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Abstract. We describe the basic properties and consequences of introducing active stresses, with principal
direction along the local director, in cholesteric liquid crystals. The helical ground state is found to be
linearly unstable to extensile stresses, without threshold in the limit of infinite system size, whereas con-
tractile stresses are hydrodynamically screened by the cholesteric elasticity to give a finite threshold. This
is confirmed numerically and the non-linear consequences of instability, in both extensile and contractile
cases, are studied. We also consider the stresses associated to defects in the cholesteric pitch (λ lines) and
show how the geometry near to the defect generates threshold-less flows reminiscent of those for defects
in active nematics. At large extensile activity λ lines are spontaneously created and can form steady-state
patterns sustained by constant active flows.

1 Introduction and phenomenology

Active liquid crystals have come to represent an archetype
for active matter, offering a framework for organising ideas
about biological processes and biologically inspired mate-
rials. Starting with studies of polar flocks [1–3], the field
has grown to encompass bacterial swarms and growing
colonies [4–6], systems of self-propelled rods [7,8], the cell
cytoskeleton and suspensions of the biopolymers that con-
stitute it [9–12], among many other biologically inspired
systems. From the phenomenology of liquid crystals cer-
tain generic traits of active matter have been identified,
such as spontaneous flow transitions and hydrodynamic
instabilities, giant number fluctuations and the role of
defects in active turbulence [13, 14]. From these a pic-
ture of living matter, viewed as a material, is emerg-
ing. However, from the perspective of condensed matter
physics all of these studies represent only a small part
of the broad scope offered by active matter phases, cor-
responding largely to the two-dimensional nematic and
polar-ordered [15–18] liquid crystal phases. Recently, ac-
tive smectic phases have also been studied [19–21], and
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there has been a parallel development of active matter
without orientational order [22], but active phases with
symmetries different from simple nematic liquid crystals,
or polar fluids, remain largely unexplored.

Chirality is ubiquitous in Nature, from the helical
structure of DNA [23], to bacterial flagella and their ro-
tary motors [24, 25], to selective reflection and structural
colour in both plants and animals [26,27]. Although there
has been some consideration of active stresses that are chi-
ral [28,29], such as those arising from torque-dipoles [30],
active materials that have a chiral structure have not yet
been studied. There is ample motivation to do so: First,
from the structural point of view, it is noteworthy that
cholesteric textures are found in a wide range of biological
systems. Cross-sectional cuts through many fibrous tis-
sues, such as dinoflagellate chromosomes, the carapaces of
insects and crustaceans, fish eggshells and compact bones,
display a distinctive series of arced fibrils [31–34]. These
are the hallmark of a three-dimensional helical stacking of
straight filaments identical to the structure of cholesteric
liquid crystals. More significantly, polymers extracted and
purified from such materials, as well as numerous other
biopolymers, including actin, cellulose, chitin, collagen,
microtubules, nucleic acids, polypeptides and polysaccha-



Page 2 of 16 Eur. Phys. J. E (2017) 40: 50

rides all show cholesteric phases in solution [31, 35–44],
and the same cholesteric ordering is found in colloidal sus-
pensions of rod-like viruses, such as the fd virus [45–47].
Further examples of cholesteric order in biological materi-
als include the packing of DNA in phage capsids [48, 49],
the origin of iridescence of Scarabaeidae beetle exoskele-
tons [36,50,51], the natural colour of flower petals [52] and
Pollia fruit [53], and silk spinning processes [54].

Given these examples, it is natural to expect that ac-
tive stresses in cholesteric phases should have broad rele-
vance to a diverse range of biological and biologically in-
spired materials. Our motivations are also sparked by pos-
sibilities of experimental realisation of active cholesterics.
All the natural systems that we have already mentioned
do have such prospects: for instance, F-actin solutions ac-
tually exist in a cholesteric, rather than a nematic phase,
as a consequence of the double helical, hence chiral, nature
of an actin fibre. Another appealing experimental candi-
date for an active chiral gel is a solution of DNA molecules
interacting with DNA or RNA polymerases, which lead to
relative DNA-enzyme motion and may exert non-thermal
active stresses on the polymers. That macroscopic chiral-
ity is important here is clear from looking at the passive
counterpart of this system, namely a concentrated DNA
solution without polymerases: such solutions have long
been known to exhibit cholesteric or blue phases in differ-
ent salt conditions or concentrations [39, 40, 55]. It is also
worth noting that many passive cholesterics are formed by
adding small amounts of a chiral dopant to nematic mate-
rials. This suggests that current experimental realisations
of active nematics [11,12] could be converted to cholester-
ics by addition of suitable dopant, for instance a biopoly-
mer known to form cholesteric mesophases, or fd virus.

Here, we study active cholesterics from the frame-
work of active liquid crystals, combining the force-dipole
stresses already established for active materials with the
cholesteric ordering that comes from a passive chiral ne-
matic. One can expect chirality to lead to important ef-
fects in active materials, similar to the situation in pas-
sive cholesteric liquid crystals, whose hydrodynamics and
physics are much different from those of nematics [56].
With respect to the few existing theoretical works on chi-
ral activity [28, 29] our paper provides a systematic anal-
ysis of the active instabilities of the cholesteric ground
state, as well as the active stresses and flows generated by
defects in the cholesteric order, known as λ lines. We do so
by means of linear stability analysis and direct numerical
solution of the non-linear equations of motion. Further-
more, we provide a detailed comparison between active
cholesterics and the behaviour already established for ac-
tive nematic and smectic phases.

We first give a qualitative, phenomenological summary
of active cholesterics and list our main results: Like nemat-
ics, cholesterics are described by a unit magnitude director
field, n̂, corresponding to the local molecular alignment.
Unlike nematics this is not uniform in the ground state,
but is a linear function of position, the director rotating
at a uniform rate, q0, about a spontaneously chosen di-
rection called the pitch axis. Denoting by z this direction,

Fig. 1. (a) Projections of a cholesteric director field, eq. (1),
onto successive horizontal slices. The right-handed twist in the
z-direction results in a texture of periodic arcs on an arbitrary
slice (top slice). (b) Sketch of the Helfrich-Hurault instability
of the cholesteric “layers” for a passive cholesteric under me-
chanical strain applied at the walls in the vertical direction.

the cholesteric ground state corresponds to the director

n̂ = cos q0z êx + sin q0z êy ≡ n̂0, (1)

and is shown in schematic form in fig. 1. In terms of their
fundamental description, nematics and cholesterics differ
only in the presence of the chiral coupling constant, q0,
in the Frank free energy [56, 57]. At length scales that
are short compared to the pitch, π/q0, the two materi-
als are effectively alike. Nonetheless, the bulk properties
and characteristics of cholesterics differ substantially from
those of nematics. At wave numbers k ≪ q0 the structure
has a one-dimensional periodicity analogous to the den-
sity modulation of smectics and hence its elasticity is the
same [58]. However, in significant ways cholesterics and
smectics are also fundamentally unalike. In the deepest
sense this is because —even if we ignore fluctuations— the
cholesteric state does not break translation invariance: the
pitch axis is a continuous screw axis, an arbitrary transla-
tion along which can be compensated by a rotation about
it. In the cholesteric the one-dimensional periodic modu-
lation carries the director through a continuous family of
symmetry-equivalent directions; no such symmetry relates
the different densities encountered in the smectic mass-
density wave. Whereas the layer normal in a smectic is
parallel to the molecular alignment, the pitch axis is or-
thogonal to the director in a cholesteric. Geometry aids
greatly in the description of liquid crystalline structures
and their distortions. Several combinations of these with
activity can be identified and it is useful to consider each
separately. Active stresses in liquid crystals drive fluid
flows in response to distortions in the director, with splay
distortions generating flows locally parallel to the director
and bend distortions creating perpendicular flows.

The main results of our work are: i) It is well estab-
lished that contractile stresses drive an instability of the
nematic state to splay deformations and extensile stresses
yield instability to bend [13]. In passive liquid crystals,
Lubensky has shown that splay distortions in the director
are not true hydrodynamic modes in a cholesteric but are
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screened at length scales of order the cholesteric pitch [59].
Thus one may expect that the contractile instability of ac-
tive nematics will be suppressed in a cholesteric until the
activity exceeds a threshold of order Kq2

0 and indeed this is
what we find. The Stokesian hydrodynamic deformations
of a cholesteric involve bend distortions of the director and
may be characterised either as a splay of the pitch direc-
tion, or a bend of the cholesteric “layers”. As these are
true hydrodynamic modes, extensile active materials are
still linearly unstable to them. This “layer undulation” in-
stability is analogous in character to the Helfrich-Hurault
effect (fig. 1(b)) observed in passive cholesterics and smec-
tics in response to an applied electric field [60, 61], or an
extensional strain [62]. The same layer undulation insta-
bility also occurs in active smectics [19], but for contrac-
tile rather than extensile materials. The difference derives
from the contrasting alignment of the director relative to
the one-dimensional periodicity and emphasises that the
active properties of cholesterics and smectics differ signif-
icantly even though their passive elasticity is the same.

ii) The direction associated to bend distortions is al-
ways orthogonal to the local director field. In a nematic all
such orthogonal directions are equivalent, but this is not
so in a cholesteric: one of the orthogonal directions corre-
sponds to the cholesteric pitch axis, the direction along
which the alignment is rotating. In the hydrodynamic
mode associated to extensile instability, the bend distor-
tion is directed along the pitch axis and generates flows
in this direction. It is known that such flows are plug-like,
rather than Poiseuille-like, in a passive cholesteric, and are
resisted by an effective viscosity that can exceed that in
nematics by five or six orders of magnitude [59,63,64].

iii) In cholesterics, the case in which bend distor-
tions are perpendicular to the pitch axis deserves separate
study, both for geometric reasons and because the active
flows that are generated lie within the cholesteric layers,
where the effective viscosity is much lower. Such distor-
tions and flows arise most simply in response to a uni-
form conical tilt of the cholesteric director into the pitch
direction. This situation can be described in a quasi–one-
dimensional setting identical to that studied extensively in
the context of spontaneous flow transitions in active ne-
matics [65] and polar gels [66]. In this sense it may be con-
sidered the natural cholesteric analogue of those studies
and the analysis is broadly the same, although the struc-
ture of the director distortions and flows are markedly
different, again emphasising the contrasting character of
active cholesterics compared to other forms of active mat-
ter. The one-dimensional setting allows for exact solutions,
beyond just linear analysis, although the restriction to
an assumed one-dimensional variation also artificially sup-
presses the basic layer undulation instability so that such
analysis gives only partial, qualitative insight. However,
this is no different to the situation in active nematics,
where such quasi–one-dimensional studies are still highly
instructive [14,65,66].

iv) Defects play a fundamental role in the non-linear
description of materials, both passive and active. In ac-
tive nematics, active stresses nucleate defects and drive
their self-propulsion, eventually creating a turbulent dy-

namic steady state [11, 67–69]. The fundamental defects
in cholesteric order are called λ lines; they can be thought
of as defects in the pitch, or dislocations in the cholesteric
layers. The layer undulation instability ultimately gives
way to the formation of pairs of λ± lines, reminiscent to
the defect formation process in active nematics. A local
analysis of the director field around a λ line shows that
they do not self-propel, as defects in active nematics do,
but they still generate active flows in the cholesteric. We
find that extensile active cholesterics can form steady-
state defect patterns in both bulk and confined geome-
tries. The resulting structure is a lattice of λ lines medi-
ated by regions of cholesteric order, with a defect density
that increases with activity. Ultimately, this ordered state
is destroyed at larger activity with a transition to a state
of active turbulence.

2 Hydrodynamics of active liquid crystals

The equilibrium elasticity of cholesteric liquid crystals is
given by the Frank free energy for the director field

F =

∫

d3r

{

K1

2

(

∇ · n̂
)2

+
K2

2

(

n̂ · ∇ × n̂ + q0

)2

+
K3

2

(

(n̂ · ∇)n̂
)2
}

, (2)

where q0 is a chiral coupling constant that vanishes in a
nematic. The free energy is minimised by a director with
constant right-handed twist, as in (1).

In addition to the director field, the hydrodynamic
variables in an active cholesteric are the fluid mass den-
sity, ρ, and momentum density, g = ρv, as well as the
concentration, c, of active particles [13, 70]. Their equa-
tions of motion are constructed by retaining, at leading
orders in gradients, all terms allowed by symmetries and
conservation laws and not necessarily derivable from a free
energy. We will assume that the mass density and con-
centration of active particles are both homogeneous and
constant, which implies that the fluid velocity is incom-
pressible, ∇ · v = 0. In the viscous regime appropriate to
represent active matter the continuity of the momentum
density reduces to the Stokes equation, ∇ · σ = 0, where
the stress tensor has components

σij = −Pδij + 2ηuij +
ν

2

(

nihj + hinj

)

+
1

2

(

nihj − hinj

)

− Φik∂jnk − ζninj . (3)

Here, P is the pressure, η the viscosity and uij = (∂ivj +
∂jvi)/2 the symmetric part of the velocity gradients of the
fluid. h = −δF/δn̂ is the molecular field conjugate to the
liquid crystal director, and ν is a flow alignment parame-
ter. The liquid crystal is flow aligning if |ν| ≥ 1 and flow
tumbling if |ν| < 1 [56]. We choose ν < −1 corresponding
to a flow-aligning active cholesteric with rod-like particles
(e.g., F-actin filaments or DNA molecules). The “Erick-
sen stress” term contains Φij = [∂f/∂(∂ink)](δjk − njnk)
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where f is the free energy density (such that F =
∫

d3rf
in eq. (2)). The final term is the active stress, which cor-
responds to a force dipole aligned along the local director
field of the liquid crystal [70]. The phenomenological co-
efficient ζ is proportional to the concentration of active
particles and is positive in extensile materials and nega-
tive in contractile ones. The active stress ultimately arises
through an off-diagonal piece in the matrix of kinetic co-
efficients linking stress and fuel consumption, viewed as
“fluxes”, to strain-rate and chemical-potential imbalance,
viewed as “forces” [14].

Finally, the dynamic equation for the relaxation of the
director field is

∂tni + vj∂jni + ωijnj = −νuijnj +
1

γ
hi, (4)

where ωij = (∂ivj − ∂jvi)/2 is the antisymmetric, or rota-
tional, part of the velocity gradients, and is the same as
in a passive liquid crystal. The parameter γ is a rotational
viscosity which sets the time scale for reorientation due to
the molecular field.

3 Linear instabilities in an active cholesteric

3.1 Generic hydrodynamic instability: Pitch-splay

The hydrodynamics of cholesterics is subtle, as not all
director deformations correspond to true hydrodynamic
modes. We follow the framework of Lubensky [59] for
the hydrodynamics of passive liquid crystals to calculate
hydrodynamic instabilities in active cholesterics in the
Stokesian regime. A generic perturbation of the cholesteric
ground state (1) can be written

n̂ = cos δθ
[

cos(q0z + δφ)êx + sin(q0z + δφ)êy

]

+ sin δθêz, (5)

≈ n̂0 + δφ n̂⊥0 + δθ êz, (6)

where n̂⊥0 = − sin q0z êx +cos q0z êy, and δφ = δφ(x, z, t)
and δθ = δθ(x, z, t) are small fluctuations. Without loss
of generality we consider the mode with wave vector
(kx, 0, kz) lying in the x-z plane, which, due to the sym-
metry of the cholesteric ground state, can be written as a
sum over all Brillouin zones

δφ(x, z, t) =
∑

n

δφnei[kxx+(kz+nq0)z−ωt], (7)

δθ(x, z, t) =
∑

n

δθnei[kxx+(kz+nq0)z−ωt], (8)

where kz ∈ [−π/q0, π/q0] is in the first Brillouin zone.
Henceforth all terms with subscript n are understood to
denote the n-th component of the infinite sum over all
Brillouin zones.

The molecular field hn (given in appendix A) is cou-
pled to the modes δφn±2 and δθn±1. Indeed, the symmetry
of the cholesteric basis means that even n modes of δφn

are coupled to odd n modes of δθn and vice versa [59]. It

is convenient to solve the Stokes equation in the Cartesian
basis. The active contribution to the Stokes equation is

fa
n ≈ −

ζ

2

{

ikx(δθn+1 + δθn−1)êz

+
[

kx(δφn+2 − δφn−2) + i(kz + nq0)(δθn+1 + δθn−1)
]

êx

+
[

ikx(δφn+2+δφn−2)−(kz+nq0)(δθn+1−δθn−1)
]

êy

}

,

(9)

and interestingly does not depend on δφn but rather on
the modes in neighbouring Brillouin zones. Similarly, the
passive distortion contribution to the Stokes equation fd

n

can be written in terms of the molecular field in equations,
and is given in appendix A. The stability of the initial
perturbations δφn and δθn is determined by eq. (4) and is
given by

−iωδφn = −q0v
(z)
n +

ikx

4

[

iν
(

v
(x)
n+2 − v

(x)
n−2

)

+2v(y)
n − ν

(

v
(y)
n+2 + v

(y)
n−2

)]

+
h⊥0

n

γ
, (10)

−iωδθn = −
ν + 1

4

{

[

kz + (n + 1)q0

]

(

iv
(x)
n+1 − v

(y)
n+1

)

+
[

kz + (n − 1)q0

]

(

iv
(x)
n−1 + v

(y)
n−1

)}

−
ν − 1

4
ikx

(

v
(z)
n+1 + v

(z)
n−1

)

+
hz

n

γ
. (11)

In general ω is the solution to an infinite-dimensional
eigenvalue problem [59] where each mode n is coupled to
neighbouring modes up to n±6. In the hydrodynamic limit
k ≪ q0 the lowest energy modes decouple at order k0 to
a 5× 5 eigenvalue problem involving the modes δφ0, δθ±1,
and δφ±2, given explicitly in appendix A. We look first
for hydrodynamic modes of the passive case which corre-
spond to eigenvalue solutions of ω → 0 as ζ, k → 0. We
find that these exist in two cases, when kx = 0 or kz = 0.

When kx = 0 the matrix is diagonalised and the sys-
tem becomes quasi–one-dimensional. In this case the only
hydrodynamic mode has eigenfunction δφ0 and is purely
diffusive with ω = −iK2k

2
z/γ. This mode remains unaf-

fected by non-zero activity and so is not generically un-
stable in an active cholesteric.

When kz = 0 the problem can be further reduced to a
system of three coupled equations for δφ0 and δθ±1 in the
long wavelength limit kx ≪ q0. In the passive case (ζ = 0)
we find that the lowest energy mode is diffusive and has
the corresponding director perturbation:

δφ = δφ0e
i(kxx−ωt), (12)

δθ = −
ikx

q0
δφ0 cos(q0z)ei(kxx−ωt) , (13)

which agrees with the analysis of the static equations by
Lubensky [59]. Including a small activity |ζ| ≪ Kq2

0 this
mode becomes generically unstable to extensile activity
with

ω0 ≈
i

η

[

ζ

2
−

3K3

8
k2

]

8η + γ(1 + ν)2

8η + 2γ(1 + ν)2
. (14)
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Fig. 2. Sketch of the pitch-splay, or layer undulation, instabil-
ity in extensile cholesterics. Black lines show the projection of
the twisted director field onto the plane containing the splayed
pitch axis (red lines). The blue arrows show the active flow
direction which acts to increase the distortion and drives the
instability.

A sketch of this perturbation mode and the accompanying
active flow is shown in fig. 2. As shown in [59] this mode
corresponds to a pure splay deformation of the pitch, or a
bend of the director field that is directed along the pitch
axis. When the activity is extensile, this deformation mode
gives rise to active flows along the pitch axis, parallel to
the bend direction, which destabilise the cholesteric order.
This hydrodynamic pitch-splay mode in a cholesteric is
analogous to the layer undulation mode of smectic A mate-
rials. Indeed, their passive elasticity is the same [58]. How-
ever, the director distortions that underlie the cholesteric
pitch-splay mode are of a different type than those associ-
ated to the layer undulations of a smectic. As we have de-
scribed, in a cholesteric the director distortions are of bend
type as this leads only to splay deformations of the pitch
axis. In contrast, the director distortions of smectic layer
undulations are splay deformations, since the director cor-
responds to the layer normal. It is for this reason that the
instability of active cholesterics occurs for extensile mate-
rials, in contrast to the situation in active smectics, where
it is the contractile material that is unstable [19].

Modes which are destabilised by contractile activity
(ζ < 0) all have finite stability thresholds in the limit k =
0 of order Kq2

0 . Thus one expects contractile cholester-
ics to be stable unless the magnitude of the activity ex-
ceeds (approximately) Kq2

0 . This applies to ω0 which gives
an instability for large enough contractile activity, but
in general this may not by the lowest instability thresh-
old mode. For example, the offset family of perturbations
δθ2n, δφ2n−1 also predict finite instability thresholds in the
long wavelength limit. In the following section we consider
a special case of these in the quasi–one-dimensional limit.

3.2 Suppression of splay instability and spontaneous
flow transition

Contractile active nematics are linearly unstable to splay
distortions in the director field [13, 70, 71]. For a direc-
tor lying in the xy-plane these splay distortions may be

q0

active 

turbulence

active 

turbulence

finite 

threshold

modulated

cholesteric

ζ

contractile extensile

Fig. 3. Schematic “phase diagram” of active cholesterics from
hydrodynamic instability theory. At high activity (|ζ|), or in
the limit of vanishing chirality, the instability leads to an ac-
tive turbulence state. At low activity, there is a linear hydrody-
namic instability to a flowing, modulated cholesteric phase in
extensile materials and a finite threshold for linear instability
in the contractile case. The indicated boundaries are schematic
and have been added only for clarity. Exactly the same be-
haviour occurs for negative values of q0, this changing only the
handedness of the cholesteric.

written in the form

δn = δθ ei(kz−ωt) êz. (15)

When k ≫ q0 the cholesteric ground state (1) locally re-
sembles a nematic, on length scales of this perturbation,
and the distortion retains its splay-like character. How-
ever, for k ∼ q0 the cholesteric order “screens” the insta-
bility and produces a finite threshold for its onset.

Substituting (15) into the force balance equations we
find that the fluid velocity is

v = δθ ei(kz−ωt)

[

ζ +
1 + ν

2

(

K1k
2 + K3q

2
0

)

]

×
q0n̂⊥0 − ikn̂0

η(k2 − q2
0)

. (16)

Substituting this into (4) and keeping terms to first order
in the perturbations we find the dispersion relation

ω = −iζ
1 + ν

2η
− i

(

K1k
2 + K3q

2
0

)

[

1

γ
+

(1 + ν)2

4η

]

. (17)

The active term is identical to that for a splayed pertur-
bation in an active nematic [71], and again is long range.
The passive splay contribution proportional to K1 also
remains unchanged, and in the nematic limit q0 → 0
we recover the familiar splay instability of active gels.
The new contribution arising from the cholesteric order
is the passive bend term proportional to K3q

2
0 . We see

that this is always negative and imaginary, and hence acts
to screen the nematic splay mode. Instability only sets
in when the activity exceeds a threshold of order K3q

2
0 .

As in the nematic case [65, 66], for flow-aligning, rod-like
particles (ν < −1) the instability occurs for extensile ac-
tivity (ζ > 0). This hydrodynamic stability analysis is
summarised in the schematic “phase diagram” of fig. 3.
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q0

ζ0

Unstable
Stable

0.01 0.02 0.03 0.04

π

32

π

16

Fig. 4. Quasi–one-dimensional numerical results for extensile
active cholesterics with three values of the pitch. The active gel
is sandwiched between two infinite plates, parallel to the xy-
plane, lying at z = 0 and z = Lz. Planar boundary conditions
are set on both walls. The line is the analytical prediction from
sect. 3.2 for k = π/Lz, demonstrating the q2

0 dependence of
the activity threshold for this mode. The discrepancy at small
values of q0 is due to the fixed anchoring boundary conditions
used in the simulations.

This linear analysis is confirmed by full numerical so-
lution of the hydrodynamic equations for such a splay
mode in an active cholesteric, as we show in fig. 4. As
there is only z-dependence of both the perturbation and
the cholesteric ground state, the simulations can be per-
formed in a quasi–one-dimensional setting, although we
defer details of the numerical method until sect. 4. This
set-up is, therefore, entirely analogous to that considered
in the context of spontaneous flow transitions in active
nematics [65, 66]. Also in the cholesteric case, there is a
spontaneous flow transition above the threshold for lin-
ear instability, however its character is rather different.
Figure 5 shows the results of numerical simulations of this
transition in an extensile cholesteric confined between par-
allel plates with tangential anchoring conditions, as well
as the analogous results for a nematic [65], reproduced
for comparison. In the nematic, the spontaneously flow-
ing state is characterised by director splay distortions lo-
calised around the mid-plane of the cell, and also at the
boundaries to accommodate the tangential anchoring. The
bend distortions are uniformly small by comparison. The
flow is predominantly along the director field, in confor-
mity with the splay nature of the distortions driving them.

By contrast, in the cholesteric the spontaneous flow
transition leads to an approximately uniform conical
tilt of the director along the pitch axis throughout the
bulk of the cell, vanishing only near the boundaries to
satisfy the tangential anchoring conditions. This leads to
a heliconical director profile in which the bend distortion
has constant magnitude and is directed orthogonal to
the pitch axis. There is no splay, except close to the
boundaries where it is due to the surface anchoring. The
spontaneous flow is predominantly along the direction of

the bend distortion and hence parallel to the vector n̂⊥0.
Throughout the bulk of the cell it has approximately
constant magnitude, but helically varying direction.
Although we do not show it, simulations with a fully
periodic cholesteric texture and no boundary conditions
yield a spontaneous flow transition to a perfect heliconical
director with a constant conical tilt angle.

These simulations suggest a simple one-dimensional
analysis of the flowing state analogous to that of Voituriez
et al. [66] for polar gels, but for the heliconical director
field

n̂ = cos θ n̂0 + sin θ êz, (18)

with the conical angle θ a constant parameter to be solved
for. There is no splay in this texture, but the bend vector
is non-zero

(n̂ · ∇)n̂ = q0 sin θ cos θ n̂⊥0, (19)

and of constant magnitude, oriented perpendicularly to
both the director field and the pitch axis. The active stress
associated to it drives a flow in the same direction

v = −q0 sin θ cos θ

(

ζ

ηq2
0

+
1 + ν cos 2θ

2η

×
[

K2 + (K3 − K2) cos 2θ
]

)

n̂⊥0. (20)

Finally, the angle θ is determined by the director relax-
ation equation (4). In addition to the passive solution
θ = 0, the activity allows for a solution with non-zero
conical tilt, given implicitly by

−
ζ

2ηq2
0

=

(

1

γ
(

1 + ν cos 2θ
) +

(1 + ν cos 2θ)

4η

)

×
[

K2 + (K3 − K2) cos 2θ
]

. (21)

We conclude that in this simplified one-dimensional
picture, the cholesteric is primarily unstable to bend de-
formations resulting from a constant tilt of the director
along the pitch axis. Thus the splay instability of an ac-
tive nematic is replaced by a bend instability in the active
cholesteric. The bend vector twists with the director field
and thus generates flows of constant magnitude along di-
rections perpendicular to the pitch axis that rotate along
it in a helical fashion. In view of its nature, we refer to this
remarkable active flowing state as a “sliding cholesteric”.

4 Numerical simulations

To study the nature of the state that develops from the
cholesteric ground state in response to the fundamental
hydrodynamic pitch-splay instability, we solve the non-
linear equations of motion numerically. More specifically,
we use a hybrid lattice-Boltzmann (LB) algorithm, pre-
viously used for passive or active nematic liquid crys-
tals [72–74], to solve (4), and the following Navier-Stokes
equation:

ρ(∂t + vj∂j)vi = ∂j(σij) + η∂j(∂jvi + ∂ivj), (22)
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Fig. 5. Profiles of (a) director tilt, nz, and (b) velocity along the x-direction, vx, for three different steady states found for
extensile active cholesterics (ζ = 0.025). Panels (c) and (d) show the magnitude of splay and bend deformations, respectively,
for each of these steady states. q0 = 0 is the nematic case, shown for reference. The legend on the right also shows schematics
of the steady-state director field in each case.

where all terms were defined previously (see sect. 2). The
molecular field hi is defined in terms of the following free
energy:

F =

∫

d3r

{

α

2
n2 +

β

4

(

n2
)2

+
K1

2

(

∇ · n
)2

+
K2

2

(

n · ∇ × n + q0

)2
+

K3

2

(

(n · ∇)n
)2
}

. (23)

We note that in our simulations n is not a unit vector;
this constraint is though enforced softly through the bulk
free energy which is minimised by n2 = −α/β (we choose
α = −β, see below).

We use our method to simulate an active cholesteric,
either in a quasi–one-dimensional geometry (figs. 4 and 5),
or in a quasi–two-dimensional geometry (xz-plane). The
typical system size is 64 (quasi-1D geometry) or 64 × 64
(quasi-2D geometry) lattice sites with either periodic
boundary conditions or homogeneous (planar) strong an-
choring of the director field on both the upper and the
lower wall bounding the simulation domain. The initial
condition is the equilibrium helix (1), for a suitable choice
of q0, with a small deformation in the midplane and
no flow. In our calculations we have chosen α = −0.1,
β = 0.1, γ = 1, ν = −1.1 (corresponding to a rod-like,
flow-aligning liquid crystal), and η = 5/3 as in previous
numerical works [73, 74]. We have also assumed the one-
elastic-constant approximation, setting K1 = K2 = K3 =
K = 0.01. In the contractile case, for instance, these val-
ues can be mapped as done in [75] onto an actomyosin gel

with effective elastic constant equal to 1 nN, γ = 1kPa · s,
and η = 1.67 kPa/s. When using walls, the value of the
surface anchoring was chosen so as to be always in the
strong anchoring limit.

In the case of extensile activity, there is a continuous
flow transition with the activity ζ. Figure 6 shows suc-
cessive steady states for increasing extensile activities. As
predicted in sect. 3.1 for an infinite cholesteric, we ob-
serve a pitch-splay instability as the director field bends
and is advected along the direction of positive curvature
as sketched in fig. 2 for the linear instability. The bifurca-
tion to spontaneous flow is supercritical, corresponding to
a continuous non-equilibrium transition, as found in [76]
for active nematics. The transition threshold is system size
dependent and goes to zero in an infinite system (corre-
sponding to k → 0 in the linear stability condition (14)).
As the activity is increased the resulting bend deforma-
tions become more pronounced and vortices begin to ap-
pear in the flow (figs. 6(a)–(c)). At larger activities still, λ
lines (defects in the pitch axis) are created and separated
into distinct λ± pairs akin to the dynamics of defects in
two-dimensional active nematics. Initially the dynamics
of this system is unsteady and resembles the turbulence
of active nematics [68], with λ lines being both sponta-
neously created and annihilated. However, at long times
the system can reach a steady-state defect configuration
with a fixed director field, accompanied by steady active
flows. This state is discussed further in sect. 5.

In the case of contractile activity we do not expect the
hydrodynamic modes of the cholesteric liquid crystal to
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Fig. 6. Simulation results for an extensile active cholesteric in a quasi–two-dimensional geometry. The snapshots correspond to
director field profile (I) and the corresponding velocity profile (II) for ζ equal to: 0.00009 (a), 0.00025 (b), 0.001 (c), 0.005 (d). In
(a)–(c) these profiles are steady states of the system, whereas (d) is a representative snapshot of the time-dependent asymptotic
state. All results are obtained for q0 = π/16.
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(II)(I)
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(c)
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Fig. 7. Simulation results for a contractile active cholesteric in a quasi–two-dimensional geometry. The snapshots correspond to
director field profile (I) and the corresponding velocity profile (II) for ζ equal to: −0.01 (a), −0.015 (b), −0.03 (c), −0.05 (d). In
all (a)–(d) the snapshots are representative of a time-dependent asymptotic (statistically steady) state. All results are obtained
for q0 = π/16.
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(II)(I)

(a)

(b)

(c)

Fig. 8. Results of an extensile active cholesteric confined in a quasi–two-dimensional geometry with flat walls. Homogeneous
anchoring of the director is set on both the upper and lower surfaces. The snapshots correspond to director field profile (I) and
the corresponding velocity profile (II) for ζ equal to: 0.001 (a), 0.0025 (b), 0.005 (c). In (a) and (b) these profiles are steady
states of the system, whereas (c) is a snapshot of the time-dependent asymptotic state. All results are obtained for q0 = π/16.

be unstable from the linear calculation in sect. 3.1. This
is reflected by the simulations as the cholesteric texture
is stable up to relatively high contractile activity values.
An instability occurs at ζ = −0.01 which is approximately
two orders of magnitude larger than the threshold in the
extensile case. Figure 7 shows that above this threshold,
the cholesteric order is destroyed and the resulting director
field and flow field resembles that of a contractile active
nematic at large activity [77]. Note that if ν > −1, devi-
ations of the director along z can become unstable (from
the linear prediction of sect. 3.2) and the director field
can transiently display a heliconical steady state above
the finite threshold.

Finally, the effect of confinement is studied by con-
sidering a cell geometry in which the active cholesteric
is sandwiched between two non-slip walls at the top and
bottom of the simulation. Figure 8 shows the director (col-
umn (I)) and corresponding velocity field (column (II)) for
three values of activity for which the system is in the active
state. Interestingly, for ζ = 0.001 we observe a Rayleigh-
Benard–like pattern of the director field with the typical
undulations seen in the periodic case (see fig. 6(c)) now
squeezed between two flat walls. This pattern requires
a roll structure of the velocity profile, clearly visible in
column (II) of fig. 8. This director pattern is accompa-
nied by the generation of symmetric λ line pairs, similar
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to the defect lattices observed in the periodic case and
also to those formed in passive cholesterics undergoing a
Helfrich-Hurault instability [78]. An increase in the activ-
ity decreases the length scale of the defect separation along
the x-direction, sustained by shorter wavelength rolls in
the flow field (fig. 8(b)). These ordered structures are de-
stroyed for higher values of activity when the system en-
ters the chaotic state.

5 Lambda lines in active cholesterics

Defects are a hallmark of all forms of ordered media. In
two-dimensional active nematics, defects in the director
field, known as disclinations, are generated spontaneously
by large enough activity [11,79,80] and subsequently sus-
tain a state of active turbulence [67–69]. Disclinations of
different topological charge behave differently. They are
all the source of strong active flows because director dis-
tortions are necessarily large around them, but in ad-
dition disclinations of strength +1/2 self-propel [7, 11],
while those of strength −1/2 do not. Additionally, some
experimental examples have shown that topological de-
fects in growing bacteria and eukaryotic cell colonies in
two-dimensional geometries determine the shape of the
colonies as well as the spatial pattern of cell death [81,82].
Therefore, an understanding of the motion of individual
defects in active nematics and their interactions provides
an explanation of many features of active nematic dynam-
ics at high activity. Given their prominence in active ne-
matics, it is natural to consider the behaviour of defects in
active cholesterics. Extending our simulations in sect. 4,
we show that active cholesteric defects are created in an
analagous way to active nematic defects, but it is also ev-
ident that their dynamics are different. However, first we
consider the local structure of the active flows produced
by cholesteric defects.

The fundamental defects in cholesteric order are de-
fects in the pitch axis known as λ lines [56]. In contrast to
nematic disclinations, the director field is well defined and
continuous at a λ line and instead it is the local cholesteric
pitch axis that winds around the defect and is discontinu-
ous at it. There are also disclinations in the director field
in a cholesteric, known as χ lines and τ lines according
to whether the pitch axis is, or is not, continuous along
them, however we do not consider these here and con-
fine our attention to λ lines. From the cholesteric ground
state, λ lines may be produced in pairs, λ±, with opposite
winding of the pitch axis. Such a “defect-dipole” serves
to create dislocations in the cholesteric layers, introduc-
ing additional full 2π rotations of the director field. An
example of such, illustrating both λ+ and λ− defects, is
shown in fig. 9.

λ lines distort the cholesteric texture around them so
that active stresses should generate flows in their vicinity,
analogously to how they generate flows in the vicinity of
director disclinations. To determine the local structure of
these flows we need to know the structure of the director
field in the vicinity of a λ line. Following the methods
developed recently in [83,84] we show in appendix B that

Fig. 9. A cholesteric dislocation, comprising a pair of λ lines.
The director field is oriented out of the page (|ny| > 0.95)
in the regions highlighted in red. The green circles show the
locations of the λ+ and λ− defects.

for a straight λ line along the y-axis the director field has
the local expansion

n̂± =

[

−
q0

2
z − αxz

]

êx +

[

1 −
q2
0

8

(

x2 + z2
)

]

êy

+

[

q0

2
x ± αx2 +

α

2

(

x2 + z2
)

]

êz + O(3), (24)

where ± refers to the two types of defect (λ±), and O(3)
denotes terms of cubic order or higher. The linear or-
der terms impart the preferred local value of the twist,
n̂ · ∇ × n̂ = −q0, and no splay, ∇ · n̂ = 0, along the λ
line. Its profile is encoded in the structure of the quadratic
terms for which there is an arbitrary constant prefactor,
α, with dimensions of wave number squared. This local ex-
pansion is entirely analogous to that around umbilic points
of surfaces that characterises their structure (see, e.g. [85])
and is given here in a simplified form of the general case
presented in appendix B.

The active force density around the λ line can be writ-
ten in the form

f± =
q0ζ

2

{

∇

(

q0

4

(

x2 + z2
)

+
α

6

(

x3 − 3xz2
)

)

+(1 ± 1)α

[

∇

(

1

3
x3 + xz2

)

−z2êx

]}

+ O(3). (25)

The contributions that come from gradients can be bal-
anced by a corresponding term in the pressure and there-
fore do not lead to any fluid flows. We see that the force
around a λ− line is entirely of this gradient type but the
same is not true for λ+ lines, whose active force contains
a non-gradient component directed along the x-axis. The
active flows generated locally around a λ+ line are there-
fore given approximately by

v+ ≈
αq0ζ

12η
z4êx. (26)
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Fig. 10. Snapshots of the director field in an extensile active cholesteric. Lambda lines (green) are created in regions of large
bend and form fixed steady-state patterns. Parameters used here are the same as in previous figures except ζ = 0.005, q0 = π/8,
and Lx = Lz = 80.

This local directional fluid velocity around positive
strength defects, but not negative strength ones, is remi-
niscent of the situation for disclination lines in active ne-
matics. The main difference is that the active force in-
creases locally with distance from the λ line, from being
zero on it, rather than rising to a maximal value at the
defect core, as is the case for nematic disclinations. This
means that a λ line in an active cholesteric does not have
an intrinsic translation speed, whereas +1/2 active ne-
matic defects do.

Our numerical simulations in sect. 4 demonstrated that
λ lines are created at large extensile activities in an anal-
ogous way to ±1/2 defects in nematics. The dynamics is
initially unsteady, however, at long times the system can
relax to a steady-state configuration of λ lines in which
active and elastic stresses balance in a regular pattern of
bend distortions and anti-parallel pairs of λ lines. We show
an example of this in fig. 10. This configuration is some-
what reminiscent of the defect arrangements observed in
the Helfrich-Hurault instability at large applied field [78],
where the defects nucleate parabolic regions of circularly
bent equidistant cholesteric layers that separate regions of
flat layers.

Note that fixed defect arrangements can be observed
in overdamped active nematics [82,86,87], but our analy-
sis suggests that this can occur even in bulk cholesterics.
As the activity is increased the separation between λ line
pairs is reduced, so the formation of this periodic defect
lattice appears to be independent of simulation box size.
At larger activity still the cholesteric dynamics are un-
steady over the full simulation time, resembling the active
turbulence states in nematics. In two-dimensional active
nematics, defects are produced from bend “walls” in the
director field, and the formation of defects transiently re-
instates nematic order in the regions between them. How-
ever, the intrinsic speed of the defects means that static
configurations of the director are not observed. The bend
walls in nematics are analogous to the formation of strings
of λ lines seen in fig. 10. Similarly, between the regions of
large bend distortions cholesteric order is restored, but
furthermore the director field can evolve to static periodic
configurations.

The nucleation of λ lines occurs from the emergence
of double twist cylinders (defects in the pitch of wind-
ing 2π) in regions of large director bend, which split into
λ± pairs oriented with the λ+ flow direction acting away
from the λ− defect. This is similar to the geometry of
±1/2 defects created in active nematics. However, en-
ergetic and geometric constraints inhibit the λ± defects
from separating long distances, which is not the case for
nematic defects. Defect lattices can arise in overdamped
active nematics [82], sustained by a flow vortex lattice
which matches the spatial periodicity of the defect lat-
tice. In active cholesterics, the flow field accompanying
the λ line lattice is more complex. There is a component
of the flow which is periodic over the length scale of the
cholesteric layers, as well as a component of permeative
flows normal to the layers which sustain the bend defor-
mations. These permeative flows, as discussed previously,
are associated with a greatly increased effective viscos-
ity [59, 63, 64], which may play a role in stabilising this
defect lattice. Moreover, we have shown that the defects
are not intrinsically self-propelled, which means that the
flows can be balanced by elastic distortion energy of the
director and so stable configurations can form in bulk.

6 Discussion

Active cholesterics represent a new form of active mat-
ter that combines the force-dipole stresses of actively self-
propelled particles with bulk chiral ordering and structure.
Their phenomenology echoes that of active nematics and
smectics but is also distinctive and unique. In particu-
lar, there is a generic active instability for extensile active
particles that is analogous to the contractile instability in
active smectics. This leads to pitch-splay, or layer undu-
lations, and eventually the creation of λ lines, similar to
the creation of disclinations in active nematics. However,
λ lines have different dynamics to nematic defects and do
not intrinsically self-propel. The result is that the bulk ac-
tive cholesteric can form stable configurations of spatially
ordered λ lines, which have only been observed previously
for disclinations in overdamped active nematics.
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A number of natural directions suggest themselves for
further work. For instance, our numerical studies here
have only considered quasi–two-dimensional settings so
that an important extension will be to perform full three-
dimensional simulations to properly study the hydrody-
namic pitch-splay instability and the distortion to the
cholesteric ground state that it generates. In passive sys-
tems, layer undulations in the Helfrich-Hurault transition,
and the analogous response to mechanical strain, produce
a square lattice pattern for the distortion akin to an egg-
crate structure that can evolve at higher strain into an
arrangement of focal conic domains. It will be interest-
ing to compare these with the structures that form under
active stresses.

An important feature of active nematics is the effect
of confinement on the active states, in particular, the sta-
bilisation of vortices under sufficient confinement. There
are a number of different types of confinement to con-
sider, including cell geometry and anchoring conditions,
but it would also be interesting to study active cholesteric
droplets, whose topology places its own constraints on the
cholesteric order, leading to a wide variety of interesting
textures already in passive materials.

Our analysis of defects in active cholesterics is highly
preliminary, touching only on some initial aspects of λ
lines, and there is evidently much more to be done. De-
fects in the director field are of considerable importance
in active nematics because the active forces they gener-
ate are so large. χ lines in cholesterics should generate
equally strong active forces, however, their geometry will
differ from the nematic case on account of the preference
for twist distortions in cholesterics, which raises an inter-
esting question of the nature of the active flows generated
by disclination lines in cholesterics.

A major motivation for our work comes from the fact
that chirality is widespread in biological materials. Many
biological materials display a variety of chiral textures in
addition to the simple cholesteric helix. Considering the
influence of active stresses on these textures will both
broaden our understanding of active materials and may
help in developing concrete applications to biological sys-
tems and morphogenesis. Finally, we would like to encour-
age experiments aimed at developing active cholesterics;
these are fascinating materials that extend and enhance
our understanding of active matter.
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Appendix A. Calculation of the dispersion

relation for the hydrodynamic pitch-splay

instability

We study the linear stability of the director perturbation
given in eqs. (7) and (8). The associated molecular field is
of the form

h =
∑

n

(

h⊥0
n n̂⊥0 + hz

nêz

)

ei[kxx+(kz+nq0)z−ωt], (A.1)

where to linear order

h⊥0
n ≈ −

1

4

{

[

2(K1 + K3)k
2
x + 4K2(kz + nq0)

2
]

δφn

+(K3 − K1)k
2
x(δφn+2 + δφn−2)

−2(K1 + K3)ikxq0(δθn+1 + δθn−1)

+2(K2 − K1)ikx(kz + nq0)(δθn+1 − δθn−1)
}

,

(A.2)

hz
n ≈ −

1

4

{

[

2(K2+K3)k
2
x+4K1(kz+nq0)

2+4K3q
2
0

]

δθn

+(K3 − K2)k
2
x(δθn+2 + δθn−2)

+2(K2 + K3)ikxq0(δφn+1 + δφn−1)

+2(K2 − K1)ikx(kz + nq0)(δφn+1 − δφn−1)
}

.

(A.3)

Also to linear order the distortion force in the Stokes equa-
tions can be given in terms of the molecular field as

fd
n ≈

1

4

{

[

ikx(ν − 1)(hz
n+1 + hz

n−1) − 4q0h
⊥0
n

]

êz

+
[

− 2ikxh⊥0
n + νikx(h⊥0
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z
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êy

+
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n+2 − h⊥0

n−2)

+i(ν + 1)(kz + nq0)(h
z
n+1 + hz

n−1)
]

êx

}

. (A.4)

The Stokes equations are solved for the flow by sep-
arating into components parallel to ey and to k⊥ =
(kz+nq0)êx−kxêz (thus projecting out the pressure) with
the third equation given by incompressibility ∇ · v = 0.
The velocity solution takes the form

vn =
(kz + nq0)[(kz + nq0)f

(x)
n − kxf

(z)
n ]

η[k2
x + (kz + nq0)2]2

êx

+
f

(y)
n êy

η[k2
x + (kz + nq0)2]

+
kx[kxf

(z)
n − (kz + nq0)f

(x)
n ]

η[k2
x + (kz + nq0)2]2

êz

(A.5)

where fn = fd
n + fa

n and the superscripts (x, y, z) denote
Cartesian components of f .

Finally, the director dynamic equations (4) give the
stability conditions for the set of perturbations δφn and
δθn, eqs. (10) and (11). In general each mode n is coupled
to modes n±6 through the passive flow terms. We take the
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hydrodynamic limit k ≪ q0 and expand the relations (10)
and (11) as series expansions. For |n| > 2 the frequency
ω is dominated by diagonal terms which strongly damp
the perturbations. Thus these modes can be incorporated
as small perturbations to the equations for δφ0, δθ±1

and δφ±2 by repeated substitution of eqs. (10) and (11)
for these modes. This reduces the calculation to a 5 × 5
eigenvalue problem of the form (A + iωI)x = 0 where
x = (δφ0, δθ1, δθ−1, δφ2, δφ−2) and the structure of the
matrix A is

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

O(k0) O(k−1) O(k−1) O(k−1) O(k−1)

O(k1) O(k0) O(k0) O(k0) O(k0)

O(k1) O(k0) O(k0) O(k0) O(k0)

O(k1) O(k0) O(k0) O(k0) O(k0)

O(k1) O(k0) O(k0) O(k0) O(k0)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A.6)

Clearly these five modes are, in general, coupled at low-
est order in k. The resulting characteristic equation for ω
suggests that all solutions ω are of order k0 (even when
ζ = 0). However, when kx = 0 the matrix is completely
diagonalised and the only diffusive mode corresponds to
δφ0 and this is unaffected by the activity. in this limit the
δθ modes have a finite stability threshold for the activity,
and is of the form calculated in sect. 3.2.

If kz = 0 then the modes δφ±2 decouple from the other
three at order k0 and so the problem can be reduced to a
3 × 3 problem again by accounting for the contributions
of all other modes by repeated substitution of the rele-
vant modes of eqs. (10) and (11). This reduced eigenvalue
problem then can be written to order k2 as the solution
to (A′ + iω)x′ = 0 where x′ = (δφ0, δθ1, δθ−1) and

A′=

⎛

⎜

⎝

a0+a2k
2 ik−1(b−1+b1k

2) ik−1(b−1+b1k
2)

ik(c1+c3k
2) d0+d2k

2 e0+e2k
2

ik(c1+c3k
2) e0+e2k

2 d0+d2k
2

⎞

⎟

⎠
.

(A.7)
The constants a0, . . . , e2 are cumbersome in their length;
we give them in the one-elastic-constant approximation at
the end of this appendix. To order k0 the eigenfrequencies
are

ω0 =
i

4

{

−

(

ζν

η
+

K̃q2
0

η̃

)

+

[(

ζν

η
+

K̃q2
0

η̃

)2

−
2ζ

η

(

ζ(1 + ν)

η
+

K̃q2
0

η′

)]1/2
}

+ O(k2), (A.8)

ω1 = −
i

4

{

(

ζν

η
+

K̃q2
0

η̃

)

+

[(

ζν

η
+

K̃q2
0

η̃

)2

−
2ζ

η

(

ζ(1 + ν)

η
+

K̃q2
0

η′

)]1/2
}

+ O(k2), (A.9)

ω2 = −
i

4

[

ζ(1 + ν)

η
+

K̃q2
0

η′

]

+ O(k2), (A.10)

where K̃ = (K1 + K3)/2, η̃ = (4/γ + (1 + ν)2/η)−1 and
η′ = (8/γ + (1 + ν)2/η)−1. In the passive limit (ζ = 0)

ω0 = O(k2) signifying that this is the hydrodynamic
mode. To calculate the leading order contribution in the
passive limit, we take ζ = 0 and look for solutions to the
characteristic equation at order k2 assuming ω = D0k

2.
In this case the characteristic equation becomes

D0 =
i

q0η̃

[

(b1 + a2q0)

(

4

γ
+ ν

1 + ν

η

)

+
(

d2 + e2 − 2c3q
2
0

)1 + ν

η

]

+ O(k2), (A.11)

≈ −
i3K3

16η

η̃

η′
. (A.12)

Expanding ω0 to first order in the activity and adding
the passive diffusive contribution then gives the expres-
sion for ω0 given in eq. (14) in the main text. In the long
wavelength limit the eigenfunction corresponding to this
mode is

δθ±1 = −
ik

2q0

[

K̃q2
0η + ζ(1 + ν)η̄/2

K̃q2
0η + ζνη̄

]

δφ0, (A.13)

where η̄ = (4/γ + ν(1 + ν)/η)−1. This eigenmode reduces
to the pitch-splay perturbation of eqs. (12) and (13) in the
limit of small activity.

Working to order k2 for the hydrodynamic mode,
the coefficients a0, . . . , e2 appearing in the matrix A′,
eq. (A.7), are given in a one-elastic-constant approxima-
tion as follows:

a0 = −
Kq2

0(1 + ν)

2η
, (A.14)

a2 = −
ζν

8ηq2
0

− K

[

1

8η
(ν2 + ν + 2) +

1

γ

]

−
γ(ζ + K(ν + 1)q2

0)(ζ + K(2ν + 1)q2
0)

4ηq2
0(γζν + 2Kq2

0(γν2 + 8η))
, (A.15)

b−1 =
q0

2η

[

ζ + Kq2
0(1 + ν)

]

, (A.16)

b1 = i
{

ζ2G(ν2 − 2) + K2q4
0

[

128G−1 + 8(4ν2 + 5ν + 1)

+G(2ν4 + 5ν3 − 3ν2 − 6ν − 2)
]

+ζKq2
0

[

G(3ν3 + 3ν2 − 6ν − 4) + 8(3ν + 1)
]}/

{

8q0

[

ζγν + 2Kq2
0(γν2 + 8η)

]}

, (A.17)

c1 = −
ζ(1 + ν)

8q0η
−

Kq0

4η̄
, (A.18)

c3 = i
{

2ζ2Gν(2ν + 1) + 2K2q4
0

[

8(ν2 − 2ν − 1)

+G(ν4 − 6ν3 + 13ν2 + 16ν + 4)
]

+ζKq2
0

[

G(9ν3 − 2ν2 + 17ν + 8) + 64ν
]}/

{

64q3
0

[

ζγν + 2Kq2
0(γν2 + 8η)

]}

, (A.19)

d0 = −
ζ(3ν + 1)

8η
−2Kq2

0

[

1

γ
+

(3ν + 1)(ν + 1)

η

]

, (A.20)
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d2 = −
{

2K2q4
0

[

1536G−1 + 32(9ν2 + 4ν + 11)

+ 4G(3ν4 + 10ν3 − 5ν2 − 26ν − 10)

+ G2ν2(ν3 − ν2 − 5ν − 3)
]

+ ζKq2
0

[

G2ν(3ν3 − 5ν2 − 11ν − 3)

− 4G(15ν3 + 17ν + 20) − 32(13ν + 4)
]

+ ζ2Gν
[

G(ν − 3)(ν + 1) − 8(5ν + 2)
]}/

{

256q2
0

[

ζγν + 2Kq2
0(γν2 + 8η)

]}

, (A.21)

e0 =
1 − ν

8η

[

ζ + Kq2
0(1 + ν)

]

, (A.22)

e2 =
{

ζ2Gν
[

G(ν − 3)(ν + 1) + 8
]

+ 2K2q4
0

[

G2ν2(ν − 3)(ν + 1)2

− 4G(7ν4 + 2ν3 − 9ν2 − 6ν + 2) − 32(7ν2 + 3)
]

− ζKq2
0

[

32ν + 4G(9ν3 − 8ν2 − 9ν + 4)

− G2ν(3ν3 − 5ν2 − 11ν − 3)
]}/

{

256q2
0

[

ζγν + 2Kq2
0(γν2 + 8η)

]}

, (A.23)

where G = γη−1.

Appendix B. Director field in the vicinity of a

λ line

The λ± defects in a cholesteric are examples of generic
umbilic lines [84], which are analogous in structure to the
umbilic points of degenerate principal curvature on sur-
faces (see, e.g. [85]). If the director field is the normal to
a family of surfaces, as in a smectic, then the definitions
are equivalent. In the general case umbilic lines are identi-
fied by degeneracies in the derivatives of the director field
along directions that are orthogonal to it. Concretely, in a

local orthonormal frame {d̂1, d̂2, n̂}, λ lines may be iden-
tified by the vanishing of the matrix [84]

∆ =

(

∆1 ∆2

∆2 −∆1

)

, (B.1)

whose components are

∆1 =
1

2

[

d̂1 · (∇n̂) · d̂1 − d̂2 · (∇n̂) · d̂2

]

, (B.2)

∆2 =
1

2

[

d̂1 · (∇n̂) · d̂2 + d̂2 · (∇n̂) · d̂1

]

. (B.3)

This definition was applied to identify λ lines in the sim-
ulations shown in sect. 5.

To give an analytical expression for the active flows
generated around a λ line we require an expression for the
director field in the vicinity of the defect. We begin with
a generic expansion of the director field about the origin,
to quadratic order, assuming that ny = 1 at (x, z) = (0, 0)
and that there is no dependence on the direction y (as in
our quasi–two-dimensional simulations):

n̂ =
[

k0x + k1z + α0x
2 + α1xz + α2z

2
]

êx

+

[

1 −
1

2

(

k0x + k1z
)2

−
1

2

(

m0x + m1z
)2
]

êy

+
[

m0x + m1z + β0x
2 + β1xz + β2z

2
]

êz. (B.4)

Firstly, for the origin to be umbilic, the matrix (B.1) must
vanish there, giving the conditions m0 = −k1 and m1 =
k0. Next, we impose that the director should be divergence
free at equilibrium to minimise the splay term in the free
energy, which gives k0 = 0, α1 = −2β2 and β1 = −2α0.
These conditions give the generic local form of the director
near a straight λ line in a cholesteric.

The matrix (B.1) winds by ±2π about its degeneracy
at the origin. Denoting by θ an angular coordinate on
a small loop encircling the λ line, we can write ∆1 =
α cos(θ + φ) and ∆2 = ±α sin(θ + φ), where α sets the
magnitude of ∆ and φ sets the in-plane orientation of the
defect. The ± sign corresponds to a positive or negative
winding of ∆ and hence to the sign of the λ± defect. For
a λ+ line this gives the conditions α2 = 3α0 = 3α cos φ/2
and β0 = 3β2 = 3α sin φ/2, and for a λ− line it gives
α2 = −α0 = α cos φ/2 and β0 = −β2 = −α sin φ/2. The
orientation φ is arbitrary and here we set it to φ = π/2.

Finally, the twist of this director field at the origin (i.e.
along the λ line) is n̂ · ∇ × n̂ = 2k1. We set k1 = −q0/2
to correspond to the preferred local value. This results in
the director field (24).
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