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Abstract:  

The present work deals with the effect of semisolid processing on microstructure and 

mechanical properties of Al-4.5 % Cu – 5% TiB2 in-situ cast composites. The composite was 

prepared by flux assisted synthesis in which TiB2 particles were formed in-situ through an 

exothermic reaction between K2TiF6 and KBF4 halide salts. Al-4.5wt% Cu alloy and Al-4.5% 

Cu-5 % TiB2 composite samples were forged in semisolid state with 0.3 volume fraction of 

liquid. Semisolid forging was carried out for two forge reductions (30% and 50% forge 

reductions). Microstructure studies show that the semi-solid forging results in uniform 

distribution of TiB2 particles and Al2Cu particles in the composite. Further, TiB2 particles 

play a dual role as grain refiners as well as reinforcements of composites. EBSD and nano 

indentation studies shows that semisolid forging results in dynamic recrystallization of grains 

in the composite with significant grain refinement which leads to a marked increase in 

hardness and elastic modulus of the alloy as well as the composite.   
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1. Introduction

The demand for lightweight and low cost dispersion strengthened components is increasing in  

automotive and aerospace applications to improve the fuel efficiency and to reduce 

greenhouse gas emissions [1][2]. An important challenge in manufacturing of light weight and 

high strength aluminium parts is to produce near net shape components of complex geometry 

with desired properties meeting the requirements of automotive  applications [1]. As a result, 

there is a considerable interest in aluminium based metal matrix composites (MMCs) due to 

their high specific strength and stiffness [3]. In-situ metal matrix composites in which 

reinforcement is generated within the alloy offers an advantage of clean interface with 

minimal interfacial reaction between reinforcement and matrix [4][5]. Amongst many types of 

reinforcements used [3, 6-13],  TiB2 reinforcement in aluminium alloys using salt based in-

situ methods offers great advantages such as minimal reactivity[7], clean interface[14],  sound 

thermal conductivity [15] and high elastic modulus and hardness [16]. TiB2 particles acts as a 

heterogeneous nucleating site for α-Al [11] controlling the grain size, thereby improves the 

mechanical properties of the Al matrix. During solidification this sub- micron sized TiB2 

particles are pushed to the grain boundaries resulting in the formation of clusters [17]. 

Unfortunately, the clustered second phase particles cannot control the grain size [17].  These 

clusters could be fragmented and the particle distribution could be improved by secondary 

processes such as extrusion, rolling and semisolid rolling or forging [16, 18-21]. The semi-

solid forming results in a non-dendritic microstructure due to forming at a temperature 

between solidus and liquidus temperature [22]. In semisolid state, the enclosed liquid 

component allows the slip and rotations of solid grains thereby improving the formability of 

metals [23]. In addition to this, semisolid temperature has a critical role on the final 

microstructure such as grain orientation, grain morphology and distribution of reinforcement 

particles during solidification of alloys [24]. Liu et al. [25] reported that the semisolid 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

processing has a significant effect on improvement of mechanical properties of the alloys. The 

study of semi-solid forging on aluminium alloys has showed a high-temperature dependence 

on microstructure, especially on precipitation in Al-Cu alloys [26]. Higher amounts of solid 

fraction are usually preferred as they reduce porosity, promote laminar flow of liquid, and 

also improve the surface quality of alloys [24]. Previous research studies on semisolid 

deformation behaviour of metals have shown that a liquid fraction between 10% and 30% is 

commonly suitable for semi-solid forging [27]. 

Recent X-ray computed tomography studies on Al-4.5%Cu-5%TiB2 in-situ composite showed 

that semisolid forging has resulted in improvement of TiB2 particle size distribution and 

reduction of particle clusters [28]. Additionally, Deepak Kumar et al. [29],  suggested that 

semisolid forging of Al-5TiB2 composites improves mechanical properties of the composite. 

Aluminium alloys are generally expected to produce new grains during hot deformation by 

dynamic recrystallization process which can be experimentally studied using [30, 31]. 

Electron backscattered diffraction (EBSD) mapping of grain boundary misorientation [32]. It 

was found that only few studies have used EBSD investigation of semisolid processed Al-

TiB2 composites [33] and there is no earlier report on EBSD studies on semisolid forged Al-

4.5% Cu - 5% TiB2 in-situ composites. Since the hardness and Young’s modulus behaviour of 

Al-TiB 2 composites are found to be increased with increased volume fraction of TiB2 and 

uniform distribution of TiB2 particles [34], the semisolid forging would definitely have an 

influence on the mechanical properties of composites. The effect of semisolid forging on 

Young’s modulus and hardness of Al-TiB2 composite are important inputs for micro-structure 

based modelling of the process [35]. Nano indentation studies were rarely carried out on Al-

TiB2 composites to determine Young’s modulus and hardness by means of accurately 

measured load-depth data [36]. In this work, we studied the effect of semi-solid forging on 

microstructure and mechanical properties of Al-4.5%Cu-5%TiB2 in-situ composites 
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thixoforged at 0.3 volume fraction (Vfl) of liquid with two forge reductions (30% reduction 

and 50% reduction).  

 

2. Experimental procedure 

2.1 Processing of Al-4.5Cu-5wt%TiB2 in-situ composite  

Al-4.5%Cu-5wt%TiB2 composite was synthesized by Flux Assisted Synthesis (FAS) 

technique which consists of addition of halide salts, K2TiF6 and KBF4, to molten Al-4.5Cu 

alloy at 800 °C and a reaction time of one hour. The schematic of flux assisted synthesis of in-

situ Al-Cu-TiB2 composites is shown in fig 1. The exothermic reaction within the melt results 

in the formation of titanium-diboride (TiB2) particles within the matrix. The melt was stirred 

intermittently every 10 minutes to ensure complete reaction of salts with molten aluminium 

and homogenous distribution of TiB2 particles. After completion of reaction, the lighter dross 

was decanted and the melt was degassed using C2Cl6. The composite melt was finally poured 

into rectangular mild steel mould and machined to dimension of 10 mm x 10 mm x 60 mm 

prior to forging in semi-solid state. Thixoforging was carried out using 80-ton hydraulic press, 

at a load of 150 Kg/cm2 and at a ram speed of 20 mm/sec. As-cast alloy and composite were 

subjected to forging at 30% and 50% deformation in semi-solid state. As-cast alloy and the 

composite were forged at 631°C and 632°C respectively corresponding to a liquid fraction of 

0.3. The samples were soaked at forging temperature for 10 minutes prior to forging. The K-

type thermocouples were used to monitor the temperatures with an accuracy of ± 2 °C.  
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Fig. 1. Schematic of flux assisted synthesis of in-situ Al-Cu-TiB2 composites 

 

2.2 Microstructural characterization  

Microstructure studies of alloy and composite were carried out using optical microscopy and 

field emission scanning electron microscope (FESEM) after polishing respective samples 

using standard metallographic procedures. Polished samples were anodised with a Barker’s 

reagent (1.8% HBF4 in water) applying 23V DC for upto 1 minute. Dark field and bright field 

micrographs were captured using a NIKON (Model: ECLIPSE LV150N) metallurgical 

microscope. Grain size analyses was performed as per ASTM E112 standard test method in 

polarized mode using a LEICA metallurgical microscope (Model: DM 4000M). Samples were 

deep etched with 20% NaOH solution to study the clustering behaviour of particles at high 

magnifications using SEM coupled with energy dispersive X-ray spectrometer (Carl Zeiss 

SMT AG).  
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2.3 Mechanical property characterization  

Nano-indentation tests were performed using a nano-indentation instrument (Fischer-Cripps, 

Australia) with a standard Berkovich indentor which measures force and displacement as 

indentation progresses. The Berkovich indenter has a trigonal pyramidal shape with a nominal 

angle of 65.3°. The samples were ultrafine polished to avoid surface roughness effects on the 

results of nano indentation studies. For each sample, ten indentations were made using a 

maximum load of 30 mN with each indentation separated by 20 µm. Details about nano 

indentation test methodology can be found elsewhere [37]. Fig. 2 shows the typical loading – 

unloading curves obtained from nano indentation studies [38]. As shown in Fig. 2, Pmax 

represents the load at maximum indentation, hmax is the indenter displacement at peak load, hf 

is the final depth of the contact impression after unloading. The total displacement (hmax) is 

the displacement of the indenter from its initial position at peak load (Pmax). However, the 

material elastically recovers its shape partially, when the indenter is unloaded [37-40]. So the 

total displacement is composed of both elastic and plastic displacements. From this, elastic 

displacements can be measured to calculate the elastic modulus, E. The hardness, H can be 

calculated by removing this elastic contribution from the total displacement. 

The hardness H can be calculated as; 

H = ����
�

          (1) 

Where Pmaxis the peak load, A is the projected area of contact between the indenter and 

sample [38]. 
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Fig. 2. Schematic representation of a loading-unloading curve 

 

3. Results and discussion 

3.1 Microstructure of Al-4.5Cu alloy and Al-4.5Cu-5wt%TiB2 in-situ composite  

Fig. 3 shows the optical microstructure of as cast and semi solid processed Al-4.5Cu alloy and 

in-situ Al-Cu-TiB2 composites. As represented in Fig. 3(a), the microstructure of the as cast 

Al-4.5Cu alloy shows coarse rosette shaped α-Al grains and Al2Cu dispersed in the alloy.  As 

shown in Fig. 3(b, c), deformation of the alloy in semi-solid state led to a fragmentation and 

dispersion of Al2Cu particles (bright phase) . Further, it was observed that higher percentage 

of deformation (50% reduction) did not lead to enhanced distribution of Al2Cu particles as 

shown in Fig 3(c)  
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Fig. 3.  Dark field optical microstructure of Al-4.5Cu alloy (a) as cast condition (b)Vf, liquid = 

0.3, 30% reduction (c) Vf, liquid = 0.3, 50% reduction, Al-4.5Cu-5TiB2 composite (d) as cast 

condition (e)Vf, liquid = 0.3, 30% reduction (f) Vf, liquid = 0.3, 50% reduction 

 

Fig. 3(d) shows the formation of fine α-Al grains in Al-4.5Cu-5TiB2 composite due to in-situ 

formed TiB2 particles which act as heterogeneous nucleation sites.TiB2 is mainly seen in the 

form of clusters of varying size randomly distributed in the matrix. When  samples were 

subjected to semisolid forging, it is observed that α-Al grains are elongated in the direction 

normal to forging [Fig. 3(e, f)]. Also, the large agglomerates of TiB2 particles are fragmented 

into relatively smaller agglomerates and uniformly distributed in the matrix. The compressive 

force applied during forging resulted in separation of TiB2 particle clusters and probably 

closure of pores in the composite [28]. TiB2 particles are redistributed by both viscous flow of 

liquid and fragmentation of unmelted solid grains due to the force applied during semisolid 

state forging. It was also observed that TiB2 particles are driven from their original locations 

at grain boundaries by viscous drag of intergranular liquid when subjected to thixoforging. 

The composite deformed by 50% [Fig. 3f] shows folds normal to direction of forging. 
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The α-Al grains in the microstructure of as cast alloy and composites were studied using 

polarised optical microscopy to understand the effect of semisolid forging on grain refinement 

Al-4.5 Cu alloy. Fig. 4 shows average grain size of as cast Al-4.5Cu alloy and Al-4.5Cu-

5TiB2 composite. The average grain size of as cast Al-4.5 Cu alloy was found to be 59 µm, 

while in and as cast Al-4.5Cu-5TiB2 composite was 24 µm. This shows that fine and uniform 

grain structure is formed in the composite sample as compared to as-cast alloy due to the 

presence of TiB2 particles which acts as grain refiners as well and reinforecement in Al-

4.5Cu-5TiB2 composite.  

 

 

Fig. 4. Polarized optical microstructure of as cast (a) Al-4.5Cu alloy (b) Al-4.5Cu-5TiB2 

composite 

In order to understand the effect of semisolid forging on particle clustering and distribution in 

as cast and semi solid processed in-situ Al-Cu-TiB2 composites, SEM studies were performed 

at higher magnifications. Fig. 5 shows SEM images of deep etched as cast and semi solid 

processed in-situ Al-Cu-TiB2 composites. As shown in Fig. 5(a), the average size of TiB2 

particle was found to be 1-2 µm in as cast composite. The shape of TiB2 particles were 

observed as flakes as well as hexagonal shaped as shown in fig 5(a), which in a close 

observation seems to have a third dimension. It implies that the particles have a hexagonal 
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shape in 3 Dimension, but show different face in 2 Dimensional images. Similar observations 

were made by Sun et al [41] that TiB2 particles in Al matrix exhibits hexagonal shapes with 

smooth surfaces. Upon semisolid forging, TiB2 particles were fragmented and observed to be 

finer in size as compared to as-cast samples as shown in Fig. 5(b). However, it is to be noted 

that the TiB2 particles were embedded in Al2Cu clusters in the composite as shown in fig 5(b). 

These clusters were observed to be elongated and distributed in the direction normal to 

forging along the grain boundaries instead of forming large agglomerates in the matrix.  

 

 

Fig. 5. FESEM Electron backscatter image showing the particle clusters in Al-4.5Cu-5TiB2 

composite (a) as cast condition (b) Vf, liquid = 0.3, 30% reduction. 

 

3.2 X-Ray Diffraction analysis 

Fig. 6 shows the XRD pattern obtained from the Al-4.5Cu-5TiB2 composite with 0.3 volume 

fraction of liquid and 30% reduction condition. The intensity peaks corresponding to TiB2, 

Al 2Cu and Al represents their presence in the matrix. 
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Fig. 6. XRD pattern of Al-4.5Cu-5TiB2 composite with 0.3 volume fraction of liquid and 

30% forge reduction. 

 

3.3 EBSD analysis 

Semisolid forging is a material deformation process at semsolid temperature range and is 

expected to have a dynamic recrystallisation during the process. The α-Al grains in the 

microstructure of as cast and semi solid processed in-situ Al-Cu-TiB2 composites were 

analysed using EBSD to understand the grain orientation, grain boundary characteristics and 

grain size distribution due to semisolid forging.  Fig. 7 shows the grain orientaion in as cast 

and semi solid processed in-situ Al-Cu-TiB2 composites. It is to be noted that TiB2 particles 

were not able to be identified in EBSD maps due to their extremely fine sizes in comparison 

to α-Al grains in the composite. All the poorly indexed points (black coloured) were excluded 

from the image as noise [42]. The grains were elongated due to semisolid forging with 
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particles aligned along the grain boundaries in the composite (Fig. 7(b)), while grains were 

found to be equiaxed in as cast composite (Fig. 7(a)).  

 

  

 

Fig. 7. EBSD map showing the grain orientation in Al-4.5Cu-5TiB2 composite (a) as cast 

condition (b) Vf, liquid = 0.3, 30% reduction. 
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Fig. 8. EBSD map showing the grain orientation in Al-4.5Cu-alloys (a) as cast condition (b) 

Vf,liquid = 0.3, 30% reduction. 

 

Fig. 8 shows the grain orientaion in as cast alloy and semi solid processed in-situ Al-Cu alloy. 

The grains were observed to be elongated due to semisolid forging (Fig. 8(b)) as compared to 

the grains in as cast alloy (Fig. 8(a)). Fig 9 shows EBSD mapping representing the effect of 

semisolid forging on grain misorientation angle and grain size of the composite. The grain 

boundaries with a misorientation angle above 15ο is generally considered as high angle 

boundaries (HAB), while  grain boundaries with a misorientation angle below 15ο are  

considered as low angle boundaries (LAB). As shown in Fig. 9(a) as cast composite has 

almost all of its grain boundaries as HAB with a higher degree of uniformity, while semisolid 

forged composite has significantly higher amount of LAB along with HAB.  During hot 

deformation in semi solid state, liquid film forms at grain boundaries thereby causing 

migration of grain boundaries which initiated recrystallization in the alloy [43].  Some of the 

boundaries are incomplete LAB and mixed character which might be due to a transformation 

from low angle to high angle or vice versa.  The mixed nature of boundaries is due to the 

continuous type recrystallization (CDRX) [42].  During dynamic recovery the LAB’S 

increases progressively results in formation of new grains which then transforms into HAB’s 

[44]. As shown in Fig. 9(a) more than 95% grain boundaries were found to be high angle 
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boundaries in as cast composite, whereas only 60% of grain boundaries were found to be high 

angle boundaries in semisolid forged composite. Further, the grain size is found to be finer in 

the semisolid forged composite as compared to as cast composite (Fig. 9(b)). 

 

  

Fig. 9. EBSD results of Al-4.5Cu-5TiB2 composite showing the effect of semisolid forging on 

(a) grain misorientation angle, and (b) grain size distribution. 

A similar type of observation is obtained after semisolid forging of Al-4.5Cu alloy. Fig. 10 

represents EBSD results showing the effect of semisolid forging on grain misorientation 

angle, and grain size distribution of Al-4.5Cu alloy. As shown in Fig. 10(a), more than 90% 

boundaries were found to be high angle boundaries in as cast alloy, whereas only 50% of 

boundaries are found to be high angle boundaries in semisolid forged alloy. Further, the 

grains in semisolid forged alloy were found to be fine in size as compared to as cast alloy 

(Fig. 10(b)). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

  

Fig.10. EBSD results of Al-4.5Cu alloy showing the effect of semisolid forging on (a) grain 

misorientation angle, and (b) grain size distribution. 

Hence, above EBSD results as shown in Fig 9 and Fig 10 represent that the application of 

semisolid forging results in formation of fine new grains due to recrystallization in alloy and 

composite respectively. Similar observations were made by Hogg et al. [45] that the hot 

compression of aluminium alloys resulted in a grain refinement of microstructure by partial 

dynamic recrystallization in the alloy. The size of newly formed recrystallized grains depends 

on the nucleation rate and the velocity of moving HAB’s [46]. The average grain size was 

found to be small in the alloy (Fig 10(b)) as compared to the composite (Fig 9(b)). Also, the 

effect of semisolid forging on grain size of the composite was found to be significantly higher 

than the alloy. The fraction of low angle boundaries formed due to semisolid forging of 

composite (Fig 9(a)) was found to be less than the fraction of low angle boundaries formed 

due to semisolid forging of the alloy (Fig 10(a)).  The particles could have inhibited the 

movement of dislocations, initiated the heterogeneous nucleation and resulted in enhanced 

recrystallization. However, further studies need to be performed using TEM to understand the 

mechanism of dynamic recrystallization and moving of grain boundaries due to semi solid 

forging of alloys and composites.  
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3.4 Nanoindentation 

The hardness and elastic modulus of as-cast and semi-solid forged Al-4.5Cu alloy and Al-

4.5Cu-5TiB2 composite were determined from the loading-unloading curve using the method 

proposed by Oliver and Pharr [38]. In order to minimize the indentation size effects, an 

indentation depth of 0.713 µm and an interval of 20 µm between each indentation was used 

[39,40]. Fig. 11 shows the loading - unloading curve of semi-solid processed Al-4.5Cu alloy 

and Al-4.5Cu-5TiB2 composite from which the hardness and elastic modulus were measured. 

 

 

Fig. 11. Loading - unloading curve of semisolid processed Al-4.5Cu alloy and Al-4.5Cu-

5TiB2 composite. 

 

The grain orientation differences have a significant effect on indentation measurements. 

Pathak et al. [47] studied the indentation behaviour of as cast and 30% deformed samples and 
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they reported a dramatic increase in modulus with increase in local dislocation and the local 

stored energy due to deformation. Table 1 summarizes the results of as cast and semi-solid 

forged Al-4.5Cu alloy and Al-4.5Cu-5TiB2 composite measured using nano indentation as 

shown in Fig. 11. The results show that the hardness of the alloy is increased on semisolid 

processing. The hardness of Al-4.5Cu alloy is increased by 2.14% after semisolid forging. 

This increase in hardness could be due to the closure of pores by the application of 

compressive force applied during forging and recrystallization of the grains. The hardness of 

as cast Al-4.5Cu-5TiB2 composite was increased by 7.14% compared to the as cast Al-4.5Cu 

alloy. This can be attributed to the reinforcement of TiB2 particles in the composite [6, 20, 

29]. Further, it was observed that the semisolid forging has a significant influence on the 

elastic modulus of the alloy and composite. The elastic modulus of as-cast Al-4.5Cu-5TiB2 

composite was found to be 9% higher than the as-cast Al-4.5Cu alloy.  This increase in elastic 

modulus can be attributed to the reinforcement of TiB2 particles in the matrix [48]. The elastic 

modulus and hardness is increased by 8% and 2.14 % respectively in case of alloy, while 

elastic modulus and hardness increased by 15% and 7.14% respectively in case of composite 

due to semi solid forging.  

 

Table 1 :Elastic modulus and hardness of Al-4.5Cu alloy and Al-4.5Cu-5TiB2 composite 

   Materials Elastic 

modulus  (GPa) 

% 

increase 

Hardness 

(GPa) 

% 

increase 

Al-4.5Cu alloy 89.68  ± 2.86 0 1.40 ± 0.06 0 

Al-4.5Cu alloy, 0.3Vfl, 30% 

reduction 

90.71  ± 3.51 1% 1.41 ± 0.07 0.07% 

Al-4.5Cu alloy, 0.3Vfl, 50% 

reduction 

97.35  ± 2.29 8% 1.43 ± 0.09 2.14% 

Al-4.5Cu-5TiB2 composite 97.99  ± 3.14 9% 1.50 ± 0.14 7.14% 

Al-4.5Cu-5TiB2 composite, 0.3Vfl, 

30% reduction 

111.33 ± 3.69 24% 1.60 ± 0.11 14.28% 

Al-4.5Cu-5TiB2 composite, 0.3Vfl, 

50% reduction 

108.70 ± 3.01 20% 1.55 ± 0.06 10.71% 
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Further, it was observed that the increase in forge deformation from 30% to 50% shows a 

significant change in the elastic modulus and hardness of the composite. The elastic modulus 

and hardness are found to be higher for the 30% reduction condition. The possible reason for 

this could be the better distribution of TiB2 particles and reduction in cluster size when 

subjected to 30% deformation [49]. The cluster size reduction and TiB2 particle distribution in 

Al-4.5Cu-5TiB2 composite with 30% reduction by semisolid forging was well explained in 

our recent X-ray computed tomography studies [28]. Kuruvilla et al. [50] found that the 

extremely fine size TiB2  particle reinforcements results in the improvement of elastic 

modulus of the aluminium matrix composite. This study shows the application of semi solid 

forging on improvement of mechanical properties of the alloy and composite by the combined 

effect of reinforcement of TiB2 particles and enhanced dynamic recrystallization of alloy and 

composite. 

 

4. Conclusions 

The in-situ TiB2 particles in Al-4.5Cu-5TiB2 composite perform a dual role of grain refiner 

and reinforcement thus contributing to hardening by Hall-Petch mechanism as well as 

dispersion hardening mechanism. Semisolid forging of the composite leads to fragmentation 

of TiB2 clusters thereby enabling uniform distribution of particles in the matrix. It also 

enables dynamic recrystallization and nucleation of grains with increased dislocation density. 

This leads to marked increase in hardness and elastic modulus of the alloy as well as the 

composite.  
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Effect of semi-solid forging on microstructure and mechanical properties of in-situ  
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Highlights:  

• Al-Cu-TiB2 MMC was prepared by casting using flux assisted synthesis method. 
• Semisolid forging was employed to deagglomerate TiB2 clusters in the composite. 

• Semisolid forging resulted in improvement in grain refinement in the composite due 
dynamic recrystallization. 

• 30% forge reduction in semi solid state improved young’s modulus and hardness of 
the composite. 
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