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Abstract

The theory of overconvergent modular symbols, developed by Rob Pollack and Glenn Stevens,

gives a beautiful and effective construction of the p-adic L-function of a modular form. In

this thesis, we develop the theory of overconvergent modular symbols over a completely gen-

eral number field and use it to construct p-adic L-functions for automorphic forms for GL2.

In particular, we prove control theorems that say that the natural specialisation map from

overconvergent to classical modular symbols is an isomorphism on the small slope subspaces,

hence attaching a unique overconvergent modular symbol to a small slope cuspidal automor-

phic eigenform Φ. From this overconvergent symbol we then obtain a p-adic distribution that

interpolates certain critical L-values of Φ.

The text is comprised of two largely independent parts. In the first, we develop the the-

ory in concrete detail over imaginary quadratic fields, and in the process present a constructive

definition of the p-adic L-function in this setting. In the second, which was joint work with

Daniel Barrera Salazar (Université de Montréal), we provide an analogous theory over general

number fields, though not in the same explicit detail.
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Introduction

I.1. Background

I.1.1. Motivation

Many of the most famous problems in modern number theory relate to the theory of L-functions,

which have been a powerful tool in the field for almost two centuries. In particular, the ‘spe-

cial’ (or ‘critical’) values of L-functions have been shown or conjectured to contain important

arithmetic information in a huge variety of situations. As a prominent example, the Birch and

Swinnerton-Dyer conjecture predicts that important arithmetic data attached to an elliptic

curve – such as its rank, the size of its Tate-Shafarevich group, and the order of its torsion

group – are related to the value of its L-function at s = 1. Work towards this problem, or

generalisations such as the Bloch-Kato conjecture or Beilinson’s conjecture, could be considered

to be the backbone of much current research in number theory.

In recent years, much of the study of L-functions has come through working with p-adic L-

functions. A p-adic L-function is (loosely) a p-adic analytic object that interpolates the special

values of a classical L-function. Since Kubota and Leopoldt’s seminal paper [KL64], in which

they constructed the first example of such an object, the p-adic Riemann zeta function, p-adic

L-functions have been constructed for a wide variety of arithmetic objects, including Dirichlet

characters, elliptic curves and modular forms. Where they exist, they have had important

consequences; perhaps most strikingly, in [MTT86] Mazur, Tate and Teitelbaum formulated a

p-adic analogue of the classical Birch and Swinnerton-Dyer conjecture that has actually been

proved in a large number of cases. It is conjecturally equivalent to the classical formulation.

Given their applications, it is evidently desirable to construct p-adic L-functions in wide gen-

erality. In this thesis, we construct p-adic L-functions for a large class of (cohomological)

automorphic forms for GL2 over number fields.

Under a wide-ranging series of conjectures known as the Langlands program, the theory of

automorphic forms provides an attempt at a ‘unifying theory’ of mathematics. The program

can be vaguely summarised as saying that any reasonably ‘nice’ L-function should come from an

automorphic form. A celebrated result in this direction is the modularity theorem (or Shimura–

ii
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Taniyama conjecture), which says that for every elliptic curve E/Q, there is a modular form fE

such that the L-functions of E and fE are equal. This formed the major component of Wiles’

famous proof of Fermat’s last theorem.

Modular forms – or automorphic forms for GL2 over Q – are arguably the most studied ex-

amples of automorphic forms. The first constructions of p-adic L-functions for modular forms

were given by Mazur and Swinnerton-Dyer in [MSD74], and have since been followed by a

number of other constructions. In particular, in [PS11], Pollack and Stevens gave an alterna-

tive construction using the theory of overconvergent modular symbols. Until recently, however,

p-adic L-functions of automorphic forms for GL2 over more general number fields had been

constructed only in isolated cases. For the most general results previously known, see [Har87a],

where such p-adic L-functions are constructed for weight 2 (also known as parallel weight 0)

forms that are ordinary at p.

Pollack and Stevens’ construction of p-adic L-functions for small slope classical modular forms

is both beautiful and computationally effective. In this thesis, we generalise their method to

construct p-adic L-functions for small slope automorphic forms over a general number field.

This was essentially done in three separate papers; the totally real case was completed by

Barrera in [BS13], the imaginary quadratic case by the author in [Wil15], and the completely

general case in a joint paper between the two in [BSW16]. This thesis contains the accounts

given in the second and third of these papers.

I.1.2. An introduction to p-adic L-functions

Since the main goal of this thesis is the construction of p-adic L-functions of automorphic

forms, we start by giving a short introduction to the theory. First, consider the case of classical

(complex) L-functions. As an example, let f =
∑
n≥1 anq

n ∈ Sk(Γ0(N)) be a modular form,

with associated L-function

L(f, s) ..=
∑
n≥1

ann
−s, s ∈ C.

For any Hecke character1 ϕ, we can define the twist of L(f, s) by ϕ to be

L(f, ϕ, s) ..=
∑
n≥1

anϕ(n)n−s, s ∈ C.

1A rational Hecke character is a continuous character ϕ : Q×\A×
Q → C×, where AQ is the adele ring of Q.

Every rational Hecke character is of the form χ| · |s, for s ∈ C, where χ is a finite order character (giving rise to
a Dirichlet character).

iii
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We can reformulate the above in a nicer way. In his thesis, Tate realised that if we define a

function on Hecke characters by

L(f, ∗) : {rational Hecke characters} −→ C,

ϕ 7−→ L(f, ϕ, 1),

then we obtain an object that packages the data of the L-function and all of its twists into a

single complex-valued function.

In this formulation, a complex L-function is a C-valued function on complex Hecke charac-

ters. A p-adic L-function is a Cp-valued function on ‘p-adic Hecke characters’.

We make this more precise. Let ϕ = χ| · |s be a Hecke character, where χ has finite order.

Suppose that

(i) ϕ is arithmetic, that is, s = n ∈ Z, and

(ii) the conductor of χ is a power of p.

Then ϕ naturally gives rise to a character

ϕp−fin : Z×p −→ Cp,

z 7−→ χp(z)zn,

where χp is the restriction of χ to Z×p . The p-adic L-function should then be a function

Lp(f, ∗) : {analytic functions Z×p → Cp} −→ Cp

satisfying the property that for ϕ as above, with 0 ≤ n ≤ k − 2, we have

Lp(f, ϕp−fin) = (∗)L(f, ϕ)

for some explicit factor (∗). 2

Denote the space of (locally) analytic functions Z×p → Cp by A(Z×p ). We have seen that

the p-adic L-function should be an element of the dual space

D(Z×p ) ..= Homcts(A(Z×p ),Cp).

Elements of D(Z×p ) are called distributions, and will be studied at length later in this thesis.

2Note that L(f, ϕ) is a complex number, whilst Lp(f, ϕp−fin) is p-adic. To make this comparison work, the
factor (∗) will contain a complex period Ω±

f
such that L(f, ϕ)/Ω±

f
is algebraic, where the sign depends on ϕ.
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Since we are interested in constructing p-adic L-functions over a general number field F , rather

than just over Q, it is pertinent to discuss how the theory generalises to this case. In particular,

rather than studying distributions on Z×p , we study distributions on the narrow ray class group

Cl+F (p∞) ..= F×\A×F /F
+
∞U(p∞),

where F+
∞ is the set of totally positive infinite ideles and U(p∞) is the set of finite ideles whose

components at primes above p are all 1. To see why this is a natural concept, let ϕ be a Hecke

character of p-power conductor. We want to write down a ‘p-adic’ analogue of ϕ. By ‘moving’

the infinite order part from the archimedean places to the places at p, we can write down a

p-adic character

ϕp−fin : A×F −→ C×p

in such a way that ϕp−fin is invariant under F×F+
∞U(p∞). By the invariance property, this

function descends to the space Cl+F (p∞). The p-adic L-function should then be a distribution

Lp on Cl+F (p∞) such that

Lp(ϕp−fin) = (∗)L(Φ, ϕ),

for an explicit factor (∗). The definition of ϕp−fin is covered in detail in Chapter 1.3.2.

I.1.3. The Pollack–Stevens construction

The following is a summary of the Pollack–Stevens construction of p-adic L-functions of classical

modular forms. For a more detailed exposition, see [PS11].

Modular symbols

Almost every known method for constructing p-adic L-functions of modular forms uses modu-

lar symbols. These are algebraic objects attached to automorphic forms that retain data about

the action of the Hecke operators. Since automorphic forms are inherently analytic objects,

and modular symbols are purely algebraic, they are often much easier to study; we have ‘dis-

carded’ much of the analytic information. Because of this, they are very powerful computational

tools; as an example, Cremona’s tables of elliptic curves at the ‘L-functions and modular forms

database’ (or LMFDB) are compiled using a modular symbol algorithm.

We give a brief account of the theory over Q in weight 2. Let f ∈ S2(Γ0(N)) be a classi-

cal modular form, and consider the function

φf : {paths between cusps} −→ C

given by

φf ({r} − {s}) =
∫ s

r

f(z)dz,
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where {r} − {s} denotes any path between the cusps r, s ∈ P1(Q) in the upper half-plane. We

write ∆0 ..= Div0(P1(Q)) for the free abelian group generated by such paths, and extend φf to

∆0 linearly. Note then that we have

φf (γD) = φf (D)

for any D ∈ ∆0 and γ ∈ Γ0(N), where γ acts on cusps by fractional linear transformations

(and on ∆0 by extending linearly). We write SymbΓ0(N)(C) for the subspace of Hom(∆0,C)

satisfying this invariance property. The remarkable thing now is that not only is this space

finite dimensional, but the Eichler-Shimura isomorphism says that

SymbΓ0(N)(C) ∼= M2(Γ0(N))⊕ S2(Γ0(N)),

so that the study of spaces of modular forms of weight 2 can essentially be reduced to the study

of this algebraic symbol space. Even better, there is a natural Hecke action on SymbΓ0(N)(C),

and the isomorphism is equivariant with respect to the Hecke action on both sides. Accord-

ingly, all systems of Hecke eigenvalues in the space of weight 2 modular forms are captured in

the symbol space. In particular, in the process of passing from a modular form to a modular

symbol – discarding all of the analytic information attached to f – we have retained all of the

data regarding the Hecke action.

Since the L-function of a modular form f is built out of its Hecke eigenvalues, and the mod-

ular symbol attached to f retains this data, it is perhaps not surprising that this symbol also

contains data about its L-function. As a toy example, note that

φf ({0} − {∞}) =
∫ ∞

0
f(z)dz = 2πiL(f, 1),

so that φf sees the critical value of L(f, s) at s = 1. Similar formulae exist for all twists of

L(f, s) by Dirichlet characters at s = 1.

For higher weight, there are slight adjustments to be made. Let f ∈ Sk+2(Γ0(N)) be a modular

form of weight k + 2. Then f naturally gives rise to a function φf in SymbΓ0(N)(Vk(C)) ..=

HomΓ0(N)(∆0, Vk(C)), where Vk(C) is the space of polynomials over C of degree at most k.3

Here, the action of Γ0(N) on Hom(∆0, Vk(C)) is by

γ · φ(D) = φ(γD)|γ,
3Or, equivalently, Vk(C) is defined as the space of homogeneous polynomials in two variables of degree k over

C.
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for a suitable right action of Γ0(N) on Vk(C). Again, we get a Hecke equivariant isomorphism

SymbΓ0(N)(Vk(C)) ∼= Mk+2(Γ0(N))⊕ Sk+2(Γ0(N)).

As in the weight 2 case, there are explicit formulae linking the modular symbol φf with critical

values of its L-function.

Overconvergent modular forms and symbols

In this thesis, we will be more interested in the theoretical uses of modular symbols and, in

particular, with a wonderful idea of Glenn Stevens.

Stevens’ theory of overconvergent modular symbols has its roots in the study of p-adic vari-

ation of modular forms. If f ∈ Sk(Γ0(p)) is a normalised eigenform, then its q-expansion will

have algebraic coefficients, and it is natural to ask whether there are congruences between f

and other forms. In particular, one might ask:

Question: Let m ∈ N. Does there exist a normalised eigenform g =
∑
n an(g)qn ∈ Sk′(Γ0(p)),

not equal to f , such that

f(z) ≡ g(z) (mod pm),

in the sense that an(f) ≡ an(g) (mod pm) for all n?

This question – and questions similar to it – led to Serre’s theory of p-adic modular forms. A

related question is to ask how spaces of modular forms vary as the weight varies p-adically.

If one tries to vary spaces of classical modular forms p-adically, then one immediately hits a

problem: the dimension of Mk+pn(Γ0(p)) is unbounded as n increases, so there is no way that

these spaces can be used to ‘p-adically approximate’ the space Mk(Γ0(p)). There have been

several clever approaches to circumvent this problem.

Hida considered this question in the case where f is ordinary, that is, when the eigenvalue

at p is a p-adic unit. His results were remarkable; he showed that the space Sord
k (Γ0(p)) of

ordinary cusp forms has dimension that depends only on the weight modulo p − 1, and suc-

ceeded in varying these spaces p-adically. For more general forms, similar results were proved

by Coleman. Instead of passing to a subspace, however, he instead passed to a much larger

(indeed, infinite dimensional) space, that is, the space of overconvergent modular forms. He

defined a space M†k(Γ0(p)), containing Mk(Γ0(p)), and showed that these spaces also varied

nicely p-adically.

The definition of overconvergent modular forms is inherently analytic, relying on rigid p-adic

geometry. In [Ste94], Stevens managed to emulate the theory in the world of modular symbols
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in a purely algebraic manner. His key idea was to replace the coefficient space in the definition

of classical modular symbols; instead of considering symbols taking values in polynomials, he

considered symbols taking values in (infinite-dimensional) spaces of p-adic distributions. He

was then able to show that the spaces of overconvergent modular symbols also varied nicely as

the weight varied p-adically.

The theory of p-adic variation in number theory is vast and hugely interesting, and the com-

ments above provide but the smallest scratch on its surface, included for motivation only.

Whilst going into any further detail here is impractical, there have been huge amounts written

on this beautiful topic; for survey articles, see [Maz12] (for the work of Hida) and [Buz04] (for

the work of Coleman).

Control theorems

One of the most important aspects of Coleman’s theory is his control theorem, which says that

a ‘small slope’ overconvergent modular form is in fact classical. There is a natural Hecke action

on the space M†k(Γ0(p)), and if f is an overconvergent eigenform, then the slope of f is vp(ap),

where ap is the eigenvalue at p. Then in [Col96], in a result known as his small slope classicality

theorem, Coleman proved:

Theorem (Coleman). Let f ∈ M†k(Γ0(p)) be an overconvergent eigenform of slope < k − 1.

Then f is classical, that is, f ∈Mk(Γ0(p)).

Stevens proved the analogous result for modular symbols. Here, however, there is a fundamental

difference; whilst the space of classical modular forms is a subspace of the space of overcon-

vergent modular forms, the space of classical modular symbols is a quotient of the space of

overconvergent modular symbols. Stevens’ result was then:

Theorem (Stevens). Denote the space of overconvergent modular symbols by SymbΓ0(p)(Dk).

There is a natural Hecke-equivariant and surjective specialisation map

ρk : SymbΓ0(p)(Dk) −→ SymbΓ0(p)(Vk)

which becomes an isomorphism upon restriction to the slope < k + 1 subspaces.

Note here the ‘shift by 2’; since a weight k + 2 modular form corresponds to an element of

SymbΓ0(p)(Vk), the slope in this setting is ‘small’ if it is < k + 1 rather than < k − 1.

The construction of the p-adic L-function

Let f ∈ Sk+2(Γ0(p)) be an eigenform with vp(ap) < k + 1, where ap is the eigenvalue at p.

To f we can associate a modular symbol φf ∈ SymbΓ0(p)(Vk(C)), and in fact, it’s possible to
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renormalise so that the symbol takes values in the p-adic space Vk(L), for L an extension of

Qp. Then, by the control theorem, there is a unique small-slope overconvergent eigensymbol

Ψf such that ρk(Ψf ) = φf .

We stated that the classical modular symbol φf ‘sees’ critical L-values of the modular form. In

particular, there are formulae relating φf and the values L(f, ϕ), for ϕ = χ| · |n, where χ is a

finite order character of p-power conductor and 0 ≤ n ≤ k. Accordingly, the same information

is carried by the overconvergent symbol Ψf . Indeed, Pollack and Stevens made the following

observation in [PS11]:

Theorem (Pollack–Stevens). Define µp to be the distribution Ψf ({0} − {∞})|Z×p . Then µp

satisfies the following interpolation property: let ϕ = χ| · |n be a Hecke character, where χ has

p-power conductor and 0 ≤ n ≤ k; then

µp(ϕp−fin) = (∗)L(f, ϕ),

for an explicit factor (∗). The distribution µp also satisfies a growth property making it uniquely

determined by this interpolation condition. Thus µp is the p-adic L-function of f .

It is precisely this theorem that we generalise to automorphic forms over a general number

field.

I.2. P -adic L-functions of Bianchi modular forms

The first major work in this thesis concentrates on generalising the results of Pollack and

Stevens to the setting of automorphic forms over imaginary quadratic fields. In particular, we

construct p-adic L-functions of Bianchi modular forms, that is, automorphic forms for GL2

over imaginary quadratic fields.

I.2.1. Bianchi modular forms

Bianchi modular forms have been increasingly studied in recent years, and the literature regard-

ing them is widespread; in particular, an account of the general theory over arbitrary number

fields is given in André Weil’s book [Wei71], whilst accounts in the imaginary quadratic case for

weight 2 are given by John Cremona and two of his students in [Cre81], [CW94] and [Byg98].

There seem to be a number of different conventions in the various treatments of the theory, and

as such, in Part I of the text, we give a largely self-contained introduction to Bianchi modular

forms, drawing from the existing literature (and in particular from [Byg98] and [Gha99]) and

comparing the various approaches whenever they differ. In the process, we fix the conventions

and notation we’ll use in the sequel.
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The definitions that arise in the theory can seem unnatural to a new reader (indeed, they cer-

tainly seemed unnatural to the author at first sight), and it’s rarely obvious why they should

provide a suitable generalisation of the theory of classical modular forms. Throughout, every

attempt is made to motivate each step, often in the case of weight 2 (also known as parallel

weight (0,0)) Bianchi modular forms, where the literature is considerably more extensive, owing

to the connection between weight 2 Bianchi modular forms for K and elliptic curves defined

over K. A conscious effort has been made to write in the greatest possible clarity, even though

this inevitably involves labouring certain points.

Let K be an imaginary quadratic field. Broadly speaking, a Bianchi modular form over K

is a function

Φ : GL2(AK) −→ V2k+2(C)

that is left-invariant under GL2(K), right-invariant under a compact level group Ω1(n) ⊂

GL2(OK ⊗Z Ẑ) and transforms suitably under the standard irreducible representation ρ :

SU2(C) → GL(V2k+2(C)). We say Φ has weight (k, k) and level Ω1(n). Here V2k+2(C) is

the space of homogeneous polynomials in two variables of degree 2k + 2. Such a form corre-

sponds to a collection of automorphic functions F 1, ..., Fh : GL2(C) → V2k+2(C), where h is

the class number of K. We can descend further to functions F1, ...,Fh on the upper half-space

H3 ..= C × R>0, the analogue of the upper half-plane in this setting. Such a Bianchi modular

form has a Fourier expansion, and the Fourier coefficients can be built into an L-function that

converges absolutely on a right half-plane. All of this is covered in extensive detail, and with

motivation, in Part I.

I.2.2. Bianchi modular symbols

Part II of this thesis is dedicated to the study of (classical and overconvergent) Bianchi modular

symbols. Let Γ ⊂ SL2(K) be an arithmetic subgroup, and define Vk,k(C) ..= Vk(C) ⊗C Vk(C);

then the space of Bianchi modular symbols is the space

SymbΓ(Vk,k(C)) ..= HomΓ(Div0(P1(K)), Vk,k(C)∗),

analogously to the rational case. Here the superscript ()∗ denotes the dual space4. To a cuspidal

Bianchi modular form Φ of weight (k, k) and level Ω1(n), we associate a collection F1, ...,Fh of

functions on H3, as above, each satisfying an automorphy condition for some discrete subgroup

Γi1(n) of SL2(K), and to each of these F i, we associate a classical Bianchi modular symbol

φFi ∈ SymbΓi1(n)(Vk,k(C)∗). The collection (φF1 , ..., φFh) is the modular symbol attached to Φ.

In fact, we can renormalise this symbol so that it is defined over a sufficiently large number

field, and in this way, can define a p-adic modular symbol attached to Φ. This construction is
4We use the dual space as it is, in many ways, more natural. There is in fact an isomorphism Vk,k(C) ∼=

Vk,k(C)∗ that is equivariant with respect to the various actions we consider, so it doesn’t really matter which
we use.
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outlined in Chapter 5.

By studying the L-function of Φ, we can exhibit an explicit link between values of this symbol

and critical values of the part of the L-function corresponding to F i. The calculations involved

here are significantly more involved than in the rational case; the definition of the modular

symbol is more complicated, and the Fourier expansion is more difficult to work with. The

calculations involved here comprise Chapter 6.

We then move onto p-adic methods. We define the space of overconvergent Bianchi modular

symbols to be the space of modular symbols taking values in some p-adic distribution space; pre-

cisely, we fix a finite extension L/Qp, and denoting by Ak(L) the space of rigid analytic functions

on the unit disc defined over L, our distribution space is Dk,k(L) ..= Hom(Ak(L)⊗̂LAk(L), L).

We have a specialisation map from overconvergent to classical modular symbols by dualising

the inclusion Vk(L)⊗L Vk(L) ↪→ Ak(L)⊗̂LAk(L), much like in the rational case. We prove the

following analogue of Stevens’ control theorem; in the case of p inert, it is proved in Corollary

8.2.1, in the case of p ramified it is proved in Corollary 8.2.1 combined with Lemma 9.1.9, and

in the case p split it is proved in Theorem 9.1.10.

Theorem. Let p be a rational prime with pOK =
∏

p|p p
ep . For each prime p|p, let λp ∈ L.

Then, when vp(λp) < (k + 1)/ep for all p|p, the restriction of the map

ρ :
h⊕
i=1

SymbΓi1(n)(Dk,k(L)){Up=λp:p|p} −→
h⊕
i=1

SymbΓi1(n)(Vk,k(L)∗){Up=λp:p|p}

to the simultaneous λp-eigenspaces of the Up-operators is an isomorphism.

The proof draws from work of Matthew Greenberg in [Gre07], in that we define a series of

finite approximation modules, and lift compatibly through this system to obtain a overconver-

gent symbol from a classical one. The proof is constructive.

It is worth remarking that whilst in the rational case, the control theorem gives an analogue of

Coleman’s small slope classicality theorem, no such theory of ‘overconvergent Bianchi modular

forms’ yet exists. Indeed, the definition of overconvergent modular forms over the rationals

relies inherently on geometry, making the conventional construction impossible over an imag-

inary quadratic field. In this setting, the locally symmetric spaces involved share little of the

desirable properties of modular curves over Q (for example, there is neither a complex structure

nor the structure of an algebraic variety on such a space). By passing to modular symbols, and

‘forgetting’ the analytic structure, it is possible to see overconvergent objects in this setting,

since we are working purely algebraically.
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I.2.3. Distributions and interpolation

In the remainder of Part II, the values of an overconvergent eigenlift ΨFi are studied; namely,

we prove that such a symbol takes values in some space of locally analytic distributions, and

that it is admissible (or tempered). We also exploit the link between classical modular symbols

and critical L-values to prove an interpolation property. As a formal corollary, we see that we

have the following way of constructing the p-adic L-function of Φ (see Theorem 10.4.1):

Theorem. Suppose we are in the set-up of the control theorem, and let Φ be a small slope

cuspidal Bianchi eigenform of weight (k, k) and level Ω1(n). Then to Φ we can associate a

small slope eigensymbol (φ1, ..., φh) in a direct sum of symbol spaces, which we can lift uniquely

to an overconvergent symbol (Ψ1, ...,Ψh) using the control theorem. Then there is a way of

patching together the distributions Ψi({0} − {∞}) to a function µp on the ray class group

ClK(p∞) such that µp is the p-adic L-function of Φ.

Such a result is the natural analogue of the results of Pollack and Stevens in the rational case.

I.3. P -adic L-functions for GL2

In Part III, in joint work with Daniel Barrera Salazar, we generalise this further to arbitrary

number fields. There is a good theory of modular symbols in the more general setting, but this

theory can’t be made as explicit as in the rational and imaginary quadratic cases; indeed, these

symbols live in higher compactly supported cohomology groups. A discussion motivating the

general definition is given in Chapter 11.1.

I.3.1. Classical cohomology and L-values

We give a brief overview of the definition of modular symbols in general. Throughout Part III,

we take Φ to be a cuspidal automorphic eigenform of weight λ and level Ω1(n) over a number field

F , where λ and Ω1(n) are defined as in Chapter 2.3.1 and equation (2.3) respectively. We write

d = r1 + 2r2 for the degree of F , where r1 (resp. r2) denotes the number of real (resp. complex)

places of F . Let q = r1 + r2. The space of modular symbols of level Ω1(n) and weight λ is the

compactly supported cohomology space Hq
c(Y1(n),Vλ), where Y1(n) is the locally symmetric

space associated to Ω1(n) and Vλ is a suitable sheaf of polynomials on Y1(n) depending on the

weight. The Eichler-Shimura isomorphism gives a Hecke-equivariant isomorphism between this

cohomology group and the direct sum of certain spaces of automorphic forms, mirroring the

analogous theorems over Q and imaginary quadratic fields. All of this is discussed in Chapter

11.

Since we cannot work in the same explicit setting as before, we are forced to use more abstract

cohomological methods to study these symbols. In particular, we use the theory of automorphic
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cycles as developed by Dimitrov. Using evaluation maps, which were described initially by

Dimitrov for totally real fields in [Dim13] and which we have generalised to the case of arbitrary

number fields, we relate the modular symbol attached to an automorphic form to critical values

of its L-function. We show that these results have an algebraic analogue; that is, we can pass to

a cohomology class with coefficients in a sufficiently large number field, and then relate this to

the algebraic part of the critical L-values of Φ. In particular, via a long and technical argument,

we prove the following result (see Theorem 12.2.7 in the paper for a more precise formulation):

Theorem. For each Hecke character ϕ of F with infinity type in a range depending on λ, there

is a map

Evϕ : Hq
c(Y1(n),Vλ(A)) −→ A

such that if Φ is a cuspidal automorphic form of weight λ, with associated A-valued modular

symbol φA (for A either C or a sufficiently large number field), then

Evϕ(φA) = (∗)L(Φ, ϕ),

where L(Φ, ·) is the L-function attached to Φ and (∗) is an explicit factor.

I.3.2. Overconvergent cohomology

All of these results are rather classical in nature, and make explicit results that are, in theory,

‘well-known’ (although the authors could not find the results in the generality they require in

the existing literature). At this point, we start using new p-adic methods. Henceforth, assume

that (p)|n, and take L to be a (sufficiently large) finite extension of Qp. We define the space

of overconvergent modular symbols of level Ω1(n) and weight λ to be the compactly supported

cohomology of Y1(n) with coefficients in an (infinite-dimensional) space of p-adic distributions

equipped with an action of Ω1(n) that depends on λ.

For each prime p|p in F , we have the Hecke operator Up at p on both automorphic forms and

(classical and overconvergent) modular symbols, induced from the action of the matrix
( 1 0

0 πp

)
,

where πp ∈ L is a fixed uniformiser at p.

In Chapter 13.2, we prove that for any hp ∈ Q, the space of overconvergent modular symbols

admits a slope ≤ hp decomposition with respect to the Up operator.

Definition. Let M be an L-vector space with an action of the Hecke operators Up for p|p.

Where it exists, we denote the slope ≤ hp subspace with respect to the Up operator byM≤hp,Up .

If h ..= (hp)p|p is a collection of rationals indexed by the primes above p, we define

M≤h ..=
⋂
p|p

M≤hp,Up
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to be the slope ≤ h-subspace at p.

Definition. Let pOF =
∏

pep be the decomposition of p in F , and for each p|p let hp ∈ Q.

Let Σ be the set of all infinite places of F , and write the weight λ as λ = ((kσ), (vσ)) ∈ Z[Σ]2.

For each σ ∈ Σ, there is a unique prime p(σ)|p corresponding to σ, and to denote this we write

σ ∼ p. Define k0
p
..= min{kσ : σ ∼ p} and ωp(λ) ..=

∑
σ∼p vσ.

We say that the slope h ..= (hp)p|p is small if hp < (k0
p + ωp(λ) + 1)/ep for each p|p.

For each fixed weight, there is a surjective Hecke-equivariant specialisation map ρ from the space

of overconvergent modular symbols to the space of classical modular symbols. In Chapter 13.3,

we prove the following control theorem:

Theorem. Let h ∈ Q{p|p} be a small slope. Then the restriction of the specialisation map ρ to

the slope ≤ h subspaces of the spaces of modular symbols is an isomorphism.

In particular, to a small slope cuspidal eigenform – that is, an eigenform whose associated

modular symbol lives in some small-slope subspace of the space of classical modular symbols –

one can attach a unique small-slope overconvergent eigenlift of its associated modular symbol.

I.3.3. Overconvergent evaluation maps and p-adic L-functions

Let Ψ be an overconvergent eigensymbol. We can use a slightly different version of the eval-

uation maps from previously to construct a distribution µΨ on the narrow ray class group

Cl+F (p∞) attached to Ψ, closely following the work of the first author in [BS13]. We prove

that the distribution we define is completely canonical. Via compatibility between classical

and overconvergent evaluation maps, this distribution then interpolates the critical values of

the L-function of Φ, and we hence define the p-adic L-function to be this distribution. To

summarise, the main result of Part III is:

Theorem. Let Φ be a small slope cuspidal eigenform over F . Let φΦ be the (p-adic) classical

modular symbol attached to Φ, and let ΨΦ be its (unique) small-slope overconvergent eigenlift.

Let µΦ be the distribution on Cl+F (p∞) attached to ΨΦ.

If ϕ is a critical Hecke character, then we can define a canonical locally algebraic character

ϕp−fin on Cl+F (p∞) associated to ϕ. Then

µΦ(ϕp−fin) = (∗)L(Φ, ϕ),

where (∗) is an explicit factor.
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Definition. We define the p-adic L-function of Φ to be the distribution µΦ on Cl+F (p∞).

For a precise notion of the range of interpolation and the factor (∗), see Theorem 14.3.1.

In the case that F is totally real or imaginary quadratic, given slightly tighter conditions on

the slope one can prove that the distribution we obtain is admissible, that is, it satisfies a

growth property that then determines the distribution uniquely. In the general situation, it

is rather more difficult to define the correct notion of admissibility; we discuss this further in

Chapter 14.4. We instead settle for proving that our construction is canonical, so that it is

indeed reasonable to define the p-adic L-function in this manner.

I.4. Structure of the text

The text is split into three major parts. The first is entirely expositional, developing the the-

ory of automorphic forms in the setting we need, and may be entirely skipped by the reader

who is comfortable with the theory of automorphic forms for GL1 and GL2. In Chapter 1, we

focus on Hecke characters, or automorphic forms for GL1. In Chapter 2, we present motivation

and definitions for automorphy conditions for GL2. In Chapter 3, we complete the definition

of automorphic forms by discussing harmonic differential forms and boundedness conditions.

Finally, we conclude Part I with a discussion of L-functions in Chapter 4.

Parts II and III are largely independent, and may be read as such. Part II, which contains

the results of the paper [Wil15], focuses on the imaginary quadratic setting. In Chapter 5, we

develop the theory of Bianchi modular symbols, whilst in Chapter 6 we prove the connection

between modular symbols and L-values of automorphic forms. In Chapter 7, we define spaces

of distributions and overconvergent Bianchi modular symbols, and then in Chapter 8, we prove

the control theorem in this setting and examine overconvergent lifts. In Chapter 9, we refine

these results in the case p splits in the imaginary quadratic field. Finally, we conclude Part

II in Chapter 10 by using our results to construct the p-adic L-function of an automorphic form.

Part III contains the results of the paper [BSW16], written jointly with Daniel Barrera. In

Chapter 11, we discuss the theory of classical modular symbols over number fields and how

this generalises the rational and imaginary quadratic cases. In Chapter 12, we use automorphic

cycles to define evaluation maps and prove an integral formula for the L-function of an auto-

morphic form. In Chapter 13, we define overconvergent modular symbols, and prove the control

theorem for cohomology. Finally, in Chapter 14, we show how to use overconvergent evalua-

tions to define a canonical ray class distribution attached to a small slope automorphic form,

and show that it interpolates critical values of its L-function. We define its p-adic L-function

to be this distribution.
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I.5. Comparison to relevant literature

There are a number of people who have worked on similar things in the recent past. In the

Bianchi case, perhaps of most relevance is Mak Trifkovic, who in [Tri06] performed computa-

tions with overconvergent Bianchi modular symbols. He proved a lifting theorem in the case of

weight 2 ordinary eigenforms over an imaginary quadratic field of class number 1, using similar

explicit methods to [Gre07]. The lifting results in Part II are a significant generalisation of

his theorem, though the author has not made any efforts to repeat the computational aspects

of Trifkovic’s work in this more general setting. Trifkovic’s work highlights a wider range of

applications for overconvergent modular symbols; indeed, they have been used in the efficient

computation of Stark–Heegner points on elliptic curves. For further details on such compu-

tations, see, for example, the work of Darmon and Pollack in [DP06] or Guitart and Masdeu

in [GM14].
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Notation

Whilst we will usually introduce notation as it is required, this section is intended as an index

for the main notation used throughout the text. In particular, we have used the following

convention:

Convention: Throughout the text, we will use K to denote an imaginary quadratic field whilst

F denotes an arbitrary number field. Since the first half of this thesis will concentrate on the

former case and the second half the latter, and both halves are essentially self-contained, the

author hopes that this will help the reader distinguish between the two halves more easily.

Here, we give the definitions for general F .

Basic objects

Let p be a prime, and fix – once and for all – an embedding incp : Q ↪→ Qp. Let F be a number

field of degree d = r1 + 2r2, where r1 is the number of real embeddings and r2 the number of

pairs of complex embeddings of F . Write q = r1 + r2. We write Σ for the set of all infinite

embeddings of F . Let Σ(R) denote the set of real places of F and let Σ(C) be the set containing

a (henceforth fixed) choice of embedding from each pair of complex embeddings, so that

Σ = Σ(R) ∪ Σ(C) ∪ cΣ(C),

where c denotes complex conjugation. When we want to make the field explicit in this notation,

we will write ΣF instead of Σ.

We write D for the different of F and D for the discriminant of F . For each finite place v in

F , fix (once and for all) a uniformiser πv in the completion Fv.

Let AF = F∞ × AfF denote the adele ring of F , with infinite adeles F∞ ∼= F ⊗Q R and finite

adeles AfF . Let ÔF ∼= Ẑ⊗Z OF denote the integral (finite) adeles. Let F+
∞
∼= Rr1>0 × (C×)r2 be

the connected component of the identity in F×∞.
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Ray class groups

For an ideal f ⊂ OF , we define U(f) to be the set of elements of ÔF that are congruent to

1 (mod f), and denote the narrow ray class group modulo f by

Cl+F (f) ..= F×\A×F /U(f)F+
∞.

This is equivalent to the usual (ideal-theoretic) formulation. When f = OF , we write simply

Cl+F (the narrow class group of F ). Write h for the narrow class number of F . Fix a level

n ⊂ OF with (p)|n, and choose fixed (ideal) representatives I1, ..., Ih of the narrow class group,

coprime to n, represented by ideles a1, ..., ah, with (ai)v = 1 for all v|n∞. (Note that in Part

II, where we treat the imaginary quadratic case, the narrow class group is nothing other than

the usual class group).

Rings of polynomials

Let R be a ring and k ≥ 0 a non-negative integer. We write Vk(R) for the space of homogeneous

polynomials of degree k in two variables over R. If k = (ki)i ∈ Zd, write

Vk(R) ..=
d⊗
i=1

Vki .

We equip this with a left action of GL2(R)d, induced from the action of GL2(R) on a single

component by

γ · P (X,Y ) = P (dX + bY, cX + aY ), γ =

a b

c d

 .

For a weight λ = (k,v) ∈ Zd × Zd, we will write Vλ(R) for the space Vk(R) with the action of

(γi)i ∈ GL2(R)d twisted by detv =
∏d
i=1 det(γi)vi . In Part II, we will only consider weights of

the form λ = [(k, k), (0, 0)], in which case we will write Vk,k(R).

Automorphic forms and modular symbols

We will typically use Φ to denote an automorphic form for GL2, whose level will always be

denoted by Ω1(n), as in equation (2.3). We will use φ to denote a classical modular symbol

and Ψ an overconvergent modular symbol, with appropriate subscripts where necessary.
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Automorphic Forms



In this (entirely expository) section, we develop the standard theory of automorphic forms and

describe some of their properties. We build the theory from the ground up, although, to keep this

thesis at a manageable length, we assume as prerequisites that the reader is familiar with both

the theory of classical modular forms and the theory of adeles and ideles. After an introductory

chapter on Hecke characters and their properties, we give – with motivation – the definition of

an adelic automorphy condition of GL2 over general number fields. In Chapter 3, we discuss

harmonic differential forms, allowing us to complete the definition of automorphic forms in the

generality we require. Finally, we discuss the theory of Hecke operators and Fourier expansions,

using them to define L-functions of automorphic forms.

None of this section is original, and is intended to be an introduction to the theory of au-

tomorphic forms. The reader who is comfortable with this material may safely skip to Part

II.



Chapter 1

Hecke Characters

Hecke characters can be seen as automorphic forms for GL1, and provide a generalisation of

the theory of Dirichlet characters. We will extensively refer to them in the sequel, and here we

recap some of the basic theory, in the process fixing the notation we shall use throughout this

thesis. In particular, we will show that each Hecke character has a well-defined conductor and

gives rise to a function on ideals that are coprime to this conductor, before describing the theory

of Gauss sums for Hecke characters. We conclude by associating a character of the narrow ray

class group Cl+F (p∞) to a Hecke character of suitable conductor.

1.1. Motivation and definitions

1.1.1. Dirichlet characters and Hecke characters over Q

Recall that for a positive integer N , a Dirichlet character is a homomorphism

χ : (Z/NZ)× −→ C×.

We can see this as a character on the ideles A×Q in a natural way. Indeed, note that

(Z/NZ)× ∼=
∏
p

(Z/prZ)×,

where the product is over all primes and r is such that pr exactly divides N (so that r is zero

almost everywhere), and recall that there is a decomposition

Z×p ∼= (Z/prZ)× × (1 + prZp).

Thus we can see χ as a continuous character on Ẑ ..=
∏
p Z×p with suitable conditions; namely,

if χp is the restriction of χ to Z×p , we have χp(1 + prZp) = 1 for all p and r as above.

Recall that the ideles decompose as

A×Q ∼= Q× · [R>0 × Ẑ],
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and accordingly that any Dirichlet character χ defines a unique continuous homomorphism

χ : Q×\A×Q −→ C×

whose restriction to R>0 is trivial.

A Hecke character over Q is a continuous character

ϕ : Q×\A×Q −→ C×.

Thus a Dirichlet character determines a Hecke character. Note that ϕ is allowed to be non-

trivial on R>0, and in general, any Hecke character over Q takes the form | · |kχ, where χ comes

from a Dirichlet character, | · | is the idelic norm map and k is an integer. (This does not remain

true for a general number field).

1.1.2. General Hecke characters

We now develop the theory by giving definitions and properties in generality.

Definition 1.1.1. Let F be a number field. A Hecke character for F is a continuous homo-

morphism

ϕ : F×\A×F −→ C×.

By restriction, for each place v of F , we obtain a character ϕv : F×v → C×, where Fv denotes

the completion of F at v.

Definition 1.1.2. The finite part of ϕ is

ϕf ..=
∏
v-∞

ϕv.

The infinite part of ϕ is

ϕ∞ ..= ϕ|(F⊗QR)× ,

so that ϕ = ϕfϕ∞.

1.2. Basic properties

We now give some of the basic properties that Hecke characters satisfy. In particular, we’ll give

more details on the possible forms a Hecke character can take on both the finite and infinite

ideles.
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1.2.1. The finite part and the conductor

First, we show that each Hecke character gives rise to a Dirichlet character over F in a natural

way.

Proposition 1.2.1. Suppose v corresponds to a finite prime p of F , and write ϕp for the

restriction of ϕv to O×p , the ring of integers in the completion Fp = Fv.

(i) There is a non-negative integer ep such that ϕp(1 + pep) = 1 and ep is minimal with this

property.

(ii) For almost all primes p of OF , we have ep = 0, that is, ϕp(O×p ) = 1.

Proof. Observe first that O×p is a profinite group, with

O×p = lim←−
n

O×p /(1 + pn).

Now, there exists some neighbourhood V of 1 in C containing no non-trivial subgroup, and by

continuity, the inverse image of V in O×p is open. By the nature of the profinite topology, any

non-empty open set must contain a subgroup of the form 1 + pep for some non-negative integer

ep. Now, we have

ϕp(1 + pep) ⊂ V,

but it must also be a subgroup; since we picked V to contain no non-trivial subgroup, we

therefore have

ϕp(1 + pep) = 1,

as required. (Note that we can always pick a minimal such ep by the well-ordering principle).

Now, the kernel of a continuous homomorphism from a profinite group is open, and hence

has finite index (as any open subgroup of a profinite group has finite index). But
∏

pO
×
p is

itself profinite; indeed, it is the inverse limit

∏
p

O×p = lim←−
I

(OK/I)×,

where the limit is taken over all non-zero ideals in OF with the usual ordering. Thus the kernel

of
∏

p ϕp has finite index, and this forces all but finitely many of the ep to be 0, as required.

Definition 1.2.2. Let ϕ be a Hecke character of F . Define the conductor of ϕ to be the ideal

f ..=
∏

p p
ep , where the ep are as defined in Proposition 1.2.1.

In particular, ϕ naturally gives rise to a character of Ô×F /(1+fÔF ) ∼= (OF /f)× → C×, a Dirichlet

character over F with conductor f. We’ve shown that all of the information determining this
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Dirichlet character is encoded by the finite part ϕf , and in particular at the primes dividing f,

which motivates:

Definition 1.2.3. For (any) ideal I ⊂ OF , write

ϕI ..=
∏
v|I

ϕv.

So ϕf determines the Dirichlet character associated to ϕ.

1.2.2. The infinite part

Whilst every Dirichlet character of F will arise from a Hecke character in the manner explained

above, the association is very far from bijective. Indeed, there will be many distinct Hecke

characters that determine the same Dirichlet character. This is because we’ve said nothing

about the behaviour at infinite places.

Recall that F∞ ..= F ⊗Q R =
∏
v|∞ Fv. Let F+

∞ be the connected component of the iden-

tity in F×∞, that is,

F+
∞
∼=
∏
v|∞

F+
v ,

where

F+
v =

 R>0 : v ∈ Σ(R),

C× : v ∈ Σ(C).

There is a canonical decomposition F×∞ = {±1}Σ(R)×F+
∞, and thus any Hecke character ϕ gives

a character ϕ+
∞ on F+

∞ by restriction. We say such a character of F+
∞ is arithmetic (sometimes

referred to in the literature as algebraic) if it takes the form

z = (zv)v|∞ 7−→ zr =
∏
v|∞

zrvv

for some r ∈ Z[Σ], and we say r is the infinity-type of ϕ. Henceforth, all Hecke characters will

be assumed to be arithmetic.

Not all elements of Z[Σ] can be realised as the infinity type of a Hecke character. The following

description of the ‘admissible’ infinity types is taken from [Hid94], Chapter 3.

Definition 1.2.4. Let FCM be the maximal CM subfield of F (or the maximal totally real

subfield if no such CM field exists), and denote its set of infinite places by ΣCM. There is a
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natural inflation map

Inf : Z[ΣCM] −→ Z[Σ],∑
τ∈ΣCM

nττ 7−→
∑
σ∈Σ

σ|FCM=τ

nτσ.

Let ΞCM ..= {j ∈ Z[ΣCM] : j + cj ∈ tCMZ}, where tCM = (1, 1, ..., 1). We define the set of

admissible infinity types to be

Ξ = Inf(ΞCM).

In more concrete terms, a necessary (but not sufficient) condition for r ∈ Ξ is that r + cr is

parallel. This motivates the following piece of notation, which we’ll require in the sequel:

Definition 1.2.5. Let r ∈ Z[Σ] be admissible, that is, let r ∈ Ξ. Then define [r] ∈ R to be the

unique number such that

r + cr = 2[r]t.

Note that, in particular, for any ζ ∈ F×, we have N((ζ))[r] = ζr, which we’ll use later.

In [Wei56], Weil then shows that:

Proposition 1.2.6. An element r ∈ Z[Σ] can be realised as the infinity type of a Hecke char-

acter of F if and only if r ∈ Ξ, that is, r is admissible.

This restriction on the possible infinity types comes from the condition that any Hecke character

ϕ is trivial on F×. In particular, an element r ∈ Z[Σ] is admissible if and only if there exists

an integer n such that εnr =
∏
v∈Σ ε

nrv = 1 for all ε ∈ O×F .

Examples: (i) Suppose F is totally real. As the unit group is as ‘big’ as it can be relative to

the degree of F , this condition is very restrictive, and indeed the only admissible infinity

types are parallel.

(ii) Suppose F is imaginary quadratic. Then the unit group is finite, and if we take n to be

its order, we see that any element of Z[Σ] can be an infinity type.

We also define a character εϕ of the Weyl group {±1}Σ(R) attached to ϕ. Rather than defining

εϕ simply by restriction, we do this more subtly. In particular, we can consider ι ∈ {±1}Σ(R)

as an infinite idele by setting its entries at non-real places to be 1; then we define

εϕ(ι) ..= ϕ∞(ι)ιr.
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In the sequel, we will (in an abuse of notation) write εϕ for both this character of {±1}Σ(R)

and for the character of the ideles given by εϕ(x) = εϕ((sign(xv))v∈Σ(R)). Note then that ϕ∞εϕ
is the unique algebraic character of F×∞ that restricts to ϕ+

∞ on F+
∞; namely, it is the character

of F×∞ given by z 7→ zr.

Remark: Note that if F = Q and ϕ = | · | is the norm character on A×Q , then εϕ(−1) = −1,

even though ϕ itself takes only positive values.

1.2.3. Hecke characters as functions on ideals

We have introduced Hecke characters via their idelic formulation. They were initially defined

in a slightly less clean way as functions on ideals, with the conductor built into the definition.

There is a close connection between ideles and ideals; indeed, given an idele x ∈ A×F , we can

define its associated fractional ideal by

I(x) ..=
∏
p

pvp(xp),

where the product is over all finite primes of F . This is well-defined since vp(xp) = 0 for almost

all p. Any fractional ideal I of F can be written in the form I(x) for some idele x.

Proposition 1.2.7. Let ϕ be a Hecke character of conductor f, and let J(f) be the group of

fractional ideals of F that are coprime to f. Then there is a well-defined character

ϕ : J(f) −→ C×,

defined by

ϕ(I) = ϕf (x),

where x is any idele such that I = I(x) with xp = 1 for all primes p|f.

Proof. The only part that is not clear is that this map is well-defined. Suppose we choose a

different idele x′ representing I that has trivial components at f; then we know that vp(x′x−1) =

0 for all primes p not dividing f. Thus, for such primes, we have x′x−1 ∈ O×p , so that

ϕp((x′x−1)p) = 1 by definition of the conductor. Since x and x′ both have trivial compo-

nents at f, it follows that ϕf (x′x−1) = 1, so ϕ is well-defined as a function on ideals.

Whilst we have abused notation to write ϕ for both the idelic Hecke character and the function

it determines on ideals, it will always be clear from context which formulation we mean.

Definition 1.2.8. We extend ϕ to a function on all fractional ideals of F by setting ϕ(I) = 0

if I is not coprime to f.
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At this stage, it is useful to fix, for each ideal I, a systematic choice of idele xI such that

I = I(xI). Our choice will make sense for all fractional ideals I; indeed, in Part II, we will

need to use the value ϕ(xf), which visibly depends on the choice of idele. As long as we are

consistent in our choices, this will not matter.

We define xI as follows. If I = (α) is principal, define x(α) at each place by

(x(α))v =

 α : v = p finite with p|(α),

1 : otherwise.

Let I1, ..., Ih be (fixed) ideals that form a complete set of representatives of the narrow class

group of F , and choose (fixed) idelic representatives ai representing each Ii. Then any fractional

ideal I of F has form (α)Ii for some i, and we can define

xI :..= aix(α).

Note by definition that when I is coprime to f, we have

ϕ(I) = ϕ(xI).

We conclude this section by giving a very simple result linking the three functions ϕf, ϕ∞ and

ϕ as a function on ideals.

Proposition 1.2.9. Let ϕ be a Hecke character with conductor f, and let α ∈ F× be such that

(α) is coprime to f. Then

ϕ∞(α)ϕf(α)ϕ((α)) = 1.

Proof. We have

ϕ∞(α)ϕf(α)ϕ((α)) =
∏
v|∞

ϕv(α)
∏
v|f

ϕv(α)
∏
v|(α)

ϕv(α)

=
∏

v|f(α)∞

ϕv(α)

=
∏

v-f(α)∞

ϕv(α)−1 = 1,

since α ∈ O×v for all v - f(α)∞ and ϕv is trivial on O×v for all such v. (For the penultimate

equality, we have used the fact that ϕ is trivial on the diagonal embedding of F× in A×F ).

Corollary 1.2.10. Suppose that the ideals I1, ..., Ih are all coprime to f, and let I = (α)Ii be
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a fractional ideal of F . Then

ϕ(I) =

 ϕ(ai)ϕf(α)−1ϕ∞(α)−1 : I ∈ J(f),

0 : otherwise.

1.3. Further topics

We conclude this chapter by mentioning two further topics that we’ll need in the sequel related

to Hecke characters; namely, the generalisation of Gauss sums of Dirichlet characters and ways

of seeing Hecke characters p-adically.

1.3.1. Gauss sums

For a rational Dirichlet character χ modulo N , we define the Gauss sum to be the quantity

τ(χ) ..=
N−1∑
a=0

χ(a)e2πia/N .

For primitive χ, this has the nice property that, for b ∈ Z, we have

N−1∑
a=0

χ(a)e2πiab/N = χ(b)τ(χ)

(see, for example, [DS05], Section 4.3). We will need an object satisfying a similar property

for Hecke characters over arbitrary number fields; however, the generalisation of this is again

non-obvious.

We first introduce a more general exponential map on the adeles of F .

Definition 1.3.1. Let eF be the unique function

eF : AF /F −→ C×

that satisfies

x∞ 7−→ e2πiTrF/Q(x∞),

where x∞ is an infinite adele. We can describe eF explicitly as

eF (x) =
∏

v∈Σ(C)

e2πiTrC/R(xv)
∏

v∈Σ(R)

e2πixv
∏

λ|` finite

e`(−TrFλ/Q`(xλ)),

where

e`

(∑
j

cj`
j

)
= e

2πi
∑

j<0
cj`

j

.
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Now let ϕ be a Hecke character of conductor f. Let d be a (finite) idele representing the different

D, and for each finite prime w of F , fix a uniformiser πw in Ow.

Definition 1.3.2. Define the Gauss sum attached to ϕ to be

τ(ϕ) ..= ϕ(d−1)
∑

b∈(OF /f)×
ϕf(b)eF (bd−1(f−1)v|f),

where (f−1)v|f is the adele given by

((f−1)v|f)w ..=

 π
−vw(f)
w : w|f

0 : otherwise.

Remarks: (i) This definition is independent of the choice of d.

(ii) This definition is a natural one; in fact, it is the product of the ε-factors over v|f, as defined

by Deligne in [Del72]. For this particular iteration of the definition, we’ve followed [Hid94],

page 480 (though we have phrased the definition slightly differently by choosing more

explicit representatives).

Proposition 1.3.3. Let ζ be a non-zero element of OF . Then we have

ϕ(d−1)
∑

b∈(OF /f)×
ϕf(b)eF (ζbd−1(f−1)v|f) =

 ϕf(ζ)−1τ(ϕ) : ((ζ), f) = 1

0 : otherwise
,

where the notation ((ζ), f) = 1 means that the two ideals are coprime.

Proof. See [Del72], or, for an English translation, [Tat79]. There is also an account of Gauss

sums and their properties in [Nar04].

Remark: In Chapter 6.1.2, we’ll give an equivalent and more concrete definition of the Gauss

sum of a Hecke character defined over an imaginary quadratic field.

1.3.2. Hecke characters on ray class groups

We conclude this chapter by describing a p-adic character associated to a classical Hecke char-

acter of suitable conductor. This will be crucial in later sections when describing p-adic L-

functions.

Definition 1.3.4. Define the ray class group of level p∞ to be the p-adic analytic group

Cl+F (p∞) ..= F×\A×F /U(p∞)F+
∞,
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where U(p∞) is the group of elements of ÔF that are congruent to 1 (mod pn) for all integers

n (that is, elements of ÔF such that their components at primes above p are all equal to 1).

Remark: By class field theory, Cl+F (p∞) is isomorphic to the Galois group of the maximal

abelian extension of F unramified outside p and ∞.

The p-adic L-function of an automorphic form over F should be a distribution on this space

in a sense that will be made clear in later sections, and to this end we discuss the structure of

this space in the sequel.

Throughout, fix an isomorphism C ∼= Cp that is compatible with our earlier embedding incp :

Q ↪→ Qp. To a Hecke character ϕ of conductor f|p∞, we can associate a character ϕp−fin on

Cl+F (p∞). Indeed, let ϕ be a Hecke character with infinity type r and associated character εϕ
on {±1}Σ(R), as above. Then there is a unique algebraic homomorphism wr : F× −→ C× given

by

wr(γ) =
∏
v∈Σ

σv(γ)rv ,

where σv is the complex embedding corresponding to the infinite place v. This then induces

maps wr
∞ : (F ⊗Q R)× → C× and wr

p : (F ⊗Q Qp)× → Q×p ⊂ C×p . Note that wr
∞ is equal to

εϕϕ∞, the unique algebraic character of F×∞ that agrees with ϕ∞ on F+
∞.

Then under the isomorphism C ∼= Cp, we can see wr
p and ϕ as having values in Cp.

Definition 1.3.5. We define ϕp−fin to be the function

ϕp−fin : A×F −→ C×p

x 7−→ wr
∞(x∞)−1wr

p(xp)ϕ(x) = εϕϕf (x)wr
p(xp).

Proposition 1.3.6. Let ϕ be a Hecke character of conductor f|(p∞). Then the function ϕp−fin

gives a well-defined function on the narrow ray class group Cl+F (p∞).

Proof. By definition, ϕp−fin is trivial on F+
∞. As wr

∞ and wr
p are both induced from the same

function on F , we see that ϕp−fin is also trivial on F×. As ϕ has conductor f, it is trivial on U(f),

and hence on U(p∞). Finally, if x ∈ U(p∞), then xp = x∞ = 1, so that wr
p(xp) = wr

∞(x∞) = 1.

This completes the proof.

12



Chapter 2

Automorphy Conditions

In a first introduction to the theory of modular forms, they are defined as holomorphic func-

tions on the upper half-plane that satisfy transformation properties under suitable arithmetic

subgroups of SL2(Z). The advantage of this approach is that it is conceptually easy to under-

stand, but it is highly non-obvious how one should generalise the theory to different settings.

With this in mind, this chapter starts by focusing on developing a theory of rational automorphic

functions that more easily generalises to arbitrary number fields. It goes on to define and study

automorphic functions over imaginary quadratic fields as a precursor to eventually treating the

completely general case.

2.1. Classical modular forms via adeles

We start by giving motivation for the adelic definition of modular forms which, at first sight,

appears to bear little relation to the more familiar definition. This section is heavily based

upon Weil’s book [Wei71]. To introduce the adelic formulation of modular forms, we keep to

level 1 initially.

2.1.1. Level 1

We can consider the upper half-plane as a set B of matrices by defining

B ..=


y x

0 1

 : x ∈ R, y ∈ R>0

 ,

and identifying ( y x0 1 ) with x+ iy ∈ H. We then obtain a description of H as a symmetric space;

it is easily seen that

H ∼= B ∼= GL2(R)/R× ·O2(R),

where

R× ∼= Z(GL2(R)) ⊂ GL2(R)

13



Automorphy conditions

can as the centre of GL2(R) via its embedding as scalar matrices. This can be reworked as

GL+
2 (R) = R>0 ·B · SO2(R), (2.1)

where now we just consider matrices with positive determinant (that is, the connected com-

ponent of the identity in GL2(R)). Thus, if f : H → C is a function, then we can extend f

- considered as a function on B - to a function F on GL+
2 (R) by stipulating that F satisfies

suitable conditions under translations by R>0 and SO2(R). These we state without motivation,

for now; we ask that, for all g ∈ GL+
2 (R):

(i) F (zg) = F (g) for all z ∈ R>0, and

(ii) F (gr(θ)) = F (g)eikθ, where r(θ) =
( cos θ sin θ
− sin θ cos θ

)
.

Note that the two conditions combine to show that k must be an even integer by considering

θ = π. Indeed, as the notation suggests, this k will be the weight of our modular form.

To obtain a modularity condition, we’ll pass to an even bigger space, namely the group

GL2(AQ), where AQ = R× AfQ is the rational adele ring, with AfQ the finite adeles. Let

Ω ..=
∏

pprime
GL2(Zp) ∼= GL2

(
Ẑ
)
,

an open compact subgroup of GL2(AfQ), where Ẑ is the space of finite integral adeles. Now

extend our function F to a function F on GL+
2 (R)× Ω by setting

F(g∞τ) = F(g∞), g∞ ∈ GL+
2 (R), τ ∈

∏
pprime

GL2(Zp).

Proposition 2.1.1. Let f be a function B ∼= H → C. If we set τ = x + iy, then φ(τ) ..=

y−k/2f ( y x0 1 ) behaves like a modular form of weight k under the action of SL2(Z) if and only if

f extends to a function F : GL+
2 (R)× Ω→ C such that:

(i) F is left-invariant under Z+ ∼= R>0,

(ii) F transforms as F(gr(θ)) = F(g)eikθ for r(θ) ∈ SO2(R),

(iii) F is right-invariant under all the groups GL2(Zp) for prime p,

(iv) and F is left-invariant under SL2(Z).

Proof. Suppose we can extend f as above, and take an element g ∈ GL+
2 (R)×Ω. Then we can

write the component at infinity as

g∞ = z

y x

0 1

 r(θ)

14
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using equation (2.1). Then

F(g) = f

y x

0 1

 eikθ.

If now σ is any element of SL2(Z), then σg is also an element of GL+
2 (R)×Ω, since det(σg∞) > 0,

and σgp ∈ GL2(Zp) for each p. Thus we can write (σg)∞ in the form

(σg)∞ = z′

y′ x′

0 1

 r(θ′),

and since by condition (iv) we must have F(σg) = F(g), we thus have

f

y′ x′

0 1

 = f

y x

0 1

 eik(θ−θ′). (2.2)

Let τ = x + iy, and τ ′ = x′ + iy′, both points in H. After some calculation, we see that

τ ′ = σ(τ) under the usual action of SL2(Z) on H.

Define a function φ : H → C by

φ(τ) = y−k/2f

y x

0 1

 .

We write f(τ) = f(x+ iy) = f ( y x0 1 ) as an abuse of notation. Then equation (2.2) gives

φ(σ(τ)) = φ(τ ′) = Im(τ ′)−k/2f(τ ′)

= |cτ + d|kIm(τ)−k/2f(τ)eik(θ−θ′)

= (cτ + d)kφ(τ),

so that φ behaves like a modular form of weight k, as required.

The same argument in reverse shows that if φ behaves like a modular form of weight k, then f

extends uniquely to a function F satisfying conditions (i) to (iv), which completes the proof.

Now, note that

SL2(Z) = Ω ∩GL2(Q).

Furthermore, an approximation theorem gives

GL2(AQ) = GL2(Q) · [GL+
2 (R)× Ω].

It follows immediately that any function F on GL+
2 (R)×Ω that is left-invariant under SL2(Z)

extends uniquely to a function Φ on GL2(AQ) that is left-invariant under GL2(Q). Thus we
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have the following:

Theorem 2.1.2. Let f : H → C be a function. Then f transforms like a modular form

of weight k and level SL2(Z) if and only if Im(τ)k/2f(τ) can be extended uniquely to give a

function Φ : GL2(AQ)→ C satisfying:

(i) Φ is invariant under translation by Z(GL2(AQ)) ∼= A×Q ,

(ii) Φ transforms as Φ(gr(θ)) = Φ(g)eikθ for r(θ) ∈ SO2(R),

(iii) Φ is right-invariant under all the groups GL2(Zp) for prime p,

(iv) and Φ is left-invariant under GL2(Q).

In the classical theory, we also stipulate that f should be holomorphic on the extended upper

half-plane. In the adelic setting, the holomorphicity on H corresponds to prescribing a differ-

ential equation for Φ. Holomorphicity at the cusps corresponds to a bound for the order of

magnitude of Φ in a fundamental domain in GL2(AQ) for GL2(Q). This is discussed in more

detail in Chapter 3.1.

Remark: In passing from f to Φ, we multiplied by Im(τ)k/2. As a result, condition (iii)

above is really an invariance condition for Φ under the action of SL2(Z) on H, whereas the

usual modularity condition, which scales as (cτ + d)k, is genuinely different. This will become

important later in studying the differences in the literature for imaginary quadratic fields.

2.1.2. Higher levels

To introduce adelic modular forms of level Γ0(N), we make a change in the definition of Ω.

The key point of the above was that Ω∩GL2(Q) = SL2(Z), so we instead look for some group

Ω0(N) such that

Ω0(N) ∩GL2(Q) = Γ0(N).

We can define such a group in the ‘obvious’ way; namely, for each prime p, define

Γ0(N)p =


 a b

Nc d

 ∈ GL2(Qp) : a, b, c, d ∈ Zp

 .

Indeed, if p - N , then this is none other than GL2(Zp), and more generally, if pm||N , we have

Γ0(N)p =


 a b

pmc d

 : a, b, c, d ∈ Zp

 .

Now we set

Ω0(N) =
∏

pprime
Γ0(N)p.
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Remark: Note that if we define Ẑ =
∏
p Zp to be the integral finite ideles, we have

Ω0(N) =


a b

c d

 ∈ GL2

(
Ẑ
)

: c ∈ N Ẑ

 .

We’ll use this formulation in future.

A simple check shows that Ω0(N) satisfies the intersection property we desire, and that we still

have GL2(AQ) = GL2(Q) · [GL+
2 (R) × Ω0(N)]. Then an argument almost identical to that in

the proof of Proposition 2.1.1 gives:

Theorem 2.1.3. Let f : H → C be a function. Then f transforms like a modular form of

weight k ∈ 2Z and level Γ0(N) if and only if Im(τ)k/2f(τ) can be extended uniquely to give a

function Φ : GL2(AQ)→ C satisfying:

(i) Φ is invariant under translation by Z(GL2(AQ)) ∼= A×Q ,

(ii) Φ transforms as Φ(gr(θ)) = Φ(g)eikθ for r(θ) ∈ SO2(R),

(iii) Φ is right-invariant under all the groups Γ0(N)p for prime p,

(iv) and Φ is left-invariant under GL2(Q).

We’d also like a way of describing the character of a modular form of level Γ0(N). Let χ′

be a Dirichlet character with conductor dividing N , and recall that in Chapter 1 that this

determines a finite order Hecke character χ over Q. We get characters χp of Z×p by restriction.

Then we have:

Theorem 2.1.4. Let f : H → C be a function. Then f transforms like a modular form

of weight k, level Γ0(N) and character (χ′)−1 if and only if Im(τ)k/2f(τ) can be extended

uniquely to give a function Φ : GL2(AQ)→ C satisfying:

(i) Φ(gz) = Φ(g)χ(z) for z ∈ Z(GL2(AQ)) ∼= A×Q ,

(ii) Φ transforms as Φ(gr(θ)) = Φ(g)eikθ for r(θ) ∈ SO2(R),

(iii) Φ is right-invariant under all the groups GL2(Zp) for prime p - N ,

(iv) when pm||N , with m > 0, and for γ =
(
a b
Nc d

)
∈ Γ0(N)p, we have

Φ(gγ) = Φ(g)χp(d),

(iv) and Φ is left-invariant under GL2(Q).

17



Automorphy conditions

Note here that k can be odd, but since −I ∈ Z(GL2(R)) ∩ SO2(R), this occurs if and only if

χ′ is odd (that is, if χ′(−1) = −1).

We’ve chosen χ to be a finite order Hecke character to illustrate the relation to the classi-

cal theory of modular forms. There is, however, no reason not to consider a Hecke character

with non-trivial infinity type instead. Indeed, in the sequel, we’ll actually work with level

Γ1(N), allowing us to suppress any mention of the character at finite places (since it will be

automatically encoded in the definition), but we’ll prescribe the character to have infinity type

depending on the weight.

With the above results and remarks taken into account, we’re now well placed to make a

definition of automorphy conditions in the adelic setting that is more compatible with the ex-

isting literature (for example, [Hid94]) in the more general setting. In this definition, Ω1(N) is

defined in the obvious way, that is, by

Ω1(N) ..=


a b

c d

 ∈ GL2

(
Ẑ
)

: c ∈ N Ẑ, d ≡ 1 (modN)

 .

Definition 2.1.5. Let k and N be positive integers, and define a representation

ρ : SO2(R)× R× −→ C×

(r(θ), x) 7−→ eikθx−k.

A function Φ : GL2(AQ) −→ C is said to be automorphic of weight k and level Ω1(N) if it

satisfies:

(i) (Automorphy) Φ(gr(θ)x) = Φ(g)ρ(r(θ), x) for r(θ) ∈ SO2(R) and x ∈ Z(GL2(R)) ∼= R×,

(ii) (Level) Φ is right-invariant under translation by elements of Ω1(N), and

(iii) Φ is left-invariant under translation by elements of GL2(Q).

A function that is automorphic of weight k and level Ω1(N) will be automorphic of weight k,

level Ω0(N) and character χ for some Hecke character χ of infinity type −k. We prescribe this

infinity type to allow better compatibility with cohomology in the sequel.

Remark: In the above, we’ve said nothing about holomorphicity; in the general case, this is

rather more tricky to get a handle on, and will be mentioned in more detail in later chapters.

2.2. Imaginary quadratic fields

The reformulation above now generalises with a little effort to give a whole plethora of areas of

study; we can, for example, replace the algebraic group GL2 with a different reductive group,

18



Automorphy conditions

such as the symplectic group GSp4, or, as is more pertinent to our interests, replace Q with

a different number field. In this section, we describe the theory when we replace Q with an

imaginary quadratic field. We isolate this case for clarity; not only is it the major focus of

the first half of this thesis, but if one understands the rational and imaginary quadratic cases

well, then it is easy to see how the theory should look for general number fields. We start by

defining adelic automorphy conditions before discussing explicit descriptions of the theory that

are more in line with the classical theory of modular forms.

2.2.1. Adelic automorphy conditions over imaginary quadratic fields

Over Q, the weight is an integer that induces conditions at the infinite place, so over an

imaginary quadratic field, we’d expect the weight to be a pair (k, `) of integers – one for each

complex embedding of the field. Perhaps the only thing that remains unclear is what the

target space of our function should be; in the rational case, we only have functions into the

1-dimensional space C. This is because all the irreducible representations of SO2(R) (that is,

the circle group) are 1-dimensional, and in fact they behave as in condition (ii) of the above

theorems. When we work with an imaginary quadratic field K, we instead look at irreducible

representations of the natural analogue SU2(C)1. We then have the following:

Proposition 2.2.1. Let n ≥ 0 be an integer, and Vn(C) be the space of homogeneous polyno-

mials in two variables X and Y of degree n with complex coefficients. There is a right action

of SU2(C) on this space by

(P |u)

X
Y

 = P

u
X
Y

 ,

an irreducible representation that induces a map ρn : SU2(C) → GL(Vn(C)). Moreover, every

irreducible representation of SU2(C) arises in this way.

Proof. See [Sim91], VIII.4.

From this, we might expect a weight (k, `) form to take values in Vk+`(C). In fact, there is a

shift by 2, and the correct thing to consider is Vk+`+2(C). This shift is found liberally in the

theory - one can push it around, but not remove it entirely, and for convenience we introduce

it now2. We define natural analogues of the rational objects we considered above.

Notation: (i) Let K be an imaginary quadratic field with ring of integers OK , adele ring

AK and finite integral adeles ÔK . Let n be an ideal of OK and define

Ω1(n) ..=


a b

c d

 ∈ GL2

(
ÔK
)

: c ∈ nÔK , d ≡ 1 (mod n)

 . (2.3)

1We shall later give some motivation for this in Chapter 3.1.3.
2In later sections, when we discuss cohomology classes attached to automorphic forms, this will become

clearer; it allows us to define differential forms attached to such automorphic forms.

19



Automorphy conditions

(ii) Define a map

ρ : SU2(C)× C× −→ GL(V2k+2(C)),

(u, z) 7−→ ρk+`+2(u)|z|−k.

Definition 2.2.2. A function Φ : GL2(AK) −→ Vk+`+2(C) is said to be automorphic of weight

(k, `) and level Ω1(n) if it satisfies:

(i) (Automorphy) Φ(guz) = Φ(g)ρ(u, z) for u ∈ SU2(C) and z ∈ Z(GL2(C)) ∼= C×,

(ii) (Level) Φ is right-invariant under translation by elements of Ω1(n), and

(iii) Φ is left-invariant under translation by elements of GL2(K).

Remark: In fact, we can simplify this somewhat by considering only the case of parallel weight,

that is, weights with k = `. Indeed, Harder showed in [Har87b] that non-zero cusp forms (to

be defined in the sequel) exist only at parallel weights. In some accounts, such a cusp form

is said to have weight k + 2; thus parallel weight (0, 0) corresponds to weight 2, and there is

often a correspondence between weight 2 automorphic forms and elliptic curves over K, as we’d

hope. From now on we’ll deal exclusively with parallel weight (k, k), as our focus will be on

cusp forms.

2.2.2. Explicit description for class number one

Now suppose K has class number one. Given a function Φ : GL2(AK) → V2k+2(C) that is

automorphic of weight (k, k) and level Ω1(n), condition (iii) says that Φ descends to a function

on GL2(K)\GL2(AK), and then conditions (i) and (iii) say that Φ is determined by its values

on a set of representatives for the double coset

GL2(K)\GL2(AK)/ [Z(GL2(C)) · Ω1(n)]

(recalling the definition of Ω1(n) in equation (2.3)). Since we are assuming that the class

number was one, an approximation theorem similar to the rational case gives that

GL2(AK) = GL2(K) · [GL2(C)× Ω1(n)] , (2.4)

from which we see that Φ is determined by its values on GL2(C). We can go further still,

though; condition (ii) means we need only consider the values of Φ on a set of representatives

for

GL2(K)\GL2(AK)/ [Z(GL2(C)) · SU2(C)× Ω1(n)] ∼= GL2(C)/C×SU2(C).
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An explicit calculation shows that the set

B ..=


t z

0 1

 : z ∈ C, r ∈ R>0

 (2.5)

gives a complete set of coset representatives for this latter quotient. This motivates:

Definition 2.2.3. Define hyperbolic 3-space (or upper half-space) to be the 3-dimensional real

manifold

H3 ..= {(z, t) : z ∈ C, t ∈ R>0}.

The above discussion means that over imaginary quadratic fields of class number one, instead

of studying functions Φ on GL2(AK), we can consider functions

F : H3 −→ V2k+2(C),

with suitable additional conditions. In the sequel, we give these explicitly by studying the

geometry of H3.

2.2.3. Higher class number and strong approximation

The case of more general class number remains. In this case, equation (2.4) no longer applies

in the form given above; instead, GL2(AK) decomposes as the disjoint union of h sets, where h

is the class number. To describe this, let I1, ..., Ih be a complete set of representatives for the

class group, and let a1, ..., ah to be ideles representing these ideals. Then define

gi =

ai 0

0 1

 ∈ GL2(AK).

The approximation theorem now becomes:

Theorem 2.2.4 (Strong Approximation). There is a decomposition

GL2(AK) =
h∐
i=1

GL2(K) · gi · [GL2(C)× Ω1(n)] .

As motivation for this formula, we give a brief sketch of the proof of this in the level 1 case.

The case of level n requires a bit more work; the details can be found in [Byg98], Chapter 5.2.

The reader who is happy to take this result on faith may skip ahead to the end of the proof

below.
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Firstly, we quote a theorem of Weil, which describes when a set

{Lp ⊂ K2
p lattice : p prime in K}

of local lattices gives rise to a global lattice L in K such that Lp is the completion of L in Kp

for each prime. The theorem says that such a global lattice exists if and only if Lp = O2
p for

almost all p, and in this case, we have

L = K2 ∩
⋂

p prime
Lp.

As a result of this, we have an action of GL2(AK) on the set of lattices in K2. Let L ⊂ K2 be a

lattice, and c ∈ GL2(AK). Defining a lattice Lp to be the completion of L in Kp for each prime

p, the theorem says that almost all of the Lp are equal to O2
p. As cp ∈ GL2(Op) for almost all

p, we see that cpLp = O2
p for almost all p. We thus define cL to be the lattice corresponding

to the local lattices cpLp.

Now, by a structure theorem for finitely generated torsion-free modules over a Dedekind do-

main, any lattice L ⊂ K2 is isomorphic (as an OK-module) to OK ⊕ I for some integral ideal

I of OK . The ideal class of I is known as the Steinitz class of L. Given another lattice

L′ ∼= OK ⊕ I ′, we have that L ∼= L′ as OK-modules if and only if they have the same Steinitz

class, that is, [I] = [I ′] in the ideal class group.

Note also that if two lattices L and L′ in K2 are isomorphic as OK-modules, we obtain an

element γ ∈ GL2(K) with γL = L′ by tensoring an explicit isomorphism L → L′ with K,

obtaining an isomorphism K → K (that is, an element of GL2(K)).

Finally, to complete the preliminaries before giving the proof in the level one case, note that

Ω∞ ..= GL2(C)×
∏

p GL2(Op) is the stabiliser in GL2(AK) of the lattice O2
K .

Proof. (Theorem 2.2.4, Level one case). Let c ∈ GL2(AK). Recall that I1, ..., Ih were defined

above to be a complete set of (integral and prime) representatives for the class group of K; it

thus follows from the above remarks that there is some i such that

cO2
K
∼= OK ⊕ Ii.

Then, with ai and gi as defined above, we have cO2
K
∼= giO2

K , which means there is some

γ ∈ GL2(K) such that

γcO2
K = giO2

K ⇒ g−1
i γcO2

K = O2
K .

Thus g−1
i γc ∈ Ω∞, which shows that c ∈ GL2(K)giΩ∞. It’s clear that there is only one i for

which this holds, and hence we have the disjoint union as claimed.
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The result of this approximation theorem is that we now end up considering functions F from

h copies of GL2(C) into V2k+2(C), and ultimately F from h copies of H3 into V2k+2(C), as

F : g1H3 t · · · t ghH3 −→ V2k+2(C).

Here gi acts on H3 by left multiplication when we consider it as a quotient of GL2(C). We can

(and will subsequently) consider such functions as h-tuples (F1, ...,Fh) of functions from H3

to V2k+2(C), with each F i satisfying suitable transformation properties depending on gi.

Remarks: (i) The above discussion highlights the importance of the adelic definition; we’d

naturally prefer to categorise things by a single object rather than a collection of many

that are in some sense compatible. In this instance, it is natural to use the adelic definition

to derive and draw together functions on H3, which are then sometimes easier to work

with.

(ii) Note that the collection (F1, ...,Fh) is not canonical, as it very much depends on the

choice of idelic class group representatives ai.

To give these h-tuples explicitly, we define

F i : GL2(C) −→ V2k+2(C),

g 7−→ Φ(gig).

These functions F i then satisfy automorphy properties under the groups

Γi1(n) ..= SL2(K) ∩ giΩ1(n)GL2(C)g−1
i ,

which are discrete subgroups of SL2(K). It turns out that Γi1(n) = ΓIi , where ΓI is defined as

follows:

Definition 2.2.5. Let I be an integral ideal of K that is coprime to n. Then we define the

twist of Γ1(n) by I to be

ΓI ..=


a b

c d

 ∈ SL2(K) : a, d ∈ OK , c ∈ nI−1, b ∈ I, d ≡ 1 (mod n)

 .

Later, we will discuss automorphy properties with regards to these twists, which are not nec-

essarily congruence subgroups. Note however that if we take I1 = OK , then Γ1
1(n) = ΓOK =

Γ1(n), hence the terminology.
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2.2.4. Hyperbolic 3-Space

The following is a brief sketch of some of the relevant properties of H3. For a more detailed

approach, see [EGM98].

There is an obvious action of GL2(C) onH3 when we consider it as a quotient GL2(C)/C×SU2(C)

as above. There are two further ways to describe this action; firstly, note that we can embed

H3 in the quaternions

H = {a+ bi+ cj + dk : a, b, c, d ∈ C, i2 = j2 = k2 = −1, ij = k = −ji}

via the map (z, t) 7→ z + tj. The action can then be described as

a b

c d

 · x = (ax+ b)(cx+ d)−1.

Alternatively, the action can be worked out painfully and explicitly to givea b

c d

 · (z, t) =
(

(az + b)(cz + d) + ac̄|t|2

|cz + d|2 + |ct|2 ,
(ad− bc)t

|cz + d|2 + |ct|2

)
. (2.6)

Hyperbolic 3-space has the obvious structure of a real differentiable 3-manifold. The metric

ds2 = (dzdz + dt2)/t2 further endows it with the structure of a Riemannian manifold.

We endow H3 with the subspace topology induced from R3. It can be compactified in a

manner analogous to the real case by the addition of cusps; for a fixed imaginary quadratic

field K, the set of cusps of K is defined to be P1(K). The extended upper half-space is the space

H∗3 ..= H3 ∪ {(s, 0) : s ∈ K} ∪ {∞}

obtained by adjoining the cusps to H3. Viewing H3 as a subspace of the quaternions, and

treating a cusp (s, 0) as the quaternion s+ 0j, we see that the action of GL2(K) on P1(K) by

fractional linear transformations extends the action on H3, and thus we obtain an action on

H∗3.

2.2.5. Passing from GL2 to H3: comparing the literature

It remains to describe exactly how to pass from functions F on GL2(C) to functions F on H3.

Recall that we’ve defined some function Φ : GL2(AK)→ V2k+2(C), and stated that from it we

obtain a function F : GL2(C) → V2k+2(C) by passing to the quotient. We’ve also stated that

any such F is totally defined by its values on the subspace B ∼= H3 (as defined in equation

(2.5)), but there are two genuinely different approaches to defining the actual value F(z, t)
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given in the literature. Here we give a brief account of both viewpoints.

Recall that in the rational case, in Proposition 2.1.1, we passed from a function F on GL2(C) to

x−k/2F (x, y) to restrict to H, that is, we scaled the restriction by the ‘height’ of a point z ∈ H

relative to the weight k. The result was that we obtained a function that behaved exactly like

a modular form of weight k on H. In [Gha99], Ghate takes an approach that specialises in

weight 2 to this viewpoint. In particular, he defines his automorphic forms to have level Ω0(n)

and character χ (for some Hecke character χ), and translates this scaling to the imaginary

quadratic scenario by setting, for a function of weight k + 2,

F(z, t) = t−1−kF

 1√
t

t z

0 1

 = t−1−kχ∞

(
1√
t

)
F

t z

0 1

 ,
where as above F takes values in V2k+2(C). Specialising to weight 2, if Γ ≤ SL2(OK) is some

congruence subgroup for K, the automorphy condition we require such functions to satisfy is

described as

F(γ(z, t)) = F(z, t)ρ(γ, (z, t)),

where

ρ(γ, (z, t)) =


r̄2 −rs s̄2

2r̄s |r|2 − |s|2 −2rs̄

s2 rs r2

 , γ =

a b

c d

 ∈ Γ, r = cz + d, s = c̄t. (2.7)

In accounts such as [Cre81], [CW94] and [Byg98], all of which deal predominantly with the

weight two case, such a function F ′ is defined by simply restricting to B. This associates to

F the natural analogue over K of the function Im(τ)k/2f(τ) over Q, where f is the associated

modular form as described in Proposition 2.1.1. In weight 2, if χ∞ is trivial3, this gives F ′ = tF .

The automorphy condition that they give is

F ′(γ(z, t)) = F
′(z, t)ρ(γ, (z, t))
|cz + d|2 + |ct|2 , (2.8)

that is, the same as above up to a scaling factor. It is apparent that conditions (2.7) and

(2.8) are compatible by observing the action described in equation (2.6) above; we’ve intro-

duced a scaling factor of t in F , and for γ ∈ Γ, we have ad − bc = 1, showing that t scales as

|cz + d|2 + |ct|2 = |r|2 + |s|2.

In each of these approaches, the authors go on to define a condition for a function F : H3 → C3

to be a ‘cusp form of weight 2’ to be either (2.7) or (2.8), so the spaces S2(Γ) of such forms are

not, in a strict sense, equal from paper to paper. They are of course isomorphic, since there is a
3In weight 2, this is a natural thing to assume; it says that the infinity type of χ is (0, 0), and weight 2

corresponds to parallel weight (0, 0). See Section 4.2 for further details.
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clear bijection between the sets of functions that arise. For our purposes, it is more convenient

to adopt Ghate’s convention, since we wish to work with arbitrary weight. Since we work with

level Ω1(n) and suppress mention of the character, the following definition – which we’ll use for

the remainder of this thesis – is thus equivalent to Ghate’s:

Definition 2.2.6. Let Φ be an automorphic form of weight (k, k) and level Ω1(n) over K. Let

F i be the function on GL2(C) corresponding to the idelic class group representative ai. Then

define

F i : H3 −→ V2k+2(C),

(z, t) 7−→ t−1F i

t z

0 1

 .

Remark: For completeness, we state the automorphy condition for functions on H3 for general

weights. Let

F : H3 −→ V2k+2(C)

be a function, and suppose Γ is a congruence subgroup of SL2(OK). Then let

γ =

a b

c d

 ∈ Γ, r = cz + d, s = c̄t,

and

j(γ; z, t) =

 r̄ s

−s̄ r

 =

c 0

0 c̄

z −t

t z̄

+

d 0

0 d̄

 .

We say F is automorphic of level Γ and weight (k, k) if

F

γ · (z, t);
X
Y

 = F

(z, t); j(γ; z, t)

X
Y


for all γ ∈ Γ, where now the weight is implicitly defined by the space in which F takes values.

This specialises to the condition given using Ghate’s convention above in weight (0, 0), a result

which the reader is encouraged to take on faith.

2.3. General number fields

Now let F be a general number field of degree d = r1 + 2rs, where r1 and r2 are the number

of real and complex places of F respectively. The theory of automorphic functions over F is

analogous to the work we’ve done previously, and the conditions at infinity are essentially a

‘product’ of the conditions for Q and imaginary quadratic fields, in a sense that should be clear

from the definition below.
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We fix OF , AF , ÔF , n and Ω1(n) to be the analogues for general F of the corresponding

objects for imaginary quadratic K. Further, we define

K+
∞

..= SO2(R)r1 × SU2(C)r2 .

The group K+
∞ is a subgroup of the standard maximal compact subgroup O2(R)r1 × U2(C)r2

of GL2(F ⊗Q R).

2.3.1. Weights

The notion of a weight is slightly more tricky to define in the general case; indeed, there are

subtleties in this case that can be ignored in a first treatment over Q or imaginary quadratic

fields. Over Q the weight is an integer k ∈ Z[ΣQ], and over an imaginary quadratic K it is a

pair (k, `) ∈ Z[ΣK ]. In reality, though, we define weights by using the reductive group GL2. In

particular, consider the case over Q; we take G = GL2, and define T to be its maximal torus

(corresponding to diagonal matrices). A weight should then be an algebraic character of the

torus, which will be a pair of integers (k, v) such that the character has form

a 0

0 b

 7−→ ak+vbv = detv · ak.

Over Q, it is harmless to assume v = 0 and suppress it from the definition. The case of

an imaginary quadratic field K gives rise to a similar story; indeed, in this case, take G ..=

ResK/QGL2 and T its maximal torus. Then, for example,

T (R) ∼= C× × C×,

and the algebraic characters of this can be parametrised by pairs [(k1, k2), (v1, v2)] ∈ Z[ΣK ]2,

with

[(k1, k2), (v1, v2)] :

y 0

0 z

 7−→ yk1+v1zv1 · yk2+v2zv2 .

(This might seem unconventional, but we really do want a change in v to correspond to a

change by a factor of the determinant). We restricted to the case where k1 = k2, and then

could take v1 = v2 = 0. In the general case, however, it is a serious restriction to only consider

weights where v = 0. With this in mind, we define:

Definition 2.3.1. A weight for F is an algebraic character of the maximal torus T of ResF/QGL2.

Any weight can be identified with an element

λ ..= (k,v) ∈ Z[ΣF ]2.

We are actually interested in a smaller class of weights that lead to automorphic forms that are
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cohomological. For this, we recall the definition of admissible elements of Z[ΣF ] from Definition

1.2.4.

Definition 2.3.2. We say a weight λ = (k,v) ∈ Z[ΣF ]2 is admissible if k = ck, where c denotes

complex conjugation, and k + 2v is parallel and admissible as an element of Z[ΣF ].

We do not technically require the condition that k + 2v is parallel, but it does not impose any

serious restrictions, and we do so for simplicity. Likewise, we impose the condition that k = ck

for simplicity since non-zero cuspidal automorphic forms can exist only at weights satisfying

this condition (see [Har87b]).

Remark: The major reason we introduce more general weights is to provide more general

coefficient spaces; indeed, v represents a twist by the determinant. To give a toy example that

readily generalises, over Q a weight is a pair (k, v), and the irreducible algebraic representations

of GL2(C) are indexed by such pairs that are dominant, that is, where k ≥ 0 and k ≥ v. In

this case, the corresponding representation is Vk(C) with the natural GL2(C) action twisted by

detv. This will be made more clear in the sequel.

2.3.2. Definition of the automorphy condition

Let λ ..= (k,v) be an admissible weight. We define k∗ ∈ Z[ΣF ] by

k∗v
..=

 2kv + 2 : v complex,

0 : v real.

Then define

Vk∗(C) ..=
⊗

v∈ΣF (C)

Vk∗v (C).

We define a representation

ρ : K+
∞ × (F ⊗Q R)× −→ GL(Vk∗(C))

individually at each infinite place as follows:

• Suppose v ∈ Σ(R). Then define

ρv : SO2(R)× R× −→ C×,

(r(θ), x) 7−→ eikvθx−kv−2vv .

• Suppose v ∈ Σ(C). Then define

ρv,k∗v : SU2(C) −→ GL(Vk∗v (C))
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to be the usual map, and then define

ρv : SU2(C)× C× −→ GL(Vk∗v (C)),

(u, z) 7−→ ρv,k∗v (u)|z|−kv−2vv .

Then define

ρ ..=
⊗

v∈Σ(R)∪Σ(C)

ρv.

Definition 2.3.3. We say a function Φ : GL2(AF ) → Vk∗(C) is automorphic of weight λ and

level Ω1(n) if it satisfies:

(i) (Automorphy condition) Φ(guz) = Φ(g)ρ(u, z) for u ∈ K+
∞ and z ∈ Z(GL2(F ⊗Q R)) =

(F ⊗Q R)×,

(ii) (Level condition) Φ is right-invariant under translation by Ω1(n),

(iii) and Φ is left-invariant under GL2(F ).

Remark: The condition that k + 2v is admissible is crucial for this to be well-defined. Indeed,

it means that conditions (i) and (iii) are compatible where they overlap. If we hadn’t introduced

v, there would only be a narrow range of weights for which these conditions would be compatible

and the definition would make sense. We could have modified the definition in a different way

to remove this problem, but this would be less natural and indeed would cause problems when

we consider cohomology classes associated to automorphic forms.

2.3.3. Explicit descriptions

As in the rational and imaginary quadratic cases, one can write down more explicit descriptions

of functions satisfying these conditions. In particular, in much the same way, suppose that F

has (narrow)4 class number h, and recall that we took a1, ..., ah to form a complete set of idelic

representatives for the narrow class group Cl+F . Define gi ..=
(
ai 0
0 1
)
. Then we have strong

approximation over F :

GL2(AF ) =
h⊔
i=1

GL2(F ) · gi · [GL+
2 (F ⊗Q R)× Ω1(n)]. (2.9)

Hence, as over K, a function Φ on GL2(AF ) satisfying the above conditions descends to a

collection of h functions

F 1, ..., Fh : GL+
2 (F ⊗Q R) −→ Vk∗(C),

4In the general case, it is necessary to consider the narrow class group. Over an imaginary quadratic field,
the narrow class group and usual class group coincide.
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and then further to a collection of functions

F1, ...,Fh : HF −→ Vk∗(C),

where

HF ..= HΣ(R) ×HΣ(C)
3 . (2.10)

Furthermore, these functions satisfy automorphy conditions under the groups

Γi1(n) ..= SL2(F ) ∩ giΩ1(n)GL+
2 (F ⊗Q R)g−1

i . (2.11)

Remark: Again, note that this identification is not canonical, as it depends on the choice of

class group representatives.
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Chapter 3

Automorphic Forms

In previous sections, we have defined adelic analogues of the transformation property that clas-

sical modular forms satisfy. In this chapter, we complete the definition of an automorphic form

by sketching the analogue of the holomorphicity condition in the classical case. We will keep

this discussion brief; indeed, clear and detailed expositions of the theory exist in the literature

(see, for example, [Wei71] and [Byg98]). We end by giving a complete definition of automorphic

forms in the generality we require.

3.1. Harmonic differential forms

In the theory of classical modular forms, we require that modular forms are holomorphic func-

tions on the upper half-plane. This fundamentally relies on the fact that we can exploit the cor-

responding complex structure on the upper half-plane. When we consider the theory over a gen-

eral number field F , we have such a complex structure on the analogous space HF = Hr1×Hr23

if and only if F is totally real, that is, if and only if r2 = 0. In this case, we have a natural

notion of holomorphicity at each infinite (real) place v, and we say an automorphic function

Φ : GL2(AF ) −→ Vk∗ is holomorphic if the h functions it induces on HF are holomorphic at

each real place.

When F has complex places, the situation becomes more difficult. There is no complex struc-

ture on the upper half-space H3, which means that a whole array of nice properties satisfied

over totally real fields have no known analogue in the general case. In particular, to say some-

thing is ‘holomorphic’ becomes meaningless. Instead, we use harmonicity, a property that can

be readily defined without complex structure and provides a generalisation of holomorphicity

in the case where there is complex structure.

In this brief section, we discuss harmonic differential forms and show that harmonicity does

indeed generalise holomorphicity. We also give some remarks on the definition of the automor-

phy condition from the previous chapter, which was stated without motivation. The account

given here is a short summary of Chapter 4 of [Byg98].
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3.1.1. Definitions

If V is a real differential manifold, then the tangent bundle is the vector bundle with fibre at

z equal to the tangent space TzV of V at z. We then define another vector bundle on V by

setting the fibre at z to be TzV ∗, that is, the cotangent bundle. A differential 1-form on V

is a smooth section of the cotangent bundle. In concrete terms, it means that for each point

z ∈ V , we pick a linear map ωz = ω(z) : TzV → R in such a way that the association varies

smoothly as we vary z. We denote the space of differential 1-forms by Ω1(V ). If we have a

groupG acting on the left of V , then we obtain a left-action on Ω1(V ) by setting (γ·ω)z = ωγ−1z.

More generally, if E → V is a smooth vector bundle, then an E-valued differential 1-form

is a smooth section of the tensor product bundle of E and the cotangent bundle; we denote the

space of E-valued differential 1-forms by Ω1(V,E). Again, less abstractly, we can consider an

E-valued differential 1-form as a collection of maps ωz : TzV → Ez. Most pertinently, we will

be interested in differentials with values in polynomial spaces, that is, when E corresponds to

a local system arising from a tensor product of copies of Vn(C).

Differential r-forms are defined in a very similar fashion; an r-form is a smoothly varying

choice of r-linear alternating forms on the tangent spaces, that is, a compatible collection of

r-antilinear maps φz : (TzV )r → R, one for each z ∈ V . The space of r-forms on V is denoted

Ωr(V ). We can define an E-valued r-form in precisely the same manner as above, and denote

the corresponding space by Ωr(V,E).

3.1.2. The Hodge star operator and harmonicity

Let V be a Riemannian manifold of dimension m as above. There is an operator

∗ : Ωr(V,C) −→ Ωm−r(V,C)

on differential forms with the following properties: for r-forms α and β,

(i) ∗ ∗ α = (−1)r(m+1)α,

(ii) α ∧ ∗β = β ∧ ∗α, and

(iii) α ∧ ∗α = fdx1 ∧ · · · ∧ dxm, where f ≥ 0 and {dx1, ..., dxm} is a positively orientated

orthonormal basis for Ωm(V,C).

See [Byg98], Chapter 4.1.3 for further details.

Definition 3.1.1. Define a Hermitian inner product on Ωr(V,C) by (α, β) ..=
∫
V
α ∧ ∗β.
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There is also a standard differentiation operator

d : Ωr(V,C) −→ Ωr+1(V,C),

called the exterior derivative. This allows us to define a map

δ : Ωr(V,C) −→ Ωr−1(V,C)

by setting

δ ..= (−1)m(r+1)+1 ∗ d ∗ .

A simple check shows that δ is the adjoint of d under the Hermitian form defined above.

Definition 3.1.2. The Laplace operator is defined to be

∆ = δd+ dδ.

Definition 3.1.3. A differential form ω is said to be harmonic if ∆ω = 0.

Proposition 3.1.4. A differential form ω is harmonic if and only if it is closed and co-closed,

that is, if dω = d(∗ω) = 0.

Proof. Using the fact that d and δ are adjoint to each other under the Hermitian inner product,

we see that

(∆ω, ω) = (dω, dω) + (δω, δω) = (ω,∆ω).

The result follows, since δω = 0 if and only if d(∗ω) = 0.

Remarks 3.1.5: Having given the definition, it is worthwhile pointing out why harmonic

differential forms are so useful in practice. They satisfy two major nice properties, of which the

first has more relevance to our situation.

(i) A harmonic differential form can be integrated in a path-independent manner; that is, if

we take two points x, y ∈ V and any path γ between them, then the integral
∫ y
x
ω ..=

∫
γ
ω

is well-defined. This will be important when attaching a modular symbol to a cusp form.

(ii) The second important feature of harmonic forms is their relation to de Rham cohomology

groups. The de Rham cohomology of a Riemannian manifold V is the homology of the

cochain complex given by the abelian groups Ωr(V ) together with the maps d : Ωr(V )→

Ωr+1(V ) (since it can be shown that d2 = 0). The relation mentioned above is that each

de Rham cohomology class contains a unique harmonic representative.
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3.1.3. Aside: irreducible representations of SU2(C)

In our earlier definition of automorphic functions over a number field F , we made – without

motivation – the stipulation that such a function Φ should satisfy

Φ(gu) = Φ(g)ρ(u), g ∈ GL2(AF ), u ∈ K+
∞,

where ρ is an irreducible representation of K+
∞. In this section, we give some motivation for

such a condition in the case that F = K is imaginary quadratic and the weight is (0, 0).

Consider first the rational case. At first introduction, the automorphy condition defining clas-

sical rational modular forms appears quite unnatural, yet it turns out to be closely linked to

differentials, in the sense that the 1-form dz satisfies the property that d(γz) = (cz + d)−2dz

for γ =
(
a b
c d

)
∈ SL2(Z). This bears direct comparison with the transformation condition for

weight 2 classical modular forms. To motivate the imaginary quadratic case, we’ll again look

at certain differentials and how they translate under suitable groups.

Let G be an arbitrary Lie group that has the structure of a real Riemannian manifold. Left

translation by an element g ∈ G, denoted Lg, induces a pull-back action L∗g on (real- or complex-

valued) differentials. We say a differential ω ∈ Ωr(G,C) is left-invariant if L∗gω = ω for all

g ∈ G. The space of left-invariant differentials has the desirable property that we can choose

a basis; if, for example, we choose a set of complex differentials (βi) such that the evaluations

((βi)I) at the identity span the space (TIG)∗, then we can write any left-invariant 1-form ω

uniquely as

ω =
∑
i

αiβi, αi ∈ C.

Definition 3.1.6. We choose a basis β = (β0, β1, β2)T for the left-invariant 1-forms on B = H3

by setting

β0 = dz

t
, β1 = −dt

t
, and β2 = −dz

t
.

The projection π : GL2(C) → H3 gives differentials π∗βi on GL2(C). These will certainly be

left-invariant under B, since the βi are, but they need not be left-invariant under the whole

group GL2(C). The question of measuring how far from left-invariant the π∗βi are now dictates

how an automorphic form should behave under translation by B\GL2(C) = C× · SU2(C).

We’ve written β = βz (for z ∈ H3) as a column vector. Define, for g ∈ GL2(C) and z ∈ H3,

the Jacobian matrix J(g; z) by

βgz = J(g; z)βz.
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As a function, J satisfies the cocycle relation

J(g1g2, z) = J(g1, g2z)J(g2, z);

left-invariance under B also gives J(b, z) = 1 for all b ∈ B, and combined with the cocycle

relation we have

J(g; z) = J(π(g)−1g; z),

where π(g)−1g ∈ C× · SU2(C). Now, we have π ◦ Lg = Lg ◦ π, and pulling this equality back

gives the relation

(π∗β)(gh) = J(g;π(h))(π∗β)(h),

which measures the failure of left-invariance, as desired. Note that we have π(h) = h · π(1),

that is, π(1) with h acting on the left. Using this to expand further, the cocycle relation yields

J(g, π(h)) = J(gh;π(1))J(h;π(1))−1

= J(π(gh)−1gh;π(1))J(π(h)−1h;π(1)),

so that J is entirely determined by the values J(u;π(1)) for u ∈ C× ·SU2(C). Define a function

ρ : C× · SU2(C)→ C

by ρ(u) = J(u;π(1)). The cocycle relation now says that

ρ(uv) = J(uv;π(1)) = J(u; vπ(1))J(v;π(1)) = ρ(u)ρ(v),

since vπ(1) = π(1) for v ∈ C× · SU2(C). So ρ is a representation of C× · SU2(C), and the

transformation properties of left-invariant differentials are thus given by such representations,

giving the desired motivation.

3.1.4. Harmonicity generalising holomorphicity

We earlier claimed that harmonicity was the appropriate generalisation of holomorphicity in

the rational case. The following is a sketch of the proof of this statement.

Recall that a differential form ω is harmonic if and only if dω = d(∗ω) = 0. In the rational

case, the space of left-invariant complex valued differentials on H has dimension 2; we choose

the basis (β1, β2) = (dz/y,−dz/y), where z = x + iy. Then a (not necessarily left-invariant)

differential 1-form of the form ω = f1β1 + f2β2, for any functions fi : H → C, has

∗(f1β1 + f2β2) = −i(f1β2 − f2β1)
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(see [Byg98], Lemma 60). After taking the complex conjugate, we see further that ∗(f1β1+f2β2)

is closed if and only if f1β1− f2β2 is. This then shows that f1β1 + f2β2 is harmonic if and only

if f1β1 and f2β2 are both closed, which is if and only if

f1

y
dz and f2

y
dz

are closed.

Now, a differential of form h(z)dz is closed if and only if ∂h/∂z = 0. But we have the identity

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

so that if h = u + iv for real valued functions u and v, then ∂h/∂z = 0 if and only if u and

v satisfy the Cauchy-Riemann equations, that is, if h is holomorphic. To conclude, this shows

that

Proposition 3.1.7. The differential f1β1 + f2β2 is harmonic if and only if f1(z)/y and f2/y

are holomorphic functions of z = x+ iy.

How does this relate to modular forms? The above argument - again for simplicity of exposition

- only treats the weight 2 case. If we take a rational modular form f of weight 2, then we define

f1(z) = Im(z)f(z) and f2(z) = f1(z), and obtain a differential form

ωf ..= f1(z)β1 + f2(z)β2 = f(z)dz − f(z)dz.

Then ωf is harmonic if and only if f is holomorphic.

Remark: Here we also have a dz term. In the more typical rational theory, we’d only consider

differentials of the form f(z)dz. If, in the definition of automorphic functions, we worked with

GL2(R) rather than GL+
2 (R), we’d have two terms, yielding two functions – a ‘holomorphic’

part, f , and an ‘anti-holomorphic’ part, f(z). Since in this case the anti-holomorphic part

depends entirely on the holomorphic part, we can – and do – usually safely ignore it.

3.2. Differential forms attached to automorphic functions

In this section, we attach differential forms to the automorphic functions defined in the pre-

vious chapter. We’ll start by describing the modules these differential forms take values in,

before giving the construction in the rational and imaginary quadratic cases, from which the

construction in the general case follows.

First, we need a definition:
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Definition 3.2.1. Let F be a number field, and let k ∈ Z[ΣF ]. We define

Vk(C) ..=
⊗
σ∈Σ

Vkσ (C).

This is naturally a (right) SU2(C)-module via the action on the components.

Recall that we wrote the degree of F as d = r1 + 2r2, for r1 and r2 the number of real and

complex places of F respectively. Define q ..= r1 + r2. The main result we require is the

following:

Theorem 3.2.2. Let Φ : GL2(AF ) −→ Vk∗(C) be an automorphic function of weight λ = (k,v)

and level Ω1(n) (in the sense of Definition 2.3.3), descending to a collection of h functions

F1, ...,Fh on HF . For each i, there is a Vk(C)-valued differential q-form ωFi on HF attached

to F i.

If one knows the construction of this differential in the cases that F is Q or imaginary quadratic,

then one can obtain the construction in the general case by essentially taking a tensor product

over the infinite places. Given this, we will only treat these two cases here, and refer the reader

to [Hid94], Section 2 for the situation over a general number field.

Suppose F = Q, and that f : H −→ C is a modular function of level Γ1(N) and weight

k.1 We define ωf to be the differential

ωf (z) ..= f(z)(zX + Y )kdz

on H.

Now suppose F = K is imaginary quadratic. In the sequel, we will treat this case in detail, so

here we include only a sketch proof for completeness. Suppose that Φ : GL2(AK) −→ V2k+2(C)

is an automorphic function of weight (k, k) and level Ω1(n), giving rise to functions F1, ...,Fh

as in the theorem. Fix an i, and let F i be the corresponding function on GL2(C). Note that

by the Clebsch-Gordon map, there is an injection

V2k+2 ↪−→ Vk(C)⊗ Vk(C)⊗ V2(C),

of SU2(C)-modules, and that after restricting to SL2(C) and composing with this map, we can
1It is very important to note here that a ‘modular function of weight k’ in the sense of Definition 2.3.3

actually corresponds to a modular form of weight k+ 2. In particular, a weight 2 modular form corresponds to
a weight 0 automorphic function in this sense. This is another case of the ‘shift by 2’ that we can push around
but not eliminate.

37



Automorphic forms

consider F i as a function

F i : SL2(C) −→ Vk(C)⊗ Vk(C)⊗ V2(C). (3.1)

One can identify V2(C) with the space of differentials spanned by the basis (β0, β1, β2) consid-

ered in Definition 3.1.6. Via this, we can see the map F i in (3.1) as determining an element of

Vk(C)⊗ Vk(C)⊗Ω1(SL2(C),C) ∼= Ω1(SL2(C), Vk(C)⊗ Vk(C)). After a small modification, this

differential descends to the quotient H3 = SL2(C)/SU2(C), giving the required differential on

H3.

For a detailed proof in this case, see Chapter 5.4.3.

3.3. B-moderacy

The one remaining condition that we’re yet to mention in any form is the analogue of ‘holo-

morphicity at the cusps’. This relates to a condition known as B-moderacy, which prescribes

‘boundedness’ as a function approaches a cusp. We continue to assume that K is imaginary

quadratic, though the ideas generalise easily. Let || · || denote any norm on the complex vector

space V2k+2(C), and let

B ..=


t z

0 1

 ∈ GL2(AK)

 .

Definition 3.3.1. Let Φ : GL2(AK) → V2k+2(C) be an automorphic function of weight (k, k)

and level Ω1(n). We say that Φ is B-moderate if there exists an N ≥ 0 such that for every

compact subset S of B,∣∣∣∣∣∣
∣∣∣∣∣∣Φ
t z

0 1

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(|t|N + |t|−N ), t ∈ A×K , z ∈ AK

uniformly over ( t z0 1 ) ∈ S.

3.4. Definition of automorphic forms

We now come to the definition of automorphic forms.

Notation: Recall the notation: we take F to be a number field, λ = (k,v) ∈ Z[ΣF ]2 to be an

admissible weight, and Ω1(n) to be the (adelic) level group defined in equation (2.3).

Definition 3.4.1. Let Φ : GL2(AF ) −→ Vk∗(C) be a function. We say that Φ is an automorphic

form of weight λ and level Ω1(n) if:

(i) Φ is an automorphic function of weight λ and level Ω1(n) (see Definition 2.3.3),
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(ii) Φ is B-moderate, and

(iii) if we write F1, ...,Fh for the functions on HF corresponding to Φ for some fixed choice of

representatives for the narrow class group, then the differential q-forms ωFi are harmonic

for i = 1, ..., h.

To compare to the classical case, condition (ii) is the analogue of being holomorphic at the

cusps, whilst condition (iii) is the analogue of being holomorphic on the upper half-plane.

Remark: Condition (iii) is independent of the choice of class group representatives. Indeed, it

can be stated in the following intrinsic form:

(iii′) write Φ∞ for the restriction of Φ to GL2(F+
∞), where F+

∞ is the connected component of

the identity in F∞. Then Φ∞ is an eigenfunction of the operators δv for all infinite places

v, with

δv(Φ∞) =
(
k2
v

2 + kv

)
Φ∞,

where δv is a component of the Casimir operator in the Lie algebra sl2(C) ⊗R Fv (see

[Hid93], Section 1.3).

Indeed, this form of the condition is necessary to define automorphic forms in even greater

generality.

3.5. Cusp Forms

We are primarily interested in cusp forms, and whilst we will not be in a position to explain

the cuspidality condition until the next section, it is straightforward to state.

Definition 3.5.1. Let Φ : GL2(AF ) → Vk∗(C) be an automorphic form of weight λ and level

Ω1(n). Then Φ is a cusp form if it satisfies the additional condition

(iv) For all g ∈ GL2(AF ), we have

∫
F\AF

Φ(ug)du = 0,

where we consider AF to be embedded inside GL2(AF ) by the map sending u to ( 1 u
0 1 ),

and du is the Lebesgue measure on AF .

Remarks: (i) The cuspidal condition is a natural one; the value of the integral for a fixed

g corresponds to a constant Fourier coefficient. We will give some motivation for this

statement in the sequel in the case where F is imaginary quadratic and the weight is

(0, 0).
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(ii) The general definitions given above are already slightly tailored to work with cusp forms,

in that we’ve restricted to weights satisfying k = ck, where c denotes complex conjugation;

in [Har87b], it is shown that all cusp forms have such weights. More generally, it is

possible to define general automorphic forms of weight k where k 6= ck. We make no

further mention of this here, however.

Definition 3.5.2. We write Sλ(Ω1(n)) for the space of adelic cusp forms of weight λ and level

Ω1(n).
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Chapter 4

L-Functions

In this chapter, we attach classical complex L-functions to the automorphic forms defined above.

There are two equivalent ways of doing this: either through the theory of Hecke operators or

Fourier expansions. For the former, we take an eigenform for the Hecke operators and build a

Dirichlet series out of the Hecke eigenvalues, and for the latter, we do so by using the Fourier

coefficients. We start by describing the theory of Hecke operators, then by writing down the

Fourier expansion of an automorphic form, before finally defining the L-function.

4.1. Hecke operators

As in the classical case, there is a rich theory of Hecke operators for the automorphic forms

defined in the previous chapter. We will define them here.

Let p be a prime of F , and consider the double coset

Ω1(n)γpΩ1(n),

where we define γp ∈ GL2(AfF ) by

(γp)v =


πp 0

0 1

 : v corresponds to the finite prime p,

I : otherwise,

where πp is a (fixed) uniformiser of Op. Then the Tp Hecke operator is given by the double

coset operator [Ω1(n)γpΩ1(n)]. More explicitly, we have a decomposition

Ω1(n)γpΩ1(n) =
⊔
i∈I

Ω1(n)γi,

for some finite set I and γi ∈ GL2(AfF ). Then, for an automorphic form Φ of weight λ and

level Ω1(n), we set

Φ|Tp(g) =
∑
i∈I

Φ(gγi).
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When p divides n, we denote the operator instead by Up.

Remark: This is independent of the choice of representatives γi using the invariance of Φ

under Ω1(n).

We can similarly define Hecke operators for each integral ideal I of F . Indeed, let γI ..=
∏

p γ
r
p,

where pr exactly divides I; then the Hecke operator at I is given by the double coset operator

[Ω1(n)γIΩ1(n)]. Such Hecke operators are totally determined by the Hecke operators at primes,

as in the rational case. For ideals I that are coprime to n, we write TI for the Hecke operator

at I, and for others, we write UI .

Remarks: Many of the nice properties that classical modular forms enjoy with respect to

Hecke operators also carry over to this situation. In particular:

(i) If Φ is an eigenform for the Hecke operators, then the Hecke eigenvalues are algebraic, and

for a suitable choice of v in the weight, they also satisfy integrality conditions (see [Hid94],

Section 6).

(ii) We have multiplicity one theorems, as over Q.

4.2. Fourier expansions

Here, we give a brief introduction to Fourier expansions of automorphic forms with a view to

defining their L-functions. In the sequel, we will return to this to give accounts that are more

tailored to our purposes; in particular, in Part II, we shall describe Fourier expansions of the

individual components F i of an automorphic form over an imaginary quadratic field (removing

references to adeles).

4.2.1. Statement of the expansion

The following is taken almost verbatim from [Hid94], Section 6.

We need the following definitions:

Definition 4.2.1. Throughout, let F be an arbitrary number field with set of real places Σ(R)

and complex places Σ(C). Let λ = (k,v) be an admissible weight.

(i) Let n be an integer, and let Kn(x) be the modified Bessel function, that is, the unique

solution to
d2Kn

dx2 + 1
x

dKn

dx
−
(

1 + n2

x2

)
Kn = 0,

with asymptotic behaviour

Kn(x) ∼
√

π

2xe
−x
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as x→∞. Note that, in particular, K−n = Kn.

(ii) For v ∈ Σ(R), define the Whittaker function at v to be

Wλ,v : R× −→ C,

y 7−→ |y|−vve−2π|y|.

(iii) For v ∈ Σ(C), define the Whittaker function at v to be

Wλ,v : C× −→ V2kv+2(C),

y 7−→
kv+2∑
n=0

2kv + 2

n

 |y|−2vv
(

y

i|y|

)kv+1−n
Kn−kv−1(4π|y|)S2kv+2−n

v Tnv .

(iv) Define

Wλ : (F ⊗Q R)× −→ Vk∗(C),

y 7−→
∏

v∈Σ(R)∪Σ(C)

Wλ,v(yv).

(v) Define F×+ to be the set of totally positive elements of F×, that is, the elements of F that

are positive under every real embedding.

(vi) Write D for the different of F .

Recall the definition of eF from Definition 1.3.1. Then we have:

Theorem 4.2.2. Let Φ be an automorphic form of weight λ = (k,v) and level Ω1(n). Then

there is a Fourier expansion

Φ

y x

0 1

 = |y|AF
∑
ζ∈F×+

c(ζyD,Φ)Wλ(ζy∞)eF (ζx), x ∈ AF ,y ∈ A×F ,

where here ζyD is the fractional ideal (ζ)I(y)D of F . Moreover, the function c(·,Φ) gives a

well-defined function on fractional ideals that is supported at the integral ideals of F .

Proof. See [Hid94], Theorem 6.1.

4.2.2. Motivation for weight (0, 0) over imaginary quadratic fields

At first glance, it is entirely non-obvious where the above Fourier expansion comes from. To

give some motivation, in this section, we sketch the derivation for the case that F = K is

imaginary quadratic of class number 1 and the weight is (0, 0), which has received substantially
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more treatment in the literature. For a full derivation in this case, see [Cre81], Chapter 3, on

which this account is based.

The general idea is to study harmonic functions h : H3 → C3, that is, functions h with

suitably bounded growth such that h · β is a harmonic differential. The harmonicity condition

gives rise to a series of partial differential equations which turn out to be precisely those defin-

ing K-Bessel functions. With an appropriate extra condition (which we label as the function

being standard), this leads to an expression for h in terms of the K-Bessel functions K0 and K1.

On a different tack, the automorphy condition for F gives invariance under the subgroup

{( 1 α
0 1 ) : α ∈ OK}, which translates into a periodicity condition

F(z + α, t) = F(z, t),

and hence F has a Fourier expansion with regard to the additive characters of C which are

trivial on OK . In [Tat50], it is proved that that if we take an additive character

Ψ(z) ..= e−2πi(z+z̄)

of C, then every additive character of C that is trivial on OK has the form

Ψα(z) = Ψ(αz), α ∈ OK ;

hence F has a Fourier expansion of the form

F(z, t) =
∑
α∈K

c′(α, t)Ψ(αz).

Some calculations using the automorphy condition allow us to show that, as a function on K,

the function c′(·, t) is supported only on elements α that belong to the inverse different D−1,

and so replacing α with αδ−1, where δ is a generator of the different, allows us to write the

sum over α ∈ OK instead.

The Fourier coefficients are given by the usual integral formula

c′(α, t) =
∫
OK\C

F(z, t)Ψ(αz)dz,

and cusp forms correspond to the zeroth Fourier coefficient being 0, that is,

c′(0, t) =
∫
OK\C

F(z, t)dz = 0.
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This gives some slight motivation for the (much more general) integral cuspidal condition given

for forms on GL2(AK) in the previous section.

If we define c′′(α, t) = Ψ(α)c′(α, t), then a simple calculation shows that the c′′(α, t) are stan-

dard harmonic functions of t. This means that they have the form c(α)H(t), where H(t) is a

vector-valued function depending on K-Bessel functions. Substituting this into the above gives

the required form of the Fourier expansion.

4.3. Defining the L-function

We now have two alternative methods of defining the L-function. The following proposition

shows that they are equivalent.

Proposition 4.3.1. Let Φ be an automorphic form of weight λ and level Ω1(n) that is an

eigenform for all of the Hecke operators. Let λI be the eigenvalue of Φ at TI . Then

λI = c(I,Φ),

where c(I,Φ) is the Fourier coefficient of Φ at I.

Proof. See [Hid94], Corollary 6.2.

Thus we define:

Definition 4.3.2. In the set-up of above, for s ∈ C define the L-function of Φ to be the sum

L(Φ, s) ..=
∑

0 6=I⊂OF

c(I,Φ)N(I)−s =
∑

0 6=I⊂OF

λIN(I)−s.

Of course, we can define the L-function for an automorphic form that is not an eigenform by

using the Fourier coefficients, but such L-functions don’t satisfy as many nice properties, and

we’ll only be concerned with the case where we do have an eigenform.

Definition 4.3.3. Let ϕ be a Hecke character of F , and recall that this naturally gives rise to

a function on fractional ideals of F that we also denote by ϕ. We define the twist of L(Φ, s) by

ϕ to be

L(Φ, ϕ, s) ..=
∑

0 6=I⊂OF

c(I,Φ)ϕ(I)N(I)−s.

Proposition 4.3.4. The sum L(Φ, ϕ, s) converges absolutely in a right half-plane for Re(s)

sufficiently large.

Proof. See [Wei71], Chapter II.
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It is often more convenient to parcel the L-function and all of its twists together into a single

function on characters in the style of Tate’s thesis. With that in mind, we make the following

definition:

Definition 4.3.5. Let Φ be an automorphic form as above, and let ϕ be a Hecke character.

Then define

L(Φ, ϕ) ..= L(Φ, ϕ, 1).

Note that this makes sense for an arbitrary Hecke character, not just one that is arithmetic.

In particular, for a complex number s, we have a Hecke character | · |s, where | · | denotes the

adelic norm character, and then we have

L(Φ, ϕ, s) = L(Φ, ϕ| · |s−1).

We make one more definition. We’ve shown that the L-function is related to the Hecke eigen-

values, so that in a sense, the L-function is built from local data at the finite primes (much

like in the classical case, where the L-function of a Hecke eigenform has an Euler product). We

complete the L-function by adding the appropriate factors at infinity.

Definition 4.3.6. Let ϕ be a Hecke character of infinity type j + v. Define

Λ(Φ, ϕ) ..=
[∏
v∈Σ

Γ(jv + 1)
(−2πi)jv+1

]
L(Φ, ϕ),

where Γ is the usual Gamma function. This is the L-function renormalised by Deligne’s Γ-

factors at infinity.

4.4. Periods and algebraicity

We record one further very important result here. The following theorem facilitates the study

of p-adic L-functions of automorphic forms for GL2, and thus is crucial to the rest of this

thesis. It was proved by Hida in [Hid94], Theorem 8.1. Earlier, Shimura proved this result over

Q in [Shi77] and later over totally real fields in [Shi78].

Theorem 4.4.1. Let Φ be a cuspidal eigenform over F of weight λ = (k,v) and level Ω1(n),

with associated L-function L(Φ, ·). Let ϕ be an arithmetic Hecke character of infinity type j+v,

where 0 ≤ j ≤ k, and let ε = εϕ be its associated character on {±1}Σ(R) (as in Chapter 1.2.2).

Let E be a number field containing the normal closure of F and the Hecke eigenvalues of Φ.

Then there is a period

ΩεΦ ∈ C×,
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depending only on Φ and ε, such that

Λ(Φ, ϕ)
ΩεΦτ(ϕ) ∈ E(ϕ),

where E(ϕ) is the number field generated over E by adjoining the values of ϕ.

Remarks: (i) We are assuming that all Hecke characters are arithmetic; if we dropped this

assumption, then E(ϕ) need not be finite over E (see [Hid94], Section 8).

(ii) This results bears comparison with a conjecture of Deligne in [Del79]. Deligne’s con-

jecture is stated for motives, and says that the L-function of the (conjectural) motive

attached to an automorphic form as above should satisfy a similar algebraicity result

after renormalising by an (explicit) transcendental period.

(iii) There are many choices of such a period, differing by elements of E×. Throughout the

rest of the paper, we shall assume that we fix a period for each character ε.

(iv) Note that the period depends on the character εϕ(ι) ..= ϕ|{±1}Σ(R)(ι)ιj+v of the Weyl

group, and not the character ϕ|{±1}Σ(R) . This latter version is incompatible with Shimura’s

results over Q.

Thus we have a collection of 2r1 periods attached to Φ, and each corresponds to a different

collection of L-values, depending on the parity of the corresponding Hecke characters.
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Imaginary Quadratic Fields



A Bianchi modular form is an automorphic form over an imaginary quadratic field K. In this

part, we use a modular symbol method to construct p-adic L-functions for Bianchi modular

forms. We do so via very explicit methods; in particular, in this setting, we have a very con-

crete description of the spaces of modular symbols, and all of our proofs are constructive.

We start by describing the classical theory, attaching classical modular symbols to Bianchi

modular forms and then linking them with special values of their L-functions. We then develop

the theory of overconvergent modular symbols in the Bianchi setting in explicit detail, showing

that the natural specialisation map from overconvergent to classical modular symbols is an iso-

morphism on the small slope eigenspaces of the Hecke operators at p. Using this, to a small

slope classical Bianchi eigenform, one can attach a canonical small slope overconvergent eigen-

symbol; in the remainder of this part, we examine the distributions that arise as values of this

symbol, showing that they have good growth properties and interpolate special L-values of the

original eigenform. In particular, we use it to construct the p-adic L-function of the eigenform.

The results that appear here are contained in the paper “P -adic L-functions of Bianchi modular

forms” (see [Wil15]).



Chapter 5

Classical Bianchi Modular Symbols

Let K be an imaginary quadratic field. In this chapter, we discuss the theory of automorphic

forms over K, reformulating some of the above theory in a more concrete setting; typically,

we will work with functions defined on H3 rather than on GL2(AK). We then define modular

symbols over imaginary quadratic fields; firstly, we do this abstractly with an arbitrary module of

values, and secondly, with a specific module of polynomials. After defining Hecke operators on

the space of modular symbols, we show how to attach a Bianchi modular symbol to a Bianchi

modular form in a Hecke-equivariant manner. We conclude by refining the construction to

construct a modular symbol with p-adic (rather than complex) coefficients.

5.1. Notation and recap

Throughout Part II, K will denote an imaginary quadratic field of class number h.

Definition 5.1.1. A Bianchi modular form is an automorphic form of some weight and level

over K.

Notation: We use the following conventions for the weight and level throughout the rest of

this part.

(i) We will always take the weight to be λ = [(k, k), (0, 0)], that is, we’ll set v = 0. We’ll

write this simply as weight (k, k).

(ii) All (adelic) automorphic forms will have level Ω1(n), as defined in Definition 2.3, for n

some integral ideal of K.

(iii) We write Sk,k(Ω1(n)) for the space of Bianchi modular forms of weight (k, k) and level

Ω1(n).

Let Φ : GL2(AK) −→ V2k+2(C) be a Bianchi modular form of weight (k, k) and level Ω1(n).

Recall that to Φ, we associate a (non-canonical) collection of h functions F1, ...,Fh : H3 →

V2k+2(C) defined in the following manner: fix a choice of representatives I1, ..., Ih for the class
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group of K that are all pairwise coprime to n, and choose ideles a1, ..., ah representing these

ideals. Then define

F i : GL2(C) −→ V2k+2(C),

g 7−→ Φ

ai 0

0 1

 g

 .

We then define

F i : H3 −→ V2k+2(C),

(z, t) 7−→ t−1F i

t z

0 1

 .

These functions then satisfy automorphy conditions under the discrete subgroups

Γi1(n) ..= SL2(K) ∩

ai 0

0 1

Ω1(n)GL2(C)

a−1
i 0

0 1


of SL2(K). (For further details of this construction, see Chapter 2.2.5).

With this construction in mind, it is also useful to define the notion of Bianchi modular forms

on H3. To this end, let Φ be a cuspidal automorphic form of weight (k, k) and level Ω1(n);

then for any idele a, we obtain a function Fa on GL2(C) by

Fa(g) ..= Φ

a 0

0 1

 g

 ,

which naturally gives a function Fa on H3. We say that Fa has weight (k, k) and level

Γa ..= SL2(K) ∩

a 0

0 1

Ω1(n)GL2(C)

a−1 0

0 1

 .

Definition 5.1.2. Let F : H3 −→ Vk,k(C) be a function.

(i) We say that F is a Bianchi modular form of weight (k, k) and level Γ if there exists an

idele a, with trivial components at infinity and n, such that F = Fa and Γ = Γa ≤ SL2(K)

for some automorphic form Φ over K of weight (k, k) and level Ω1(n).

(ii) We say that F is a cusp form if the automorphic form Φ is cuspidal.

In other words, a function on H3 is a cusp form if and only if it comes from an (adelic)

automorphic form in the natural way. (When we talk about cusp forms, it should be clear

whether they are functions on H3 or GL2(AK) by context).
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Remark: We could define cusp forms on H3 more directly by writing down an automorphy

condition under the group Γ (see, for example, equation (2.7) above). We’ve chosen to define

them in this more abstract way to emphasise the fact that we really want to see such functions

as coming from adelic automorphic forms. In particular, we want to see each one as part of a

collection of h forms coming from one automorphic form, and that whilst we can consider such

forms individually, we get far nicer structures and properties by considering them as one part

of a collection.

As a simple example of this, note that if p is a prime of K that is not principal, then there is no

notion of a Tp operator on cusp forms on H3. For this, we really need to see a Bianchi modular

form as a collection of h cusp forms on H3, and then the Tp operator permutes the components

in addition to acting on each individually. This will all be made clearer in the sequel.

5.2. Modular symbols and differentials

We now come to the definition of modular symbols over imaginary quadratic fields. In this

section, we discuss the basic theory as a precursor to the sequel, where we attach such a modular

symbol to a cusp form on H3.

5.2.1. Abstract modular symbols over K

We begin this section by giving the definition of modular symbols over K with values in a

completely general module V . To this end, let Γ ≤ SL2(K) be a discrete subgroup, and let V

be a right Γ-module.

Definition 5.2.1. Define

∆0 ..= Div0(P1(K)),

and note that ∆0 has a left action of Γ (and indeed, of SL2(K)) given by fractional linear

transformations. Concretely, this is the action induced linearly bya b

c d

 · r ..= ar + b

cr + d
, a, b, c, d ∈ K, r ∈ P1(K),

where (as usual) this means that
(
a b
c d

)
· r =∞ when cr + d = 0 and

(
a b
c d

)
· ∞ = a/c.

Remarks: (i) We define the completed upper half-space H∗3 ..= H3 ∪ P1(K). This is the

imaginary quadratic analogue of ‘adding in the cusps’ over the rationals; in particular,

we say that P1(K) is the set of cusps of H∗3 and given some r ∈ K, we see r as an element

(r, 0) on the boundary of H3 = C× R>0.
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(ii) Note that ∆0 is spanned by elements of the form {r} − {s} for r, s ∈ P1(K). One should

view this element as representing a path between the cusps r and s.

Definition 5.2.2. (i) We say that a map φ ∈ Hom(∆0, V ) is Γ-invariant if we have

φ(γ ·D)|γ = φ(D)

for all D ∈ ∆0 and γ ∈ Γ.

(ii) Write

SymbΓ(V ) ..= HomΓ(∆0, V )

for the space of Γ-invariant maps from ∆0 to V . We call this the space of V -valued

modular symbols of level Γ.

For suitable modules V – to be defined below – there is a close link between V -valued modular

symbols of level Γ and Bianchi modular forms on H3 of level Γ.

5.2.2. Classical Bianchi modular symbols

Definition 5.2.3. As above we define, for a non-negative integer k, the space Vk(C) to be

the space of homogeneous polynomials of degree k in two variables over C. Furthermore, for

notational convenience, we define Vk,k(C) ..= Vk(C)⊗C Vk(C).

Note that we can identify Vk,k(C) with the space of polynomials that are homogeneous of

degree k in two variables X,Y and homogeneous of degree k in two further variables X,Y .

Furthermore, recall that Vk(C) is an irreducible SU2(C)-module from Proposition 2.2.1, with

SU2(C) acting on the right by

(P |γ)

X
Y

 = P

γ
X
Y

 .

The following defines a different action on this space, with a view to obtaining a ‘nice’ action

on the dual space of Vk,k(C).

Definition 5.2.4. We have a left-action of SL2(C) on Vk(C) defined by

(γ · P )

X
Y

 = P

dX + bY

cX + aY

 , γ =

a b

c d

 .

We then obtain a left-action of SL2(C) on Vk,k(C) by

(γ · P )

X
Y

 ,

X
Y

 = P

dX + bY

cX + aY

 ,

d̄X + b̄Y

c̄X + āY

 .
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Remark: This action, whilst appearing unconventional, is chosen so that it is compatible with

an action on a space of locally analytic functions on some p-adic space. This compatibility

simplifies matters considerably when considering specialisation maps from overconvergent to

classical modular symbols.

The left action of SL2(C) described above translates into a right-action on the dual space

Vk,k(C)∗ ..= Hom(Vk,k(C),C). For µ ∈ Vk,k(C)∗, we set

(µ|γ)(P ) = µ(γ · P ).

Definition 5.2.5. (i) For a discrete subgroup Γ of SL2(K), the space of Bianchi modular

symbols of weight (k, k) and level Γ is defined to be the space SymbΓ(Vk,k(C)∗) of Vk,k(C)∗-

valued modular symbols of level Γ.

(ii) For a fixed choice of class group representatives I1, ..., Ih, the space of Bianchi modular

symbols of weight (k, k) and level Ω1(n) is defined to be the space

SymbΩ1(n)(Vk,k(C)∗) ..=
h⊕
i=1

SymbΓi1(n)(Vk,k(C)∗).

In the sequel, we’ll attach a modular symbol of level Ω1(n) to a full adelic cuspidal Bianchi

modular form by attaching a modular symbol of level Γi1(n) to each cusp form F i on H3. It

is often easier to study these objects component by component at the level of H3, and where

possible, we do so.

Remark: We can equip each of these spaces with a Hecke action, and then there are natural

Hecke-equivariant isomorphisms between the symbol spaces defined above and certain com-

pactly supported cohomology groups. In particular, the space SymbΩ1(n)(Vk,k(C)∗) can be

defined independently of the choice of class group representatives for K. For more details of

this approach, see Part III.

5.2.3. Differentials on H3

We studied differential forms in Chapter 3.1.1. In this section, we specialise to study differentials

on hyperbolic 3-space H3, which naturally has the structure of a real differentiable 3-manifold.

Accordingly, at each point of x ∈ H3, the tangent space TxH3 is a 3-dimensional real vector

space, which then gives the following:

Proposition 5.2.6. The space Ω1(H3,C) is a 3-dimensional C∞(H3)-module spanned by the

elements dz, dt and dz.
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Recall that in Chapter 2.2.4 we defined an action of SL2(C) on H3. By pulling back this action

to the space of differentials, we obtain:

Proposition 5.2.7. The expression

γ ·


dz

−dt

−dz

 = ρ(γ, (z, t))−1


dz

−dt

−dz

 , (5.1)

for ρ as defined in equation (2.7), defines a left action of SL2(C) on Ω1(H3,C).

We can obtain a more concrete description of this action by passing to V2(C), the space of

homogeneous polynomials of degree two in the variables A,B. Previously, we have defined a

right-action of SU2(C) on V2(C). We can translate between right and left actions by setting

(u · P )

A
B

 ..= (P |u−1)

A
B

 = P

u−1

A
B

 , P ∈ V2(C), u ∈ SU2(C).

To emphasise that this space is now equipped with a left-action, we denote it V `2 (C) (and

likewise V r2 (C) when we use the right-action).

Proposition 5.2.8. Let Ω1
0(H,C) be the C-vector space spanned by dz, dt and dz. There is an

isomorphism Ω1
0(H3,C) ∼−→ V `2 (C) of SU2(C)-modules given by the map sending

dz 7→ A2, dt 7→ −AB, dz 7→ −B2.

Proof. The proof, whilst not stated as an explicit proposition, is contained in [Gha99], Section

2.2, and uses the theory of Lie algebras. The map factors through an isomorphism T(0,1)H∗3⊗R

C ∼= V `2 (C), with the map Ω1(H3,C)→ T(0,1)H∗3 ⊗R C induced from

Ω1(H3,R) −→ T(0,1)H∗3,

ω 7−→ ω(0,1)

by tensoring with C.

Using this isomorphism, we can define a left-action of SL2(C) on V `2 (C) corresponding to the

pull-back of the action on differentials. An explicit check shows this to be given by

γ · P

A
B

 = P

 1
|a|2 + |c|2

 a c

−c a

A
B

 , γ =

a b

c d

 . (5.2)
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We’ll later use the space V `2 (C) and this concrete definition of the action to obtain an element

of V `k,k(C) ⊗C V
`
2 (C) associated to a Bianchi modular form F , and then use Proposition 5.2.8

to turn this into a V `k,k(C)-valued modular symbol.

5.3. Hecke operators

In the classical theory, the Hecke operators allow us to endow spaces of automorphic forms with

additional structure. We can also define Hecke operators on the space of modular symbols. In

this section, we’ll give the definition, in the process providing motivation for considering the

full ‘adelic’ space SymbΩ1(n)(Vk,k(C)∗) of modular symbols.

5.3.1. Hecke operators at principal ideals

Let I be a principal ideal of K, and pick a generator β of I. Let Γ be a discrete subgroup of

SL2(K).

Definition 5.3.1. The TI operator on SymbΓ(Vk,k(C)∗) is defined to be the double coset

operator

TI =

Γ

1 0

0 β

Γ

 .
Concretely, define

Γβ ..=

1 0

0 β−1

Γ

1 0

0 β

 ∩ Γ,

and choose representatives γ′1, ..., γ′n for the quotient Γ/Γβ . Then, defining

γi =

1 0

0 β

 γ′i,

we have

(φ|TI)(D) =
n∑
i=1

(φ|γi) (D)|γi

for φ ∈ SymbΓ(Vk,k(C)∗) and D ∈ ∆0. (Note here that we’ve extended the action of SL2(C)

to GL2(C) without modification). The operator TI is independent of both the choice of β and

the choice of representatives.

Hence: for a principal ideal, we can define a Hecke operator TI on each component of a full

modular symbol.

5.3.2. Hecke operators at non-principal ideals

Now let I be a non-principal prime of K. The approach outlined above no longer works in this

setting; we can’t choose a generator to define the double coset operator. In fact, there is no
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natural definition of a TI operator on the components of a modular symbol; we really do need

to use the full space.

As ever, consider our fixed representatives I1, ..., Ih for the class group. For each i ∈ {1, ..., h}

there is a unique ji ∈ {1, ..., h} such that

IIi = (αi)Iji ,

for αi ∈ K.

Definition 5.3.2. The TI operator is defined on SymbΩ1(n)(Vk,k(C)∗) by

(φ1, ..., φh)|TI ..=

φj1∣∣∣∣
Γj1

1 0

0 α1

Γ1

 , ..., φjh∣∣∣∣
Γjh

1 0

0 αh

Γh

 .

Again, we can compute this concretely in the same manner as above by writing down explicit

representatives of the double coset. Note that the TI operator really does permute the indi-

vidual components, depending on the class of I in the class group; indeed, this permutation

corresponds to multiplication by [I] in the class group.

If p is a prime ideal, note that if n is an integer such that pn = (σ) is principal, then this

action becomes significantly simpler; namely, we just act on each component via the double

coset [Γ ( 1 0
0 σ ) Γ]. When working with Hecke operators in the sequel, we will use this approach,

as it allows us to work with individual components.

5.3.3. Hecke operators at p

We make one further observation. When I is not coprime to the level n, we write UI instead of

TI . In the sequel, we will always take n to be divisible by (p), so that if p is a prime above p,

we have an even simpler description of the Hecke operator Up. Let n be an integer such that

pn = (σ) is principal; then Upn = Unp acts on each component by

φ|Unp (D) =
∑

a (mod pn)

φ∣∣∣∣
1 a

0 σ

 (D)
∣∣∣∣
1 a

0 σ

 ,

where φ ∈ SymbΓ(Vk,k(C)∗) and D ∈ ∆0.

Remark: Note that we have Upn = Unp only because p divides the level. In general, the Hecke

operators are not multiplicative.
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5.4. The modular symbol attached to a Bianchi modular form

Let F : H3 −→ V2k+2(C) be a Bianchi cusp form on H3 of weight (k, k) and level Γ. In this

section, we describe a way of attaching an element of SymbΓ(Vk,k(C)∗) to F . We’ll start by

giving some motivation for the construction; firstly, a (very brief) description of the rational

case, before tackling the case of a weight (0, 0) form over an imaginary quadratic field of

class number 1, for which the literature is rather more broad and the construction is much

simpler. Finally, we’ll describe the Eichler-Shimura-Harder isomorphism, which describes the

construction in the general case for imaginary quadratic fields.

5.4.1. Modular symbols over Q

Let Γ ≤ SL2(Z) be a congruence subgroup. The space of modular symbols of weight k + 2 and

level Γ is the space

SymbΓ(Vk(C)) ..= HomΓ(Div0(P1(Q), Vk(C)),

where these objects are all defined in a manner analogous to before. If f ∈ S2(Γ) is a classical

weight 2 cusp form, we define its associated modular symbol to be defined on paths between

cusps – that is, on generators of Div0(P1(Q)) – by

φf ({r} − {s}) =
∫ s

r

f(z)dz.

In other words, we define a (harmonic) differential on H3 associated to f with values in C ∼=

V0(C), and then integrate it over a path between two cusps (noting that, by harmonicity, the

integral is independent of the choice of path). For weight k + 2, then, we look for a suitable

harmonic differential on H with values in Vk(C), and then integrate it over such paths to give

the modular symbol. Such a differential is given by f(z)(zX + Y )kdz; it is a simple check to

show that the function defined on pairs of cusps by

φf ({r} − {s}) =
∫ s

r

f(z)(zX + Y )kdz

induces a modular symbol.

Remarks: (i) We met this differential in earlier sections; in particular, it is the differential

introduced in Theorem 3.2.2.

(ii) For further details on this construction, see the papers of Pollack and Stevens ( [PS11]

and [PS12]).

(iii) In some ways, it is more natural to consider modular symbols over Q to have values in

Vk(C)∗, in line with the Bianchi case. This certainly gives better compatibility with the

theory of overconvergent modular symbols. The two formulations are equivalent via an

isomorphism Vk(C) ∼= Vk(C)∗ of SL2(C)-modules (see Chapter 5.4.4).
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The strategy over imaginary quadratic fields will be similar. In particular, we look to associate

a Vk,k(C)∗-valued harmonic differential to a Bianchi modular form – as in Theorem 3.2.2 – and

then integrate it over cusps.

5.4.2. In weight (0,0) and class number 1

A cusp form of weight (0,0) and level Γ1(n) over an imaginary quadratic field of class number

1 can be described simply as a function

F = (F0,F1,F2) : H3 −→ V2(C) ∼= C3.

To such a cusp form we associate a differential

ωF ..= F0(z, t)dz −F1(z, t)dt−F2(z, t)dz.

Remarks 5.4.1: (i) This can be realised more elegantly as

ωF = tF · β,

where we recall that

β =
(
dz

t
,
−dt
t
,
−dz
t

)
is a basis for the left-invariant differentials on H3. Note that this differs slightly (by the

factor of t) from that defined in [Cre81], [CW94] and [Byg98], as explained in Section

2.2.5 above.

(ii) An explicit calculation shows that ωF is Γ1(n) invariant; in Section 2.2.5 we showed that,

for γ ∈ Γ1(n), we have

F(γ(z, t)) = F(z, t)ρ(γ, (z, t)),

where the action of Γ1(n) on H3 was defined in equation (2.6) and where ρ is as defined in

equation (2.7). We also have an explicit description of the action of SL2(C) on Ω1(H3,C)

as

γ ·


dz

−dt

−dz

 = ρ(γ, (z, t))−1


dz

−dt

−dz


(see equation (5.1)). These combine easily to give invariance, as stated, and shows that

in fact this differential is defined on the quotient Y1(n) ..= Γ1(n)\H3, that is,

ωF ∈ H1
(
Y1(n), C̃

)
,

where C̃ is the constant sheaf on the real 3-manifold Y1(n) associated to V0,0(C) = C.
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This differential brings us to the desired definition:

Definition 5.4.2. Let F : H3 → C3 be a cusp form of weight (0,0) and level Γ1(n) over an

imaginary quadratic field of class number 1. The modular symbol attached to F is defined

pointwise by

φF ({r} − {s}) ..=
∫ s

r

ωF .

5.4.3. The Eichler-Shimura-Harder isomorphism

Now consider the case of general weight (k, k), with arbitrary class number h. Let Φ be a cusp

form on GL2(AK) of weight (k, k) and level Ω1(n), and write F1, ...,Fh for the associated cusp

forms on H3 (under our fixed set of class group representatives). We pick one of these functions

F i, henceforth denoting it simply by F , and describe how to attach a modular symbol φF to it.

Throughout, we write Γ = Γi1(n) for the level of F . The construction described here appears

in [Gha99], Section 5.1.

Above, we considered a right-action of SU2(C) on Vk(C). Here, we must pass to the corre-

sponding left-action, defined by γ · P ..= P |γ−1 (see Section 5.4.4 below for more details on

this change). When talking about this space with a left-action, as before we write V `k (C) (and

similarly V rk (C) when we talk about the right-action). We extend this notation to the tensor

product, and write V `k,k(C) and V rk,k(C) for the tensor products considered with the left- and

right-action respectively.

We recap some basic representation theory. The Clebsch-Gordan formula says that, for k ≥ `,

Vk(C)⊗C V`(C) = Vk+`(C)⊕ Vk+`−2(C)⊕ · · · ⊕ Vk−`(C)

as (left or right) SU2(C)-modules. This says that, as Vk,k(C) ∼= Vk(C)⊗C Vk(C), we have

Vk,k(C)⊗C V2(C) = V2k+2(C)⊕ V2k(C)2 ⊕ · · · ⊕ V0(C)

as right SU2(C)-modules, and hence that there is an injection of (left) SU2(C)-modules

σ : V `2k+2(C) ↪−→ V `k,k(C)⊗C V
`
2 (C).

A conceptual construction

We echo Ghate’s approach by first describing a conceptual method of obtaining a differential

and then computing the result more explicitly. We start by constructing this differential on

SL2(C); let F be the function GL2(C) → V `2k+2(C) corresponding to F , where here we have

passed to a left-action of SU2(C) rather than the conventional right-action. From now on we
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will only consider the restriction of F to SL2(C), and, in an abuse of notation, we will also

write F for this restriction. We compose F with the map σ defined above to give

σ ◦ F : SL2(C) −→ V `k,k(C)⊗ V `2 (C).

This associates to F a polynomial that is homogeneous of degree k in variables X and Y , homo-

geneous of degree k in variablesX and Y and homogeneous of degree 2 in variables A and B. We

then use Proposition 5.2.8 to pass from V2(C) to differentials; namely, we replace A2 with dz,

AB with −dt and B2 with −dz to obtain a differential 1-form on SL2(C) with values in V `k,k(C).

At the moment, this procedure is not well-defined on H3 = SL2(C)/SU2(C). To this end,

we scale by the action of SL2(C).

Definition 5.4.3. Given F : SL2(C)→ V `2k+2(C) as above, define a differential ωF on SL2(C)

by

ωF (g) = g · (σ ◦ F (g)), g ∈ SL2(C).

Here SL2(C) acts on the left of V `k,k(C) in exactly the same manner as SU2(C), whilst the action

on V `2 (C) is described by equation (5.2) above. Thus, concretely, the action on V `k,k(C)⊗CV
`
2 (C)

is

γ · P

X
Y

 ,

X
Y

 ,

A
B

 = P

γ−1

X
Y

 , γ−1

X
Y

 ,
1

|a|2 + |c|2

 a c

−c a

A
B

 ,
(5.3)

where here γ =
(
a b
c d

)
.

Proposition 5.4.4. This differential is invariant under right multiplication by SU2(C), that

is,

ωF (gu) = ωF (g), u ∈ SU2(C), g ∈ SL2(C)

so ωF gives a well-defined differential on H3 = SL2(C)/SU2(C).

Proof. The map σ is SU2(C)-equivariant. Now,

ωF (gu) = gu · (σ ◦ F (gu)) = gu · u−1(σ(F (g))

= g · (σ ◦ F (g)) = ωF (g),

as required.
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The Eichler-Shimura-Harder construction

To make this construction more concrete, we describe the map σ in detail. Firstly, define

Q ..=

V 2k+2, −(2k + 2)V 2k+1U, ... , (−1)j
2k + 2

j

V 2k+2−jU j , ... , U2k+2

 ,

a vector of homogeneous monomials in two (new) variables U, V . Note that the components

are precisely the monomials that appear in (V −U)2k+2. Now define a vector Ψ ∈ [V `k,k(C)⊗C

V `2 (C)]2k+3 by

(XV − Y U)k(XU + Y V )k(AV −BU)2 = Q ·Ψ.

To emphasise the dependence on the polynomial variables, we will sometimes write

Ψ = Ψ(x,x,a) = Ψ

X
Y

 ,

X
Y

 ,

A
B

 .

An explicit calculation shows that, for u ∈ SU2(C), we have the relation

u ·Ψ(x,x,a) = Ψ(u−1x, u−1x, u−1a) = ρ2k+2(u)−1Ψ(x,x,a),

which is used below.

Define the components Fn of F to be functions Fn : GL2(C)→ C in such a way that

F (g) =
2k+2∑
j=0

Fn(g)X2k+2−nY n.

Writing F as a vector (F0, ..., F2k+2), is thus meaningful to take the dot product of F (g) and

Ψ to obtain a map

F ·Ψ : SL2(C) −→ V `k,k(C)⊗C V
`
2 (C).

This is the promised explicit description of the map σ ◦F . It remains to make this well-defined

on H3; as above, define a function

δ(g,x,x,a) ..= g · (F (g) ·Ψ(x,x,a)).

Then, for u ∈ SU2(C),

δ(gu,x,x,a) = gu · (F (gu) ·Ψ(x,x,a))

= g · (F (gu) · (u ·Ψ(x,x,a)))

= g · (F (g)ρ2k+2(u) · ρ2k+2(u)−1Ψ(x,x,a))

= δ(g,x,x,a),
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so that δ is well-defined on SU2(C), as required. Now, under the isomorphism of Proposition

5.2.8, this construction gives a V `k,k(C)-valued differential ωF = ωF on H3. A lengthy calcu-

lation using the modularity of F and the action of SL2(C) on Ω1(H3) shows that in fact, this

differential is invariant under the action of Γ, so that we get a well-defined differential on the

quotient, that is, an element

ωF ∈ H1 (Γ\H3,L(V `k,k(C))
)
, (5.4)

where L(V `k,k(C)) is the local system on Γ\H3 corresponding to the Γ-module V `k,k(C) (see

Chapter 11.3 for further details). This differential is harmonic from the definition of automor-

phic forms, and hence we can integrate it between cusps of H3 in a path-independent manner.

A simple check then shows:

Proposition 5.4.5. Let F : H3 −→ V2k+2(C) be a cusp form of weight (k, k) and level Γ.

Then the map φ′F : ∆0 → V `k,k(C) given by

φ′F ({r} − {s}) ..=
∫ s

r

ωF

defines a modular symbol φ′F ∈ SymbΓ(V `k,k(C)).

Proof. This is an elementary consequence of the work done above.

Remark: This is not quite the modular symbol attached to F . In particular, note that this

symbol takes values in V `k,k(C), not Vk,k(C)∗. This discrepancy will be addressed in Chapter

5.4.4.

The connection to cohomology

In equation (5.4), we stated a relation between modular forms and cohomology spaces. We

really want to say that this identification gives an isomorphism between the space of cusp

forms of weight (k, k) and level Γi1(n) and this cohomology group. Indeed, this is the case, and

it is equivariant with respect to the Hecke operators at principal primes. However, as we’ve

seen, the Hecke operators at non-principal primes are not defined on either of these spaces. To

state the Eichler-Shimura-Harder isomorphism in its full form, we need some new notation to

allow us to define an ‘adelic’ cohomology group.

Definition 5.4.6. Define the locally symmetric space Y1(n) of level Ω1(n) to be the quotient

Y1(n) ..= GL2(K)\GL2(AK)/Ω1(n)SU2(C)Z(GL2(C)),
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where Z(GL2(C)) ∼= C× is the centre of GL2(C). This is the equivalent of the modular curve

in this setting.

Lemma 5.4.7. For a fixed choice of representatives I1, ..., Ih of the class group, there is an

isomorphism

H1
cusp

(
Y1(n),L(V `k,k(C))

) ∼= h⊕
i=1

H1
cusp

(
Γi1(n)\H3,L(V `k,k(C))

)
.

Proof. This follows immediately from strong approximation (see Theorem 2.2.4).

There is a good theory of Hecke operators – given by the usual double coset operators – on this

larger cohomology space. Given this, we then have:

Theorem 5.4.8 (Eichler-Shimura-Harder). Let Φ ∈ Sk,k(Ω1(n)) be an (adelic) cusp form, and

let F1, ...,Fh be the cusp forms on H3 associated to Φ. The association

Φ 7−→ (F1, ...,Fh) 7−→ (ωF1 , ..., ωFh) ∈
h⊕
i=1

H1
cusp

(
Γi1(n)\H3,L(V `k,k(C))

)
defines a Hecke-equivariant isomorphism

Sk,k(Ω1(n)) ∼= H1
cusp

(
Y1(n),L(V `k,k(C))

)
.

Proof. This is [Hid94], Proposition 3.1, where the result is given in general. Hida in turn

cites [Har87b], Section 3.

5.4.4. Acting up: remarks on action conventions

The theory we are using here switches almost wilfully between right- and left-actions as well

as to dual representations. Often this is for convenience, but sometimes it is a necessity.

For example, above we’ve defined a left-action of SU2(C) on the space Ω1(H3,C) of differ-

entials, whilst also using the space V `k,k(C), to define the vector

Ψ ∈ [V `k,k(C)⊗C V
`
2 (C)]2k+3.

This means that, when we look at the differential δ(g) ..= g(F (g) ·Ψ) = F (g) · (gΨ) on SL2(C),

where g acts on Ψ component-wise, we have SU2(C)-invariance, and thus a well-defined differ-

ential on H3. This argument is simplified by using a left-action, since

δ(gu) = g(F (gu) · (uΨ)) = g[F (g)ρ2k+2(u)ρ2k+2(u)−1 ·Ψ] = δ(g);
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if it were a right-action, then we do not get this cancellation in the middle.

This poses a slight technical problem. The differential we’ve defined takes values in V `k,k(C)

(which is the same as V rk,k(C), when we switch to the corresponding right action). A Bianchi

modular symbol, as defined above, takes values in Vk,k(C)∗, where here this is the dual of

Vk,k(C) equipped with a different left-action. For the purposes of p-adic interpolation, how-

ever, we cannot use the control theorem as proved to lift such a symbol. To this author,

the technicalities of passing between symbols with values in V rk,k(C) and Vk,k(C)∗ appeared

somewhat frustrating. We record the following lemma.

Lemma 5.4.9. (i) There is an SL2(C)-equivariant isomorphism

V rk (C) ∼−→ Vk(C)∗

given on monomials by

XrY k−r 7−→

k
r

−1

X k−rYr,

where X k−rYr is the element of the dual basis defined by

X k−rYr(Xk−sY s) =

 1 : r = s,

0 : otherwise.

(ii) Similarly, there is an SL2(C)-equivariant isomorphism

V rk,k(C) ∼−→ V ∗k,k(C)

given by

XrY k−rX
s
Y
k−s 7→

k
r

−1k
s

−1

X k−rYrX k−sYs.

Proof. An explicit check confirms the isomorphism of part (i), using the (easily verified) identity

k
j

j
n

k − j
r − n

 =

r
n

k − r
j − n

k
r


of binomial coefficients. Part (ii) follows easily from part (i).

Let F : H3 → V2k+2(C) be a cusp form of weight (k, k) and level Γ. Recall that in the previous

section, we defined an element φ′F ∈ SymbΓ(V `k,k(C)) attached to F . We consider this symbol

as taking values in V rk,k(C) via the usual compatibility.
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Definition 5.4.10. The modular symbol attached to F is the element

φF ∈ SymbΓ(Vk,k(C)∗)

given by composing φ′F with the map V rk,k(C) −→ Vk,k(C)∗ of the lemma.

Now let Φ ∈ Sk,k(Ω1(n)) be a full Bianchi modular form on GL2(AK), corresponding to a

collection F1, ...,Fh of cusp forms on H3.

Definition 5.4.11. The modular symbol attached to Φ is the element

φΦ ∈ SymbΩ1(n)(Vk,k(C)∗) =
h⊕
i=1

SymbΓi1(n)(Vk,k(C)∗)

given by the tuple (φF1 , ..., φFh).

Remark: Using Lemma 5.4.7, this determines an element of H1
cusp(Y1(n), ˜Vk,k(C)∗). Whilst

both the isomorphism of this lemma and the tuple (φF1 , ..., φFh) both depend on the choice of

class group representatives, this cohomology class is independent of choices. Indeed, in [Har87b],

Harder states the Eichler-Shimura-Harder isomorphism independently of such representatives,

and this class is the image of the automorphic form under this isomorphism.

5.5. Algebraic and p-adic modular symbols

Thus far, we have worked exclusively with complex coefficients. Our ultimate aim is to p-

adically interpolate spaces of modular symbols, and to do so, we’ll need to work with algebraic

coefficients. That we can indeed do so relies on a result known as multiplicity one, which says

that systems of Hecke eigenvalues occur in the space of modular symbols in one-dimensional

eigenspaces. We obtain the following algebraicity results.

Lemma 5.5.1. Let Φ ∈ Sk,k(Ω1(n)) be a Bianchi modular form that is an eigenform for all

the Hecke operators, and let K(Φ) be the field extension obtained by adjoining all of the Hecke

eigenvalues to K. Then K(Φ) is a number field.

Proof. See [Hid94], Chapter 6.

Theorem 5.5.2. Let Φ ∈ Sk,k(Ω1(n)) be a Bianchi modular form that is an eigenform for all

the Hecke operators, and let φΦ ∈ SymbΩ1(n)(Vk,k(C)∗) be its associated modular symbol. Then

there is a finite extension F/K(Φ) and a complex period ΩΦ ∈ C× such that we have

φΦ/ΩΦ ∈ SymbΩ1(n)(Vk,k(F )∗).
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Proof. (Sketch). A similar result is proved in [Hid94], Chapter 8. As mentioned above, the key

step is to show that for suitable coefficient spaces – including the fields F and C – the space

where the Hecke operators act with the same system of eigenvalues as Φ is one dimensional.

So, to a cusp form F on H3, we can renormalise the corresponding modular symbol to have

coefficients in some sufficiently large number field. This, in turn, can be embedded into a

sufficiently large finite extension L of Qp. Accordingly, we obtain a p-adic modular symbol

attached to F .

Remark: Note that this modular symbol is not canonical. Indeed, the choice of ΩΦ is well-

defined only up to multiplication by elements of F×.

Henceforth, we fix a period ΩΦ and in an abuse of notation write φF ∈ SymbΓ(Vk,k(L)∗) for

the p-adic modular symbol attached to a cusp form F on H3.

5.6. Summary of construction

We quickly summarise the construction above. From a cuspidal Bianchi modular form Φ, and

a fixed choice of representatives for the class group of K, we obtained a collection F1, ...,Fh

of cusp forms on H3. For each fixed i, we associated to F i a harmonic differential ωFi on H3

with values in V `k,k(C), and from this, we obtained an element

φ′Fi ∈ SymbΓi1(n)(V `k,k(C))

by integrating ωFi over paths between cusps. We viewed this as an element of SymbΓi1(n)(V rk,k(C))

by passing to the corresponding right-action on Vk,k(C), and then to an element

φFi ∈ SymbΓi1(n)(Vk,k(C)∗)

by using the isomorphism of Lemma 5.4.9. We then renormalised by an appropriate fixed

choice of period to obtain a symbol defined over a sufficiently large number field, which then

allowed us to define our symbol over a sufficiently large finite extension L of Qp. In an abuse

of notation, we have written

φFi ∈ SymbΓi1(n)(Vk,k(L)∗)

for this symbol.

Finally, we define a p-adic modular symbol attached to the full Bianchi modular form Φ by

collecting these symbols together into a tuple

(φF1 , ..., φFh) ∈ SymbΩ1(n)(Vk,k(L)∗).
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We need to consider this collection to be able to define Hecke operators at non-principal primes,

since such operators permute the components.
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Chapter 6

L-values via Modular Symbols

In this chapter, we give an explicit link between the modular symbol attached to a Bianchi

modular form Φ and critical values of its L-function. We start by recalling definitions that are

relevant in the study of this L-function, before deriving an integral formula for it. We explicitly

compute the modular symbol attached to Φ and show that, using this integral formula, we can

link its values to a certain range of special L-values. After this, we refine this statement into

progressively neater forms by first renormalising the L-function and then considering it as a

function on characters.

6.1. The L-function of a Bianchi modular form

6.1.1. Definitions and Fourier expansions revisited

Recall that we defined the L-function of a general automorphic form Φ using either its Fourier

expansion or Hecke eigenvalues (in the case where the form is an eigenform of all the Hecke

operators). In particular, writing the Fourier coefficients as c(I,Φ) and letting ϕ be a Hecke

character, we defined

L(Φ, ϕ, s) ..=
∑

0 6=I⊂OK

c(I,Φ)ϕ(I)N(I)−s.

It is convenient to also define the following ‘partial’ L-functions, each corresponding to an

element of the class group.

Definition 6.1.1. Let w = |O×K | be the size of the unit group of K (noting that this is finite

by Dirichlet’s unit theorem). Then define

Lj(Φ, ϕ, s) = L(F j , ϕ, s) ..= w−1
∑
ζ∈K×

c(ζIj ,Φ)ϕ(ζIj)N(ζIj)−s.

Note here that whilst F j is dependent on the class group representative aj , the partial L-

function Lj(Φ, ϕ, s) is not. We also have

L(Φ, ϕ, s) = L1(Φ, ϕ, s) + · · ·+ Lh(Φ, ϕ, s),
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where here we scale by w−1 as when we sum over elements of K×, we include each ideal w times

(that is, once for each unit). As before, each of the partial L-functions converges absolutely on

some right-half plane, that is, for Re(s) sufficiently large.

Remark: We can describe these partial L-functions in terms of a Fourier expansion solely for

F j . Indeed, such a Fourier expansion can be worked out to be

F j
z, t;

X
Y

 = |aj |t
2k+2∑
n=0

2k + 2

n

 ∑
ζ∈K×

[
c(ζδIj ,Φ)

(
ζ

i|ζ|

)k+1−n
× (6.1)

ζ−v1ζ
−v2

Kn−k−1(4π|ζ|t)e2πi(ζz+ζz)
]
X2k+2−nY n.

Here we’ve written (z, t) ∈ H3 ∼= C× × R>0. This version of the Fourier expansion can be

obtained naturally from the version stated previously. Then the coefficients appearing in the

definition of Lj are precisely those appearing in the expansion of F j .

We make one further definition.

Definition 6.1.2. Let F jn : H3 −→ C be the functions determined by the expression

F j
z, t;

X
Y

 =
2k+2∑
n=0
F jn(z, t)X2k+2−nY n.

We’ll use this terminology when computing the integral formula later in this section.

6.1.2. Gauss sums revisited

In Chapter 1.3.1, we defined Gauss sums attached to Hecke characters over a general number

field. In keeping with the more concrete treatment of the theory over imaginary quadratic

fields, here we give a different formulation referring to adeles only where necessary. We use

the exposition in [Nem93], which itself draws on papers [Hec20] and [Hec23] of Hecke (that

are written in German). Another way of defining these objects in terms of local ε-factors is

described in [Del72], Section 3 (and is translated into English in [Tat79], Section 3). Hecke’s

Gauss sums are shown to be a product of local Gauss sums that agree with Deligne’s ε-factors

in [Nar04], Proposition 6.14.

Definition 6.1.3. Let K be an imaginary quadratic field with different D = δOK , and let ϕ

be a Hecke character for K with conductor f. The Gauss sum for ϕ is defined to be

τ(ϕ) ..=
∑

[a]∈f−1/OK
(af,f)=1

ϕ(af)ϕ∞
(a
δ

)
e2πiTrK/Q(a/δ),

where here the notation (I, J) = 1 for ideals I and J mean that I and J are coprime.
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Remarks: (i) The coprimality condition is essential, as otherwise ϕ(af) is not well-defined

as the value of ϕ at the ideal af. Excluding these terms from the sum corresponds to

setting χ(a) = 0 for χ a rational Dirichlet character and a an integer not coprime to the

conductor.

(ii) This isn’t quite as Nemchenok defines a Gaussian sum in [Nem93]; rather, he defines the

sum to be over f−1D−1/D−1. We’ve used the fact that δ generates D and rescaled to get

the version above.

We also have the following reformulation of Proposition 1.3.3:

Proposition 6.1.4. (i) For all b ∈ OK , we have

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)ϕ∞
(a
δ

)
e2πiTrK/Q(ab/δ) = τ(ϕ)ϕf(b).

(ii) By replacing ϕ with ϕ−1, we have

1
τ(ϕ−1)

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1ϕ∞

(a
δ

)−1
e2πiTrK/Q(ab/δ) =

 ϕf(b)−1 : ((b), f) = 1,

0 : otherwise.

Proof. We give only the briefest details of how to prove this statement. All of the ingredients

required are contained in [Nem93], though the result is not stated explicitly. To combine the

results stated therein: from the Gauss sum defined above (which is Nemchenok’s normalised

Gauss sum, that is, a Gauss sum of parameter 1 and auxiliary ideal f−1D−1), we can define a

Gauss sum for χ = ϕf with parameter 1. The sum in the proposition corresponds to a Gaussian

sum for ϕ of parameter b and auxiliary ideal f−1D−1, which then corresponds to a Gauss sum

for χ with parameter b. Nemchenok’s Proposition 4 (part (6)) gives the relation between Gauss

sums of parameters 1 and b to be multiplication by χ(b), which then translates into the required

result.

6.1.3. An integral formula for the L-function

We want to write Lj(Φ, ϕ, s) in an integral form, much like in the rational case (see [DS05],

Chapter 5.10). To do so, we will use Gauss sums to deal with coefficients at ideals that are

not coprime to the conductor. Throughout this section, ϕ denotes a Hecke character of infinity

type (−u,−v) and conductor f.

Ultimately, the result we will prove is:
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Theorem 6.1.5. With the notation as above, for (u, v) = (k+1−n
2 ,−k+1−n

2 ), we have

Lj(Φ, ϕ, s) = A(j, n, ϕ, s)
∑

[a]∈f−1/OK

ϕ(af)−1auav
∫ ∞

0
t2s−2F jn(a, t)dt,

where F jn is as defined in Definition 6.1.2 and

A(j, n, ϕ, s) = ϕ(aj)|aj |s−1
f ·

4 · (2π)2sik+1−n ( 2k+2
n )−1

|D|sΓ
(
s+ n−k−1

2
)

Γ
(
s− n−k−1

2
)
wτ(ϕ−1)

.

is an explicit function of s. (Here D = N(D) is the discriminant of K, whilst | · | denotes the

usual norm on K× and | · |f =
∏
v-∞ | · |v denotes the finite adelic norm).

The proof is contained in the rest of this section.

We can write

Lj(Φ, ϕ, s) = w−1ϕ(δIj)N(δIj)−s
∑
ζ∈K×

((ζδ),f)=1

c(ζδIj ,Φ)ϕ∞(ζ)−1ϕf(ζ)−1|ζ|−2s

=
ϕ(aj)|aj |sf
w|D|s

∑
ζ∈K×,

((ζδ),f)=1

c(ζδIj ,Φ)ϕ∞(ζδ)−1ϕf(ζδ)−1|ζ|−2s,

using that N(δIj)−s = |D|−s|aj |sf (recalling that D = N((δ)) is the discriminant of K). Using

Proposition 6.1.4, this is

=
ϕ(aj)|aj |sf
w|D|sτ(ϕ−1)

∑
ζ∈K×

c(ζδIj ,Φ)ϕ∞(ζδ)−1

×

 ∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1ϕ∞

(a
δ

)−1
e2πiTrK/Q(aζ)

 |ζ|−2s,

where we’ve substituted our Gauss sum for ϕf(ζδ)−1 and accordingly eliminated the condition

((ζδ), f) = 1 from the sum over K×. Continuing, this is

=
ϕ(aj)|aj |sf
wτ(ϕ−1)|D|s

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1auav
∑
ζ∈K×

c(ζδIj ,Φ)ζuζve2πiTrK/Q(aζ)|ζ|−2s,

via some cancellation and using that ϕ∞(x) = xuxv.

To get our integral formula, we will use the standard integral (see [Hid94], section 7)

∫ ∞
0

t`−1Kn−k−1(at)dt = a−`2`−2Γ
(
`+ n− k − 1

2

)
Γ
(
`− n+ k + 1

2

)
.

72



L-values via modular symbols

Setting a = 4π|ζ|, and ` = 2s, this translates into

|ζ|−2s = 4 · (2π)2s

Γ
(
s+ n−k−1

2
)

Γ
(
s− n−k−1

2
) ∫ ∞

0
t2s−1Kn−k−1(4π|ζ|t)dt.

To get this into the form of the Fourier expansion for F j , we fix (u, v) = (k+1−n
2 ,−k+1−n

2 ),

which means we now have

Lj(Φ, ϕ, s) =
ϕ(aj)|aj |sf
wτ(ϕ−1)|D|s

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1auav
∑
ζ∈K×

[
c(ζδIj ,Φ)

[
ζ

|ζ|

]k+1−n
×

e2πiTrK/Q(aζ)|ζ|−2s
]
.

Substituting the expression for |ζ|−2s into this gives

Lj(Φ, ϕ, s) = A(j, n, ϕ, s)
∑

[a]∈f−1/OK
(af,f)=1

ϕ(af)−1auav
∑
ζ∈K×

[
c(ζδIj ,Φ)

[
ζ

i|ζ|

]k+1−n
×

e2πiTrK/Q(aζ)
∫ ∞

0
t2s−1Kn−k−1(4π|ζ|t)dt

]

= A(j, n, ϕ, s)
∑

[a]∈f−1/OK
(af,f)=1

ϕ(af)−1auav
∫ ∞

0

∑
ζ∈K×

[
c(ζδIj ,Φ)

(
ζ

i|ζ|

)k+1−n
×

e2πiTrK/Q(aζ)t2s−1Kn−k−1(4π|ζ|t)
]
dt

= A(j, n, ϕ, s)
∑

[a]∈f−1/OK
(af,f)=1

ϕ(af)−1auav
∫ ∞

0
t2s−2F jn(a, t)dt,

where

A(j, n, ϕ, s) = ϕ(aj)|aj |s−1
f ·

4 · (2π)2sik+1−n ( 2k+2
n )−1

|D|sΓ
(
s+ n−k−1

2
)

Γ
(
s− n−k−1

2
)
wτ(ϕ−1)

.

Remark: We can swap the integral and summation in the calculation above in some right

half-plane due to absolute convergence. Via meromorphic continuation, this integral then gives

a definition of the L-function on all of C, whereas previously we’d shown only that it was

well-defined on a right half-plane. In fact, a little more work shows that this function is an

analytic continuation and the L-function is holomorphic on the whole complex plane. This is

a special case of a well-known result of Langlands on the analytic continuation of L-functions

of automorphic representations for GLn.
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6.2. Explicitly linking the modular symbol and L-values

There is an important link between modular symbols and critical L-values. In this section, we

derive this link by explicitly computing the differential defined previously. First, though, we

give the link in the case of weight (0, 0) and class number 1, where the arguments are, as usual,

much simpler.

6.2.1. L-values in weight (0, 0)

Suppose K has class number 1, and recall the definition of the modular symbol attached to a

Bianchi cusp form F = (F0,F1,F2) of weight (0, 0) over K from Definition 5.4.2. In particular,

we defined

ωF ..= F0(z, t)dz −F1(z, t)dt−F2(z, t)dz,

where the Fi are the components of F . We then defined

φF ({r} − {s}) =
∫ s

r

ωF .

Since the integral we obtain is path independent, we can choose our path from r to s to be

composed of the two vertical paths from r to ∞ and then ∞ to s. When we integrate over

these paths, there is no change in the z or z directions, and hence in these cases the integral

collapses to give

φF ({r} − {∞}) = −
∫ ∞

0
F1(r, t)dt.

Now consider the integral formula in this situation. Set s = 1, n = 1, k = 0 and r = 0; then in

this situation, and with ϕ = 1, we see that

φF ({0} − {∞}) = −|δ|
2w

8π2 · L(F , 1).

Thus φF sees the (single) special L-value of F . This is precisely the kind of property we want

the modular symbol to have; the task is now to make this connection for higher weights and

class number and non-trivial characters.

Remark: This expression is proved directly, in this special case, in [CW94]; the proof of the

integral formula given previously is a direct generalisation of their proof.

6.2.2. An explicit description of the modular symbol

In the weight (0,0) and class number 1 case, we exhibited a link between the modular symbol

φF and the critical L-value L(F , 1) of F . We’d like to extend this link to general weights and

class number. To that end, let F j be a cusp form on H3 of weight (k, k) and level Γj1(n). In
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Section 6.1.1, we stated that F j has a Fourier expansion of form

Fj
z, t;

X
Y

 = |aj |Kt
2k+2∑
n=0

2k + 2

n

 ∑
ζ∈K×

[
c(ζδIj ,Φ)

(
ζ

i|ζ|

)k+1−n
× (6.2)

Kn−k−1(4π|ζ|t)e2πi(ζz+ζz)
]
X2k+2−nY n.

where aj is an idele representing Ij , our fixed representative of the element of the class group

corresponding to F j .

To implement this, we calculate Ψ more explicitly following Ghate ( [Gha99]). Write Ψ =

(Ψ0, ...,Ψ2k+2). Then some work shows that

Ψn(x,x,a) = (−1)n
2k + 2

n

−1

[A2 · Cn(x,x)− 2AB · Cn−1(x,x) +B2 · Cn−2(x,x)],

where

Cn(x,x) ..=
k∑

q,r=0
k−(q−r)=n

(−1)r
k
q

k
r

Xk−qY qX
k−r

Y
r
.

For (z, t) ∈ H3, let

g = 1√
t

t z

0 1

 ,

an element of SL2(C) that represents it. Then, under the left-action of SL2(C) defined by

equation (5.3), we have

δ(F j)(z, t) ..= δ(F j)(g)

= F j(g) ·Ψ

 1√
t

1 −z

0 t

X
Y

 ,
1√
t

1 −z

0 t

X
Y

 ,
1√
t
I2

A
B

 .
The convention we are using (see Section 2.2.5) dictates that

F j(z, t) = t−k−1F j(g),

so that this becomes

δ(F j)(z, t) =
2k+2∑
n=0

√
t
2k+2
F jn(z, t)Ψj

(
X − zY√

t
, Y
√
t,
X − z̄Y√

t
, Y
√
t,
A√
t
,
B√
t

)

=
2k+2∑
n=0
F jn(z, t)Ψj

(
X − zY, Y t,X − z̄Y , Y t, A,B

)
,

with A2 replaced by dz, AB replaced by −dt, and B2 replaced by −dz. From hereon in, we

begin to simplify matters with our exact goal in mind. We will integrate over a vertical path
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between a cusp and ∞, so we may as well fix z = a for some a ∈ K. We also only need to

look at the AB term of this polynomial, corresponding to dt, as the integrals in the z and z

direction will vanish. Under these simplifications, the resulting differential δ′(F j)(a, t) that we

obtain is

δ′(F j)(a, t) = 2
2k+2∑
n=0

(−1)n
2k + 2

n

−1

F jn(a, t)Cn−1(X − aY, tY,X − aY , tY )dt.

We can simplify this by using the isomorphism V rk,k(C) → Vk,k(C)∗ given in Section 5.4.4,

which (via some simple calculations) has the effect of replacing Cn−1(X − aY, tY,X − aY , tY )

with

C ′n−1(Y − aX , tX ,Y − aX , tX ) ..=
k∑

q,r=0
k−(q−r)=n−1

(−1)qtq+r(Y − aX )k−qX q(Y − aX )k−rX r.

(6.3)

Substituting the expression (6.3) above, integrating over 0 to ∞, eliminating n from the sum,

and making some trivial simplifications, we get:

Proposition 6.2.1. We can explicitly describe the modular symbol attached to F j at generating

divisors as

φFj ({a} − {∞}) =
k∑

q,r=0
cjq,r(a)(Y − aX )k−qX q(Y − āX )k−rX r,

for a ∈ K, where

cjq,r(a) ..= 2

 2k + 2

k − q + r + 1

−1

(−1)k+r+1
∫ ∞

0
tq+rF jk−q+r+1(a, t)dt.

6.2.3. Linking modular symbols and L-values

We now refer back to Section 6.1.3, and, in particular, the integral formula we obtained for the

L-function Lj(Φ, ϕ, s), where ϕ is a Hecke character with infinity type

(−u,−v) =
(
−q − r2 ,

q − r
2

)

and conductor f. We want to set 2s−2 = q+r, that is, s = q+r+2
2 . Again writing n = k−q+r+1

for ease of notation, we obtain

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1auavcjq,r(a) = (−1)k+r+12 ( 2k+2
n )−1

A(j, n, ϕ, q+r+2
2 )−1Lj(Φ, ϕ, q+r+2

2 ).
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Some cancellation using the explicit form for A(j, n, ϕ, q+r+2
2 ) now gives

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1auavcjq,r(a)

=
[
ϕ(aj)|aj |

q+r
2

f · (−1)q+r+k2(2πi)q+r+2

|δ|q+r+2Γ(q + 1)Γ(r + 1)wτ(ϕ−1)

]−1

Lj(Φ, ϕ, q+r+2
2 ).

Here we’ve used that |D| = |δ|2. This gives us a link between modular symbols and L-values.

Indeed, combining the results above for each j, we have the following theorem:

Theorem 6.2.2. We have:

L(Φ,ϕ, q+r+2
2 ) =[

(−1)k2(−2πi)q+r+2

|δ|q+r+2q!r!wτ(ϕ−1)

] h∑
j=1

[
ϕ(aj)|aj |

q+r
2

f

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1auavcjq,r(a)
]
.

Here:

• Φ is a Bianchi cusp form of weight (k, k) and level Ω1(n),

• w is the size of the unit group of OK ,

• δ is a generator of the different,

• h is the class number,

• aj is an idele corresponding to the jth representative Ij of the class group, which is

coprime to n,

• For an ideal I ⊂ OK , xI is the fixed idele corresponding to I defined in Chapter 1.2.3,

• ϕ is a Hecke character of infinity type (−u,−v) = (− q−r2 , q−r2 ) and conductor f, where

0 ≤ q, r ≤ k,

• cjq,r(a) is the coefficient of (Y − aX )k−qX q(Y − āX )k−rX r in φFj ({a} − {∞}), where

• φFj is the modular symbol attached to the function F j on H3 induced by Φ.

6.3. L-functions as functions on characters

Recall the definition of L-functions as functions on Hecke characters from previously. For a

Hecke character ϕ, we defined

L(Φ, ϕ) = L(Φ, ϕ, 1).

This relates to more general values via

L(Φ, ϕ| · |s−1
AK ) = L(Φ, ϕ, s).
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With this in mind, let ϕ′ ..= ϕ| · |
q+r

2
AK . This is now a Hecke character of conductor f and infinity

type (
q − r

2 + q + r

2 ,−q − r2 + q + r

2

)
= (q, r),

where 0 ≤ q, r ≤ k. This is the ‘critical square’ predicted by Deligne.

Proposition 6.3.1. If ϕ is a Hecke character of conductor f and ϕ′ ..= ϕ| · |
q+r

2
AK , then there is

a relation

τ(ϕ′) = |xf|
q+r

2
AK |δ|

−(q+r)τ(ϕ)

of Gauss sums, where the idele xf associated to f is as defined in Section 1.2.3.

Proof. We have

|xaf|AK = |xaf|f = |a|f |xf|f = |a|−2|xf|f ,

where the first equality follows from the definition of xaf (as the infinite components are trivial).

We also know that |a|AK = 1, so that |a|f = |a|−2 (where | · | is the standard norm on C). Now,

computing with the Gauss sums,

τ(ϕ′) =
∑

[a]∈f−1/OK
(af,f)=1

ϕ′(af)ϕ′∞
(a
δ

)
e2πiTrK/Q(a/δ)

=
∑

[a]∈f−1/OK
(af,f)=1

ϕ(af)|xaf|
q+r

2
AK ϕ∞

(a
δ

) ∣∣∣a
δ

∣∣∣q+r e2πiTrK/Q(a/δ)

=
∑

[a]∈f−1/OK
(af,f)=1

ϕ(af)|xf|
q+r

2
f ϕ∞

(a
δ

)
|δ|−(q+r)e2πiTrK/Q(a/δ)

= |xf|
q+r

2
AK |δ|

−(q+r)τ(ϕ),

as required.

Passing to inverses, we find that

τ((ϕ′)−1) = |δ|q+r|xf|
− q+r2
f τ(ϕ−1).
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Accordingly, we see that

L(Φ, ϕ′) =
[

(−1)k2(−2πi)q+r+2

|δ|q+r+2q!r!wτ(ϕ−1)

] h∑
j=1

[
ϕ(aj)|aj |

q+r
2

f

∑
[a]∈f−1/OK

(af,f)=1

ϕ(af)−1auavcjq,r(a)
]

=

 (−1)k2(−2πi)q+r+2

|δ|2|xf|
q+r

2
f q!r!wτ((ϕ′)−1)

 h∑
j=1

[
ϕ′(aj)

∑
[a]∈f−1/OK
((a)f,f)=1

ϕ′(af)−1|af|
q+r

2 auavcjq,r(a)
]

=
[

(−1)k2(−2πi)q+r+2

|D|q!r!wτ((ϕ′)−1)

] h∑
j=1

[
ϕ′(aj)

∑
[a]∈f−1/OK
((a)f,f)=1

ϕ′(af)−1(ϕ′∞)−1(a)cjq,r(a)
]
.

This simplifies further; indeed, for any Hecke character ϕ, an explicit check shows that:

Lemma 6.3.2. Let ϕ be a Hecke character of conductor f, and let a ∈ f−1 such that (af, f) = 1.

Then we have

ϕ(af)−1ϕ∞(a)−1 = ϕ(xf)−1ϕf(axf).

Proof. Write af = abIj for b ∈ K× and some j. Then

ϕ(af) = ϕ((ab))ϕ(aj) = ϕ(aj)
∏

p:vp(ab)6=0

ϕp(ab)

= ϕ(aj)
∏
p-f

ϕp(ab),

since as af and Ij are coprime to f, we also see that (ab) is coprime to f. Extending the product

to all finite primes, we get

= ϕ(aj)
∏
p

ϕp(ab)
∏
p|f

ϕp(ab)−1 = ϕ(aj)ϕ∞(ab)−1ϕf(ab)−1.

Combining this gives

ϕ(af)−1ϕ∞(a)−1 = ϕ(aj)−1ϕ∞(b)ϕf(ab).

Now, as

(axf)v =


ab : v|f,

abπIj : v = Ij ,

a : otherwise
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we see that ϕf(ab) = ϕf(axf). Furthermore,

ϕ(xf) = ϕ(aj)
∏

p:vp(b) 6=0

ϕp(b)

= ϕ(aj)ϕIj (b)
∏
p|f

ϕp(b)

= ϕ(aj)
∏
p

ϕp(b) = ϕ(aj)ϕ∞(b)−1,

as ϕp(b) = 1 for all primes not dividing Ij or f. We conclude that

ϕ(af)−1ϕ∞(a)−1 = ϕ(xf)−1ϕf(axf),

as required.

Using the Lemma, our equation becomes

L(Φ, ϕ′) =
[

(−1)k2(−2πi)q+r+2

ϕ′(xf)|δ|2q!r!wτ((ϕ′)−1)

] h∑
j=1

[
ϕ′(aj)

∑
[a]∈f−1/OK
((a)f,f)=1

ϕ′f(axf)cjq,r(a)
]
,

where ϕ′ is a Hecke character of conductor f and infinity type (q, r) with 0 ≤ q, r ≤ k. Hence-

forth, we simply write ϕ for this character, dropping the prime from the notation.

We make one further change with the aim of massaging this formula into something a lit-

tle nicer; namely, we renormalise, using the Deligne Γ -factor at infinity. As before, define

Λ(Φ, ϕ, t) ..= Γ(q + t)Γ(r + t)
(2πi)q+t(2πi)r+tL(Φ, ϕ, t).

The upshot of all of these calculations is the following:

Theorem 6.3.3. Let Φ be a Bianchi modular form of weight (k, k) and level Ω1(n), and let

Λ(Φ, ∗) denote its normalised L-function (as a function on Hecke characters). Let ϕ be a Hecke

character of conductor f and infinity type (q, r), where 0 ≤ q, r ≤ k. Then we have

Λ(Φ, ϕ) =
[

(−1)k+q+r2ϕf(xf)
ϕ(xf)|δ|2wτ(ϕ−1)

] h∑
j=1

[
ϕ(aj)

∑
[a]∈f−1/OK
((a)f,f)=1

ϕf(a)cjq,r(a)
]
, (6.4)

where all other notation is as defined in Theorem 6.2.2.
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Chapter 7

Overconvergent Bianchi Modular

Symbols

In this chapter, we develop the theory of overconvergent modular symbols over imaginary

quadratic fields, generalising an idea of Stevens to this setting. To do so, we consider modular

symbols with values in a space of p-adic distributions, a much larger space equipped with a

natural surjective map to the space of polynomials used in the definition of classical modular

symbols. After defining these distributions, we endow them with an action of a suitable semi-

group, allowing us to use them as modules of values for modular symbols. Following this, we

prove that it is possible to work with integral coefficients. We conclude by writing down suitable

filtrations and submodules of this space that will be essential in future chapters.

7.1. A conceptual description

Overconvergent modular symbols are modular symbols that take values in a space of p-adic

distributions. In a similar style to the rest of Part II of this thesis, we begin this section by

defining these spaces in the most natural way before passing to a more workable and explicit

description. We will keep this discussion brief, since all of the objects mentioned will be defined

(in the more explicit setting) later in the chapter. The reader who has not met the theory of

p-adic distributions before is encouraged to skip straight to Chapter 7.2 on a first reading.

We work with the space OK ⊗Z Zp. Note that this space embeds naturally in Q2
p; let L/Qp

be a finite extension such that the image of this embedding lies in L2. Now, an element of

Vk,k(L) can be seen as a function on L2 that is polynomial of degree at most k in each variable,

and accordingly, we can see such an element as a function on OK ⊗Z Zp in a natural way.

In particular, the following definition gives an alternative definition of the space Vk,k(L) from

earlier chapters.

Definition 7.1.1. Define Vk,k(OK ⊗ZZp, L) to be the space of functions on OK ⊗ZZp that are

polynomial of degree k in each variable with coefficients in L, with a left action of GL2(OK⊗ZZp)
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given by a b

c d

 · P (x) = (a+ cx)kP
(
b+ dx

a+ cx

)
. (7.1)

The polynomial spaces Vk,k(OK⊗ZZp, L) are naturally subspaces of the space A(OK⊗ZZp, L) of

rigid analytic functions on OK⊗ZZp. We then find that, by dualising the inclusion Vk,k(OK⊗Z

Zp, L) ↪→ A(OK⊗ZZp, L), we have a surjection from the space D(OK⊗ZZp, L) of rigid analytic

distributions onOK⊗ZZp to the dual space Vk,k(OK⊗ZZp, L)∗, giving a surjective specialisation

map. To see that modular symbols with values in D(OK ⊗Z Zp, L) make sense, we consider the

semigroup

Σ(OK⊗ZZp) ..=


a b

c d

 ∈M2(OK ⊗Z Zp) : c ∈ pOK ⊗Z Zp, a ∈ (OK ⊗Z Zp)×, ad− bc 6= 0

 .

This semigroup acts on A(OK ⊗Z Zp, L) in the manner defined in equation (7.1), and using

this we obtain an action of suitable discrete subgroups of SL2(OK) on the distribution space,

allowing us to use it as a value space. We also get a Hecke action on the resulting modular

symbols. All of this directly generalises the work of Pollack and Stevens over Q, and with

suitable small adjustments generalises further to the case of arbitrary number fields (see Part

III).

We’ve already shown that we can see Vk,k as either a tensor product of polynomial spaces

or as a space of polynomials on OK ⊗Z Zp. Similarly, we can describe these distribution spaces

more explicitly via tensor products. In particular, the space A(OK ⊗ZZp) can be thought of as

just being the space of rigid analytic functions on Z2
p, or, in the weak topology, the completed

tensor product A(Zp)⊗̂ZpA(Zp) of two copies of the space of rigid analytic functions on one

copy of Zp. The group Σ(OK ⊗Z Zp) becomes the direct product of two copies of the group

Σ0(p) as written down by Pollack and Stevens. When p is not split, we are carrying around

some redundant information with this approach; in particular, the useful information given by

the action of Σ0(p)2 is entirely determined by the action of one of the components. There are

significant advantages to using this more explicit approach, however. The spaces have nice de-

scriptions that are easy to work with and allow us to generalise the filtration proof of Greenberg

( [Gre07]) to the imaginary quadratic case. In the remainder of this section, we work with this

explicit approach exclusively.

7.2. Distribution spaces

In this section, we give a concrete description of the spaces of distributions we’ll use to define

overconvergent modular symbols.
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7.2.1. Notation and preliminaries

Notation 7.2.1: Throughout, as before, K/Q denotes an imaginary quadratic field. Let p be

a rational prime with pOK =
∏

pep , and define fp to be the residue index of p. Note that∑
epfp = 2. Fix an embedding Q ↪→ Qp; then for each prime p|p, we have epfp embeddings

Kp ↪→ Qp, and combining these for each prime, we get an embedding σ = (σ1, σ2) : K ↪→

Qp×Qp. Let L be a finite extension of Qp containing the image of Kp under all of the possible

embeddings into Qp for all primes p above p. We equip L with a valuation v, normalised so

that v(p) = 1, and denote the ring of integers in L by OL, with uniformiser πL. Then in fact,

for each integral ideal I of K coprime to (p), we have

σ : I−1 ↪−→ OL ×OL. (7.2)

In the obvious way, we then have an embedding
a b

c d

 : a, b, c, d ∈ I−1, ad− bc 6= 0

 ↪−→ GL2(OL)×GL2(OL).

In particular, for n an integral ideal with (p)|n, we have embeddings of the groups Γi1(n), where

each Γi1(n) = ΓIi is a twist of Γ1(n) as defined in Definition 2.2.5.

These embeddings will be used in the sequel to define the action of suitable discrete subgroups

of SL2(K), as well a Hecke action on suitable modular symbol spaces. We’ll define some monoid

Σ0(p) ≤ GL2(Op) and an action of Σ0(p) × Σ0(p). Every matrix whose action we study will

have image in Σ0(p)2 under each of the embeddings above. Thus in proving facts about the

action of Σ0(p)×Σ0(p), we’ll encapsulate everything we’ll later need regardless of the splitting

behaviour of p in OK .

Remark: For our purposes, we may need to take L to be larger than this. Let Φ be a cuspidal

Bianchi eigenform with Fourier coefficients c(I,Φ), normalised so that c(OK ,Φ) = 1. Then the

Fourier coefficients are algebraic. In particular, when studying the action of the Up operator

we may need to consider eigenvalues living in the number field F ..= K({c(p,Φ) : p|p}). As we

can easily enlarge L to contain all possible embeddings of the completions of this field into Qp,

we will henceforth assume that these eigenvalues live in L.

7.2.2. Rigid analytic functions and distributions

To define overconvergent modular symbols, Stevens used spaces from p-adic analysis. For more

details on the results here, including p-adic function and distribution spaces as well as the

completed tensor product, see [Col10].

Definition 7.2.2 (Modules of Values for Overconvergent Modular Symbols). Let R be either
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a p-adic field or the ring of integers in a finite extension of Qp, and let A(R) be the ring of rigid

analytic functions on the closed unit disc defined over R, that is, the ring

A(R) =

∑
n≥0

anx
n : an ∈ R, an → 0 as n→∞

 .

For R = L, this is a L-Banach space with the sup norm. We write A2(R) for the completed

tensor product A(R)⊗̂RA(R).We define the space of rigid analytic distributions to be the topo-

logical dual D(R) = Homcts(A(R), R), and analogously we define D2(R) = Homcts(A2(R), R)

be the topological dual of A2(R).

Having defined these spaces, our primary spaces of interest, we immediately give two alternate

descriptions that are easier to work with.

Definition 7.2.3. (i) Let µ ∈ D be a distribution. Define the moments of µ to be the values

(µ(xi))i≥0, noting that these values totally determine the distribution since the span of

the xi is dense in A.

(ii) Let µ ∈ D2 be a two variable distribution. Define the moments of µ analogously to be

the values (µ(xiyj))i,j≥0.

Proposition 7.2.4. (i) As L-Banach spaces, the space A2(L) is isomorphic to the space

A(Z2
p, L) of rigid analytic functions in two variables on the closed unit disc defined over

L.

(ii) We can identify D(L) with the set of bounded sequences in L and D2(L) with the set of

doubly indexed bounded sequences in L.

Proof. (i) Note that we have

A(Z2
p, L) ..=

 ∑
m,n≥0

amnx
myn : amn ∈ L, amn → 0 as m+ n→∞

 ,

where the condition on amn can be stated equivalently and more formally as ‘amn tends

to 0 in the filter of cofinite sets.’ Thus A(Z2
p, L) has a Banach basis given by the functions

{xmyn : m,n ≥ 0}. Now, A(L) has a Banach basis {xi : i ≥ 0}, so A2(L) has a Banach

basis {xiyj : i, j ≥ 0}, and thus it follows that the spaces are isomorphic, as claimed.

(ii) Suppose µ ∈ D is a distribution. Then we claim that the set of moments, as defined above,

is a bounded sequence in L. Indeed, suppose that the sequence (bm) we obtain is not

bounded; then there is some subsequence (bmk) with strictly decreasing valuations (and

hence strictly increasing p-adic absolute value). Thus the power series f =
∑
xmk/bmk
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defines an element of A(L). However, µ(f) doesn’t converge, so we obtain a contradic-

tion and the sequence must be bounded. Furthermore, since the coefficients of any power

series in A(L) tend to zero, any such bounded sequence gives rise to a unique distribution.

A near identical argument shows that there is a one-to-one correspondence between el-

ements of D2(L) and bounded doubly indexed sequences in L via the map that sends a

distribution to its moments.

Remarks 7.2.5: (i) This identification with bounded sequences means that we have D2(L) ∼=

D2(OL)⊗OL L, where we see that D2(OL) is simply the subspace of D2(K) consisting of

distributions with integral moments.

(ii) Note that the spaces D2(L) and D(L)⊗̂LD(L) are not canonically isomorphic as L-Banach

spaces when we endow D(L) with the strong topology (the topology arising from the p-

adic valuation). Indeed, there is a norm preserving injection D(L)⊗̂LD(L) ↪→ D2(L)

induced by taking a pair of bounded sequences (am), (bn) to the bounded doubly indexed

sequence (ambn), but this map is not surjective. If instead we equip D(L) with the weak

topology (that is, the topology of pointwise convergence), then the spaces D(L)⊗̂LD(L)

and D2(L) are canonically isomorphic (indeed, we still have the injection above, and since

we need check only pointwise convergence, we have surjectivity). We continue to use the

space D2(L) to avoid thinking about this.

We want to equip our spaces with an action of suitable congruence subgroups and a Hecke

action. To this end, define

Σ0(p) ..=


a b

c d

 ∈M2(OL) : p | c, (a, p) = 1, ad− bc 6= 0

 .

Suppose R is a ring containing OL. Then there is a weight k left action of Σ0(p) on A(R)

defined by the rule

(γ ·k f)(x) = (cx+ a)kf
(
dx+ b

cx+ a

)
, γ =

a b

c d

 ,

giving rise to a weight k right action on D(R) given by

(µ|kγ)(f) = µ(γ ·k f).

When we talk about these spaces with equipped with this weight k action, we denote them

by Ak and Dk respectively. Such an action generalises immediately to the two variable case.
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Define the weight (k, `) left action of Σ0(p)× Σ0(p) on A2(R) by

((γ1, γ2) ·(k,`) f)(x, y) = (c1x+ a1)k(c2y + a2)`f
(
d1x+ b1
c1x+ a1

,
d2y + b2
c2y + a2

)
,

where γi =
(
ai bi
ci di

)
, again giving rise to a weight (k, `) right action on D2(R). When talking

about these spaces equipped with the weight (k, `) action, we denote them by Ak,`(R) and

Dk,`(R) respectively.

Remark 7.2.6: Note that the subspace Vk,`(R) of A2(R) is stable under the action of Σ0(p)2,

and hence it inherits a left action of Σ0(p)2. This is the action we defined earlier in Definition

5.2.4.

7.3. Overconvergent modular symbols

7.3.1. Definition

The action of Σ0(p) above allows us to define modular symbols with values in distributions. In

particular, recall that we defined Γ ..= Γ1(n), and note that for any ideal I coprime to n, we

have a right action of ΓI (as in Definition 2.2.5) on the space Dk,`(L) via the embedding (7.2).

Definition 7.3.1. (i) Define the space of overconvergent Bianchi modular symbols for K of

weights (k, `) and level ΓI with coefficients in L to be

SymbΓI (Dk,`(L)) ..= HomΓI (∆0,Dk,`(L)).

(ii) Recall the definition of Ω1(n) from equation (2.3). Define the space of overconvergent

Bianchi modular symbols for K of weights (k, `) and level Ω1(n) with coefficients in L to

be

SymbΩ1(n)(Dk,`(L)) ..=
h⊕
i=1

SymbΓi1(n)(Dk,`(L)).

Remark: Note that, for this to make sense, we need (p) to divide the level. For a matrix

γ =
(
a b
c d

)
to act on A2(L), we need p|c, or the action will not be well-defined (as ‘dividing by

cx+a’ is not in general a well-defined concept on p-adic power series unless p|c). In particular,

we will not have an action of Γ1(n) on distributions unless (p)|n.

7.3.2. The action of Hecke operators

For a right Σ0(p)2-module V , we define a Hecke action on the adelic space

SymbΩ1(n)(V ) ..=
h⊕
i=1

SymbΓi1(n)(V )
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in much the same way as in Chapter 5.3. Since the Hecke operators at p are of critical impor-

tance in the sequel, we recall them here. For a prime p dividing (p), for each i ∈ {1, ..., h} there

is a unique ji ∈ {1, ..., h} such that

pIi = (αi)Iji ,

for αi ∈ K. Then the Up operator is

(φ1, ..., φh)|Up
..=

φj1 ∣∣∣∣
Γj1

1 0

0 α1

Γ1

 , ..., φjh ∣∣∣∣
Γjh

1 0

0 αh

Γh

 .

We can work out the double coset operators explicitly to be given byΓji

1 0

0 αi

Γi1(n)

 =
∑

a (mod p)

1 a

0 αi


using the usual methods. Note that if n is an integer such that pn = (σ) is principal, then

this action becomes significantly simpler; namely, we just act on each component, with no

permuting, via the sum
∑
a (mod pn) ( 1 a

0 σ ). Because of this much simpler description, in the

sequel we much prefer to use a principal power of p and prove results using just one component

at a time.

7.3.3. Integral overconvergent modular symbols

Ideally, we’d prefer to work with integral distributions. The following results, via Remark

7.2.5(i), allow us to do just that.

Lemma 7.3.2. Let F be (any) number field and I be an ideal coprime to n. Then Div0(P1(F ))

is a finitely generated Z[ΓI ]-module.

Proof. Recall that ΓI is a finitely generated group (see, for example, [Swa71]). Fix generators

γ1, ..., γr, say. The set of orbits of the action of ΓI on P1(F ) is finite, and in fact has order

equal to the class number h of F . Write these orbits as [c1], ..., [ch] for any fixed choice of

representatives in P1(F ). Now take any element

di − dj ∈ Div0(P1(F )),

with di = gci and dj = g′cj , some g and g′ in ΓI . Then

di − dj = di − ci + ci − cj + cj − dj = (g − 1)ci + (ci − cj) + (1− g′)cj ,

and it immediately follows that Div0(P1(F )) is generated as a Z[ΓI ]-module by the set {(1 −
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g)ci : g ∈ ΓI , 1 ≤ i ≤ h} ∪ {ci − cj : 1 ≤ i < j ≤ h}. But we also have

(1− g1g2)ci = (1− g1)ci − g1(1− g2)ci,

so that in fact Div0(P1(F )) is generated as a Z[ΓI ]-module by the finite set

{(1− γi)cj : 1 ≤ i ≤ r, 1 ≤ j ≤ h} ∪ {ci − cj : 1 ≤ i < j ≤ h}.

In particular, it is finitely generated, as required.

Proposition 7.3.3. Let ΓI be as above, and let D have the structure of both a OL-module and

a right ΓI-module. Then we have

SymbΓI (D ⊗OL L) ∼= SymbΓI (D)⊗OL L.

Proof. Let φ ∈ SymbΓI (D⊗OL L). Using Lemma 7.3.2, take a finite set of generators α1, ..., αn

for ∆0 as a Z[ΓI ]-module. We can find some element c ∈ OL such that cφ(αi) ∈ D for each i.

But then it follows immediately that cφ ∈ SymbΓI (D), and the result follows.

Remark: In particular, with Remark 7.2.5(i), this shows that

SymbΓI (Dk,`(L)) ∼= SymbΓI (Dk,`(OL))⊗OL L.

With this structure in place, we can now work with the space Dk,`(OL).

7.4. Filtrations and submodules

In the last section of this chapter, we write down filtrations and submodules of the space of

distributions that will allow us to prove a control theorem in the next chapter. In particular, this

control theorem says that the natural map from overconvergent to classical modular symbols is

an isomorphism when we restrict to suitable ‘small slope’ eigenspaces of the Up operator. The

modules defined in this section are crucial in the proof of surjectivity.

7.4.1. Finite approximation modules

Remark: From now on, we work exclusively with parallel weights, i.e. we consider only k = `

and use the space Dk,k(R). There are no classical cuspidal Bianchi modular forms at non-

parallel weights, so in proving a control theorem in the spirit of Stevens’ work, it suffices to

exclude the case k 6= `. We’ll also focus on looking at the space of Bianchi modular symbols one

component at a time. Henceforth, to this end, Γ will denote one of the Γi1(n) for i ∈ {1, ..., h}.
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In the one variable case, Matthew Greenberg ( [Gre07]) gave an alternative proof of Stevens’

control theorem using finite approximation modules, defining a Σ0(p)-stable filtration of Dk(L)

and then lifting modular symbols through this filtration. We aim to mimic this. First we recap

Greenberg’s work, recasting it slightly to make it more favourable for our generalisation. He

defines:

Definition 7.4.1. Define:

(i) FNDk(OL) ..= {µ ∈ Dk(OL) : µ(xi) ∈ πN−iL OL}, and

(ii) D0
k(OL) = {µ ∈ Dk(OL) : µ(xi) = 0 for 0 ≤ i ≤ k}. Note that this is the kernel of the

natural map Dk(OL)→ Vk(OL)∗ obtained by dualising the inclusion Vk(OL) ↪→ Ak(OL).

Greenberg shows in Lemma 2 of [Gre07] that the FNDk(OL) and D0
k(OL) are both Σ0(p)-stable

by considering the action of matrices of form ( 1 0
c 1 ), where p|c, and

(
a b
0 d
)
, where a is a p-adic

unit, since such matrices generate Σ0(p).

To define our own filtration, we take a similar route, imposing suitable conditions on the

moments of distributions.

Definition 7.4.2. Define:

(i) FNDk,k(OL) ..= {µ ∈ Dk,k(OL) : µ(xiyj) ∈ πN−i−jL OL}.

(ii) D0
k,k(OL) ..= {µ ∈ Dk,k(OL) : µ(xiyj) = 0 for 0 ≤ i, j ≤ k}.

(iii) FNDk,k(OL) ..= FNDk,k(OL) ∩ D0
k,k(OL).

Viewing a doubly indexed sequence (aij) as an infinite matrix, these conditions demand first

that the top left (k + 1) × (k + 1) entries are all zero, and then that each moment is suitably

divisible by some power of π depending on i+ j and N .

Proposition 7.4.3. This filtration is Σ0(p)2-stable.

Proof. There is an obvious switching map s : Dk,`(OL) → D`,k(OL). Thus it suffices to prove

the result for elements of form (γ, I2) for γ ∈ Σ0(p), as the action of a more general element

can be described as

µ

∣∣∣∣
k

(γ1, γ2) = s−1
[
s

(
µ

∣∣∣∣
k

(γ1, I2)
) ∣∣∣∣

k

(γ2, I2)
]
.

To each two-variable distribution µ ∈ Dk,k(OL), associate a family of distributions {µj ∈

Dk(OL)} by defining the moments of µj to be

µj(xi) = µ(xiyj).
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Then note that we have

µ ∈ FNDk,k(OL) ⇐⇒ µj ∈

 FN−jDk(OL) ∩ D0
k(OL) : 0 ≤ j ≤ k

FN−jDk(OL) : j > k
,

where the condition must hold for all j ≥ 0. The result we require then follows from the

observation that

µ

∣∣∣∣
k

(γ, I2)(xiyj) = µj

∣∣∣∣
k

γ(xi)

combined with the stability (in the one variable case) of each of the modules D0
k(OL) and

FN−jDk(OL) under the action of Σ0(p).

In particular, this result shows that we have a collection of Σ0(p)2-modules

ANDk,k(OL) ..= Dk,k(OL)
FNDk,k(OL) ,

with action inherited from Dk,k(OL), and where this is well-defined since the FNDk,k(OL) are

Σ0(p)2-stable. Furthermore, we see that

ANDk,k(OL) ∼= O(k+1)2

L × T

∼= Vk,k(OL)∗ × T,

where T is some finite product of copies of Z/p,Z/p2, and so on up to Z/pN−k−1. In particular,

we also have A0Dk,k(OL) ∼= · · · ∼= Ak+1Dk,k(OL) ∼= Vk,k(OL)∗. We also have Σ0(p)2-equivariant

projection maps πN from Dk,k(OL) to ANDk,k(OL), and we see that the map

π0 : Dk,k(OL) −→ Vk,k(OL)∗

gives rise to a (Σ0(p)2-equivariant) specialisation map

ρ0 : SymbΓ(Dk,k(OL)) −→ SymbΓ(Vk,k(OL)∗).

Further to this, for each M ≥ N , we have a Σ0(p)2-equivariant map

πM,N : AMDk,k(OL)→ ANDk,k(OL)

given by projection (and hence also maps ρM,N ). The projection maps are all compatible in

the obvious ways. Thus we get an inverse system of modules, and it’s straightforward to see

that

Dk,k(OL) ∼= lim
←−

ANDk,k(OL). (7.3)

To emulate Greenberg’s proof of surjectivity in the control theorem in one variable, we take a
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suitable Bianchi modular eigensymbol, and aim to lift it through each of the SymbΓ(ANDk,k(OL))

in a compatible way. This gives an element of the inverse limit that corresponds to an over-

convergent Bianchi modular symbol, since it follows from equation (7.3) that

SymbΓ(Dk,k(OL)) ∼= lim
←−

SymbΓ(ANDk,k(OL)). (7.4)

7.4.2. Moments of functionals on polynomials

Given an element f ∈ Vk,k(OL)∗, define the moments of f to be the quantities f(xmyn) for

0 ≤ m,n ≤ k, analogously to the moments of more general distributions from previously. Any

such f is entirely determined by its moments. We’ll now define a subspace of Vk,k(OL)∗ with

moments that satisfy suitable properties, and then in the proof of the control theorem, take a

modular symbol with values in this space and exhibit an explicit lift to Dk,k(OL). Tensoring

with L will then give the full theorem.

Definition 7.4.4. Let λ ∈ L×. Define

V λk,k(OL) ..=
{
f ∈ Vk,k(OL)∗ : f(xiyj) ∈ λp−(i+j)OL, 0 ≤ i+ j ≤ bv(λ)c

}
.

Proposition 7.4.5. V λk,k(OL) is Σ0(p)2-stable.

Proof. Consider first the one variable situation, as studied by Greenberg in [Gre07]. In partic-

ular, he defines V λk (OL) = {f ∈ Vk(OL)∗ : f(xi) ∈ λp−iOL}, and states (without proof) that

Vk(OL)∗ is Σ0(p) stable. For completeness, we provide a simple proof. It suffices to show this

for matrices of the form ( 1 0
c 1 ) , where p|c, and

(
a b
0 d
)
, where a ∈ Z∗p, since any element of Σ0(p)

factorises as a b

c d

 =

1 0
c
a 1

a b

0 ad−bc
a

 .

Consider first the case γ = ( 1 0
c 1 ). We have

f

∣∣∣∣γ(xi) = f((1 + cx)k−ixi) =
i∑

m=0

 i

m

 cmf(xm+i).

Since f(xm+i) ∈ λp−m−iOL, cmf(xm+i) ∈ p−iλOL, and hence the claim follows. The case

γ =
(
a b
0 d
)
is similar (and, in fact, more straightforward).

Moving back to the two variable case, as in Proposition 7.4.3, it suffices to check the result for

elements of form (γ, I2) of Σ0(p)2. To each f ∈ Vk,k(OL)∗, associate a family of functionals

{fj ∈ Vk(OL)∗ : 0 ≤ j ≤ k} by setting the moments to be fj(xi) = f(xiyj). Observe that

f

∣∣∣∣(γ, I2)(xiyj) = fj

∣∣∣∣γ(xi),
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and that we have

f ∈ V λk,k(OL) ⇐⇒ fj ∈ V λp
−j

k (OL) for 0 ≤ j ≤ k.

As V λp
−j

k (OL) is Σ0(p)-stable for each j, the result follows.

The next result is a technical lemma describing the action of certain matrices in Σ0(p)2. It

gives us nice properties of the Up operator.

Lemma 7.4.6. (i) Let µ ∈ Dk,k(OL) be such that π0(µ) ∈ V λk,k(OL). Then, for ai ∈ OK , we

have

µ

∣∣∣∣
k

1 a1

0 p

 ,

1 a2

0 p

 ∈ λDk,k(OL).

(ii) Let µ ∈ FNDk,k(OL), and suppose v(λ) < k + 1. Then

µ

∣∣∣∣
k

1 a1

0 p

 ,

1 a2

0 p

 ∈ λFN+1Dk,k(OL).

Proof. Take some µ ∈ Dk,k(OL). Then

µ

∣∣∣∣
k

1 a1

0 p

 ,

1 a2

0 p

 (xmyn) = µ((a1 + px)m(a2 + py)n)

=
m∑
i=0

n∑
j=0

m
i

n
j

 am−i1 an−j2 pi+jµ(xiyj).

(i) Suppose that π0(µ) lies in V λk,k(OL), so that µ(xiyj) ∈ λp−(i+j)OL for any i+ j ≤ bv(λ)c.

It follows that each term of the sum above lies in λOL, and hence the result follows. If

instead i+ j > v(λ), then the result follows as µ(xiyj) ∈ OL.

(ii) Now suppose µ ∈ FNDk,k(OL). Again considering the sum above, the terms where i, j ≤ k

vanish. If i+ j > k, then

i+ j ≥ k + 1 > v(λ),

since λ has p-adic valuation < k + 1. As pi+j and λ are divisible by integral powers of

πL, it follows that pi+j ∈ πLλOL. Hence, as µ(xiyj) ∈ πN−i−jL OL, it follows that

pi+jµ(xiyj) ∈ λπ(N+1)−i−j
L OL,

which completes the proof.

Recall the definition of Hecke operators. Formally endow the set of maps from ∆0 to Dk,k(OL)
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with the action of an operator Up defined as

Up ..=
∑

[a]∈OK/(p)

1 a

0 p

 .

Here γ =
(
a b
c d

)
acts as

f |γ(D) = f(γD)|γ,

and we consider such matrices as acting via the embedding of GL2(OK) ↪→ GL2(OL)×GL2(OL),

arising from equation (7.2). Note that the image of
( 1 a

0 p
)
under this embedding has the form

as described in Lemma 7.4.6.

Remark: Note that we’ve made some choice of orbit representatives for the action of Γ on the

double coset Γ
( 1 0

0 p
)

Γ. If we consider Up as a double coset operator on set-theoretic maps, this

is not well-defined up to choice of such representatives. However, as long as we are consistent

in our choice, it shall not matter; hence we simply define Up in this very specific way and ignore

where it comes from.

7.5. Summary

Before embarking on the proof of a suitable lifting theorem, we first take stock of the work of

this chapter. We have a monoid Σ0(p) acting on an OL-module Dk,k(OL), with a Σ0(p)-stable

filtration FNDk,k(OL) of Dk,k(OL) leading to an inverse system (ANDk,k(OL)) of OL-modules

satisfying

lim
←−

ANDk,k(OL) = Dk,k(OL).

Furthermore, A0Dk,k(OL) ∼= Vk,k(OL)∗. Take λ ∈ L× with v(λ) < k + 1, and define

D = {µ ∈ Dk,k(OL) : ρ0(µ) ∈ V λk,k(OL)}.

Suppose γ is a summand of the Up operator defined above; then Lemma 7.4.6(i) tells us that

if µ ∈ D, then µ|γ ∈ λDk,k(OL), while Lemma 7.4.6(ii) says that if µ ∈ FNDk,k(OL) then

µ|γ ∈ λFN+1Dk,k(OL).

This then gives us the exact situation described in the next section.
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Chapter 8

Lifting Small Slope Eigensymbols

In this chapter, we prove that the space of overconvergent modular symbols gives a p-adic defor-

mation of the spaces of classical modular symbols in a very ‘controlled’ manner. In particular,

we prove an analogue of Stevens’ control theorem over imaginary quadratic fields. This says

that the restriction of the natural map from overconvergent to classical modular symbols is an

isomorphism when restricted to the small slope eigenspaces of the Up operator. This bears com-

parison with Coleman’s small slope classicality theorem for overconvergent modular forms.

The chapter starts by proving an abstract control theorem, then applies it to our particular

case using the set-up from the previous chapter. After this, we take a small slope classical

eigensymbol, and examine its overconvergent lift. In particular, we show that this symbol actu-

ally takes values in a much smaller space of locally analytic distributions, before showing that

it is admissible, that is, it satisfies good growth properties. These properties will allow us to

define the p-adic L-function uniquely in the sequel.

8.1. An abstract lifting theorem

We start by proving the control theorem in a completely general setting, since we will use es-

sentially the same ideas multiple times. To this end, the following is an abstraction of some of

the elements of Greenberg’s work in [Gre07]. The notation given is suggestive, and throughout,

the reader should imagine the objects of (i) to (vii) below to be the obvious analogues from

Chapter 7.5.

Suppose L/Qp is a finite extension, and that we have:

(i) a monoid Σ,

(ii) a OL-module D that has a right action of Σ,

(iii) a Σ-stable filtration of D, D ⊃ F0D ⊃ F1D ⊃ · · · , where if we define AND ..= D/FND,

then we have

lim
←−
AND = D,
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and where the FND have trivial intersection,

(iv) a right Σ-stable submodule A of A0D, denoting DA
..= {µ ∈ D : µ (modF0D) ∈ A},

(v) an operator U =
r∑
i=0

γi, where γi ∈ Σ,

(vi) a subgroup Γ ≤ Σ such that for each j, we have

ΓγjΓ =
r∐
i=0

Γγi,

(vii) and a (countable) left Z[Γ]-module ∆.

For a right Z[Σ]-module D, endow the space of homomorphisms from ∆ to D with a right

Σ-action by

(φ|γ)(E) = φ(γ · E)|γ.

For such D, write SymbΓ(D) = HomΓ(∆,D) for the space of Γ-equivariant homomorphisms.

Note that U acts on this space.

Theorem 8.1.1. Suppose that λ is a non-zero element of OL, that DA and A have trivial

λ-torsion, and that for each γi appearing in the U operator, we have:

(a) if µ ∈ DA, then µ|γi ∈ λD, and

(b) if µ ∈ FND, then µ|γi ∈ λFN+1D.

Then the restriction of the natural map ρ0 : SymbΓ(DA)→ SymbΓ(A) to the λ-eigenspaces of

the U operator is an isomorphism.

For clarity, the proof will be broken into a series of smaller steps. We have natural Σ-equivariant

projection maps

πN : D −→ AND

that induce Σ-equivariant maps

ρN : SymbΓ(D) −→ SymbΓ(AND),

(and hence ρ0 : SymbΓ(DA)→ SymbΓ(A) by restriction) as well as maps πM,N : AMD → AND

for M ≥ N that similarly induce maps ρM,N . Thus we have an inverse system, and also it is

straightforward to see that

lim
←−

SymbΓ(AND) = SymbΓ(D).

First we pass to a filtration where the Σ-action is nicer. Define FNDA = FND ∩DA. This is

a Σ-stable filtration of DA, since A is Σ-stable and the projection maps are Σ-equivariant. It’s
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immediate that if γi is a summand of the U operator and µ ∈ FNDA, then µ|γi ∈ λFN+1DA.

Define ANDA = DA/FNDA, so that we have the following (where the vertical maps are

injections):

D
πM

> AMD πM,N

> AND

DA

∧

πM

> AMDA

∧

πM,N

> ANDA

∧

Again, we see easily that

lim
←−

SymbΓ(ANDA) = SymbΓ(DA). (8.1)

Firstly, sinceANDA may have non-trivial λ-torsion, we should make the statement “U -eigensymbol

in SymbΓ(ANDA)” more precise. By condition (b) of 8.1.1, if γ is a summand of U , and

µ ∈ DA, then µ|γ ∈ λD. Accordingly, given a homomorphism ϕ from ∆ to DA, we have

(ϕ|γ)(E) = ϕ(γE)|γ = λx, for E ∈ ∆ and some x ∈ D. Define a formal operator

Vγ : Hom(∆, DA) −→ Hom(∆, D)

by

(ϕ|Vγ)(E) = x,

so that we have an equality of operators λVγ = γ|Hom(∆,DA). Note that the operator Vγ is

well-defined since DA has trivial λ-torsion.

Remarks: (i) Note that as ρ0 is Σ-equivariant andA is Σ-stable,DA is Σ-stable, so γ|Hom(∆,DA)

is indeed an operator on Hom(∆, DA).

(ii) The reason we don’t simply just define Vγ = λ−1γ is that ‘dividing by λ’ is not in general

a well-defined notion on D.

Further define

V =
r∑
i=0

Vγi ,

so that we have an equality of operators λV = U |Hom(∆,DA) (where the right hand side is an

operator on Hom(∆, DA) by the first remark above).

Note that V gives rise to an operator VN on each ANDA by Σ-equivariance. We say an

element ϕN ∈ SymbΓ(ANDA) is a U -eigensymbol of eigenvalue λ if ϕN |VN = ϕN .

Take a U -eigensymbol φ0 ∈ SymbΓ(A) = SymbΓ(A0DA) with eigenvalue λ. Suppose a lift

to a U -eigensymbol φN ∈ SymbΓ(ANDA) exists. We can take an arbitrary lift of φN to some
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homomorphism

φ : ∆ −→ D.

Such a lift exists, as we can take some Z-basis of ∆ (using countability) and define φ on this

basis, extending Z-linearly (noting that this gives a well-defined lift since φN is also a homo-

morphism).

Now, since φN is a U -eigensymbol with eigenvalue λ, it follows that φ|V is also a lift of φN to

Hom(∆, DA). The maps πN , inducing the maps ρN , can be used immediately to extend the

definition of ρN to the space of homomorphisms from ∆ to DA (rather than just the ones that

are Γ-equivariant). Define

φN+1 = ρN+1 (φ|V ) ,

a homomorphism from ∆ to AN+1DA. Note that since the maps ρN , ρM,N are Σ-equivariant

(and hence V -equivariant), we have compatibility relations

ρN+1,N (φN+1) = φN ,

so that the following lemma says that the family {φN} we obtain gives an element of the inverse

limit given in equation (8.1).

Lemma 8.1.2. The homomorphism φN+1 is a well-defined U -eigensymbol in SymbΓ(AN+1DA).

We prove this lemma in a series of claims.

Claim 8.1.2.1. If γ = γi is a summand of the U operator, and φ′ is another lift of φN , then

ρN+1 (φ|Vγ) = ρN+1 (φ′|Vγ) .

In particular, φN+1 is independent of the choice of φ above φN .

Proof. To say that φ and φ′ are both lifts of φN is to say that the image of φ− φ′ under ρN is

0 in ANDA, that is, φ− φ′ ∈ FNDA. Thus by condition (b) in Theorem 8.1.1,

(φ− φ′)
∣∣∣∣γ ∈ λFN+1DA,

that is,

(φ− φ′)
∣∣∣∣Vγ ∈ FN+1DA.

Indeed, the image of (φ−φ′)|Vγ under ρN+1 in AN+1DA is 0. But this is precisely the statement

that we required.
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Claim 8.1.2.2. The homomorphism φN+1 is Γ-equivariant.

Proof. Let γ ∈ Γ. As the map ρN+1 is Σ-equivariant, it follows that

φN+1

∣∣∣∣γ = 1
λ
ρN+1

(
r∑
i=0

φ

∣∣∣∣
k

(γiγ)
)
,

where the division by λ is purely formal and well-defined by the remarks above. By condition

(vi) above, we have a double coset decomposition

ΓγjΓ =
r∐
i=0

Γγi,

hence we can find ηj ∈ Γ such that

r∑
i=0

φ

∣∣∣∣
k

(γiγ) =
r∑
j=0

(
φ

∣∣∣∣
k

ηj

) ∣∣∣∣
k

γj .

Since φN is Γ-invariant, φ|ηj is a lift of φN , and hence by Claim 8.1.2.1 it follows that

φN+1

∣∣∣∣γ = 1
λ
ρN+1

 r∑
j=0

(
φ

∣∣∣∣
k

ηj

) ∣∣∣∣γj


= 1
λ
ρN+1

 r∑
j=0

φ

∣∣∣∣γj
 = φN+1,

as required.

Claim 8.1.2.3. The homomorphism φN+1 is a U -eigensymbol with eigenvalue λ.

Proof. Recall that when we consider the operator V acting on ANDA, we denote it VN , and

that φN is a U -eigensymbol with eigenvalue λ if φN is a fixed point of VN . Note then that φ|V

is also a lift of φN to Hom(∆, DA). In particular, φ|V also lives in Hom(∆, DA), so we can

apply V to it again. Thus, by Σ-equivariance and Claim 8.1.2.1,

φN+1

∣∣∣∣VN+1 = ρN+1
(
φ

∣∣∣∣V ) ∣∣∣∣VN+1

= ρN+1
(
φ

∣∣∣∣V 2
)

= φN+1,

as required.

Proof. (Theorem 8.1.1). Surjectivity follows from the results above; take an element φ0 ∈

SymbΓ(A). Then for each N we can construct φN ∈ SymbΓ(ANDA), compatibly with the pro-

jection maps πM,N , and thus obtain a well-defined element of the inverse limit, which is the

domain. By construction, this element has image φ0 under ρ0.
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To prove injectivity, take some

ϕ ∈ ker(ρ0) = SymbΓ(DA ∩ F0DA).

Applying the operator V recursively gives

ϕ = ϕ

∣∣∣∣V N ∈ FNDA

by condition (b) in Theorem 8.1.1. Thus ϕ lies in the intersection of all the FNDA, that is,

ϕ = 0 (by condition (iii)) as required.

Thus the map is a bijection, and thus an isomorphism, as required.

Remark: This result bears comparison to [PP09], Theorem 3.1, where Pollack and Pollack

generalise Greenberg’s argument to the (slightly different) setting of group cohomology. In

particular, they prove an analogue of this control theorem in the ordinary case, that is, for

v(λ) = 0. In [Wil16], this condition on v(λ) is removed under some extra hypotheses (which

are analogous to conditions (i) and (ii) of Theorem 8.1.1 above).

8.2. The Bianchi control theorem

By considering the result above in combination with the objects in Chapter 7.5, we have the

following corollary:

Theorem 8.2.1. (i) Let K/Q be an imaginary quadratic field, p a rational prime, and L/Qp
the finite extension defined in Notation 7.2.1. Let Γ = Γi1(n) be a twist of Γ1(n) ≤

SL2(OK) with (p)|n.

Let λ ∈ L×. Then, when vp(λ) < k + 1, the restriction of the specialisation map

ρ0 : SymbΓ(Dk,k(L))Up=λ −→ SymbΓ(Vk,k(L)∗)Up=λ

(where the superscript (Up = λ) denotes the λ-eigenspace for Up) is an isomorphism.

(ii) In the same set up, with Ω1(n) defined as in equation (2.3), we have an isomorphism

ρ0 : SymbΩ1(n)(Dk,k(L))Up=λ −→ SymbΩ1(n)(Vk,k(L)∗)Up=λ.

Proof. To prove (i), recall that in the set up of Section 7.5, Theorem 8.1.1 says that the
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restriction of ρ0 to the map

ρ0 : SymbΓ(D)Up=λ −→ SymbΓ(V λk,k(OL))Up=λ

is an isomorphism. The result now follows by right-exactness of tensor product and Proposition

7.3.3, since D ⊗OL L ∼= Dk,k(L) and V λk,k ⊗OL K ∼= Vk,k(L)∗. Part (ii) is a trivial consequence

as the Up operator acts separately on each component.

8.3. Values of overconvergent lifts

This section will examine the spaces in which overconvergent lifts take values, refining our

earlier results. Recall that Γ = Γi1(n) is a twist of Γ1(n).

8.3.1. Locally analytic distributions

We’ve shown that any classical Bianchi eigensymbol of suitable slope can be lifted to an over-

convergent symbol that takes values in a space of rigid analytic distributions. However, the

module of values we’re truly interested in is a smaller space of distributions. A p-adic L-

function should be a function on characters; but a rigid analytic distribution can take as input

only functions that can be written as a single convergent power series. However, finite order

characters are locally constant, and thus most cannot be written in this form. Instead, we want

our lift to take values in the dual of locally analytic functions.

Definition 8.3.1. Let r, s ∈ R>0. Define the (r, s)−ball in Cp to be

B(Op, r, s) = {(x, y) ∈ C2
p : ∃u ∈ OK ⊗Z Zp such that |x− σ1(u)| ≤ r, |y − σ2(u)| ≤ s},

where σ1, σ2 are the embeddings K ⊗Qp ↪→ L.

Example: When r and s are both at least 1, B(Op, r, s) is the cartesian product of the closed

discs of radii r and s in Cp. If r = s = 1/p, this is the cartesian product of two copies of the

disjoint union of closed discs of radius 1/p with centres at 0, 1, ..., p − 1. As r and s tend to

zero, B(Op, r, s) comprises smaller and smaller discs around the points of OK ⊗Z Zp.

Definition 8.3.2. Let r and s be as above. Then define the space of locally analytic functions of

radius (r, s) over L, denoted A[L, r, s], to be the space of rigid analytic functions on B(Op, r, s)

that are defined over L.

Example: The space A[L, 1, 1] is just the space A2(L) of ‘fully analytic’ functions described

previously. The space A[L, 1/p, 1/p] consists of functions that are ‘slightly more locally ana-

lytic,’ in the sense that each element can be written as a collection of p (possibly independent)
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convergent power series, one for each closed disc around the points 0, 1, ..., p− 1. In particular,

this space contains the space A[L, 1, 1]. As r and s get smaller and smaller, the functions

become more and more locally analytic in the sense that at each point of OK ⊗Z Z, a function

in A[L, r, s] can be written as a convergent power series in a disc of progressively smaller radius

around that point.

Definition 8.3.3. Define the space of locally analytic distributions of order (r, s) over L to be

D[L, r, s] = Homcts(A[L, r, s], L).

We endow A[L, r, s] with a weight (k, `) action of Σ0(p)2 identical to the action defined earlier

on A2(L); it is obvious that this action extends immediately to the larger space. It’s then clear

that by dualising, the action we obtain on D[L, r, s] is the restriction of the action on D2(L).

When talking about these spaces equipped with these actions, we denote them Ak,`[L, r, s] and

Dk,`[L, r, s].

For r ≤ r′ and s ≤ s′, we have a natural and completely continuous injection A[L, r′, s′] ↪→

Ak,`[L, r, s], since B(Op, r, s) ⊂ B(Op, r
′, s′). Since the polynomials are dense in each of these

spaces, the image of this injection is dense. Using this compatibility, we make the following

definitions:

Definition 8.3.4. Define the space of locally analytic functions over L to be the direct limit

Ak,`(L) ..= lim
−→

Ak,`[L, r, s] =
⋃
r,s

Ak,`[L, r, s].

Definition 8.3.5. Define the space of locally analytic distributions over K to be

Dk,`(L) ..= Homcts(Ak,`, L).

Proposition 8.3.6. There is a canonical Σ0(p)2-equivariant isomorphism

Dk,`(L) ∼= lim
←−

Dk,`[L, r, s] =
⋂
r,s

Dk,`[L, r, s].

Proof. An element of the left hand side is a functional on a direct limit. Each element {µr,s}

of the right hand side is an element of the direct product of all the Dk,`[L, r, s]. Given such an

element {µr,s}, define an element µ of the left hand side by

µ(f) = µr0,s0(fr0,s0)

for some choice of r0, s0 such that f is represented by fr0,s0 ∈ Ak,`[L, r0, s0] in the direct limit.

This is independent of the choice of r0 and s0; suppose we choose different values r′0 and s′0
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with fr′0,s′0 representing f , then we can choose some values r1 and s1 with r1 ≤ r0, r
′
0 and

s1 ≤ s0, s
′
0. Then

µr0,s0(fr0,s0) = µr1,s1(fr1,s1) = µr′0,s′0(fr′0,s′0),

by definition of inverse limit, where we choose fr1,s1 ∈ Ak,`[L, r1, s1] also representing f , which

is possible by definition of direct limit.

We define an inverse to the corresponding map

lim
←−

Dk,`[L, r, s] −→ Dk,`(L)

as follows. For an element µ ∈ Dk,`(L), define an element {µr,s} by µr0,s0(fr0,s0) = µ(f),

where fr0,s0 represents f in the direct limit. This does give a family in the inverse limit using

properties of µ, and this gives a well-defined inverse.

The Σ0(p)2-equivariance of this map follows from a simple check.

8.3.2. The action of Σ0(p)2

The action of certain elements of Σ0(p)2 naturally moves us up and down the direct/inverse

systems.

Lemma 8.3.7. (i) Let g ∈ Ak,`[L, r, s], and a1, a2 ∈ Op. Then

[γ1, γ2] ·(k,`) g, γi =

1 ai

0 pn

 ,

naturally extends to B(Op, rp
n, spn) and thus gives an element of Ak,`[L, rpn, spn].

(ii) Let µ ∈ Dk,`[L, r, s], and γi as above for i = 1, 2. Then µ|(k,`)[γ1, γ2] naturally gives an

element of the smaller space Dk,`[L, rp−n, sp−n].

Proof. For x, y ∈ B(Op, rp
n, spn), there exist b1, b2 ∈ Op such that |x−b1| ≤ rpn and |y−b2| ≤

spn. Then |(a1 + pnx)− (a1 + pnb1)| ≤ r, and similarly for y, so that

(a1 + pnx, a2 + pny) ∈ B(Op, r, s).

For such x, y, we have

[γ1, γ2] ·k,` g(x, y) = g(a1 + pnx, a2 + pny),

and since g is defined on B(Op, r, s), the result follows.
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For part (ii), note that the action of [γ1, γ2] gives a map

Ak,`[L, r, s] −→ Ak,`[L, rpn, spn],

and hence dualising, the action gives a map

Dk,`[L, rpn, spn] −→ Dk,`[L, r, s].

This is the required result (though scaled by a factor of pn).

Proposition 8.3.8. Suppose that Ψ ∈ SymbΓ(Dk,k(L)) is a Up-eigensymbol with non-zero

eigenvalue. Then Ψ is an element of SymbΓ(Dk,k(L)).

Proof. Firstly, Dk,k(L) = Dk,k[L, 1, 1]. Note that Up acts invertibly on the Up-eigenspace, so

that for each integer n, there exists some eigensymbol Ψ′ with Ψ = Ψ′|Unp . The Unp operator

can be described explicitly as

Unp =
∑

[a]∈OK/(pn)

1 a

0 pn

 ,

so combining with Lemma 8.3.7 shows that Ψ takes values in Dk,k[L, p−n, p−n] for each n, and

thus in lim
←−

Dk,k[L, r, s] ∼= Dk,k(L), using Proposition 8.3.6. The result follows.

Corollary 8.3.9. (i) Let K/Q be an imaginary quadratic field, p a rational prime, and L/Qp
the finite extension defined in Notation 7.2.1. Let Γ = Γi1(n) be a twist of Γ1(n) ≤

SL2(OK) with (p)|n.

Let λ ∈ L×. Then, when v(λ) < k + 1, the restriction of the natural map

SymbΓ(Dk,k(L))Up=λ −→ SymbΓ(Vk,k(L)∗)Up=λ

is an isomorphism.

(ii) In the set-up of above, and with Ω1(n) as defined in equation (2.3), the restriction of the

natural map

SymbΩ1(n)(Dk,k(L))Up=λ −→ SymbΩ1(n)(Vk,k(L)∗)Up=λ

is an isomorphism.
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8.3.3. Admissible distributions

In this section, we prove that the values of an overconvergent symbol lifting a classical eigen-

symbol are admissible, that is, they satisfy good growth properties. In the sequel, we will define

the p-adic L-function as the value of an overconvergent symbol at the divisor {0} − {∞}; the

admissibility condition then shows that this distribution is unique.

We start by defining the admissibility condition. For each pair r, s, the space Dk,k[L, r, s]

admits a natural operator norm || · ||r,s via

||µ||r,s = sup
0 6=f∈Ak,k[L,r,s]

|µ(f)|p
|f |r,s

,

where | · |p is the usual p-adic absolute value on L and | · |r,s is the sup norm on Ak,k[L, r, s].

Note that if r ≤ r′, s ≤ s′, then ||µ||r,s ≥ ||µ||r′,s′ for µ ∈ Dk,k[L, r′, s′].

These norms give rise to a family of norms on the space of locally analytic functions. It is

natural to classify locally analytic distributions by growth properties as we vary in this family.

Definition 8.3.10. Let µ ∈ Dk,k(L) be a locally analytic distribution. We say µ is h-admissible

if

||µ||r,r = O(r−h)

as r → 0+.

The following lemma is a useful technical result describing the family of norms of a Γ-orbit in

Ak,k[L, r, s]. It gives universal constants that will be useful in the sequel.

Lemma 8.3.11. There exist positive constants C and C ′ such that

C|γ ·(k,k) f |r,s ≤ |f |r,s ≤ C ′|γ ·(k,k) f |r,s

for every γ ∈ Γ and f ∈ Ak,k[L, r, s].

Proof. The action of γ by

γ−1 · (x, y) =
(
b+ dx

a+ cx
,
b′ + d′y

a′ + c′y

)
, σ(γ−1) =

a b

c d

 ,

a′ b′

c′ d′


maps B(Op, r, s) bijectively to itself. Furthermore, we have

|(a+ cx)k(a′ + c′y)k|p ≤ max{1, |x|kp, |y|kp, |xy|kp} ≤ max{1, rk, sk, (rs)k} = C−1,
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say, noting that C−1 is certainly positive. Thus

|γ ·(k,k) f |r,s = sup
(x,y)∈B(Op,r,s)

∣∣∣∣(a+ cx)k(a′ + c′y)k
∣∣∣∣
p

·
∣∣∣∣f(γ · (x, y)

)∣∣∣∣
p

≤ C−1 sup
(x,y)∈B(Op,r,s)

|f(x, y)|p

= C−1|f |r,s,

from which the first inequality follows. The reverse direction follows from symmetry by con-

sidering the action of γ−1.

Definition-Proposition 8.3.12. Let Ψ ∈ SymbΓ(Dk,k(L)), and r, s ≤ 1. The expression

||Ψ||r,s ..= sup
D∈∆0

||Ψ(D)||r,s

gives a well-defined norm on SymbΓ(Dk,k(L)).

Proof. It suffices to show that ||Ψ(D)||r,s is bounded. Pick a finite set of generators D1, ..., Dm

for ∆0 as a Z[Γ]−module. For any D ∈ ∆0, write D = α1D1 + · · ·αmDm with αi ∈ Z[Γ]. Then

||Ψ(D)||r,s ≤ max
i
||Ψ(αiDi)||r,s = ||Ψ(α1D1)||r,s

(without loss of generality). Write α1 = a1γ1 + · · · a`γ`, with ai ∈ Z, γi ∈ Γ. Then

||Ψ(α1D1)||r,s ≤ max
j
|aj | · ||Ψ(γjD1)||r,s ≤

∣∣∣∣∣∣∣∣Ψ(D1)
∣∣∣∣
(k,k)

γ−1
1

∣∣∣∣∣∣∣∣
r,s

,

where we again, without loss of generality, take this max to be at j = 1. We have

∣∣∣∣∣∣∣∣Ψ(D1)
∣∣∣∣
(k,k)

γ−1
i

∣∣∣∣∣∣∣∣
r,s

= sup
0 6=f∈Ak,k[L,r,s]

|Ψ(D1)(γ−1
1 ·(k,k) f)|p
|f |r,s

= sup
0 6=f∈Ak,k[L,r,s]

|Ψ(D1)(f)|p
|γ1 ·(k,k) f |r,s

≤ C ′ sup
0 6=f∈Ak,k[L,r,s]

|Ψ(D1)(f)|p
|f |r,s

≤ C ′||Ψ(D1)||r,s,

for some universal constant C ′, using Lemma 8.3.11. Combining, this gives

||Ψ(D)||r,s ≤ C ′||Ψ(D1)||r,s,

so in particular, it is finite and hence gives a well-defined norm, as required.

The values of an overconvergent eigensymbol satisfy further conditions of the type above de-

pending on their slope.
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Proposition 8.3.13. Suppose Ψ ∈ SymbΓ(Dk,k(L)) is a Up-eigensymbol with eigenvalue λ and

slope h = v(λ). Then, for every D ∈ ∆0, the distribution Ψ(D) is h-admissible.

Proof. For any r and a positive integer n, we have

||Ψ(D)|| r
pn ,

r
pn

= |λ|−n
∣∣∣∣∣∣∣∣
(

Ψ
∣∣∣∣
(k,`)

Unp

)
(D)

∣∣∣∣∣∣∣∣
r
pn ,

r
pn

≤ |λ|−n max
[a]∈OK/(pn)

∣∣∣∣∣∣∣∣Ψ
1 a

0 pn

D

∣∣∣∣
k,`

σ

1 a

0 pn

 ∣∣∣∣∣∣∣∣
r
pn ,

r
pn

,

where σ is the embedding OK ↪→ Zp × Zp,

≤ |λ|−n max
[a]∈OK/(pn)

∣∣∣∣∣∣∣∣Ψ
1 a

0 pn

D

∣∣∣∣∣∣∣∣
r,r

≤ |λ|−n||Ψ||r,r,

the norm defined in Definition-Proposition 8.3.12. Here the second to last inequality follows

since for γi =
(

1 ai
0 pn

)
, we have, for any µ ∈ Dk,`[L, r, s],

∣∣∣∣∣∣∣∣µ∣∣∣∣
k,`

[γ1, γ2]
∣∣∣∣∣∣∣∣

r
pn ,

s
pn

≤ ||µ||r,s.

This is simply because, for f ∈ Ak,`[L, rp−n, sp−n],

||f ||rp−n,sp−n ≥ ||[γ1, γ2] ·(k,`) f ||r,s,

and hence ∣∣∣∣∣∣∣∣µ∣∣∣∣
k,`

[γ1, γ2]
∣∣∣∣∣∣∣∣

r
pn ,

s
pn

= sup
f∈Ak,`[L, rpn ,

s
pn ]

|µ([γ1, γ2] ·(k,`) f)|p
||f || r

pn ,
s
pn

≤ sup
f∈Ak,`[L, rpn ,

s
pn ]

|µ([γ1, γ2] ·(k,`) f)|p
||[γ1, γ2] ·(k,`) f ||r,s

≤ sup
g∈Ak,`[L,r,s]

|µ(g)|p
||g||r,s

= ||µ||r,s.

From the inequality ||Ψ(D)||rp−n,rp−n ≤ |λ|−n||Ψ||r,r, the result follows.

Remark 8.3.14: To summarise the results of this section: if we take an eigensymbol φ as-

sociated to a Bianchi cuspidal eigenform of small slope h, and lift it to some overconvergent

eigensymbol Ψ using the control theorem, then the components of the distribution Ψ({0}−{∞})

are h-admissible locally analytic distributions.
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Chapter 9

The Case p Split

The results above hold for the Up operator regardless of the splitting behaviour of the prime p

in K. When p is inert, this is the whole story, and if p is ramified, then there are only slight

modifications to make to obtain a finer result for the Up operator, where (p) = p2 in K. In

the case that p splits in K as pp, however, we can obtain more subtle results. The crux of this

section is that we can prove a control theorem for a ‘small slope’ condition that encompasses

far more possible eigensymbols. For example, suppose φ ∈ SymbΓ(Vk,k(L)∗) is a Bianchi eigen-

symbol with slope (k + 1)/2 at p and (k + 1)/2 at p. This will have slope k + 1 under the Up
operator, and hence we cannot lift it using the control theorem proved above. The results below

will allow us to lift even symbols such as this.

Many of the results and proofs closely mirror those of previous sections. We first prove a

more refined control theorem, again by writing down a suitable filtration and then using Theo-

rem 8.1.1, and then go on to prove an admissibility result for such lifts.

Throughout, we assume that p splits as pp. Whilst ultimately we want to prove a control

theorem for the full space of modular symbols for Ω1(n), it is simpler to instead work with

a principal power of p and look at each individual component of the direct sum separately,

combining together at the end.

9.1. Lifting simultaneous eigensymbols of Up and Up

The following results will show that it is possible to lift a classical Bianchi eigensymbol to

a space of Bianchi modular symbols that are overconvergent in one variable, and then again

from this space to the space of fully overconvergent Bianchi modular symbols we considered

previously.

To do so, consider the space

[Dk ⊗ V ∗k ](R) = Homcts(Ak(R)⊗R Vk(R), R),
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with the appropriate action of Σ0(p)2 (where this makes sense) induced from the action on

Ak,k. This gives us

Vk,k(R) ⊂ [Dk ⊗ V ∗k ](R) ⊂ Dk,k(R).

Now put R = OL, and recall the filtration in the one variable case from Definition 7.4.1. We

now define new filtrations to reflect lifting by one variable at a time.

Definition 9.1.1. Define

(i) FN [Dk ⊗ V ∗k ](OL) = FNDk(OL)⊗OL Vk(OL)∗

= {µ ∈ [Dk ⊗ V ∗k ](OL) : µ(xiyj) ∈ πN−iL OL for all j},

(ii) [Dk ⊗ V ∗k ]0(OL) = ker([Dk ⊗ V ∗k ](OL)→ Vk,k(OL)∗)

= {µ ∈ [Dk ⊗ V ∗k ](OL) : µ(xiyj) = 0 for all 0 ≤ i ≤ k},

(iii) and FN [Dk ⊗ V ∗k ](OL) = FN [Dk ⊗ V ∗k ](OL) ∩ [Dk ⊗ V ∗k ]0(OL).

Definition 9.1.2. Define

(i) FNp Dk,k(OL) = Dk(OL)⊗̂OLFN (OL)

= {µ ∈ Dk,k(OL) : µ(xiyj) ∈ πN−jL OL for all i},

(ii) D0
k,k,p(OL) = ker(Dk,k(OL)→ [Dk ⊗ V ∗k ](OL))

= {µ ∈ Dk,k(OL) : µ(xiyj) = 0 for all j ≥ 0},

(iii) and FNp Dk,k(OL) = FNp Dk,k(OL) ∩ D0
k,k,p(OL).

Further define

AN [Dk ⊗ V ∗k ](OL) = [Dk ⊗ V ∗k ](OL)/FN [Dk ⊗ V ∗k ](OL),

ANp Dk,k(OL) = Dk,k(OL)/FNp Dk,k(OL).

Hence we now have filtrations

F0[Dk ⊗ V ∗k ](OL) ⊂ · · · ⊂FM [Dk ⊗ V ∗k ](OL) ⊂ · · · ⊂ [Dk ⊗ V ∗k ](OL) ⊂

· · · ⊂ FNp Dk,k(OL) ⊂ · · · ⊂ Dk,k(OL).

Proposition 9.1.3. These filtrations are Σ0(p)2-stable.

Proof. This follows from the one variable case, as these filtrations are defined to be a tensor

product of Σ0(p)-stable spaces, and in the two variable case, Σ0(p)2 acts separately on each

component.
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These filtrations lead to Σ0(p)2-equivariant projection maps

πN1 : [Dk ⊗ V ∗k ](OL) −→ AN [Dk ⊗ V ∗k ](OL)

and

πN2 : Dk,k(OL) −→ ANp Dk,k(OL),

which again give maps ρN1 and ρN2 on the corresponding symbol spaces.

Having defined two Σ0(p)2-stable filtrations, the next pieces we need are Σ0(p)2-stable sub-

modules of Vk,k(OL)∗ and [Dk ⊗ V ∗k ](OL) to play the role of the module A in Theorem 8.1.1.

Definition 9.1.4. Let λ ∈ K∗. Define

(i) V λk,k,p(OL) = V λk (OL)⊗OL Vk(OL)∗

= {f ∈ Vk,k(OL)∗ : f(xiyj) ∈ λp−iOL for 0 ≤ i ≤ bv(λ)c},

(ii) and [Dk ⊗ V ∗k ]λ(OL) = Dk(OL)⊗OL V λk (OL)

= {f ∈ [Dk ⊗ V ∗k ](OL) : f(xiyj) ∈ λp−jOL for 0 ≤ j ≤ bv(λ)c}.

This gives the following situation:

Dk,k(OL)
π0

2
−−−−−→ [Dk ⊗ V ∗k ](OL) ⊃ [Dk ⊗ V ∗k ]λ(OL),

[Dk ⊗ V ∗k ](OL)
π0

1
−−−−−→ Vk,k(OL)∗ ⊃ V λk,k,p(OL).

Proposition 9.1.5. These modules are Σ0(p)2-stable.

Proof. As in Proposition 9.1.3, this follows from the one variable case, as these are nothing but

a tensor product of Σ0(p)-stable spaces.

We want an analogue of Lemma 7.4.6 for this setting. Choose n such that pn = (β) is principal

(noting that this also forces pn to be principal). Then we define Upn = Unp as

∑
a (mod pn)

1 a

0 β

 .

We will prove control theorems for eigenspaces of the operators Unp for p|p, which will give us

the theorem for the operators Up, as required.

The following two lemmas are practically identical in spirit to Lemma 7.4.6, but they are

included here for completeness.
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Lemma 9.1.6. Let a1, a2 ∈ OL.

(i) Suppose µ ∈ [Dk ⊗ V ∗k ](OL) with π0
1(µ) ∈ V λk,k,p(OL). Then

µ

∣∣∣∣
k

1 a1

0 β

 ,

1 a2

0 β

 ∈ λ[Dk ⊗ V ∗k ](OL).

(ii) Suppose v(λ) < k + 1. Then for µ ∈ FN [Dk ⊗ V ∗k ](OL), we have

µ

∣∣∣∣
k

1 a1

0 β

 ,

1 a2

0 β

 ∈ λFN+1[Dk ⊗ V ∗k ](OL).

Proof. Take some µ ∈ [Dk ⊗ V ∗k ](OL). Then

µ

∣∣∣∣
k

1 a1

0 β

 ,

1 a2

0 β

 (xmyn) = µ((a1 + βx)m(a2 + βy)n)

=
m∑
i=0

n∑
j=0

m
i

n
j

 am−i1 an−j2 βiβ
j
µ(xiyj).

(i) Suppose that π0(µ) lies in V λk,k,p(OL), so that µ(xiyj) ∈ λp−iOL for any i ≤ bv(λ)c. As

βi ∈ piOL, it follows that each term of the sum above lies in λOL, and hence we have

the result. If instead i is greater than bv(λ)c, it follows that i > v(λ), so that βi ∈ λOL,

and hence the result follows as µ(xiyj) ∈ OL.

(ii) Now suppose µ ∈ FN [Dk ⊗ V ∗k ](OL). Again considering the sum above, the terms where

i ≤ k vanish. If i > k, then

i ≥ k + 1 > v(λ),

since λ has p-adic valuation < k + 1. As βi and λ are divisible by integral powers of πL,

it follows that βi ∈ πLλOL. Hence, as µ(xiyj) ∈ πN−iL OL, it follows that

βiµ(xiyj) ∈ λπ(N+1)−i
L OL,

which completes the proof.

Now let pn = (δ), with image (δ, δ) in O2
L. Note that v(δ) = n, whilst δ is a unit in OL.

Lemma 9.1.7. Let a1, a2 ∈ OL.

(i) Suppose µ ∈ Dk,k(OL) with π0
2(µ) ∈ [Dk ⊗ V ∗k ]λ(OL). Then

µ

∣∣∣∣
k

1 a1

0 δ

 ,

1 a2

0 δ

 ∈ λDk,k(OL).

110



The case p split

(ii) Suppose v(λ) < k + 1. Then for µ ∈ FNp Dk,k(OL), we have

µ

∣∣∣∣
k

1 a1

0 δ

 ,

1 a2

0 δ

 ∈ λFN+1
p Dk,k(OL).

Proof. Identical to that of Lemma 9.1.6 – up to notation – but with j’s replacing i’s where

appropriate.

We are hence in exactly the situation of Theorem 8.1.1, and applying it twice gives us:

Lemma 9.1.8. Let K/Q be an imaginary quadratic field, p a rational prime that splits as pp

in K, n an integer such that pn is principal, and L/Qp the finite extension defined in Notation

7.2.1. Let Γ = Γi1(n) be a twist of Γ1(n) ≤ SL2(OK) with (p)|n. Let λ ∈ L×. Then, when

v(λ) < n(k + 1), we have:

(i) The restriction of the specialisation map

ρ0
1 : SymbΓ([Dk ⊗ V ∗k ](L))U

n
p =λ −→ SymbΓ(Vk,k(L)∗)U

n
p =λ

(where the superscript (Up = λ) denotes the λ-eigenspace for Up) is an isomorphism.

(ii) The restriction of the specialisation map

ρ0
2 : SymbΓ(Dk,k(L))U

n
p

=λ −→ SymbΓ([Dk ⊗ V ∗k ](L))U
n
p

=λ

is an isomorphism.

Proof. The only remaining details to fill in are formalities regarding tensor products, which are

analogous to before and are omitted.

We require results about the Up operator, whilst the results above are for the Unp operator. We

work around this using:

Lemma 9.1.9. Suppose we have two L-vector spaces D and V , each equipped with an oper-

ator U acting on the right, and a U -equivariant surjection ρ : D → V such that, for some

positive integer n and λ ∈ L×, the restriction of ρ to the λn-eigenspaces of the Un operator

is an isomorphism. Then the restriction of ρ to the λ-eigenspaces of the U operator is an

isomorphism.

Proof. Suppose φ ∈ V is a U -eigensymbol with eigenvalue λ. Then φ is also a Un-eigensymbol

with eigenvalue λn, and accordingly there is a unique lift Ψ of φ to a Un-eigensymbol with
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eigenvalue λn. We claim that this is in fact a U -eigensymbol with eigenvalue λ. Indeed, by

U -equivariance we have

ρ(Ψ|U) = ρ(Ψ)|U = φ|U = λφ,

so that Ψ|U is a lift of λφ. But clearly λΨ is also a lift of λφ. Now as λΨ and λφ are both

Un-eigensymbols with eigenvalue λn, it follows that λΨ is the unique eigenlift of λφ under ρ;

but then it follows that Ψ|U = λΨ, as required. The lemma follows easily.

This then gives:

Theorem 9.1.10. (i) Let K, p, p, n, Γ and L be as in Lemma 9.1.8. Take λ1, λ2 ∈ L∗ with

v(λ1), v(λ2) < k + 1. Then the restriction of the specialisation map

ρ0 : SymbΓ(Dk,k(L))U
n
p =λn1 ,U

n
p

=λn2 −→ SymbΓ(Vk,k(L)∗)U
n
p =λn1 ,U

n
p

=λn2

(where the superscript denotes the simultaneous λn1 -eigenspace of Unp and λn2 -eigenspace

of Un
p
) is an isomorphism.

(ii) In the set up of part (i), the restriction of the specialisation map

ρ0 : SymbΩ1(n)(Dk,k(L))Up=λ1,Up=λ2 −→ SymbΩ1(n)(Vk,k(L)∗)Up=λ1,Up=λ2

is an isomorphism.

Proof. (i) Take a simultaneous Unp - and Unp -eigensymbol φ0, with eigenvalues λn1 , λn2 respec-

tively. Then Lemma 9.1.8(i) says that we can lift φ0 uniquely to some

ϕ0 ∈ SymbΓ([Dk ⊗ V ∗k ](L))U
n
p =λn1 .

We claim that ϕ0 is a Un
p
-eigensymbol with eigenvalue λn2 . Indeed, consider the action of

the operator λ−n2 Un
p
. When applied to ϕ0, the result is a Unp -eigensymbol with eigenvalue

λn1 , since (
ϕ0
∣∣∣∣λ−n2 Unp

) ∣∣∣∣Unp =
(
ϕ0
∣∣∣∣Unp ) ∣∣∣∣λ−n2 Unp

= λn1ϕ
0
∣∣∣∣λ−n2 Unp ,

as Unp and Un
p
commute. Then by the Σ0(p)2-equivariance of ρ0

1 we have

ρ0
1

(
ϕ0
∣∣∣∣λ−n2 Unp

)
= ρ0

1(ϕ0)
∣∣∣∣λ−n2 Unp

= φ0
∣∣∣∣λ−n2 Unp = φ0,
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since φ0 is a Un
p
-eigensymbol with eigenvalue λn2 . But then by uniqueness, we must have

ϕ0
∣∣∣∣λ−n2 Unp = ϕ0,

that is, ϕ0 is a Un
p
-eigensymbol with eigenvalue λn2 , as required. Now we can use Lemma

9.1.8(ii) to lift ϕ0 to some

φ ∈ SymbΓ(Dk,k(L))U
n
p

=λn2 .

By an identical argument to that above, φ is a Unp -eigensymbol with eigenvalue λn1 , and

since by construction ρ0(φ) = φ0, this is the result.

(ii) From part (i), it is easy to see that we have an isomorphism

ρ0 : SymbΩ1(n)(Dk,k(L))U
n
p =λn1 ,U

n
p

=λn2 −→ SymbΩ1(n)(Vk,k(L)∗)U
n
p =λn1 ,U

n
p

=λn2 .

The result then follows directly from Lemma 9.1.9, since there are well-defined Up and

Up operators on each of the spaces, and ρ0 is equivariant with respect to these operators.

9.2. The action of Σ0(p)2 and locally analytic distributions

The following results are proved in an almost identical manner to those of Section 8.3.2.

Lemma 9.2.1. Let p split as pp in K, with pn = (β) principal, and recall the definition of the

embedding σ in equation (7.2).

(i) Let g ∈ Ak,`[L, r, s], and a1, a2 ∈ OL. Then

[σ(γ)] ·(k,`) g, γ =

1 ai

0 βm

 ,

naturally extends to B(Op, rp
m, s) and thus gives an element of Ak,`[L, rpm, s].

(ii) Let µ ∈ Dk,`[L, r, s], and γi as above for i = 1, 2. Then µ|(k,`)[σ(γ)] naturally gives an

element of the smaller space Dk,`[L, rp−m, s].

We also have an entirely analogous result for the Up operator. Combining the two then gives

the following:

Proposition 9.2.2. Suppose that Ψ ∈ SymbΓ(Dk,k(L)) is simultaneously a Unp - and Un
p
-

eigensymbol with non-zero eigenvalues. Then Ψ is an element of SymbΓ(Dk,k(L)).
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Corollary 9.2.3. Let K/Q be an imaginary quadratic field, p a rational prime that splits as

pp in K, and L/Qp the finite extension defined in Notation 7.2.1. Let Ω1(n) be as defined in

Definition 2.3.

Take λ1, λ2 ∈ L∗ with v(λ1), v(λ2) < k + 1. Then the restriction of the specialisation map

ρ0 : SymbΩ1(n)(Dk,k(L))Up=λ1,Up=λ2 −→ SymbΩ1(n)(Vk,k(L)∗)Up=λ1,Up=λ2

is an isomorphism.

9.3. Admissibility for p split

In this new setting, we need a new definition of admissibility - namely one that encodes the

slope at both p and p.

Definition 9.3.1. Let µ ∈ Dk,k(L) be a locally analytic distribution. We say µ is (h1, h2)-

admissible if

||µ||r,s = O(r−h1)

uniformly in s as r → 0+, and

||µ||r,s = O(s−h2)

uniformly in r as s→ 0+.

Proposition 9.3.2. Suppose p splits in K as pp, with pn = (β) principal, and suppose that

Ψ ∈ SymbΓ(Dk,k(L)) is a Unp -eigensymbol with eigenvalue λn1 and a Un
p
-eigensymbol with eigen-

value λn2 , with slopes hi = v(λi). Then, for every D ∈ ∆0, the distribution Ψ(D) is (h1, h2)-

admissible.

Proof. For any r and s and a positive integer n, we have

||Ψ(D)|| r
pmn ,s

= |λ1|−mn
∣∣∣∣∣∣∣∣
(

Ψ
∣∣∣∣
(k,`)

Umnp

)
(D)

∣∣∣∣∣∣∣∣
r

pmn ,s

≤ |λ1|−mn max
[a]∈OK/pmn

∣∣∣∣∣∣∣∣Ψ
1 a

0 βmn

D

∣∣∣∣
k,`

σ

1 a

0 βmn

 ∣∣∣∣∣∣∣∣
r

pmn ,s

,

where σ is the embedding OK ↪→ OL ×OL,

≤ |λ1|−mn max
[a]∈OK/pmn

∣∣∣∣∣∣∣∣Φ
1 a

0 βmn

D

∣∣∣∣∣∣∣∣
r,s

≤ |λ1|−mn||Φ||r,s,
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the norm defined in Definition-Proposition 8.3.12. Again, here the second to last inequality

holds since we have, for γ =
( 1 a

0 βmn
)
and for any µ ∈ Dk,`[L, r, s],∣∣∣∣∣∣∣∣µ∣∣∣∣
k,`

[σ(γ)]
∣∣∣∣∣∣∣∣

r
pmn ,s

≤ ||µ||r,s.

An identical argument using Up shows that

||Φ(D)||r, s
pmn
≤ |λ2|mn||Φ||r,s,

and combining the two inequalities gives the result.

Remark: We again summarise the results of this section, noting the similarity to Remark

8.3.14. If we take an eigensymbol φ associated to a Bianchi cuspidal eigenform of small slopes

h1 and h2 at p and p respectively, then we can lift it to some overconvergent eigensymbol Ψ

using the control theorem, and the components of the distribution Ψ({0} − {∞}) are (h1, h2)-

admissible locally analytic distributions.
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Chapter 10

The p-adic L-function

Let Φ be a small slope Bianchi modular form. In previous chapters, we have associated to Φ

a canonical overconvergent modular symbol Ψ = (Ψ1, ...,Ψh) using the control theorem. In this

chapter, the last of Part II, we show that the distributions Ψi({0}−{∞}) can be combined into

a ray class distribution µΦ that interpolates critical L-values of Φ, and define it to be the p-adic

L-function of Φ.

10.1. Evaluating at {0} − {∞}

Consider the rational case. In particular, let f be a small slope cuspidal eigenform of p-

divisible level, with associated classical modular symbol φf and with overconvergent lift Ψf .

Then Ψf ({0} − {∞}) is a distribution on Zp, and the restriction of this distribution to Z×p is

the p-adic L-function of f . We want to emulate this result in the Bianchi case. The analogue

of Zp will be OK ⊗Z Zp, and the analogue of Z×p will be the ray class group ClK(p∞).

Notation: To ease notation, we write OK,p ..= OK ⊗Z Zp.

We start by defining some fundamental locally analytic functions on OK,p. Recall that we fixed

representatives I1, ..., Ih for the class group that are coprime to our level n (and hence to (p)).

Let f be an ideal of OK with f|(p∞), and for each b (mod f), take an element db ∈ OK such that

db ∈ I1, ..., Ih and db ≡ b (mod f) using the Chinese Remainder Theorem. Then for integers

q, r ≥ 0 define

P q,rb,f (z) ..= zqzr1b (mod f),

a locally polynomial function on OK,p, where 1b (mod f) is the indicator function for the minimal

open subset of O×K,p containing the image of b+ f ⊂ O×K under the canonical embedding of O×K
into O×K,p. One should see such an open set as the analogue of the set b + pjZp ⊂ Zp in the

rational case.
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We define an operator Uf as follows:

Uf
..=
∏
pn||f

Unp .

In this chapter, we will also need to work with the Uf operator. Since f is not necessarily

principal, to facilitate an explicit description of this operator, we need some extra notation. To

this end let ji ∈ {1, ..., h} be the unique integer such that [fIi] = [Iji ] in the class group, and

choose αi ∈ K× such that we have an equality

fIi = (αi)Iji

of ideals of K. Then from Chapter 7.3.2, we have:

Lemma 10.1.1. Let (Ψ1, ...,Ψh) ∈ SymbΩ1(n)(Dk,k(L)) be an overconvergent modular symbol.

We can explicitly describe the Uf operator on this symbol as

(Ψ1, ...,Ψh)
∣∣∣∣Uf =

 ∑
b (mod f)

Ψj1

∣∣∣∣
1 db

0 α1

 , ...,
∑

b (mod f)

Ψjh

∣∣∣∣
1 db

0 αh

 .

Definition 10.1.2. Let (φ1, ..., φh) be a classical Bianchi eigensymbol (resp. Φ a classical

Bianchi eigenform), with Up eigenvalue(s) ap for p|p. We can canonically see ap as living in Qp
under our fixed embedding Q ↪→ Qp, and thus it is meaningful to take its p-adic valuation. We

say that (φ1, ..., φh) (resp. Φ) has small slope if v(ap) < (k + 1)/ep for all p|p, where ep is the

ramification index of p in K. Note that this is precisely the condition that allows us to lift φ

using one of the control theorems above. We say that the slope is (v(ap))p|p.

Take some small slope classical Bianchi eigensymbol (φ1, ..., φj) ∈ SymbΩ1(n)(V ∗k,k(L)) with

Uf-eigenvalue λf, and lift it to an overconvergent eigensymbol (Ψ1, ...,Ψh) using the control

theorem. We now describe the value of (Ψ1, ...,Ψh)({0}−{∞}) at the fundamental polynomials

defined above. Indeed, we have

(Ψ1, ..,Ψh)({0} − {∞})(P q,rb,f ) = λ−1
f [(Ψ1, ...,Ψh)|Uf]({0} − {∞})(zqzr1b (mod f))

= λ−1
f

 ∑
b (mod f)

Ψj1

∣∣∣∣
1 db

0 α1

 , ...,
∑

b (mod f)

Ψjh

∣∣∣∣
1 db

0 αh

 {0} − {∞}
= λ−1

f

(
Ψji ({db/αi} − {∞}) [(αiz + db)q(αiz + db)r]

)h
i=1

. (10.1)
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Note here that the sum for Uf is ‘absorbed’ by the indicator function; indeed, we have

1 db

0 σ

 ,

1 ∂

0 σ

 · (zqzr1b (mod f)
)

(x, y) = zqzr1b (mod f)(∂ + σx, ∂ + σy)

= 0 unless ∂ ≡ b (mod f).

Suppose now that for d ∈ K and α ∈ K× we set

φ({d/α} − {∞}) =
k∑

i,j=0
ci,j

(
d

α

)(
Y − d

α
X
)k−i

X i
(
Y − d

α
X
)k−j

X j , (10.2)

where X iYk−iX jYk−j is the basis element of V ∗k,k(L) such that

X iYk−iX jYk−j(XIY k−IX
J
Y
k−J) = δiIδjJ .

Note that this is chosen so that under the change of basis for Vk,k(L) defined by

XiY k−iX
j
Y
k−j 7−→ (αX + dY )iY k−i(αX + dY )jY k−j ,

the corresponding change of dual basis is given by

X iYk−iX jYk−j 7−→ X i(αY − dX )k−iX j(αY − dX )k−j .

Since Ψ is a lift of φ, for 0 ≤ q, r ≤ k, we can substitute equation (10.2) into (10.1), using the

obvious dictionary between the two spaces Dk,k(L) and V ∗k,k(L). We find that:

Proposition 10.1.3. We can explicitly describe the value of the distribution Ψi at a funda-

mental polynomial as

Ψi({0} − {∞})(P q,rb,f ) = λ−1
f αqiαi

rcjiq,r

(
db
αi

)
= λ−1

f ψ(ti)−1ψ(tji)ψf(db)−1ψf

(
db
αi

)
cjiq,r

(
db
αi

)
.

Here we’ve used that

αqiαi
r = ψ∞(αi) = ψ(ti)−1ψ(tji)ψf(αi)−1.

Note that

α−1
i ∈ f−1I−1

i Iji ⊂ f−1I−1
i .

Accordingly, since db ∈ Ii for each i, we have db/αi ∈ f−1. In fact, we have:
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Proposition 10.1.4. For each i, the set

{db/αi : b ∈ (OK/f)×}

forms a full set of coset representatives for the set {[a] ∈ f−1/OK : (a)f coprime to f}.

Proof. We have (db/αi)f = (db)I−1
i Iji , which is coprime to f since db is a unit (mod f). Now

suppose b 6= b′ (mod f). If db/αi and db′/αi gave the same element of f−1/OK , then db − db′ ∈

(αi) = fI−1
i Iji . Since db and db′ are integral and f, Ii and Iji are coprime, we must have

db − db′ ∈ fIji ⊂ f, so that b ∼= b′ (mod f), a contradiction. Since both sets have the same size,

we are done.

Thus as b varies over (OK/f)×, the values cjiq,r(db/αi) are precisely what we need to access the

L-values, since they occur in an integral formula for the critical values of the L-function.

10.2. Ray class groups

The p-adic L-function of a modular form should be a function on characters in a suitable sense.

To make this more precise, we recall the theory of ray class groups.

Definition 10.2.1. LetK be a number field with ring of integersOK , and take an ideal f ⊂ OK .

The ray class group of K modulo f, denoted ClK(f), is the group If of fractional ideals of K

that are coprime to f modulo the group K1
f of principal ideals that have a generator congruent

to 1 mod f. We can also define the ray class group adelically; if we let U(f) = 1 + fÔF , then

ClK(f) ∼= K×\A×K/U(f)C×.

The ray class group fits into a useful exact sequence; we have

0 −→ O×K (mod f) −→ (OK/f)×
β

−−−−−→ ClK(f) −→ ClK −→ 0,

where the map β takes an element α+ f to the class (α) +K1
f and the surjection is the natural

quotient map. Now let f = (pn). Piecing this together as we let n vary, taking the inverse limit

of this family of exact sequences, we obtain an exact sequence

0 −→ O×K −→ (OK ⊗Z Zp)× −→ ClK(p∞)
δ

−−−−−→ ClK −→ 0,

where here

ClK(p∞) ..= lim←−
n

Cl(K, pn)

is defined to be the inverse limit. (Note here that although taking inverse limits is not in general

a right-exact functor, here we have right-exactness of the limit since the final term is constant).
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10.3. Explicit Hecke characters on ClK(p∞)

Let ϕ be a Hecke character for K of conductor f|(p∞) and infinity type (q, r), and recall that

in Chapter 1.3.2 we associated to ϕ a locally analytic function ϕp−fin on ClK(p∞). In this

situation, we can give a simple description of ϕp−fin in terms of the fundamental polynomials

defined above.

First, we describe what ClK(p∞) actually looks like. By choosing a set of representatives

for the class group, we are choosing a section of the map ClK(p∞) → ClK , and thus, going

back to the exact sequence above, we can identify ClK(p∞) with a disjoint union of h copies

of O×K,p/O
×
K , indexed by our class group representatives. On each of the h components, the

character ϕp−fin gives a locally polynomial function on O×K,p; from the definition, on the ith

component this is given by

Pi(z) = ϕ(ti)
∑

b∈(OK/f)×
ϕf(b)P q,rb,f (z),

where ti is an idele representing Ii and P q,rb,f is the fundamental polynomial considered above.

Accordingly, we have an identity

ϕp−fin =
h∑
i=1

Pi1i,

where 1i is the indicator function for the ith component of ClK(p∞).

10.4. Constructing the p-adic L-function

10.4.1. Construction

Let Φ be a small slope cuspidal Bianchi eigenform with associated (canonical) overconvergent

modular symbol Ψ = (Ψ1, ...,Ψh). Define, for each i, a distribution

µi ..= Ψi({0} − {∞})
∣∣∣∣
O×
K,p

.

Then we know that, for f|(p∞) and when b is a unit (mod f), we have

µi

(
P q,rb,f (z)

)
= λfϕ(ti)ϕ(tji)ϕf(db)−1ϕf(db/αi)cjiq,r(db/αi),

where λf is the Uf-eigenvalue of Φ. The appearance of terms of form cjiq,r(db/αi) leads us, in

the spirit of equation (6.4), to define a distribution

µp ..=
h∑
i=1

µi1i

on ClK(p∞), for 1i as above.
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10.4.2. Interpolation of L-values

Now take a Hecke character ϕ of infinity type (q, r) – where 0 ≤ q, r ≤ k – and conductor

f|(p∞). We make the additional stipulation that f is divisible by all the primes above p. Then

we have

µp(ϕp−fin) = µp

(
h∑
i=1

Pi(z)1i

)
=

h∑
i=1

∑
b∈(OK/f)×

ϕ(ti)ϕf(db)µi
(
P q,rb,f (z)

)

= λ−1
f

h∑
i=1

ϕ(tji)
∑

b∈(OK/f)×
ϕf

(
db
αi

)
cjiq,r

(
db
αi

)

= (−1)k+q+r
[
ϕ(xf)Dwτ(ϕ−1)

2ϕf(xf)λf

]
Λ(Φ, ϕ),

using equation (6.4). In this equation, recall that ϕf =
∏

p|f ϕp, the idele xf is as defined in

Section 1.2.3, λf is the Uf-eigenvalue of Φ, −D is the discriminant of K, w is the size of the unit

group of K and τ(ϕ−1) is a Gauss sum as defined in Section 1.3.1. This is the interpolation

property that a p-adic L-function should satisfy.

10.4.3. Admissibility

We earlier gave a definition of admissibility for locally analytic distributions on OK ⊗Z Zp. We

need an appropriate definition for locally analytic distributions on ClK(p∞). This is covered

in detail in [Loe14], where the condition is defined very similarly. Indeed, one can exhibit a

family of norms on the space of locally analytic distributions on ClK(p∞), and then say that a

distribution is admissible if it satisfies a suitable growth condition with respect to these norms.

One such way to do so is as follows: let f : ClK(p∞) → Cp be any continuous function. To f

one can associate a collection of h functions f1, ..., fh : OK,p → Cp, all supported on O×K,p and

invariant under multiplication by O×K (see Chapter 14.1.2). Then one says f is locally analytic

of radius (r, s) if each fi is on OK,p. As in the case of functions on OK,p, there is a natural

norm on the space of locally analytic functions of radius (r, s), and the space of locally analytic

functions on ClK(p∞) is the union of these spaces as r, s→ 0. For each pair (r, s), one obtains

an operator norm on the space of locally analytic distributions by

||µ||r,s = sup
f

|µ(f)|p
|f |r,s

,

where the supremum is taken over all locally analytic functions of radius (r, s). The admissi-

bility conditions are then the same as before.

We see from this definition that if each of the distributions Ψi({0}−{∞}) are (hp)p|p-admissible

on OK,p, then the distribution µp is also (hp)p|p-admissible on ClK(p∞). This admissibility

condition means that the distribution is uniquely determined by its values on locally polyno-

mial functions of sufficiently small degree, and in particular, that when hp < k + 1, that µp is

121



The p-adic L-function

uniquely determined by the interpolation condition above. This uniqueness property is proved

in [Loe14] in the case where each hp < 1, which he assumes merely for simplicity. For a more

detailed example of the general situation in the one variable case, see [Col10].

10.4.4. Summary of results

The interpolation result above, combined with the admissibility conditions of previous sections,

mean we have now proved:

Theorem 10.4.1. Let K/Q be an imaginary quadratic field of class number h and discriminant

−D, and let p be a rational prime. Let Φ be a cuspidal Bianchi eigenform of weight (k, k) and

level Ω1(n), where (p)|n, with Up-eigenvalues ap, where v(ap) < (k + 1)/ep for all p|p. Then

there exists a locally analytic distribution µp on Cl(K, p∞) such that for any Hecke character

ϕ of K of conductor f|(p∞) and infinity type 0 ≤ (q, r) ≤ (k, k), with f divisible by each prime

above p, we have

µp(ϕp−fin) =
[

(−1)k+q+r2ϕf(xf)λf
ϕ(xf)Dwτ(ϕ−1)

]−1

Λ(Φ, ϕ),

for ϕp−fin as defined in Chapter 1.3.2. The distribution µp is (hp)p|p-admissible in the sense of

Definitions 8.3.10 and 9.3.1, where hp = vp(ap), and hence is unique.

We call µp the p-adic L-function of Φ.

Proof. The eigenform Φ corresponds to a collection of h cusp forms F1, ...,Fh on H3; associate

to each F i a classical Bianchi eigensymbol φFi with coefficients in a p-adic field L, and lift each

to its corresponding unique overconvergent Bianchi eigensymbol Ψi. Define

µi ..= Ψi({0} − {∞})
∣∣∣∣
O×
K,p

,

and define a locally analytic distribution µp on Cl(K, p∞) by µp ..=
∑h
i=1 µi1i. Then by the

work above, µp satisfies the interpolation and admissibility properties. These determine the

distribution uniquely; see, for example, [Loe14] for this result in the weight (0, 0) case.

Remark: As an example of where this theorem applies, suppose p splits in K and let E/K

be a modular elliptic curve with supersingular reduction at both primes above p. Then to E

we can associate a modular symbol which will have slope 1/2 at each of the primes above p.

Accordingly, our construction will give the p-adic L-function of E.
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Part III

General Number Fields

(Joint with Daniel Barrera Salazar)



In this section, which contains joint work with Daniel Barrera Salazar (Université de Montréal),

we construct p-adic L-functions for small slope automorphic forms over a completely general

number field, generalising the results of Part II of this thesis.

Whilst the overall strategy – using overconvergent modular symbols – is morally very simi-

lar to that used in Part II, the theory of modular symbols in the general setting does not lend

itself to the same level of explicit study. In particular, the methods and techniques used in this

section of the text are very different from those used in Part II. In particular, modular sym-

bols over general number fields are elements of higher degree compactly supported cohomology

spaces, and accordingly their study is considerably more abstract than over imaginary quadratic

fields. As a consequence, the proofs in this section are not constructive.

We start by working classically; in particular, via the Eichler–Shimura isomorphism, we can

associate a modular symbol to an automorphic form. Through Dimitrov’s theory of automorphic

cycles, we link this modular symbol to critical values of the L-function of the automorphic form.

After this, we prove a control theorem in the general setting by using BGG resolutions. In the

final section, we show how to use automorphic cycles to canonically attach a distribution to

an overconvergent modular symbol, and then show that this distribution interpolates the critical

L-values of the automorphic form. We define the p-adic L-function of the automorphic form

to be this distribution.

The results of this section appear in the paper “P -adic L-functions for GL2” (see [BSW16]).



Chapter 11

Classical Modular Symbols

In this chapter, we discuss how to generalise the theory of classical modular symbols to the set-

ting of completely general number fields. In particular, we introduce a cohomological approach.

We give the general form of the Eichler-Shimura isomorphism, which allows us to attach a mod-

ular symbol to an automorphic form. We end by describing a method for attaching algebraic

and p-adic modular symbols to an automorphic form using the theory of periods.

11.1. Generalising SymbΓ to number fields

In the work of Pollack and Stevens over Q in [PS11], and over imaginary quadratic fields in

Part II of this thesis, we were able to describe modular symbols as functions on paths between

cusps in a natural and explicit manner. When we pass to more general number fields, this is

no longer an approach that works. In this section, we discuss an equivalent formulation of the

theory in the rational and imaginary quadratic setting that generalises easily to other number

fields.

The key is to think of modular symbols as cohomology classes rather than as functions on

cusps. We have the following result of Ash–Stevens:

Theorem 11.1.1. Let Γ ⊂ SL2(Z) be a congruence subgroup. There is a Hecke-equivariant

isomorphism

SymbΓ(Vk(C)∗) ∼= H1
c (Γ\H,L(Vk(C)∗)) ,

where H•c denotes the compactly supported cohomology and L(Vk(C)∗) is the local system on

Γ\H corresponding to the Γ-module Vk(C)∗.

Proof. See [AS86].

Similarly, for an imaginary quadratic field K and a discrete subgroup Γ ⊂ SL2(K), we have a

Hecke-equivariant isomorphism

SymbΓ(Vk,k(C)∗) ∼= H1
c(Γ\H3,L(Vk,k(C)∗)).
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Recall that in the imaginary quadratic setting, we considered modular symbols to live most

naturally in the space

SymbΩ1(n)(Vk,k(C)∗) ..=
h⊕
i=1

SymbΓi1(n)(Vk,k(C)∗).

There is a cohomological analogue here, too; namely

H1
c (Y1(n),L(Vk,k(C)∗)) ∼=

h⊕
i=1

H1
c
(
Γi1(n)\H3,L(Vk,k(C)∗)

)
,

where Y1(n) is the locally symmetric space of level Ω1(n) (see Definition 5.4.6).

Now let F be a number field of degree d = r1 + 2r2, and recall that we defined q ..= r2 + r2

to be the number of infinite places of F (noting that q = 1 if and only if F is Q or imaginary

quadratic). Recall Theorem 3.2.2, in which we attached a harmonic differential q-form to an

automorphic form over F . This suggests that the ‘correct’ spaces to consider in the general

setting are the cohomology groups Hq
c(Y1(n),L(V )), where Y1(n) is the analogous locally sym-

metric space of level Ω1(n) and for an appropriate choice of V .

In the rest of this chapter, we will define classical modular symbols over general number fields

by making this more precise.

11.2. Set-up and notation

For convenience, we recap some of the major notation required in this section of the thesis. Let

F , r1, r2 and q be as above. Let n ⊂ OF be an ideal, and recall that we defined

Ω1(n) ..=


a b

c d

 ∈ GL2

(
ÔF
)

: c ∈ nÔF , d ≡ 1 (mod n)

 .

Recall also that we defined K+
∞

..= SO2(R)r1 × SU2(C)r2 and Z∞ ..= Z(GL2(C)). We define

the locally symmetric space of level Ω1(n) to be

Y1(n) ..= GL2(F )\GL2(AF )/Ω1(n)K+
∞Z∞.

This plays the role of the modular curve in the general setting.

For a weight λ = (k,v) ∈ Z[Σ]2 and a ring R, define

Vk(R) ..=
⊗
v∈Σ

Vkv (R),
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equipped with a left action of GL2(R)d given on each component by

a b

c d

 · P (X,Y ) = P (dX + bY, cX + aY ).

We write Vλ(R) for the space Vk(R) equipped with this action twisted by detv.

11.3. Local systems

We’ll need to study the interplay between complex and p-adic coefficients. We give two ways

of defining local systems on Y1(n).

Definition 11.3.1. For all modulesM below, we suppose that the centre of GL2(F )∩Ω1(n) ∼=

{ε ∈ O×F : ε ≡ 1 (mod n)} acts trivially on M . If this were not the case, the following local

systems would not be well-defined.

(i) Suppose M is a right GL2(F )-module. Then define L1(M) to be the locally constant

sheaf on Y1(n) given by the fibres of the projection

GL2(F )\(GL2(AF )×M)/Ω1(n)K+
∞Z∞ −→ Y1(n),

where the action is given by

γ(g,m)ukz = (γgukz,m|γ−1).

(ii) Suppose M is a right Ω1(n)-module. Then define L2(M) to be the locally constant sheaf

on Y1(n) given by the fibres of the projection

GL2(F )\(GL2(AF )×M)/Ω1(n)K+
∞Z∞ −→ Y1(n),

where the action is given by

γ(g,m)ukz = (γgukz,m|u).

Remarks 11.3.2: (i) Note that ifM is a right GL2(F⊗QR)-module or a right GL2(F⊗QQp)-

module, then M can be given a GL2(F )-module structure by restriction in the natural

way, giving a sheaf L1(M) as in (i) above.

(ii) Similarly, for any right GL2(F ⊗Q Qp)-module, we have an action of Ω1(n) on M via the

projection Pr : GL2(AF )→ GL2(F ⊗Q Qp), and we get a sheaf L2(M) as above. In this

case, the sheaves L1(M) and L2(M) are naturally isomorphic via the map

(g,m) 7−→ (g,m|gp)
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of local systems, where gp is the image of g under the map Pr above.

(iii) Note that, for a number field K containing the normal closure of F , the space Vλ(K)∗ is

naturally a GL2(F )-module via the embedding of GL2(F ) in GL2(F⊗QR), whilst if L/Qp
is a finite extension containing incp(K), then Vλ(L)∗ is naturally a GL2(F⊗QQp)-module.

So our above comments apply and we get sheaves attached to Vλ(A)∗ for suitable A.

It will usually be clear which sheaf we must take. However, when the coefficient system is

Vλ(L)∗ (for a sufficiently large finite extension L/Qp) we can associate two different (though

isomorphic) local systems. As we’ll later (in Lemma 14.2.1) need to keep track of precisely what

this isomorphism does to cohomology elements, throughout the text we’ll retain the subscript

for clarity.

11.4. Operators on cohomology groups

11.4.1. Hecke operators

Recall q ..= r1 + r2. We can define actions of the Hecke operators on the cohomology groups

Hq
cusp(Y1(n),Li(Vλ(A)∗)). This is described fully in [Hid88], Chapter 7, pages 346–347, and

[Dim05], Section 1.14, page 518. We give a very brief description of the definition, following

Dimitrov.

For each prime ideal p of OF , we have a Hecke operator Tp induced by the double coset

[Ω1(n)apΩ1(n)], where ap ∈ GL2(AF ) is defined by

(ap)v =


( 1 0

0 πp

)
: v = p

( 1 0
0 1 ) : otherwise.

When p|n we write Up in place of Tp in the usual manner.

11.4.2. Action of the Weyl group

We also have an action of the Weyl group {±1}Σ(R) on the cohomology, again described by

Dimitrov. Note that via strong approximation, there is a decomposition

Y1(n) =
h⊔
i=1

Y i1 (n), (11.1)

where

Y i1 (n) = GL2(F )\GL2(F )giΩ1(n)GL+
2 (F∞)/Ω1(n)K+

∞Z
+
∞

= Γi1(n)\HF ,
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where Γi1(n) is as defined in equations (2.11) andHF = HΣ(R)×HΣ(C)
3 . Now, let ι = (ιv)v∈Σ(R) ∈

{±1}Σ(R). Then ι acts on HF by ι · z = [(ιv · zv)v∈Σ(R), (zv)v∈Σ(C)], where for v ∈ Σ(R) we

define

ιv · zv ..=

 zv : ιv = 1

−zv : ιv = −1.

This action induces an action of {±1}Σ(R) on Y i1 (n) for each i and hence on Y1(n). The action

of {±1}Σ(R) on Hq
cusp(Y1(n),L1(Vλ(C)∗)) is then induced by the map of local systems

ι · (g, P ) 7−→ (ι · g, P ).

We write this action on the right by φ 7→ φ|ι. The actions of the Hecke operators and the Weyl

group commute.

11.5. The Eichler–Shimura isomorphism

The major step in the construction of a modular symbol attached to an automorphic form is

the Eichler–Shimura isomorphism. This is a Hecke-equivariant isomorphism between spaces of

automorphic forms and the cuspidal cohomology of the associated locally symmetric space.

Definition 11.5.1. Let X1(n) denote the Borel-Serre compactification of Y1(n), and let ∂X1(n)

denote its boundary. Then for a sheafM on Y1(n), the cuspidal cohomology group Hi
cusp(Y1(n),M)

is defined to be the kernel of the natural restriction map

resi : Hi(Y1(n),M) ∼= Hi
(
X1(n),M

)
−→ Hi

(
∂X1(n),M

)
,

where M is a suitable extension of M and the first isomorphism is induced by the inclusion

Y1(n) ↪→ X1(n) (which is a homotopy equivalence). See [Sen14] for more details.

The theorem is then:

Theorem 11.5.2 (Eichler–Shimura). There is a Hecke-equivariant injection

Sλ(Ω1(n)) ↪→ Hq
cusp (Y1(n),L1(Vλ(C)∗)) ,

where Sλ(Ω1(n)) is the space of cuspidal automorphic forms defined in Definition 3.5.2.

Proof. An explicit recipe is given in [Hid94].

Remarks: (i) In fact, one can define automorphic forms of type J for a subset J ⊂ Σ(R),

and then if we replace the left-hand side with ⊕J⊂Σ(R)Sλ,J(Ω1(n)), this becomes an iso-

morphism. In general, an automorphic form of type J satisfies a holomorphicity condition
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at the places in J and an anti-holomorphicity condition at the remaining real places. In

the case where F = Q, the case where J = Σ(R) defines the usual theory of modular

forms, whilst if J = ∅, we get the theory of anti-holomorphic modular forms. We stay

exclusively with the case J = Σ(R) for simplicity, but the results should carry over to

more general J with only minor modification.

(ii) In this more general case, there is also a natural action of the Weyl group on the direct

sum ⊕J⊂Σ(R)Sλ,J(Ω1(n)), and it permutes the factors in a natural way. The isomorphism

is also equivariant with respect to this action.

(iii) The cuspidal cohomology injects into the compactly supported cohomology. We will use

this in the sequel to define modular symbols attached to automorphic forms.

Under the decomposition of equation (11.1), we see that for sufficiently large extensions A of

Q or Qp, there is a (non-canonical) decomposition

Hq
cusp (Y1(n),L1(Vλ(A)∗)) ∼=

h⊕
i=1

Hq
cusp

(
Y i1 (n),L1(Vλ(A)∗)

)
. (11.2)

11.6. Modular symbols

Let L/Qp be a finite extension.

Definition 11.6.1. The space of modular symbols of weight λ and level Ω1(n) with values in

L is the compactly supported cohomology space Hq
c(Y1(n),L2(Vλ(L)∗)).

Let Φ ∈ Sλ(Ω1(n)) be a Hecke eigenform. Then via Theorem 11.5.2 we can attach to Φ an

element

φC ∈ Hq
cusp (Y1(n),L1(Vλ(C)∗)) .

We want to pass from a cohomology class with complex coefficients to one with p-adic coeffi-

cients. To do this, we use the theory of periods described earlier in Section 4.4.

Definition 11.6.2. Let ε be a character of the Weyl group {±1}Σ(R). Then define

Hq
cusp (Y1(n),L1(Vλ(C)∗)) [ε] ⊂ Hq

cusp (Y1(n),L1(Vλ(C)∗))

to be the subspace on which {±1}Σ(R) acts by ε.

Proposition 11.6.3. Let K be a number field containing the normal closure of F and the

Hecke eigenvalues of Φ, and let ε be as above. Let ΩεΦ be the period appearing in Theorem
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4.4.1. Define

φεC
..= 2−r1

∑
ι∈{±1}Σ(R)

ε(ι)φC|ι.

Then φεC ∈ Hq
cusp(Y1(n),L1(Vλ(C)∗))[ε], and

φεK
..= φεC/ΩεΦ ∈ Hq

cusp (Y1(n),L1(Vλ(K)∗)) [ε].

Proof. See [Hid94], Chapter 8.

Definition 11.6.4. Define

θK ..=
∑
ε

φεK ∈ Hq
cusp(Y1(n),L1(Vλ(K)∗)),

where the sum is over all possible characters of the Weyl group {±1}Σ(R).

Now let L/Qp be a finite extension containing incp(K) (for our fixed embedding incp : Q ↪→ Qp).

Then incp induces an inclusion

Hq
cusp (Y1(n),L1(Vλ(K)∗)) ↪−→ Hq

cusp (Y1(n),L1(Vλ(L)∗)) ∼= Hq
cusp(Y1(n),L2(Vλ(L)∗)). (11.3)

Finally, there is a canonical inclusion

Hq
cusp (Y1(n),L2(Vλ(L)∗)) ↪−→ Hq

c (Y1(n),L2(Vλ(L)∗)) . (11.4)

Definition 11.6.5. Let Φ be an eigenform of weight λ and level Ω1(n), and let L be as above.

The modular symbol attached to Φ with values in L is the image

θL ∈ Hq
c (Y1(n),L2(Vλ(L)∗))

of the symbol θK under the inclusion of equations (11.3) and (11.4).

Remark: To give some brief motivation for this definition, we’ll later define an evaluation map

Hq
c(Y1(n),L2(Vλ(L)∗)) → L corresponding to a critical character ϕ such that if ϕ corresponds

to the character ε1 of {±1}Σ(R), the image of φε2L gives the algebraic part of the critical L-value

at ϕ if ε1 = ε2 and vanishes otherwise. So by taking the sum, we allow ourselves to see all

critical values.
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Chapter 12

Automorphic Cycles and L-values

In this chapter, we use Dimitrov’s theory of automorphic cycles to give a link between the

modular symbol attached to an automorphic form Φ and critical values of its L-function. In the

process, we give an integral formula for such L-values. We start by working exclusively over C,

before showing that we can actually work over a sufficiently large finite extension of Q or Qp.

In particular, we link the p-adic modular symbol attached to Φ with the algebraic parts of its

critical L-values.

12.1. Automorphic cycles, evaluation maps and L-values

Let Φ be a cuspidal automorphic form over F . In this section, we give a connection between the

cohomology class φC associated to Φ via the Eichler-Shimura isomorphism and critical values of

its L-function. We do so via automorphic cycles. The cycles we define here are a generalisation

of the objects Dimitrov uses in [Dim13] in the totally real case. As a consequence of this section,

we also get an integral formula for the L-function of Φ, generalising the results of [Hid94],

Section 7, where such a formula is obtained for Hecke characters with trivial conductor.

12.1.1. Automorphic cycles

Let f be an integral ideal of F . We begin with some essential definitions:

Definition 12.1.1. Define F+
∞ ⊂ (F ⊗Q R)× to be the connected component of the identity in

the subgroup of infinite ideles, and let F 1
∞ be the subset defined by

F 1
∞

..= {x ∈ F+
∞ : |xv|v = 1 for all v|∞.}.

Definition 12.1.2. (i) Define an open compact subgroup of A×F,f by

U(f) ..= {x ∈ ÔF
×

: x ≡ 1 (mod f)},
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and the global equivalent

E(f) ..= {x ∈ O×F,+ : x ≡ 1 (mod f)} = U(f) ∩ F×.

(ii) We define the automorphic cycle of level f to be

Xf
..= F×\A×F /U(f)F 1

∞.

Proposition 12.1.3. There is a natural decomposition

Xf =
⊔

y∈Cl+
F

(f)

Xy.

There is a natural embedding

ηf : Xf ↪−→ Y1(n)

induced by

η : A×F ↪−→ GL2(AF )

x 7−→

x (xf−1)v|f
0 1

 ,

where (f−1)v|f is the idele defined in Definition 1.3.2. This map is shown to be well-defined in

Proposition 12.1.4 below.

Recall that we have a decomposition Y1(n) =
⊔h
i=1 Y

i
1 (n), where Y i1 (n) is as defined in equation

(11.1). In particular, Y i1 (n) can be described as {[g] ∈ Y1(n) : det(g) represents i in Cl+F }.

Proposition 12.1.4. The map η induces a well-defined map

ηf : Xf −→ Y1(n).

Moreover, the restriction of ηf to Xy has image in Y iy1 (n), where iy denotes the element of the

narrow class group given by the image of y under the natural projection Cl+F (f)→ Cl+F . Finally,

ηf is independent of the choice of uniformisers πv for v|f.
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Proof. Suppose γxur is a different representative of [x] ∈ Xf. Then

[ηf(γxur)] =

γxur (γxurf−1)v|f
0 1


=

γ 0

0 1

x (xf−1)v|f
0 1

u ((u− 1)f−1)v|f
0 1

r 0

0 1

 (12.1)

= [ηf(x)] ∈ Y1(n),

showing that the induced map is well-defined. To see that the restriction to Xy lands in Y iy1 (n),

note that det(ηf(x)) = x, so that if x represents y ∈ Cl+F (f), we see that ηf(x) represents

iy ∈ Cl+F , and in particular, ηf induces a map

{x ∈ A×F : [x] = y ∈ Cl+F (f)} −→ Y
iy
1 (n),

which then descends as claimed.

To see that ηf is independent of the choice of uniformisers, suppose that {$v : v|f} is a different

collection of uniformisers at the places dividing f, and write η′f for the corresponding map. Then

η′f(x)ηf(x)−1 =

1 (x($−vv(f)
v − π−vv(f)

v ))v|f
0 1

 ∈ Ω1(n),

so that ηf(x) and η′f(x) determine the same element of Y1(n).

Remark 12.1.5: Later, we will choose ay as follows. Choose {ai} to be representatives of Cl+F
as above, with (ai)f = (ai)∞ = 1. Now for each [j] ∈ (OF /f)×, choose αj ∈ O×F,+ such that

αj ≡ j (mod f), and define an idele bj by

(bj)v =

 α−1
j : v - f∞,

1 : v|f∞.

Then the set

{aij ..= aibj : i ∈ Cl+F , j ∈ (f−1/OF )×}

is a multiset of representatives of Cl+F (f), where each class is represented #Im(O×F,+ → (O/f)×)

times, via the exact sequence

O×F,+ −→ (OF /f)× −→ Cl+F (f) −→ Cl+F −→ 0.
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If aij represents the same element of Cl+F (f) as ay, then we denote

Xij
..= F×\F×aijU(f)F+

∞/F
1
∞ = Xy

and write ∆ij for the corresponding map. The benefit of this approach is that whilst we

do count representatives multiple times, in our later calculations we will be able to write

down Gauss sums more effectively, as we can isolate the components coming from (OF /f)×,

and means we can use general theory of Gauss sums as developed by Deligne. The authors

apologise for the slightly cumbersome work of carrying around both sets of notation; however,

the interplay between them should be apparent, and from now on we will use whichever of

the two approaches suits best in particular situations. This will typically be aij in situations

where we develop general theory for individual components (so as to do this in the greatest

generality), then using ay when we want to talk about these objects as a whole (indexed by

Cl+F (f)).

12.1.2. Evaluation maps

We now use these automorphic cycles to define evaluation maps

Ev : Hq
c (Y1(n),L1(Vλ(C)∗)) −→ C.

This will be done in several stages.

Pulling back to Xf

First, we pullback under the inclusion ηf : Xf ↪→ Y1(n). The corresponding sheaf Lf,1(Vλ(C)∗) ..=

η∗f L1(Vλ(C)∗) can be seen, via equation (12.1), to be given by the sections of the natural map

F×\(A×F × Vλ(C)∗)/U(f)F 1
∞ −→ Xf,

where the action is given by

f(x, P )ur =

fxur, P ∣∣∣∣
f−1 0

0 1

 .

Passing to individual components

We can explicitly write

Xy ..= F×\F×ayU(f)F+
∞/F

1
∞,
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for {ay : y ∈ Cl+F (f)} a (henceforth fixed) set of class group representatives. Note here that

there is an isomorphism

E(f)F 1
∞\F+

∞
∼−→ Xy, (12.2)

r 7−→ ayr.

Pulling back under this isomorphism composed with the inclusion Xy ⊂ Xf, we see that the

corresponding sheaf Lf,y,1 ..= τ∗ay
Lf,1(Vλ(C)∗) is given by the sections of

E(f)F 1
∞\(F+

∞ × Vλ(C)∗) −→ E(f)F 1
∞\F+

∞,

where now the action is by

es(r, P ) =

esr, P ∣∣∣∣
e−1 0

0 1

 .

Evaluating

Let j ∈ Z[Σ] be such that there is a Hecke character ϕ of conductor f and infinity type j + v.

Note that in this case, for all e ∈ E(f), we have ej+v = 1; indeed, ej+v = ϕ∞(e) = ϕf (e)−1 = 1,

since e ≡ 1 (mod f). Now let ρj denote the map

ρj : Vλ(C)∗ −→ C

given by evaluating at the polynomial Xk−jYj. Then ρj induces a map (ρj)∗ of local systems

on E(f)F 1
∞\F+

∞, as

P

∣∣∣∣
e−1 0

0 1

 (Xk−jYj) = (ej+v)−1P (Xk−jYj) = P (Xk−jYj).

We see that the sheaf (ρj)∗Lf,y,1(Vλ(C)∗) is the constant sheaf attached to C over E(f)F 1
∞\F+

∞.

But note that this space is a connected orientable real manifold of dimension q, and hence that

there is an isomorphism

Hq
c
(
E(f)F 1

∞\F+
∞,C

) ∼= C,

given by integration over E(f)F 1
∞\F+

∞.

Definition 12.1.6. Define

Evay
f,j,1 : Hq

c(Y1(n),L1(Vλ(C)∗)) −→ C
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to be the composition of the maps

Hq
c(Y1(n),L1(Vλ(C)∗))

η∗f
−−−−−→ Hq

c(Xf,Lf,1(Vλ(C)∗))
τ∗ay

−−−−−→ · · ·

Hq
c(E(f)F 1

∞\F+
∞,Lf,y,1(Vλ(C)∗))

(ρj)∗
−−−−−→ Hq

c(E(f)F 1
∞\F+

∞,C) ∼= C.

Remarks: (i) Note that this definition is not restricted to polynomials with coefficients

in C. Indeed, the evaluation maps are well-defined for cohomology with coefficients in a

number field or an extension of Qp. We will distinguish between the various cases by using

a subscript on the cohomology class (for example, φC is a complex modular symbol).

(ii) The subscript 1 in Evay
f,j,1 dictates that this is an evaluation map from the cohomology

with coefficients in L1(Vλ(C)∗). Later, we’ll define an evaluation map Evay
f,j,2.

12.1.3. An explicit description of φC

We now give an explicit description of the cohomology class φC attached to an automorphic

form Φ. We do this by utilising the isomorphism between Betti and de Rham cohomology at

the level of complex coefficients (see [Del79], Section 0.4), which allows us to describe this class

as a differential, as in [Hid94].

Let δij ..= τ∗aijη
∗
f φC. Then we can write

δij(z) =
∑

0≤j≤k

δj
ij(z)X

k−jYj

(as elements of the de Rham cohomology), where δj
ij ∈ Hq

c
(
E(f)F 1

∞\F+
∞,C

)
. Moreover, we see

that ∫
E(f)F 1

∞\F
+
∞

δj
ij = Evaijf,j,1(φC).

Finally, before giving δj
ij explicitly, we comment on the structure of E(f)F 1

∞\F+
∞. We can

parametrise this space as the quotient of Rq>0 by units, with one copy of R>0 coming from

each real embedding and one from each pair of complex embeddings. This is then isomorphic

to R>0 × (S1)q−1. The reader should think of this as being an analogue of the path {iy ∈ H :

y ∈ R>0} (as seen in the rational case when evaluating modular symbols at {0} − {∞}) in the

general setting.

Definition 12.1.7. (i) We parametrise E(f)F 1
∞\F+

∞ as E(f)\
{

y = (yv)v∈Σ(R)tΣ(C) : yv ∈ R>0
}
.

The use of y to mean this rather than a class group representative will be clear from con-

text.

(ii) If j ∈ Z[Σ], then we define j(Σ(R)) ..=
∑
v∈Σ(R) jv ∈ Z (and similarly for j(Σ(C))).

137



Automorphic cycles and L-values

Remark: We will use y interchangeably to mean an element of F+
∞ or F 1

∞\F+
∞, in the style

of Hida. This is for convenience purposes, since the Fourier expansion takes input from the

former, whilst the differential has values on the latter. There is, of course, a canonical quotient

map between the two, which corresponds to taking norms at complex places. We also use y

to mean a representative of E(f)F 1
∞\F+

∞, that is, an element of F 1
∞\F+

∞ representing a class of

this modulo E(f). The reader is urged not to get hooked up on the details of this notation!

Proposition 12.1.8. We can explicitly describe δj
ij as follows:

δj
ij(y) = c1yj+vΦn

aijy (f−1)v|f
0 1

 ∧
v∈Σ(C)

|yv|−1
C d|yv|C

∧
v∈Σ(R)

y−1
v dyv,

where:

• c1 ..= 2r2
∏
v∈Σ(C)(−1)kv+jvc+1

k∗v
nv

∏
v∈Σ(R)(−1)kv+jv ijv+1, for [·] as in Definition 1.2.5,

• y ∈ F+
∞ is considered as an idele by setting yv = 1 for all finite places v,

• n ..=
∑
v∈C(kv + jv − jvc + 1)v ∈ Z[Σ(C)], and Φu(g) ..=

∑
0≤r≤k∗ Φur (g)Xk∗−rYr.

Proof. This is proved in a similar fashion to the analogous result in the Bianchi case (see

Chapter 6.2.2). Most of this more general formulation is proved in [Hid94], Section 2.5, though

with some notable differences, which we will detail here. One change is purely cosmetic; we

have rescaled by yk/2+v using the automorphy condition (since Hida evaluates at the matrix

y
−1/2
∞

(
aijy 0

0 1
)
).

A more important change is that Hida’s results have no dependence on j. To see where this

comes in, note that we are restricting Φ to elements of form ( y x
0 1 ) where x = (aijf−1)v|f. But

by definition (aij)v = 1 for all v|f. Thus (aijf−1)v|f = (f−1)v|f.

The rest of the proof follows exactly as in [Hid94]. Note that he never explicitly uses the dual

module Vλ(C)∗, instead working implicitly with a particular basis of Vλ(C) that corresponds

identically to the basis of Vλ(C)∗ we use under the canonical isomorphism between the two as

SU2(C)-modules (see Lemma 5.4.9).

12.1.4. An integral formula for the L-function

Let ϕ be a Hecke character of conductor f and infinity type j + v for some 0 ≤ j ≤ k. We

now look at the image of φC under the evaluation maps, obtaining an integral formula for the

L-function at ϕ. As this calculation is long and messy, for clarity of writing, we have split the

work into subsections.
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Notation

Let s ∈ C be an auxiliary variable, and consider the integral

Cj
ij(s) ..=

∫
E(f)F 1

∞\F
+
∞

δj
ij(y)|y|sAF ,

where y denotes an element of F+
∞ (and can be considered as an idele by setting all finite

components equal to 1). Note here that

Cj
ij(0) = Evaijf,j,1(φC). (12.3)

Substituting known expressions

Now we substitute the explicit value of δj
ij(y) into Cj

ij(s). This gives

Cj
ij(s) = c1

∫
E(f)F 1

∞\F
+
∞

yj+vΦn

aijy (f−1)v|f
0 1

 |y|sAF d×|y|,
where here we’ve written

d×|y| =
∧

v∈Σ(C)

|yv|−1
C d|yv|C

∧
v∈Σ(R)

y−1
v dyv.

We can use the Fourier expansion described in Theorem 4.2.2; since the ideal corresponding to

ζaijyD is just ζaijD, this yields

Cj
ij(s) = c1

∫
E(f)F 1

∞\F
+
∞

yj+v|aijy|AF
∑
ζ∈F×+

c(ζaijD,Φ)eF (ζ(f−1)v|f)

×

 ∏
v∈Σ(C)

ijv−jvc

k∗v
nv

 (ζyv)jvc−jv |ζyv|jv−jvc−vc−vcvC Kjv−jvc(4π|ζyv|C)


×

 ∏
v∈Σ(R)

(|ζ|Ryv)−vve−2π|ζ|Ryv

 |y|sAF d×|y|.
For simplicity, let j# ..= (j− cj)/2. Grouping together similar terms and rearranging, the above

expression simplifies to

Cj
ij(s) = c1|aij |AF

∏
v∈Σ(C)

ijv−jvc

k∗v
nv


×
∫
E(f)F 1

∞\F
+
∞

∑
ζ∈F×+

c(ζaijD,Φ)eF (ζ(f−1)v|f)

 ∏
v∈Σ(C)

|yv|2+jv+jvc+2s
C Kjv−jvc(4π|ζyv|C)


×

 ∏
v∈Σ(R)

(yv)1+jv+se−2π|ζ|Ryv

 ζj# |ζ|−v
∞ d×|y|,
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where we write

|ζ|−v
∞ =

∏
v∈Σ
|ζ|−vvFv

.

Rearranging sums and integrals

For Re(s) >> 0, we have absolute convergence of the sum; hence we can exchange the order of

the sum and integral. Note that in this case, we have

∫
E(f)F 1

∞\F
+
∞

∑
ζ∈F×+

=
∑
ζ∈F×+

∫
E(f)F 1

∞\F
+
∞

=
∑

ideals ζaijD

∑
ε∈O×

F,+

∫
E(f)F 1

∞\F
+
∞

.

Then we have:

Lemma 12.1.9. Let ε ∈ E(f) ⊂ O×F,+. Then replacing ζ with εζ in the expression above leaves

the integrand unchanged.

Proof. Firstly, it’s clear that for any unit, we have |εζ| = |ζ|. There are two other terms

involving ζ. One sees from the definition of eF that if ε ≡ 1 (mod f), then eF (εζ(f−1)v|f) =

eF (ζ(f−1)v|f).

This just leaves the term ζj# . To deal with this term, recall that we took ϕ to be a Hecke

character of conductor f and infinity type j + v. Now define

ψ ..= ϕ| · |−[j+v]
AF .

Then we see that ψ has conductor f and infinity type −j#. In particular, we see that

(εζ)j# = ψ∞(εζ)−1 = ψf (εζ).

But ψf (ε) = 1. Thus it follows that ζj# is invariant under multiplication by ε, and we are

done.

In particular, this invariance now allows us to rewrite the integral as

[O×F,+ : E(f)]
∑

ideals ζaijD

∫
F 1
∞\F

+
∞

.

Computing standard integrals

Using the above, and still assuming that Re(s) >> 0, we rearrange further. We can identify

F+
∞/F

1
∞ with (R>0)q, and hence the integral breaks down into the product of integrals from 0

to ∞ at each infinite place. We get:

140



Automorphic cycles and L-values

Cj
ij(s) = c1|aij |AF [O×F,+ : E(f)]

∏
v∈Σ(C)

ijv−jvc

k∗v
nv


×

∑
ideals ζaijD

c(ζaijD,Φ)eF (ζ(f−1)v|f)ζj# |ζ|−v
∞

 ∏
v∈Σ(R)

∫ ∞
0

(yv)jv+se−2π|ζ|Ryvdyv


×

 ∏
v∈Σ(C)

∫ ∞
0

Kjv−jvc(4π|ζyv|C)|yv|1+jv+jvc+2s
C d|yv|C

 .
These are standard integrals; indeed, we have

∫ ∞
0

Kjcv−jv (4π|ζyv|C)|yv|jv+jvc+2s+1
C d|yv|C = (2π|ζ|C)−jv−jcv−2s−22−2Γ(jv+s+1)Γ(jcv+s+1),

whilst

∫ ∞
0

e−2π|ζyv|R |yv|jv+s
R dyv = (2π|ζ|−jv−s−1

R

∫ ∞
0

e−xxjv+sdx = (2π|ζ|R)−jv−s−1Γ(jv + s+ 1).

By substituting these integrals in, we get

Cj
ij(s) = c2

∑
ideals ζaijD

c(ζaijD)eF (ζ(f−1)v|f)ζj# |ζ|−v
∞

×

 ∏
v∈Σ(C)

(2π|ζ|C)−jv−jcv−2s−22−2Γ(jv + s+ 1)Γ(jvc + s+ 1)


×

 ∏
v∈Σ(R)

(2π|ζ|−jv−s−1
R Γ(jv + s+ 1)

 ,
which simplifies to

Cj
ij(s) = c2(2π)−j−(s+1)tΓ(j + (s+ 1)t)

×
∑

ideals ζaijD
c(ζaijD)eF (ζ(f−1)v|f)ζj# |ζ|−v−j−(s+1)t

∞ .

Here we’ve written

c2 = c1[O×F,+ : E(f)]|aij |AF
∏

v∈Σ(C)

ijv−jvc

k∗v
nv

 (12.4)

and defined

Γ(j + (s+ 1)t) ..=
∏
v∈Σ

Γ(jv + s+ 1),

(2π)j+(s+1)t ..=
∏
v∈Σ

(2π)jv+s+1

for simplicity.

141



Automorphic cycles and L-values

Simplifying the constant

We now focus on the term c2. Recall we defined c1 in Proposition 12.1.8. Substituting this into

equation (12.4) above, we see that the binomial coefficients cancel, and the signs reduce to give

c2 = |aij |AF [O×F,+ : E(f)]2r2(i)j+t
∏

v∈Σ(C)

(−1)kv
∏

v∈Σ(R)

(−1)kv+jv

= N(aijD)−1|D|[O×F,+ : E(f)]2r2(−i)j+t
∏

v∈Σ(C)

(−1)kv
∏

v∈Σ(R)

(−1)kv+jv ,

using the fact that |D| = N(D) and |aij |AF = N(I(aij))−1.

Rearranging further

We can massage our formula a bit further; note that

|ζ|−v−j−(s+1)t
∞ = N((ζ))−[j+v]−s−1

= N(aijD)[j+v]+s+1N(ζaijD)−[j+v]−s−1,

where the first equality follows from the definition of [·] (see Definition 1.2.5). When we multiply

this by |D|N(aijD)−1, we obtain |D|N(aijD)[j+v]+sN(ζaijD)−[j+v]−s−1. Incorporating all of

this, we end up with the formula

Cj
ij(s) = c3N(aijD)[j+v]+s

∑
ideals ζaijD

c(ζaijD,Φ)ζj#eF (ζ(f−1)v|f)N(ζaijD)−[j+v]−s−1,

where

c3 ..= (−2πi)−j−t2−r2(2π)−st|D|Γ(j + (s+ 1)t)[O×F,+ : E(f)]
∏
v∈C

(−1)kv
∏

v∈Σ(R)

(−1)kv+jv .

Gauss sums

We now sum over class group representatives and use Gauss sums to obtain the correct twisted

L-function. Recall that we defined ϕ to be a Hecke character of F of conductor f and infinity

type j + v, and defined ψ ..= ϕ| · |−[j+v], which has infinity type −j#. In particular, note that

ζj# = ψ∞(ζ)−1 (since ζ is totally positive) and we have

ϕ(aij)N(aijD)[j+v] = N(D)[j+v]ψ(aij).
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Now define

Cϕ(s) ..=
∑
i,j

ϕ(aij)N(aijD)−sCj
ij(s)

= c3
∑
i,j

ψ(aij)N(D)[j+v]
∑

ideals ζaijD
c(ζaijD,Φ)ψ∞(ζ)−1

eF (ζ(f−1)v|f)N(ζaijD)−[j+v]−s−1.

Here the sum is over i ∈ Cl+F and j ∈ (OF /f)×. Ideally, we want the Fourier coefficient to be

independent of j, so that we can break up the sum and leave a Gauss sum. To achieve this,

we scale by bj . Recall bj is an idele defined to be 1 at places dividing f∞ and α−1
j everywhere

else, where αj ∈ O×F,+ is congruent to j (mod f). Replace ζ with ζ ′αj (noting that we still have

absolute convergence). Then ζaijD = ζ ′aiD (as ideals). This gives

Cϕ(s) = c3
∑
i,j

ψ(aij)N(D)[j+v]

∑
ideals ζ′aiD

c(ζ ′aiD,Φ)ψ∞(ζ ′αj)−1eF (ζ ′αj(f−1)v|f)N(ζ ′aiD)−[j−v]−s−1.

We need to fix a further piece of notation.

Notation: Recall: we took d to be a (finite) idele representing the different D. We choose a

specific d. Write D = IiD(δ), where δ ∈ F+
∞. Then we can taken d = aiDδf , where δf is the

finite idele with every component equal to δ. It follows that

(ζ ′δ)αjd−1(f)v|f = ζ ′αj(f)v|f. (12.5)

Incorporating equation (12.5), breaking up ψ(aij) = ψ(ai)ψ(bj), and introducing the term

ψ(d)ψ(d)−1 (for the Gauss sum), this becomes

Cϕ(s) = c3ψ(d)
∑
i

ψ(ai)N(D)[j+v]
∑

ideals ζ′aiD
c(ζ ′aiD,Φ)ψ∞(ζ ′)−1N(ζ ′aiD)−[j+v]−s−1

× ψ(d)−1
∑
j

ψ(bj)ψ∞(αj)−1eF ((ζ ′δ)αjd−1(f−1)v|f).

Now, we see that

ψ(bj)ψ∞(αj)−1 =

∏
v-∞

ψ(α−1
j )

∏
v|f

ψ(αj)

∏
v-∞

ψ(αj)


=
∏
v|f

ψ(αj) = ψf(αj),
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so that the second sum becomes

ψ(d)−1
∑

j∈(OF /f)×
ψf(αj)eF ((ζ ′δ)αj(f−1)v|f) =

 ψf(ζ ′δ)−1τ(ψ) : ((ζ ′δ), f) = 1

0 : otherwise,

using the theory of Gauss sums in Section 1.3.1. Now note that when ((ζ ′δ), f) = 1, we have

ψ((ζ ′δ))ψf(ζ ′δ)ψ∞(ζ ′δ) = 1,

by the definition of ψf. The sum now becomes

Cϕ(s) = c3ψ(d)τ(ψ)
∑
i

ψ(ai)N(D)[j+v]

×
∑

ideals ζ′aiD
coprime to f

c(ζ ′aiD,Φ)ψ((ζ ′δ))ψ∞(δ)N(ζ ′aiD)−[j+v]−s−1.

Note that

ψ(d)ψ∞(δ) = ψ(aiD)ψf (δ)ψ∞(δ) = ψ(aiD).

Rearranging again, and consolidating the terms involving the different and noting that ψ(ζ ′aiD) =

0 when ((ζ ′δ), f) 6= 1, this becomes

Cϕ(s) = c3τ(ψ)N(D)[j+v]

×
∑
i

∑
ideals ζ′aiD

c(ζ ′aiD,Φ)ψ(ζ ′aiD)N(ζ ′aiD)−[j+v]−s−1.

The sum now collapses to one over all ideals of F .

Obtaining L-values

We have ψ(d)−1N(D)[j+v] = ϕ(d)−1; hence, it’s easy to see that N(D)[j+v]τ(ψ) = τ(ϕ). Thus

we have

Cϕ(s) = c3τ(ϕ)L(Φ, ψ, [j + v] + s+ 1)

= c3τ(ϕ)L(Φ, ϕ, s+ 1).

With a little extra work, we see that this formula gives an analytic continuation of L(Φ, ϕ, s)

to the complex plane. In particular, setting s = 0, and recalling that

Cj
ij(0) = Evaijf,j,1(φC),

we see that

L(Φ, ϕ) ..= L(Φ, ϕ, 1) = 1
c3τ(ϕ)

∑
i,j

ϕ(aij)Evaijf,j,1(φC).
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We see that we’ve proved the following theorem:

Theorem 12.1.10. Let F/Q be a number field, and let Φ be a cuspidal eigenform over F of

weight λ = (k,v) ∈ Z[Σ]2, where k+2v is parallel, and let ϕ be a Hecke character of conductor

f and infinity type j + v, where 0 ≤ j ≤ k. Let Λ(Φ, ·) be the normalised L-function attached to

Φ defined in Definition 4.3.6. Then there is an integral formula

∑
i,j

ϕ(aij)Evaijf,j,1(φC) = (−1)R(j,k)

[
[O×F,+ : E(f)]|D|τ(ϕ)

2r2

]
· Λ(Φ, ϕ),

where:

• The sum is over i ∈ Cl+F and j ∈ (OF /f)×,

• R(j,k) ..=
∑
v∈Σ(C) kv +

∑
v∈Σ(R) kv + jv,

• τ(ϕ) is the Gauss sum attached to ϕ defined in Definition 1.3.2,

• D is the discriminant of the number field F ,

• Evaijf,j,1 is the classical evaluation map from Definition 12.1.6,

• and φC is the modular symbol attached to Φ under the Eichler-Shimura isomorphism.

12.1.5. Evaluating at ideals other than the conductor

In the sequel, we will need to look at evaluation maps at ideals other than the conductor of the

relevant Hecke character. For example, let ϕ be a Hecke character of conductor f and infinity

type j + v, and let p be a prime not dividing f; then we will need to consider the expression

∑
y∈Cl+

F
(fp)

ϕ(ay)Evay
fp,j,1(φC).

In particular, we need to know how this relates to the evaluation maps at f considered above

in the case that p divides the level n. In this section, we provide a formula for this case.

We start by making the following simple, but crucial, observation about Gauss sums.

Lemma 12.1.11. Let ϕ be a Hecke character of conductor f, and let p be a prime not dividing

f. Let B be a complete set of representatives in OF for the set

{b (mod fp) : b (mod f) ∈ (OF /f)×}.

Then we have

ϕ(d−1)
∑
b∈B

ϕf(b)eF (ζbd−1(fp)−1
v|fp) =

 N(p)ϕf(ζ)−1τ(ϕ) : ((ζ), f) = 1 and p|(ζ),

0 : otherwise.
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Proof. The sum splits as a product ∑
α∈OF /p

eF (ζαd−1(p−1)v|p)

 ·
ϕ(d−1)

∑
β∈(OF /f)×

ϕf(β)eF (ζβd−1(f−1)v|f)

 .
The first term is non-zero if and only if p|(ζ), in which case eF (ζαd−1(p−1)v|p) = 1 and the

sum is N(p). The second term is just the usual Gauss sum. The result follows.

Let aij = aibj , as before, form the usual multiset of representatives for Cl+F (f). We extend this

slightly. To this end, let

{ck ∈ OF,+ : k ∈ OF /p}

form a complete set of representatives for OF /p (noting in particular that we cannot have

c0 = 0). Define

aijk = aijck,

and note that

{aijk : i ∈ Cl+F , j ∈ (OF /f)×, k ∈ (OF /p)×}

forms a multiset of representatives for Cl+F (fp), with each representative counted #Im(O×F,+ −→

(OF /fp)×) times. In particular, we see that

∑
i,j

∑
k∈(OK/p)×

ϕ(aijk)Evaijkfp,j,1(φC) =

∑
i,j

∑
k∈OK/p

ϕ(aijk)Evaijkfp,j,1(φC)−
∑
i,j

ϕ(aijc0)Evaijc0fp,j,1(φC),

where in all three expressions we sum over i ∈ Cl+F and j ∈ (OF /f)×. We study each of these

terms separately.

Lemma 12.1.12. We have

∑
i,j

ϕ(aijc0)Evaijc0fp,j,1(φC) =
[O×F,+ : E(fp)]
[O×F,+ : E(f)]

∑
i,j

ϕ(aij)Evaijf,j,1(φC),

where the sum is over i ∈ Cl+F and j ∈ (OF /f)× in both expressions.

Proof. We compute both sides in an almost identical manner to the proof of the integral formula.

Firstly, we obtain the ratio in the unit indices since we’re now integrating over E(fp)F 1
∞\F+

∞

rather than E(f)F 1
∞\F+

∞. We see that the only other step that changes is the one involving the

Gauss sum. To see that this really doesn’t affect the final result, note that we have

eF ((ζ ′δ)αjc0d−1(fp)−1
v|fp) = eF ((ζ ′δ)αjc0d−1(f−1)v|f)eF ((ζ ′δ)αjc0d−1(p−1)v|p),
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and that the second term of this product is equal to 1 as c0 ∼= 0 (mod p). The result then

follows, since {αjc0} is again a full set of representatives for (OF /f)×.

The study of the first term is a little more involved. We give a sketch; the calculations are

almost identical to those in the integral formula proved previously, and for the reader’s sanity,

we do not wish to repeat them.

Lemma 12.1.13. Suppose that φC is an eigenform for all the Hecke operators. We have

∑
i,j

∑
k∈OK/p

ϕ(aijk)Evaijkfp,j,1(φC) = λpϕ(p)
[O×F,+ : E(fp)]
[O×F,+ : E(f)]

∑
i,j

ϕ(aij)Evaijf,j,1(φC),

where λp = c(p,Φ) is the eigenvalue of φC at the Hecke operator Up (recalling that p|n).

Proof. Again, we examine the proof of the integral formula; the term involving ratios of unit

indices is introduced exactly as in the previous lemma. By following the remaining steps in

deriving the integral formula, we see again that the only major change is in the Gauss sum,

and indeed that we end up with the ‘modified Gauss sum’ of Lemma 12.1.11. In particular, in

the calculation of the integral formula, we are left with a sum over ideals that are divisible by

p, in addition to introducing a factor of N(p). Since φC is an eigenform, and as p|n, the Fourier

coefficients satisfy

c(Ip,Φ) = c(I,Φ)c(p,Φ),

so that the summands are multiplicative and we can recover a sum over all ideals by factoring

out the expression c(p,Φ)ϕ(p)N(p)−(s+1). After setting s = 0 and incorporating the extra

factor of N(p) coming from the Gauss sum, we recover the result.

We now conclude this section by stating the compatibility results we need. We find we’ve

proved the following:

Theorem 12.1.14. Let ϕ be a Hecke character of conductor f and infinity type j + v, and let

p be a prime dividing n but not dividing f. Then we have

∑
i,j,k

ϕ(aijk)Evaijkfp,j,1(φC) = (ϕ(p)λp − 1)
[O×F,+ : E(fp)]
[O×F,+ : E(f)]

∑
i,j

ϕ(aij)Evaijf,j,1(φC),

where the sums are over i ∈ Cl+F , j ∈ (OF /f)× and k ∈ (OF /p)×.

In the next section, we will remove the terms of form [O×F,+ : E(fp)] by summing only over

the respective narrow ray class groups (and, in the process, eliminating the double counting of

class group representatives; see Theorem 12.2.7). With this in mind, we record the following

corollary, which is proved by a simple induction:
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Corollary 12.1.15. Suppose (p)|n, and let ϕ be a Hecke character of conductor f|(p∞) and

infinity type j + v. Let B be the set of primes above p for which ϕ is not ramified, and define

f′ ..= f
∏

p∈B p. Then f′ is divisible by every prime above p and we have

∑
y∈Cl+

F
(f′)

ϕ(ay)Evay
f′,j,1(φC) =

∏
p∈B

(ϕ(p)λp − 1)

 ∑
y∈Cl+

F
(f)

ϕ(ay)Evay
f,j,1(φC).

12.2. Algebraicity results

So far, all of our work has been done over C. We will now refine these results to show that the

algebraic modular symbol define in Chapter 11.6 also sees all of the critical L-values above.

Recall Theorem 4.4.1, which said that the normalised L-value Λ(Φ, ϕ) is an algebraic multiple

of a period ΩεϕΦ , where εϕ is the character of {±1}Σ(R) attached to ϕ (see Chapter 1.2.2). In

Chapter 11.6, for a character ε of {±1}Σ(R) we defined a modular symbol φεC and stated a result

that φεK ..= φεC/ΩεΦ lived in an algebraic subspace. We now relate φεC (and, by scaling, φεK) to

the L-function using our above formula.

Definition 12.2.1. Let Af = {ay : y ∈ Cl+F (f)} denote a fixed set of representatives for

Cl+F (f), with components at infinity that are not necessarily trivial. For a Hecke character ϕ of

conductor f and infinity type j + v, where 0 ≤ j ≤ k, define a function

EvAf
ϕ : Hq

c (Y1(n),L1(Vλ(C)∗)) −→ C

by

EvAf
ϕ (φ) =

∑
y∈Cl+

F
(f)

εϕϕf (ay)Evay
f,j (φ),

where as previously we write εϕ as a function on the ideles by composing it with the natural

sign map A×F → {±1}Σ(R).

This definition is intimately related to the locally analytic function ϕp−fin we defined in Section

1.3.2. In particular, note that εϕϕf = ϕ/ϕalg
∞ , where ϕalg

∞ (x) = xj+v
∞ is the unique algebraic

function on F∞ that agrees with ϕ∞ on F+
∞.

Lemma 12.2.2. The function EvAf
ϕ is independent of class group representatives.

Proof. Let a′y be an alternative representative corresponding to y ∈ Cl+F (f). Then ay = fayur,

where f ∈ F×, u ∈ U(f) and r ∈ F+
∞. Looking at the description of the evaluation maps, we

see that

Eva
′
y

f,j (φ) = f j+vEvay
f,j (φ).
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But

εϕϕf (a′y) = εϕϕf (fayur) = εϕϕf (f)εϕϕf (ay)

= f−j−vεϕϕf (ay),

since εϕϕf is trivial on U(f)F+
∞ and by our earlier comment, we have

εϕϕf (f) = ϕ(f)/ϕalg
∞ (f) = f−j−v.

Putting this together, we find that

εϕϕf (a′y)Eva
′
y

f,j (φ) = εϕϕf (ay)Evay
f,j (φ),

which is the required result.

Definition 12.2.3. Define Evϕ to be the map EvAf
ϕ for any choice of class group representatives

Af. This is well-defined by the above lemma.

We’ll combine this with the following to deduce the result we desire.

Proposition 12.2.4. Let ι ∈ {±1}Σ(R). Then for any idele a, we have

Evιaf,j
(
φ

∣∣∣∣ι) = Evaf,j(φ).

Proof. Recall that the definition of the action of ι ∈ {±1}Σ(R) on the cohomology of Y1(n) was

described in Section 11.4.2. There is a well-defined action of {±1}Σ(R) on the local system

corresponding to Lf,1(Vλ(C)∗) given by

ι · (x, P ) = (ιx, P ),

where here we’ve considered ι to be an idele by setting ιv = 1 for all complex and finite places

v. A simple check shows that if φ ∈ Hq
c(Y1(n),L1(Vλ(C)∗)) then we have

η∗f (φ|ι) = η∗f (φ)|ι

coming from the commutative diagram

(g, P )
η∗f

> (x, P )

(ι · g, P )

|ι
∨

η∗f
> (ιx, P )

|ι
∨
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of local systems. Continuing to work at the level of local systems, suppose x is an idele that,

under the natural quotient map, lies in the component of Xf corresponding to ay. Then the

image of ιx lies in the component corresponding to ιay (where here we note that if {ay : y ∈

Cl+F (f)} is a complete set of representatives for Cl+F (f), then so is the set {ιay : y ∈ Cl+F (f)}).

Thus we see that there is a commutative diagram of maps of local systems

(x, P )
τ∗ay

> (r, P ) ev. at Xk−jYj

> (r, c)

(ιx, P )

|ι

∨ τ∗ιay
> (r, P )
∨

ev. at Xk−jYj

> (r, c),
∨

where the local system on the far right hand side defines the constant sheaf given by sections

of (E(f)F 1
∞\F+

∞)× C→ E(f)F 1
∞\F+

∞. The result follows.

Corollary 12.2.5. We have the relation

Evϕ(φ|ι) = εϕ(ι)Evϕ(φ).

Proof. Considering ι as an idele in the usual way, we have

Evϕ(φ|ι) =
∑

y∈Cl+
F

(f)

εϕϕf (ιay)Evιay
j,f,1(φ|ι)

= εϕ(ι)
∑

y∈Cl+
F

(f)

εϕϕf (ay)Evay
f,j,1(φ)

= εϕ(ι)Evϕ(φ),

as required.

Corollary 12.2.6. We have

Evϕ(φεC) =

 Evϕ(φC) : ε = εϕ

0 : otherwise.

Proof. By definition,

Evϕ(φεC) = Evϕ

2−r1
∑

ι∈{±1}Σ(R)

ε(ι)φC|ι


=

2−r1
∑

ι∈{±1}Σ(R)

ε(ι)εϕ(ι)

Evϕ(φC),

using linearity of the evaluation maps and Corollary 12.2. The result is then clear from basic

representation theory, as ε−1
ϕ = εϕ.
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Recall that in Definition 11.6.4, we set θK ..=
∑
ε φ

ε
K . Note that here θK is an element of the

cohomology with algebraic coefficients in the number field K.

Theorem 12.2.7. Let ϕ be a Hecke character of conductor f and infinity type j + v, where

0 ≤ j ≤ k, and write εϕ for the associated character of {±1}Σ(R) defined in Chapter 1.2.2. Let

Evϕ be as in Definition 12.2.3. We have

Evϕ(θK) = (−1)R(j,k)
[
|D|τ(ϕ)
2r2ΩεϕΦ

]
· Λ(Φ, ϕ),

where R(j,k) =
∑
v∈Σ(R) jv + kv +

∑
v∈Σ(C) kv.

Proof. We use Theorem 12.1.10. In particular, note that in the statement of the theorem, we

use the multiset {aij} of class group representatives in which each element of the class group

is represented [O×F,+ : E(f)] = #Im(O×F,+ → (OF /f)×) times, so we can cancel this term from

the result. Then we see that for these representatives,

εϕϕf (aij) = ϕ(aij),

since we chose (aij)∞ = 1, so that the sum we obtained in the statement of Theorem 12.1.10

is nothing but [O×F,+ : E(f)]Evϕ(φC). The result follows.

To summarise: we’ve now defined an algebraic cohomology class that sees the algebraic parts

of all of the critical L-values that we hope to interpolate. In particular, by embedding K into

a sufficiently large finite extension L/Qp, we get a p-adic modular symbol θL that sees all of

these critical values.

151



Chapter 13

Overconvergent Cohomology

In this chapter, we explore p-adic deformations of the spaces of classical modular symbols. As in

the Bianchi case, this will be done by replacing the module of coefficients with a space of p-adic

distributions. We begin by defining these distribution modules, closely following the analogous

section of [BS13]. This allows us to define the space of overconvergent modular symbols as

the compactly supported cohomology of Y1(n) with coefficients in distributions. We then use

compactness of the Up operator to show that slope decompositions exist in wide generality for

overconvergent modular symbols. This is crucially important to the main result of this chapter,

where we prove a control theorem in the general setting. In particular, we use an argument of

Urban to prove that the natural specialisation map from overconvergent to classical cohomology

becomes an isomorphism upon restriction to appropriate ‘small slope’ subspaces.

13.1. Distributions and overconvergent cohomology

Throughout this section, L is a finite extension of Qp containing the image of incp ◦σ : F ↪→ Qp
for each embedding σ of F into Q. First, we give some motivation by reformulating the

definition of the space Vλ(L). We previously defined this to be the d-fold tensor product of

the polynomial spaces Vkv (L), with an action of GL2(L) depending on λ. Note that OF ⊗Z Zp
embeds naturally in Qdp, and in particular, we can see an element of Vλ(L) as a function on

OF ⊗Z Zp in a natural way. We see that the following definition agrees with the definition we

gave in Section 11.2.

Definition 13.1.1. Let L/Qp be a finite extension and let λ = (k,v) ∈ Z[Σ] be admissible in

the sense of Definition 2.3.2 (so that, in particular, k ≥ 0). Define Vλ(L) to be the space of

functions on OF ⊗ZZp that are polynomial of degree k with coefficients in L, with a left action

of GL2(OF ⊗Z Zp) given by

a b

c d

 · P (x) = (ad− bc)v(a+ cx)kP

(
b+ dx

a+ cx

)
.

We’ve passed to a non-homogeneous version here. This definition is more easily seen to be
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compatible with the rest of this section. In particular, it is compatible with the following:

Definition 13.1.2. Let A(L) be the space of locally analytic functions on OF ⊗Z Zp that are

defined over L.

We’d like to define an action of GL2(OF ⊗Z Zp) on this space, analogously to above. Unfor-

tunately, the action above doesn’t extend to the full space A(L). We can, however, define an

action of a different semigroup.

Definition 13.1.3. (i) Let Σ0(p) be the semigroup

Σ0(p) ..=


a b

c d

 ∈M2(OF ⊗Z Zp) : c ∈ pOF ⊗Z Zp, a ∈ (OF ⊗Z Zp)×, ad− bc 6= 0

 .

(ii) Define Aλ(L) to be the space A(L) equipped with a left ‘weight λ action’ of Σ0(p) given

by a b

c d

 · f(z) = (ad− bc)v(a+ cz)kP

(
b+ dz

a+ cz

)
.

Note in particular that this semigroup contains the image of Γ1(n) under the natural embedding

M2(OF ) ⊂ M2(OF ⊗Z Zp) as well as the matrices that we’ll need to define a Hecke action at

primes above p. It is not a subset of GL2(OF ⊗ZZp), but the action of this different semigroup

also extends naturally to Vλ(L), since both live inside GL2(F ⊗Q Qp).

We’re now in a position to define the distribution spaces.

Definition 13.1.4. Define Dλ(L) ..= Homcts(Aλ(L), L) to be the topological dual of Aλ, with

a right action of Σ0(p) defined by

(µ|γ)(f) ..= µ(γ · f).

Note that Ω1(n) acts on Dλ(L) via its projection to GL2(Qp), giving rise to a local system

L2(Dλ(L)) on Y1(n), as in Chapter 11.3.

Definition 13.1.5. The space of overconvergent modular symbols is the compactly supported

cohomology group Hq
c(Y1(n),L2(Dλ(L))).

By dualising the inclusion Vλ(L) ⊂ Aλ(L), we get a Σ0(p)-equivariant surjection

Dλ(L) −→ Vλ(L)∗.
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This gives rise to a Σ0(p)-equivariant specialisation map, a map

ρ : Hq
c(Y1(n),L2(Dλ(L))) −→ Hq

c(Y1(n),L2(Vλ(L)∗)).

The space of overconvergent modular symbols is, in a sense, a p-adic deformation of the space

of classical modular symbols. They were introduced by Glenn Stevens in [Ste94].

We conclude this section with a result that will be crucial in the following section, where we

prove that the space of overconvergent modular symbols admits a slope decomposition with

respect to the Hecke operators. For the relevant definitions, see [Urb11], Section 2.3.12. The

space Dλ(L) is naturally a nuclear Fréchet space1; indeed, let An,λ(L) be the space of functions

that are locally analytic of radius n, that is, functions that are analytic on each open set of the

form a+pnOF⊗ZZp. Each An,λ(L) is a Banach space, and the inclusionsAn,λ(L) ↪→ An+1,λ(L)

are compact ( [Urb11], Lemma 3.2.2). We write Dn,λ(L) for the topological dual of An,λ(L).

Then Dλ(L) ∼= lim←−Dn,λ(L) is equipped with a family of norms coming from the Banach spaces

Dn,λ(L).

Definition 13.1.6. LetM ∼= lim←−Mn be a nuclear Fréchet space. We say that an endomorphism

U of M is compact if it is continuous and there are continuous maps U ′n making the diagram

M > Mn−1

M

U

∨
> Mn

U ′n
∨

commute, where the horizontal maps are the natural projections.

In this situation, we obtain compact2 endomorphisms Un on Mn by composing U ′n with the

natural map Mn →Mn−1. In [Ser62], it is proved that if Mn is a Banach space equipped with

a compact endomorphism Un, then Mn admits a slope decomposition with respect to Un, and

in [Urb11], Section 2.3.10, Urban uses this – and compactness of U – to deduce the existence

of a slope decomposition for M with respect to U . In particular, the following lemma will be

crucial in the next section.

Lemma 13.1.7. Let η ∈ GL2(F ) ∩ Σ0(p), which acts naturally on Dλ(L). This action is

compact. In particular, the action of
( 1 0

0 p
)
is compact on Dλ(L).

Proof. See [Urb11], Lemma 3.2.8.
1That is, an inverse limit of Banach spaces in which the projection maps are compact. In [Urb11], Urban

calls this a compact Fréchet space. We instead follow the terminology utilised in [Sch02].
2Urban uses ‘compact’ and ‘completely continuous’ interchangeably to describe endomorphisms of Banach

spaces that map bounded subsets into relatively compact subsets.
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13.2. Slope decompositions

We start by recalling the relevant definitions about slope decompositions. This makes the

notion of the ‘subspace on which an operator acts with small slope’ rigorous.

Definition 13.2.1. Let L be a finite extension of Qp, and let h ∈ Q. We say a polynomial

Q(X) ∈ L[X] has slope ≤ h if Q(0) ∈ O×L and if α ∈ L is a root of Q∗(X) ..= Xdeg(Q)Q(1/X),

then vp(α) ≤ h.

Definition 13.2.2. Let M be an L-vector space equipped with the action of an L-linear en-

domorphism U . We say that M has a slope ≤ h decomposition with respect to U if there is a

decomposition M ∼= M1 ⊕M2 such that:

(i) M1 is finite-dimensional,

(ii) The polynomial det(1− UX)|M1 has slope ≤ h, and

(iii) For all polynomials P ∈ L[X] with slope ≤ h, the polynomial P ∗(U) acts invertibly on

M2.

We write M≤h,U ..= M1 for the elements of slope ≤ h in M . Where the operator U is clear, we

drop it from the notation and just write M≤h.

In this section, we will prove the following theorem:

Theorem 13.2.3. Let λ = (k,v) be an admissible weight. Then for each i ∈ N and any h ∈ Q,

the L-vector space Hi
c(Y1(n),L2(Dλ(L))) admits a slope ≤ h decomposition with respect to the

Hecke operator Up.

To prove this theorem we follow the arguments given in [Urb11] and [BS15], where the same

statement is proved in the cases of the cohomology without compact support and GL2 over

a totally real field respectively. Both of these rely on general results from earlier in [Urb11],

where Urban proves that any nuclear Fréchet spaceM equipped with a compact endomorphism

U admits a slope decomposition with respect to U . Given this, the key step is to construct a

complex whose cohomology is H•c(Y1(n),L2(Dλ(L))) and such that each term of the complex

is isomorphic to finitely many copies of Dλ(L). We can find a lift of the Hecke operators on

the cohomology to this complex, and then we use the fact that the action of ( 1 0
0 p ) on Dλ(L)

is compact to deduce that this lift acts compactly on the complex. Using Urban’s results, we

deduce the theorem.
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13.2.1. Compactly supported cohomology

Complexes

Let Γ be a torsion-free arithmetic subgroup of SL2(F ) and consider the manifold Γ \ HF . We

denote by Γ \HF the Borel-Serre compactification of Γ \HF (See [BS74]). Let B be the set of

proper parabolic Q-subgroups of SL2(F ⊗ R). To construct the Borel-Serre compactification,

recall that we first enlarge HF to a space HF by adding a euclidean space e(P ) of dimension

d to each P ∈ B. The boundary of HF is given by

∂HF =
⊔
P∈B

e(P ). (13.1)

The group Γ acts on HF . The quotient Γ \ HF is a compact, smooth and C∞-variety with

boundary, so there exists a finite triangulation (see [Mun67]) that induces a triangulation on the

boundary ∂(Γ\HF ). From this, we obtain a triangulation of HF which contains a triangulation

of ∂(HF ). We consider the complexes of simplicial chains attached to those triangulations,

denoted by

C•(Γ) and C∂• (Γ).

These complexes satisfy the following properties:

• If i ∈ N, then Ci(Γ) and C∂i (Γ) are Z[Γ]-free modules of finite rank. Since the group Γ acts

properly on HF and its boundary, this is a consequence of the fact that Γ is torsion-free

and the (fixed) triangulation of Γ \ HF is finite.

• The complex C•(Γ) is a resolution of the trivial Z[Γ]-module Z, since this complex gives

the homology of HF , which is contractible.

• The complex C∂• (Γ) is a resolution of the Z[Γ]-module ZB, where the action of Γ on

ZB is given by the action on B. In fact, C∂• (Γ) gives the homology of ∂HF , and in

decomposition (13.1), each e(P ) is contractible.

Suppose now that the image of Γ in GL2(F ⊗Q Qp) is contained in the Iwahori group (that is,

the matrices that are upper-triangular modulo p), as is the case for the groups Γi1(n). Then

any right Ω1(n)-module M , as in Definition 11.3.1 (ii), has an action of Γ (the reader should

keep the case M = Dλ(L) in mind). We define the complexes C•(Γ,M) and C•∂(Γ,M) by:

Ci(Γ,M) := HomZ[Γ](Ci(Γ),M),

Ci∂(Γ,M) := HomZ[Γ](C∂i (Γ),M).

The properties given above for C•(Γ) and C∂• (Γ) have the following consequences:

• Ci(Γ,M) and Ci∂(Γ,M) are isomorphic to finitely many copies of M . In particular they

are nuclear Fréchet L-vector spaces.
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• The cohomology of C•(Γ,M) is isomorphic to H•(Γ \ HF ,L2(M)).

• The cohomology of C•∂(Γ,M) is isomorphic to H•(∂(Γ \ HF ),L2(M)).

Via the natural map C∂• (Γ) ↪→ C•(Γ), we obtain a map of complexes C•(Γ,M) → C•∂(Γ,M).

We define:

C•c (Γ,M) ..= Cone [C•(Γ,M)→ C•∂(Γ,M)] .

Proposition 13.2.4. For each i ∈ N, the L-vector space Cic(Γ,M) is a Fréchet space. The

cohomology of the complex C•c (Γ,M) is H•c(Γ \ HF ,L(M)).

Proof. By construction we have Cic(Γ,M) = Ci(Γ,M) ⊕ Ci−1
∂ (Γ,M). Thus this is a Fréchet

space as Ci(Γ,M) and Ci−1
∂ (Γ,M) both are.

For the remainder of the proposition, note that there are isomorphisms

Hi(C•(Γ,M)) ∼= Hi(Γ \ HF ,L2(M)) and

Hi(C•∂(Γ,M)) ∼= Hi(∂(Γ \ HF ),L2(M)).

Moreover we have two long exact sequences

...→ Hi(C•c (Γ,M))→ Hi(C•(Γ,M))→ Hi(C•∂(Γ,M))→ ... and

...→ Hi
c(Γ \ HF ,L(M))→ Hi(Γ \ HF ,L(M))→ Hi(∂(Γ \ HF ),L(M))→ ... .

Applying the five-lemma to this gives the result.

Hecke operators

Let Γ and Γ′ be torsion-free arithmetic subgroups of SL2(F ), let h : Γ → Γ′ be a group

homomorphism and let f : M → M be a linear transformation such that f(h(γ)µ) = γf(µ).

Using h we can consider the complex C•(Γ′) as a resolution of Z by Z[Γ]-modules. Since C•(Γ) is

a projective resolution of Z by Z[Γ]-modules, we obtain a map h• : C•(Γ)→ C•(Γ′) compatible

with h. Using this last morphism and f we obtain a map:

C•(Γ′,M) −→ C•(Γ,M),

ϕ 7−→ f ◦ ϕ ◦ h•.

In the same way as before, we consider the complex C∂• (Γ′) as a resolution of ZB by Z[Γ]-

modules, giving a map of complexes C∂• (Γ)→ C•i (Γ′). Then we obtain maps

C•∂(Γ′,M) −→ C•∂(Γ,M).
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From these maps we obtain and the natural compatibility with the maps C•(Γ,M)→ C•∂(Γ,M)

and C•(Γ′,M)→ C•∂(Γ′,M), we obtain maps

C•c (Γ′,M) −→ C•c (Γ,M ′).

Let η ∈ GL2(F ) ∩ Σ0(p) (again, the reader should keep in mind η =
( 1 0

0 p
)
), and define maps

h1 : Γ ∩ ηΓη−1 −→ Γ ∩ η−1Γη,

γ 7−→ η−1γη

and f1 : M → M,f1(µ) = µ|η. Let h2 : Γ ∩ η−1Γη ↪→ Γ be the inclusion and f2 the identity

map. By considering the pairs (h1, f1) and (h2, f2) in the situation above, we obtain maps

[η] : C•c (Γ ∩ η−1Γη,M)→ C•c (Γ ∩ ηΓη−1,M),

resΓ
Γ∩η−1Γη : C•c (Γ,M)→ C•c (Γ ∩ η−1Γη,M).

We define corestriction maps corΓ
Γ∩ηΓη−1 for the complexes C• and C•∂ in the same way as

in [Urb11, §4.2.5] and [BS15, §2.2.2]. Then we obtain maps

corΓ
Γ∩ηΓη−1 : Cic(Γ ∩ ηΓη−1,M)→ Cic(Γ,M).

Denote by [ΓηΓ] = corΓ
Γ∩ηΓη−1 ◦ [η] ◦ resΓ

Γ∩η−1Γη the composition

[ΓηΓ] : Cic(Γ,M)→ Cic(Γ,M).

Proposition 13.2.5. The operator [ΓηΓ] is compact. Moreover, if η =
( 1 0

0 p
)
, it is a lift of the

Up operator on the cohomology to the level of complexes.

Proof. The action of η on Dλ(L) is compact. Using this property, Proposition 13.2.4, and the

fact that composition of a compact map with a continuous map is again compact, we deduce

that [ΓηΓ] is compact on Cic(Γ,M) (see [Urb11], Section 4.2.9).

Now fix η =
( 1 0

0 p
)
. The operators [ΓηΓ] on C•(Γ,M) and on Ci•(Γ,M) lift the corresponding

Up operators on H•(Γ\HF ,L2(M)) and H•∂(Γ\HF ,L2(M)). Hence we deduce the same result

for the compact support situation.
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13.2.2. Proof of Theorem 13.2.3

Proof. (Theorem 13.2.3). Recall that we have the decomposition

Hi
c(Y1(n),L2(Dλ(L))) =

h⊕
j=1

Hi
c(Y j1 (n),L2(Dλ(L))). (13.2)

Moreover, we can describe the action of the Up operator on Hi
c(Y1(n),L2(Dλ(L))) with respect

to this decomposition; indeed, we have

Up =
h⊕
j=1

Γj1(n)

1 0

0 p

Γj1(n)

 , (13.3)

where Γj1(n) is as defined in equation (2.11). For each i ∈ N, let

Cic(n,Dλ(L)) ..=
h⊕
j=1

Cic(Γ
j
1(n),Dλ(L)).

Using Proposition 13.2.4 and equation (13.2), we deduce that each term Cic(n,Dλ(L)) is a

Fréchet L-vector space and that the cohomology of the complex C•c (n,Dλ(L)) is H•c(Y1(n),L2(Dλ(L))).

For each j we have an operatorΓj1(n)

1 0

0 p

Γj1(n)

 : Cic
(

Γj1(n),Dλ(L)
)
→ Cic

(
Γj1(n),Dλ(L)

)
,

lifting the corresponding operator on the cohomology. We define the operator

Up : Cic(n,Dλ(L))→ Cic(n,Dλ(L))

by Up =
⊕h

j=1[Γj1(n)( 1 0
0 p )Γj1(n)]. The decomposition of equation (13.3) implies that Up is a lift

of the corresponding Hecke operator on the cohomology to the level of complexes. Moreover,

from Proposition 13.2.5 we deduce that Up is a compact operator on Cic(n,Dλ(L)).

Finally, we complete the proof of Theorem 13.2.3 by applying [Urb11, Lemma 2.3.13] to Up.

13.3. A control theorem

In this section, we prove a control theorem, showing that the restriction of the specialisation

map from overconvergent to classical modular symbols to the ‘small slope’ subspaces is an

isomorphism. We actually need a slightly finer definition of slope decomposition; namely, we

define the slope decomposition with respect to a finite set of operators rather than just one.
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To this end, let I be a finite set, and suppose that for each i ∈ I, we have an endomorphism

Ui on the L-vector space M . Write A ..= L[Ui, i ∈ I] for the algebra of polynomials in the

variables Ui. Then A acts on M , and for h = (hi) ∈ QI we write

M≤h ..=
⋂
i∈I

M≤hi,Ui .

We call M≤h,A the slope ≤ h subspace with respect to A. Where the choice of operators is

clear, we will drop the A from the notation and just write M≤h.

13.3.1. Preliminary results

We start by stating some properties of slope decompositions that will be required in the proof.

Lemma 13.3.1. (i) Let M,N and P be L-vector spaces equipped with an action of A, and

suppose that M,N and P each admit a slope ≤ h decomposition with respect to A. If

0 → M → N → P → 0 is an exact sequence of A-modules, then we have an exact

sequence

0→M≤h → N≤h → P≤h → 0.

(ii) LetM ∼= lim←−Mn be a nuclear Fréchet space equipped with a compact endomorphism U that

induces compact operators Un onMn for each n. Then for each n there is an isomorphism

M≤h,U ∼= M≤h,Un
n .

(iii) Let (M, || · ||) be an L-Banach space equipped with an action of A, where || · || denotes the

norm on M , and suppose that there is a OL-submodule

M⊂ {m ∈M : ||m|| ≥ 0}

that is stable under the action of A. Let h = (hi)i∈I with hi0 < 0 for some i0 ∈ I. Then

M≤h = 0.

Proof. Part (i) is simple (see Corollary 2.3.5 of [Urb11]). Part (ii) is proved in [Urb11], Lemma

2.3.13. For part (iii), suppose that M≤h 6= 0. Then, after possibly replacing L with a finite

extension, we can find α ∈ L and x ∈M such that vp(α) < 0 and Ui0x = αx. Then there exists

n ∈ Z such that αnx /∈ M. This is a contradiction because αnx = Uni0x ∈ M by A-stability of

M.

In particular, we have the following corollary.
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Definition 13.3.2. For each σ ∈ Σ, denote by p(σ) the unique prime p|p such that the em-

bedding σ : F ↪→ Q ⊂ C extends to an embedding Fp ↪→ Qp ⊂ Cp that is compatible with the

fixed embedding incp : Q ↪→ Qp. If σ corresponds to p under this identification, we write σ ∼ p.

Definition 13.3.3. Let ν = (k,v) ∈ Z[Σ]2 be an admissible weight. Define

ωp(ν) ..=
∑
σ∼p

vσ.

Corollary 13.3.4. (i) Let ν = (k,v) ∈ Z[Σ]2 be a weight with k + 2v parallel (but allowing

for negative values of kσ). Let h ∈ Q{p|p} be such that

hp <
ωp(ν)
ep

for some prime p above p. Then for all r, we have Hr
c(Y1(n),L2(Dν(L)))≤h = {0}.

(ii) Under the same hypotheses, the same result holds if we replace Dν(L) with any Σ0(p)-

stable submodule or by quotients by such submodules.

Proof. From Chapter 13.1, we know that

Dλ(L) ∼= lim←−Dλ,n(L),

where Dλ,n(L) is the (L-Banach space) of distributions that are locally analytic of radius n. We

also know (from results in the previous section) that the cohomology group Hr
c(Y1(n),L2(Dν,0(L)))

is an L-Banach space, and we see that Hr
c(Y1,L2(Dν,0(OL))) is a OL-submodule of the elements

of non-negative norm. This space is not necessarily preserved by the Hecke operators at p, but

it is preserved by the modified operators

U ′p
..= π

−ωp(ν)
p Up,

where we scale by π−ωp(ν)
p to ensure integrality in the case ωp(ν) is large and negative. Write

A′ ..= L[U ′p] for the algebra generated by these modified operators. Applying part (iii) of the

above lemma, we see that if h′ ∈ Q{p|p} is chosen such that h′p < 0 for some prime p above p,

we have

Hr
c(Y1(n),L2(Dν(L)))≤h′,A′ = {0}.

Now note that for any operator U on a nuclear Fréchet space M , we have a relation

Mh,pkU ∼= Mh−k,U .
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In particular, define h ∈ Q{p|p} by

hp ..= h′p + ωp(ν)
ep

.

Note that h′p < 0 for some p above p if and only if hp < ωp(ν)
ep

for some p above p, and that

the space on which the Hecke operators at p act with slope ≤ h is isomorphic to the space on

which the operators U ′p act with slope ≤ h′. Part (i) follows.

The proof for submodules is identical. The case of quotients then follows by taking a long exact

sequence, applying Lemma 13.3.1(i), and using the result for submodules.

13.3.2. Theta maps and partially overconvergent coefficients

We now introduce modules of partially overconvergent coefficients that will play a key role in

the proof.

For any σ ∈ Σ, let λσ = (k′,v′) be the weight defined by

k′τ =

 kτ : τ 6= σ,

−2− kσ : τ = σ.
, v′σ =

 vτ : τ 6= σ,

vσ + kσ + 1 : τ = σ.
(13.4)

Let f be a locally analytic function on OF ⊗Z Zp, and let {V } be an open cover of OF ⊗Z Zp
such that f |V is analytic for each V . Then we can consider f |V as a power series in the d

variables {zσ : σ ∈ Σ}. We can consider the operator (d/dzσ)kσ+1 on such power series in the

natural way, and note that this induces a map

Θσ : Aλ(L) −→ Aλσ (L).

For more details about this map, see [Urb11, Prop. 3.2.11]. Taking the continuous dual of this

map, we obtain a map

Θ∗σ : Dλσ (L) −→ Dλ(L).

Remark: This map is equivariant with respect to the action of Σ0(p). Note, however, that

the action of the Up operator is different on Dλσ (L) and Dλ(L), due to the scaling of v at σ.

Indeed, we introduce a factor of the determinant of the component at σ to the power of kσ + 1.

Now label the elements of Σ as σ1, σ2, ..., σd, where we can choose any ordering of the elements.

We write Θ∗0 : {0} → Dλ, and for each s = 1, ..., d, we denote by Θ∗s the map

Θ∗s ..=
s∑
i=1

Θ∗σi :
s⊕
i=1
Dλσi (L) −→ Dλ(L).
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The cokernels of the maps Θ∗s play a crucial role in the sequel. In particular, from the definition

it is clear that coker(Θ∗0) = Dλ(L). Consider now the map Θ∗1. If µ ∈ Dλσ1
(L), then Θ∗1(µ) is

0 on elements of Aλ(L) that are locally polynomial in zσ1 of degree at most kσ1 . Hence, for

µ ∈ Dλ(L), we have µ /∈ Im(Θ∗1) if and only if there exists a monomial zr ..=
∏
σ∈Σ z

rσ
σ with

rσ1 ≤ kσ1 + 1 such that µ(zr) 6= 0. From this one can see that coker(Θ∗1) can be seen as the

module of coefficients that are classical at σ1 and overconvergent at σ2, ..., σd. This motivates

the following:

Definition 13.3.5. Let J ⊂ Σ. For ν = (k,v) ∈ Z[Σ]2, define AJν (L) to be the space of

functions on OF ⊗Z Zp defined over L that are locally analytic in the variables zσ for σ /∈ J

and locally algebraic of degree at most max(kσ, 0) in the variables zσ for σ ∈ J . Define DJν (L)

be the topological dual of AJν (L).

Thus we see that coker(Θ∗1) = D{σ1}
λ (L). Continuing in the same vein, we see that coker(Θ∗s) =

DJsλ (L), where Js ..= {σ1, ..., σs}. In particular, if we write Vλ,loc(L) for the space of locally

algebraic polynomials on OF ⊗Z Zp of degree at most k, with the natural action of Σ0(p)

depending on λ, then we get:

Proposition 13.3.6. There is an exact sequence

⊕
σ∈Σ
Dλσ (L)

Θ∗d
−−−−−→ Dλ(L) −→ Vλ,loc(L) −→ 0.

In particular, we have

coker(Θ∗d) = DΣ
λ (L) ∼= Vλ,loc(L)∗.

These are the last terms of the locally analytic BGG resolution introduced in [Urb11], Section

3.3. See Proposition 3.2.12 of Urban’s paper for further details of this exact sequence.

Remark: This bears comparison to the results in Chapter 9, where we use this notion of

‘half-overconvergent’ modular symbols.

13.3.3. The control theorem

The following theorem is the main result of this part of the chapter, and allows us to canonically

lift small-slope classical modular symbols to overconvergent modular symbols.

Theorem 13.3.7. Let λ = (k,v) be an admissible weight, and let h = (hp)p|p ∈ Q{p|p}. Let

k0
p

..= min{kσ : σ ∼ p} and recall the definition of ωp(λ) from Definition 13.3.3. If for each

prime p above p we have

hp <
k0
p + ωp(λ) + 1

ep
, (13.5)
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then, for each r, the restriction

ρ : Hr
c(Y1(n),L2(Dλ(L)))≤h ∼ // Hr

c(Y1(n),L2(Vλ(L)∗))≤h

of the specialisation map to the slope ≤ h subspaces with respect to the Up-operators is an

isomorphism.

To prove this, we make use of:

Lemma 13.3.8. In the set-up of Theorem 13.3.7, if h satisfies equation (13.5), then for any

s there is an isomorphism

Hr
c(Y1(n),L2(DJs−1

λ (L)))≤h ∼ // Hr
c(Y1(n),L2(DJsλ (L)))≤h

induced from the natural specialisation maps.

Proof. We follow [Urb11]. For any σ ∈ Σ, let λσ = (k′,v′) be the weight defined in equation

(13.4), and recall the theta maps

Θ∗s :
s⊕
i=1
Dλσi (L)→ Dλ(L).

Recall that coker(Θ∗s) = DJsλ (L) can be viewed as a module of distributions that are classical

at σ1, ..., σs and overconvergent at σs+1, ..., σd. In particular, there are natural projection maps

DJs−1
λ (L) → DJsλ (L) given by specialising from overconvergent to classical coefficients at σs.

Moreover, from the definition of Θ∗σs there is an exact sequence

Dλs(L)
Θ∗σs

−−−−−→ DJs−1
λ (L) −→ DJsλ (L) −→ 0,

and a closer inspection shows that the sequence

0 −→ DJs−1
λσs

(L) −→ DJs−1
λ (L) −→ DJsλ (L) −→ 0 (13.6)

is exact for the quotient DJs−1
λσs

(L) of Dλσs (L).

Using Lemma 13.3.1 on the exact sequence of equation (13.6), we obtain the exact sequence

· · · −→ Hi
c(Y1(n),L2(DJs−1

λσs
(L)))≤h −→ Hi

c(Y1(n),L2(DJs−1
λ (L)))≤h

−→ Hi
c(Y1(n),L2(DJsλ (L)))≤h −→ Hi+1

c (Y1(n),L2(DJs−1
λσs

(L)))≤h −→ · · · ,

where here we’re taking slope decompositions with respect to the Hecke operators at p.
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If hp < (k0
p + ωp(λ) + 1)/ep for all primes above p, it follows that

hp(σs) <
kσs + ωp(σs)(λ) + 1

ep(σs)
=
ωp(σs)(λσs)
ep(σs)

.

Now, by Corollary 13.3.4 (ii), as DJs−1
λσs

is a quotient of Dλσs , we must have

Hr
c(Y1(n),L2(DJs−1

λσs
(L)))≤h = {0}

for all r. Then, using the long exact sequence, for all r we have

Hr
c(Y1(n),L2(DJs−1

λ (L)))≤h ∼= Hr
c(Y1(n),L2(DJsλ (L)))≤h,

as required.

Proof. (Theorem 13.3.7). Recall that we defined Vλ,loc(L) ⊂ A(L) to be the subspace of

functions which are locally polynomial of degree at most k. We see that Vλ,loc(L) ∼= lim←−Vλ,n(L),

where Vλ,n(L) ..= Aλ,n(L) ∩ Vλ,loc(L). Note that Vλ(L) = Vλ,0(L). In particular, using Lemma

13.3.1, we have

Hq
c(Y1(n),L2(Vλ,loc(L)∗))≤h ∼= Hq

c(Y1(n),L2(Vλ(L)∗))≤h.

Hence it suffices to prove the theorem by considering the coefficients of the target space to be

in Vλ,loc(L)∗ instead of Vλ(L)∗.

We use the lemma. For this, note that DΣ
λ (L) = Vλ,loc(L)∗ and D∅

λ (L) = Dλ(L). A simple

induction on s then shows that we have the required isomorphism.
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Chapter 14

Constructing the p-adic L-function

In this chapter, we conclude this part of the thesis by showing how to construct the p-adic

L-function of a small slope automorphic form for GL2 over a number field. In particular, in

the first section, we use overconvergent analogues of the classical evaluation maps of Chapter

12.1.2 to attach a canonical ray class distribution to an overconvergent modular eigensymbol

Ψ. In the case where Ψ is attached to a small slope automorphic form Φ via the control

theorem, we then show that this distribution interpolates critical values of the L-function of

Φ. To do this, we relate the overconvergent evaluations with their classical analogues. Unlike

in the imaginary quadratic case, this interpolation property does not necessarily determine the

distribution uniquely; we conclude by remarking on this lack of uniqueness. To get around this,

we note that our construction is canonical at every step, and that it thus makes sense to define

the p-adic L-function of Φ to be the distribution we construct.

14.1. Construction of the distribution

Let Φ be a cuspidal eigenform over F that has small slope (in the sense of the previous sec-

tion). Then via Eichler–Shimura, we can attach to Φ a small slope p-adic classical modular

eigensymbol, and using the results of previous sections, we can lift this to a unique small slope

overconvergent eigensymbol. In the work of Pollack and Stevens in [PS11] and [PS12], and the

work in Part II of this thesis, once one has such a symbol, one can evaluate it at the cycle

{0}−{∞} to obtain the p-adic L-function we desire. To generalise this to an arbitrary number

field, we use automorphic cycles to define overconvergent analogues of the evaluation maps of

Chapter 12.1.2, following the work of Barrera in [BS13] in the totally real case. The notation

we use here was fixed in Chapter 12.1.1.

14.1.1. Evaluating overconvergent classes

Recall that in Section 12.1.2, we used automorphic cycles to define evaluation maps on the space

of classical modular symbols with complex coefficients. Here, we adapt these evaluation maps

to the case of overconvergent modular symbols with p-adic coefficients. As we are considering

a different local system on Y1(n), this will be slightly different. In the sequel, we will link all of
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the various evaluation maps together by explicitly examining the interplay between the various

local systems.

Suppose Ψ ∈ Hq
c(Y1(n),L2(Dλ(L))). Here recall that we consider the local system given by

fibres of

GL2(F )\(GL2(AF )×Dλ(L))/Ω1(n)K+
∞Z∞ −→ Y1(n),

where the action is by

γ(x, µ)uk = (γxuk, µ ∗ u).

In this setting, the evaluation maps will allow us to associate a distribution to such a class.

Step 1: Pulling back to Xf

First we pullback along the map ηf : Xf → Y1(n). We have

η∗f Ψ ∈ Hq
c(Xf, η

∗
f L2(Dλ(L))).

We can see (by examining equation (12.1)) that here the local system corresponding to L′f,2(Dλ(L)) ..=

η∗f L2(Dλ(L)) is given by the fibres of

F×\(A×F ×Dλ(L))/U(f)F 1
∞ −→ Xf,

with action

γ(x, µ)ur =

γxur, µ ∗
u ((u− 1)f−1)v|p

0 1

 .

Step 2: Twisting the action

Unlike in the complex case described earlier, the action describing the local system above is

not a nice action, so we twist to get a nicer action of units. To this end, the matrix1 −1

0 (f)v|p

 ∈ GL2

(∏
p|p

Fp

)
= GL2(OF ⊗ Zp)

lies in Σ(F ⊗Q Qp). So we twist our local system by this; denote this twist on distributions by

ζ : Dλ(L) −→ Dλ(L),

µ 7−→ µ ∗

1 −1

0 (f)v|p

 ,
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and consider

ζ∗η
∗
f Ψ ∈ Hq

c(Xf,Lf,2(Dλ(L))),

where now the local system Lf,2(Dλ(L)) is given by

F×\(A×F ×Dλ(L))/U(f)F 1
∞ −→ Xf,

γ(x, µ)ur =

γxur, µ ∗
u 0

0 1

 .

Step 3: Passing to individual components

In identical fashion to Section 12.1.2, we pull back under the isomorphism τay : E(f)F 1
∞\F+

∞
∼−→

Xy ↪−→ Xf given by multiplication by ay. Then we have

τ∗ay
ζ∗η
∗
f Ψ ∈ Hq

c(E(f)F 1
∞\F+

∞,Lf,y,2(Dλ(L))),

where the local system Lf,y,2(Dλ(L)) is given by

E(f)F 1
∞\(F+

∞ ×Dλ(L)) −→ E(f)F 1
∞\F+

∞,

er(z, µ) =

erz, µ ∗
e−1 0

0 1

 .

(Note here that whilst u ∈ U(f) acts as ( u 0
0 1 ), in this step we now have an inverse. This because

u is considered as an element of the finite ideles whilst we instead see e as a diagonal infinite

idele, which is equivalent under multiplication by F× to e−1 as a diagonal finite idele and thus

an element of U(f)).

Step 4: Restricting the coefficient system

We would like a constant local system. This would allow us to evaluate the cohomology class

easily. We see that if we restrict to a quotient of Dλ(L) such that, for all e ∈ E(f), the matrix

( e 0
0 1 ) acts trivially, then we have precisely this. With this in mind, we make the following

definitions:

Definition 14.1.1. (i) Define A+
λ (L) to be the subspace of Aλ(L) given by

A+
λ (L) ..=

f ∈ Aλ(L) :

e 0

0 1

 ∗ f = f ∀e ∈ E(1)

 .

Note that equivalently this is the set of all f ∈ Aλ(L) such that f(ez) = ek+vf(z).

(ii) Define D+
λ (L) to be the topological dual of A+

λ (L). Note that D+
λ (L) is a quotient of
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Dλ(L).

Now, if we pushforward via the map

ν : Dλ(L) −→ D+
λ (L),

µ 7−→ µ|A+
λ

(L),

then the resulting local system is constant. We see that

ν∗τ
∗
ay
ζ∗η
∗
f Ψ ∈Hq

c(E(f)F 1
∞\F+

∞,D+
λ (L))

∼= D+
λ (L),

where the isomorphism is given by integrating over E(f)F 1
∞\F+

∞.

Definition of the evaluation map

Definition 14.1.2. We write Evay
f,† for the composition

Evay
f,† : Hq

c(Y1(n),L2(Dλ(L))) −→ D+
λ (L)

of the maps

Hq
c(Y1(n),L2(Dλ(L)))

ζ∗η
∗
f

−−−−−→ Hq
c(Xf,Lf,2(Dλ(L)))

τ∗ay

−−−−−→ · · ·

Hq
c(E(f)F 1

∞\F+
∞,Lf,y,2(Dλ(L))

ν∗
−−−−−→ Hq

c(E(f)F 1
∞\F+

∞,D+
λ (L)) ∼= D+

λ (L).

In particular, we have maps Evay
f,† for each y ∈ Cl+F (f). Note that these maps are dependent on

the choice of representatives. Despite this, we have then proved:

Proposition 14.1.3. There is, for a fixed choice of representatives {ay ∈ A×F : y ∈ Cl+F (f)}, a

map

Hq
c(Y1(n),L2(Dλ(L)))

⊕yEvay
f,†

−−−−−→
⊕

Cl+
F

(f)

D+
λ (L).

To summarise the above construction: to an overconvergent modular symbol, for a fixed ideal

f, we attach a collection of distributions (indexed by Cl+F (f)) with a compatible action of the

totally positive units of F . This construction depends on a choice of idelic representatives for

Cl+F (f).

14.1.2. Locally analytic functions on Cl+F (p∞)

The p-adic L-function should be a locally analytic distribution on the ray class group Cl+F (p∞).

Before constructing such a distribution, we must take a digression to describe what locally
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analytic functions on this space actually look like.

The geometry of Cl+F (p∞)

We first recall the geometry of Cl+F (p∞). It is defined as follows:

Cl+F (p∞) ..= F×\A×F /U(p∞)F+
∞.

Letting f range over all ideals dividing (p)∞ and taking the inverse limit of the series of exact

sequences

O×F,+ −→ (OF /f)× −→ Cl+F (f) −→ Cl+F −→ 0,

we see that we have an exact sequence

O×F,+ −→ (OF ⊗Z Zp)× −→ Cl+F (p∞) −→ Cl+F −→ 0,

so that – after picking a choice of representatives for Cl+F – we have

Cl+F (p∞) ∼=
⊔
Cl+
F

(OF ⊗Z Zp)×/E(1).

(Here note that E(1) = O×F,+, and we’ve taken E(1) to be the closure of the image of E(1) in

(OF ⊗Z Zp)×). Indeed, for any f, we can go further, and write

Cl+F (p∞) ∼=
⊔

y∈Cl+
F

(f)

Gy,

where

Gy ..= {z ∈ Cl+F (p∞) : z 7→ y under the map Cl+F (p∞)→ Cl+F (f)}. (14.1)

Note that multiplication by a−1
y gives an isomorphism

Gy ∼= G ..= {z ∈ (OF ⊗Z Zp)× : z ≡ 1 (mod f)}/E(f).

Analytic functions

Let L be a (not necessarily finite) extension of Qp contained in Cp, the completion of the

algebraic closure of Qp. Suppose the L is large enough to contain the image of all completions

of F at primes above p under their embeddings into Cp.

Definition 14.1.4. A locally analytic function on OF ⊗Z Zp defined over L is a function

f : OF ⊗Z Zp → L, such that for each z0 ∈ OF ⊗Z Zp, there is a neighbourhood U ⊂ OF ⊗Z Zp
of z0 such that

f

∣∣∣∣
U

(z) =
∑
r≥0

ar(z − z0)r, ar ∈ L,
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where r ∈ Z[Σ].

For a choice of idelic representatives {ai} ⊂ A×F of Cl+F , we can consider any function

ϕ : Cl+F (p∞) −→ L

as a collection

ϕai : (OF ⊗Z Zp)×/E(1) −→ L,

where

ϕai(z) ..= ϕ(a−1
i z).

Then, in a slight abuse of notation, ϕai can be thought of as a function

ϕai : OF ⊗Z Zp −→ L

with support on (OF ⊗Z Zp)× and with ϕai(ez) = ϕai(z) for all e ∈ E(1).

Definition 14.1.5. We say that ϕ is locally analytic on Cl+F (p∞) if each ϕai is locally analytic

on OF ⊗Z Zp.

This is independent of the choice of class group representatives. Before we prove this, we

rephrase the condition slightly. If U ⊂ OF ⊗Z Zp is an open set, then we say a function

f : U → L is analytic if it can be written as a single convergent power series. By definition, as

OF ⊗ZZp is compact, ϕai is locally analytic as a function on OF ⊗ZZp if and only if there exists

an ideal f|p∞ such that ϕai is analytic on each of the sets {a + f(OF ⊗Z Zp) : a ∈ OF ⊗ Zp}.

To make this more precise: given a function ϕ : Cl+F (p∞) → L, and an ideal f|p∞, pick some

choice of idelic representatives ay for Cl+F (f), and define

ϕay : G −→ L,

z 7−→ ϕ(a−1
y z),

where G ∼= Gy is as above. Also as above, ϕay can be viewed as a function on OF ⊗Z Zp. We

say that ϕ is locally analytic if there exists some f such that ϕay is analytic for each y.

Proposition 14.1.6. Let ϕ : Cl+F (p∞) → L be a function. Then in the above construction, if

ϕ is locally analytic for some choice of idelic class group representatives for Cl+F (f), then it is

locally analytic for any choice of representatives.

Proof. Suppose there exists an f and a set {ay} of representatives such that each ϕay is analytic.

Consider a different choice of representatives {a′y}. Then, for a fixed y, we have a′y = ayγur,

171



Constructing the p-adic L-function

where γ ∈ F×, u ∈ U(f), and r ∈ F+
∞. Then

ϕa′y(z) = ϕ((a′y)−1z) = ϕ(a−1
y u−1γ−1r−1z)

= ϕ(a−1
y u−1z)

= ϕay(ũ−1z),

where ũ is the image in (OF ⊗Z Zp)× of u ∈ U(f) in U(f)/U(p∞) (which is naturally isomophic

to a subset of (OF ⊗Z Zp)×). Then, if ϕay(z) =
∑
arz

r, we have

ϕa′y(z) =
∑

(arũ
−r)zr.

As we picked L large enough to contain the image of ũ under any embedding into Cp, and ũ is

a unit, this is a convergent power series over L.

Thus ϕay is analytic if and only if ϕa′y is analytic, and as y was arbitrary, this proves the

proposition.

Remark 14.1.7: Note that we have the dictionary

ϕay(z) = ϕa′y(ũz)

as functions OF ⊗Z Zp → L, where a′y = uayγr. We will use this later to prove that the

distribution we obtain is canonical.

Definition 14.1.8. We write A(Cl+F (p∞), L) for the space of locally analytic functions on

Cl+F (p∞) defined over L. We also define the space of locally analytic distributions on the ray

class group to be

D(Cl+F (p∞), L) ..= Homcts(A(Cl+F (p∞), L), L).

14.1.3. Constructing µΨ in D(Cl+F (p∞), L)

With our family of maps Evay
f,† from Hq

c(Y1(n),L2(Dλ(L))) to D+
λ (L), we can construct a can-

didate distribution for the p-adic L-function. Fix an ideal f|p∞.

Notation: We write Af = {ay} to denote our system of class group representatives for Cl+F (f).

We now construct a distribution µAf

Ψ associated to this choice of representatives. Let ϕ be a

locally analytic function on Cl+F (p∞). Via the above construction, we obtain functions ϕay :

Gy → L, which we can view as a function

ϕay : OF ⊗Z Zp −→ L
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with support on the open subset {z ∈ (OF ⊗Z Zp)× : z ≡ 1 (mod f)} and satisfying

ϕay(ez) = ϕay(z) ∀e ∈ E(f).

Now, Evay
f,†(Ψ) ∈ D+

λ (L). This is a distribution that takes as input functions ψ : (OF⊗ZZp)× →

L with ψ(ez) = ek+vψ(z). So to force ϕay to satisfy this condition, we twist it.

Definition 14.1.9. If ψ : OF ⊗Z Zp → L is a function with support on elements congruent to

1 (mod f) and that satisfies ψ(ez) = ψ(z) for all e ∈ E(f), then we define ψ∗ ∈ A+
λ (L) by

ψ∗(z) = zk+vψ(z)−1.

It is simple to see that this now satisfies the condition required. We use ψ−1 rather than ψ for

reasons of compatibility in later calculations.

Now we can evaluate Evay
f,†(Ψ) at ϕ∗ay

. This motivates:

Definition 14.1.10. Define µAf

Ψ ∈ D(Cl+F (p∞), L) by

µ
Af

Ψ (ϕ) =
∑

y∈Cl+
F

(f)

Evay
f,†(Ψ)(ϕ∗ay

) ∈ L.

Proposition 14.1.11. For fixed f, this is independent of the choice of class group representa-

tives.

Proof. There are two layers to this. Choosing representatives fixes:

(a) The collection of maps {Evay
f,†(Ψ) : ay ∈ Af}, and

(b) The identification of ϕ with (ϕay)y∈Cl+
F

(f).

We prove that these choices cancel each other out. To do so, we examine the local systems; see

Section 12.1.1 for descriptions of each local system.

Recall that we have ζ∗η∗f Ψ ∈ Hq
c(Xf,Lf,2(Dλ(L))) (canonically), and then that we can pull back

to Xy under the canonical inclusion. At the first stage where our representatives come into

play, the map of local systems induced by

τay : E(f)F 1
∞\F+

∞
∼−→ Xy
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can be described by the map

F×\(F×ayU(f)F+
∞ ×Dλ(L))/U(f)F 1

∞ −→ E(f)F 1
∞\(F+

∞ ×Dλ(L)) (14.2)

(γayur, µ) 7−→

r, µ ∗
ũ−1 0

0 1

 ,

recalling that τay is given by z 7→ ayz and that ũ is the image of u in (OF ⊗Z Zp)×. This map

is well-defined; indeed, consider

γ′[(γayur, µ)]vs =
[(
γ′γayuvrs, µ ∗

(
ṽ 0
0 1

))]
7−→

[(
rs,
(
µ ∗
(
ṽ 0
0 1

))
∗
(

(ũv)−1 0
0 1

))]
=
[(
r, µ ∗

(
ũ−1 0

0 1

))]
= Im([γayur, µ]).

Now suppose we choose a different set of representatives {a′y}, with, as before,

a′y = ayγur, γ ∈ F×, u ∈ U(f), r ∈ F 1
∞.

Then under the map of equation (14.2), we have

[(a′y, µ)] = [(ayγur, µ)] 7−→
[(
r, µ ∗

(
ũ−1 0

0 1

))]
.

Thus, when we restrict, we find that

Eva
′
y

f,†(Ψ) = Evay
f,†(Ψ) ∗

ũ−1 0

0 1

 .

We’ve already shown that, for ϕ ∈ A(Cl+F (p∞), L), we have

ϕa′y(ũz) = ϕay(z).

Then

ϕ∗ay
(z) = zk+vϕay (z)−1

= zk+vϕa′y(ũz)−1

= ũ−k−v(ũz)k+vϕa′y(ũz)−1

= ũ−k−vϕ∗a′y(ũz)

=

ũ−1 0

0 1

 ∗ ϕ∗a′y(z).

174



Constructing the p-adic L-function

Thus

ϕ∗a′y(z) =

ũ 0

0 1

 ∗ ϕ∗ay
(z).

Accordingly,

Eva
′
y

f,†(Ψ)(ϕ∗a′y) = Evay
f,†(Ψ) ∗

ũ−1 0

0 1

ũ 0

0 1

 ∗ ϕ∗ay


= Evay

f,†(Ψ)(ϕ∗ay
).

Thus this is independent of the choice of representatives, as desired.

Definition 14.1.12. For some choice of representatives Af = {ay} of Cl+F (f), define

µf
Ψ

..= µ
Af

Ψ .

(Note that, by the proposition, this is well-defined for each f).

14.1.4. Compatibility over choice of f

We have defined, for each f|p∞ with (p)|f, a distribution µf
Ψ ∈ D(Cl+F (p∞), L). We now investi-

gate how this distribution varies with the choice of f. Since we have proved that the distribution

we obtain for each f is independent of class group representatives, we now choose class group

representatives that are compatible in the following sense:

Notation: Throughout this section, take f|p∞ with (p)|f and let p|p be a prime. Let Af = {ay}

be a full set of representatives for Cl+F (f), and let {ur ∈ U(f) : r ∈ R}, for R = U(f)/E(f)U(fp),

be elements of U(f) such that the set

Afp
..= {ayur : y ∈ Cl+F (f), r ∈ R}

is a full set of representatives for Cl+F (fp).

Lemma 14.1.13. (i) There is a commutative diagram

Hq
c(Y1(n),L2(Dλ(L))) Up

> Hq
c(Y1(n),L2(Dλ(L)))

Hq
c(Xfp,Lfp,2(Dλ(L)))

ζ∗η
∗
fp∨

Tr
> Hq

c(Xf,Lf,2(Dλ(L)))

ζ∗η
∗
f∨

,

where the bottom map is the natural trace map on cohomology (see, for example, [Hid93],

Section 7).

(ii) Write EvAf

f,† = ⊕y∈Cl+
F

(f)Evay
f,†, and similarly for fp with respect to Afp. Then we have the
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commutative diagram

Hq
c(Y1(n),L2(Dλ(L)))

Ev
Afp
fp,†

>
⊕

Cl+
F

(fp)D
+
λ (L)

Hq
c(Y1(n),L2(Dλ(L)))

Up

∨ Ev
Af
f,†

>
⊕

Cl+
F

(f)D
+
λ (L)

trf∨

,

where

trf
(

(µayur )y,r

)
=

∑
r∈R

µayur

∣∣∣∣
ũr−1 0

0 1


y∈Cl+

F
(f)

.

Proof. We construct commutative diagrams at each step in the definition of the evaluation

maps. For convenience, we drop Dλ(L) from the notation and instead write L = L(Dλ(L)), for

appropriate subscripts on L.

Note that there is a natural projection map pr : Xfp → Xf that induces a trace map on the

cohomology. We wish to construct a map Hq
c(Xfp,L′fp,2) → Hq

c(Xf,L′f,2), and for this it hence

suffices to construct a map of sheaves

pr∗L′fp,2 −→ L′f,2.

We do this as follows. Note that there is a natural map α : L′fp,2 → L′f,2 given by

(x, µ) 7−→

x, µ ∗
1 0

0 πp

 .

Let G ..= Gal(Xfp/Xf) ∼= OF /p. Now let U ⊂ Xf be open and sufficiently small that

pr−1(U) =
⊔
g∈G
Ug ⊂ Xfp,

where pr induces a homeomorphism ig : U → Ug. Then

pr∗L′f,2(U) ..= L′fp,2(pr−1(U)) =
⊕
g∈G
L′fp,2(Ug).

Then define a map

pr∗L′fp,2(U) −→ L′f,2(U),

s = (sg)g∈G 7−→
∑

α ◦ sg ◦ ig.
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We see that we have defined a map

Hq
c(Xfp,L′fp,2)

∗
( 1 0

0 πp

)
−−−−−→ Hq

c(Xf,L′f,2),

and moreover we see that this makes the diagram

Hq
c(Y1(n),L2(Dλ(L))) Up

> Hq
c(Y1(n),L2(Dλ(L)))

Hq
c(Xfp,L′fp,2)

η∗fp∨ ∗
( 1 0

0 πp

)
> Hq

c(Xf,L′f,2)

η∗f∨

commute.

Via a similar construction, and by replacing the map α with the map α′ : Lfp,2 → Lf,2 defined

by (x, µ) 7→ (x, µ), we see that we construct a map Hq
c(Xfp,Lfp,2)→ Hq

c(Xf,Lf,2) that is nothing

but the trace map on cohomology, and in particular that we have the following commutative

diagram:

Hq
c(Xfp,L′fp,2)

∗
( 1 0

0 πp

)
> Hq

c(Xf,L′f,2)

Hq
c(Xfp,Lfp,2)

ζ∗
∨

tr
> Hq

c(Xf,Lf,2)

ζ∗
∨

.

Finally, we bring in the dependence on our choice of class group representatives. We see that

there is commutative diagram

Hq
c(Xfp,Lfp,2) tr

> Hq
c(Xf,Lf,2)

Hq
c(E(fp)F 1

∞\F+
∞,Lfp,x,2)

τ∗ayur
∨

[
∗
(
ũr
−1 0
0 1

)]
∗
◦pr∗

> Hq
c(E(f)F 1

∞\F+
∞,Lf,y,2)

τ∗ay
∨

,

where x denotes the class in Cl+F (fp) represented by ayur, and pr is the natural projection

map. Here we have used the results of the previous section. This shows that for Ψ ∈

Hq
c(Y1(n),L2(Dλ(L))), we have

Evayur
fp,† (Ψ) ∗

ũr−1 0

0 1

 = Evay
f,†(Ψ|Up)

∣∣∣∣
Gx

,

where Gr = {z ∈ OF ⊗Z Zp : z ∼= ure (mod fp) for some e ∈ E(f)}. Summing over the relevant

narrow ray class groups gives the diagram as stated.

Proposition 14.1.14. Let f|p∞ with (p)|f, and let p be a prime above p. Let

Ψ ∈ Hq
c(Y1(n),L2(Dλ(L)))
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be an eigensymbol for all the Hecke operators at p, with Up-eigenvalue λp. Then

µfp
Ψ = λpµ

f
Ψ.

Proof. Let ϕ ∈ A(Cl+F (p∞)). We evaluate µfp
Ψ at ϕ by using the class group representatives

Afp, and then evaluate µf
Ψ|Up

at ϕ using the representatives Af, and use the previous lemma to

show that they are equal.

Fix y ∈ Cl+F (f) and r ∈ R. Then we see that

ϕayur (z) = ϕay(u−1
r z)

for z ∈ Gr. In particular, we have

ϕ∗ay

∣∣∣∣
Gr

=

ũr−1 0

0 1

 ∗ ϕ∗ayur (z)

Observe now that by the previous lemma, we have

Evay
f,†(Ψ|Up)(ϕ∗ay

) =
∑
r∈R

Evayur
fp (Ψ)

∣∣∣∣
ũr 0

0 1

(ϕ∗ay

∣∣∣∣
Gr

)

=
∑
r∈R

Evayur
fp (Ψ)

(
ϕ∗ayur

)
.

Summing over y ∈ Cl+F (f) on both sides, and replacing Ψ|Up with λpΨ on the left hand side,

now shows the result.

We’ve now proved the following:

Theorem 14.1.15. Let Ψ ∈ Hq
c(Y1(n),L2(Dλ(L))) be an eigenclass for the Up operators for

all p|p, and let f|(p∞) be some choice of ideal with (p)|f. Write λf for the eigenvalue of Uf, and

define

µΨ ..= λ−1
f µf

Ψ.

This is well-defined and independent of choices up to a fixed choice of uniformisers at primes

above p.

Thus for such Ψ there is a canonical way of attaching an element µΨ of D(Cl+F (p∞), L) to Ψ.

14.1.5. Evaluating at Hecke characters

Let ϕ be a Hecke character of infinity type r ∈ Z[Σ] and conductor f|(p∞), where (p)|f, and

recall that in Section 1.3.2, we associated to ϕ a function ϕp−fin on Cl+F (p∞). It is simple to
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see that this function is in fact locally analytic. In this section we describe the evaluation of

the distribution µΨ at ϕp−fin.

Recall: ϕp−fin was defined to be the function on the ideles defined by

ϕp−fin(x) = εϕϕf (x)wr
p(x),

where wr
p is an algebraic function (for example, when F = Q, we have wrp(x) = xrp). In

particular, choosing representatives {ay} for Cl+F (f), we see that

(ϕp−fin)ay = 1Gyεϕϕf (ay)zr,

where 1Gy is the indicator function of the open subset of Cl+F (p∞) corresponding to y ∈ Cl+F (f)

(see equation (14.1)), and z is a variable on OF ⊗Z Zp.

We see that, for Ψ as above,

µΨ(ϕp−fin) = λ−1
f

∑
y
εϕϕf (ay)Evay

f,†(Ψ)(zk+v−r). (14.3)

14.2. Interpolation of L-values

In previous sections, we have defined the maps denoted by solid arrows in the following diagram:

Hq
c(Y1(n),L1(Vλ(L)∗))

Evay
f,j,1

> L

∼=

Hq
c(Y1(n),L2(Vλ(L)∗)) ....................................................................

Evay
f,j,2

> L

β

∨

..........

Hq
c(Y1(n),L2(Dλ(L)))

ρ
∧∧

Evay
f,†

> D+
λ (L) ev. at zk−j

> L

δ

∧.........

(14.4)

In particular, the isomorphism is induced by the isomorphism of local systems given in Remark

11.3.2, the top (classical) evaluation map was defined in Section 12.1.2, the map ρ is induced

from the specialisation Dλ(L)→ Vλ(L)∗, and the bottom (overconvergent) evaluation map was

defined in Section 14.1.1. In this section, we define the maps above denoted by dotted arrows

in a manner such that the diagram commutes. By doing so, we’ll be able to use our previous

results to relate the evaluation of the distribution µΦ at Hecke characters with critical L-values

of Φ.

14.2.1. Classical evaluations, II

We start by defining the “missing” evaluation map. We’ve already touched on all of the key

points of this construction; it is essentially a blend of our previous two evaluation maps. Taking
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notation from Section 12.1, we pullback along ηf, giving a local system η∗f L2(Vλ(L)∗) on Xf

that can be described by sections of the projection

F×\(A×F × Vλ(L)∗)/U(f)F 1
∞,

with action

f(x, P )ur =

fxur, P ∗
u ((u− 1)f−1)v|f

0 1

 .

This bears relation with the overconvergent case, in that we have an action of units that isn’t

particularly nice. As in that case, we ‘untwist’ this action using the map (ζf)∗ from Section

14.1.1, so that units act via the matrix ( u 0
0 1 ). We can then pull-back under the injection

τay : E(f)F 1
∞\F+

∞ ↪−→ Xf

of previous sections. Finally, as in the classical case, we pushforward under evaluation at the

polynomial Xk−jYj, which lands us in a cohomology group with coefficients in a constant sheaf

(see Section 12.1.2). Combining all of these maps, we get a map

Evay
f,j,2 : Hq

c(Y1(n),L2(Vλ(L)∗)) −→ L,

which gives the definition of the dotted horizontal arrow in the diagram.

The following lemma determines the definition of the map β in the diagram. For ease of

notation, write Evk for the map Evay
f,j,k.

Lemma 14.2.1. Let α denote the isomorphism

α : Hq
c(Y1(n),L1(Vλ(L)∗)) ∼−→ Hq

c(Y1(n),L2(Vλ(L)∗))

induced by the isomorphism L1(Vλ(L)∗) ∼−→ L2(Vλ(L)∗) of local systems given by

(g, P ) 7−→ (g, P |gp)

(see Remark 11.3.2). Then

Ev2(α(φ)) = fj+vEv1(φ).

Remark: Here, in an abuse of notation, we write f for the natural element of L corresponding

to (f)v|p ∈ OF ⊗Z Zp under our fixed choice of uniformisers at primes above p. In particular,

‘multiplication by fj+v’ is a well-defined concept.

Proof. We look at the local systems in each case. A simple check shows that there is a com-
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mutative diagram

Hq
c(Y1(n),L1(Vλ(L)∗))

η∗f
> Hq

c(Xf,Lf,1(Vλ(L)∗))

Hq
c(Y1(n),L2(Vλ(L)∗))

α
∨ (ζf)∗η∗f

> Hq
c(Xf,Lf,2(Vλ(L)∗))

α′

∨
,

where α′ is the map induced by the map

(x, P ) 7−→

x, P
∣∣∣∣∣∣
xp 0

0 (f)v|f


of local systems. Then continuing, we see that there is a commutative diagram

Hq
c(Xf,Lf,1(Vλ(L)∗))

τ∗ay
> Hq

c(E(f)F 1
∞\F+

∞,Lf,y,1(Vλ(L)∗))

Hq
c(Xf,Lf,2(Vλ(L)∗))

α′

∨ τ∗ay
> Hq

c(E(f)F 1
∞\F+

∞,Lf,y,2(Vλ(L)∗))

α′′

∨

where α′′ is the map induced by the map

(r, P ) 7−→

r,
∣∣∣∣∣∣
1 0

0 (f)v|f)


of local systems. Finally, there is a commutative diagram

Hq
c(E(f)F 1

∞\F+
∞,Lf,y,1(Vλ(L)∗)) (ev. at Xk−jYj)∗

> L

Hq
c(E(f)F 1

∞\F+
∞,Lf,y,2(Vλ(L)∗))

α′′

∨
(ev. at Xk−jYj)∗

> L

×fj+v

∨
.

Putting these diagrams together gives the required result.

Recall the definition of Evϕ in Definition 12.2.3, and relabel Evϕ,1 ..= Evϕ. Similarly define

Evϕ,2 ..=
∑

y∈Cl+
F

(f)

εϕϕf (ay)Evay
f,j,2,

where this makes sense, and note that by an identical argument to previously this is independent

of class group representatives. Using the results above with the results in Section 12.2, we

obtain:

Corollary 14.2.2. Recall the definition of θK ∈ Hq
cusp(Y1(n),L1(Vλ(K)∗)) from Definition

11.6.4, and recall that we set θL to be its image in Hq
c(Y1(n),L2(Vλ(L)∗)) under the inclusions

of equation (11.3) and (11.4). Then

Evϕ,2(θL) = fj+vEvϕ,1(θK) = (−1)R(j,k)
[
|D|τ(ϕ)fj+v

2r2ΩεϕΦ

]
· Λ(Φ, ϕ),
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where R(j,k) =
∑
v∈Σ(R) jv + kv +

∑
v∈Σ(C) kv.

14.2.2. Relating classical and overconvergent evaluations

Returning to the commutative diagram in equation (14.4), we now show that the map δ is

actually nothing but the identity map. For a suitable automorphic form Φ, this will then allow

us to prove the required interpolation property for the distribution µΦ.

Proposition 14.2.3. There is a commutative diagram

Hq
c(Y1(n),L2(Dλ(L)))

Evay
f,†

> D+
λ (L)

Hq
c(Y1(n),L2(Vλ(L)∗))

ρ
∨ Evay

f,j,2
> L

ev. at zk−j

∨
,

where the left vertical arrow is the specialisation map and the right vertical arrow is evaluation

at the polynomial zk−j.

Proof. This is easily shown by looking at each step of the construction of the maps Evay
f,† and

Evay
f,j,2 in the previous sections. At each of steps 1, 2 and 3 we can write down a specialisation

map by restricting the coefficients, and by looking at the level of local systems, we can clearly

see that these specialisations commute with the maps ηf, ζf and τay . It remains to show

compatibility over step 4, where the construction is slightly different. This amounts to showing

that the diagram

Hq
c(E(f)F 1

∞\F+
∞,Lf,y,2(Dλ(L))) res

> D+
λ (L)

Hq
c(E(f)F 1

∞\F+
∞,Lf,y,2(Vλ(L)∗))
∨

ev. at Xk−jYj

> L

ev. at zk−j

∨

commutes, where the lefthand map is restriction of the coefficients, the map res is the restriction

of coefficients to D+
λ (L) followed by integration over a fixed de Rham cohomology class, and the

bottom map is the composition of (ρj)∗ with integration over the same de Rham cohomology

class. Since Vλ(L)∗ ↪→ Aλ(L) via P (X,Y) 7→ P (z, 1), we see that when we look at the

corresponding local systems, we are evaluating at the same element in each case; thus the

diagram commutes.

By combining this with the formula (14.3) for µΨ(ϕp−fin), we get the following corollary:

Corollary 14.2.4. Let φ ∈ Hq
c(Y1(n),L2(Vλ(L)∗)) be a small slope Hecke eigensymbol with

Uf-eigenvalue λf and with (unique) overconvergent eigenlift Ψ, and let µΨ be the corresponding

ray class distribution. Then for a Hecke character ϕ of infinity type j+v and conductor f|(p∞),
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where 0 ≤ j ≤ k and (p)|f, we have

µΨ(ϕp−fin) = λ−1
f Evϕ,2(φ).

14.2.3. Interpolating at unramified characters

We now consider interpolation of L-values at Hecke characters that are not necessarily ramified

at all primes above p. For this, we use Corollary 12.1.15. Whilst the results of this section up

until now have been for arbitrary modular symbols, to use this corollary we need to restrict to

the case where the cohomology classes we consider are those attached to automorphic forms

via the Eichler-Shimura isomorphism. Let Φ be such an automorphic form of weight λ and

level Ω1(n), and suppose that Φ is a Hecke eigenform that has small slope at the primes above

p. Let φL be the (p-adic) modular symbol attached to Φ, and let Ψ be the associated (unique)

overconvergent modular symbol corresponding to φL under the control theorem. Then we have

the following lemma:

Lemma 14.2.5. Let ϕ be a Hecke character of conductor f|(p∞) (with no additional conditions

on f) and infinity type j + v, where 0 ≤ j ≤ k. Let B be the set of primes above p that do not

divide f, and define f′ ..= f
∏

p∈B p, so that f′ is divisible by all the primes above p. Then we

have

µΨ(ϕp−fin) = λ−1
f′ (f′)j+v

∏
p∈B

(ϕ(p)λp − 1)

Evϕ,1(φL)

= λ−1
f (f)j+v

∏
p∈B

ϕp−fin(πp)(1− λ−1
p ϕ(p)−1)

Evϕ,1(φL). (14.5)

Proof. By definition, µΨ ..= λ−1
f′ µ

f′

Ψ (which is canonical since f′ is divisible by every prime above

p). Hence we see that

µΨ(ϕp−fin) = λ−1
f′

∑
y∈Cl+

F
(f′)

εϕϕf (ay)Evay
f′,†(Ψ)(zk−j).

Using the results of Section 14.2.2, we can replace the overconvergent evaluations with classical

ones, and then using the results of Section 14.2.1, we get

µΨ(ϕp−fin) = λ−1
f′ (f′)j+v

∑
y∈Cl+

F
(f′)

εϕϕf (ay)Evay
f′,j,1(φL).

We now use Corollary 12.1.15, which directly gives the first equality. The second equality

follows since for p not dividing f, we have pj+v = ϕp−fin(πp)ϕ(p)−1, an identity which follows

from the definition of ϕp−fin.
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14.3. Summary of results

The results of the previous section, and in particular Corollaries 14.2.2 and 14.2.4 and Lemma

14.2.5, give the desired interpolation property for our distribution. The following is a summary

of the main results of this part of this thesis.

Recall the set-up. Let F/Q be a number field and p a rational prime. Let Φ be a small slope

cuspidal eigenform over F of weight λ = (k,v) ∈ Z[Σ]2, where k + 2v is parallel, and level

Ω1(n), where (p)|n. Let Λ(Φ, ·) be the normalised L-function attached to Φ in Definition 4.3.6.

Write θL for the p-adic modular symbol associated to Φ in Definition 11.6.5, where L is a

sufficiently large extension of Qp. Using the control theorem, we may lift θL to a unique small

slope overconvergent eigensymbol Ψ, and using Theorem 14.1.15 we may construct a canonical

distribution

µΨ ∈ D(Cl+F (p∞), L)

attached to Ψ.

Theorem 14.3.1. Let ϕ be a Hecke character of conductor f|(p∞) and infinity type j+v, where

0 ≤ j ≤ k, and let εϕ be the character of {±1}Σ(R) attached to ϕ in Chapter 1.2.2. As described

in Section 1.3.2, ϕ gives rise to a canonical locally algebraic function ϕp−fin ∈ A(Cl+F (p∞), L).

Let B be the set of primes above p that do not divide f. Then

µΨ(ϕp−fin) = (−1)R(j,k)
[
|D|τ(ϕ)fj+v

2r2λfΩ
εϕ
Φ

]∏
p∈B

Zp

Λ(Φ, ϕ),

where

Zp
..= ϕp−fin(πp)(1− λ−1

p ϕ(p)−1)

(noting here that ϕ(p) is well-defined since ϕ is unramified at p).

Here R(j,k) =
∑
v∈Σ(R) jv + kv +

∑
v∈Σ(C) kv, D is the discriminant of F , τ(ϕ) is the Gauss

sum of Definition 1.3.2, r2 is the number of pairs of complex embeddings of F , λf is the Uf-

eigenvalue of Φ, ΩεϕΦ is the fixed period attached to Φ and εϕ in Theorem 4.4.1, and Λ(Φ, ·) is

the normalised L-function of Φ as defined in Definition 4.3.6.

Definition 14.3.2. In the set-up of above, we call µΨ the p-adic L-function of Φ.

14.4. Remarks on uniqueness

When F is a totally real or imaginary quadratic field, we can prove a uniqueness property of

this distribution. In particular, we prove that the distribution constructed above is admissible
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in a certain sense, and any admissible distribution is uniquely determined by its values at

functions coming from critical Hecke characters (see [Col10] and [Loe14]). For further details

of admissibility conditions in these cases, see [BS13] and Chapter 8.3.3 for the totally real and

imaginary quadratic situations respectively. In the general case, things are more subtle. There

is a good notion of admissibility for distributions on OF ⊗Z Zp, but it is not at all clear how

this descends to a ‘useful’ admissibility condition on Cl+F (p∞).

In particular, recall that

Cl+F (p∞) =
⊔
Cl+
F

(OF ⊗ Zp)×/E(1).

When F is imaginary quadratic, the unit group is finite, and in particular in passing to the

quotient we do not change the rank. In this case, growth properties pass down almost un-

changed. When F is totally real, the unit group is in a sense ‘maximal’ if we assume Leopoldt’s

conjecture. In particular, provided this, the quotient is just one dimensional, and we have a

canonical ‘direction’ with which to check growth properties.

Let us illustrate the difficulties of the general case with a conceptual example, for which the

authors would like to thank David Loeffler. Let F = Q( 3
√

2), and note that F is a cubic field

of mixed signature. We see that (OF ⊗Z Zp)× is a p-adic Lie group of rank 3, and that the

quotient by E(1) has rank 2 (since the unit group has rank 1 by Dirichlet’s unit theorem). In

particular, a distribution on Cl+F (p∞) can ‘grow’ in two independent directions.

As the maximal CM subfield of F is nothing but Q, it follows that the only possible infinity

types of Hecke characters of F are parallel. In particular, there is only one ‘dimension’ of Hecke

characters. In this sense, even though we have constructed a distribution that interpolates all

critical Hecke characters, there are simply not enough Hecke characters to hope that we can

uniquely determine a ray class distribution by this interpolation property.

One might be able to obtain nice growth properties using the extra structure that we obtain

from our overconvergent modular symbol; in particular, one might expect the overconvergent

cohomology classes we construct to take values in the smaller space of admissible distributions

on OF⊗Zp, which makes sense before we quotient to obtain distributions on Cl+F (p∞). Without

the theory of admissibility at hand in the latter situation, however, we cannot show that the

distribution constructed in this paper is (in general) unique. We have tried to rectify this by

proving that the distribution we obtain is canonical. As seen in the previous sections, we were

able to do this up to a (fixed) choice of uniformisers at the primes above p. Hence, in the spirit

of Pollack and Stevens in [PS12], we simply define the p-adic L-function to be this distribution.
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It remains to comment on the dependence on choices of uniformisers. This dependence seems

to be intrinsic to this more explicit approach; indeed, the evaluation maps at the level of p-adic

coefficients depend on the choice of uniformiser, and accordingly the distribution we’ve defined

the be the p-adic L-function does as well. However, the interpolation property also has an

explicit dependence on the uniformisers (coming from the Gauss sum and the term fj+v), so by

changing the uniformisers we are changing both the distribution and its interpolating property,

so don’t ‘break’ any potential uniqueness property. Despite this, it would be interesting to

remove these dependences if possible.
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