spread of a rapidly spreading disease such as FMD through

the UK cattle movement network. Mathematical models have previously played

a key role in determining the risk of disease spread through networks of livestock

movements for diseases such as FMD [Buhnerkempe et al., 2013; Green et al., 2006;

Kiss et al., 2006; Ortiz-Pelaez et al., 2006], BTB [Brooks-Pollock and Keeling, 2009;

Brooks-Pollock et al., 2014; Green et al., 2008] and Bluetongue Virus [Ensoy et al.,

2013; Szmaragd et al., 2009]. The aim of this chapter is to investigate the ability

of such models to provide policy advice in countries where only partial information

regarding livestock movements is available.

We compare four imperfect data types: random sampling of movements

(weighted edges), random sampling of farms (nodes), snowball sampling [Kendall

et al., 2008; Kolaczyk, 2009] of farms and targeted sampling of farms. If appropriate

we then scale the sampled networks up so that the original number of movements are

used for the epidemic simulations. In the UK, selling and buying of livestock often

takes place through livestock markets. Previous work suggests that these markets

played a substantial role during the 2001 FMD outbreak [Gibbens et al., 2001]. As

animals from different farms are kept in close proximity there is a risk of disease

transmission between batches of animals resulting in spread of infection to multiple

farms. Moreover, it is known that movements from markets cover a large geograph-

ical area [Robinson and Christley, 2007]. Therefore, we investigate the potential

role of markets in disease transmission between farms.

This study will be highly informative for countries where livestock movement

data are not routinely available. The outputs of this work will provide guidance to

livestock industries around the world regarding both how much data are required to

predict spread of disease and how to target data collection should it not be possible

to record all livestock movements.

3.2 Materials and methods

In this chapter we utilize data from the 2010 CTS database (provided by the De-

partment for the Environment, Food and Rural Affairs, Defra, via the Animal and

Plant Health Agency, APHA) for Great Britain. If multiple animals were moved on

the same day from one farm to another this was treated as one movement; markets

were initially not explicitly included. Slaughterhouses were considered as sinks and
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therefore movements to slaughterhouses were ignored even when going through a

livestock market. In total there were 70,243 farms and 327 markets in our dataset

with 856,454 movements in total. A total of 635,016 movements passed through

markets, with 47,692 farms using cattle markets at least once during 2010.

Four methods of sampling from this database are implemented and compared

here. A directed weighted-static adjacency matrix A [Vernon and Keeling, 2009] was

constructed for each set of sampled data, in which nodes represent farms and edges

represent (directed) cattle movements. An edge aij is defined to be non-zero if cattle

are moved from farm j to farm i during the year. The weight of the edge represents

the frequency of movements from farm j to farm i in 2010, i.e. the total number of

days on which movements occurred divided by 365.

3.2.1 Movement sampling

For random movement sampling RMS, we list the recorded movements and ran-

domly sample from this list. The depleted network is then built from the remaining

movements and the resultant network is rescaled such that the total weight of the

rebuilt network is equal to that of the original network:

Arebuilt =
W original

W depleted
Adepleted (3.1)

where W original =
∑

ij a
original
ij and W depleted =

∑
ij a

RMS
ij . This method explicitly

depends on knowledge of the total weight of the network.

3.2.2 Node sampling

In the node sampling schemes a “sampled” node has all its edges sampled. A node

is said to be “captured” if it is connected to a sampled node but it has not been

sampled itself. For all of these schemes we assume that the total number of nodes

N , in the network is known. We sample a set S of NS nodes and capture NC

nodes, the NS sampled nodes plus their connected non-sampled neighbours. This

method will therefore preserve the degree of the initially sampled nodes NS but for

the remaining nodes that are captured, only the edges that link them to the NS

nodes will be recorded.

We consider three methods of node sampling in this chapter. In the first

method, we use random node sampling (RNS) such that all movements from a

certain percentage of nodes are selected. A more advanced form of node sampling is

snowball sampling (SBS) [Kolaczyk, 2009]. In this method, an initial set of nodes are
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Figure 3.1: Plot showing the proportion of farms with at least x number of move-
ments. The proportion of farms and movements captured when the targeted node
sampling scheme is used to sample the farms with at least x number of movements
is also shown.

sampled at random. At the next stage the nodes captured by the initial sampled

nodes are in turn sampled. This process can continue until all nodes have been

sampled. Here, we consider second order snowball sampling, such that an initial set

of nodes are sampled and the nodes that this set of nodes are connected to are also

sampled.

The final node sampling scheme considered is targeted node sampling (TNS).

For TNS we sample specific nodes based on certain criteria. In this case we chose

the weighted-degree of the node. All nodes having a weighted-degree of at least x

are sampled and their neighbours are captured. Figure 3.1 shows the proportion

of farms sampled for a specific x, the proportion of farms and movements captured

at that x is also shown. A graphical depiction of the three node sampling network

schemes is shown in figure 3.2.

We firstly considered rescaling the network formed by the node sampling

methods in a similar way to that for the RMS method. We used the average

weighted-degree of the sampled nodes

〈wsampled〉 = 1

NS

∑
i∈S

∑
j

(aij + aji) (3.2)
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Random node sampling Snowball sampling Targeted node sampling

Figure 3.2: Schematic illustration showing the three sampling schemes employed.
Sampled nodes and edges are in blue for initially sampled nodes and red for the case
of second stage snowball sampling (centre). Nodes discovered by the sampled nodes
(captured-nodes) are coloured green with their non-sampled edges in grey. Nodes
which have not been sampled or discovered are coloured grey. Here second stage
snowball sampling is depicted, at the third stage all green nodes would turn red,
their edges would turn red and gray nodes connected to them would turn green. For
targeted node sampling (right) node with a degree ≥ 3 have been sampled.

to estimate the total weight of the original network

W̃ original = 〈wsampled〉N
2
, (3.3)

and rescale the network as in equation (3.1) but using the estimate for the total

weight of the original network. However, as shown in supplementary figure B.2, these

scaled networks result in significant overpredictions of epidemic size, particularly

when small percentages of the nodes are sampled. For the remainder of this chapter,

we therefore use the unscaled versions of the node sampling methods.

3.2.3 Network statistics

The properties of the underlying network may have a significant effect on epidemic

dynamics [Keeling, 2005b]. We therefore consider how network properties change

as less data are utilised by the various sampling schemes.

We first consider the number of strongly connected components of the net-

work. A subset of nodes forms a strongly connected component if each of the nodes

can connect to each other node by following a path which preserves edge direction.

If the largest of these components is of the same order as the complete network
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it is known as the giant strongly connected component (GSCC) and gives a lower

bound to the maximum size of an outbreak on the network if the disease is perfectly

transmissible [Kiss et al., 2006]. In addition, we explore the impact of the sampling

schemes upon the mean and standard deviation of the weighted w and unweighted

k degree of nodes in the GSCC.

Assortativity [Foster et al., 2010; Newman, 2010] is the tendency for similar

nodes to connect to each other in a network, and is measured using the Pearson

correlation function for the node attribute under inspection, generally the node

degree. The assortativity value ranges from -1 for a totally dissortative network to

+1 for a totally assortative network. If the correlation is zero, there is no tendency

for nodes with a similar degree to connect or actively avoid each other. In the case

of a directed network there are four types of degree correlation to consider:

rin-in the correlation between the in-degree of the incident node and the in-degree

of the target node

rin-out the correlation between the in-degree of the incident node and the out-degree

of the target node

rout-out the correlation between the out-degree of the incident node and the out-

degree of the target node

rout-in the correlation between the out-degree of the incident node and the in-degree

of the target node.

For a full and detailed explanation of these measures and a discussion on their

implications see Foster et al. [2010].

These statistics are averaged over 1000 realisations of the network for each

sampling method. The diameter of the GSCC was also measured but, owing to

extensive computational time, this was only calculated for a single realisation of

the network. The diameter of a network is the length of the longest shortest path

across the network [Newman, 2010]. As well as the network statistics mentioned

previously above we also explore the number of nodes and edges captured by the

various sampling schemes as the percentage of sampled data varies.

3.2.4 Comparison of epidemic predictions

A stochastic SIR model (susceptible - infectious - recovered) was used to investigate

epidemic behaviour on the livestock network. The probability of farm i becoming
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infected is defined as

λi = 1− exp

(
−β
∑
i

aijIj

)
(3.4)

where Ii = 1 if farm i is infected and zero otherwise, β is the transmission rate.

Infected farms recover after a period T and cannot be reinfected.

We aim to investigate spread of relatively ‘fast moving’ diseases in the absence

of movement restrictions such as foot-and-mouth disease. We make the assumption

that transmission of infection to a farm results in all animals on that farm moving

into the infectious class. Given this assumption, the risk of infection between any

pair of nodes in the movement network is based upon the number of movements

between them rather than the number of animals moved. In order to investigate

the impact of epidemiological parameters upon model predictions, we explore a

range of values for the transmission parameter and the infectious period, such that

β = 1, 2, 5, 10 and T = 7, 14, 21, 28 days.

After reconstructing the movement network, epidemics were seeded randomly

in either Cumbria, Aberdeenshire or Devon. These three counties have a high num-

ber of cattle farms and livestock movements and therefore epidemics starting in

these counties are more likely to produce a high number of cases than in other parts

of the UK. Cumbria and Devon were also two major hotspots of infection during

the UK FMD outbreak in 2001[Keeling et al., 2001]. A random source farm in each

county was infected initially for each simulation and we investigated the predicted

final epidemic size, duration, peak size and the model prediction of the geographic

spread of disease.

A thousand networks were created for each sampling scheme and of these,

one hundred were randomly selected for simulations. Statistics are averaged over

1000 simulations that had a final epidemic size of at least ten farms. Pseudo-code

for the SIR process is given in algorithm 1.

3.2.5 Livestock Markets

Markets may play a key role in amplification of disease transmission [Robinson et al.,

2007]. The CTS explicitly states whether a movement went through a market and

if so which market was used. This allows us to construct networks that include

markets as nodes. The sampling schemes listed above can all be applied to this

situation.

There is significant uncertainty regarding the level of contact of animals

from different batches (farms) on a market and therefore the risk of transmission

between animals during their stay on the market. For this reason, we investigate the
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Algorithm 1 Standard SIR

1: t = 1;
2: I(k) = 1; . Seed farm k to initially infected
3: Itime(1) = 1 . Record time of infection
4: while

∑
(I) > 0 do

5: for i = 1 : N do . Infection loop
6: Calculate λi from equation 3.4
7: p = RAND
8: if λi < p then
9: I(i) = 1

10: Itime(i) = t
11: end if
12: end for
13: for i = 1 : N do . Recovery loop
14: if Itime(i)− T = 0 then
15: R(i) = 0
16: end if
17: end for
18: t++
19: end while

effect of two extreme assumptions of transmission within a market (figure 3.3). In

the first scenario, we assume no within-market transmission, such that infection is

only transmitted between the source and the destination farm. We assume complete

segregation between herds being strictly enforced (this would be equivalent to having

no markets in the network).

In the second scenario, we assume no segregation and no biosecurity at a

market, such that all batches that move through a market mix with one another

homogeneously. In this case, we use the CTS data to determine which batches of

cattle move through a market. When an infected batch moves to a market, that

market becomes infected and we then assume that infection can be transmitted to

all possible destination farms (as determined based on the destinations of all batches

that move from the market) with an equal probability. A graphic depicting how the

network is altered by the inclusion of markets is shown in figure 3.3 and pseudo-code

for the updated epidemic process is given as algorithm 2.

In the UK, livestock have to be removed four hours after the last market

sale and consequently do not stay overnight at a livestock market [DEFRA, 2012].

Therefore, we assumed that cattle are moved on and off a market on the same day

and that an infectious market becomes susceptible again the following day. If this

assumption were to be relaxed the model could be altered by giving markets a longer
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Figure 3.3: Two extremes of markets are included in this paper. In the first instance
bio-security on a market is effectively assumed to be perfect, markets play no role in
the transmission process. This is depicted in the left-hand figure where an infected
movement (red) from farm C passes through the market but the only farm with
a probability of being infected is its target farm, farm E. In the other extreme we
assume that the market has effectively no bio-security and an infected movement
from farm C has potential to infect the market. If it does so all farms receiving
movements from the market have a non-zero probability of becoming infected.

Algorithm 2 Epidemic process including markets with an SIS model

1: while
∑

(I) > 0 do
2: Infection loop for markets
3: Infection loop for farms
4: Recovery loop for farms
5: Set all markets to be susceptible
6: t++
7: end while

infectious period.

Simulations are carried out in the same way as detailed in the previous section

with the one exception that we only run outbreaks for the length of one infectious

period. The increased transmissibility from the inclusion of markets results in sub-

stantially larger epidemics and therefore one infectious cycle is sufficient to analyse

the effects of the different sampling methods.

3.3 Results

3.3.1 Comparison of network statistics

As the percentage of nodes sampled decreases, the number of movements and nodes

captured is observed to decrease for all sampling methods. As the network frag-
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ments, the size of the GSCC decreases whilst the number of strongly connected

components increases. Both the TNS and SBS sampling schemes out perform the

RNS scheme in preserving robustness across all measured statistics as the percent-

age of nodes sampled decreases (figure 3.4). Within the giant component the mean

degree and degree standard deviation remain robust with approximately 15-20% of

the data for both TNS and SBS.

The complete network has assortativity coefficients close to zero, meaning

there is not a tendency for similar nodes to connect to or avoid each other. This

holds true within the GSCC for all node sampling schemes (figure 3.5). Similar

behaviour is observed for the mean local clustering coefficient, which is small and

does not change appreciably. The network diameter is 24 – TNS and SBS preserve

this relatively small diameter well within the GSCC but for small sample sizes the

diameter increases under the RNS scheme. Plots for assortativity, clustering and

diameter are shown in 3.5.

Network statistics for the RMS sampling scheme as a function of movements

sampled are given in figure B.1.

3.3.2 Comparison of epidemic predictions

In order to explore the epidemiological effects of the various sampling methods we

compare each method with simulations run on the full network. The robustness of a

sampling method is determined by whether the mean simulation for a method using

a certain percentage of data lies within the 95% confidence intervals of the mean of

simulations run in the full network. We focus on key epidemiological quantities such

as final size, peak size and epidemic duration. Whilst it is informative to explore

the effect of partial knowledge upon epidemic duration, for many diseases livestock

movement bans will be implemented as soon as cases are reported. We therefore

also look at predictions of the epidemic size after 6 and 12 weeks using the different

sampling methods. We denote the threshold at which a scheme fails to be robust

as Smin, the minimum sampling threshold. Initially we set β = 1 and T = 21 days.

Sensitivity to these parameter values is explored below (figures B.7 to B.8).

For outbreaks seeded in Cumbria and simulated on the full data set we obtain

a final mean epidemic size of 185 farms, with a mean duration of 22 weeks and a

mean peak size of 45 farms (figures 3.6 and B.3). The mean epidemic sizes after

6 and 12 weeks were 23 and 64 farms respectively. For all node sampling methods

without rescaling, the epidemic size is under-predicted as the percentage of nodes

sampled decreases (figure 3.6). After 6 weeks, Smin= 3% for the TNS method, 20%

for the SBS method and 80% for the RNS method. After 12 weeks, the percentage
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Figure 3.4: Graphs showing A - the number of movements captured, B - the number
of nodes captured, C - the mean degree, D - the degree standard deviation, E - the
size of the giant strongly connected component, and F - the number of strongly
connected components for the RNS, SBS, and TNS methods as a function of the
percentage of nodes sampled. These statistics are averaged over 1000 realisations
of the network for RNS and SBS with shaded confidence intervals depicting the
maximum and minimum value of each statistic.
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Figure 3.5: Graphs A, B, C and D show the directed degree-degree correlations
for the three node sampling measures as the percentage of nodes sampled varies.
The assortativity measures are defined using the Pearson correlation explained in
the text above. The mean local clustering coefficient is plotted in E. The shaded
regions on plots A to E indicate the maximum and minimum values obtained for
these measured over 1000 realisations of the networks for RNS, SBS, and TNS. Plot
F shows the network diameter for one realisation of the network for each of the
sampling schemes.
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of nodes that must be sampled increases to 9%, 30% and 90% for the TNS, SBS and

RNS methods, respectively (figure 3.6-B). In order for these methods to accurately

predict the full epidemic, 14%, 40% and 90% of the nodes must be sampled for

the TNS, SBS and RNS methods respectively (figure 3.6-C). For the RMS method,

Smin= 30% for 6 weeks, 50% for 12 weeks and 80% for the whole epidemic.

Contour plots for epidemic size predictions for outbreaks seeded in Cumbria

for each week of the outbreak (from week 1 to the end of the epidemic) are shown

in supplementary figures B.3 to B.6. All methods provide accurate predictions of

the size of the epidemic in the first few weeks. However, for longer durations, the

TNS and the SBS methods provide the most robust predictions of epidemic size

over time. Similar behaviour is observed for model predictions of epidemic duration

and epidemic peak size (figures B.3 to B.6-B & B.6-C) – the TNS method is able to

accurately capture these characteristics when only 15% of the nodes are sampled,

compared with 30%, 80% and 90% for the SBS, RMS and RNS methods respectively.

The TNS method is consistently found to provide most accurate predictions

of epidemic size, regardless of the county of disease introduction and disease para-

meters. In Devon, only 3% of the nodes require sampling for the TNS method to

predict epidemic sizes at 6 weeks, compared with 10%, 20% and 80% for the SBS,

RMS and RNS methods respectively, with similar effects seen at 12 weeks and for

the full epidemic (figure B.9). Similar behaviour is observed in Aberdeenshire (fig-

ure B.11). The values for Smin for the full epidemic for all sampling methods for

epidemics seeded in the three counties are summarised in table 3.1.

Smin Cumbria Devon Aberdeen

RMS without markets 50% 40% 60%
SBS without markets 30% 20% 30%
TNS without markets 9% (50) 3% (80) 8% (60)

RMS with markets 20% 10% 10%
SBS with markets 50% 40% 50%
TNS with markets 30% (20) 25% (25) 30% (20)

Table 3.1: Summary of the minimum sampling threshold Smin after 12 weeks for
random movement sampling (RMS), snowball node sampling (SBS) and targeted
node sampling (TNS) without markets and Smin after one infectious period with
markets for epidemics seeded in Cumbria, Devon and Aberdeen. Parameters were
β = 1 and T = 21 days. For TNS the number of movements a farm needs in order
top be sampled is given in parentheses.

As the transmission rate of the disease increases, epidemic sizes increase

and a higher percentage of nodes are required for all sampling methods to make
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accurate predictions. For example when β = 2, 25% of the nodes must be sampled

using the TNS method and 50% for the SBS method to predict the overall epidemic

size for outbreaks seeded in Cumbria, whilst for the RNS method almost all nodes

must be sampled to capture epidemic behaviour. As the infectious period of the

disease increases, a higher percentage of nodes needs to be sampled, but the effect

of this is less pronounced than a variation in the transmission rate (supplementary

figures chapter B). For diseases with a very high transmission rate, a much higher

percentage of nodes must be sampled for all methods, even when the infectious

period is short. Figures depicting the epidemic size for different parameter values

can be found in the appendix (figures B.7 & B.8)

When we include within-market transmission into our model, we observe

significantly larger epidemic sizes, with the mean epidemic size after one infectious

period when β = 1 and T = 21 being 2,266 farms for outbreaks seeded in Cumbria.

The TNS and SBS methods under predict epidemic sizes when less than 35% and

50% respectively of the nodes are sampled (figure 3.7). In contrast to the scenario

where markets do not amplify transmission, the RMS method predicts epidemic sizes

accurately even when only a very small number (approximately 20%) of movements

are sampled. This suggests that, if a significant level of transmission is thought to

occur within markets, then either TNS or RMS would be the preferred strategies

if only limited resources were available. Similar results are observed for outbreaks

seeded in Devon and Aberdeenshire.

3.3.3 Spatial spread

It is important to consider not only the size of the simulated epidemics but also

how well the model captures the spatial spread of infection when partially sampled

networks are used. When epidemics are seeded in Cumbria, almost all infected

movements occur within Cumbria itself and to neighbouring counties (figure 3.8).

An average of 8.9 farms become infected in Cumbria after 12 weeks with 13.9 in

North Yorkshire and 4.2, 4.0, 4.0 and 8.0 in Durham, Lancashire, Dumfries and

Galloway, and Aberdeen respectively. All other counties have epidemic sizes of

fewer than 2 farms when the epidemic is seeded in Cumbria.

Using Smin for each of the sampling methods we find that: SBS captures

the main epidemic hotspots well, but slightly overestimates epidemic sizes in these

hotspots, RMS also performs well, but slightly underestimates epidemic sizes. The

TNS method proves an accurate predictor of epidemic sizes in all the most infected

counties, with 8.7 and 13.7 farms being infected on average after 12 weeks in Cumbria

and North Yorkshire respectively (figures 3.8 & 3.9).
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Figure 3.6: Graphs A, C, and E compare the epidemic size for outbreaks seeded
in Cumbria on networks generated by RNS, SBS, and TNS as a function of nodes
sampled with shaded 95% confidence intervals for A - 6 weeks, C - 12 weeks, and
E - the full epidemic. The solid black lines represents the 95% confidence intervals
on the average simulation for the original network. Graphs B, D, and F show the
same results for the RMS method for B - 6 weeks, D - 12 weeks, and F - the full
epidemic.
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Figure 3.7: Mean epidemic size for outbreaks seeded in Cumbria, with within-market
transmission incorporated into the model when β = 1 and T = 21, for A - the
TNS (triangles) and the SBS (circles) methods, and B - the RMS (crosses) method.
Shaded 95% confidence intervals are shown in each figure for each sampling method.

When markets are included the pattern of spatial spread is found to be similar

to that without markets (figure 3.10). The three most highly infected counties on the

full network are Cumbria, North Yorkshire and Aberdeenshire with mean epidemic

sizes of 210, 258 and 238 respectively. When markets are included, we observe much

larger epidemics in Devon, Somerset and North-East Wales. We also observe that

each of the three sampling methods compares well with the original network at the

Smin threshold.

Similar results are observed when outbreaks are seeded in Aberdeenshire and

Devon transmission within markets results in outbreaks with a much large spatial

extent than outbreaks in which markets do not play a role in transmission, figures

B.13 - B.19.

75



Figure 3.8: Map showing the 20 counties with the largest mean number of infected
farms after 12 weeks when epidemics are seeded in Cumbria and markets are not
explicitly included. The mean size for each county is given in figure 3.9.
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Figure 3.9: The average epidemic size for the original network (stars), random move-
ment sampling (RMS) with 50% of sampled movements (crosses), snowball sampling
with 30% of nodes (circles), and targeted node sampling (TNS), sampling nodes with
more than 50 movements (triangles) for the 20 most infected counties when epidem-
ics are seeded in Cumbria. Counties are ordered in terms of the proximity of their
centroids from Cumbria with labels corresponding to the map in figure 3.8.

77



Figure 3.10: Map showing the 20 counties with the largest mean number of infected
farms after one infectious period ((21 days) when epidemics are seeded in Cumbria
and markets are explicitly included. The mean size for each county is given in figure
3.11.
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Figure 3.11: The average epidemic size for the original network (stars), random
movement sampling (RMS) with 20% of sampled movements (crosses), snowball
sampling with 50% of nodes (circles), and targeted node sampling (TNS), sampling
nodes with more than 20 movements (triangles) for the 20 most infected counties
when epidemics are seeded in Cumbria. Counties are ordered in terms of the prox-
imity of their centroids from Cumbria with labels corresponding to the map in figure
3.10.
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3.4 Discussion

In order for models to be used to predict the potential for disease spread in livestock,

there is a reliance upon accurate data regarding farm locations and movements of

livestock between farms. Significant work has been done in the UK to predict the

potential for disease spread through the livestock network e.g [Brooks-Pollock and

Keeling, 2009; Green et al., 2006; Ortiz-Pelaez et al., 2006] owing to the existence of

the cattle tracing scheme and the animal movement license scheme. In many other

countries around the world, the lack of such databases means that it is impossible

to develop a model that utilizes precise movement data and an alternate approach

must be used. In such countries, it may be impossible to ever record all movement

data either owing to the sheer size of the industry (in countries such as the USA) or

owing to the cost associated with implementing an animal license scheme. However,

a more limited data collection scheme may be possible, whereby movements are

recorded for a subset of the livestock movement network.

A simple way to collect a subset of livestock movement data would be to

randomly sample all movements from a given set of random farms (i.e. using the

RNS method). This method proved ineffective at reproducing the mean epidem-

ics seen on the complete network. An alternate strategy to collect movement data

would be to randomly sample movements from any farm (i.e. the RMS method).

In a practical sense, this would be a much more difficult strategy to implement,

requiring individual farmers to keep a record of livestock moving from their farm

a given percentage of the time. This method is found to be more effective than

the RNS method, particularly in the case when within-market transmission occurs.

In that case, only 10-20% of movements are required in order to accurately pre-

dict epidemic sizes. For lower percentages, the model predicts smaller epidemics

than observed using the true network data and in that case, suggested intervention

strategies may not be sufficient to control outbreaks. It may, however, be possible

to make accurate predictions with a lower percentage of movement data when in-

corporating a Bayesian kernel approach to scale up a partially observed network

[Lindström et al., 2013]. An alternative approach may be to adopt targeted move-

ment sampling where movements would be recorded based on some criterion. For

example, particularly frequent movements between pairs of nodes could be recor-

ded, or shipments involving a large number of animals. Both of these options were

investigated but neither proved to be particularly successful at reconstructing an

accurate realization of the original network.

If only limited resources are available for data collection, it may be more
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efficient to record movements only from the most highly connected farms (the TNS

method) or to use snowball sampling (the SBS method). The TNS method proves

significantly more effective than both the RMS and RNS methods when markets do

not contribute to transmission – less than 20% of all farms would need to be surveyed

in order to predict epidemic sizes to within 90% confidence in the UK for outbreaks

seeded in Cumbria, Devon and Aberdeenshire. The model also gives a very good

approximation of the spatial spread of the disease, the size of the epidemic peak and

the epidemic duration. When markets contribute towards disease amplification, the

TNS method requires that around 30% of all be surveyed in order to accurately

predict epidemic sizes. The SBS method is found to perform less effectively than

the TNS method, as this strategy rapidly identifies the most highly connected nodes

that are likely to contribute most significantly to disease transmission. However,

the SBS method may be more practical to implement as it does not require prior

knowledge of the relative connectivity of the farms in the network.

The TNS and SBS methods have worked favourably in the livestock net-

work described here. Whilst one must take care when making inference from a

sub-network to a full network [Stumpf et al., 2005], it would be of great interest

to the broader study of disease spread on partially observed networks to test these

strategies further on livestock networks such as those available in other European

countries [Bajardi et al., 2012; Nöremark et al., 2009; Rautureau et al., 2012]. The

results of this work provide evidence of the viability of using partially sampled data

to predict disease spread in livestock [Buhnerkempe et al., 2013] and humans [Danon

et al., 2009; González et al., 2008; Pindolia et al., 2013; Wesolowski et al., 2013] and

will inform data collection strategies in situations where complete knowledge of the

network is impossible (e.g. wildlife movements [Odden et al., 2014; Robinson et al.,

2012]).

The role played by markets in disease transmission may have a significant

effect upon the predictability of the sampling methods. When markets do not con-

tribute to disease transmission, only a very small percentage of nodes needs to be

sampled using the TNS method. However, when we make the assumption that all

batches on a market are well-mixed, a much large proportion of the nodes must

be sampled. We also find that in this case, the RMS method requires sampling

of a much smaller percentage of movements than the non-market scenario. This

is unsurprising – markets represent very highly connected nodes in the network

and therefore when they are explicitly included in the model, an RMS approach

will preferentially sample movements to and from these highly connected nodes.

The model currently assumes that livestock do not stay overnight on markets, in
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line with Defra policy, and hence any infectious markets would become suscept-

ible the following day. Should this not be the case, the role of markets in disease

transmission may be slightly altered. Therefore, our results suggest that a more

thorough, disease-specific, analysis of the precise role of markets in disease trans-

mission would be required in the future in order to determine context-specific op-

timal sampling strategies. However, our sensitivity analysis shows that TNS is the

preferred sampling strategy for all studied transmission rates and infectious periods.

The model presented in this chapter uses a weighted static network to sim-

ulate the risk of transmission between livestock farms. Weighted static networks

are regularly used in livestock disease models and previous work indicates that they

provide good prediction of mean epidemic sizes, though may potentially underes-

timate variability when compared with results on dynamic networks [Vernon and

Keeling, 2009]. The advantage with a weighted static network approach is that it

is possible to determine the epidemic impact independent of time of year. However,

there is clear seasonality observed in the cattle movement network [Kao et al., 2007]

and it is therefore possible that a weighted static network could result in an under

or over prediction of epidemic size. Our sensitivity analysis suggests that the pre-

ferred sampling strategies are robust, although the proportion of nodes that need

to be sampled may vary dependent upon time of year. Future studies will focus

upon constructing a dynamic network and testing network sampling schemes and

temporal sampling schemes (whereby sampling is targeted based on time of year)

on their ability to predict epidemic behaviour.

The results indicate that for a fast spreading disease such as FMD, sampling

a small proportion of the network is sufficient. This relies on the assumption that

infected movements result in all livestock on the destination farm becoming rapidly

infected. This is not the case for all livestock diseases. For example, animals infected

with bTB can remain asymptomatic carriers for several months [Brooks-Pollock

et al., 2014] before becoming infectious. The model framework described here would

not be appropriate for a disease of this nature and further work will focus upon the

development of optimal sampling strategies for slow spreading diseases such as bTB

where it may be crucial to track movements of individual cattle.

Our results suggest that for countries with similar farming practices, it may

not be necessary to collect data on all livestock farms, but only those that contribute

most significantly to the livestock trade network. Of course, this creates something

of a conundrum – in order to sample the most highly connected nodes and thus

accurately represent epidemic risk on an unknown network, one needs to know which

farms have the most movements. One solution to this would be for all farmers to
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be required to record the number of movements they make in a given year. These

summary statistics could then be used to determine which farms should be sampled

for the following year. In the UK at least, analysis of the movement network for

multiple years suggests that those farms that have a high number of movements in

a given year are more likely to have a high number of movements in the following

year. This method may therefore be utilized in countries where livestock movement

data are not currently available in order to inform epidemic models and predict the

potential for disease spread owing to animal movements in the early stages of a

disease outbreak.
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Chapter 4

Community detection and

epidemic predictions

“I’m very glad you asked me that, Mrs Rawlinson. The term ‘holistic’

refers to my conviction that what we are concerned with here is the

fundamental interconnectedness of all things. I do not concern myself

with such petty things as fingerprint powder, tell-tale pieces of pocket

fluff and inane footprints. I see the solution to each problem as being

detectable in the pattern and web of the whole. The connections

between causes and effects are often much more subtle and complex

than we with our rough and ready understanding of the physical world

might naturally suppose, Mrs Rawlinson.

“Let me give you an example. If you go to an acupuncturist with

toothache he sticks a needle instead into your thigh. Do you know why

he does that, Mrs Rawlinson?

“No, neither do I, Mrs Rawlinson, but we intend to find out. A pleasure

talking to you, Mrs Rawlinson. Goodbye.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency

[1987]

The networks that we have created from farms and cattle movements can be

analysed in many ways from looking at distributions to computing various metrics

and measures. Of particular interest to epidemic spread is the degree of clustering in

the network. High clustering values can lower R0 and lead to smaller epidemics than

one would find in a network with a similar degree distribution but a lower clustering

coefficient [House and Keeling, 2011; Keeling, 2005b; Szendroi and Csányi, 2004] as

the epidemic becomes contained by a lack of local susceptible nodes; however later

in the epidemic high clustering can lead to pockets of susceptible nodes.
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Figure 4.1: A network divided into three communities, edges are denser within the
communities than they are between communities. This figure is reproduced directly
from Newman [2006].

Clustering is a local effect; a more complex analysis is to consider the com-

munity structure of the network. The concept of a community is understood in

social context as a group of people that live in the same area (neighbourhood, city,

country) or share common interests (religion, race, computer gaming etc..). In this

social context we can think of every individual as a node in our network and a link

can be made between nodes if they have common interests or live near one another.

Once this network is formed it is interesting to see if a community structure exists

in this network, are there cliques, or groups that form? A division of nodes into

communities would see groups of densely connected nodes with sparser connections

between groups (figure 4.1).

In this chapter we define what we mean by a community and community

structure, discuss an algorithm for community detection and implement this al-

gorithm on the UK and Turkey cattle networks. We then explore the predictions

that community structure can have on the spread of epidemics by running epidemic

simulations on the cattle network of the UK and comparing the results with the

predictions offered to us by the community structure of the network.

4.1 Theory

The discovery of groups in a network generally follows two principal lines of research,

graph-partitioning which is typically looked at by computer scientists [Buluç et al.,

2013], and community detection [Fortunato, 2010] which has applications in social

[Arenas et al., 2004] and biological networks [Guimerà and Amaral, 2005]. While the
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two problems are similar in nature, they both search for divisions of a network into

groups, there is a fundamental difference. Graph partitioning typically deals with

dividing a set of tasks, say, amongst a number of processors in a parallel computer,

the number of processors and the number of tasks each processor can perform is

typically known so the problem is to the divide the tasks amongst the processors

such that the number of links between the processors is minimal. In community

detection, however it is not known a priori how many groups are being searched

for, how big they should be, or even if it is appropriate to partition the network in

the first place.

4.1.1 Definition of modularity

Let us begin with a symmetric network with N nodes described by an adjacency

matrix

Aij = Aji =

1, if a link between i and j exists

0, otherwise.
(4.1)

with m =
∑

ij Aij/2 edges. This network has been divided into a partition P,

consisting of groups which we call communities. We wish to evaluate if the partition

presented to us displays a strong community structure.

First we consider what a ‘strong’ partition of a network into a community

would be. To do this we define the modularity Q of a partition P. First proposed

by Newman [2004], modularity measures if there are more connections between

communities than one would expect to see by chance alone. That is, we assume

that a random graph does not display a strong community structure and compare

the given community structure with one where the communities are the same size

but the edges are placed at random,

Q = (fraction of edges within communities)−

(expected fraction of such edges) (4.2)

This expected fraction depends on the chosen null model [Fortunato, 2010]. The

null model would be a copy of the graph that keeps some structural properties from

the original graph, such as degree distributions, but does not have a community

structure.

The contributions to the modularity from each pair of nodes within a com-

munity C is summed. A pair of nodes within a community gives a greater contri-

bution to Q if the strength of the link between the pair is greater than one would
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expect from a random graph drawn from the null model. If nodes are in the same

community but no link exists between the two nodes their contribution to Q would

be negative. A sum is then taken over all of the communities in P. Recasting

equation 4.2 as a mathematical expression

Q =
1

2m

∑
C∈P

∑
i,j∈C

[Aij − Pij ] (4.3)

where Pij is the null model which represents the expected weight of an edge between

nodes i and j over an ensemble of random networks with certain constraints. Mod-

ularity is effectively counting the number of links within in a community compared

to what one would expect to find in the null model.

Here, as is customary, we have normalised the modularity by dividing by the

total strength of the network 2m so that it ranges from -1 to 1. Higher values of Q

indicate a stronger community structure but the maximum value of Q is dependent

on both the network under consideration and the choice of null-model. The closer

the null model is to the network under investigation the lower the value of Q found

for that network. Because of this when comparing the community structure found

between different networks and different null-models we can not definitively say if

one network exhibits a stronger community structure than another, the results of

modularity optimization must be interpreted in a more descriptive fashion.

4.1.2 Choice of null model

The choice of null model P will determine the value of Q and will therefore have con-

sequences for any partition found via modularity optimization. For the moment we

will deal only will un-weighted (edges are binary), symmetric (undirected) network

described by equation 4.1.

A very basic null model would come from the constraint that we require

the null model to have the same number of edges as the original graph with edges

placed randomly between nodes, describing a Bernoulli random graph and yielding

a constant null model term in equation 4.3

PBernoulli
ij =

2m

N(N − 1)
. (4.4)

The Bernoulli random graph would however, be a poor choice of null-model as it has

a Poission degree distribution which is very different from the degree distributions

found in real world networks [Albert and Barabási, 2002; Arenas et al., 2004].

We wish to choose a null model that preserves the degree distribution of the
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original network taking into account the degree of each node ki =
∑

j kij . The most

common choice of null model is the Newman-Girvan model [Newman and Girvan,

2004]

PNG
ij =

kikj
2m

(4.5)

which is similar to the configuration model of networks [Newman, 2010]. This choice

is quite natural as it takes into account the heterogeneity of the network and obvi-

ously penalises unsurprising connections; if two nodes both have high degrees then

the probability of the two being connected is also high so their contribution to

the modularity will be low compared to that of two nodes with low degrees. The

modularity function defined from this choice of null model we will denote as QNG.

The Newman-Girvan null-model has been applied to a diverse range of net-

works such as; character interactions in Alexander Dumas famous Les Miserables

[Newman and Girvan, 2004] where the 11 communities found represented subplots of

the novel, product recommendations on Amazon [Clauset et al., 2004] which allowed

for classification of products into categories, co-authorship links between academics

[Newman and Girvan, 2004], and mobile phone networks [Expert et al., 2011].

4.1.3 Edge direction and weight

Extending the definition of QNG to directed weighted networks is straight forward

[Newman, 2004]. We first redefine the adjacency matrix as

Aij =

wij , if a link goes from j to i

0, otherwise.
(4.6)

where wij is weight of the link from node i to node j, we note that in general Aij 6=
Aji. We now define the weighted in and out degrees for each node as win

i =
∑

j Aij

and wout
i =

∑
j Aji. The total weight of the network is now w =

∑
iw

out
i =

∑
iw

in
i .

If all the weights equal one then the weighted degrees are equivalent to the in and

out degrees for each node. The definition of QNG becomes

QNG =
1

w

∑
C∈P

∑
i,j∈C

[
Aij −

kini koutj

w

]
(4.7)

or equivalently

QNG =
1

w

∑
i,j

[
Aij −

kini koutj

w

]
δ(ci, cj) (4.8)
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where ci is the label of the community to which vertex i belongs, (note that the

factor of two is no longer in the denominator).

4.1.4 Coupling through time

The cattle networks of the UK and Turkey are dynamic in nature, movements are

recorded on a daily basis, we can therefore construct a new network for every day

of the year. These networks can be aggregated to form coarser networks at differ-

ent temporal scales (weekly, monthly, seasonally, etc..) and a discussion of what

resolution is appropriate is dependent on the question under investigation.

For now let us assume we have taken a year’s worth of data, created twelve

monthly adjacency matrices and ran a community detection algorithm on each to

find partitions Pi, i ∈ {1, .., 12}. Each Pi may have a different number of com-

munities and thus there is no way to label a community in one partition such that it

may be compared with a community in a different partition. Aspects of the parti-

tions may be compared (i.e. number of communities, size of communities, locations,

areas) but as things stand, the evolution of communities through time can not be

explored. To compare communities in temporal partitions we need a coupling of

the different networks through time. A method to do this was developed by Mucha

et al. [2010] and it is this method we will use to couple networks through time.

Given a multi-slice network, i.e. a network that can be represented by S

multiple slices each with its own adjacency matrix Aijs defined with the same set

of nodes, where the index s represents a slice. We couple nodes to themselves in

different slices of the network with a coupling Cjrs that couples node j to itself

between slices r and s. In general a node could be coupled with itself in every slice

but as we are focusing on time-dependent networks we can order the slices through

time and only create couplings between neighbouring slices (figure 4.2). The strength

of the coupling could vary for different nodes and across different slices but we have

no intuitive reason to do this so will keep the coupling strength fixed at ω; thus for

every node j,

Cjrs =

ω, if s = r ± 1

0, otherwise.
(4.9)

in this way coupling is also symmetric Cjrs = Cjsr. This introduces some new

notation which we need to derive the null-model for multi-slice networks, assuming

an undirected network (Aijs = Ajis), each nodes strength in an individual slice is

now kjs =
∑

iAijs and its strength across slices is cjs =
∑

r Cjrs giving a multi-slice
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Figure 4.2: Schematic of a multi-slice network. Four slices s=1, 2, 3, 4 represented by
adjacencies Aijs encode intra-slice connections (solid lines). Inter-slice connections
(dashed lines) are encoded by Cjrs,specifying the coupling of node j to itself between
slices r and s. For clarity, inter-slice couplings are shown for only two nodes and
depict two different types of couplings: (i) coupling between neighbouring slices,
appropriate for ordered slices; and (ii) all-to-all inter-slice coupling, appropriate for
categorical slices. Reproduced from Mucha et al. [2010].

strength of κjs = kjs + cjs. The multi-slice modularity is

Qmulti-slice =
1

2µ

∑
ijsr

[(
Aijs −

kiskjs
2ms

)
δsr + δijCjsr

]
δ(gis, gjr) (4.10)

where 2µ =
∑

jr κjr and the delta function keeps contributions from the network

edges and the artificial coupling separate. The multi-slice modularity as given here

is clearly analogous to the Newman-Girvan modularity for a single-slice network, we

extend this to a general multi-slice modularity for a directed network

Qdirected
multi-slice =

1

µ

∑
ijsr

[(Aijs − Pijs) δsr + δijCjsr] δ(gis, gjr) (4.11)

where µ =
∑

jr κjr.

4.1.5 Finding the partition

As alluded to above the purpose of defining modularity is to aid us in finding the

partition of the graph that gives us the ‘best’ community structure. The ‘best’

or optimal community structure for the network will be one that maximises the

modularity function. Numerous methods are available to do this. From spectral

methods [Leicht and Newman, 2008; Newman, 2006], to greedy algorithms and

simulated annealing [Fortunato, 2010].

Here we will focus on the method known as the Louvain method which was
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Figure 4.3: Graphical depiction of the Louvain method at work. The first phase
consists of modularity optimisation while the second involves community aggrega-
tion. The combination of the two phases form a ‘pass’ and passes continue until
modularity is maximised. Reproduced from Blondel et al. [2008].

first proposed by Blondel et al. [2008] and named for the Univeristé Catholique de

Louvain where the authors were based when they devised this method. This method

was chosen for its speed and also as the method was adapted for multi-slice networks

by Mucha et al. [2010] and it is their MatLab code that we use through-out this

study [Jutla et al., 2014].

The method consists of two phases that are repeated iteratively until no gains

to the modularity can be found, see figure 4.3.

4.1.6 The first phase

Given N nodes each node is initially assigned to its own community, the initial par-

tition therefore has as many communities as it does nodes. The first phase begins by

considering each node i and its neighbours j. The respective changes in modularity

∆Q found by moving node i into each node j’s community are calculated. Node

i is then moved into the community which results in the maximum ∆Q, provided

this change is positive. If ∆Qmax ≤ 0 then node i does not move. This process is

applied repeatedly and sequentially until no positive changes in the modularity can

be found. Nodes may be considered multiple times as some may not see any gain in

moving until others have moved first. The first phase ends when a local maxima of

Q has been reached.

For this first phase we need to be able to quickly calculate the ∆Q in two
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cases; i) when an isolated node is moved into a new community and ii) when a node

is moved from one community to another. We will calculate this for the general

form of the modularity given by equation 4.3. Assuming we have K communities

we can write the modularity as a sum of the modularity contributions from each

community

Q = Q1 +Q2 +Q3 + · · ·+QK−1 +QK (4.12)

now let us assume that community cK consists of only node k and we wish to cal-

culate the change in modularity found by moving node k to community c1 changing

community c1’s modularity to Q′
1. The new modularity is now given by

Q′ = Q′
1 +Q2 +Q3 + · · ·+QK−1 (4.13)

and the change in modularity is

∆Qk→c1 = Q′ −Q = Q′
1 −Q1 −QK . (4.14)

The modularities of interest are

Q1 =
1

2m

∑
i,j∈c1

[Aij − Pij ] (4.15)

Q′
1 =

1

2m

∑
i,j∈(c1∪k)

[Aij − Pij ] (4.16)

QK =
1

2m
Akk − Pkk (4.17)

which gives

∆Qk→c1 =
1

2m

∑
i∈c1

[Aik +Aki − (Pik + Pki)] (4.18)

which reduces to

∆Qk→c1 =
1

m

∑
i∈c1

[Aik − Pik] (4.19)

assuming a symmetric null model. For a directed network ∆Qk→c1 drops the factor

of a half from equation 4.18.

4.1.7 The second phase

In the second phase we make a new network out of the communities found during

the first phase. Each community becomes a node in the new network with its edges

to nodes in different communities combined together, edges within the community

92



are also combined to make self-loops. Once this has been completed the first phase

can then be performed again and then iterated. Preforming the two phases is known

as a ‘pass’. Passes continue (figure 4.3) until there are no more changes that can

increase the modularity, thus a maximum modularity is obtained.

4.1.8 Observations on the Louvain method

1. Extending the Louvain method to multi-slice networks is straightforward. The

adjacency matrices from each slice can be merged into a super (N×S)×(N×S)

adjacency matrix where each individual adjacency matrix is placed in blocks

on the super-adjacency matrix such that node i rather than being represented

by the ith row and column in the original matrices will now be represented by

the (s− 1)N + i, s = 1, . . . , S rows and columns in the super-adjacency mat-

rix. We are only concerned with ordered next-slice coupling which is encoded

symmetrically in the super-adjacency matrix as

A[(s−1)N+i][sN+i] = A[sN+i][(s−1)N+i] = ω. (4.20)

2. The first phase of each pass of the algorithm was to end when the local maxima

of the modularity was attained. In practice the overall runtime of the process

is decreased by introducing a threshold such that if any relatives gains in

modularity are less than that threshold the first phase ceases.

3. The algorithm naturally creates a hierarchy as it finds communities. Each

node starts in a community of size one before possibly being merged into a

larger community, these communities are in turn then merged until no gain in

modularity can be gained. By outputting the communities found after each

phase it is possible to examine the overall community at different hierarchical

levels.

4. It is important to note that the order the nodes are considered can alter the

partition found by the algorithm and as such the algorithm should be run

multiple times and the partitions examined before deciding on a definitive

partition for the network.

4.1.9 Comparing partitions

As noted above the Louvain method for detecting community structure is not de-

terministic. To account for this we run the algorithm many times on the same

network and save each partition Pi. These partitions can be compared in several
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ways; most commonly by a pair counting approach where the number of pairs of

nodes appearing in the same community is calculated [Karrer et al., 2008; Traud

et al., 2011] or by an information theoretic approach [Danon and Dı́az-Guilera, 2005;

Karrer et al., 2008; Meil, 2007]. We opt for the information theory approach given

by Meil [2007] and advocated by Karrer et al. [2008]. This method is known as the

variation in information VIi and is outlined below.

Given a partition P of N nodes divided into K communities C1, . . . , CK with

sizes n1, . . . , nK if we were to pick a node at random the probability of that node

being in community Ck is

P (k) =
nk

N
(4.21)

defining a discrete random variable which takes K values. The uncertainty associ-

ated with our partition P is given by the entropy [Shannon, 1948] of this random

variable

H(P) = −
K∑
k=1

P (k) logP (K). (4.22)

Mutual information between two partitions P and P ′ is the information that one

partition has about the other and is given by

I(P,P ′) =

K∑
k=1

K′∑
k′=1

P (k, k′) log
P (k, k′)

P (k)P (k′)
(4.23)

the variation in information is then defined as

VI(P,P ′) =
[
H(P)− I(P,P ′)

]
+
[
H(P ′)− I(P,P ′)

]
(4.24)

and can be interpreted as the sum of the information needed to describe P given

P ′ and the information needed to describe P ′ given P. By dividing by log n we can

normalise VI (we will always normalize VI); values close to one indicate the partitions

are quite different while values close to zero indicate that the two partitions are

similar.

When comparing a selection of partitions NP at once we compute the nor-

malized variation in information for Pi with all other partitions Pj and then average

this to obtain the average normalized variation in information for partition Pi

〈VI(Pi)〉 =
1

NP

∑
j

VI(Pi,Pj) (4.25)

iAs opposed to other approaches variation in information is a true metric in that it obeys the
triangle inequality.
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which can be compared across all partitions.

Taking the average VI found for each partition compared to every other

partition gives us a method for choosing the most representative partition found,

this will be the partition with the smallest average VI.

4.2 Community detection in the UK

We now seek to apply community detection methods to both the UK and Turkey

cattle movement networks. Once again we must decide how to generate the network

from the available data. Ideally we want to represent the network in such a way that

captures the seasonal variation but does not aggregate on such a short time scale

that the results are a consequence of noise rather than signal. To try to strike a

balance we will aggregate the movements at a monthly level and at an annual level.

Not only will we consider aggregation of movements through time but we

can also aggregate nodes together to reduce the size of the adjacency matrix and

increase the run speed of the community detection algorithms.

As there are many parameters that can be varied, we thought it prudent to

run the community detection algorithms on an aggregated network rather than on

the full 70,283 farm network. The farms were aggregated to the 68 counties in the

UK and a network was made from the inter-county movements, with intra-county

movements appearing as self-loops.

4.2.1 County-level community detection

Firstly, the algorithm was run with the movements aggregated at an annual level.

As we have only one year of data for the UK this is just a one-slice network so

the coupling, ω, is irrelevant. We run the algorithm 1000 times and compute the

VI between all pairs of partitions. The QNG for these partitions showed very little

variation, with an average of 0.6278 with a standard deviation of 0.0013. The VI

across all partitions ranged from 0 to 0.1868 with a standard deviation of 0.0525,

thus we can conclude there is very little variation between different partitions (figure

4.4). Averaging across all the VI for every partition we find that 675 of the 1000

partitions all have the minimum average VI and inspecting these partitions we find

they are all identical. This partition therefore becomes our definitive partition for

the 2010 UK data aggregated at an annual level found by maximising QNG. We call

this the annual County NG partition.

Plotting the counties on a map and colouring counties in the same community

the same color we find that the UK is divided into six contiguous regions (figure
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Figure 4.4: Box-plots depicting the modularity and average variation in information
for different partitions and null-models for community detection in the UK. The
partition with the lowest average VI for each was used as the seed partition for
any further explorations with that method. 1 - Annual County NG partition, 2 -
Monthly County with NG method and ω = 0, 3 - Annual County SPA , 4 - Farm
NG.

4.5) which are labelled as: Scotland, North England, North Wales, South Wales,

East England, and South West England. The sizes of each of these communities in

terms of number of counties and number of farms are given in table 4.1 as are the

number of in, out, and internal movements.

The next step is to divide the annual data into monthly networks and search

for communities on this time-dependent multi-slice network. The main parameter

of interest here is the inter-slice coupling. At first we will set the coupling to zero;

in effect this will create an independent community structure for each month. This

is done 1000 times.

We now compare the full partitions to each other to find the most repres-

entative partition as we did for the annual partition. Upon calculating the average

VI for each partition we see there is little variation between the partitions (figure

4.4). We choose the partition with the minimum average VI to be the representative

partition. This partition has 6 communities for most of the year but increases to 7

communities for May, June and August.

Our next task is to add a non-zero coupling so we can track the evolution

of the communities through time. As the coupling becomes encoded in the super-

adjacency matrix its value is similar to that of a movement, there is no direct

interpretation of this. With this in mind we experiment with different values of ω
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Figure 4.5: Communities found using the Louvain method to maximise QNG for
the UK 2010 movement data with farms aggregated to a county-level. The 6 com-
munities are given names that roughly match those of the regions where they are
based.
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Community Counties Farms in out internal

Scotland 14 12016 82239 77318 63357
North England 12 13769 109236 129652 86336
North Wales 6 10771 95354 80748 57863
South Wales 7 9837 70733 54906 32660
East England 18 8570 38907 69495 25116
South West England 11 15320 101133 85483 73855

Table 4.1: Table summarising number of counties, farms, in-movements, out-
movements and internal movements for each of the six communities found by running
the Louvain community detection algorithm with the Newman-Girvan null model
on the 2010 UK data aggregated at a county-level. These communities correspond
to those shown in figure 4.5
.

to see if this has a strong effect on the community structure.

We run the community detection algorithm with ω = [0, 0.1, . . . , 1, 2, . . . , 3769]

(3769 is the maximum weight of any of the edges in the 12 county-level adjacency

matrices) using the seed found from the 1000 monthly partitions with ω = 0. First

we note that increasing the coupling increases the modularity (figure 4.6 A). While

a high value of modularity is interpreted as evidence of a community structure, for

the case of multi-slice community detection increasing coupling will always increase

modularity if two partitions are equal as seen from equation 4.10. Therefore we

should not assume the partition with the highest Q is necessarily the ‘best’ parti-

tion.

Calculating the average VI between partitions we see that for large coupling,

ω > 350 the partitions are all the same (figure 4.6 B). Indeed they are the same

as the annual partition, and examining their sub-partitions (divisions into months)

we see that they are temporally static (figure 4.6 C). This is not surprising as the

coupling term is clearly dominating the modularity. On the other end of the scale for

small coupling (0.1 < ω < 2) all partitions are the same but they do have temporal

variation.

The structure found for the ω = 0.1 partition is, on a monthly basis, the

same as that for ω = 0 partition in effect tracking the evolution of the community

structure through time. For the remaining values of ω in the range considered the

mean VI starts high and begins to decrease as we get closer to the static partition

found at high coupling, but of course this is not surprising as over 3000 of these

partitions are the same and hence will contribute zero to their mean VI scores.

Indeed, of the 3789 partitions created only 97 of them are unique. The variation
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Figure 4.6: Plots of the properties of the community structures of the county-level
cattle network for the UK with monthly aggregation through 2010 as the coupling
ω is increased. A) is the modularity, B) the mean variation in information between
all partitions, C) the mean variation in information between the sub-partitions
(monthly partitions) for each partition, D) the variation in information between
every partition and the ω = 0.1 partition.

between these partitions and the ω = 0.1 partition is also examined in figure 4.6 D

and is fairly small.

The VI between all 97 unique partitions is small therefore one would not ex-

pect an individual analysis of these partitions to yield particularly insightful results.

Therefore we will will limit ourselves to considering the partitions found for ω = 0.1

and the static partition found for high coupling valuesii.

The evolution of the community structure through time is shown in figure

4.7. The annual community structure (with the same colour scheme as figure 4.5)

is shown on the left with the nodes reordered to keep the communities in distinct

groups. The community structure for each month with ω = 0.1 is then shown

iiThe static partition is the same as the annual partition
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evolving through time. The communities vary slightly from those found in the

annual network particularly in May, June and August and November when counties

originally designated in the East England group merge into the community initially

designated as being North Wales (figure 4.8). The North of England stays fairly

stable throughout as does Scotland, except in August (figure 4.8 D) when the county

of Na h-Eileann an Iar becomes isolated from the rest of Scotland but still connected

to the previous instances of that community.

As modularity is additive (equation 4.12) we can directly calculate the mod-

ularity from each community and the change in modularity from moving a county

between communities. Calculating the modularity for the whole of Scotland through-

out the year and the contributions from the two separate communities, we find that

separating Scotland into two communities does marginally increase the overall mod-

ularity. We also calculated the modularity if Na h-Eileann an Iar were to be a sep-

arate community for the month of August with no link to the previous community

in Scotland. Interestingly this would actually have increased the overall modularity

more than the given partition but this gain was so small as not to pass the threshold

required by the Louvain method to be considered a worthwhile division.

The fracturing of Scotland into two communities comes from Na h-Eileann an

Iar having very few movements, only 1,481, throughout the year. Almost a quarter

of these movements, 365 were within-county, the majority were out-movements, 995

with the remaining 121 being in-movements. In August however, Na h-Eileann an Iar

was only involved in 31 movements, 29 of which where internal. Thus Na h-Eileann

an Iar was effectively isolated from the rest of Scotland in August, resulting in the

previously described modularity values.

We analyse the evolution of the community structure further by defining

the mode partition for the UK with ω = 0.1. Each county is assigned to the

community it appears in most often throughout the year (figure 4.9). This partition

is quite similar to the annual partition with VI between the two being 0.057. The

communities of Scotland and North-England are the same for both partitions. The

South West of England and the East of England also change little with only the

county of Oxfordshire moving between the communities in the two partitions. Wales

and some of its bordering counties that go through the most variation as seen from

the maps of figure 4.8.

4.2.2 Farm-level community detection

The county-level community detection has given us some promising results. How-

ever, we would like to probe deeper into the community structure of the network
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Figure 4.7: Evolution of the community structure of the county-level cattle network
for the UK with monthly aggregation through 2010 found using the Newman-Girvan
null-model with a temporal coupling of ω = 0.1. Colours indicate counties that are
in the same community with the initial grouping corresponding to the community
structure found at the annual aggregation. The counties are reordered so that the
colour blocks for the annual structure are contiguous. The individual counties are
labelled in accordance with table C.1.
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Figure 4.8: Maps showing the community structure of figure 4.7 for the months of
A February, B April, C June, D August, E October, and F December.
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Figure 4.9: Map showing the mode partition found from the evolution of the UK
community structure with a coupling of 0.1.
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of individual farms to try to gain a deeper insight into the farm-level interactions

of the cattle network. We can also compare our results with community detection

performed by Kao et al. [2006] on the network of sheep movements in the UK. They

found highly regionalised communities with Scotland and the North of England

being particularly distinct.

The algorithm detects 352 communities. Most of these are small - 331 have a

size of less than 10 farms. The two largest communities have 12,332 and 11,667 farms

which is 35% of the total number. Figure 4.10 shows the location and community

of each farm in the ten largest communities in the partition. This plot is difficult to

interpret due to the high density of farms in the centre of the country which causes

some of the points to be obscured.

In order to better understand the spatial impact of the community structure

we drew polygons around the densest clusters of farms from each of the 10 biggest

communities. Each polygon was coloured different for each community. If poly-

gons from different communities overlapped this was indicated by cross-hatching

the overlapping area (figure 4.11). The precise procedure of how this figure was

made is given in the appendix C.

Some aspects of the community detection at the county level are reflected

in the farm level map, Scotland for instance has very little overlap with England,

though it is now divided into two communities, Aberdeenshire and the islands,

and the south of Scotland. The farms in the east of England also form a distinct

community. The most striking difference is the large overlapping community of

7,384 farms that is centred at the meeting points of Wales, The Midlands and South

West England. Another feature that was not present in the county data is the

non-contiguous community of South West Wales and South West England.

4.2.3 The spatial null model

While extremely useful and applicable to many different types of networks the

Newman-Girvan null-model relies purely on network topology and has no facility

to incorporate a network embedded in space. If the main driver behind connections

being formed is spatial proximity then the edges in the communities found will have

a highly correlated spatial dependence. By incorporating space into a null-model

we would hope to find communities that are space-independent. As farm location

data is available to us we wish to use a null-model in our analysis that can find such

space-independent communities. Such a model should reward edges in communities

that appear at distances we may not expect to see them and penalise edges that

appear at frequently observed distances. For many spatial networks long distance
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Figure 4.10: Map showing the farms of 10 the largest communities found in UK cattle
network. Overlaps in area are cross-hatched and the borders of the six previously
defined region of the UK are drawn in bold.
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Figure 4.11: Map showing the area covered by the largest communities found in
UK cattle network. Overlaps in area are cross-hatched and the borders of the six
previously defined region of the UK are drawn in bold. The area of each community
is given in the legend.
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edges are rare as they are typically costly, thus if they do appear this may yield

some information about the two nodes connected by the long distance edge that the

adjacency matrix alone does not reveal[Barthélemy, 2011].

Telecommunications networks between cities [Krings et al., 2009], human

migration [Levy, 2010], and the International Trade Market [Bhattacharya et al.,

2007] have all been successfully modelled by the interaction matrix T

Tij = NiNjf(dij) (4.26)

where Tij represents the volume of interaction between node i and j, Ni is a measure

of importance of node i (for example its population), and f describes the influence

of space on the interaction as governed by the distance dij between the nodes.

The spatial function f is typically fitted from data and it is generally found

that f is inversely proportional to the distance raised to some power f(dij) ∝ d−α
ij .

These models are typically referred to as gravity models as the roles of distance and

importance play analogous roles as distance and mass in Newton’s law of gravity.

The model proposed by Expert et al. [2011] builds on the idea of a gravity

model but does not presume a form for the role played by distance in f but instead

allows it to be determined entirely by data. Their null-model is

P Spa
ij = NiNjf(dij) (4.27)

where Ni is equivalent to that of Ni in equation 4.26 and the form of f is

f(d) =

∑
i,j|dij=d

Aij∑
i,j|dij=d

NiNj
(4.28)

and is the weighted average of the probability Aij/(NiNj) for a link to exist at

distance d. Summing over P Spa
ij will give the total weight of the network.

The importance of each node can be set as the population of an area or the

number of farms in a district; the node’s degree could also be used. If this is the

case and all edges are equally likely at any distance, i.e f(d) is constant then the

Newan-Girvan model is recovered. We now refer to the modularity function that

uses this spatial null-model as QSpa.

It is important to note that while f(d) is driven entirely by the data supplied,

some binning of the distances involved will have to be taken to give meaningful

values for the probabilities and to keep the size of the function manageable. The

distributions of distances at various bin widths will inform the choice of bin width
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for f(d).

When searching for partitions we have considered the Newman-Girvan mod-

ularity and the spatial modularity separately. However, Expert et al have suggested

a method to interpolate between the two null-models by using a mixing parameter

ξ such that

Pij(ξ) = [ξP Spa
ij + (1− ξ)PNG

ij ]. (4.29)

We extend the modularity to the spatial null-model for a directed, weighted

network as

QSpa =
1

w

∑
i,j

Aij −N in
i Nout

j

∑
i,j|dij=d

Aij∑
i,j|dij=d

N in
i Nout

j

 δci,cj (4.30)

if population size, or any equal measure, is being used as the measure of importance

then N in
i = Nout

i = Ni and we retrieve the original definition of QSpa [Expert et al.,

2011].

4.2.4 UK community detection with the spatial null model

We now repeat the work of the previous section but use the spatial null-model given

by equation 4.30. We again aggregate to the county-level.

For the importance measure in the null-model we will use the number of farms

in each county. The spatial-null model requires a discrete set of distances as it deals

with the probability of an edge to occur at a certain distance. We take the distances

between counties to be the distances between their centroids and experiment with

different bin widths on the annual data.

We test bin widths at distances of 1 to 10 km and at 15,20,25,50,75,100

km. For each bin width we run 1000 different instance of the community detec-

tion algorithm and compare the average VI across all partitions to find the most

representative partition for that bin width.

The average VI between all the representative partitions is then found, the

minimum of which gives us the representative partition for the most representative

bin width, this occurs at 6km (figure 4.12 A). We also plot the deterrence function

(equation 4.28, figure 4.13) at the various bin sizes. The effect of increasing bin

width is to smooth out the function at large distances but at the expense of losing

detail at distances near the bin width.

The structure found using the spatial null-model varies greatly from that

found using the NG null-model. Looking at the annual structure first; for the
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Figure 4.14: County-level map depicting the communities found using the spatial
null-model with a bin size of 6km with movements aggregated to an annual level,
communities of size one are coloured white.

NG model we found 6 communities and though the number of counties in each

community did vary the number of farms in those communities was around 10,000

for each community. However, for the spatial null-model there were 12 communities

(figure 4.14) and the distribution of the number of farms in each community was far

more varied, there were two dominant communities in excess of 15,000 farms, three

communities with 5,000 farms with the remaining communities ranging from sizes

of 100 to 2,000 farms, table 4.2.

These results are in line with those found by Expert et al for the Belgian

mobile phone network for which they implemented the spatial null model, yielding

a heterogeneous community structure dominated by two large cliques compared to

more homogeneous structure found using the NG model.
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Community Counties Farms

Scotland & North England 26 26430
North Wales 4 7115
West Wales & West Midlands 5 7236
East Midlands & Powys 6 5993
South East England 4 1949
South West & East England 14 17079

Table 4.2: Table summarising the six largest communities found by running the
Louvain community detection algorithm with the spatial null-model on the 2010
UK data aggregated at a county-level with a bin size of 6km.

As we introduce inter-slice coupling for the monthly networks the results are

not as clear cut as for the NG case. Where before we found that the ω = 0.1 partition

was able to track the evolution of the zero coupling partition through time, no

equivalent value of ω could be found for the spatial model. The average VI between

all unique partitions reveals the ω = 50 partition to be the most representative.

The VI(P0.1,Pω) and the VI(P50,Pω) are plotted in figure 4.12 B. We look at the

evolution of P0.1 and P50 in detail in figure 4.16. Here we see that for P0.1 the

structure is not very coherent with new communities being formed monthly even

for the large group of counties in Scotland and North England. There are also

many communities of only one county and counties change community many times

(figure 4.15). For the ω = 50 partition the higher coupling links the communities

more strongly through time and we see more stable communities (figure 4.16) with

counties being assigned to at most two communities (figure 4.15). We also see that

the spatial null-model places East Anglia in the same community as the South-West.

Both of these regions have a high cattle density, which the NG null model did not

pick up.
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Figure 4.16: Monthly county level community structure found using the spatial null
model with a bin-width of 6 km, the inter-slice slice coupling is ω = 0.1 (upper)
and ω = 50 (lower). The counties are grouped into the geographical regions of
Scotland(Sco), North England (N-Eng), the Midlands (Mid), East England (E-Eng),
South-west England (SW-Eng) and Wales (Wal). Communities having less than one
county per month are coloured white.
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4.3 Community detection in Turkey

Turkey can be resolved at province, district or farm level. There are 81 provinces,

928 districts and 55,000 epi-units. Turkey has an area of over 780,000 km2 whilst

the UK excluding Northern Ireland is only 230,000 km2 in area. This makes the

administrative divisions amongst countries hard to directly compare as each province

in Turkey has an average area of 9,600 km2 and each district an area of 844 km2

while each county in the UK has an average area of 3,400 km2.

We begin with the Turkish data from 2010 and analyse the community struc-

ture at a provincial level using the Newman-Girvan null model. We find there are

17 communities which are made of contiguous provinces except interestingly for one

community, Ankara in central Anatolia is placed in the same community as Ezurum

and four of its neighbouring counties (figure 4.17). Ezurum has the highest number

of cattle movements of any province. Both of these provinces were identified as areas

of disease persistence in the analysis of Gilbert et al. [2005].

Figure 4.17: Provincial level community detection in Turkey. Communities are
coloured distinctly and made of contiguous blocks except for the one community
marked with a star which is made of two separate blocks of provinces.

At district level the map of Turkey looks very similar to the provincial one

(figure 4.18) and the variation in information between the two partitions is relat-

ively low at 0.11. Some districts move from their provincial community but the

community blocks remain largely contiguous save for the strong Ankara - Ezurum

connection which now includes the district of Yeşhilisar in the Kayseri province.

The districts of Istanbul are now split by the Bosphorus with the European districts

joining the community containing the provinces of Thrace. The city districts of

Istanbul are assigned into 5 different communities. This splitting is expected as the

Thrace region has far stricter movement controls, while the city districts will have

imported cattle form across the country.

The temporal evolution of the community structure of Turkey appears less
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Figure 4.18: District level community detection in Turkey. Communities are col-
oured distinctly and the provincial boundaries are drawn in bold to allow for com-
parison with figure 4.17. The starred regions all form the same community.

stable than that of the UK; the average VI between months in the same partition

is higher for Turkish partitions than for UK ones with the same coupling (figure

4.19 A). The number of communities found at the annual level in Turkey is three

times that of the UK which allows for more variation once a monthly coupling is

introduced.

This variation and the large number of communities in Turkey, 35 and 20

for ω = 0.1 and ω = 50 respectively compared to 7 and 6 for the same coupling

values in the UK (figure 4.19 B), make the visual interpretation of the community

structures evolution difficult. As an example we plot the evolution of Turkey in

two ways using the high coupling iii. The evolution of the community structure is

plotted where the provinces are grouped into the 7 geographical regions of Turkey

(figure 4.20) and grouped by the communities found in January 2010 (figure 4.21).

4.3.1 Farm level community detection in Turkey

For the full farm level we have coupled the years from 2007-2012 through time with

a weak coupling of ω = 0.1. Maps for each year are seen in figure 4.22 and figure

4.23. This was only carried using only one coupling value as due to the size of

super-adjacency (55, 193× 6) run time was long (≈ 3.5 days).

We identified 21 large communities while the largest small community had a

size of 6 epi-units, which would correspond to one farm being in its own community

for all six years. In total the 21 large communities accounted for over 90% of

the farms, and ranged in size from 32,000 farms to 3,000 farms. The sizes of the

communities are fairly consistent save for some of the communities such as 18-21

which only become large in later years, figure 4.24.

iiiLow coupling gives rises to too many communities to be able to distinguish the colours.
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Figure 4.19: Plot A shows the average VI between the months for each partition
found as coupling is increased. Plot B shows the number of communities identified
in each partition as coupling is increased. Both plots show results for Turkey at a
provincial level and the UK at a county level.

The link between Ankara and Ezurum (community 4) which we had identified

in the district and provincial community structures for the 2010 data is also present

at a farm level but only for the first four years examined, by 2011 this strong connec-

tion has disappeared. The size of community 4 centred around Ezurum undergoes

a large drop in size in 2011 suggesting that the connection between the Ezurum

province on the surrounding provinces in North East Anatolia has weakened.
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Figure 4.20: Evolution of the provincial level community structure of Turkey for
2010 with ω = 50. The provinces are grouped by regions and the labels correspond
to table C.2 in appendix C. There are 20 different communities.
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to table C.2 in appendix C. There are 20 different communities.
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Figure 4.22: Coupled farm level community detection for Turkey. From top to bot-
tom: 2007, 2008, 2009. Maps show the 21 biggest communities with cross-hatching
indicating areas of community overlap.
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Figure 4.23: Coupled farm level community detection for Turkey. From top to bot-
tom: 2010, 2011, 2012. Maps show the 21 biggest communities with crosshatching
indicating areas of community overlap.
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Figure 4.24: The sizes for each of the 21 large communities identified from 2007 to
2012 for the Turkey community detection across the six years with a coupling of
ω = 0.1. The mean size and standard deviation are also plotted.
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4.4 Implications to epidemic prediction

Work by Salathé and Jones [2010] showed that the value of modularity found for

a network can influence epidemic dynamics across the network. This work was

carried out in a controlled manner by generating 50 small-world style sub-graphs and

then connecting them together with inter-community links. These links were then

rewired so that the modularity could be tuned, allowing for a variety of community

structures. Community structure acted in two ways: strong community structure

either served to stifle the spread of the disease with the epidemic becoming trapped in

one community, or led to longer epidemics as the disease spread through communities

in serial.

The focus of our work is slightly different from Salathé and Jones [2010].

In order to completely describe the effect of community structure in the cattle

network of the UK we would have to be able to create networks with the same

degree distribution as the original network but with some mechanism that would

allow us to vary the modularity. To our knowledge there is no procedure that allows

for the manipulation of the community structure of a network with an arbitrary

degree distribution.

Instead we will focus on community detection as a predictive tool for the

spread of epidemics across the UK. We will once again focus on the farming hot-

spots of Cumbria, Devon, and Aberdeen and seed epidemics in each of these counties.

The county-level community detection algorithms revealed that these counties ap-

pear in communities of varying levels of temporal stability (figure 4.7). While at

the farm-level farms from these counties appear in communities that have varying

degrees of overlap between other communities (figure 4.11).

As we learned from chapter 3 outbreaks seeded in different parts of the

country can have different patterns of spatial spread. Epidemics in Cumbria tended

to be localised to the North of England with some spread extending into Scotland

and into the Midlands. Epidemics in Aberdeen were strongly regionalised staying

almost entirely in Scotland. Outbreaks seeded in Devon tended to spread all over the

country. Figure 4.11 somewhat reflects this - there are two communities in Scotland,

one centred around Aberdeen and the other comprising the south of Scotland that

have very little overlap with any other communities. This, coupled with the temporal

and static county level partitions found which always grouped the Scottish counties

together, show that the cattle network in Scotland is very close knit.

From figure 4.11 we see two large communities in the North of England, but

unlike the Scottish communities they share a large overlapping region and also over-
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lap with the communities in the Midlands. Devon is part of the largest community

identified with the farm-level NG comprising 12,332 farms and overlapping with

other large communities in Wales and central England.

With these observations about the community structure and our previous

knowledge of disease dynamics within the cattle farms of the UK, we would expect

to be able to predict the spread of disease for epidemics seeded in Aberdeen to a

high level of accuracy. However, the expected results for Cumbria and in particular

Devon are less clear cut.

For this investigation we consider farms to be our basic epidemiological unit

and ignore within herd dynamics. This is the most widely used approach for na-

tional level livestock models [Kao et al., 2006; Keeling and Eames, 2005; Keeling

et al., 2001], simplifying the model and increasing simulation speed. This is also the

approach used in chapter 3. As we are only interested in epidemics that take-off we

once again set a take-off threshold of ten infected farms and continue simulations

until we have 5000 outbreaks that have reached this threshold in each of the three

counties.

The probability of infection is again given by

P (Si → Ii) = 1− exp

−β
∑
j∈I

Aij

 (4.31)

and each farm stays infected for an infectious period of T days after which it is

recovered. We vary β ∈ {1, 2, 3, 4, 5} day−1 and T ∈ {7, 14, 21, 28} days. Each

simulation runs until the epidemic dies-out. We record the size of the epidemic and

the farms infected at each daily time-step. We then compare the number of infected

farms in the seed farm’s community IC with the total number of infected farms I.

One way to interpret our results is to use a receiver operating characteristic

(ROC) curve. A ROC curve is a plot of the true-positive-rate (TPR) against the

false-positive-rate for a binary classifier. In our case, our community structure makes

a prediction that any farm in the seed farm’s community C will become infected

(test positive) and any farm not in C will not become infected (test negative).

We run an epidemic and observe the results. The number of infected farms in

C is the number of true-positives (TP), the farms in C that have not been infected

are false-positives (FP), the true-negatives (TN) are all the farms not in C while the

false-negatives are the infected farms not in C. In the notation introduced above
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these classifications are given by

TP = IC (4.32)

FP = SC − IC (4.33)

TN = (N − SC)− (I − IC) (4.34)

FN = I − IC . (4.35)

The true-positive-rate (TPR) also known as the sensitivity is

TPR =
TP

TP + FN
=

IC
I

(4.36)

and the false-positive-rate (FRR) is given by 1−the true-negative-rate (1−the specificity)

FPR = 1− TN

FP + TN
=

SC − IC
N − I

. (4.37)

With SC the size of community C. Tests resulting in a high TPR and low

FPR will appear on the top left of the ROC plot and are indicative of an accurate

test. If a point appears below the line from (0,0) to (1,1) then flipping the tests

prediction would be a better test.

We can directly compare different partitions by considering the seed farm’s

community in the different partitions and computing the associated ROC score.

4.4.1 UK simulation results

As well as examining the predictions of the various partitions found by the Newman-

Girvan and Spatial null models we also use three intuitive partitions of the UK; the

68 individual counties, the six regions of Scotland, North England, the Midlands,

Wales, South-West England and East England, and the three nations of Great Bri-

tain; England, Scotland and Wales. We also examine one additional partition, an

amalgamation of the farm-level NG partition with the inclusion of all the farms in

the source farms county.

In chapter 3 we compared simulation results between different networks. To

do this we used epidemic size as our measure and obtained an average epidemic

size by averaging across many simulation runs. We were then able to obtain a

confidence in our results by bootstrapping. Here we are more focused on which

farms become infected rather than the average numbers infected. Hence, we analyse

the simulations from the perspective of a farms risk of infection. iv

ivA similar methodology was employed by Tildesley et al. [2008].
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For each seed county we have 5,000 simulations. We record the number of

times a farm becomes infected during the first x weeks of an epidemic. We can

calculate TPR and FPR for the collection of farms that have been infected in the

first x weeks of at least p% of simulations.

The community which acts as our binary classifier is the community that

most of the farms from the county in question are members of. That is, if we

are seeding epidemics in Cumbria and examining the Counties partition we would

chose the whole county of Cumbria as the test community. For non-county based

partitions such as the Farm NG partition we determine which of the communities

proposed by the partition farms in Cumbria fall into and then set that community

as our test community. The communities considered for each of the three counties

are shown in figures 4.25 - figures 4.27.

We can also look at how TPR varies with p and x. The parameters p and

x are threshold parameters, with p representing the minimum risk a farm has of

becoming infected and x showing how that risk increases throughout the epidemic.

Let us begin by analysing the results for Cumbria and focus on the results

for simulations with β = 1 and T = 21. For each of the partitions considered we

obtain a point on the ROC graph (figure 4.28 A) by calculating the true positive rate

and false positive rate for a partition for the set of farms that have been infected

within the first 4 weeks in at least 2% of simulations. As figure 4.28 A) shows

partitions with larger communities such as those found using the spatial null-model

and the nations of GB have very high false positive rates whilst partitions with many

communities have lower false positive rates, the prime example being the counties

partition.

The Nations partition yields a high TPR=0.93. Cumbria is in the community

with the rest of England; this is a very large community and gives rise to a very high

FPR=0.67. At the other end of the spectrum is the Counties partition. Only the

farms in Cumbria are predicted to become infected. This leads to a low FPR=0.05

but only successfully identifies 0.16 of the infected farms. In the middle of these two

extremes lies the Regions partition with a TPR=0.87 and a FPR=0.22. The Regions

partition offers a decent TPR but the FPR result would correspond to monitoring/

controlling over 15,000 farms. Next we look to the county-level partitions found

from the community detection algorithms to see if we can improve TPR or at least

reduce FPR. The County NG partition gives a similar result to the Regions partition

with a TPR=0.87 - the same as the Regions TPR but with an improved FPR=0.20

corresponding to 1,600 less farms being wrongly classified. Moving to the County

SPA partition we retrieve our highest TPR=0.94 drastically out performing the
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Figure 4.25: Plot of the test community from the Farm-County NG partition for
Cumbria. The farms in the test community are marked in grey, farms that are
infected at p = 2% are marked with small dots, those infected at p = 4% are marked
with large dots, and those infected at p = 10% are large dots with a black centre.
Farms that were infected at these p values and are members of the community are
coloured orange while those that are outside the community are coloured green. The
network diagram of those same farms is shown on the right.
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Figure 4.26: Plot of the test community from the Farm-County NG partition for
Devon. The farms in the test community are marked in grey, farms that are infected
at p = 2% are marked with small dots, those infected at p = 4% are marked with
large dots, and those infected at p = 10% are large dots with a black centre. Farms
that were infected at these p values and are members of the community are coloured
orange while those that are outside the community are coloured green. The network
diagram of those same farms is shown on the right.
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Figure 4.27: Plot of the test community from the Farm-County NG partition for
Aberdeen. The farms in the test community are marked in grey, farms that are
infected at p = 2% are marked with small dots, those infected at p = 4% are marked
with large dots, and those infected at p = 10% are large dots with a black centre.
Farms that were infected at these p values and are members of the community are
coloured orange while those that are outside the community are coloured green. The
network diagram of those same farms is shown on the right.
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Figure 4.28: Epidemic predictions for outbreaks seeded in Cumbria. The disease
parameters for these simulations were: β = 1 and T = 21 days. A) ROC plot for
the set of farms that have become infected in the first 4 weeks of at least 2% of
simulations using different partitions as predictors. B) The total number of farms
that have been infected in the first 1, 4, 10 and 24 weeks of at least p% of simulations.
C) The TPR for farms infected within the first x weeks in at least 2% of simulations.
D) TPR after 4 weeks as a function of the percentage of simulations farms have been
infected in.
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Nations partition with an FPR=0.38. At the farm-level using the NG null-model we

find a FPR=0.11 and a TPR =0.71. We consider also a modification of this partition

and define the source farms community to be that found by the NG model but also

to include the farms in the source farms county, calling this the Farm-County NG

partition. This inclusion increases the size of the source farms community, increasing

FPR but may capture more local connections and hence increase the TPR. For this

new farm-county partition the TPR=0.75 which is an increase over the Farm NG

partition with only a modest increase in FPR to 0.12.

Obviously we could examine the TPR and FPR results for a range of x and p

values. Focusing on x = 4 weeks is a prudent choice however as if a livestock disease

outbreak was to occur within the UK it is reasonable to assume that it would take

some time to be detected, and once it had been detected control measures such as

movement ban would be put in place.

4.4.2 Sensitivity to threshold parameters

Figure 4.28 B shows how I changes with the threshold parameters x and p. For

small values of p a farm only has to be infected in a few simulations to contribute to

I. A high values of x gives long period for a farm to become infected and contribute

to I. Hence, low p and high x values yield the highest I values. Within the first

x = 4 weeks, I =8,547 farms were infected in at least one simulation (p = 0.0002%).

This number quickly drops as we increase p to try to capture the more at risk farms.

At p = 1%, I = 182 farms dropping to 68 farms when p = 2%. The number of farms

consistently infected within the first week of the epidemics is very small, only 2

farms are infected across at least 1% of simulations.

The size of I will determine the TPR and FPR values with I having a

more pronounced effect on TPR than FPR. For small numbers of infected farms

the false-positive-rate is essentially a ratio of the number of farms we expected to

become infected (the community size, SC) to the total number of farms, N . To

allow us to compare the effects of changing x and p on different partitions we use

the ratio of TPR to FPR. This ratio is known as the positive likelihood ratio (LR+).

The LR+ ratio with p = 2% fixed and x being allowed to vary is shown

in figure 4.28 C) for the Counties, County SPA, Farm NG, and Farm-County NG

partitions. At x = 1 only one farm is consistently infected, I(p = 2%) = 1. This

farm is only picked up by the County SPA partition with the other partitions having

LR+=0. For the County NG and Farm-County NG partitions a peak in LR+ is

seen at x = 2 which begins to decay sharply before levelling off at around x =

25 weeks. There is little difference in performance between these two partitions
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though the initial peak for the County NG partition is slightly higher than that

for the Farm-County NG partition. Both of these partitions however outperform

the Counties and County SPA partitions; with the former being penalised for being

too localised giving a low TPR, and the latter from being too general giving a high

FPR.

When we fix x = 4 weeks and vary p we once again find vary little difference

between the Farm NG and Farm-County NG partitions (figure 4.28 D)). For both

partitions the LR+ remains at around 6 for p < 5%. For p > 5 the number of

infected farms is small (figure 4.28 A)); as such not much weight can be given to

results for higher values of p.

The Counties and County SPA show differing behaviour. For the Counties

partition low p results in high LR+ values. Epidemics are seeded in Cumbria mean-

ing we are guaranteed that at least one farm will be in the Counties community in

every simulation. As p increases the performances of the Counties partition deteri-

orates as the epidemics spread beyond Cumbria. Cumbria is placed in the largest

community in the County SPA partition. This community is so large that TPR and

FPR remain constantly high regardless of p and thus the LR+ remains small and

constant.

4.4.3 Spatial heterogeneities

The heterogeneous nature of the UK cattle network does lead to varying levels of

prediction accuracy for the different counties examined. A summary of the TPR

and FPR values for all three counties is given in table 4.3 with p = 2% and x = 4

weeks.

For Devon (figure 4.29) the Nations and Counties partitions once again ap-

pear at the extremes of the ROC plot. However, in contrast to Cumbria, we now see

a much tighter clustering of the other partitions. The Farm-County NG partition

has the largest TPR=0.59 but with a slightly higher FPR than the Farm-Level NG

partition. These two partitions outperform the Regions, County NG and County

SPA partitions.

For Aberdeen all the TPR values are high but there is a redundancy in some

of the partitions. The County NG, Nations and Regions partitions all place farms

in Aberdeen in the same community and hence they all receive the same ROC score

(figure 4.30 A). Outbreaks are more localised in Aberdeen than in Cumbria and

Devon with the Counties only partition performing well, outscoring the farm-level

NG. The Farm-County NG partition does offer an improvement on both those par-

titions with a TPR of 0.90. The redundant partitions have high TPRs=0.98 which
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Cumbria Devon Aberdeen

Partition TPR FPR TPR FPR TPR FPR

Counties 0.1618 0.0472 0.2267 0.0631 0.8653 0.0322
Regions 0.8676 0.2184 0.4133 0.1931 0.9845 0.1687
Nations 0.9265 0.6651 0.9867 0.6650 0.9845 0.1687

County NG 0.8676 0.1953 0.4667 0.2177 0.9845 0.1687
County Spa 0.9412 0.3755 0.4667 0.2428 1.000 0.3743
Farm NG 0.7059 0.1112 0.5333 0.1751 0.8238 0.0716

Farm-County NG 0.7500 0.1237 0.5867 0.1996 0.8964 0.0751

Table 4.3: TPR and FPR for different partitions for epidemics seeded in Cumbria,
Devon and Aberdeen for farms infected the first 4 weeks of at least 2% of simulations
with β = 1 and T = 21 days. The first three partitions are defined geographically,
the next three have been found using community detection algorithms while the
final partition is an amalgamation of the Counties partition with the farm-level NG
partition.

is close to the TPR of the County SPA partition with a TPR=1.00. However, the

County SPA partition has a much higher FPR as it includes counties from the North

of England (figure 4.14).

A summary of the TPR and FPR values for each of the partitions considered

in each county is given in table 4.3.

Maps (figures 4.25-4.27) reveal the spatial differences between the farms most

frequently infected by epidemics seeded in each of the counties. These results mirror

those seen in chapter 3 but give a more detailed picture as to why community

detection is more successful for some counties than for others.

For all three counties there exist farms that are frequently infected that were

not placed into the predicted community. These farms have high in-degrees, and are

therefore very well connected within the network. This is most notable for Devon

(figure 4.26) where a large cluster of farms in Herefordshire are frequently infected

but were not placed in the same community as the farms from Devon.

4.4.4 Sensitivity to disease parameters

As mentioned above simulations were carried out for β ∈ {1, 2, 3, 4, 5} and T ∈
{7, 14, 21, 28} days. The effect of changing these parameters on epidemic size and

and on the likelihood ratio are shown in figure 4.31. We fix x at 4 weeks and compare

results with the threshold parameter p = 2%.

The transmission parameter has a larger impact on the number of farms

infected and on the likelihood ratio than the infectious period. Results for β = 1
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Figure 4.29: Epidemic predictions for outbreaks seeded in Devon. The disease
parameters for these simulations were: β = 1 and T = 21 days. A) ROC plot for
the set of farms that have become infected in the first 4 weeks of at least 2% of
simulations using different partitions as predictors. B) The total number of farms
that have been infected in the first 1, 4, 10 and 24 weeks of at least p% of simulations.
C) The TPR for farms infected within the first x weeks in at least 2% of simulations.
D) TPR after 4 weeks as a function of the percentage of simulations farms have been
infected in.
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Figure 4.30: Epidemic predictions for outbreaks seeded in Aberdeen. The disease
parameters for these simulations were: β = 1 and T = 21 days. A) ROC plot for
the set of farms that have become infected in the first 4 weeks of at least 2% of
simulations using different partitions as predictors. B) The total number of farms
that have been infected in the first 1, 4, 10 and 24 weeks of at least p% of simulations.
C) The TPR for farms infected within the first x weeks in at least 2% of simulations.
D) TPR after 4 weeks as a function of the percentage of simulations farms have been
infected in.
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Figure 4.31: The effect of varying disease parameters on epidemic size (left) and
positive likelihood ratio (right). All analysis takes place 4 weeks into the epidemic or
β ∈ {1, 2, 3, 4, 5} per day and T ∈ {7, 14, 21, 28} days. We analyse simulations seeded
in Cumbria examining farms that have been infected in at least 2% of simulation.

vary between LR+ = 5.6 and 6 but drop to between 3 and 3.4 for β = 5. This is

not surprising as the high β increases the probability of transmission along all edges

making it more likely that edges with a low weighting could transmit disease.

A more subtle effect is seen when transmission is kept constant and the in-

fectious period T is varied. For all values of β we observe that increasing T can

actually lead to smaller epidemics. In fact we observe an increase from T = 7 days

to T = 14 days and then a decrease through to T = 28 days. This appears con-

tradictory, increasing T directly increases R0 and should produce larger epidemics.

The final sizes of the epidemics we have simulated are indeed larger for higher values

of T . Low numbers of infected farms early on in the outbreak are explained by the

take-off limit we imposed on simulations.

Imagine we run two simulations, one with a high infectious period TH and

one with a lower infectious period TL. We seed each simulation in the same farm,

F. We assume F is weakly connected to the network, i.e. has a low centrality, and

therefore has a low probability of causing an outbreak. For the simulation seeded

with the short infectious period, F will remain infected for TL days. If, as expected,

F does not infect any other farms then the take-off limit will not have been reached

and a new seed farm will be chosen at random. In this way outbreaks seeded with

a low infectious period have to reach the take-off threshold quickly in order to be

counted so we are preferentially choosing outbreaks that take-off more rapidly.

On the other, if we seed F using the high infectious period then F will remain
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Figure 4.32: Plot showing the affect that varying the infectious period T has on the
number of infected farms in the early stages of outbreaks when a take-off limit is
imposed. On the left we have the transmission parameter β = 1 and on the right
β = 2. Simulations are seeded in Cumbria and we analyse the farms infected in at
least 2% of outbreaks.

infectious for TH giving a greater chance of transmitting infection and leading to

an outbreak. The longer infectious period allows the outbreak to remain small for

much longer before reaching the take-off limit.

Ultimately, the outbreak with the longer infectious period will be larger.

Figure 4.32 demonstrates that outbreaks with shorter infectious periods can have

larger sizes early in the epidemic. In our case we look at outbreaks with infectious

periods of 7,14,21, and 28 days and make our analysis 4 weeks into the outbreak.

By this time outbreaks with T = 14 days have caught up with those having a T = 7

days, while those with higher infectious periods are still in their early stages.

Similar results are seen for epidemics seeded in Devon and Aberdeen and are

given in the appendix C.

4.5 Discussion

We have used the community detection method to analyse the UK and Turkey cattle

movement networks in a novel manner and applied the resultant partitions for the

UK to epidemic predictions.

The only previous application of community detection to networks generated

from between farm movement of livestock was carried out on the network of sheep
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movements by Kao et al. [2006] and continued by the same authors in Green et al.

[2006]. Their work focused on farm level networks which were aggregated over four

week periods for sheep movements throughout 2003.

There are some similarities in the maps generated by Kao et al. [2006] of the

sheep communities and our map of the farm level cattle communities, figure 4.10.

Scotland and the North of England both appear as distinct communities in both sets

of analyses. For the sheep network the South of England and South of Wales appear

as one large community whereas for the cattle network they are more disjoint.

We have shown on the county level that the cattle communities of the UK

do change with time but that the North of the UK appears robust to this change.

It would be interesting to include coupling for the farm level UK networks so as

to track the temporal evolution of the community structure at a finer scale. This

would be computationally expensive as having M time point would increase the size

of the adjacency matrix from [N ×N ] to [(MN)× (MN)].

In searching for partitions of a network using community detection methods

we are ultimately searching for new ways to classify nodes. Finding these hidden

classifications can prompt discussion as to what properties nodes share that might

cause them to be placed in the same community. In the networks we have studied

geographical distance seems to be the driving factor behind community assignment.

This is more evident in the Turkish cattle network where the divide between different

communities quite often falls close to provincial boundaries. This is presumably due

to restrictions on trade between provinces in Turkey.

The UK did not show geographical bias to the same extent as Turkey; except

for the notable exception of Scotland. In almost all algorithms we implemented the

farms and counties of Scotland were placed in the same community. The exception

to this was our implementation of the spatial null-model.

The result of the spatial null model was to bring much of the North of England

into the Scottish community and to create a non-contiguous community between the

South West of England and East Anglia. Due to computational limitations we could

only implement this algorithm at a county-level. Given the resources it could prove

useful to extend this method to the full farm level network for both the UK and

Turkey. This may yield a more resolved community structure which reveals deeper

insight into the formation of trade links between farms than proximity alone.

The ROC plots reveal that it is possible to have a high level of predictive

accuracy using community structure but this comes at a cost of many false positive

which would consume resources in the event of an outbreak. The combining of

the Farm-Level NG partition with the Counties partition improved results for all
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counties considered.

Whilst the results of the epidemic simulations for the UK using community

detection as a predictor were not startling they do lend themselves to some gen-

eral truths. Real world networks are highly heterogeneous particularly if they are

embedded spatially. The cattle network in the UK behaves differently in different

regions and therefore a control/ surveillance strategy that appears suited to one

region may fail significantly when applied to others.

We have also not at this point considered markets. As demonstrated in

chapter 3 markets can dramatically alter the dynamics of outbreaks, however it is

still not known how best to model transmission at a market. It is also unclear

how markets should be treated in a community detection context. Should they be

treated as a separate type of node, or be directly incorporated into the network?

Similarly, knowing the production type of each farm (beef or dairy) and

incorporating this into the community detection algorithms may provide deeper

insights into the structure of the cattle network. As some farms have mixed animal

types it may even be possible to overlay the sheep and pig movement data to create

a multilayer network with different types of nodes linked through different types

of edges. Recently work has been done by Kivelä et al. [2014] to lay a foundation

for analysis of this type of network. Applying this analysis to the whole livestock

network for a country would require amalgamating many data sources.

Parameter sensitivity suggests that predictions can be more accurate for a

disease with a low transmission rate but a longer infectious period. It is possible then

that this work could be applied to a slow-burning disease such as bovine tuberculosis

(BTB). As it stands, our farm based SIR model would be unable to capture the

dynamics of BTB, with an individual based model incorporating a latent period

being more appropriate [Brooks-Pollock et al., 2014; O’Hare et al., 2014].
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Chapter 5

Modelling FMD in Turkey

While we could embark directly on the development of a national scale model assum-

ing that the spread and virulence of FMD in Turkey will be similar to that observed

during the 2001 outbreak in the UK, this approach will probably prove flawed. As

discussed in previous sections of this thesis farming practices differ between the two

countries as do attitudes towards FMD and, as a result the available control options

in Turkey are very different to those used in the 2001 outbreak. Bearing this in mind

we thought it prudent to examine specific Turkish farms which have had multiple

outbreaks of FMD in order to derive parameter distribution specific to Turkey.

Farm 8149 is the village of Yurtbasi located in the Merkez district of the

Elazig province. It has had nine outbreaks of FMD between May 2002 and May

2012, with seven of those occurring after July 2007. Of these seven, there has been

one case of type A, four of type O and most recently two of type Asia-1. The

population of the farm has ranged from 3600 to 6000 cattle and was comprised of

785 holdingsi.

Using an individual cattle model in a specific farm should allow us to gain an

understanding of the epidemiology of the disease as well as the effects of vaccination

and waning immunity. It may be the case, however, that parameter values inferred

for one farm are completely different for a farm with differing demography. To check

for this we chose a second farm - farm 25,372 is the village of Kalecik in the Kozakli

district of Neveshir. This farm is much smaller with cattle population ranging from

between 100 and 650 cattle coming from 118 holdings. As with farm 8,149 farm

25,372 was chosen because of its history of multiple outbreaks of FMD since 2007.

The locations of both farms are shown in figure 5.1.

In this chapter we construct a model for both farms. We then parametrise the

iThough not all of these holdings are active every year
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Figure 5.1: Locations of the farms mentioned in the text. Farm 8159 (yellow) is
the village of Yurtbasi located in the Merkez district of the Elazig province. Farm
25,372 (red) is the village of Kalecik in the Kozakli district of Neveshir province. All
81 provincial outlines are shown. The satellite image is courtesy of Google Maps.

model using movement and outbreak data from both farms in a Bayesian framework.

Simulations are then performed using posterior parameter distributions.

5.1 The model

In order to simulate FMD within a farm we construct a basic SEIRS compartmental

model. This allows for a latent period and waning immunity. The model is refined

by including classes for vaccination V, and maternally derived immunity M. The

proportion of cattle in each class will be denoted by lower case letters. The daily

transitions between the different classes will be determined by Poission processes.

The rates for these processes (save for the S→E transition) will be inversely propor-

tional to the average time an animal is expected to stay in that class.

Not governed by an individual rate is the transition from susceptible to in-

fected (S→E), instead this rate is proportional to the proportion of infectious cattle

on the farm, i. Susceptible cattle therefore become infected with probability

P(S → E) = 1− e−βi (5.1)

where β is the transmission rate.

The E, I, R, V and M classes will each be composed of multiple statesii.

Allowing for multiple states gives some control over the distribution of the period

spent in a class. This period moves from being exponentially distributed when

there is only one state to approaching a step-function when there are many states.

iiIn the literature the terms states, classes and compartments are used interchangeably by dif-
ferent authors
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Figure 5.2: Figure indicating the effect having multiple states has on the time it
takes for transitions between class X and class Y. On the left hand side the period
is 10 days while on the right hand side the period is 360 days.

[Keeling and Rohani, 2008] (figure 5.2). This method allows us to guarantee that

a cow will remain in one class for at least as many days as there are states in the

class. This also incorporates a time delay into the dynamics while still keeping them

Markovian. As the number of states becomes much greater than the average period

divided by the time-step the probability of moving between states approaches one

ensuring the cattle will move continuously through states recovering the dynamics

we imposed for the I→R transitions in the farm level model of chapters 3 and 4

which were dictated by a fixed recovery period.

Cattle moving to the farm may be placed into the vaccinated category. Each

cow moving onto the farm will be vaccinated with probability p = vc, where vc is

the vaccine coverage. Vaccinated cattle will be uniformly distributed among the

vaccinated states. Those cattle not vaccinated will be susceptible.

Turkey has ongoing vaccination campaigns that run at least twice a year. As

the exact dates of these campaigns were not known to us we implement them twice

yearly at the end of March and September each year. This corresponds to the most

common time when vaccinations were carried out in 2012 [Knight-Jones, 2014]. An

attempt is made to vaccinate all susceptible cattle on the farm. Susceptible cattle

are successfully vaccinated with probability p = ve, with ve the vaccine efficacy.

Further vaccination is also carried out in the event of an outbreak. In the

same way as the routine vaccination an attempt is made to vaccinate all susceptible

cattle with the vaccine efficacy determining which cattle become vaccinated.

As we have information on births we can incorporate waning maternal im-
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parameter symbol prior

transmission rate β U(0, 10)
number infected n set to 1

length of E period σ−1 Weibull(3.974,1.782) [Mardones et al., 2010]
length of I period γ−1 Gamma(3.969,1.107) [Mardones et al., 2010]
length of R period w−1 U(30, 720) [Pomeroy et al., 2015]
length of V period ν−1 U(30, 180) [Doel, 2005]
length of M period κ−1 U(1, 180) [Gonzales et al., 2014]

vaccine coverage vc U(0, 1)
vaccine efficacy ve U(0, 1)
boost efficacy vb U(0, 1)
time-to-control TC U(14, 35)
NSP prevalence rNSP U(0, 1)
Number of E states NoE set to 2
Number of I states NoI set to 2
Number of R states NoR random integer from 1 to 10
Number of V states NoV random integer from 1 to 10
Number of M states NoM random integer from 1 to 10

Table 5.1: Parameters in the model with the symbol used and any prior knowledge
incorporated with references

.

munity into the model as class M. Each day a number of newborn cattle will be

placed into M with probability p = 1− s while the remainder will become suscept-

ible.

5.1.1 Free parameters

As described above the model has many parameters. Here we will outline each of

these parameters and give prior estimates of the distributions that may describe

them. Unless stated, parameters are not bounded by these prior distributions and

their true values may lie outside of this range. This will be accounted for in the

parameter inference schemes outlined later in this chapter. A summary of the para-

meters and their prior distributions is given in table 5.1.

Infection will be determined by the transmission rate β. In most cases studied

a value for β is not presented with the R0 being reported instead. At a farm level

Ferguson et al. [2001b] estimated R0 between farms in the UK to be between 3.5-4.5,

which dropped to 1.6 in the presence of movement restrictions. Estimates within

a herd vary; when reporting on an FMD outbreak in Bolivia Gonzales et al. [2014]

found R0 to range from 1.02 to 2.68, however this was not a true value of R0 as

some cattle in the herd were vaccinated. In a controlled study of FMD transmission
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between cattle Orsel et al. [2007] found R0 > 1 but placed no upper bound on the

value. The same authors found that for calves (aged 8-10 weeks) R0 = 2.52. In both

studies the authors found that vaccination drove R0 below the threshold value of 1.

As we incorporate vaccination into our model and are not challenging a fully

susceptible population with FMD we would expect our estimate of R0 to be in the

range given by Gonzales et al. [2014]. Allowing for an infectious period of at least 2

days would suggest that β = R0 × γ−1 = 2.68/2 ≈ 1. This is only a rough estimate

and we will allow for an unusually high value of β by selecting β uniformly from 0

to 10. iii

Outbreaks will occur at the dates given from the data. The number of cattle

infected n when an outbreak is seeded in the farm will influence the probability of

the outbreak taking-off. However, we will reduce the parameter space of the model

by setting n = 1.

As discussed in the introduction there is some debate over the duration of

the exposed and infectious periods for FMD in cattle. We will opt to use the

distributions proposed in the meta-analysis put forward by Mardones et al. [2010]

pertaining to the O serotype of FMD. They offered an exposed (latent in their

terminology) period given by a Weibull distribution with scale parameter aW =

3.974 and shape parameter bW = 1.782. For the infectious period we use a Gamma

distribution with shape parameter aΓ = 3.969 and scale parameter bΓ = 1.107.

Estimates for the period for the R, V, and M classes are hard to find with

few longitudinal studies having been carried out. What information is available

is discussed in the introduction chapter. With the broad consensus being that

vaccination and maternally derived immunity (if any exists) should last no more

than 6 months we set prior distributions of U(30, 180) days and U(1, 180) days

for the V and M periods respectively. We will allow for a long recovery period,

which, may be life-long [Pomeroy et al., 2015] and use U(30, 720) days as the prior

distribution for the R class.

While the date the outbreak was confirmed is assumed to be known, the

date of the reactive vaccination program is not. To account for this a time-to-

control parameter TC is included in the model which represents the delay from the

start of the outbreak to the introduction of the vaccination programme. We use

U(14, 35) days as the prior distribution for TC as we would expect some delay in

the implementation of the vaccination but that it would be carried out within the

duration of the outbreak

As the E and I periods are likely to be less than 4 or 6 days we will set

iiiWe will denote U(a, b) as the uniform distribution ranging from a to b.
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the number of states in these classes to 2. For the R,V, and M classes the number

of states will be drawn uniformly from the integers 1 to 10. This was deemed

appropriate as increasing the number of states beyond ten has little effect on the

overall dynamics but does increase computation time.

5.1.2 Model summary

• Individual (cattle) level model.

• Cattle are born, die and move on and off the farm according to the (cleaned)

TurkVet data.

• The disease model is SEIR.

• Each cow has a disease class and state.

• Cattle moving onto to the farm are vaccinated with probability vc otherwise

they are susceptible.

• Susceptible cattle on the farm may be vaccinated at certain dates with prob-

ability ve.

• On vaccination dates cattle already vaccinated may be boosted back to the

first vaccination state with probability vb.

• Cattle born onto the farm are given maternally derived immunity with prob-

ability 1− s.

• All forms of immunity wane and eventually result in the cattle becoming sus-

ceptible.

• Outbreaks occur on dates given by the outbreak data.

• One susceptible cow is randomly infected on the first day of the outbreak.

• During an outbreak births, deaths and movements off the farm continue as

usual.

• During an outbreak movement to the farm are placed into a holding pen where

they cannot become infected.

• On the day after the outbreak ends cattle in the holding pen are released into

the main farm.

• All updates take place with a daily time-step.
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5.1.3 Model implementation

The model is initialised with a set of parameters. We generate a transition matrix

which determines which classes will transition to which other classes. The number of

states within each class is directly incorporated into this matrix. The model treats

classes and states equivalently allowing us to remove the distinction and refer to

both as states.

Except for the S→E transition the probability of moving between two states

Xk to Xk+1 where class X has NX states is

P(Xk → Xk+1) = 1− e
−NX

TX (5.2)

which can be stored in memory. The probability of moving from the last state in X

to the first state in Y is also determined by the number of states in X.

A state matrix (M×NTotal) is created which keeps track of all the cattle that

will appear during the simulation and has a column for each of the NTotal states.

Those cattle that start on the farm are marked as susceptible in the state matrix. A

proportion, vc of these cattle are selected to be placed into V1. A proportion, rNSP

are also placed into R1. If the same cow was selected to be made both vaccinated

and recovered then recovery took precedence.

Now the simulation begins progressing with daily time-steps. At the start of

each day the proportion of susceptible animals on the farm, s is calculated. Next

the movements to and from the farm as well as births and deaths take place. As

described above, a proportion of the movements to the farm will be vaccinated

and a proportion of the births will be given maternally derived immunity, with the

remaining cattle being susceptible.

The probability of each cow transitioning to the next state is then calculated

and any updates are performed. If the time-step date equals a routine vaccination

date then vaccination will be applied to the farm.

If the date is equal to an outbreak date then one susceptible cow is chosen

to be infected. Now the probability of the S→E transition which depends on i will

have to be calculated. If the time-step date equals an outbreak start date then one

susceptible cow is made infectious.

During the outbreak, as defined by the data, cattle that were born or moved

onto the farm were placed in a separate holding-pen. The farm is made up of

several holdings though we have no information as to which holdings were infected.

It is assumed that the holdings that were unaffected by the outbreak will keep their

cattle separate from infected cattle. The holding-pen allows trade to continue on the
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farm without running the risk of introducing new susceptible cattle to the outbreak.

When the outbreak is over the farms in the holding-pen are moved to the main farm.

5.2 Parameter inference

Bayesian inference allows for the use of prior knowledge of parameters and therefore

allow modellers to directly incorporate the beliefs of experts such as policy makers,

physicians, and veterinarians. One such class of Bayesian inference schemes, Markov

Chain Monte Carlo (MCMC) methods have been widely used in recent years to fit

epidemiological models [McKinley et al., 2014; Neal and Roberts, 2004; Tanaka et al.,

2006; Zhang and Woolhouse, 2011].

MCMC methods treat the parameters, θ as random variables that come from

some distribution given the observed data x, known as the posterior distribution

f(θ|x). Our belief over the true value of θ is given by the prior distribution π(θ).

In many cases we have no informed belief in the prior in which case it is common

to use default fat or objective priors.

Under-pinning MCMC methods is Bayes rule which establishes a relationship

between the prior and the posterior, such that the posterior is proportional to the

prior times the likelihood of the data given the parameters L(θ|x)

f(θ|x) ∝ π(θ)L(θ|x). (5.3)

MCMC is used in situations when this constant of proportionality is unavailable and

proceeds by establishing a Markov chain with f(θ|x) as its underlying distribution.

This chain can then be sampled from to give the posterior distribution. Thus an

estimate of the posterior distribution can be found using only the π(θ) and L(θ|x).
Once such MCMC method that is commonly employed is the Metropolis-

Hastings algorithm [Hastings, 1970; Metropolis et al., 1953] outlined below (al-

gorithm 3). This method starts at a preassigned point in parameter space θ0 and

proposes to jump to a new point θ′ using a proposal distribution q(θ′, θ0). This jump

is made with probability

aMH = min

(
1,

L(θ′|x)
L(θ0|x)

q(θ′, θ0)

q(θ0, θ′)

π(θ′)

π(θ0)

)
(5.4)

which sets θ1 = θ′ if the jump is made and θ1 = θ0 otherwise. This is continued

until the Markov Chain converges. The possibility of accepting the jump even if

the proposed parameters decrease the likelihood of the data allows the chain to

explore parameter space and is necessary to sample effectively from multi-modal
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distributions.

Algorithm 3 Metropolis-Hastings algorithm

1: k = 1;
2: θ0 ∼ π(θ); . Set θ0 from the prior
3: while Chain not converged do
4: θ′ ∼ q(θ′, θk−1) . Propose new parameters

5: a = min
(
1, L(θ′|x)

L(θ0|x)
q(θ′,θ0)
q(θ0,θ′)

π(θ′)
π(θ0)

)
. Calculate the acceptance probability

6: if RAND < a then
7: θk = θ′

8: else
9: θk = θk−1

10: end if
11: k = k + 1
12: end while

The algorithm will eventually converge on the posterior. However, initial

samples may be very far from this distribution, particularly if a poor choice of prior

is used. As such a number of the initial samples must be discarded, this is known

as a ‘burn-in’ period.

Nearby samples will be highly correlated. If (approximately) independent

samples are required then it is possible to ‘thin’ the set of samples, generally by

selecting every nth sample. The extent of thinning is determined by examining

auto-correlations between the samples. The burn-in period and thinning of the

samples increase the computational time of the model.

Often the proposal distribution q is chosen to be symmetric, simplifying the

acceptance ratio, with uniform priors simplifying matters further. What remains

is the likelihood function, however for complicated models this is not generally

tractable and other approaches must be explored.

Another class of methods which build on MCMC methods but do not require

explicit calculation of the likelihood function are approximate Bayesian computation

(ABC) methods. One such ABC method follows the same steps as the Metropolis-

Hastings algorithm but rather than computing a likelihood an appropriate summary

statistic σ(θ) is used instead. A simulation is carried out using the proposed para-

meters θ′, generating new data x′ ∼ M(θ′) and the results compared with the data.

A distance ρ(σ(x′), σ(x)) between the simulation results and the original data is

determined. If this distance is below some tolerance ε then the new parameters are
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kept with probability

aABC = min

(
1,

q(θ′, θ0)

q(θ0, θ′)

π(θ′)

π(θ0)

)
. (5.5)

This algorithm (algorithm 4) proposed by Marjoram et al. [2003] is likelihood

free and outputs the stationary distribution f(θ|ρ(σ(x′), σ(x)) < ε). As with the

Metropolis-Hastings algorithm a symmetric proposal distribution can be used which

further simplifies calculations.

Algorithm 4 ABC algorithm

1: k = 1;
2: θ0 ∼ π(θ); . Set θ0 from the prior
3: while Chain not converged do
4: θ′ ∼ q(θ′, θk−1) . Propose new parameters
5: x′ ∼ M(θ′) . Generate sample from model
6: d = ρ(σ(x′), σ(x)) . Compute distance measure
7: if d < ε then
8: a = min

(
1, q(θ

′,θ0)
q(θ0,θ′)

π(θ′)
π(θk−1)

)
. Calculate the acceptance probability

9: if RAND < a then
10: θk = θ′ . Accept new parameters
11: else
12: θk = θk−1

13: end if
14: else
15: θk = θk−1

16: end if
17: k = k + 1
18: end while

It is however the finer points of the algorithm that lead to complications. A

sufficient summary statistic must be used and a suitable distance measure employed.

The tolerance must also be selected: too low will lead to massive computation times

too high and it will be impossible to accurately capture the posterior. As with the

Metropolis-Hastings algorithm a test for convergence must also be employed. The

Markov chain can again be thinned to remove correlations and a burn-in phase is

also required.

To mitigate against some of these complications Sisson et al. [2009] built

upon the idea of sequential Monte Carlo (SMC) methods and particle rejection

control (PRC) to create an ABC-PRC algorithm. This algorithm has been used for

parameter inference in models of bovine tuberculosis [Brooks-Pollock et al., 2014;

O’Hare et al., 2014]. A simplified version of this algorithm was implemented by
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Walker et al. [2010] in their analysis of the Hong Kong SARS outbreak of 2003. It

is the algorithm of Walker et al. [2010] (algorithm 5) that we will use.

The basic premise of SMC methods is to move from the prior distribution

f(θ)1 = π(θ) to the target posterior f(θ)T through a series of intermediate distribu-

tions specified by a decreasing vector of tolerances ~ε = ε1 . . . εT . Initially a collection

of N particles are drawn from the prior. A simulation is run for each particle. If the

simulation results are within ε1 of the data then the particle is kept. New particles

are drawn from the prior until N particles have been accepted.

This set of particles {θ1} is used as the distribution f(θ2). Particles are

sampled and perturbed from this distribution with model simulations being run.

These particles are now accepted with the stricter tolerance ε2 to generate a new

distribution f(θ3) = {θ2}. This process is repeated until the target distribution

f(θT ) = {θt−1} is found using the strictest tolerance εT .

Algorithm 5 ABC-PRC algorithm

1: t = 1;
2: ε = ε(t)
3: for i = 1 : N do . Sampling from prior
4: d = 0;
5: while d < ε do
6: θ′ ∼ p(θ) . Propose new parameters
7: x′ ∼ M(x|θ′) . Generate sample from model
8: d = ρ(σ(x′), σ(x)) . Compute distance measure
9: end while

10: θt(i) = θ′ . Populate the next distribution
11: end for
12: for t = 2 : T do . Decrease tolerance
13: for i = 1 : N do . Sample from higher tolerance distributions
14: d = 0;
15: while d < ε do
16: θ′′ ∼ {θt−1} . Sample from previous distribution
17: θ′ = θ′′ + δ . Perturb parameters
18: x′ ∼ M(x|θ′) . Generate sample from model
19: d = ρ(σ(x′), σ(x)) . Compute distance measure
20: end while
21: θit = θ′ . Populate the next distribution
22: end for
23: end for

The ABC-PRC algorithm has a number of advantages over the previously

outlined methods. Of particular note is the fact that no test for convergence is

required as the particles are uncorrelated at every stage. Using a decreasing range
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of tolerances allows the algorithm to hone in on the target distribution. In practice

this is much quicker than setting the desired tolerance at the start with Sisson

et al. [2009] finding the ABC-PRC algorithm required 80% fewer simulations than

simulating with the desired tolerance from the beginning.

5.2.1 Implementation

We directly implement algorithm 5 using the prior distributions outlined in table

5.1. We set the number of particles to 250.

Of key importance is the choice of summary statistic. In their work on

the Hong Kong SARS outbreak Walker et al. had a time-series of newly infected

individuals. They smoothed this time-series using a moving average. They then

directly compared their model outputs with this curve using a Euclidean distance.

The data we use here do not include a time series of newly reported cases. We have

a collection of outbreaks and an estimate of the number of infected cattle during

each outbreak.

Näıvely we could attempt to fit each outbreak separately but as we only know

the final epidemic size this would result in an estimation of R0 without a proper

specification of β and the infectious period. Instead, we fit to the vector of outbreak

sizes from the data ID; this is compared with the vector of simulated outbreak sizes

IM :

‖I(k)M − ID‖ < ε(k)ID (5.6)

where ε(k) is the desired tolerance.

For example, if ε = 0.5 then the difference between outbreak size of the

simulated and reported data would have to be within 50% of the original outbreak

size. We further enforce that this condition is met for each of the outbreaks in order

for a set of parameters to be accepted.

In order to increase simulation speed a check is made at the end of each out-

break during a simulation. If the outbreak size is outside the desired tolerance then

the simulation ends without simulating the remaining outbreaks, new parameters

are then drawn and simulated.

As detailed in algorithm 5 at the weakest tolerance we will sample from the

prior. For the remaining tolerances we draw new samples from the distributions

generated at the previous tolerances. These samples are then perturbed before

running simulations and testing summary statistics. We perturb these parameters

by an amount δ ∼ N (0, σ2). Different zero-centred Gaussian distributions are used

for different parameters as the ranges the parameters are exploring vary. Many of
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Figure 5.3: Number of movements made by deceased cattle (blue) and those still
alive (yellow).

the parameters are bounded between 0 and 1 whereas other parameters such as the

recovery and vaccination periods have ranges which are theoretically unbounded.

5.3 Farm level data

As previously mentioned the quality of the movement data is very good after Septem-

ber 2006. For simplicity we take the start of 2007 to begin any disease modelling

but if records pre 2007 are found they have been included in a specific cow’s history.

We describe the procedure for cleaning the data for farm 8,149 below; the same

procedures were followed for farm 25,372.

We consider the history (birth, movement and death) of all cattle born,

moved or died on farm 8,149. Records exist for 26,171 cattle in this time, of these

12,054 have both a birth and a death, 12,526 have only a birth record and 1,277

have only a death record, and 314 have neither. We refer to births, deaths and

movements collectively as events.

The event data was cleaned as described in chapter 2, removing duplications

and ensuring moves occur in the correct order both temporally and spatially. Figure

5.3 plots the distribution of the number of movements that both the deceased and

living cattle have made. The majority of cattle have only one or two movements

throughout their lifetimes.

Figure 5.4 shows the lifespans of the 12,054 cattle which had both a birth
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Figure 5.4: The lifespan and age of cattle at first move in months for farm 8,149

and death record. If we express age in months (1 month = 30 days) then the mean

age is 25.0 months, the mode is 19 months and the median is 21 months.

5.3.1 Population

As discussed in chapter 2 the number of deaths is not accurately recorded in the

data we received. Indeed, running through the movement data for farm 8,149 the

populations grows to around 11,000 by the start of 2010. The population of farm

8,149 ranged from 3600-6114 as given from the outbreak data table 5.2. Another

list received for large ruminant populations on a village level from 2010 quotes a

figure of 6,539iv.

In order to obtain a better estimate of the true farm population we can

attempt to remove cattle that are likely to have died or moved off the farm. To do

this we can use some of the techniques discussed in chapter 2 where we derived the

expected age distribution of cattle in Turkey.

One option we have is to randomly remove cattle from the farm and to then

assign a random date of removal. However we can make a more informed choice

by using the available movement data. There are two types of cattle to consider,

those that have been born on the farm and have never left, (we refer to these as

natives), and those that have moved to the farm and still remain, (we will call these

foreigners). Foreigners may also consist of native cattle that have returned to the

ivThis is file4 referred to in section 2.4 of chapter 2.
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Figure 5.5: The waiting time between moves and the age cattle enter the farm.

farm.

We examined the age distributions at which both native and foreign cattle

leave the farm figure 5.6. Preforming a two-sample Kolmogorov-Smirnoff test on

these distributions rejects the null hypothesis that these samples are from the same

distribution at the 5% confidence level implying the need to treat native and foreign

cattle distinctly v.

To decide which native cattle to remove we examined the age at which cattle

born on the farm had left. A normalised cumulative distribution function (CDF)

was created using the ages at which native cattle left the farm. This CDF gives the

probability that at a given age a native cow has left the farm. The ages of native

cattle who have not yet left the farm are then examined. For each of these cattle we

assign a probability p that it has in fact left the farm for slaughter based on its age

and the previously described CDF. A random number r is drawn; if p < r we keep

the cow, if not we remove the cow. In this way we can remove older cattle that have

a high probability of having died/left without a record being kept. After deciding

to remove cattle we can also allocate dates of removal by again looking at the age

of first move for native cattle.

The same process is carried out on foreign cattle in the farm. The only

difference is the new removal dates are drawn from the time-between-moves distri-

bution (figure 5.5). Figure 5.7 shows the size of the farm with the original and the

vWhen preforming the two-sample Kolmogrov-Smirnoff test the distributions are created using
daily rather than monthly bins, this make the data more continuous.

153



0 12 24 36 48 60 72 84 96
0

100

200

300

Age native cattle left EpiUnit

N
u
m
b
er

of
ca
tt
le

0 12 24 36 48 60 72 84 96
0

200

400

600

Age foreign cattle leave EpiUnit

N
u
m
b
er

of
ca
tt
le

Figure 5.6: The age that cattle born on the farm and cattle that have moved to the
farm leave the farm.

smoothed data. Figure 5.8 compares the demography of the original data with the

the smoothed data. We can see that the main effect is to remove older cattle from

the farm.

5.3.2 Outbreaks

Table 5.2 and table 5.3 are extracts from the outbreak data for farms 8,149 and

25,372 respectively. The province, district and village name are supplied for each

record but not the farm number; these are obtained by cross-referencing with the

list of farm supplied with the movement data. Each record contains serotype, (if

known), as well as: a start, confirmation and end of quarantine date. There are also

other categories to contain numbers of cattle, though these are quite often left as

zero. The most useful of these are the numbers vaccinated, diseased, suspected and

the total population.

The movement data is of highest quality from the end of 2006 onwards and

as such we will not try to fit to any outbreaks before 2007. The NSP prevalence

parameter will attempt to capture the number of cattle on the farm still in the

recovered state from outbreaks prior to 2007.

At this stage of model development we will use a single strain model as the

complexities of a multi-strain model will increase the parameter space massively and

we do not feel that the data is resolved enough for any model to give meaningful

results. We will fit to type-O outbreaks. Type-O has the advantage of being the
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Figure 5.7: The number of cattle on farm 8,149 according to the original data and
the altered data. Estimates from the outbreak data of table 5.2 are also shown on
the start date of the outbreak.
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Figure 5.8: Age demographic for cattle on farm 8,149 according to the original data
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Dates Numbers

# type start confirmed q-end vacc dis suspect pop

1 O 01/05/2002 01/05/2002 10/06/2002 600 47 750 0
2 O 06/07/2005 19/06/2005 19/07/2005 2526 20 350 0
3 O 03/06/2009 16/06/2009 10/07/2009 3318 30 0 3677
4 A 02/01/2010 22/01/2010 26/02/2010 3988 23 247 3800
5 O 24/09/2010 06/10/2010 27/10/2010 4317 120 0 4233
6 O 14/11/2010 26/11/2010 04/01/2011 2659 72 72 4363
7 O 28/02/2011 14/03/2011 28/03/2011 3426 8 292 5122
8 Asia-1 30/01/2012 21/02/2012 03/04/2012 3613 155 0 4155
9 Asia-1 14/05/2012 22/05/2012 18/06/2012 3613 3 0 6114

Table 5.2: Recorded outbreaks for farm 8149. We will use outbreaks #3, #5, #6
and #7 for model parametrisation.

most prevalent strain in the farms considered and that most challenge experiments

of FMD to näıve and vaccinated cattle have been performed with type-O [Mardones

et al., 2010]. As there is no strong evidence to suggest that having being infected by

one strain of FMD infers immunity or increases susceptibility to another it should

be possible to parametrise a single-strain model even if there are multiple strains in

the population.

For most of the outbreaks considered the vaccinated number is close to the

population number quoted in the data with any disparity presumably coming from

calves that were considered to young to be vaccinated or were sufficiently isolated

from the holdings housing infected cattle. We have no knowledge of which holdings

within the farm became infected. During the simulation we will attempt to vaccinate

every susceptible cow and give booster vaccination to those in a vaccinated state.

In this way recovered cattle and those with maternally derived immunity will not

be affected by targeted or routine vaccination campaigns.

We will use the sum of the diseased and suspected columns as the vector of

total outbreak sizes ID for computation of the summary statistic. For farm 25,372

we ignore outbreak #4 as it has a total size of 1. This outbreak is recorded as

still being under quarantine during September 2007 and as such will be subject

to routine vaccination so missing the extra targeted vaccination that would have

been triggered by an outbreak should not effect the overall results. We also include

outbreak #7 into the ID vector for farm 25,372. This outbreak was un-typed but

including it allows us to fit to three rather than two data points.
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Dates Numbers

# type start confirmed q-end vacc dis suspect pop

1 ? 05/08/2005 01/05/2005 19/09/2005 260 38 285 0
2 A 01/03/2006 20/02/2006 03/05/2006 332 20 189 0
3 A 17/07/2006 18/07/2006 04/09/2006 377 21 30 400
4 O 17/08/2007 24/08/2007 26/09/2007 99 1 0 100
5 O 31/05/2010 31/05/2010 30/06/2010 400 9 20 450
6 O 27/08/2010 01/09/2010 19/10/2010 400 5 9 456
7 ? 19/02/2011 22/02/2011 11/04/2011 520 4 0 516
8 A 11/07/2011 11/07/2011 05/09/2011 520 0 0 643

Table 5.3: Recorded outbreaks for farm 25,372. We will use outbreaks #5,#6 and
#7 for model parametrisation.

5.3.3 Preparing for simulations

As the outbreak in farm 8149 after 2007 are between June 2009 and May 2012 we run

the events without any disease from 2007 to May 2009 to give us the cattle on the

farm once the outbreaks began. As the mean age of cattle is slightly over two years

having run the events data for over two years should accurately reflect the initial

cattle on the farm though there is still the possibility that we have underestimated

the number of older cattle.

The outbreak data contains a count of the number of cattle infected with

FMD and those suspected of being infected with FMD. We err on the side of caution

and sum these figures together. There are four outbreaks of type-O FMD on farm

8149 from 2011 to 2012. It is these outbreaks we will fit to.

5.4 Results

5.4.1 Initial results for farm 8149

Initially we ran the ABC scheme for farm 8149. We used a decreasing set of tol-

erances starting at 0.95 and reduce it to 0.65. We would have liked to reduce this

tolerance even further but our efforts were dictated by simulation time.

We used the metric ‖I(k)M − I‖ < ε(k)ID as our summary statistic accepting

parameter values that satisfied this condition. However when we used these para-

meter values to run simulations we found that epidemics larger and continued for

longer in the simulations than the data.

This result is due to our summary statistic being insufficient. It is not enough

to enforce that the number infected during the outbreak period was within the
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tolerance but that also the outbreak has completely died. The new metric becomes

(‖I(k)M − ID‖ < ε(k)ID) ∧ ik(TQ) = 0 (5.7)

where i(t) is the proportion of cattle in the infected class at time and TQ indicates

the date the quarantine from the farm was lifted.

5.4.2 Parameter inference for farm 25,372

We repeated the ABC process using farm 25,372. We also altered the range of

tolerances to begin at 1.5:1.25:1.00 then reducing in steps of 0.05 to 0.60. We only

begin to get realistic values for the parameters when ε is less than 1 but increasing

the range requires less simulation runs than beginning at a finer tolerance.

The results for the main epidemiological parameters; β, σ−1, γ−1,w−1 and

ν−1 are shown in figure 5.9 for ε = 1.5 and in figure 5.10 for ε = 0.60. In the usual

manner for analyses of this kind of parameter inference; the off diagonal subplots of

these figures are scatter plots of these parameters with the median point highlighted

for each while diagonal subplots show the distributions for these parameters.

For ε = 1.5 the latent and infectious periods closely follow the prior distribu-

tions. The recovery period and the vaccination period both reach the bounds set in

the prior but behave very differently; the recovery period does not show any clear

peak while the bulk of the vaccination period lies between 200 and 360 days. The

rate of transmission, β, has a narrow range of values with the majority of particles

being below 0.5 with the maximum value of any particle being 4.04 well below the

prior upper bound of 10.

When the tolerance has been reduced to ε = 0.60 the distributions for these

parameters have changed. The latent and infectious periods have moved away from

the priors with the infectious period moving to a much narrower distribution with

a median of γ−1=1.70 days while the latent period has actually flattened out with

the bulk lying between 0 and 8 days but with a median of σ−1 =4.03 days.

The recovery period now offers a bimodal distribution with a minor peak

near w−1=250 days and a higher peak near w−1=550 days. The vaccination period

has grown beyond its prior upper-bound but has developed a peak around ν−1=260

days which is below the prior upper-bound of 360.

The transmission rate has moved away from the narrow focus near β = 0.5

and now has a wider distribution around 1. This overall increase in β, σ−1, and ν=1

correspond to increasing the probability of larger epidemics while γ−1 decreasing

corresponds to a decreased probability of there being infectious after the outbreak
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Figure 5.11: Distributions for parameters not described by figure 5.9 with ε = 1.5.

should have ended.

For the other parameters we have not drawn scatter plots but instead have

plotted there distributions in figure 5.11 for ε = 1.5 and in figure 5.12 for ε = 0.60.

Of these parameters the two that show the most defined distributions at the

strictest tolerance are the period for maternally derived immunity κ−1 and the time

between the outbreak starting and the reactive vaccination being implemented -

time to control, TC .

The TC has evolved from a relatively flat distribution which favoured the

prior bounds of 14 and 35 days to a distribution bordering on bi-modal with a well

defined peak near 20 days comprising the bulk of the particles and a much smaller

secondary peak centred around 30 days.

We can also examine how the distributions have changed as the tolerance
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Figure 5.12: Distributions for parameters not described by figure 5.10 with ε = 0.60.
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has been made stricter by looking at the cumulative distribution for each of the

parameters at each tolerance. We plot this for ε ∈ {1.5, 1, 0.8, 0.6} in figure 5.13.

5.4.3 Simulation results using farm 25,372

Now that we have distributions for parameters at a reasonably strict tolerance we

can simulate outbreaks sampling from these distributions.

Initially we choose the median value for each parameter and run 10,000

simulations. We limit ourselves to only analysing the simulations that took off for

all three reported outbreaks. This limits us to 3,504 of the 10,000 simulations.

We also conducted a second run of 10,000 simulations were for each simulation

parameters were sampledvi from the distributions of figures 5.10 and 5.11. Of these

simulations 3,082 had a take-off for each of the three outbreaks.

In our simulations some outbreaks will die out quickly while others will con-

tinue on beyond the duration of the outbreak as recorded in the data. For each of

the three outbreaks we analyse the simulation results by counting the number of

cattle that became infected during the period defined by the outbreak data. This

gives us a direct comparison with the data.

The results of this analysis are shown in box-plots given in figure 5.14. In

each of these plots we have marked the size of the outbreak as recorded in the

data. The results are varied depending on the outbreak. For the first outbreak the

simulations underestimate the data with the reported outbreak size lying beyond the

95th percentile of the simulated outbreaks. The second outbreak yields far better

results with the recorded outbreak size falling within the interquartile range. The

third outbreak also yields a good result though slightly overestimates the size of the

outbreak with the recorded outbreak size lying just below the interquartile range.

Similar results are obtained when we sample from the entire parameter dis-

tribution. Sampling from the entire distribution increases the variance in final epi-

demic size for each of the outbreaks. The median values however have not differed

noticeably; for the first two outbreaks the median dropped from 6 to 5 and 8 to 7

respectively whilst the median size has remained at 10.

While we unfortunately do not have data pertaining to the way in which

individual outbreaks unfolded we can analyse the simulation data in a temporal

manner. In figure 5.15 we have plotted the median and mean number of infectious

cattle through time. The interquartile range of the number infectious on any given

day is also shown as are the duration of the reported outbreaks.

viA sample in this case would be one of the 250 particles found during the ABC-PRC scheme.
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Figure 5.13: Cumulative distributions for various parameters at different tolerances
from the ABC scheme implemented on farm 25,372.
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Figure 5.14: Box plots for simulation results for farm 25,372. The outbreak size
from the data is given is marked with an x for each of the three outbreaks. We
compare the results when only the median parameters are used (m) and when all
parameters are sampled from (a). Only simulations in which all four farms had an
outbreak take off are included (3,504/10,000 for m and 3,082/10,000 for a).

From this figure we can see that for the first two outbreaks epidemics within

the interquartile range successfully take-off and die out during the outbreak dur-

ation. The third outbreak tends to persist past the outbreak duration given in

the data but is eventually controlled by a combination of the reactive and routine

vaccination.

The same analysis is conducted for the simulations carried out when sampling

from the full parameter distribution. The higher variance noted in the box plot

analysis is seen in the temporal data but the epidemics follow the same pattern of

being controlled within the outbreak duration for the first two outbreaks but persist

longer for the third outbreak. This figure is given in appendix D figure D.1.

5.4.4 Simulation results for farm 8,149

Due to computational constraints we were unable to parametrise farm 8,149 directly

using its outbreak history. However, we can use the parameters found for farm 25,372

to run simulations on farm 8,149. A priori we do not know what kind of results this

may yield. Ideally the parameters from one farm would apply to every other farm; it

is more likely that the size and production differences between the two farms mean
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Figure 5.15: Simulation results for farm 25,372 using the median parameter values
found using ABC with tolerance ε = 0.60. The mean and median number of in-
fectious cattle are plotted each day in the upper figure with the interquartile range
shaded in grey. The duration of the outbreaks are also shown along with the dates of
reactive and routine vaccination. The lower figure shows the proportion of immune
(dotted line) and susceptible (dashed line). Only simulations were all three farms
had an outbreak take off are included (3,504/10,000)
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Figure 5.16: Box plots for simulation results for farm 8,149 using parameter values
found by using ABC-PRC in farm 25,372. The outbreak size from the data is given
is marked with an x for each of the four outbreaks. We compare the results when
only the median parameters are used (m) and when all parameters are sampled from
(a).Only simulations in which all four farms had an outbreak take off are included
(4,540/10,000 for m and 4,116/10,000 for a).

that parameter distributions are best suited to different classes of farm and each

would lend itself to a different set of parameter distributions.

We once again run 10,000 simulations using median parameter values and a

further 10,000 sampling from the full distribution. We are once again looking to see

if the simulations can capture the size and duration of the data.

We make a slight alteration to the routine vaccination. According to our

schedule a vaccination round should take place on the 30th September 2010, however

the second outbreak begins only six days earlier on the 24th September. As shown

in appendix D (figure D.2) this routine vaccination stifles the outbreak preventing

it from taking off. As have no precise information on the routine vaccination dates

we have omitted the vaccination on the 30th September to allow the outbreak to

develop more naturally.

We find that only considering the median parameter values underestimates

the size of all four outbreaks (figure 5.16). Sampling from the full parameter distri-

bution improves the estimates for epidemic size in each of the four outbreaks. Most

notably we see that simulation estimates encompass the outbreak size from the data

in the interquartile range for second and third outbreaks.

The temporal analysis of these simulations is plotted in figure 5.17 (the results
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with the median parameters are given in figure D.3).; here we see that the ability

for the model to capture the data is very much outbreak dependent. We see that

within the interquartile range the first outbreak is controlled within the outbreak

duration. However, on average the number of infectious cattle after the outbreak

duration is greater than one causing secondary and tertiary peaks in the number of

infectious cattle which are controlled by the reactive vaccination. By the time of

the second outbreak the tertiary peak has diminished and on average there is less

than one infected cattle preceding the second outbreak.

The dates of the second and third outbreak are close together suggesting the

possibility that the disease was not fully eradicated from the second outbreak. This

is reflected in the simulations were we see that the median number of infectious cattle

does not drop to zero between the second and third outbreaks. In future simulation

work it may therefore be worth while investigating the effect of combining these

outbreaks.

5.4.5 Model consistency

While time did not permit us to fully explore the parametrisation of farm 8,149

we can check to see if the model is consistent within itself. To do this we select a

simulation from those simulated on farm 25,372 and refit the model to the simulated

data. Thus we will know in advance the parameter values used to generate the

outbreak data and can judge if the posterior distributions give reasonable estimates

of these parameters. We can also compare the new distributions with those we

previously found.

We chose a simulation generated using the median parameter values found for

farm 25,372 in section 5.4.2. This simulation had outbreaks of sizes {11, 19, 2}, the
original outbreak data had sizes of {29, 14, 4}. As the simulated data has outbreaks

that are smaller in number we would expect our new posterior distributions to

underestimate some parameters such as β and infectious period, and vaccine efficacy.

We run the inference in the same way as before using the original prior

distributions and starting with a tolerance of ε = 1.5 which we lower to ε = 0.60.

The posterior distributions for the model fitted to the simulated data are given in

figure 5.18, in which we indicate the means of these distributions and the parameters

used to simulate the data.

We can compare these distributions with those of figure 5.10 and figure 5.12

by first checking if they are statistically the same as indicated by the two sample

Kolmogorov-Smirnoff testvii. Performing this test between every pair of distributions

viiWe construct the cumulative distribution functions using the raw parameter values not their
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Figure 5.17: Simulation results for farm 8,149 using the parameters drawn from
the distributions values found using ABC with tolerance ε = 0.60 for farm 25,372.
The mean and median number of infectious cattle are plotted each day in the upper
figure. The duration of the outbreaks are also shown along with the dates of reactive
and routine vaccination. The lower figure shows the proportion of immune (dotted
line) and susceptible (dashed line). Only simulations were all three farms had an
outbreak take off are included (5004/10000)
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Figure 5.18: Posterior distributions at ε = 0.60 for the model fitted on simulated
data. The parameters used to simulate the data are indicated by black crosses while
the red circles indicate the median parameter values of the distributions.
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we find that the distributions for the exposed period, the vaccination period, and

the period of maternally derived immunity pass the test at the 5% confidence level

as do the distributions for the number of states in the R, V, and M classes. The

test is failed by the other parameter distributions rejecting the null hypothesis that

they come from the same distribution.

For those parameter values that passed the Kolmogorov-Smirnoff test we

can see from figure 5.18 that the median parameter values are very similar. The

distributions for the β and the infectious period both failed the Kolmogorov-Smirnoff

test however, if we multiply these values together to form a rough estimate of R0
viii

we find that this new distribution does pass the Kolmogorov-Smirnoff test and that

median parameter values lie very close to one another. This would indicate that for

the main epidemiological parameters the model is consistent.

We will now discuss the remaining parameters that failed the Kolmogorov-

Smirnoff test. The recovery period was underestimated in the refitted inference and

failed to reproduce the bimodal distribution previously attained. However, the me-

dian value was over a year and as shown in figure 5.3 B over 95% of cattle move off

the farm within 12 months as such this parameter is likely to have little impact on

disease dynamics.

There are three parameters that determine the efficacy of vaccination: the

coverage vc which effects cattle imported into the farm, the effectiveness ve which

determines whether or not a cow on the farm will become vaccinated, and the

boost effectiveness vb which moves vaccinated cattle back into the first vaccinated

state. However, while intuitively we would expect these parameters to be correlated,

in practice we could not find such a correlation and revert to a more qualitative

appraisal of their respective distributions. None of these distributions had clearly

defined peaks as such their role in the model is uncertain. Clearly vaccination is

very important to the model and as demonstrated in the simulation is necessary to

control the outbreak. What is less clear is how much vaccination there needs to be,

perhaps vaccination efficacy only needs a minimum value of 0.6, say to control the

outbreak after which any increases play no part and variation beyond this threshold

is merely noise. Before further development of this model it would be wise to tease

out the effect of these parameters by running simulations where other parameters

are kept constant. This may allow us to remove parameters that do not have an

effect.

binned equivalents.
viiiA through calculation of R0 would include the exposed period, take into account mortality and

assume a closed population. We do not have a closed population as cattle are moving on and off
the farm at a time-scale comparable with the outbreak durations.
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5.5 Discussion and future directions

The decisions we made in building our model have come from the data we have

available. We have comprehensive data on cattle movement data allowing us to

know when individual cattle moved on and off the farm. This is important as work

by Keeling et al. [2010] found that loss of individual identity in models of FMD

in the UK caused larger outbreaks compared to models where cattle identity was

maintained.

The size of the farm is also directly incorporated into our model in the

transmission probability. Our methodology to apply probable dates of death to

cattle has allowed estimates of the farm size that align well with the estimates from

the various data sources available to us. As such we can be confident in our estimates

of the size of the farm.

Aspects of the model could be improved with the availability of certain

amounts of data. Most obviously would be vaccination data. A greater know-

ledge of when routine and reactive vaccination took place and which cattle where

vaccinated would reduce the parameter space of the model and increase confidence

in the simulation results. If vaccination data could be coupled with knowledge of

exactly which cattle became infected during an outbreak we could better determine

the efficacy of the vaccine used at the time. Such data would also increase our ability

to estimate waning immunity and maternally derived immunity.

While the simulations carried out using the median values from the parameter

distribution in farm 8,149 underestimate the size of the outbreaks it is encouraging

that sampling from the full distribution greatly improves these estimates. This

suggests that the parameters distribution for farm 25,372 can be applied to other

farms.

We could extend this work by separately parametrising farm 8,149 using

the same prior distributions as for farm 25,372. We could also use the posterior

distributions we obtained for farm 25,372 as prior distributions for the inference

scheme applied to 8,149. If the distributions found from these two methods are

statistically the same then this would be a powerful result; if it is notably quicker to

parametrise a large farm with priors obtained as posteriors from a small farm than

it is to parametrise the large farm from scratch.

The available data dictates the construction of the model. A well constructed

model should be able to reproduce the observed data using the minimum number of

parameters. Aspects of our model still need to be tested to ensure that the results

we have found are not artefacts of the model construction. For instance we have
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not varied the start date of any of the epidemics nor have we experimented with the

dates of the routine vaccination.

We have also only applied our model to farms suffering from multiple out-

breaks of type-O FMD. This allowed us to use priors derived from the literature

which tends to predominately focus on type-O. It would be informative to extend

the model to farms that have been inflicted by types-A and Asia-1 also. However, we

could find no farms that were inflicted with sequential cases of one of these strains

without a case of the other strain of type-0 in between. As it stands the model is

not flexible enough to allow for multiple strains of FMD unless we make the bold

(and almost certainly mistaken) assumption that immunity from one strain infers

immunity from all strains.

Despite the limitations discussed above we have successfully developed and

parametrised a model that captures key epidemiological components of a succession

of outbreaks in two farms. To our knowledge this is the first study that has been

able to do this and puts us in good stead to further improve and refine the in-farm

model before incorporating it into a more ambitious national scale model.
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Chapter 6

Conclusions and horizons

“The road and the tale have both been long, would you not say so? The

trip has been long and the cost has been high... but no great thing was

ever easily attained. A long tale, like a tall Tower, must be built a stone

at a time.”

Stephen King, The Dark Tower [2004]

This thesis has had a broad scope. The focus has been on the modelling of

FMD and the analysis of livestock movement networks. Many aspects of these two

themes remain unexplored. In this chapter we will summarise what we have done

and how this work can be built upon, laying out the foundations for a full national

scale model of FMD in Turkey.

6.1 Data, network analysis and community detection

The Turkish Veterinary authorities provided us with a wealth of data from their

administrative systems. The processing and cleaning of this data was a huge but

worthwhile task. In cleaning the data we learned about its strengths and weaknesses.

The movement data was very comprehensive and while there were errors

we were able to impose rules that fixed the vast majority of these errors and en-

sured that every cattle in the database had a sequential history of movements. The

distributions of the number of movements per cow and the waiting times between

movements seemed sensible and reassured us that through cleaning the data we had

not introduced our own biases.

A clear failing of the data we received was the under-reporting of deaths.

However, through analysis of the cattle which had both birth and death records we

were able to construct distributions for life expectancy and thus provide plausible
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dates of death for the remaining cattle. This process was validated when we applied

it to both the farms we analysed in chapter 5 where our estimates for the sizes of the

farms matched reasonably well with the estimates provided to us through various

data sources.

A limitation of the data from both an analysis and a model construction

view is the lack of information about holdings. Each farm contains a multitude of

holdings with the distribution ranging from one holding to over 300 in some cases.

While we are able to estimate the number of cattle on a farm it is challenging to

estimate the number of individual holdings. While we have positional data for the

farm we have no idea of the area the farm covers, with no information at all about

where holdings sit within a farm. We know that farming practices differ around the

country with intensive fattening and dairy farms in the West compared to communal

grazing in the East. As such the make-up of the holdings and their area within a

farm is important as it gives us information about factors which could influence the

spread of disease.

If a farm was comprised of high density holdings that were separated we may

reasonably expect any disease incursions to spread rapidly within the holding but

that spread outside of the holding within the farm may be more easily controlled.

If on the other hand, the holdings were actually small households with communal

grazing than any incursion of disease would have a higher probability of spreading

throughout the farm.

While the make-up of individual farms is clearly important for understanding

within-herd dynamics of FMD, aggregating movements at the farm level meant

that this limitation had no effect on our network analysis. Indeed even with full

knowledge of holding location we would have aggregated the movements anyway as

applying most measures (in particular shortest-path and modularity optimisation)

to a network of over two million nodes is infeasible. The farm level network of 55,000

nodes is far more manageable and statistics measured at this level are more likely

to give meaningful results with less noise caused by the multitude of small holdings

which may lie dormant in the database for months and sometimes years.

While we only examined network statics aggregated spatially at the farm level

we did consider different temporal resolutions. Bearing in mind that the infectious

period of FMD on a farmi is generally accepted to be around three to four weeks

aggregating movements to the monthly level seemed a natural choice.

Aggregating at the monthly level also allows us to capture seasonal trends

that are evident in the movement data and in most of the network statistics. Clear

iNot within cattle
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increases in movement numbers in the spring and around the time of the Kurban

festival were observed in all years that we examined. The size of the giant strongly

connected component increased at these times of year, as did the average degree

and the betweenness centrality. These measures are indicators for the connectivity

of the network. As connectivity is increased disease spread through the network

becomes more likely.

Beyond the seasonal trends we also observed a complete shift in many stat-

istics between the periods 2007-2009 and 2010-2012. We observed that the network

became more assortative, the proportion of bi-directional links decreased, local clus-

tering decreased and that betweenness centrality increased. All of these change can

facilitate disease spread across the network. We also observed the community struc-

ture changed between these periods. The reasons for this apparent structural change

in the network cannot be explained by the data alone and is probably linked to some

change in policy. Going forward we will seek greater guidance from our Turkish col-

leagues in determining the causes behind our observations.

6.1.1 Partial data

The work of chapter 3 showed that it is indeed possible to make accurate epidemic

predictions without full knowledge of the underlying network. We demonstrated

that this was heavily dependent on how the network was sampled, with targeting

of high degree nodes providing the strongest results. As previously discussed this

leaves us in some what of a quandary, we have to sample nodes based on their

degree but presumably we do not know their degree before we have sampled them.

Our solution to this problem would be to mandate farmers to record the number of

trades they have made in one year and use this statistic to choose which farms are

fully sampled the following year. This relies on the trade volume of farms staying

reasonably similar from year to year.

However if cattle movement records had never been recorded then choosing

how to sample farms would be difficult. A suggestion would be to build on the

idea of Gilbert et al. [2005] in using meat-demand discrepancy between districts as

a proxy for inter-district movement. Once the districts with the highest trading

volumes were established then farms within those districts could be sampled based

on herd size.

While we found good results for the British cattle network as of yet we have

not extended this work to the Turkish cattle. It would be interesting to see how well

the results hold and if the point at which epidemic simulations on a sampled network

can be considered accurate varies. The structure of the Turkish cattle industry with
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farms (epidemiological units) being comprised of multiple holdings may mean that

drawing on summary statistics from one year will not lead to accurate sampling in

the following year.

6.1.2 Community detection

In performing temporal community detection we sought to bring novel analysis to

the cattle movement networks of the UK and Turkey. Our analyses mainly focused

on use of the Newman-Girvan null model. In many ways this is a natural null model

to use as it is comparable to comparing our community structure to the average

structure one would expect to find if a network of the same degree sequence was

constructed using the configuration model. Indeed we found some interesting results,

highlighting the robust isolation of Scotland in the UK cattle network and observing

the strong connection between Ankara and Ezurum in the Turkish network.

However, farming networks are firmly embedded in space and as such we

believe more work should be invested in alternative null models that specifically

incorporate the distances between nodes. In our implementation of the gravity

model proposed by Expert et al. [2011] we found a community structure in the UK

with clear difference from that found using the Newman-Girvan null model. Scotland

and the North of England were grouped together and a discontiguous community

between the South-West and East Anglia was observed. This county level spatial

partition also performed well as a predictor for epidemic spread.

Despite these results we limited ourselves to a county level rather than a

farm level approach. This was due to computational constraints. For the gravity

model the distance between every pair of farms must be recorded which with over

70,000 farms in the UK was too computationally expensive compared to the net-

work approach which typically had a sparse adjacency matrix. However, we are

confident that perseverance in the development of new algorithms and methods to

overcome these limitations would be worthwhile as we believe that to truly under-

stand the drivers that cause edges to be made in the cattle network requires a deeper

understanding of the space in which the network is embedded.

Community detection in networks is relatively new as an analytical tech-

nique. It is potentially a powerful tool that can in theory unearth relationships

between nodes that standard techniques which rely on producing a statistic such as

betweenness or degree cannot. However, in a suitably sparse network the algorithm

will always find some community structure, researchers must be careful not to assign

too much relevance to these communities without bringing in a more subjective view

from experts in the field.
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With more and more data being collected and becoming available to research-

ers new methods for data analysis and understanding this data are being developed.

In the future it should be possible for a researcher to layer livestock trade data for

different species with, say a transportation network to build a multiplex network.

The study of multiplex networks is still in its infancy but as we have shown by

performing temporal community detection it is possible to gain insights from these

networks on real-world data sets.

6.2 Outbreak data

As mentioned in chapter 2 Gilbert et al. [2005] carried out an analysis of provincial

level outbreak data from 1990 to 2002 for Turkey. We would hope to extend their

work to the analysis of outbreak data from 2007 to 2012. While Gilbert et al. [2005]

used meat-demand discrepancy as a proxy for movement we obviously have this data

which could lead to more accurate results. We could also perform the analysis at a

district rather than provincial level.

We would hope to further develop a logistic regression model in which we

could include the community assignment of a district from a given year (or month

depending on chosen temporal resolution) as covariate in the model. This may serve

as a higher level variable than the number of movements between districts and offer

new insights into the spatial-temporal spread of FMD in Turkey.

There are some issues with inferring too much from the outbreak data. The

concept of an outbreak is loosely defined and we have no idea of the scale of under

reporting of outbreaks. The Turkish veterinary services carry out a ’sero-survey’

of the countries cattle farms in which they test for FMD antibodies to determine

the underlying prevalence of the FMD virus in the cattle population. These surveys

show high prevalence of the virus in the South-East of the country however very few

outbreaks are recorded from this region. This may be to an unwillingness for farms

in the region to cooperate with the veterinary services for fear of movement bans

or increased vaccination regimes, or it may be that farms in the South-East are less

able to identify the symptoms of FMD. Either way attempts to model the disease

will be hampered by under reporting. A solution to this would to be to focus our

efforts on the West of the country where the disease prevalence is less than the East

but outbreaks but more outbreaks are reported indicating a much higher reporting

rate.
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6.3 A national scale model

In section 5.5 we discussed how to improve and extend the within farm model. We

may find in this work that it is most appropriate for different farms to have different

parameter values. Spread within a farm may be less likely within a more commercial

farm where the holdings are very much separate entities than in a farm which is a

essentially a small village with communal grazing. As such the transmission rate β,

may vary depending on farm type. Further data about the farms such as production

type and if they have other livestock may be necessary in order to categorise the

farms. Results of the logistic regression model described above may help with this

categorisation.

Once we are confident of the farm level parameters the extension of the in

farm model to the national scale is straight forward, if spread is assumed to come

only from the movement of cattle. Each cow will belong to a farm and the cow will

change disease state as defined by the within farm model of chapter 5. A farm can

be seeded with an outbreak and if an infected cow moves to another farm this will

act as a seed for that farm. This is a simple model, the only complication arising

from the computational time associated with the processing of the movement data

and the disease state of 14 million cattle. However, a diligent programmer should

be able to overcome these difficulties.

The caveat to this being straight forward arises from the spread of FMD not

coming from cattle movements alone but also from local spread which is generally

modelled using a spatial kernel [Keeling et al., 2001] as discussed in chapter 1.

Simulating the spatial spread by partitioning the country into grids is discussed

in [Keeling and Rohani, 2008] and work has been done by Brand et al. [2015] to

improve upon computational time of this approach.

Building the spatial kernel into the model should not pose too many dif-

ficulties, we would introduce a probability of each infected farm infecting every

other farm (the gridding method makes this less computationally exhaustive than

it sounds). Once a farm has been infected by spatial spread we would then have to

decide how many cattle on that farm would become infected.

It is the parametrisation of the spatial part of the model where we may run

into difficulties. The Keeling model [Keeling et al., 2001] modelled the 2001 outbreak

post-movement ban, as such no movements were required and the only mechanism

for infection was through spatial spread. We will have two mechanisms for spread

which will lead to some conflicts.

We could attempt to parametrise the spatial spread by fixing the within
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farm parameters and running a Bayesian inference scheme using the 2001 outbreak

parameters as prior distributions [Deardon et al., 2010]. However, as no movement

ban is in place in Turkey we will have to allow movements between farms which will

lead to farms becoming infected that were not actually infected. In this way fitting

the spatial spread to the outbreak data directly is flawed as we cannot say which

outbreaks came from infected movements or which came from spatial spread.

Disentangling the two methods of transmission may not prove possible. In

this case we would have to satisfy ourselves with parameter estimates from previous

work and test the model to see what appears realistic. Once this is done then a

suite of control measures can be tested, from vaccination with varying efficacy, to

movement controls by which ever geographies seem appropriate.

Further complications will arrive when livestock markets are considered. In

the UK trade through a market must be reported however no such mandate exists

in Turkey. Through conversations with Turkish vets and farms our understanding

is that market trading is more common in the East of the country and that cattle

can be traded freely without health checks and bio-security measures. The situation

in the West is once again different, markets have improved bio-security measures

and some markets have on-site slaughter facilities particularly around the Kurban

time. Some farmers in the West also voiced their concern with markets and choose

to avoid them completely and trade directly with other farmers.

As we demonstrated in chapter 3 inclusion of livestock markets in the UK

network increases epidemic size dramatically. Modelling the disease at a national

level without any knowledge of markets would be a flawed approach. At the very

least the location and throughput of the markets would be known so as to establish

some sense of what percentage of trades involved markets in different regions.

The ultimate goal of this work was to build a national scale FMDmodel which

could be used to inform policy and help in the control and eventual eradication of

FMD from Turkey while at the same time developing novel methods to analyse

livestock movement networks. We have made important first steps towards this

goal which we, with the help of other researchers, veterinarians, and policy makers

will strive to achieve.
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Appendix A

Appendix to chapter 2

A.1 Raw data

Figure A.1: The number of movements destined for each district in Turkey for the
year 2010. This includes the within district movements. Note that the colour scale
is non-linear so as to show more variation between areas of low movement.
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Figure A.2: Monthly number of batches and number of cattle moved from 2007-2012.
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A.2 Network statistics - figures
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Figure A.3: Degree distributions for the binary in and out degrees from 2007 to
2012.
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Figure A.4: Cattle weighted in and out degree distributions from 2007 to 2012.
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Appendix B

Appendix to chapter 3

B.1 Equivalence of rebuilding by scaling with rebuild-

ing by preferentially increasing edge weight

In this chapter we utilize a simple re-scaling method to rebuild partially sampled net-

works. An apparently more sophisticated approach would be to adapt the weighted

scale free model approach of Yook et al.i to a static network where new edges are

not created but edge weights are increased preferentially based upon the weights of

existing edges. However, we can show that these two methods are, in fact, equival-

ent.

Given that the depleted network begins with some fraction α of the original

number of movements N0 and we wish to add n movements such that N0 = αN0+n

where the probability of movement from farm i to j being added is given by

p(i → j, t) =
aij(t)∑
aij(t)

=
N(i → j, t)

αN0 + t
.

The weight of the edge between i and j at time t+ 1 is then

N(i → j, t+ 1) = N(i → j, t) + p(i → j, t)

= N(i → j) +
N(i → j, t)

αN0 + t

if we then enforce the initial condition that the depleted network begins with ND

movements, that is

N(i → j, 0) = ND(i → j)

i Yook S, Jeong H, Barabási AL, and Tu Y (2001), Weighted evolving networks, Phys Rev Lett,
86(25):5835–5838.
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this can be solved explicitly as

N(i → j, n) = ND(i → j)

n−1∏
t=1

(
1 +

1

αN0 + t

)
= ND(i → j)

n+ αN0

1 + αN0

= ND(i → j)
N0

1 + αN0

and assuming that αN0 >> 1 which it is, we obtain the the result

Nn(i → j) =
1

α
ND(i → j). (B.1)

Therefore if we were to carry out the preferential weighting method many times the

average weights would be the same as the re-scaling method we utilize in this paper.
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B.2 Network statistics for RMS
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Figure B.1: Graphs showing (A) the mean degree, (B) the degree standard devi-
ation, (C) the number of strongly connected components (D) the size of the giant
strongly connected component, (E), the mean local clustering coefficient, and (F)
the correlation for for the RMS method as a function of the percentage of move-
ments sampled. These statistics are averaged over 1000 realisations with shaded
confidence intervals depicting the maximum and minimum value of each statistic.
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B.3 Supplementary figures for Cumbria β = 1, T = 21

days
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Figure B.2: Epidemic measurements for outbreaks seeded in Cumbria using the
RNS (crosses) method, SBS (circles) method and the TNS (triangles) method with
shaded 95% confidence intervals, when β = 1 and T = 21 days for (a) 6 weeks, (b)
12 weeks and (c) the whole epidemic. In this plot, the RNS and SBS methods are
scaled as in equation (3.1).
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Figure B.3: Epidemic measurements for outbreaks seeded in Cumbria using the
RMS method with β = 1 and T = 21 days. Plot a) shows the mean epidemic size in
weekly intervals with ascending contours representing the epidemic size progression
through time in weeks, the size after 6 (red) and 12 (blue) weeks are highlighted for
reference. Plot b) shows the mean epidemic duration in weeks with 95% confidence
intervals. Plot c) shows the mean peak size of the epidemic with 95% confidence
intervals.
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Figure B.4: Epidemic measurements for outbreaks seeded in Cumbria using the
RNS method with β = 1 and T = 21 days. Plot a) shows the mean epidemic size in
weekly intervals with ascending contours representing the epidemic size progression
through time in weeks, the size after 6 (red) and 12 (blue) weeks are highlighted for
reference. Plot b) shows the mean epidemic duration in weeks with 95% confidence
intervals. Plot c) shows the mean peak size of the epidemic with 95% confidence
intervals.
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Figure B.5: Epidemic measurements for outbreaks seeded in Cumbria using the
SBS method with β = 1 and T = 21 days. Plot a) shows the mean epidemic size in
weekly intervals with ascending contours representing the epidemic size progression
through time in weeks, the size after 6 (red) and 12 (blue) weeks are highlighted for
reference. Plot b) shows the mean epidemic duration in weeks with 95% confidence
intervals. Plot c) shows the mean peak size of the epidemic with 95% confidence
intervals.
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Figure B.6: Epidemic measurements for outbreaks seeded in Cumbria using the
TNS method with β = 1 and T = 21 days. Plot a) shows the mean epidemic size in
weekly intervals with ascending contours representing the epidemic size progression
through time in weeks, the size after 6 (red) and 12 (blue) weeks are highlighted for
reference. Plot b) shows the mean epidemic duration in weeks with 95% confidence
intervals. Plot c) shows the mean peak size of the epidemic with 95% confidence
intervals.
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B.4 Supplementary figures for Cumbria with a range of

parameters
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Figure B.7: Epidemic measurements for outbreaks seeded in Cumbria using the
RNS (crosses), SBS (circles) and TNS (triangles) methods with β = 2 and T = 7
days on the left and β = 1 and T = 14 days on the right. Plots A and B shows the
final epidemic size, plot C and D the epidemic size after 12 weeks and plot E and
F the epidemic size after 6 weeks. Shaded 95% confidence intervals are included as
are black reference lines indicating the 95% confidence intervals for simulations run
on the complete network.
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Figure B.8: Epidemic measurements for outbreaks seeded in Cumbria using the
RNS (crosses), SBS (circles) and TNS (triangles) methods with β = 1 and T = 28
days on the left and β = 10 and T = 07 days on the right. Plots A and B shows the
final epidemic size, plot C and D the epidemic size after 12 weeks and plot E and
F the epidemic size after 6 weeks. Shaded 95% confidence intervals are included as
are black reference lines indicating the 95% confidence intervals for simulations run
on the complete network.
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B.5 Supplementary figures for epidemics seeded in Ab-

erdeenshire and Devon
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Figure B.9: Graphs (a) to (c) compare the epidemic size for outbreaks seeded in
Devon on networks generated by RNS (crosses), SBS (circles) and TNS (triangles) as
a function of nodes sampled with shaded 95% confidence intervals for (a) 6 weeks,
(b) 12 weeks and (c) the full epidemic. The solid black lines represents the 95%
confidence intervals on the average simulation for the original network. Graphs (d)
to (f) show the same results for the RMS method for (d) 6 weeks, (e) 12 weeks and
(f) the full epidemic.
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Figure B.10: Mean epidemic size for outbreaks seeded in Devon, with within-market
transmission incorporated into the model when β = 1 and T = 21, for (a) the
TNS (triangles) and the SBS (circles) methods and (b) the RMS (crosses) method.
Shaded 95% confidence intervals are shown in each figure for each sampling method.
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Figure B.11: Graphs (a) to (c) compare the epidemic size for outbreaks seeded in
Aberdeen on networks generated by RNS (crosses), SBS (circles) and TNS (tri-
angles) as a function of nodes sampled with shaded 95% confidence intervals for (a)
6 weeks, (b) 12 weeks and (c) the full epidemic. The solid black lines represents the
95% confidence intervals on the average simulation for the original network. Graphs
(d) to (f) show the same results for the RMS method for (d) 6 weeks, (e) 12 weeks
and (f) the full epidemic.
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Figure B.12: Mean epidemic size for outbreaks seeded in Aberdeen, with within-
market transmission incorporated into the model when β = 1 and T = 21, for (a) the
TNS (triangles) and the SBS (circles) methods and (b) the RMS (crosses) method.
Shaded 95% confidence intervals are shown in each figure for each sampling method.
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Figure B.13: Map showing the 20 counties with the largest mean number of infected
farms after 12 weeks when epidemics are seeded in Devon and markets are not
explicitly included. The mean size for each county is given in figure B.14

.
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Figure B.14: The average epidemic size for the original network (stars) random
movement sampling (RMS) with 50% of sampled movements (crosses), snowball
sampling with 30% of nodes (circles) and targeted node sampling (TNS), sampling
nodes with more than 50 movements (triangles) for the 20 most infected counties
when epidemics are seeded in Devon. Counties are ordered in terms of the proximity
of their centroids from Devon with labels corresponding to the map in figure B.13.
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Figure B.15: Map showing the 20 counties with the largest mean number of infected
farms after one infectious period (21 days) when epidemics are seeded in Devon and
markets are explicitly included. The mean size for each county is given in figure
B.16

.
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Figure B.16: The average epidemic size for the original network (stars) random
movement sampling (RMS) with 10% of sampled movements (crosses), snowball
sampling with 40% of nodes (circles) and targeted node sampling (TNS), sampling
nodes with more than 25 movements (triangles) for the 20 most infected counties
when epidemics are seeded in Aberdeen. Counties are ordered in terms of the
proximity of their centroids from Aberdeen with labels corresponding to the map in
figure B.15.
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Figure B.17: Map showing the 20 counties with the largest mean number of infected
farms after 12 weeks when epidemics are seeded in Aberdeen and markets are not
explicitly included. The mean size for each county is given in figure B.18

.
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Figure B.18: The average epidemic size for the original network (stars) random
movement sampling (RMS) with 50% of sampled movements (crosses), snowball
sampling with 30% of nodes (circles) and targeted node sampling (TNS), sampling
nodes with more than 50 movements (triangles) for the 20 most infected counties
when epidemics are seeded in Aberdeen. Counties are ordered in terms of the
proximity of their centroids from Aberdeen with labels corresponding to the map in
figure B.13.
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Figure B.19: Map showing the 20 counties with the largest mean number of infected
farms after one infectious period (21 days) when epidemics are seeded in Aberdeen
and markets are explicitly included. The mean size for each county is given in figure
B.20

.
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Figure B.20: The average epidemic size for the original network (stars) random
movement sampling (RMS) with 10% of sampled movements (crosses), snowball
sampling with 50% of nodes (circles) and targeted node sampling (TNS), sampling
nodes with more than 20 movements (triangles) for the 20 most infected counties
when epidemics are seeded in Aberdeen. Counties are ordered in terms of the
proximity of their centroids from Aberdeen with labels corresponding to the map in
figure B.19.
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Appendix C

Appendix to chapter 4

C.1 The Counties of Great Britain

There are many different geographical divisions of the UK. We have chosen to use

one that divides mainland UK into 68 counties. England is comprised of 47 counties

which correspond to the 48 ceremonial counties of England but with City of London

and Greater London merged together and some other slight differences which are

mentioned in table C.1. Scotland has been divided into 14 counties and Wales into

7 comprised of 6 of the 8 preserved counties of Wales with the remaining counties

of South, Mid and West Glamorgan merged together. Figure C.1 shows the border

and location of all the counties as well as coloured divisions into regions of the UK.

The UK is divided into 12 official region which correspond to the Nomen-

clature Territorial Units for Statistics (NUTS) level 1, which is a referencing system

used by the European Union. We are only interested in mainland UK so can ignore

the region of Northern Ireland. We merge the renaming 9 regions of England into

4 giving a total of 6 regions along with Wales and Scotland which are referred to

as ‘the regions of the UK’ throughout this work. The combined regions of England

are; North England constituted of North East, North West and Yorkshire and the

Humber, the Midlands which combined West Midland and East Midland, East Eng-

land which is made up of East of England, London and South East, and South West

which we keep intact and refer to as South West England.

ID County Region Farms

1 Shetland Scotland 183

2 Orkney Scotland 555

3 Eileanan an lar Scotland 386

4 Highland Scotland 1844
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5 North-East Scotland Scotland 2427

6 Tayside Scotland 785

7 Fife Scotland 299

8 Lothian Scotland 264

9 Scottish Borders Scotland 697

10 East Central Scotland 431

11 Argyll Scotland 714

12 Clyde Valley Scotland 867

13 Ayrshire Scotland 895

14 Dumfries & Galloway Scotland 1669

15 Northumberland North England 1063

16 Tyne & Wear North England 69

17 Durham North England 894

18 Cleveland and Darlington North England 232

19 Cumbria North England 3328

20 Lancashire North England 1983

21 Cheshire North England 1628

22 Greater Manchester North England 424

23 Merseyside North England 76

24 North Yorkshire North England 3496

25 East Riding & North Lin-

colnshire

North England 714

26 West Yorkshire North England 1058

27 South Yorkshire North England 432

28 Derbyshire The Midlands 1703

29 Nottinghamshire The Midlands 503

30 Lincolnshire excl North The Midlands 829

31 Leicestershire & Rutland The Midlands 1049

32 Northamptonshire The Midlands 593

33 Staffordshire The Midlands 2021

34 Shropshire The Midlands 1953

35 Herefordshire The Midlands 1113

36 Worcestershire The Midlands 682

37 West Midlands The Midlands 104

38 Warwickshire The Midlands 601

39 Norfolk East England 851

40 Suffolk East England 452
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41 Cambridgeshire East England 313

42 Bedfordshire East England 175

43 Hertfordshire East England 193

44 Essex East England 369

45 Greater London East England 50

46 Surrey East England 298

47 Kent East England 645

48 East Sussex East England 584

49 West Sussex East England 422

50 Hampshire East England 840

51 Isle of Wight East England 143

52 Oxfordshire East England 520

53 Buckinghamshire East England 539

54 Berkshire East England 226

55 Gloucestershire excl South Southwest England 1003

56 North Somerset & South

Gloucestershire

Southwest England 748

57 Wiltshire Southwest England 1092

58 Somerset excl North Southwest England 2430

59 Dorset Southwest England 1237

60 Devon Southwest England 4446

61 Cornwall & The Isles of Scilly Southwest England 2635

62 North-East Wales Wales 1739

63 Powys Wales 2358

64 South Wales Wales 1514

65 North-West Wales Wales 1727

66 Ceredigion Wales 1136

67 Pembrokeshire Wales 1153

68 Carmarthenshire Wales 1881

Table C.1: The counties of GB as we have defined them in the text. The ID number
refers to figure C.1. The region each county is associated with is defined in the
text. We also list the number of farms that had a cattle movement in 2010 for each
county.
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Figure C.1: The counties of the UK divided into 6 regions as described in the text.
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C.2 The Provinces of Turkey

Turkey has 81 provinces. Each of these province has a unique number which is

used on vehicle licence plates. Like the UK Turkey is divided into 12 official NUTS

level 1 regions. We will merge some of the regions to form 7 regions. We merge

East Marmara, West Marmara and Istanbul to create Marmara. West Anatolia is

merged into Central Anatolia. West Black Sea and East Black Sea become Black Sea.

Northeast Anatolia and Central East Anatolia are merged to form Eastern Anatolia.

Southeastern Anatolia, Mediterranean, Aegean remain as defined by NUTS.

Figure C.2: The provinces of Turkey divided into 7 regions as described in the text.

ID County Region

1 ADANA Mediteranean

2 ADIYAMAN Southeastern Anatolia

3 AFYON Aegean

4 AGRI Eastern Anatolia

5 SANLIURFA Black Sea

6 AKSARAY Central Anatolia

7 AMASYA Mediteranean

8 ANKARA Black Sea

9 TRABZON Aegean

10 ANTALYA Marmara

11 ARDAHAN Marmara

12 ARTVIN Eastern Anatolia

13 TOKAT Eastern Anatolia

14 SIVAS Marmara

15 SIIRT Mediteranean

16 AYDIN Marmara

17 BALIKESIR Marmara
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18 BARTIN Black Sea

19 BATMAN Black Sea

20 BAYBURT Aegean

21 BILECIK Southeastern Anatolia

22 BINGOL Marmara

23 BITLIS Eastern Anatolia

24 BOLU Eastern Anatolia

25 BURDUR Eastern Anatolia

26 BURSA Marmara

27 ZONGULDAK Southeastern Anatolia

28 CANAKKALE Black Sea

29 CANKIRI Black Sea

30 CORUM Eastern Anatolia

31 DENIZLI Mediteranean

32 DIYARBAKIR Mediteranean

33 DUZCE Mediteranean

34 EDIRNE Marmara

35 ELAZIG Aegean

36 ERZINCAN Eastern Anatolia

37 ERZURUM Black Sea

38 TUNCELI Central Anatolia

39 ESKISEHIR Marmara

40 GIRESUN Central Anatolia

41 GUMUSHANE Marmara

42 KASTAMONU Central Anatolia

43 VAN Aegean

44 SINOP Eastern Anatolia

45 HAKKARI Aegean

46 HATAY Mediteranean

47 IGDIR Southeastern Anatolia

48 YALOVA Aegean

49 SIRNAK Eastern Anatolia

50 ISPARTA Central Anatolia

51 ISTANBUL Central Anatolia

52 IZMIR Black Sea

53 K-MARAS Black Sea

54 KARABUK Marmara
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55 KARAMAN Black Sea

56 KARS Southeastern Anatolia

57 KAYSERI Black Sea

58 GAZIANTEP Central Anatolia

59 KILIS Marmara

60 KIRIKKALE Black Sea

61 KIRKLARELI Black Sea

62 KIRSEHIR Eastern Anatolia

63 KOCAELI Southeastern Anatolia

64 YOZGAT Aegean

65 KONYA Eastern Anatolia

66 KUTAHYA Central Anatolia

67 MALATYA Black Sea

68 ORDU Central Anatolia

69 MANISA Eastern Anatolia

70 MARDIN Central Anatolia

71 TEKIRDAG Central Anatolia

72 MERSIN Southeastern Anatolia

73 MUGLA Southeastern Anatolia

74 MUS Black Sea

75 NEVSEHIR Eastern Anatolia

76 NIGDE Eastern Anatolia

77 OSMANIYE Marmara

78 RIZE Black Sea

79 USAK Southeastern Anatolia

80 SAKARYA Mediteranean

81 SAMSUN Marmara

Table C.2: The provinces of Turkey identified by the their licence plate registration
number and the region we associate with them.
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C.3 Community detection figures

In order to make figure 4.11, figure 4.22 and figure 4.22 which depict the community

structures of the UK and Turkey not as points but as areas we developed a protocol

to plot high density regions as polygons. Keys steps are depicted in figure C.3 for a

community from the Turkey.

First the distance between every node in the community is calculated. Any

pairs of farms which are more than a distance x from each other are removed. A

binary network is then created from the remaining pairs of farms. The connected

components of this network are then found. Components of size 3 or less are ig-

nored. Figure C.3 A depicts all of the farms in the community under considerations

while figure C.3 B shows the four remaining components after small components are

removed.

For each of these components a Delaunay triangulation is performed on the

coordinates of the farms in the component. The Delaunay triangulation for a set of

2D points is the triangulation that guarantees no point is in the circumcircle of any

triangle formed by the set of points. The circumcircles for the triangles remaining

in the triangulation are stored. Figure C.3 C shows the Delaunay traingulation for

one of the components.

At this stage the points on the boundary of the triangulation can be directly

used to define the area of the component, this is the convex hull of the triangulation.

However, the distribution of points within the convex hull can be quite irregular

leading to large areas near the boundary where there are no points. To create

an area that is more representative of the actual spatial distribution of the points

another distance cut-off parameter y is introduced.

Triangles from the triangulation that have a circumcircle radius less than y

are removed. Removing these triangles reduces the number of long range connections

along the boundary of the component. The final boundary is now defined using the

remaining triangles. Figure C.3 D shows the same component after the circumcircles

with large radii have been removed. The difference in the final polygons for all the

components after the are final step are shown in figures C.3 E and F.

In creating these figures and those in the main text the cutoff parameters

were set at x = 15km and y = 50km. These values were chosen as they appeared to

offer the most detail without fracturing the communities into many components.
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Figure C.3: A walkthrough depicting the main steps in creating figures 4.11, 4.22
and 4.22 using a community from 4.22 A as an example. Each step is explained in
detail in the text.
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C.4 Further sensitivity analysis for simulations seeded

in Devon and Aberdeen
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Figure C.4: The effect of varying disease parameters on epidemic size (left) and
positive likelihood ratio (right). All analysis takes place 4 weeks into the epidemic or
β ∈ {1, 2, 3, 4, 5} per day and T ∈ {7, 14, 21, 28} days. We analyse simulations seeded
in Devon examining farms that have been infected in at least 2% of simulation.
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Figure C.5: The effect of varying disease parameters on epidemic size (left) and
positive likelihood ratio (right). All analysis takes place 4 weeks into the epidemic
or β ∈ {1, 2, 3, 4, 5} per day and T ∈ {7, 14, 21, 28} days. We analyse simulations
seeded in Aberdeen examining farms that have been infected in at least 2% of
simulation.
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Figure C.6: Plot showing the affect that varying the infectious period T has on the
number of infected farms in the early stages of outbreaks when a take-off limit is
imposed. On the left we have the transmission parameter β = 1 and on the right
β = 2. Simulations are seeded in Cumbria and we analyse the farms infected in at
least 2% of outbreaks.
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Figure C.7: Plot showing the affect that varying the infectious period T has on the
number of infected farms in the early stages of outbreaks when a take-off limit is
imposed. On the left we have the transmission parameter β = 1 and on the right
β = 2. Simulations are seeded in Cumbria and we analyse the farms infected in at
least 2% of outbreaks.
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Figure D.1: Simulation results for farm 25,372 using the distribution of parameter
values found using ABC with tolerance ε = 0.60. The mean and median number
of infectious cattle are plotted each day in the upper figure with the interquartile
range shaded in grey. The duration of the outbreaks are also shown along with the
dates of reactive and routine vaccination. The lower figure shows the proportion of
immune (dotted line) and susceptible (dashed line). Only simulations were all three
farms had an outbreak take off are included (3,082/10,000)
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Figure D.2: Simulation results for farm 8,149 with the original vaccination schedule.
The median parameters derived from the ABC scheme applied to farm 25,372 with
a tolerance of ε = 0.60 were used for the simulations. The mean and median number
of infectious cattle are plotted each day in the upper figure. The duration of each
outbreak is shown as are the dates of the reactive and routine vaccinations. The
lower figure shows the proportion of immune (dotted line) and susceptible (dashed
line) cattle on the farm. Only simulations were all four outbreaks took off are
included (3,936/10,000).
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Figure D.3: Simulation results for farm 8,149 with the altered vaccination schedule.
The median parameters derived from the ABC scheme applied to farm 25,372 with
a tolerance of ε = 0.60 were used for the simulations. The mean and median number
of infectious cattle are plotted each day in the upper figure. The duration of each
outbreak is shown as are the dates of the reactive and routine vaccinations. The
lower figure shows the proportion of immune (dotted line) and susceptible (dashed
line) cattle on the farm. Only simulations were all four outbreaks took off are
included (4,540/10,000).
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