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Abstract—Source location privacy (SLP) is an important prop-
erty for the class of asset monitoring problems in wireless sensor
networks (WSNs). SLP aims to prevent an attacker from finding
a valuable asset when a WSN node is broadcasting information
due to the detection of the asset. Most SLP techniques focus
at the routing level, with typically high message overhead. The
objective of this paper is to investigate the novel problem of devel-
oping a TDMA MAC schedule that can provide SLP. We make
a number of important contributions: (i) we develop a novel
formalisation of a class of eavesdropping attackers and provide
novel formalisations of SLP-aware data aggregation schedules
(DAS), (ii) we present a decision procedure to verify whether a
DAS schedule is SLP-aware, that returns a counterexample if the
schedule is not, similar to model checking, and (iii) we develop
a 3-stage distributed algorithm that transforms an initial DAS
algorithm into a corresponding SLP-aware schedule against a
specific class of eavesdroppers. Our simulation results show that
the resulting SLP-aware DAS protocol reduces the capture ratio
by 50% at the expense of negligible message overhead.

Keywords-TDMA; Data Aggregation Scheduling; Source Loca-
tion Privacy; Wireless Sensor Networks;

I. INTRODUCTION

Wireless sensor networks (WSNs) are collections of sensor
nodes that communicate through a wireless medium. They have
been used in a wide variety of contexts, from safety critical
purposes such as military [1] to non-critical applications such
as habitat monitoring [2]. For both applications privacy is often
a key component. Privacy can be described as the guarantee
that information can only be observed (or deciphered) by those
that it is intended for.
Motivating Scenario Animal poaching is becoming an in-
creasingly lucrative business. To catch the criminals, WSNs
have been deployed to monitor large areas where these animals
roam [3]. A recent implementation of an asset monitoring
network is the Wildlife Crime Technology Report1.

Whilst the content of this data is protected via encryption,
it is also important to protect context such as a location
when routing packets. Otherwise, it is possible that a poacher
could backtrack through messages in the network and locate
the animal-detecting node [4]. Context is a concept derived
from a number of attributes relating to situational information
understood from the broadcast, which can include both envir-
onmental and temporal data. This renders typical cryptographic
techniques inapplicable for this type of problem. The class
of context-privacy focused on in this work is called source
location privacy (SLP).

1worldwildlife.org/projects/wildlife-crime-technology-project

Source Location Privacy SLP is the process of keeping the
location of the source hidden from a potential attacker in
an asset monitoring network. When a sensor node, called
the source, detects the presence of an asset, it will begin to
broadcast messages to be collected at a node called the sink.
Due to the fact that the source node is broadcasting from the
location of the asset, it is possible for an attacker to trace
messages to this node [4].

Much of the existing research on SLP has focused on the
routing layer where the various techniques alter the traffic
pattern by modifying the routing protocol used to mask the
source node. In this paper, we conjecture that SLP can be
provided at the MAC level by achieving a similar traffic
alteration through a TDMA-based MAC protocol. TDMA-
based MAC protocols work by assigning a time slot to a node
which can then transmit data in that time slot only. Thus,
one given slot assignment will give rise to one traffic pattern.
Then, the idea is to develop a slot assignment such that it
gives rise to convergecast traffic while also providing SLP.
The class of convergecast protocol we focus on in this paper is
called data aggregation scheduling (DAS), where parents send
messages after collecting data from their respective children.
The principle behind such a slot assignment is to cause nodes to
transmit in such a way that a path is created while also creating
another path that diverts an attacker away from a source. We
make the following novel contributions: (i) We formalise the
novel class of distributed eavesdropping attackers which we
assume in this paper. (ii) We provide a decision procedure to
verify whether a given slot assignment provides SLP. Finally,
(iii) we present a 3-stage distributed algorithm that generates
an SLP-aware DAS. To the best of our knowledge, this is the
first work that focuses on SLP at the MAC level only.

The remainder of this paper is organised as follows:
In Section II we review related work. In Section III we
define necessary terminology. Section IV outlines the problem
specification of the paper and formalises both the DAS
problem and the SLP-aware DAS problem. In Section V,
we propose a distributed algorithm to generate an SLP-aware
DAS. Section VI describes our experimental setup and results.
Finally, Section VII presents a summary of our contributions.

II. RELATED WORK

The SLP problem was first introduced in [4, 5] as the panda-
hunter game, in which a WSN had been deployed to monitor
valuable assets where the messages are routed from the node
that detects the asset (source node) to a base station (sink
node). In the game, there is an attacker who is attempting to



locate the asset by tracing back the wireless messages being
broadcast by the source node.

Many techniques have been proposed to provide SLP against
eavesdroppers [6, 7], as assumed in the paper. Phantom routing
is a two stage protocol where the first stage sends messages
on a directed random walk through the network and the
second stage routes them to the sink [4, 5]. Further work has
been performed to improve the random walk stage, including
utilising a bloom filter [8] or location angles [9] to avoid
backtracking. Another core principle is utilising fake sources,
whereby they send padded and encrypted messages that are
indistinguishable from those sent by the real source to lure
the attacker in the wrong direction. Initially discounted due to
suspected poor performance [4], it has since been shown that
utilising fake sources can be a viable alternative to phantom
routing [10, 11, 12]. Other works have also combined both
principles into single protocols [13, 14].

There have been fewer techniques that use a cross-layer
approach to provide SLP, e.g., [15] where beacon frames used
by the MAC layer are modified to propagate messages away
from the source before being convergecast. Differently from
this work, the authors did not propose any new protocol.

III. PRELIMINARIES

We provide the necessary formal background including the
models we use, the program syntax and semantics and the
computation and communication models.

A. System Model

Topology and processes A WSN node is a computing
device associated to a unique identifier. Communication in
WSNs is typically modelled with a circular communication
range centered on a node, and assuming all nodes have
the same communication range. With this model, a node is
thought as able to exchange data with all devices within its
communication range. In graph-theoretic terms, we represent
a WSN as a undirected graph G = (V,E) with a set V
of vertices representing the nodes, and a set E of edges
representing the communication links between pairs of nodes.
Program syntax We write programs in the guarded com-
mand notation (GCN) [16]. Hence, an action has the form
〈name〉::〈guard〉 → 〈command〉. In general, a guard is
a predicate defined over the set of a process’ variables.
When a guard evaluates to true, the command can be
executed, which takes the program from one state to an-
other. When the state transition is complete, we say that
event 〈name〉 has occurred. A command is a sequence of
assignments and branching statements. A guard or command
can contain universal or existential quantifiers of the form:
〈quantifier〉〈boundvariables〉 : 〈range〉 : 〈term〉, where
range and term are Boolean constructs. When a guard evaluates
to true in a state, the corresponding action is enabled in that
state. A special timeout(timer ) guard evaluates to true when
a timer variable reaches zero. A set(timer , value) command
sets the timer variable to a specified value.
Communication Each process has a special channel variable,
denoted by ch, modelling a FIFO queue of incoming messages
sent by other processes. This variable is defined over the set
of (possibly infinite) message sequences. An action with a
rcv(sender , msg) guard is enabled at process j when there
is a message at the head of the channel variable sender .j.ch

of a process. Executing the corresponding action causes the
message at the head of the channel to be dequeued, while
msg and sender are bound to the content of the message and
the sender identifier.

B. Attacker Model

An attacker A is a distinct process that is characterised by
its presence and the attacks (or actions) it can carry out [17].
In this paper, we assume the attacker to be a distributed
eavesdropper, i.e., the attacker will be located at various
positions in the network (at possibly different times, hence
distributed) and will only listen to messages being transmitted
(eavesdropper). Based on both attributes, the attacker process
A will update its state.

In this paper, we propose a novel and generic model of a
distributed eavesdropper, as shown in Figure 1. The attacker,
called a (R,H,M, s0, D)-A attacker, is parameterised as
follows: (i) R is the number of messages the attacker can
receive before it makes a move, (ii) H is the number of the
most recently visited locations it can record, (iii) M is the
number of moves the attacker can make in a given period, (iv)
s0 is the starting point of the attacker, and (v) D is a function
for the attacker that returns the set of possible new locations,
based on the current data (e.g., messages heard) and historical
data (e.g., previously visited locations). This parameterised
attacker allow the development and understanding of attackers
of various strengths.

Most work on SLP have focused on the (1, 0, 1, s0, D)-A
attacker, where D is defined as follows: since R = 1, M = 1
and H = 0, it means that, when the attacker hears the first
message coming from a location j, it will move to j.

IV. PROBLEM SPECIFICATIONS

A. Problem Specification: Data Aggregation Scheduling

In this section, we formalise two different variants of the
SLP-aware DAS problem. We will first formalise the DAS
problem and subsequently define an SLP-aware DAS.

Definition 1 (Non-colliding slot): Given a network G =
(V,E), a node n ∈ G, and a slot i in which n can transmit
its payload, we say that i is non-colliding for n iff ∀m ∈
CG(n) ·m.slot 6= i, with CG(n) being the set of nodes in
the 2-hop neighbourhood of n.

Definition 2 (Strong DAS): Given a network G = (V,E),
a strong TDMA-based collision-free data aggregation schedule
is a sequence of sets of senders 〈σ1, σ2, . . . , σl〉, satisfying
the following constraints:

1) σi ∩ σj = ∅,∀i 6= j,
2)

⋃l
i=1 σi = V \ {S},

3) ∀n ∈ σi, 1 ≤ i ≤ l − 1 : ∀m ∈ N,n ·
m. . . S is a shortest path : (m ∈ σj , j > i)∨ (m = S),

4) ∀m,n ∈ σj , 1 ≤ j ≤ l − 1 : m 6= n ⇒ n 6∈ CG(m) ∧
m 6∈ CG(n).

The four conditions respectively captures: (i) nodes are
allocated at most one time slot in a given period, (ii) every
node (apart from the sink) gets at least one transmission slot,
(iii) All the neighbours of a node will transmit in later slots
and (iv) the schedule is collision-free.

Definition 3 (Weak DAS): Given a network G = (V,E), a
weak TDMA-based collision-free data aggregation schedule is



Attacker Process (R, H, M, s0, D)-A where R is the number of messages an attacker can capture before making a move, H is the number of the most
recently visited locations, M is the number of moves the attacker can make in a single period, s0 is the initial location of the attacker A, and D is a
function that A uses to select its next location, based on its history and set of messages captured.

variables
% history of recent locations, current location
history[], curLoc : array of node ids of size H , int init 〈〉, s0;

% set of messages received, number of moves made, history index
msgs, moves, num: set of msgs, int, int init ∅, 0, 0;

constants
period: timer; % obtained from DAS schedule denoted by α

actions
NextP:: timeout(period) → msgs, moves := ∅, 0;

set (period, α)

ARcv:: rcv 〈l,m〉 →
if |msgs| < R then

msgs ∪ {l};
fi;

Decide:: msgs 6= ∅ →
if (moves < M ) then

if (H > 0) then
history[num] := curloc;
num := (num + 1) mod H;

fi;
curloc := D(msgs, history);
moves, msgs := moves + 1, ∅;

fi

Figure 1: A (R, H, M, s0, D)-attacker

a sequence of sets of senders 〈σ1, σ2, . . . , σl〉, satisfying the
following constraints:

1) σi ∩ σj = ∅,∀i 6= j,
2)

⋃l
i=1 σi = V \ {S},

3) ∀n ∈ σi, 1 ≤ i ≤ l− 1 : ∃m ∈ N,n ·m. . . S is a path :
(m ∈ σj , j > i) ∨ (m = S),

4) ∀m,n ∈ σj , 1 ≤ j ≤ l − 1 : m 6= n ⇒ n 6∈ CG(m) ∧
m 6∈ CG(n).

The main difference between the strong and weak versions
of DAS is that the strong version requires a node to have all
of its neighbours closer to the sink with a slot higher than its
own. On the other hand, the weak version requires at least
one such neighbour to transmit later.

B. Problem Specification: Safety Period
To capture the notion of source location privacy (SLP)
awareness in TDMA-based DAS scheduling, a concept called
safety period is required [4]. It was initially defined to estimate
the number of messages needed to capture a source. The
problem with this definition of safety period is that validation
time is unbounded or potentially very large. As such, we
use an alternative, but analogous, definition for safety period,
which we estimate using the notion of capture time.

Definition 4 (Capture Time of P): Given network G =
(V,E), an algorithm P , a (R,H,M, s0, D)-A attacker, a
source S, the capture time δGP,A of P in the presence of
A in G is the minimum time taken for A to capture S in G,
i.e., we say that, starting from s0, P provides δGP,A-SLP for
S in G in the presence of A.

To be SLP aware, an SLP-aware protocol will have a lower
probability of capturing a source than a protectionless protocol
over the same time period. Then, the safety period of S in G
in the presence of A is defined as follows:

δGS,A = Cs × δGP,A where typically 1 < Cs < 2 (1)

Now, if δGPs,A ≤ δGS,A for a given G,A,S, then the
probability is 1.

C. Problem Specification: SLP-Aware DAS
In this paper, the algorithm P that we develop is a strong/weak
DAS that is SLP aware for some specified safety period δ.
To this end, we first present a decision procedure, called

VerifySchedule, that verifies whether a given DAS schedule
can lead to an attacker capturing the source, i.e., reaching
the source within the safety period. The decision procedure,
shown in Algorithm 1, works in a way analogous to model
checking, where it returns a violating trace to show how an
attacker can capture a source.

The decision procedure VerifySchedule works as follows:
the function GENERATEALLATTACKERTRACES generates all
possible traces (i.e., sequence of locations) that the attacker
can take. Any such sequence 〈s0s1 . . . sj〉 has the property
that ∀ 0 ≤ i < j, (si, si+1) ∈ E, i.e., the attacker moves one
hop at a time. The trace is then analysed by checking the
validity of each step. Each step is checked to see whether this
step of A is allowed by F (by computing the B variable -
Line 7) and by A’s parameters. If a step is not valid, then the
trace is discarded. Else, the next step is considered until the
source is reached. When the source is reached, the time taken
is noted. If it is less than the safety period, there is a capture
else subsequent steps are considered. The function returns a
boolean value False if a trace of A can be constructed that
satisfies both F and its parameters but ends up capturing S.

Definition 5 (Strong (resp. weak) SLP-aware DAS):
Given a network G = (V,E), a DAS assignment Fs, a
(R,H,M, s0, D)-A attacker, a given source node S , Fs is a
strong (resp. weak) SLP aware DAS protocol for S in G in
the presence of A if and only if:

1) Fs is a strong (resp. weak) DAS,
2) δGFs,A > δGF,A, for another DAS F .

The two conditions for a schedule to be a strongly (resp.
weakly) SLP-aware DAS are:

1) The schedule has to be a strong (resp. weak) DAS,
2) The capture time of Fs is greater than that of F .
Definition 6 (δ-SLP-aware for S): Given a network G =

(V,E), a (R,H,M, s0, D)-A attacker, a safety period δ, a
source S and a DAS schedule Fs, we say that Fs is δ-SLP-
aware2 for S in G in the presence of a (R,H,M, s0, D)-
A attacker if and only if VerifySchedule(G,F ,A, δ,S) =
(True,⊥, δ). Otherwise, if VerifySchedule(G,F ,A, δ,S) =
(False, pc, p), then we say that A captures S in G under F
within p rounds using pc.

2We will also say SLP-aware when δ is clear in the context.



Algorithm 1 An algorithm to verify if a TDMA slot assign-
ment is SLP-aware.

. G: network topology, F : schedule, A: attacker

. δ: safety period, S: source

. Function returns boolean, a (violating) sequence, and a (capture) period
1: function VERIFYSCHEDULE(G, F , A, δ, S)
2: period, num, history ← 0, 0, [0, . . . , 0]1×A.H

3: P ← GENERATEALLATTACKERTRACES(G, F , A, S)
4: while P 6= ∅ do
5: pc ← CHOOSE(P)
6: for ni ∈ pc do . pc = n0 · n1 . . .
7: B ← 1HOPNSWITHRLOWESTSLOTS(ni, F , A.R)
8: if ni+1 6∈ {m | (m,ni) ∈ E} . Going to an unheard location

or not according to A.D
∧ (S(ni+1) 6∈ B ∨ ni+1 6∈ A.D(B,history)) then

9: break
10: if S(ni) > S(ni+1) then period, moves ← period + 1, 1
11: else if moves = A.M then break
12: else moves ← moves + 1
13: if ni+1 = S ∧ period ≤ δ then
14: return (False, pc,period) . Captured within safety period
15: if A.H > 0 then . Only update history if the attacker is capable
16: history[num], num ← ni, (num + 1) mod A.H
17: P ← P \ {pc}
18: return (True, ⊥, δ)

Here, the decision procedure works in a way analogous to
model checking where a counterexample is returned. Similarly,
pc represents the counterexample in terms of the locations the
attacker can visit before capturing the source. Further, if Fs

is δ-SLP aware for S, then δGFs,A > δ.

V. THEORY

The 3-stage protocol works as follows: We first generate a
normal DAS schedule. Then, we search for a suitable location
in the network where the attacker can be tricked for some
time. Finally, the trick is to reassign slots to some nodes to
ensure that the attacker takes a longer route towards the source,
thus delaying it (causing the safety period to expire). While
slots are reallocated in stage 3, an important property of the
distributed protocol is that the DAS property is preserved.

Figure 2 shows a protocol that generates a DAS schedule,
the algorithm in Figure 3 searches for a suitable location in
the network to start a redirection and the final phase is shown
in Figure 4. We now explain the working of the protocols.
Phase 1: DAS schedule

The protocol for the DAS schedule (Figure 2) is started
by the sink. A node keeps track of its potential parents, its
distance from the sink and its allocated slot. When it receives a
set of “non-empty” messages, it chooses one of the senders as
its parent and also updates its slot to be less than the minimum
of all slots seen. This novel aspect is to ensure that, when
the slot assignment is subsequently refined, then the sender
can very easily identify a new parent. This ensures the DAS
property is satisfied.

On the other hand, when a node broadcasts its state, it
includes the state of its neighbours. A receiving node will
then potentially have information about its 2-hop neighbours. It
then verifies whether it shares the same slot as one of its 2-hop
neighbours. If it does, then one of the two colliding neighbours
will update its slot value, guaranteeing collision-freedom.
Phase 2: Node Locator

The node locator protocol of Figure 3 searches for a node
which is at a certain distance from the sink. The idea is that

Parameter Symbol Description Value

Protectionless DAS

Source Period Psrc
The rate at which the
source generates messages

5.5s

Slot Period Pslot The duration of a single slot 0.05s
Dissemination
Period

Pdiss
The duration of the
dissemination period

0.5s

Number of
Slots

slots The number of slots that
can be assigned

100

Minimum
Setup Periods

MSP
The number of periods
before the source is
activated

80

Neighbour
Discovery
Periods

NDP The number of periods for
neighbour discovery

4

Dissemination
Timeout

DT
The number of
dissemination messages
sent by a node

5

SLP DAS
Search
Distance

SD The maximum number of
hops search messages make

3, 5

Change
Length

CL The length of the change
path generated

∆ss − SD

Table I: Parameters for protectionless and SLP DAS.

the distance of that node is far enough from the source.
Phase 3: Slot Refinement

The protocol of Figure 4 works as follows: when a node
is selected from the node selector algorithm of Figure 3, the
selected node becomes the first to trigger a change in slots of
some nodes. The number of nodes to change slots is either
determined by lenD when nodes have at least two potential
parents or until it encounters a node with only one potential
parent. The selected node m chooses one of its potential
parents (but not its parent) as the node to change its slot, i.e.,
an upstream node n will change its slot. For the attacker to
move to n first, the slot value of n needs to be smaller than
all the other nodes in m’s neighbourhood. When n changes
its slot, it has to inform its children to update their slots. This
is achieved by setting Normal to 0, i.e., it is an update phase.

Now, in the DAS algorithm of Figure 2, whenever a node
disseminates its state information, it specifies whether the
dissemination is an update or not. If it is an update, a node
checks if its slot value requires changing. If it does, then
it changes its slot value to a value less than its parent (to
maintain the DAS property) and also informs its children that
an update is required. Up to lenD nodes will start a slot
update.

VI. EXPERIMENTAL SETUP AND RESULTS

A. Simulation Environment and Network Configuration

The algorithms described in Section V have been implemented
using TinyOS (version 2.1.2) and are executed in TOSSIM.
TOSSIM is a discrete event simulator capable of accurately
modelling WSNs. Two algorithms are simulated: protectionless
DAS (Figure 2) is the baseline to compare against SLP DAS.

The network layout used was a square grid with dimensions
of 11 × 11, 15 × 15 and 21 × 21, with the top-left node
being the source and the centre node the sink. The distance
between each node pair was set to 4.5m, allowing only
for vertical and horizontal messages transmission. An ideal
communication model was used, to test the algorithms over a



FFF : DAS protocol for process i

variables
myN: set of int; % set of neighbours
% set of potential parents, set of children
Npar, children: set of int, set of int init ∅, ∅;
Others[]: array of set of int init ∅; % Set of potential competitors

% 2-hop neighbourhood information (hop,slot)
Ninfo[]: array of (int,int) init ⊥;

hop,par,slot: int,int,int init ⊥,⊥,⊥; % DAS information
Normal: bool init 1;

% Control start of DAS protocol, timer for dissemination
start, dissem: bool, timer init 1, α;

constants
% Is the node the sink, length of redirection
sink, length: bool, int;
size: int init ∆;

actions
init:: start → % sink triggering the protocol.

if (sink) then
∀n ∈ myN do Ninfo[n] := (⊥,⊥); od
hop, par, slot, start := 0, ⊥, ∆, 0;
Ninfo[i].hop, Ninfo[i].slot := hop, ∆;

% Node state dissemination
dissem:: timeout(dissem) →

BCAST〈DISSEM,Normal, i, {Ninfo[j] | j ∈ myN}, par〉;
set 〈dissem,α〉;

% Normal dissem message from parent
receiveN:: rcv〈DISSEM, 1, j, N, p〉 →

if (slot = ⊥ ∧ N[j].slot 6= ⊥) then
Npar, Others[j] := Npar ∪ {j}, Others[j] ∪ {n | N[n].slot = ⊥};

∀n,N [n] 6= ⊥ do Ninfo[n] := N [n]; od

% update message from parent.
receiveU:: rcv〈DISSEM, 0, j, N, p〉 →

if (par = j) then
if (slot ≥ N[j].slot) then

slot, Normal := N[j].slot− 1, 0;
∀n,N [n] 6= ⊥ do Ninfo[n] := N [n]; od

% finished receiving all messages
process:: rcv〈〉 →

if (slot = ⊥) then
% Choosing parent on shortest path and its unassigned children.
hop := min{h | (h, s) ∈ Ninfo[k], k ∈ Npar}+ 1;
par := min{k | (k ∈ Npar,Ninfo[k] = (hop, s)};
slot := Ninfo[par].slot − rank(i, Others[par])− 1;
Ninfo[i] := (hop, slot);
∀n ∈ myN,Ninfo[n].slot = ⊥ do children := children ∪ {n}; od

% Detection of slot collision then resolve.
if (∃j, j 6= i : Ninfo[j].slot = slot) then

if (hop > Ninfo[j].hop ∨ (hop = Ninfo[j].hop ∧ i > j)) then
slot := slot - 1;

Figure 2: Phase 1 - DAS algorithm: A slot assignment protocol for data aggregation scheduling.

NSearch: Search protocol for process i

variables
% Start of search, first node of the redirection, length redirection
start, startNode, pr: bool, int, int init 1, 0, 0;
from: set of int init ∅;

constants
% distance to travel (length of “phantom” route)
dist, diam: int, int init SD, δ;

actions
% Begin search process
startS:: start ∧ sink →
∀c ∈ children do

if (Ninfo[c].slot = min{Ninfo[k].slot | k ∈ children}) then
start, aNode := 0, c;

BCAST〈SEARCH, i, aNode, dist〉;

% Receive search message
receiveS:: rcv〈SEARCH, k, j, d〉 →

from := from ∪ {k};
if (i = j) then

if ((d = 0) ∧ (Npar \ {par, k} 6= ∅) then
startNode, pr := 1, dsp/3e;

if ((d = 0) ∧ (Npar \ {par, k} = ∅)) then
if (children 6= ∅) then

aNode := choose(children);
else

aNode := choose(myN \ {par});
BCAST〈SEARCH, i, aNode, d〉;

if (d > 0) then
∀c ∈ children do

if (Ninfo[c].slot = min{Ninfo[k].slot | k ∈ children}) then
aNode := c;

od
BCAST〈SEARCH, i, aNode, d − 1〉;

Figure 3: Phase 2 - Node Locator: An algorithm that searches for a suitable location in the network for where redirection can
occur. The algorithm inherits the variables of Algorithm in Figure 2

reliable network. The noise model being used is casino-lab.
The routing algorithm used by both protectionless DAS and
SLP DAS is flooding. Each node periodically broadcasts a
message in its time slot.

B. Algorithm Parameters
Table I show the parameters used by the algorithms in these
simulations. SLP DAS inherits all of the parameters from
protectionless DAS and adds two additional parameters (search
distance and change length). The search distance is the number
of hops search messages travel away from the sink. The change
length is the maximum length of a decoy path.

If the attacker is to capture the source, the capture time is
C = period length × (∆ss + 1). The safety period for SLP

DAS is 1.5C, where 1.5 is the increase factor for the capture
time between SLP DAS and protectionless DAS. To bound
simulation time, an upper time bound of number of nodes×
source period× 4 is used.

C. Attacker Model

We implemented a (1, 0, 1, s0, D)-A attacker (see Section III),
with the attacker knowing the period length.

D. Expected Outcomes

The metric we shall focus on is the capture ratio as this is the
most important factor when considering an SLP algorithm. We
compare the differences between protectionless DAS and SLP



SRefine: Slot refinement protocol for process i

actions
% Begin change process
startR:: startNode →

startNode, aNode := 0, choose(Npar \ {par} \ from);
nSlot := min({Ninfo[j].slot|j ∈ myN} ∪ {slot});
BCAST〈CHANGE, i, aNode, nSlot, pr − 1〉;

% Receive change message
receiveC:: rcv〈CHANGE, p, j, s, d〉 →

if (d > 0 ∧ i = j) then
if (myN \{par} \ from 6= ∅) then

aNode := choose(myN \ {par} \ from);
slot, Ninfo[i] := s− 1, (hop, slot);
nSlot := min({Ninfo[k].slot | k ∈ myN} ∪ {slot});
BCAST〈CHANGE, i, aNode, nSlot, d− 1〉;

if (d = 0 ∧ i = j ∧ (myN \ {par} \ from 6= ∅)) then
Normal, slot := 0, s− 1;
Ninfo[i] := (hop, slot);

Figure 4: Phase 3 - Slot refinement: An algorithm that refines the original slot assignment F . The algorithm inherits the
variables of Algorithms in Figures 2 and 3

Source Period - Protectionless TDMA DAS Source Period - SLP TDMA DAS
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Figure 5: Plots showing the capture ratio with different network
sizes and search distances

DAS. Capture ratio is the ratio of runs in which the attacker
manages to capture the source before the safety period ends.

E. Results
Figure 5 shows the results of capture ratio with varying values
of network size. We observe that the SLP-aware DAS protocol
reduces the capture ratio by 50%.

VII. CONCLUSION

Our main contribution in this paper is a 3-phase distributed
protocol that returns an SLP-aware DAS schedule. Simulation
results show that the capture ratio drops by 50% when SLP-
aware DAS is used over a protectionless DAS with little
overhead.
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