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Abstract Norms are a valuable means of establishing coherent cooperative behaviour in
decentralised systems in which there is no central authority. Axelrod’s seminal model of
norm establishment in populations of self-interested individuals provides some insight into
the mechanisms needed to support this through the use of metanorms, but considers only lim-
ited scenarios and domains. While further developments of Axelrod’s model have addressed
some of the limitations, there is still only limited consideration of suchmetanormmodelswith
more realistic topological configurations. In response, this paper tries to address such limita-
tion by considering its application to different topological structures. Our results suggest that
norm establishment is achievable in lattices and small worlds, while such establishment is not
achievable in scale-free networks, due to the problematic effects of hubs. The paper offers a
solution, first by adjusting the model to more appropriately reflect the characteristics of the
problem, and second by offering a new dynamic policy adaptation approach to learning the
right behaviour. Experimental results demonstrate that this dynamic policy adaptation over-
comes the difficulties posed by the asymmetric distribution of links in scale-free networks,
leading to an absence of norm violation, and instead to norm emergence.
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1 Introduction

In peer-to-peer (P2P) systems, agents share resources (hardware, software or information)
with one another. But if there is no cost or limit on accessing the resources provided by
others, there is no incentive for agents to contribute resources for the benefit of others.
More generally, when self-interested autonomous agents must exchange information without
any central control, non-compliance (due to selfish interests) can compromise the entire
system. Legal norms have been shown to be a very powerful mechanism in regulating the
behaviour of multi-agent systems. Indeed, the field of Artificial Intelligence (AI) and Law is
largely concerned with intelligent systems that reason with or about such norms, and with
the possibility of a central authority that may enforce them. However, some systems, such
as P2P systems, consist of large populations of interacting entities and are not controlled by
a central authority; the nature and volume of interactions in such systems make it infeasible
to enforce legal norms. These kinds of system can benefit from social norms that emerge
through interactions, and are maintained by the individuals that participate within them. Such
social norms are the focus of the work in this paper; we will refer to them as norms in the
rest of the paper for simplicity.

The use of norms to provide ameans of ensuring cooperative behaviour has been proposed
by many [7,10,11,32,36,38,39,41] but, as shown by Axelrod [2], norms alone may not lead
to the desired outcomes. In consequence, metanorms have been proposed as a means of
ensuring not only that norms are complied with, but that they are enforced. Axelrod’s model
is interesting and valuable in examining how norms can be established in a population of
agents. However, in real-world systems, such as peer-to-peer and wireless sensor networks,
each agent can only observe the behaviour of a relatively small number of others, Yet, Axel-
rod’s model assumes that the actions of each agent can be observed by all the other agents.
While experiments have shown that metanorms are effective in fully-connected environments
as used by Axelrod, there has been limited consideration of metanorms with different but
more realistic topological configurations [26], which fundamentally change the mechanisms
required to establish cooperation. Using our simulation model [24], we are able to replicate
Axelrod’s results (and in fact improve on them for extended runs, even with an observability
constraint), as a result of allowing agents to learn from the payoff they receive from con-
ducting certain actions. Learning eliminated the problem that was caused by the mutation
involved in the original evolutionary approach suggested by Axelrod, as well as eliminating
the need to access other agent’s private policies, which are considered private information
in many contexts. Although this provides a valuable illustration of the value of metanorms
in avoiding norm collapse in a system in which there is no central control, it still assumes a
fully connected network. Some work has already been undertaken to examine the impact of
different topologies on norm establishment. For example, Savarimuthu et al. [30] consider
the ultimatum game in the context of providing advice to agents on whether to change their
norms in order to enhance cooperation in random and scale-free networks. Delgado et al. [9]
study norm emergence in coordination games in scale-free networks, and Sen et al. [34]
examine rings and scale-free networks in a related context. Additionally, Villatoro et al. [38]
explore norm emergence with memory-based agents in lattices and scale-free networks.

While these efforts provide valuable and useful results, the context of application has been
limited, with only two agents involved in each encounter, rather than a larger population of
agents. This simplifies the problemwhen comparedwith those inwhich the actions ofmultiple
interacting agents can impact on norm establishment. In response, this paper builds on the
enhancement of Axelrod’s model that is presented in [24] to address the context of different
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topological configurations1. First, the model so far assumes a fully connected network, and
is influenced by that for certain aspects, such as how one agent observes another’s actions.
In a variably connected structure, this part of the model is thus not meaningful and requires
modification, causing some difficulties in establishing norms. Second, in scale-free networks,
which contain both heavily connected nodes (hubs) and lightly connected nodes (outliers),
hubs obstruct norm emergence since they require observation of, and interaction with, many
others in the network, causing asymmetric effects. Such effects require further adaptation of
the model, which are introduced in this paper.

The rest of the paper is organised as follows. Section2 introduces relatedwork, Sect. 3 gives
an overview ofAxelrod’smodel, and Sect. 4 outlines themetanorms game, adjusted to suit the
purposes of this paper, and augmented with a learning mechanism. Sections 5 and 6 describe
in detail the impact of applying the model in lattices and small world networks, respectively.
In Sect. 7, we consider the problems that arise from the use of scale-free networks, and
present an adaptation of the model that copes with their characteristics. Section 8 describes
the results obtained from applying the model on samples of real world networks and, finally,
Sect. 9 concludes this paper.

2 Related work

There has been much work that examines norm emergence in societies of interacting agents.
Much of this work concentrates on analysing norm emergence over fully-connected net-
works [5,33,36,39], and it was only relatively recently that attention shifted towards the
effect of the structure of these societies. In this section, we review the literature that addresses
these concerns.

The earliest work concerned with the impact of topologies on convention emergence
belongs to Kittock [18], who studied the effect of regular lattices on the iterated cooperation
game (ICG) [17] and the iterated prisoner’s dilemma (IPD) [1]. Both are iterative games in
which two agents choose one of two actions with their reward depending on the combination
of their choices. Agents choose actions based on the highest current reward (HCR) learning
algorithm. The results obtained suggest that different convergence rates are observed with
different topologies and, in particular, that a larger network diameter (being the longest path
between any two nodes) makes it more difficult for the convergence to arise.

Urbano et al. [37] use a classical convention emergence game to study the influence of
interaction topologies (random, regular, smallworld and scale free topologies) on theExternal
Majority strategy update rule (EM) originally proposed by Shoham and Tennenholtz [35]. In
particular, they investigate the effect of different memory sizes on the rate of convergence.
Their empirical results show that a memory size of 3 is the best option for all types of
topologies. More recently, Franks et al. [13] have shown that inserting a small number of
influencer agents—those with specific conventions and strategies—is enough to manipulate
the convention adopted by large societies. However, their results depend on the underlying
network, with scale-free networks easing the emergence of conventions in comparison to
small worlds, over which convention emergence is slower and with higher cost.

Delgado et al. [8,9] study the emergence of coordination in scale-free networks. Their
study involves an interaction model of a multi-agent system, by which they try to analyse
how fast coordination can spread among agents. Coordination here is represented through
agents being in the same state, and coordination is considered to have emerged when 90%

1 The work presented in this paper extends the work presented in [22] and [23].
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of agents are in the same state. The results demonstrate that coordination can indeed be
achieved over scale-free networks, but in a rather restricted setting. Similarly, Sen et al. [34]
use a game to investigate norm emergence over lattices and scale-free networks. In particular,
they analyse the effect of increasing the number of actions available to agents, as well as the
effect, on the speed of norm emergence, of increasing the number of agents in both scale-free
networks and lattices. Their results suggest that both increasing the number of actions and
increasing the number of agents causes a delay to norm emergence in the population over a
scale-free network. Similarly, norm emergence in lattices is much slower when agents have
a larger set of actions to choose from, or when the number of agents in the population is
increased. Overall, their analysis shows that, for a small set of actions, it is faster for a norm
to spread in a ring than in other topologies (followed by fully connected structures, and then
scale-free networks). In contrast, for a large set of actions, it turns out that this is much faster
in scale-free networks than in rings and fully connected structures.

The models used in these previous pieces of work are relatively unsophisticated, with
only two agents involved in a single interaction, and reward values remaining fixed and not
changing during the game. In response, Villatoro et al. [38] adopted the same concept of
two-agent interactions, but introduced the notion of the reward of an action being determined
through the use of the memory of agents, thus adding some dynamism to the model. Here, the
reward of a certain action is determined by whether the action represents the majority action
in both agents’ memories, and the reward is proportional to the number of occurrences of this
majority action in their memories. However, it is not clear from where these rewards derive
nor who applies them, as agents only have access to their individual memory. With regard
to the interaction network, their work illustrates that increasing the neighbourhood size of
a lattice accelerates norm emergence. In contrast, in the case of scale-free networks, norms
do not emerge using the basic model. This is because of the development of sub-conventions
that are persistent and hard to break, and these prevent the whole population from converging
towards a single convention. A solution to this problem was found by giving hub agents
(those with the majority of connections to others) more influence on the reward function.

An interesting property that has been explored with regard to networks is that of com-
munity structure [28,29], which has been shown to exist in many real-world social networks
[27]. If the nodes of a graph form a set of groups that are themselves densely connected,
but loosely connected with other groups, then such a graph is said to have the community
structure property. O’Riordan et al. have shown that given a strong community structure,
robust cooperation emerges among a population of agents that are playing the N-player pris-
oner dilemma [6]. This has been shown to be effective over both lattice [28] and small world
networks [29].

Savarimuthu et al. [30] analyse the effect of advice on norm emergence over random and
scale-free networks. For this reason, they use the ultimatum game and their results show
that norm emergence increases in speed over both random and scale-free networks with
an increase in the average degree of connectivity. Furthermore, they have shown [31] that
their model works over dynamic network topologies that are generated using Gonzalez’s
model [15]. More recently, Mungovan et al. [25] introduced the idea of weighted random
interaction by which agents are able to interact with random members of the population
based on distance, and so the closer an agent is to another, the more likely there will be an
interaction between these two agents. Their results suggest that dynamic interaction helps in
easing emergence especially in breaking local biases that are normally hard to break.
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3 Axelrod’s model

Inspired by Axelrod’s model [2], our simulation focusses only on the essential features of
norm emergence in a community of self-interested agents. In the simulation, the agents play
the following game iteratively; in each iteration, they make a number of binary decisions.
First, each agent decides whether to comply with the norm or to defect. Here, the norm
refers to an abstract norm, by which an agent has to make a choice between two alternative
actions. This could be deciding whether to drop litter in a park, or whether to share files after
downloading them in a P2P system. In this context, defection brings a reward for the defecting
agent, and a penalty to all other agents. For example, if an agent decides not to share files with
others, then all those expecting to receive (at least part of) the file from this agent will suffer
from a longer download time in order to receive it. Each defector risks being observed by the
other agents and may be punished as a result. When agents observe another agent defecting,
they decide whether to punish that agent, with a low penalty for the punisher and a high
penalty for the punished agent. Agents that do not punish those observed defecting risk being
observed themselves, and potentially incurmetapunishment. Thus, finally, each agent decides
whether to metapunish agents observed to spare defecting agents. Again, metapunishment
comes at a high penalty for the punished agent and a low penalty for the punisher. Thus,
in each round, each agent must make the decision of whether to defect or to comply, while
making multiple other decisions of whether to punish, metapunish, or spare other agents that
it observes defecting or sparing a defector.

The behaviour of agents in each round of the game is random, but is governed by three
variables: the probability of being seen S, boldness B, and vengefulness V . Each round
agents are given a fixed number of opportunities o to defect or comply, each of which has a
randomly selected probability of a defection being seen. Boldness determines the probability
that an agent defects, such that if an agent’s boldness exceeds the probability of a defection
being seen then the agent defects. Vengefulness is the probability that an agent punishes or
metapunishes another agent. Thus, boldness and vengefulness of an agent are said to comprise
that agent’s strategy. After several rounds of the game, each agent’s rewards and penalties are
tallied, and successful and unsuccessful strategies are identified. By comparing themselves
to other agents on this basis, the strategies of poorly performing agents are revised such that
features of successful strategies are more likely to be retained than those of unsuccessful
ones. We need not be concerned with the details of the learning algorithm in this paper,
beyond the fact that boldness and vengefulness are simply revised upward or downward as
appropriate, in line with a specified learning rate. If most agents employ a strategy of low
boldness and high vengefulness, it can be argued that the norm has become established in
that community, because strategies that lead to defection or to sparing defecting agents are
unlikely (due to low boldness) and are penalised severely (due to high vengefulness).

3.1 Our simulation algorithm

GivenAxelrod’smodel as a starting point, we have previously developed refinements of it that
are better suited to real-world distributed systems, by not requiring agents to have information
on the private strategies of others, and by allowing agents to improve performance, via
a reinforcement learning technique. Since this is not the focus of this paper, we will not
provide a full explanation; the full details of why and how are provided in a sister paper [24].
Nevertheless, since these refinements are the starting point for our work here, in this section
we briefly review the setting presented in [24].
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Algorithm 1 The Simulation Control Loop: simulation(T, H, P, E, γ, δ)
1. for each round do
2. interact(T , H , P , E)
3. learn(γ , δ)

First, in order to determine the unique effect of each individual action on agent perfor-
mance, each agent keeps track of three different cost/utility values: the defection score (DS),
which is the total of temptation rewards received minus the total punishments incurred from
defections; the punishment score (PS) incurred by an agent who punishes or metapunishes
another (as a result of an enforcement cost); and the punishment omission score (POS)
incurred by an agent who does not punish another when it should, and is consequently meta-
punished. These are summed to form a total score (T S).

In this context, we can consider the algorithms used in our simulation, in two phases, as
represented in Algorithms 2 and 3, called from the main simulation loop in Algorithm 1.
More precisely, in Algorithm 2, the scores of each agent are set to zero to isolate the effect of
the current round from previous rounds (Lines 1–5). Each agent has defection opportunities
(o), and defects if its boldness is greater than the probability of its defection being seen. If
an agent defects (Line 8), its DS increases by a temptation payoff, T (Line 9), but it hurts
all others in the population, whose scores decrease by H (Line 11), where H is a negative
number that is thus added to the score. If an agent cooperates, no scores change. DS thus
determines whether an agent should increase or decrease boldness in relation to its utility.

However, each hurt agentmay in turn observe the defection and react to itwith a probability
that is proportional to its vengefulness. Punishment and metapunishment both have two-
sided consequences: if an agent j sees agent i defect in one of its opportunities (o) to do so,
with probability So (Line 12), and decides to punish it (which it does with probability Vj ,
Line 13), i incurs a punishment cost, P , to itsDS (Line 14), while the punishing agent incurs
an enforcement cost, E , to its PS (Line 15). Note that both P and E are negative values, so
they are added to the total when determining an overall value. If j does not punish i , and
another agent k sees this in the same way as previously (Line 18), and decides to metapunish
(Line 19), then k incurs an enforcement cost, E , to its PS, and j incurs a punishment cost P
to its POS.

In the learning phase, in Algorithm 3, and as mentioned above, each agent uses the var-
ious scores to determine how to improve its actions in the future. At the beginning of the
learning procedure, the agent calculates its total score by combining all the other scores. In
order to ensure a degree of exploration (similar to mutation in the original model’s evolution-
ary approach, to provide comparability), we adopt an exploration rate, γ , which regulates
adoption of random strategies from the available strategies universe (Line 8).

If the agent does not explore, and its defection score is negative (Line 12), this means
that defecting brings negative consequences. In this case, the agent decreases its boldness.
Conversely, if its defection score is positive, because the agent managed to avoid being
punished by other agents, it increases its boldness, leading to defecting even more. Similarly,
agents increase their vengefulness if they find that the effect of not punishing is worse than
the effect of punishing (Line 22), and decrease vengefulness if the situation is reversed. The
amount of increase or decrease is equal to predetermined learning step δ. InAxelrod’s original
model, vengefulness and boldness have eight possible values from 0

7 to 7
7 . In order to have

comparable results to Axelrod’s model, we adopt the conservative approach of increasing
or decreasing by one level at each point, corresponding to a learning rate of δ = 1

7 . Thus,
an agent with boldness of 5

7 and vengefulness of 3
7 that decides to defect less and punish
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Algorithm 2 interact(T , H , P , E)
1. for each agent i do
2. DSi = 0
3. PSi = 0
4. POSi = 0
5. TSi = 0
6. for each agent i do
7. for each opportunity to defect o do
8. if Bi > So then
9. DSi = DSi + T
10. for each agent j : j �= i do
11. TS j = TS j + H
12. if see( j ,i ,So) then
13. if punish ( j, i, Vj ) then
14. DSi = DSi + P
15. PS j = PS j + E
16. else
17. for each agent k : k �= i ∧ k �= j do
18. if see(k, j ,So) then
19. if punish (k, j, Vj ) then
20. PSk = PSk + E
21. POS j = POS j + P

more will decrease its boldness to 4
7 and increase its vengefulness to 4

7 . As both PS and
POS represent the result of two mutually exclusive actions, their difference for a particular
agent determines the change to be applied to vengefulness. For example, if PS > POS, then
punishment has some value, and vengefulness should be increased. As indicated previously,
this is covered in more detail in [24], and we provide no further details here.

4 Imposing topologies on metanorms

Axelrod’s model assumes that each agent could potentially observe the behaviour of all
other agents. In terms of network topology, it organises agents in a fully connected network.
However, in real-world problems, agents would only interact with, and, therefore potentially
observe a (small) subset of the agents in the community. In other words, agent interactions
are governed bymore constrained topologies. This constraint on connectivity between agents
implies some adjustments to Axelrod’s model, as follows.

First, inAxelrod’smodel it is assumed that an agent’s defection penalises all other agents in
the population. The introduction of a topology enables us to restrict the penalty to only those
agents with whom the defector interacts. Second, in Axelrod’s model, agents are assumed to
be able to observe the entire population. By introducing a topology, we capture an important
characteristic of real word computational systems in which an agent can only observe those
agents with whom it interacts. Third, punishment requires observation of misbehaviour. In
Axelrod’smodel, this requirement is implicit as it makes nomeaningful distinction. However,
by introducing constraints on observation and rendering the model more realistic, a further
refinement is required: an agent can only punish a defector if the agent can observe the
defector. In addition, an agent can only metapunish an agent that fails to punish a defector
if the topology allows it to observe both the defector and the agent that fails to punish the
defector. Finally, in order to enhance an agent’s individual performance, it compares itself
to others in the population before deciding whether to modify its strategy. However, since
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Algorithm 3 learn(γ , δ)
1. Temp = 0
2. for each agent i do
3. TSi = TSi + DSi + PSi + POSi
4. Temp = Temp + TSi
5. AvgS = Temp/no_agents
6. for each agent i do
7. if TSi < AvgS then
8. if explore(γ ) then
9. Bi = random()

10. Vi = random()

11. else
12. if DSi < 0 then
13. if Bi − δ < 0 then
14. Bi = 0
15. else
16. Bi = Bi − δ

17. else
18. if Bi + δ > 1 then
19. Bi = 1
20. else
21. Bi = Bi + δ

22. if PSi < POSi then
23. if Vi − δ < 0 then
24. Vi = 0
25. else
26. Vi = Vi − δ

27. else
28. if Vi + δ > 1 then
29. Vi = 1
30. else
31. Vi = Vi + δ

agents can only observe their neighbours, these are the only agents they are able to learn
from.

In consequence, Algorithms 2 and 3 presented above are no longer adequate, and need
to be replaced with Algorithms 4, and 5. Specifically, the changes are as follows. First, in
Algorithm 4, Line 5 considers only agent i’s neighbours NBi rather than all the agents
in the population, and Line 12 considers only agent j’s neighbours NB j . In Algorithm 5,
the average score in Line 3, AvsSN Bi refers to the average score of agent i’s neighbour-
hood NBi (that is, those agents to which agent i is connected). In this way, and with these
simple modifications, our algorithms now address the needs of different topological struc-
tures.

In what follows, we consider these modifications to the model in the context of differ-
ent kinds of topology, in particular small world models and scale-free networks. However,
to start, we introduce lattices, since they provide the foundation on which small world
networks are based. Note that all experiments in this paper have been performed with
parameters as specified in Table 1. It is worth mentioning here that Axelrod has assumed
the values of P and P´ to be equal. This is to emphasise that the violation of the origi-
nal norm is equally significant to the violation of sparing a norm violator, and they both
should be punished with equal amount. This is an assumption that we adopt in this paper as
well.
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Algorithm 4 interact(T , H , P , E)
1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. DSi = DSi + T
5. for each agent j ∈ N Bi do
6. TS j = TS j + H
7. if see( j ,i ,So) then
8. if punish ( j, i, Vj ) then
9. DSi = DSi + P
10. PS j = PS j + E
11. else
12. for each agent k ∈ N B j : k �= i do
13. if see(k, j ,So) then
14. if punish (k, j, Vk ) then
15. PSk = PSk + E
16. POS j = POS j + P

Algorithm 5 learn(γ , δ)
1. for each agent i do
2. TSi = TSi + DSi + PSi + POSi
3. if TSi < AvgSN Bi then
4. if explore(γ ) then
5. Bi = random()

6. Vi = random()

7. else
8. if DSi < 0 then
9. if Bi − δ < 0 then
10. Bi = 0
11. else
12. Bi = Bi − δ

13. else
14. if Bi + δ > 1 then
15. Bi = 1
16. else
17. Bi = Bi + δ

18. if PSi < POSi then
19. if Vi − δ < 0 then
20. Vi = 0
21. else
22. Vi = Vi − δ

23. else
24. if Vi + δ > 1 then
25. Vi = 1
26. else
27. Vi = Vi + δ

5 Metanorms in lattices

A lattice (typically a simple ring structure) is the simplest network topology we consider,
in particular, because it is used as a base for more interesting and realistic topologies. In a
(one-dimensional) lattice with neighbourhood size n, agents are situated on a ring, with each
agent connected to its neighbours n or fewer hops (lattice spacings) away, so that each agent
is connected to exactly 2n other agents. Thus, in a lattice topology with n = 1, each agent
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Table 1 Parameter initialisation

Term Description Value

i, j Individuals A number to identify individual agents

S Probability of a defection being seen
by any given individual

Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0 to 1

Vi Vengefulness of i Uniform distribution from 0 to 1

T Player’s temptation to defect +3

H Hurt suffered by others as a result of
an agent’s defection

−1

P Cost of being punished −9

E Enforcement cost, i.e. cost of
applying punishment

−2

P´ Cost of being punished for not
punishing a defection

−9

E´ Cost of punishing someone for not
punishing a defection

−2

δ Learning step 1
7

γ Exploration rate 0.01

Fig. 1 Lattice topologies. a NB Size 1. b NB Size 2. c NB Size 3

has two neighbours and the network forms a ring as shown in Fig. 1a. In a lattice topology
with n = 3, each agent is connected to 6 neighbours, as shown in Fig. 1c.

5.1 Neighbourhood size

It is clear that, depending on the neighbourhood size, lattices may be more or less connected.
Those with larger neighbourhood sizes are more similar to Axelrod’s fully connected model.
Our hypothesis is that as the neighbourhood size increases, the greater connections between
agents enable punishment and metapunishment to become more effective in reducing bold-
ness and increasing vengefulness. In order to investigate this hypothesis, we ran several
experiments.

In our first set of experiments, we used 51 agents (so we have an even number, plus one,
to account for the 2n neighbours plus our original agent), and varied the neighbourhood
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Fig. 2 Lattice Topologies: impact of neighbourhood size. a Lattice with neighbourhood size 1, and 1,000,000
timesteps. b Lattice with neighbourhood size 3, and 1,000,000 timesteps. c Lattice with neighbourhood size
13, and 1,000,000 timesteps. d Lattice with neighbourhood size 19, and 1,000,000 timesteps

size between the least connected lattice (the ring topology) and the most connected lattice
(n = 25). Each experiment involved 10 separate runs, with each run comprising 1,000,000
timesteps for a particular neighbourhood size.

For the least connected lattice (n of 1), no norm is established, as runs ended in both
relatively low boldness and relatively low vengefulness (see Fig. 2a). In this case, though
agents rarely defect, they also rarely punish a defection. This constitutes an unstable situation
in which defecting could be a rewarding behaviour for agents as it is relatively unlikely to be
penalised. However, increasing the neighbourhood size slightly to 3 (Fig. 2b) has a noticeable
impact on the results, as the boldness of the population drops almost to 0, which means that
agents do not defect. While the level of vengefulness increases, it is still not at a level that
can be considered to correspond to norm emergence, since agents might still not punish a
defection without being metapunished for not doing so.

In addition, increasing the neighbourhood size to 13 has the same effect on boldness and
a stronger effect on vengefulness (see Fig. 2c), as vengefulness increases further, and almost
to its maximum of 1, when the neighbourhood size of 19 is used (see Fig. 2d). These results
suggest that increasing neighbourhood size strengthens norm emergence, by virtue of agents
being more willing to punish norm violators.

In seeking to provide more detail for analysis, the results of all runs were averaged,
and shown on the graph in Fig. 3, with neighbourhood size plotted against boldness and
vengefulness. This shows that a neighbourhood size as small as 2 is enough to maintain
boldness near 0, indicating that agents do not defect except when they explore as a result of
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Fig. 3 Lattice: impact of neighbourhood size on final B and V

sometimes adopting random strategies (introduced for comparability with Axelrod’s model).
Conversely, increasing the neighbourhood size has a major impact on vengefulness, until
the neighbourhood size reaches around 15 (at which point an agent is connected to half the
population) when it brings only very minor change. This is because, in a poorly connected
environment, agents that do not punish defection can more easily escape metapunishment
than in a more connected environment.

As we hypothesised, increasing neighbourhood size brings a corresponding effect on the
strategy of agents (in terms of boldness and vengefulness). Only the most poorly connected
lattices have moderate levels of boldness, with vengefulness increasing monotonically over a
longer period before it stabilises at a level consistent with norm establishment. The connec-
tions between agents give rise to this behaviour, with an increase in connections providing
more opportunities for agents to respond to defectors appropriately.

5.2 Population size

Now, if we increase the population size while keeping the neighbourhood size static, we
decrease the relative number of connections among the overall population. This suggests
that convergence to norm establishment should decrease, in line with the results obtained
above. In the second set of experiments, therefore, the neighbourhood size was fixed and the
population size varied between 51 and 1001 agents. However, the results obtained, shown
in Fig. 4 for a neighbourhood size of 3 (though other values gave similar results), are not as
expected, and suggest that increasing the population size has no effect on the rate of norm
emergence, as all runs for all sizes of population end almost with the same level of boldness
and vengefulness.

These results suggest that norm emergence in a community of agents that interact in a
lattice is not affected by total population size but by neighbourhood size. By increasing the
number of neighbours, norm establishment becomes more likely, irrespective of the size of
the population. In other words, the likelihood of norm establishment is governed by the total
amount of punishment that could potentially be brought upon a defector or an agent failing
to punish a defector, which may be termed the potential peer pressure of a lattice. This is
because such lattices essentially comprise multiple overlapping localities in which agents are
highly connected: via punishments, the agents in these localities impose a strong influence
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Fig. 4 Lattice: impact of population size on final B and V (where neighbourhood size, n = 3)

Fig. 5 Small world topologies. a RP = 0.1, b RP = 0.2, c RP = 0.8

on their neighbours. Increasing the population size simply increases the number of such
overlapping regions. It is worth noting here that by overlapping localities we are referring to
what is known as the clustering coefficient in graph theory, which refers to the likelihood of
nodes clustering with each other.

6 Metanorms in small worlds

While lattices are regular structures, as opposed to random structures,Watts and Strogatz [40]
noted that many biological, technological and social networks lie somewhere between the
two: neither completely regular nor completely random. They instead proposed small world
networks as a variation of lattices in which agents are connected to others k or fewer hops (on
the ring) away, but with some of the connections replaced by connections to other randomly
selected nodes in the network, in line with some specific rewiring probability (RP). Examples
of such networks with different rewiring probabilities are shown in Fig. 5.

Thus, while lattices essentially create overlapping localities of well connected agents
(since agents are connected to 2n agents immediately surrounding them), the effect of small
world networks is to break some of these connections, replacing them by others. Though the
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Fig. 6 Small world: impact of rewiring on final B and V (where neighbourhood size, n = 3)

number of connections does not change, the locality effect does, since there may no longer
be localities of well connected agents, but instead agents with some connections to their
local neighbours, and some connections to others elsewhere in the network. A small world
network with a rewiring probability of 0 is a regular lattice, while a small world network with
a rewiring probability of 1 is a completely random network. As these local regions break
down, the strong influence of an agent’s local neighbours, causing compliance with norms,
should also break down because of the more sparse connections.

To verify this hypothesis, we investigated the impact of the rewiring probability by running
themodelwith different values, in populations of 51 agents, for different neighbourhood sizes.
The results of the experiment with a neighbourhood size of 3 are shown in Fig. 6, which
indicates that increasing the RP decreases the final average vengefulness in the population,
with other neighbourhood sizes giving similar results.

The results obtained are due to the fact that, as a result of rewiring, agents no longer affect
just their locality, but now affect agents that are much further away, consequently requiring
establishment of the norm in multiple localities. For example, in the case of neighbourhood
size of 3, it is clear that not only is the norm not established, but as the RP rises above small
values, the trend moves further away from establishment, since the connections of agents are
increasingly rewired, giving a locality effect similar to lattices with a neighbourhood size of
2 (discussed in Sect. 5.1). In addition, rewiring to other agents further away brings the need
to establish the norm in all those localities to which an agent is connected, making it much
more difficult.

In terms of boldness, it is clear that the RP of small world networks has very little impact
on the level of defection in the population since, independently, boldness remains very low,
indicating that agents are very unlikely to defect.

6.1 Neighbourhood size and rewiring probabilities

As discussed in Sect. 5.1, increasing neighbourhood size causes an increase in vengefulness
in lattices. In seeking to understand the impact in small world networks, we repeated the
lattice experiments in this new context, for different values of the RP. Results for a rewiring
probability of 0.4 are shown in Fig. 7 (with results for other values of the RP being similar
in trend), again showing that neighbourhood size increases vengefulness. However, note
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Fig. 8 Small world: impact of rewiring and population size on final boldness (where neighbourhood size
n = 5)

that, in comparison to lattices, vengefulness in a small world network is lower for the same
neighbourhood size. This is because the agents must now respond to defections in different
regions of the network, where there is less influence on behaviour, and thus potentially incur
greater enforcement costs.

6.2 Population size and rewiring probabilities

Population size has been shown to have no effect on norm establishment in lattices due to the
potential peer pressure arising from the size of each agent’s neighbourhood rather than the
total population size. However, since these concentrated local regions of connected agents
are weakened in small world networks, we repeated the previous experiments to determine
the effect of population size with RPs of 0.2, 0.4, 0.6, 0.8 and 1.0, and n of 5. The results
indicate that boldness is not affected by the changes of the population size as boldness is
always close to zero, as shown in Fig. 8. But, vengefulness decreases as the RP increases
for large population size. More specifically, when the RP is 0.2, increasing the population
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Fig. 10 Scale-free network

size has little effect, as shown in Fig. 9. However, for the other RP values, increasing the
population size decreases vengefulness. Again, this is due to rewiring breaking down the
strong locality effect, and this is magnified with increasing population sizes, since there is
a greater opportunity for connections to other localities, causing a greater cost for agents
seeking to bring about norm establishment in all these localities at once.

7 Metanorms in scale-free networks

The topologies considered above are similar in that each agent has exactly the same number
of connections, in contrast to scale-free networks [4], in which connectivity of nodes follow
the power law distribution. Thus, some nodes have a vast number of connections, but the
majority have very few connections, as illustrated in Fig. 10. These properties of scale-free
networks suggest an imbalance in connections. In turn, this has an impact on the results that
are obtained, due both to punishment and to enforcement costs, which dramatically modify
the dynamics of the system. To investigate this, we ran 1000 experiments on 1000 different
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Fig. 11 Scale-free network, 1,000,000 timesteps

scale-free networks with 1000 agents each, five of which were hubs (having a large number
of connections) and the others (which we call outliers) with at least two connections to
other agents in the population, and typically no more than four connections (according to
Barabási’s algorithm [4]). Each experiment was run for 1,000,000 timesteps, and parameters
for the experiments were as follows (and are the same for all subsequent experiments reported
in this paper): Temptation Value (T = 3), Enforcement Cost (E = −2), Punishment Cost
(P = −9) and Hurt Value (H = −1). The results, shown in Fig. 11, indicate that all runs end
with both average boldness and average vengefulness of midrange values, so that no norm is
established. A detailed analysis of individual runs reveals that, overall, there is no significant
change to the average vengefulness and boldness, with both fluctuating around a midrange
value from the start of the run until the end.

However, certain patterns emerge when examining hubs and outliers separately. Specifi-
cally, the model succeeds in lowering the boldness of hubs, but their vengefulness remains
near the midrange. Because hubs are connected to many other agents and are thus punished
many times for a defection, boldness decreases. Conversely, they also punish many of these
other agents for defecting, and consequently pay a very high cumulative enforcement cost
that causes them to lower their vengefulness. In turn, this lower vengefulness causes them
subsequently not to punish others and as a result to receive metapunishment from other
agents, leading to an increase in vengefulness again. Over time, this repeats, with venge-
fulness decreasing and then increasing back to the midrange, as shown in Fig. 12. For the
remaining outlier agents, changes to boldness and vengefulness are indicative of the overall
boldness and vengefulness because they comprise the majority of the population. They are
typically connected to one or more of the hubs, and while they too defect and punish, they
do so much less frequently than the hubs to which they are connected. Thus, their scores are
generally higher than the scores of the hubs. Since those agents with higher scores do not
learn from others (since there are no higher scoring others to learn from), they do not change
their strategies, and their boldness and vengefulness remain close to the midrange value, as
shown in Fig. 13. These results demonstrate that our algorithm is not effective in scale-free
networks. Importantly, as the burden of punishment falls largely on hubs rather than outliers,
hubs perform worst in the population. To address this, we modify the learning technique so
that it can cope with the nature of scale-free networks. The updated algorithm is discussed
next.
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Fig. 12 Hubs in scale-free networks

Fig. 13 Outliers in scale-free networks

7.1 Universal learning

The algorithm proposed earlier suffers from the limitation that it requires knowledge of
the average score in the population in order for an agent to determine whether to modify
its policies. In some domains, for example with online games, such information is public
knowledge. However, in domains like P2P file sharing, where the actual underlying structure
is of a scale free nature [21], such informationmay not readily be available. It thereforemakes
little sense to assume that agents have access to an average population score against which
to compare themselves before deciding whether to modify their policies. For this reason,
we consider here an alternative approach, in which agents always modify their policies to
improve performance, regardless of the behaviour of others, and only in relation to their own
score. This modification is simple, and involves removing line 3 of Algorithm 5. Following
this, agents ignore the performance of others in the system, and change their policies based
only on their own performance, which can be inferred from the different scores they have
accumulated in a specific round.
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Fig. 14 Universal learning, 1,000,000 timesteps

Fig. 15 Universal learning: Hubs

Experiments with this new approach give the results shown in Fig. 14. Counterintuitively,
the results indicate norm collapse, as all runs end with high boldness and low vengefulness.
By analysing the performance of the different types of agents, we are able to explain this
behaviour. We illustrate by reference to a sample run for a hub in Fig. 15, and a sample run
for an outlier agent shown in Fig. 16.

Outliers have few connections, but are connected to one ormore hubs.When agents punish
others, they pay an enforcement cost but risk metapunishment when they do not. However,
since these outliers have very low connectivity, the risk of metapunishment is also very low,
so they avoid punishing others and vengefulness consequently decreases. Metanorms are
not effective here because of the lack of connectivity between agents. As a result, outliers
always have high boldness and low vengefulness levels. In addition, and as we will see,
the vengefulness of hubs also drops and is never higher than the midrange level, so agents
can defect and gain the benefit of doing so, without being punished by hubs. Outliers thus
increase their boldness, causing norm collapse in the whole population.
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Fig. 16 Universal learning: outliers

In contrast to outliers, hubs are highly connected. Therefore, vengeful hubs apply pun-
ishments to many others, incurring high enforcement costs. To address this, they decrease
their vengefulness, resulting in metapunishment from the many nodes to which they are con-
nected, in turn causing hubs to increase their vengefulness (but only to a mid-range level).
In addition, because of the high boldness of outliers, there is a high rate of defection in the
population, causing oscillation between mid-range and low vengefulness. Boldness of hubs
is kept at a low level, however, due to the amount of punishment that the hubs are exposed
to.

7.2 Connection-based observation

As in Axelrod’s original model, our experiments have assumed that deviant behaviour has
a small risk (probability) of being observed. In the context of a fully connected network,
this is a reasonable assumption to incorporate as agents are unlikely to continually observe
all others in the community. However, in the kinds of topologies we are concerned with,
such as those that reflect the situation in peer-to-peer (P2P) networks or wireless sensor
networks, for example, observation of the behaviour of others arises from a direct connection
between agents. Thus, if a peer x is connected to another peer y, then x is able to observe
all communication from y. As a result, if y defects by, for example, not sharing files in the
case of a file-sharing P2P network, this is observed by x . To reflect this property in our
model, Axelrod’s probability of being seen requires replacing with the notion that each agent
observes all actions of its direct neighbours. This modification to the model gives rise to
rather different results.

In particular, the results of running the model on a scale-free network, in Fig. 17, show
that all runs end in low boldness and low vengefulness, indicating that defection is very rare
in the population because of the low boldness. In addition, punishment is not common since
agents rarely punish defectors, due to their low vengefulness. To understand this better, the
results of the first 1,000 timesteps of a sample run, for outliers and hubs, are shown in Figs. 18
and 19, respectively.

More specifically, Fig. 18 shows that outliers start the run by decreasing both vengefulness
and boldness to a low level where they remain, with some small degree of fluctation. Figure 19
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Fig. 17 Connection-based observation, 1,000,000 timesteps

Fig. 18 Connection-based observation: outliers

Fig. 19 Connection-based observation: Hubs
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suggests that hubs start the run by increasing their vengefulness to a high level and decreasing
their boldness to a very low level. After a few timesteps, vengefulness decreases to a mid-
range level, from which it decreases further to a low level. However, it does not stabilise
there, since it moves up again, and this pattern is repeated throughout the run. Similarly,
boldness initially decreases to zero and then jumps to a low level, before decreasing back to
zero. Hubs thus have a fluctuating mid-range level of vengefulness, and a very low level of
boldness.

There are two distinctive features that can be observed here, in contrast to the results
obtained by the universal learning approach. First, hubs reach a high level of vengeful-
ness, which is limited to mid-range vengefulness in the previous approach. This is mainly
because the new technique raises the action observation probability to 100%, which allows
a high possibility for metapunishment to occur and, as a result, forces hubs to increase their
vengefulness to a high level. However, as before, this does not persist because of the high
enforcement cost observed with such a high level of vengefulness. Second, the boldness of
outliers is low here, mainly due to the combination of the high vengefulness among hubs
and the 100% defection observation, which together produce sufficient punishments to force
outliers to decrease their boldness.

7.3 Dynamic policy adaptation

As we have seen, universal learning has a negative impact on the results, causing boldness
to increase and vengefulness to decrease. However, there is a more important weakness of
the model in that the learning rate is uniform in the face of differing punishment levels.
More specifically, all agents use the same learning rate, regardless of how much utility gain
or loss they suffer. Thus, for example, an agent that incurs a very small punishment score
modifies its vengefulness to exactly the same degree as one whose punishment score is very
large. While the direction of change is appropriate, the degree of change does not reflect the
severity of the sanction; a more appropriate approach would be to change policy in line with
performance. In this view, a very badly performing agent shouldmodify its policymuchmore
significantly than one that does not perform as poorly. In this section, we consider dynamic
policy adaptation to address this weakness, and to bring about changes to vengefulness and
boldness that reflect performance.

The key notion underlying our technique is to measure the level of performance rather
than just the direction. This can be achieved through comparison of an agent’s actual utility
or score in our terms, and the maximum or minimum that could be obtained. We apply
this principle to boldness and vengefulness in turn. Before proceeding, we introduce some
notation. Let NDD be the number of available defection decisions, where each agent can
have more than one chance to defect in a single round (as specified earlier), |NBi | be the
number of i’s neighbours, T be the utility that can be gained from a single defection, and P
be the punishment cost that represents the utility lost from being punished.

7.3.1 Boldness

To learn the optimal boldness level, the relevant part of the total score is the defection score,
which can be either positive or negative, requiring consideration of both maximum and
minimum possible values. The maximum possible defection score MaxDSi arises when an
agent i always defects but is never punished, as follows.

MaxDSi = NDD × T (1)
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In contrast, the minimum defection score that can be obtained by an agent arises when
the agent always defects and is always punished by all of its neighbours, as follows.

MinDSi = NDD × (T + (|NBi | × P)) (2)

Then, in order to determine the degree of change to an agent i’s boldness (Factor Bi , see
Eq. 3), we must consider three different situations. First, when the defection score is positive
(so that boldness should increase), the degree of change is determined by dividing the obtained
defection score by the maximum possible defection score. Second, when it is negative, (so
that boldness should decrease), the obtained defection score is divided by the minimum
possible defection score. Finally, if the defection score is zero, no change is required.

Factor Bi =

⎧
⎪⎪⎨

⎪⎪⎩

DSi
MaxDSi

if DSi > 0
DSi

MinDSi
if DSi < 0

0 otherwise

(3)

Given this, we now need to determine how Factor Bi can be used to change agent i’s
policy. In order to avoid dramatic policy movements that could lead to violent fluctuations,
we limit the change that can be applied to a maximum value. In this case, the maximum value
is the difference between two levels as in Axelrod’s original model, of 1

7 . Thus, in terms of
boldness, agent i modifies its boldness in line with its DSi , as follows.

Bi = Bi +

⎧
⎪⎨

⎪⎩

1
7 × Factor Bi if DSi > 0

− 1
7 × Factor Bi if DSi < 0

0 otherwise

(4)

This means that an agent can maximally change its boldness by one level (or by 1
7 ) when

Factor B is 1.

7.3.2 Vengefulness

An agent modifies its vengefulness depending on whether it is valuable to punish others,
determined by comparing the utility lost from punishing others (the punishment score, PS)
against the utility lost from not punishing them (the punishment omission score, POS). If
PS is worse than POS, then an agent decreases vengefulness and increases it otherwise.
Clearly, the magnitude of the difference between these two values gives an indication of the
degree of change that should be applied to vengefulness. For example, if PS is −24 and
POS is −20, then the amount of decrease to V should be significantly lower than when PS
is −600 and POS is −20. We call this difference Di f f V :

Di f f V i = |PSi − POSi | (5)

Since the values of PS and POS are integers, the absolute value of their difference, Di f f V ,
is 1 or more (when the values are not equal). This cannot be used directly to update an agent’s
V value, because V must always lie between 0 and 1. It must thus be normalised so that
it can be applied to V , for which we use a scaled value, FactorV . This is determined by
dividing Di f f V by the minimum of PS and POS. Since both PS and POS are negative,
the absolute value of the minimum of these two scores is used for the scaling:

FactorV i = Di f f V i

|min {PSi , POSi }| (6)
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While this always produces a value between 0 and 1, it does not provide the same value
for the same magnitude of difference. For example, if PS is −14 and POS is −20, we
want FactorV i to be the same as when PS is 0 and POS is −6. We can achieve this by
replacing |min {PSi , POSi }|with the maximum possible difference between PS and POS.
This maximum difference is the difference from 0 (obtained when there is no cost at all from
punishing or from not punishing) and the greatest possible magnitude of PS or POS. The
highest punishment score HPS (the maximum in magnitude, and lowest in numerical terms
—we use HPS to indicate the highest score to avoid ambiguity of minimum and maximum)
is received by an agent punishing all of its neighbours for defection, and metapunishing all
of its neighbours for not punishing all of their neighbours for defection.

To determine the value of HPS, we need to consider both the punishment enforcement
cost and the metapunishment enforcement cost. First, the highest (maximum in magnitude,
but minimum numerically) punishment enforcement cost (HPEC) arises when all of an
agent’s neighbours defect and the agent punishes all of them:

HPECi = NDD × |NBi | × E (7)

where E is the enforcement cost of a single punishment. Similarly, the highest metapunish-
ment enforcement cost (HMPEC) arises when all of an agent’s neighbours do not punish
all of their neighbours for defecting, and the agent metapunishes all of them:

HMPECi = NDD × |NBBi | × E (8)

where |NBBi | is the total number of neighbours of all of agent i’s neighbours.
Based on this, the highest punishment score of agent i is defined as follows:

HPSi = HPECi + HMPECi (9)

In the same way, the highest punishment omission score HPOS (greatest in magnitude,
lowest numerically) can be obtained when an agent does not punish any defectors, but is
metapunished by all of its neighbours, as follows:

HPOSi = NDD × |NBi | × (|NBi | − 1) × P (10)

where the maximum number of defectors is all of an agent’s neighbours (NB), the maxi-
mum number of metapunishers is the same but excluding the defecting agent, and P is the
punishment cost obtained from being metapunished (which is the same as for simply being
punished).

Given this, FactorV i of agent i can be calculated (see Eq. 11) by dividing Di f f V by one
of these values, as follows. If punishing brings a greater utility reduction than not punishing
(PS < POS), then we use the highest punishment score HPS. Conversely, if PS > POS,
then we use the highest punishment omission score HPOS. If there is no difference, then
there is no change and FactorV is equal to 0.

FactorV i =

⎧
⎪⎪⎨

⎪⎪⎩

Di f f V i|HPSi | if POSi > PSi
Di f f V i|HPOSi | if POSi < PSi
0 otherwise

(11)

This guarantees that the change made to V is always the same given the same difference
in scores, since both HPS and HPOS are fixed for each agent. Moreover, this approach
allows hubs to change much less quickly than outliers, because the highest (maximum in
magnitude) scores for hubs are much higher than for outliers, so that the results achieved by
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using FactorV , and dividing by the difference in scores obtained for hubs, is much less than
for outliers.

According to FactorV i , agent i thus increases vengefulness when it finds that not pun-
ishing is worse than punishing, and it decreases vengefulness when the converse is true, as
follows:

Vi = Vi +

⎧
⎪⎨

⎪⎩

1
7 × FactorV i if PSi > POSi

− 1
7 × FactorV i if PSi < POSi

0 otherwise

(12)

7.3.3 Example

To illustrate, assume that a hub x is connected to 20 other agents, and that an outlier y is
connected to only 2 other agents (one being a hub). As in Axelrod’s seminal experiments
and without loss of generality, let NDD = 4 for all agents, since every agent has 4 chances
to defect in each round. E = −2 and is the same for all agents. Similarly, P = −9 and
again is the same for all agents. The temptation value for all agents, received when they
defect, is T = 3. Finally, suppose that x’s neighbours have 50 other distinct neighbours in
total (summed over all neighbours), while y’s neighbours have 20 other distinct neighbours
(again, over all). This is summarised in Table 2. Given these values, we can determine the
relevant values needed as follows. Starting with defection scores and from Eqs. 1 and 2
respectively, we obtain the following:

MaxDSx = MaxDSy = 4 × 3 = 12

MinDSx = 4 × (3 + (20 × −9)) = −708

MinDSy = 4 × (3 + (2 × −9)) = −60

In terms of punishment scores, from Eqs. 7, 8 and 9, we obtain the following:

HPECx = 4 × 20 × −2 = −160

HMPECx = 4 × 50 × −2 = −400

HPSx = −160 − 400 = −560

HPECy = 4 × 2 × −2 = −16

HMPECy = 4 × 20 × −2 = −160

HPSy = −16 − 160 = −176

Punishment omission scores using Eq. 10 are as follows:

HPOSx = 4 × 20 × 19 × −9 = −13680

HPOSy = 4 × 2 × 1 × −9 = −72

Using this information (Table 2), we can determine the decisions for specific situations.
For example, at the start of each run, the population has midrange average boldness and
vengefulness (because of the uniform distribution function to generate initial policies). Now,
suppose that both x and y also havemid-range boldness and vengefulness. If, after one round,
both x and y defected twice (out of their four opportunities to defect), they each gain twice
the temptation value T . However, since x is a hub, suppose it is punished 22 times, much
more than y, which is only punished twice. This is because the defection score of a hub with
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Table 2 Example values for Agents x and y

Agent Pos |N B| N BB MinDS MaxDS LevB H PS H POS LevV

x Hub 20 50 −708 12 1/7 −560 −13680 1/7

y outlier 2 20 −60 12 1/7 −176 −72 1/7
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Fig. 20 Dynamic policy adaptation, 1,000,000 timesteps

mid-range boldness is typically much worse than that of a similar outlier, mainly due to the
difference in their number of neighbours, and the midrange vengefulness in the population.
Thus, x has a defection score of 2 × 3 from defecting, plus 22 × −9 = −198 from being
punished, giving DSx = −192. Similarly, DSy = ((2 × 3) + (2 × −9)) = −12.

Given these defection scores, the degree of change that each agent applies to its boldness
can be calculated as follows. First, from Eq. 3, Factor Bx = −192

−708 = 0.3 and Factor By =
−12
−60 = 0.2. Now, using Eq. 4, and since both DSx and DSy are negative, Bx is decreased by

0.3 × 1
7 = 0.04, and By by 0.2 × 1

7 = 0.03.
In addition, if x punishes 20 other agents andmetapunishes 10more, and y punishes 2 other

agents and metapunishes 1 more, their punishment scores are determined by multiplying the
number of punishments issued by the enforcement cost E : PSx = ((20+ 10)×−2) = −60
and PSy = ((2 + 1) × −2) = −6. Then, if x has spared 10 defectors and has been
metapunished 2 times for each instance of omitting punishment, and y has spared only one
defector and been metapunished just once, the punishment omission scores are calculated by
multiplying the number of metapunishments by the punishment cost P , as follows: POSx =
(10 × 2 × −9) = −180 and POSy = (1 × 1 × −9) = −9. Thus, by Eq. 11, FactorV x =
|−60−(−180)|

13680 = 0.01 and FactorV y = |−6−(−9)|
72 = 0.04. Then, since PSx > POSx , x

increases its vengefulness Vx by 0.1 × 1
7 = 0.001 according to Eq. 12. Similarly, since

PSy < POSy , y decreases its vengefulness by 0.04 × 1
7 = 0.006.

7.3.4 Experimental results

To determine the effect of introducing dynamic policy adaptation,we ran experiments, similar
to the previous ones, on the new model. The results are visualised in Fig. 20. As can be
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Fig. 21 Dynamic policy adaptation for Hubs

Fig. 22 Dynamic policy adaptation for outliers

seen from the figure, all runs result in populations with low average boldness and moderate
vengefulness. As before, more detail on the evolution of average boldness and vengefulness
for hubs and outliers was provided by examining runs of individual agents, as shown in
Figs. 21 and 22, which confirm that outliers converge to a state of low boldness and moderate
vengefulness consistently, while hubs do so with intermittent deviations.

The main difference from previous results is that the average vengefulness of outliers
remains in the midrange level. This is because the change in agent’s policies (boldness and
vengefulness) is happening at a balanced rate depending on the amount of utility lost or
gained. Outliers are decreasing their vengefulness at much slower rate, because the utility
they are losing as a result of enforcing the norm is not considered as significant as before. This
is allowingmetapunishment to occur frequently enough tomaintain this level of vengefulness
among all agents. On the other hand, hubs are much more exposed to this metapunishment
due to the number of connections they have, and so theymaintain a high level of vengefulness.
However, since there are few hubs in the population, an exploration (an agent adopting a very
low level of vengefulness due to exploration) to a single hub can have a large effect on the
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average vengefulness level among hubs. This is the reason for the sudden reductions shown
in the figure, which are quickly restored to high level until the next significant exploration.

8 Metanorms in real world network

The results reported in this paper so far have focused on applying different variations of the
metanorm model on artificially established topologies. A wide variety of synthetic network
generators have been proposed, but tend to be poor models of real-world networks [20,26].
Thus, in this section, we show the outcome of applying the metanorm model on samples of
real world networks. We use three networks: (i) a peer connection network from Gnutella
(a P2P file-sharing platform), (ii) the Epinions social network, and (iii) the EuAll emails
exchange dataset. Examples of these networks are shown in Fig. 23. The Epinions and EuAll
networks are both based on human interactions, but are generated by different processes: the
EuAll dataset is based on email exchange of members of a large European institute, while
the Epinions dataset represents a trust relationship between members of general consumer
review site, Epinions.com. Alternatively, Gnutella is a computational network of links in a
P2P system. Since these networks are generated by different processes they display varied
structural properties, allowing us to evaluate our methodology on a range of structures. Use
of real-world networks is typically constrained by (i) impractically large node counts, and
(ii) limited knowledge of the global structure. Consequently, sampling part of the network
is often necessary. Ideally, the sampled structure should display similar properties to the
full network. A wide variety of sampling techniques have been proposed (e.g. [14,16,19]).
To evaluate our approach, we use Metropolis–Hastings RandomWalk (MHRW) [14], which
starts with a randomly chosen node in a seed set. It then performs a random walk with biased
transition probabilities, with the aim of producing a uniform sample results. The sampled
networks used here have been used by Franks et al. [12] for studying influence in social
network.

Figure 24 shows the result obtained from applying the model on a sampled 1000 nodes of
the Gnutella network, with similar results obtained from samples of the other two networks.
The results are similar to those of scale-free networks, which is reasonable given that scale-
free network are usually considered to be the closest to real world network. This results show
that the developed adaptive policy learning technique allows norms to be established in real
world settings.

Fig. 23 Real world topologies. a EuAll—1000 nodes. b Epinions—1000 nodes. c Gnutella—1000 nodes
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Fig. 24 Gnutella network: 1000 Nodes and 1,000,000 timesteps

Fig. 25 Evolution of results with scale-free networks

9 Conclusion and discussion

Meta-punishment has been shown tobe effective in the realworld, for example in denunciation
in communist societies, or by enforcing penalties on those who fail to report child abuse. In
that context, this paper is an attempt to improve the metanorm model suggested by Axelrod
to bring it a step closer to being applicable for distributed computational systems, such
as P2P systems or wireless sensor networks, where free riding is a common phenomenon.
While addressing the problems arising from the fundamental nature of Axelrod’s model,
we have also sought to address its limitations arising from the unrealistic assumption that
all agents are fully connected so that they can all interact and observe every other agent in
the population. Such an assumption is not possible in general for computational systems for
many reasons. First, the number of agents in such systems can be so large that it is possible
neither to manage the traffic generated from their interactions nor to observe all other agents.
Second, the connections between agents may be subject to different network topologies not
considered by Axelrod. To address these issues, in this paper we adapted the model to be

123



Auton Agent Multi-Agent Syst

effective with different interaction topologies and their impact on norm emergence. We were
able to show that our model achieves norm emergence over both lattices and small world
networks, but not in scale-free networks. More precisely, the refined model is very effective
for lattices, but its effectiveness varies with the rewiring probability in small world networks.
Moreover, we demonstrated that, given fixed penalties, for lattices, the effectiveness of the
proposed approach depends only on the number of neighbours of each agent, not on the
total population size. For small world networks, increasing the population size with a high
rewiring probability decreases vengefulness, constraining norm emergence significantly.

In scale-free networks, however, the results of this new model are not as good as for the
other topologies due to the nature of the connection distribution between hub and outlier
nodes. Because of the vast number of connections of hubs in scale-free networks, their inter-
actions are much more frequent than outliers, causing them to be the only agents that learn as
a result. To address this, the model was modified to remove the restrictions on learning which
constrained it to apply only to poorly performing agents, and to limit knowledge of the perfor-
mance of others, which is unreasonable in computational systems. While this new universal
learning (UL) technique allows all agents to improve performance, it unfortunately leads
only to norm collapse due to the constraints imposed by the limited observability of outlier
behaviour. In fact, this limited observability is another inadequacy of Axelrod’s original for-
mulation of the model with a uniform probability of being seen; in real systems, observability
is restricted by network connections rather than some arbitrary probability distribution. In
response, a connection-based observation (CBO) technique reduces the tendency of agents
to defect, without maintaining their tendency to punish defectors. Yet all of these improve-
ments do not fundamentally impact on the problems arising from the asymmetric nature of
scale-free networks with hubs and outliers, largely because the use of a uniform learning
rate to modify strategies is ineffective. Our final refinement, therefore adjusts the amount
of learning in relation to performance through dynamic policy adaptation (DPA), bringing
about the desired behaviour and norm emergence. In particular, this adaptation mechanism is
effective when applied to samples of networks from real world applications. This pattern of
development of mechanism is illustrated clearly in Fig. 25, which shows the progress from
the reinforcement learning (RL) technique that is the starting point early in this paper through
to DPA via UL and CBO.

As stated by Axelrod [3], the role of agent-based simulations is not to provide an accurate
representation of the real world, but to raise awareness of phenomena that can occur in the
real world. Moreover, concepts used in building a simulation and results obtained from such
simulations can provide a certain understanding, which helps when dealing with comparable
questions in the real world. From the analysis presented in this paper, we can observe that
the underlying structure of any system is clearly an important factor, and has many direct
and indirect influences on how the overall system functions. More specifically, the effect of
a homogenous structure such as a lattice is clearly less significant than it is for a complex
structure like a scale-free network. A small change to the structure, such as moving from a
lattice to a small world network, where agents still have the same number of connections but
the locality of these connections is less, may also lead to considerable change in the achieved
results. Hubs in complex networks are clearly more influential than other nodes, and should
be treated with special care. A second observation is related to the ability of agents to monitor
the interactions that occur among others. This is clearly important as shown when we move
from a specific observation probability to the idea of neighbourhood based observation.
The greater the observation capabilities that exist in the population, the better the chance
that violations will be detected and dealt with. However, observation is not cost-free and,
as discussed above, some domains may have privacy issues, which restrict observability.
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Overall, we clearly see that the idea of metapunishment works very well in motivating a high
level of responsibility among agents to defend the norms of the society.

Despite the successful results obtained from the substantially refined metanorm model
presented in this paper, there are still some limitations and assumptions that may prevent
the model from being directly applied in some real world applications. While observation
of the interaction of others may be considered a valid assumption in some domains such as
social networks (for example, a person is able to observe the interactions of their friends
with other people), this may be invalid in other domains (for example, communication over
the internet between nodes may involve some form of encryption, which can prevent agents
even from detecting a violation). In such domains, it will be difficult for the metanorm
model to function, since it is highly dependent on observation for the metapunishment to
occur. In addition, while the current static punishments, set at design time, seem to produce
satisfactory results, identifying a value that will always work for these static punishments
can prove difficult in complex unpredictable environments such as the internet. So, having an
adaptive decision making mechanism, by which agents can decide on the punishment value
based on the context might be more suitable. We believe that the dynamic policy adaptation
technique introduced in this paper provides a solid grounding for such an adaptive punishment
approach. Finally, resources are an important factor that are currently ignored in our model,
and in the literature on norm emergence in general. It has been generally assumed that agents
have access to unlimited resources they can use in enforcement, but this is clearly not a real-
world property. Adaptive punishment and limited resources are an important line of research,
which we plan to investigate as future work. In addition, we plan to conduct a more detailed
analysis of the effect of different levels of the probability of observation on the results of the
model. On a different line of attack, but an interesting phenomenon that we aim to explore
in the future, is the existence of agents that identify the fixed punishment strategies followed
by other agents, and try to exploit them by developing strategies against them. One way to
avoid this might be to combine agents with different formulae and different observational
capabilities in the same network. While we believe this will make the model much stronger
for real applications, the fundamental mechanisms proposed and demonstrated in this paper
already present the core aspects of a more general functional approach to establishing norms
and metanorms in complex topological structures.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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