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SUMMARY

We consider a pseudo-marginal Metropolis–Hastings kernel Pm that is constructed using an

average of m exchangeable random variables, as well as an analogous kernel Ps that averages 15

s < m of these same random variables. Using an embedding technique to facilitate comparisons,

we show that the asymptotic variances of ergodic averages associated with Pm are lower bounded

in terms of those associated with Ps. We show that the bound provided is tight and disprove

a conjecture that when the random variables to be averaged are independent, the asymptotic

variance under Pm is never less than s/m times the variance under Ps. The conjecture does, 20

however, hold when considering continuous-time Markov chains. These results imply that if the

computational cost of the algorithm is proportional to m, it is often better to set m = 1. We

provide intuition as to why these findings differ so markedly from recent results for pseudo-

marginal kernels employing particle filter approximations. Our results are exemplified through

two simulation studies; in the first the computational cost is effectively proportional to m and in 25

the second there is a considerable start-up cost at each iteration.

Some key words: Markov Chain Monte Carlo; Pseudo Marginal Markov Chain Monte Carlo; Importance Sampling

1. INTRODUCTION

The Metropolis–Hastings algorithm is often used to approximate expectations with respect to

posterior distributions, making use of point-wise evaluations of the posterior density π up to an 30

arbitrary constant of proportionality. In cases where such evaluations are infeasible, the pseudo-

marginal Metropolis–Hastings algorithm (Beaumont, 2003; Andrieu & Roberts, 2009) can be

used if a realisation of a non-negative, unbiased stochastic estimator of the target density, possibly

up to an unknown normalisation constant, is available. These estimators can, for example, be

constructed using importance sampling (Beaumont, 2003), a particle filter or sequential Monte 35

Carlo (Andrieu et al., 2010).

C© 2016 Biometrika Trust
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A key tuning parameter of such pseudo-marginal algorithms is the number of samples or par-

ticles, which we denote by m, and we are interested in the relationship between m and the com-

putational efficiency of the pseudo-marginal algorithm for approximating posterior expectations.

The algorithm is a type of Markov chain Monte Carlo method: a Markov chain with stationary40

distribution π is simulated for a finite number of steps in order to compute an appropriately nor-

malized partial sum. This quantity then serves as an approximation of a limiting ergodic average

that is almost surely equal to the expectation of interest. One natural measure of computational

inefficiency, defined precisely in the sequel, is the asymptotic variance of the ergodic average

of interest multiplied by the computational effort required to simulate each value of the Markov45

chain. Andrieu & Vihola (2015) showed that the asymptotic variance for a pseudo-marginal al-

gorithm is bounded below by the asymptotic variance of an idealized algorithm in which π is

evaluated exactly, so one can think of the relative asymptotic variance of a pseudo-marginal

ergodic average as its asymptotic variance divided by the asymptotic variance of the idealized

ergodic average. In some sense, this idealized algorithm is approached as m ↑ ∞ and one might50

suppose that the relative asymptotic variance should therefore decrease to 1 as m increases. This

is indeed true for estimators that arise from importance sampling (Andrieu & Vihola, 2016),

at least when the asymptotic variance is finite for some finite m. An important issue, then, is

whether the decrease in asymptotic variance at the expense of increased computational effort is

justified in terms of computational efficiency.55

In this article, we consider arbitrary pseudo-marginal algorithms where the posterior density

is estimated using an average of unbiased estimators, such as with importance sampling, and

we show that in all such cases the asymptotic variance when m samples are used is not much

smaller than the asymptotic variance when a single sample is used, divided by m. Thus if the

computational cost is roughly proportional to m, as is often the case, there is little, if any, gain in60

using more than one sample. This formalises empirical observations made in Section 3.4 of an

early version of Sherlock et al. (2015) (arXiv reference 1309.7209v1), and generalizes the main

result of Bornn et al. (2017), which assumes that the pseudo-marginal kernels are positive and

the estimators to be averaged are independent and take only one non-zero value. We demonstrate

that our bound is tight and illustrate it through two simulation studies. In the second study, an65

additional fixed and large cost is associated with simulating m samples, so that the computational

efficiency is maximized at some m ≫ 1. Our result also demonstrates that asymptotic variance

being infinite for m = 1 implies that it is infinite for all finite m. The theory also suggests that

when m0 estimates can be obtained in parallel at no additional cost, e.g. by using vectorized

instructions, multiple processor cores or distributed computing, it should be close to optimal to70

obtain m0 estimates and then average these. Our result and the concomitant advice, which apply

to a single average, differ markedly from the results and advice for particle filters, where the

unbiased estimator is a product of averages.

We adopt the notation x ∧ y = min{x, y}; for an integer m ≥ 0, we set [m] ≡ {1, 2, . . . ,m}.

For a probability measure π on some measurable space (X,Σ) and a π-integrable75

test function ϕ : X → R, we define π(ϕ) ≡
∫
X
ϕ(x)π(dx) and use the notation L2(π) ≡{

ϕ : X → R : π(ϕ2) < ∞
}

to designate the usual Hilbert space with norm ‖ϕ‖2π = π(ϕ2).

2. MAIN RESULTS

2·1. Asymptotic variance of ergodic averages and accept-reject kernels

Consider a Markov transition kernel P with invariant distribution π and associated Markov80

chain {Xk}
∞
k=0

with X0 ∼ π. For any ϕ ∈ L2(π), an estimator of π(ϕ) is the ergodic average



Pseudo-marginal Metropolis–Hastings using averages of unbiased estimators 3

n−1
∑n

k=1
ϕ(Xk) and the asymptotic variance of the ergodic average is

V(ϕ, P ) ≡ lim
n→∞

var

{
n−1/2

n∑

k=1

ϕ(Xk)

}
.

All Markov kernels P in this article involve accepting or rejecting a sample from a proposal

kernel Q according to an acceptance probability α(x;x′). We define the marginal acceptance 85

probability from x, α(x) =
∫
X
α(x;x′)Q(x, dx′). The kernel P is then of the form

P (x, dx′) ≡ {1− α(x)} δx(dx
′) + Q(x, dx′)α(x;x′). (1)

2·2. Pseudo-marginal Metropolis–Hastings

Let π(dx) = π(x) dx be a probability distribution on X, where dx denotes a dominating mea-

sure, and Q be a proposal kernel with density q, i.e. Q(x, dx′) = q(x, x′) dx′. The π-reversible 90

Metropolis–Hastings kernel associated with Q is defined via (1) by taking the acceptance prob-

ability α(x;x′) ≡ 1 ∧ r(x, x′) where r(x, x′) is the Metropolis–Hastings ratio,

r(x, x′) ≡
π(x′) q(x′, x)

π(x) q(x, x′)
.

When pointwise relative evaluation of the density π is not possible, α(x;x′) is intractable.

The pseudo-marginal Metropolis–Hastings algorithm introduces an unbiased approximation to 95

the posterior, π̂(x, U), where U is a vector of auxiliary random variables. We will be interested in

the random variable W ≡ π̂(x, U)/π(x) ∈ W ⊆ [0,∞) which satisfies E (W ) = 1. The pseudo-

marginal algorithm simulates a Metropolis–Hastings Markov chain on the extended state space

X×W with proposal density q(x, x′) qx′(w′) and invariant density π̃(x,w) = π(x)qx(w)w,

i.e. proposals are accepted with the usual Metropolis–Hastings ratio, which in this case reads 100

α(x,w;x′, w′) := 1 ∧ {r(x, x′)w′/w}. Importantly, π̃ admits π as its x-marginal.

2·3. Pseudo-marginal algorithm using averages

Suppose that for each x ∈ X it is possible to generate an unbiased non-negative estimator

π(x)W of the target density π(x), i.e. E (W ) = 1 for any x ∈ X. For any integer r ≥ 1, one may

use an average of r such estimators to construct the unbiased estimator π(x) (W1 + . . .+Wr)/r. 105

In what follows, we assume W = (W1, . . . ,Wr) ∈ W
r is exchangeable with joint density qx(w).

This accommodates the scenario where W1, . . . ,Wr are independent and distributed according

to qx(w) so qx(w) = qx(w1) · · · qx(wr). We denote the associated kernel, acceptance probability

and marginal acceptance probability by Pr, αr(x,w;x
′, w′) and αr(x,w), respectively.

Corollary 31 of Andrieu & Vihola (2016) shows that, for two positive integers s ≤ m, asymp- 110

totic variances associated with Pm are at most those associated with Ps for L2(π) functions of

the x-coordinate only. Given this ordering, it is natural to ask whether the decrease in asymptotic

variance is sufficient to justify the extra computational expense of Pm. Andrieu & Vihola (2015)

show that the asymptotic variance of a pseudo-marginal algorithm ergodic average is bounded be-

low by that of the algorithm in which π is evaluated exactly; consequently, there must eventually 115

be diminishing returns for any increase in m. For functions ϕ ∈ L2(π) of the x-coordinate only

we are interested in var{n−1
∑n

k=1
ϕ(Xk)} ≈ n−1V(ϕ,Pr). A reduction in variance equivalent

to that obtained by increasing r from s to m could instead be obtained by increasing n by a factor

of V(ϕ,Ps)/V(ϕ,Pm). Since computational time is proportional to n, if it is also proportional

to the number of samples per iteration, r, a natural way of comparing the two Markov kernels Ps 120

and Pm is through their computational inefficiencies sV(ϕ,Ps) and mV(ϕ,Pm), respectively.

As shown in the sequel, these quantities are not ordered in general but Theorem 1 below shows
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that the quantities r{V(ϕ,Pr) + varπ (ϕ)} are. Since in many situations varπ (ϕ) ≪ V(ϕ,Pr)
this can be viewed as almost ordering computational inefficiencies.

THEOREM 1. For positive integers s ≤ m, the pseudo-marginal kernels Ps and Pm satisfy125

s{V(ϕ,Ps) + varπ (ϕ)} ≤ m{V(ϕ,Pm) + varπ (ϕ)}, (2)

for any function ϕ ∈ L2(π) of the x-coordinate only.

Remark 1. The inequality (A6) in the proof also implies through fairly simple manipulations

that the average acceptance rates satisfy αm ≤ (m/s)αs.

One interesting consequence is that the class of L2(π) functions with finite asymptotic variance,130

which is often not all of L2(π) (Lee & Łatuszyński, 2014), cannot be enlarged by increasing m.

COROLLARY 1. In combination with Corollary 31 of Andrieu & Vihola (2016) we obtain that

for ϕ ∈ L2(π), V(ϕ,Pm) < ∞ ⇐⇒ V(ϕ,P1) < ∞.

For a positive π-reversible Markov kernel P , V(ϕ, P ) ≥ varπ (ϕ) for all ϕ ∈ L2(π). Conse-

quently, Theorem 1 leads to the following generalisation of Proposition 4 of Bornn et al. (2017).135

COROLLARY 2. Let s ≤ m be positive integers and Markov kernel Pm be positive. For any

function ϕ ∈ L2(π) of the x-coordinate only, V(ϕ,Ps) ≤ (2m/s− 1)V(ϕ,Pm).

Positivity of some random-walk-based kernels can be verified via results of Doucet et al. (2015)

and Sherlock (2016), which build upon Baxendale (2005). Independent Metropolis–Hastings

pseudo-marginal kernels are always positive, as they are themselves independent Metropolis–140

Hastings kernels (Andrieu & Vihola, 2015).

2·4. Tightness of the result

The following proposition shows that the inequality in Theorem 1 cannot be improved in

general, and that even if we consider averages of independent estimators the conjecture that

sV(ϕ,Ps) ≤ mV(ϕ,Pm) is not true in general.145

PROPOSITION 1. There exist pseudo-marginal kernels and ϕ ∈ L2(π) such that

1. With negatively correlated W , V(ϕ, P1) + varπ (ϕ) = 2 {V(ϕ, P2) + varπ (ϕ)}.

2. With independent W , V(ϕ, P1) > 2V(ϕ, P2).

The conjectured inequality, however, does hold in continuous time. Let r ≥ 1 be an integer. We

define the continuous-time Markov chain, with kernel P̃r, as the Markov chain whose transitions150

are identical to those of the discrete-time kernel Pr but take place on a Poisson clock with unit

rate. That is, if X̃r(t) is the x-process of a continuous-time Markov chain with transition P̃r

and Xr(k) is the x-process of the discrete-time Markov chain with kernel Pr, then X̃r(t) =
Xr(PP[t]) where {PP[t]}t≥0 designates a Poisson process with unit rate. For ϕ ∈ L2(π), the

continuous-time asymptotic variance is defined as155

Ṽ(ϕ,Pr) = lim
T→∞

1

T
var

[∫ T

0

ϕ
{
X̃r(t)

}
dt

]
.

PROPOSITION 2. For positive integers s ≤ m, the continuous-time chains satisfy

sṼ(ϕ,Ps) ≤ mṼ(ϕ,Pm), ϕ ∈ L2(π).
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Table 1: Computational efficiency (ESS
∗ × 103): 90% confidence intervals

m 1 2 3 4 5 6 7 8 9 10

CE (7.7, 9.0) (5.7, 6.8) (4.9, 5.5) (4.1, 4.6) (3.6, 4.1) (3.2, 3.5) (2.9, 3.2) (2.6, 2.8) (2.4, 2.6) (2.1, 2.4)

3. NUMERICAL STUDIES

3·1. Preliminaries 160

We present in this Section two numerical studies. Several choices of proposal distributions

are investigated and the situation when the computational time necessary to generate m sam-

ples is not proportional to m, due to non-negligible computational overhead, is carefully ex-

amined. Computational efficiency is measured in terms of Effective Sample Size per unit

of computational time; if the computational time to generate m samples in each of n itera- 165

tions is exactly proportional to nm, then we define ESS(ϕ, P ) = nvarπ (ϕ) /{V(ϕ, P )} and

ESS
∗(ϕ, P ) = ESS(ϕ, P )/(nm). Since ESS(ϕ, P ) and ESS

∗(ϕ, P ) are intractable in general, we

consistently estimate them below using realisations of the Markov chain with kernel P .

3·2. Inverse Stochastic Heat Equation

Let x(t, u) designate the temperature at time t ∈ [0, T ] at the spatial location u ∈ (0, 1). We 170

consider the problem of reconstructing the initial temperature field x(0, u) for u ∈ (0, 1) from

N ≥ 1 noisy measurements at time t = T distributed as yi = x(T, ui) + ξi for some locations

{ui}
N
i=1

⊂ (0, 1) and independent centred Gaussian samples {ξi}
N
i=1

with variance σ2

ξ . The tem-

perature field evolves according to the stochastic Heat equation

∂tx(t, u) = ∆x(t, u) + σ Ẇ (t, u) (3) 175

with Dirichlet boundary x(t, 0) = x(t, 1) = 0; the process Ẇ is a space-time white noise (e.g.

Hairer, 2009; arXiv:0907.4178). A priori, we use a truncated Karhunen–Loève expansion to

model x(0, ·), i.e. x(0, u) =
∑K

k=1
ζk sin(k π u), where ζk ∼ N (0, k−2) are independent. Sim-

ulations were carried out by noting that, after finite discretisation in space, the evolution Equa-

tion (3) can be diagonalized and solved in the Fourier domain. The likelihood of a given initial 180

temperature field can be unbiasedly evaluated by simulating m trajectories and averaging the

conditional likelihoods. The pseudo-marginal algorithms are started in a region of high posterior

mass; we used a Crank–Nicholson proposal of the type x⋆ = αx+ (1− α2)1/2 ζ, where ζ is

distributed according to the prior distribution, with a value of α ∈ (−1, 1) chosen such that the

acceptance rate when m ≫ 1 is around 1/2. The computational efficiency is taken as the min- 185

imum computational efficiency associated with 9 functions x 7→ x(0, i/10) for i ∈ {1, . . . , 9}.

Table 1 shows approximate 90% confidence intervals and, as expected, the computational effi-

ciency is maximized for m = 1.

3·3. Logistic regression using a latent Gaussian process

We consider a logistic regression model with fixed effects and a latent Gaussian process, fol- 190

lowing exactly the approach of Sherlock (2016). The likelihood function is approximated by im-

portance sampling with a data-dependent proposal distribution, similar to Filippone & Girolami

(2014) and Giorgi et al. (2015). The parameter space has dimension 6 and the latent Gaussian

process is required at L = 144 observation points. Whatever the value of m, at each iteration,

creation of the importance sampling proposal involves a single O(L3) Cholesky decomposition 195

of an L× L matrix; each importance sample then costs O(L2). For small values of m the start-up

cost dominates the cost of simulating m importance samples.
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Fig. 1: Log quantities for each run against log10m for (left) acceptance rate, (centre)

hypothetical computational efficiency (ESS/{nm}) and (right) empirical computa-

tional efficiency (ESS/processing time). Each line in the latter two graphs corre-

sponds to one of the six parameters.

The posterior mean and covariance matrix of the parameters were estimated from a trial

run. For the random-walk pseudo-marginal Metropolis algorithm with m = 100, an approxi-

mately optimal scaling of λ = 0.9 was found. This scaling was then used in all runs recorded200

since it should also be approximately optimal for other values of m (Sherlock, 2016), and

thus help to control the Monte Carlo variability in empirical effective sample sizes. A set

M ≡ {1, 2, 3, 4, 5, 10, 20, 40, 100, 200, 400, 1000, 2000, 4000} of numbers of importance sam-

ples was considered. Run lengths are given in the Supplementary Material and were chosen so

as to keep the CPU time for each run between 105 and 3× 105 seconds and the effective sample205

sizes above 500. Despite the large run lengths, the Monte Carlo variability was non-negligible

for m ≤ 5 and so three independent runs were performed for each of these m values.

Figure 1 reports the average acceptance rate, the hypothetical computational efficiencies, ESS
∗,

and the empirical computational efficiencies, ESS divided by CPU time, for all six parameters.

Due to the non-negligible computational overhead, the two efficiency measures are different.210

A pseudo-marginal independence sampler was also run and gave similar results. As the theory

suggests, increasing from s to m samples never increases the acceptance rate by more than m/s
and the hypothetical computational efficiency is maximized at m = 1. However, due to the con-

siderable start-up cost at each iteration, the empirical computational efficiency is maximized at

around m = 200. Interestingly, it is at m = 200 that the cost of creating m samples approxi-215

mately matches the start-up cost.

4. AVERAGING VERSUS PARTICLE FILTERING

We have shown that if the computational cost of obtaining m estimators is proportional to m
then it is close to optimal to choose m = 1 when averaging, at least when the asymptotic variance

is finite. This is very different to Sherlock et al. (2015) and Doucet et al. (2015), who found220

under specific assumptions that when the likelihood function of a large number of observations

is estimated via a particle filter, m should be chosen so that the variance of the the log-likelihood

estimator is controlled: the optimal choice of m is consequently typically greater than one.

This fundamental difference arises because an estimator obtained using a particle filter is not

an average, but a product of T dependent averages of m random variables. The relative variance
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of an importance sampling estimator with m samples is C/m for some C > 0, whereas the

relative variance of a particle filter estimate of the likelihood is of the form (Cérou et al., 2011),

T∑

r=1

(
1

m

)r (
1−

1

m

)T−r

Cr,

where C1, . . . , CT is is a non-negative sequence that often increases exponentially. It follows

that increasing m when m is small can dramatically reduce the contributions of C2, . . . , CT , 225

even though by considering m very large with T fixed, the relative variance is O(C1/m).

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of Propositions 1 and 2,

and further details of the numerical studies.

APPENDIX 230

If P is reversible with respect to π, it can also be regarded as a self-adjoint operator on L2(π); the

Dirichlet form associated with P is defined as

EP (ϕ) ≡
1

2

∫
π(dx)P (x, dx′){ϕ(x′)− ϕ(x)}2.

Proof of Theorem 1. Recall Lemma 33 of Andrieu et al. (2016): if for two µ-reversible Markov kernels

Π1 and Π2 there exists ̺ > 0 satisfying EΠ2
(ϕ) ≥ ̺ EΠ1

(ϕ) for all ϕ ∈ L2(µ), then 235

̺{V(ϕ,Π2) + varµ (ϕ)} ≤ V(ϕ,Π1) + varµ (ϕ) , ϕ ∈ L2(µ). (A1)

To exploit this result, we construct two π-reversible Markov kernels P s and Pm on the extended space

X×W
m × [m] such that the x-marginal of the Markov chain with transition P s (resp. Pm) has the same

law as the x-marginal of the Markov chain with transition Ps (resp. Pm). By Lemma 33 of Andrieu et al.

(2016), Theorem 1 follows once it is proved that for any ϕ ∈ L2(π) it holds that 240

EPm

(ϕ) ≤
m

s
EP s

(ϕ). (A2)

We define the distribution π, which depends on s and m, through its density

π(x,w, k) ≡
1

m
π(x)

{
wk + . . .+ wk+s−1

s

}
qx(w) =

1

m
π(x) qx(w)A(w, k) (A3)

for (x,w, k) ∈ X×W
m × [m]; the indices in (A3) and henceforth are to be understood modulo m, and we

have used the notation A(w, k) = (wk + . . .+ wk+s−1)/s. The Metropolis–Hastings kernel P s proposes 245

a move (x,w, k) 7→ (X ′,W ′,K ′) by first generating (X ′,W ′) ∼ q(x, dx′) qx′(dw′) and then choosing

K ′ uniformly at random in [m], i.e. the proposal density is

qs(x,w, k;x
′, w′, k′) ≡ q(x, x′) qx′(w′) (1/m).

The proposed (X ′,W ′,K ′) is accepted with the usual Metropolis–Hastings probability

αs(x,w, k;x
′, w′, k′) = 1 ∧

{
r(x, x′)

w′
k′ + . . .+ w′

k′+s−1

wk + . . .+ wk+s−1

}
. (A4) 250

The Metropolis–Hastings kernel Pm differs from P s in the way K ′ is proposed. It proposes a move

(x,w, k) 7→ (X ′,W ′,K ′) by first generating (X ′,W′) ∼ q(x, dx′) qx′(dw′) and then choosing K ′ ∈ [m]
such that pr (K ′ = k′) ∝ A(w′, k′). Since for any w ∈ W

m we have A(w, 1) + . . .+A(w,m) = w1 +



8 C. SHERLOCK, A. H. THIERY AND A. LEE

. . .+ wm, the proposal density is

qm(x,w, k;x′, w′, k′) ≡ q(x, x′) qx′(w′)
A(w′, k′)

w′
1 + . . .+ w′

m

.255

The proposed (X ′,W ′,K ′) is accepted with the usual Metropolis–Hastings probability

αm(x,w, k;x′, w′, k′) = 1 ∧

{
r(x, x′)

w′
1 + . . .+ w′

m

w1 + . . .+ wm

}
. (A5)

From Equations (A4)–(A5) it follows that the x-coordinates of the Markov chains with transition P s and

Pm equal in law, respectively, the x-coordinates of the Markov chains with transitions Ps and Pm. To

conclude the proof, we now prove inequality (A2); it suffices to prove that Pm(x,w, k; dx′, dw′, k′) is at260

most (m/s)P s(x,w, k; dx
′, dw′, k′) for any (x,w, k) 6= (x′, w′, k′), i.e.

A(w′, k′)

w′
1 + . . .+ w′

m

αm(x,w, k;x′, w′, k′) ≤ (m/s) {m−1 αs(x,w, k;x
′, w′, k′)}. (A6)

From (A4)–(A5), this is equivalent to showing that 1 ∧ {r(x, x′) (w′
1 + . . .+ w′

m)/(w1 + . . .+ wm)} is

at most
{
w′

1 + . . .+ w′
m

sA(w′, k′)

}
∧

[
r(x, x′)

w′
1 + . . .+ w′

m

w1 + . . .+ wm

{
w1 + . . .+ wm

sA(w, k)

}]
,265

and since the two quantities inside curly brackets are at least one, the conclusion follows. �
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LEE, A. & ŁATUSZYŃSKI, K. (2014). Variance bounding and geometric ergodicity of Markov chain Monte Carlo

kernels for approximate Bayesian computation. Biometrika 101, 655–671.
SHERLOCK, C. (2016). Optimal scaling for the pseudo-marginal random walk Metropolis: insensitivity to the noise

generating mechanism. Methodol. Comput. Appl. Probab. 18, 869–884.295

SHERLOCK, C., THIERY, A., ROBERTS, G. O. & ROSENTHAL, J. S. (2015). On the efficiency of pseudo-marginal
random walk Metropolis algorithms. Ann. Statist. 43, 238–275.


