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Abstract

Chapter 1 partially surveys auctions with contingent contracts, i.e., contracts in
which payments are allowed to depend on an ex-post veri�able variable, such as
revenues. The review starts with the seminal paper of DeMarzo et al. (2005)
and partially departs from Skrzypacz (2013) by analyzing on externalities and risk
aversion concerns. A partial ranking of auction revenues for auctions that di�er in
terms of contract forms, pricing rules and seller commitment are described. Models
incorporating adverse selection, moral hazard, competition between auctioneers,
externalities and risk aversion are discussed.

In Chapter 2 we study second price auctions, where buyers compete for the allo-
cation of a project, by bidding securities over project's realized value. In addition,
we allow for negative externalities, which are su�ered by the losers in case the win-
ner implements the project. Under this environment, we introduce two payment
instruments: the Fixed-Equity Hybrid -which embeds cash- and the Fixed-Cash
Hybrid -which embeds equity. As our main result, we rank the instruments in terms
of revenue, and show that the �xed-equity hybrid is the best instrument whereas
equity is the worst despite of being the most sensitive instrument to bidders' true
type.

Finally, in Chapter 3 second-price auctions, where buyers compete for the allo-
cation of a project, by bidding securities over project's realized value are studied.
In addition, bidders are allowed to be asymmetric not only with respect to their
underlying distribution of payo�s but also with respect to their risk aversion. Un-
der this environment, it is shown that steeper securities provide higher insurance.
As main result, the instruments are ranked in terms of e�ciency, and shows that
the steepest security minimizes the e�ciency loss when bidders are indeed asym-
metric. Moreover, steeper securities are shown to increase revenue for the seller as
in DeMarzo et al. (2005).
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Chapter 1

Survey of Auctions with Contingent

Payments

1.1 Introduction

In recent years a �ourishment of auctions with contingent payments has taken

place both in practice and in theoretical analysis. Most of these auctions involve

the selling of an asset/contract whose value is at least partially observed. For

example, in oil-leased auctions, if the winner explores the �eld, the government

can measure revenue obtained from the exploration. It is a common practice

around the world for the government selling the rights to drill for oil or natural

gas to collect additional revenue in the form of royalties. Other examples may

include the 3G auction that took place in Hong Kong where bidders submitted

bids on equity.

Auctions with contingent payments refer to cases in which the auctioneer/seller
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allows bidders to compete for the allocation of an asset by means on an auction

where payo�s are at least partially tied to the asset realized value. The theoretical

analysis of such auctions has received great attention lately. In this chapter, I

provide a selected survey of literature on this topic to frame the remaining chapters

of the dissertation. I will use DeMarzo et al. (2005) as a focal point �henceforth

DKS� since it is crucial to understand auctions with contingent payments.

In this survey I depart from Skrzypacz (2013) as it covers real life situations

in which auctions with contingent payments are relevant and focus strictly on the

theoretical analysis. Hence, the review is structured as follows. I �rst describe

the benchmark model of DKS with independent private values and explain why in

such auctions revenue is higher than in cash auctions. Then I discuss the ranking

of auctions with di�erent types of contracts if the seller restricts bidders to a

single-dimensional type of contracts. In section 1.3, I review papers that enrich

the benchmark model with important real-life considerations. These features shed

light on some tradeo�s that could change the predictions of the basic model. In

sections 1.4 and 1.5, I extend the survey to externalities and risk aversion to provide

a broad picture of the relevant literature to the current dissertation.

This chapter is not a comprehensive survey, however, it provides some exten-

sions to Skrzypacz (2013) by including the role of securities as means of risk sharing

-under the presence of risk averse bidders- and looks at the impact of externalities

on auction design.

7



1.2 The Model

The benchmark model with contingent payments follows DKS. There is a seller

and N ex-ante symmetric risk-neutral bidders. Bidders have independent private

values. The seller runs an auction for a project that requires the winner to make

an up-front investment c > 0. If bidder i wins the project, it generates veri�-

able revenue/cash�ow Zi. Each bidder has private information about his expected

cash�ow zi. The types zi are distributed independently and symmetrically accord-

ing to some distribution f(zi) over the interval [z, z]. Conditional on zi, bidder i

cash�ow is distributed according to an atomless distribution h(Zi|zi).

The authors assume h(Zi|zi) has full support and satis�es the strict Mono-

tone Likelihood Ratio Property (SMLRP). This assumption implies that a higher

estimate represents a stronger distribution of cash�ow realizations.

The model considers a bid as a contingent payment o�er as a function of the

future cash�ow, S(Zi). They restrict the attention to bids that satisfy that S(Z)

and S(Z) − Z are increasing and S(Z) > 0, implying the seller cannot subsidize

the bidders. Moreover, S(Z) ≤ Z, representing limited liability on the side of the

bidders. They de�ne ES(z) ≡ E[S(Z)|z).

On this survey, formal auctions are only addressed. A formal auction is de-

scribed by an ordered set of contracts/securities and an auction format. The set of

allowed contracts S is indexed by s ∈ [s0, s1]. This notation allows us to represent

S(s, Z) as the ex-post payment to the seller of contract with index s if the realized

revenue is Z. Denote ES(s, z) = E[S(s, Zi)|zi = z).

The only requirement the author imposes on ES(s, z) to consider it an order

is that it is increasing on s for every z. In other words, conditional on �xing
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the type, the payment to the seller should be increasing on the index. There are

several types of contracts that �t on this description: cash, royalty/equity, �xed

royalty plus cash bids, �xed contract plus cash bids, debt, allowance plus royalty

contract, royalty contract with a cost deduction and call option.

In an auction the bidder that submitted the highest index wins and pays ac-

cording to the auction format (for example �rst-price or second-price).

Hansen (1985) was the �rst one to consider auctions with contingent contracts

comparing cash to royalty contracts in second-price auctions. He showed that

royalty auctions accrue a higher revenue because the winner is the same but instead

of paying the reservation value of the second highest type now he has to compute

the royalty payment on his distribution, increasing the sensitivity of the payment

to the type of the winner. Riley (1988) showed similar results.

Even though DKS extends Hansen result to a comparison between any security

and cash, their main concern is how to rank di�erent securities. For example, does

a royalty contract auction or debt contract auction yields higher revenue? In this

case the slopes of S(Z) are ranked di�erently for di�erent levels of Z: debt has

a higher slope than equity for low realizations of Z while the opposite ranking is

true for high realizations of Z.

DKS have shown that many standard sets of contracts can be ranked under

the SMLRP assumption. The crucial condition needed to rank di�erent securities

is as follows.

De�nition 1 An ordered set of contracts/securities SA is steeper than an ordered

set SB if, for all indices sA and sB from the two sets, ESA(sA, z
∗) = ESB(sB, z

∗)

implies that ESA2 (sA, z
∗) > ESB2 (sB, z

∗). If that is true we say that "SA(sA, z)
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strictly crosses SB(sB, z) from below."

Lemma 2 (Lemma 5 in DKS) If h(Z|z) satis�es SMLRP then a su�cient con-

dition for SA(sA, z) to strictly cross SB(sB, z) from below is that there exists a Z∗

such that SA(sA, z) ≤ SB(sB, z) for Z < Z∗ and SA(sA, z) ≥ SB(sB, z) for Z > Z∗.

This lemma implies that equity is steeper than debt and a call option is steeper

than either of them, as seen in Fig. 1.1.
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Figure 1.1: Payo� Diagrams for Call Options, Equity, and Debt.

Proposition 3 (Proposition 1 in DKS) Suppose the ordered set of contracts/securities

SA is steeper than SB. Then for either a �rst-price or a second-price auction, for

any realization of types (almost surely), the seller's revenues are higher using SA

than SB.

As a corollary of this proposition and the previous lemma, debt auctions yield

a lower revenue than royalty/equity and both are dominated by auctions with call

options.
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This result constitutes the main contribution of DKS since it allows to rank in

terms of revenue any security that could be ranked in terms of steepness. Moreover,

they show that this result could be extended to informal auctions, which are beyond

the scope of this review.

1.3 Extensions

DKS main result goes in one direction: Steeper securities are better for the seller

and worse for the bidders. Crémer (1987) makes an even stronger point: if in the

Hansen (1985) environment the seller subsidized most of the up-front cost c, he

would extract arbitrarily close to the full surplus.

The problem is that in practice we observe a rich variety of contracts, ranging

from cash to equity mostly. One plausible explanation has to do with bargaining

power at the time of deciding the payment method. Another alternative could be

risk aversion and the risk sharing allowed by di�erent securities. There could also

be externalities or competition among sellers.

Adverse selection: Che and Kim (2010) consider the case in which higher z are

related to higher c. For example a �rm may obtain higher revenues from a project

because they will spend more on marketing. On a second-price auction it is still a

weakly dominant strategy to bid according to your reservation value. In this case

cash is still e�cient but securities need not be. Under equity if c(z)/z is increasing

then the winner will be the one with the lowest z.

The adverse selection concern pointed by Che and Kim (2010) could also take

place if c and z are two-dimensional private information of the bidders, which are
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independent across bidders. In this case using securities could lead to an ine�cient

allocation of the asset.

Moral hazard: In those cases where the revenue realization depends on the

e�ort exerted by the winner, using steeper contracts could harm revenue. Using

steeper securities have the bene�t that they extract a higher fraction of the revenue

but the main drawback is that they decrease the incentives to exert e�ort. There

is a tradeo� between extracting surplus and providing incentives. Kogan and

Morgan (2010) consider a model where e�ort enters multiplicatively while Jun and

Wolfstetter (2014) consider it additively. Both articles highlight that depending

on the cost of e�ort and the number of bidders is the degree of steepness that

maximizes surplus for the seller.

Even in this case, it could be argued that the relationship between cash and

securities remains: McAfee and McMillan (1986) show that it is possible under

moral hazard to �nd auctions with contingent payments that dominate cash. For

example, asking for a small �xed royalty and letting bidders compete on cash

introduces a second-order loss in terms of e�ciency, but a �rst-order gain in terms

of surplus, thus dominating pure cash.

Competition between auctioneers: Gorbenko and Malenko (2011) provide a

rationale for using somewhat �at instruments. If there are many sellers and a

�xed pool of bidders then one way in which sellers could attract bidders is by

lowering the steepness, which is similar to a surplus transfer. Their paper is related

to bargaining power since when sellers should compete for bidders the latter get

more power (in relative terms) and force sellers to move away from steep securities.

Budget constraints: Debt contracts induce the same environment as the one
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analyzed by Che and Gale (1998). By imposing a budget constraint bidders bid the

minimum between the budget and the valuation (broadly speaking). The analysis

is not exactly the same because DKS considers securities with limited liability,

which solves the problem for budget constrained bidders.

If bidders have budget constraints then DKS recovers bids in terms of the true

type since bidders will pay with the proceeds of the project. DKS show one way

of moving away from Che and Gale (1998) budget constraint analysis.

Rhodes-Kropf and Viswanathan (2005) try to solve the budget constraint issue

by allowing bidders to access a �nancial market. They show that the �nancial

market is not e�cient thus the ine�ciencies of the auction remain.

Bankruptcy: DKS assumes that keeping the type of the winner �xed (and post-

auction actions �xed in case of moral hazard), the overall surplus generated by the

project is independent of the contract. Board (2007) changes this assumption

pointing out that bankruptcy costs are often non-negligible, creating new trade-

o�s between division of surplus and surplus creation. He shows that a �rst-price

auction may generate higher revenue for the seller than a second-price auction

when bankruptcy costs are su�ciently high.

1.4 Externalities

Auctions with externalities have been studied since the seminal papers of Jehiel

et al. (1996, 1999). They use a model of identity-dependent externalities and

solve the optimal mechanism when bidders type is multidimensional �bidders have

valuations and identity-dependent externalities, resulting in type vectors with N+1
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entries.

Under the optimal mechanism the seller extracts surplus even from bidders

that do not get the object. They show that if the externalities are su�ciently high

the seller is better o� by keeping the object for himself even though he gives value

zero to it. Lastly they argue that participation constraints are endogenous. The

intuition is that if a �rm sees that its main competitor in the downstream market

is participating in an auction for a patent, it may have incentives to participate as

well because by not doing so its market share could be severely reduced.

Securities pose a higher threat to revenue under negative externalities. When

bidders compete on the downstream market they may go to the auction to prevent

his competitors from getting the asset. This protective strategy is easier to be

carried out with securities since no implementation leads to no payment. The

second chapter of the dissertation tries to understand the implications of negative

externalities when bidding with securities.

Positive externalities have a free rider problem since bidders may be better o�

not participating in the auction but enjoying the externalities. Even though this

setup is di�cult to motivate it is worth being considered.

1.5 Risk Aversion

Abhishek et al. (2015) is the �rst paper that introduces risk aversion to DKS

environment. They have risk averse bidders although their utility functions are

the same �bidders are homogeneous in terms of their utility functions. This setup is

closer to reality because bidders may be competing for a technology whose returns
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are unknown, involving risk. When bidders are risk averse then securities provide

a channel to share risk. For example, equity allows bidders to pay less under

low realizations and more when realizations are high, representing some kind of

insurance.

The authors focus on revenue and show that DKS order prevails with homo-

geneous risk averse bidders as long as the SMLRP holds. Moreover, they show

that relaxing the signals ordering to FOSD breaks the revenue ordering. Lastly,

they characterize Strong Steepness which is the condition needed to recover DKS

ranking under FOSD.

Another possible case where risk aversion becomes relevant is the one of het-

erogeneous bidders in terms of the utility function. In this case the insurance plays

an asymmetric role since the more risk averse bene�t the most out of it. The third

chapter of the dissertation tries to understand the implications of heterogeneous

risk aversion when bidding with securities.

1.6 Concluding Remarks

In recent years auctions with contingent payments have increased their popularity.

Researchers started developing models to understand the extent of the practice

pros and cons. Since no solution �ts all, many papers have been written after the

benchmark model proposed by DKS.

This survey reviews the benchmark model and some of the modi�cations that

were proposed afterwards, dealing with adverse selection, moral hazard, competi-

tion between auctioneers, budget constraints, externalities and risk aversion. The
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last two topics will be extended on this dissertation.
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Chapter 2

Bidding Securities in Projects with

Externalities

2.1 Introduction

Over the last two decades, the sector of technological �rms have witnessed a �our-

ishment without precedence, boosted among others, by the presence of internet

and a robust market of patents. The role of this market has been twofold. From

one hand, it has allowed companies to monetize their inventions by auctioning

them to a pool of interested �rms, but at the same time has permitted the same

companies to acquire patents to develop their own products. Such environment has

made possible for start-up companies -unlike in any other market- to evolve into

strong competitors, with a large market capitalization, in short time. Remarkable

examples include Uber -which reached a capitalization of $41 billion in less than
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six years, the fastest in history- WhatsApp and Spnapchat.1

Therefore, if a competitor acquires �the right� portfolio of patents, an operating

�rm in a speci�c niche might promptly see its market share reduced, because it

would enable the competitor to develop its own innovation. For this reason, many

large �rms acquire patents as a protective strategy: to preclude the development

of nascent companies that may change the status quo of its market participation.

Examples here include Facebook, Yahoo and Microsoft.2 In addition, Hall and

Ziedonis (2001) �nd that after 1982, the US semiconductor �rms started patent

portfolio races, not to appropriate R&D revenue, but to prevent other �rms from

getting these patents.

This scenario raises many interesting questions. First, if a start-up is selling

its project -or innovation- through a standard second price auction and wants to

maximize revenue, we could ask what the optimal method of payment is. Should

the seller conduct the auction in cash, or should he use a security, contingent

on project's return? This dichotomy has relevance, because if the innovation is

allotted to a �rm that intends not to implement the project, the seller would

receive a payo� of zero if he uses a security. On the other hand, if the project

only has value for the winner when he implements it, the seller might be better o�

using a contingent payment as it is more sensitive to bidder's true valuation (c.f.

DeMarzo, Kremer and Skrzypacz, 2005).

A related question is how bidders' optimal strategies behave under the presence

of a negative externality, given the method of payment. Here, the key observation

1For more details see http://www.wsj.com/articles/uber and
http://www.wsj.com/articles/snapchat.

2Recently Facebook acquired a portfolio of 750 patents to defend itself from a lawsuit from
Yahoo and other companies. See http://techcrunch.com/2012/03/23/facebook
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is that the presence of a negative externality increases the eagerness of the bidders

to win the auction, even when they attach a very low valuation to the project.

To answer these questions, we build a model where the seller sells the rights of

a project through a standard second price auction, but where he can utilize two

hybrids as methods of payment: (i) a �xed-equity hybrid where the seller �xes the

fraction of equity requested, and let bidders compete in cash, and (ii) a �xed-cash

hybrid, where the seller �xes the amount of cash the winner has to pay, and let

bidders compete in equity. Notice that the former embeds pure cash whereas the

latter embeds pure equity.

The reason for which including a �xed payment in the instruments may be

bene�cial for the seller, resides in the problem of adverse selection associated with

the incentives of a buyer to participate in the auction. Speci�cally, a buyer may

want to participate in the auction either to try to implement the project (because

it is pro�table to do so), or just to attempt to block the allocation of his rival. If

the seller is paid upon the implementation of the project, allocating it to a buyer

of the second class (i.e. �the bad type�) would be detrimental for his revenue.

In the absence of a �xed payment, the bad type have always an incentive to

participate in the auction to try to destroy the equilibrium where the project is

implemented. Thus, the �xed payment acts as a screening device among bidders.

However, the seller faces a clear trade-o� in his aim, because introducing a �xed

payment decreases the pro�tability of the project for all buyers, which in turn

leads to a lower probability of implementation. The goal of the present chapter

is to determine the optimal �xed payment for both hybrids, and rank them with

respect to seller's expected revenue.
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Certainly, our article is not the �rst interested in exploring the relation between

revenue and the method of payment used in an auction. In fact, De Marzo, Kremer

and Skrzypacz (2005) has shown that if there are no externalities, the methods of

payment can be ranked in revenue by their �steepness�, or the sensitivity of bidder's

true type to the instrument utilized. An insight �rst hinted by Hansen (1985)

and Riley (1988). They also show that the auction format has only an impact

on revenue by its ability of modifying the steepness of the particular instrument

utilized. Nonetheless, to arrive to their conclusions it is crucial that bidders operate

in an environment free of negative externalities. When we incorporate them into

the model, their main result does not hold anymore, precisely because a winner of

the auction may acquire the project not to implement it.

In order to isolate the e�ect produced by the interaction of the externalities

with the method of payment, we focus on a simple model of two bidders, where the

loser of the auction su�ers a commonly known negative externality if the winner

implements the project.3 This framework arises naturally in industries where

bidding �rms are similar ex-ante, and the project gives a comparative advantage

in the downstream market to the winner. Surprisingly, many of the insights can

be captured with this simple version. First, we consider a simple model where

both, externalities and valuations are public information. Even in this simple

framework the characterization of equilibria is not trivial, because it depends on

the interaction of the externality, the cost of the project and bidder's own valuation.

Our main result, stated in theorem 6, shows that under some mild technical

conditions, the following is satis�ed. First, the optimal �xed-equity requires a

3One important clari�cation is that we use the word implementation, because if an agent wins
the object but does not implement it, no agent su�er any externality.
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strictly positive equity payment, and the optimal �xed-cash hybrid involves a

strictly positive payment in cash. Second, the optimal �xed-equity hybrid is the

instrument that yields the highest expected revenue, followed by cash, which in

turn is followed by the optimal �xed-cash hybrid. Equity is the worst instrument

in the menu, despite of being the steepest.

The intuition of the latter results lies in the fact that with equity, a bidder will

pay zero if he does not implement the project, but his bid will a�ect the pro�tability

of implementing the project for his opponent. In that sense, a particular buyer

can e�ectively use the threatening-power equity equips bidders with, to destroy the

equilibria when the other buyer �nds pro�table to implement the project. When

the seller uses cash as the instrument, this problem is mitigated by the fact that

all payments are made upfront, rather than conditional on the implementation of

the project. Therefore, the optimal instrument for the seller would be one that

simultaneously features the screening bene�ts o�ered by cash, and the ability of

equity to extract surplus. This design is precisely at the heart of the �xed equity

hybrid. On the other hand, when the seller sets the �xed payment in terms of

cash, and let buyers use equity to screen themselves, buyers conserve part of their

power to block the implementation of the project, and so the adverse selection

motive dominates. Surprisingly, this e�ect is so powerful that the optimal �xed-

cash hybrid performs worse than cash for a su�ciently low implementation cost

and a su�ciently high negative externality.

The ranking of the instruments is robust to the structure of information, as

it is preserved for a large class of log concave distributions over private buyers'

valuation. In particular, equity continues to deliver zero revenue despite of being
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the steepest instrument in the menu. Even though, we cannot deliver a general

theorem as in the case of public information, we obtain very similar results via a

simulation.

Finally, in a comparative statics exercise, theorem 7 �nds that the �xed por-

tion of both instruments is weakly increasing with respect to an improvement in

the distributions, in the sense implied by the Monotone Likelihood Ratio (MLR)

property. This result is clearly intuitive: as the probability of drawing higher

valuation increases, the seller is less concerned of inducing participation, and can

commit himself to extract a higher portion of revenue before the competition in

the auction takes place.

Related Literature Our article is related to the literature of auctions with

securities and to the literature of auctions with externalities. Nonetheless, as

far as we know this is the �rst article connecting both strands of literature, to

analyze how the interaction of negative externalities and securities impact bidding

strategies and seller's expected revenue. Moreover, as we discussed before, due to

the implementability incentives of buyers, our model can also be framed in the

literature of auctions under adverse selection.

The literature of auctions with securities started with the seminal articles of

Hansen (1985) and Riley (1988), who basically showed that a second price auc-

tion run in equity yields higher expected revenue to the seller than one run in

cash. More recently, De Marzo, Kremer and Skrzypacz (2005) -hereafter DKS-

generalize this framework by providing a methodology to rank securities with re-

spect to revenue. Speci�cally, they characterize the �steepness� or sensitivity of
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several instruments via a single crossing property argument, and show that steeper

instruments yield a higher revenue for the seller. Furthermore, they argue that

the auction format is only relevant as long as it modi�es the steepness of the in-

strument utilized.4 Although DKS analyze a larger class of securities than what

we do in this article, the main essence of their analysis is retained, because the

distinction of the payment condition (i.e. contingent vs non-contingent) is the

key ingredient to obtain our main result. As mentioned before, we focus in two

hybrid instruments that are used in practice, and which include cash and equity

as particular cases.5

Following endeavors to DKS include Gorbenko and Malenko (2011) and Che

(2010). The former analyzes the predictions of a DKS model when the set of

bidders is �nite and many sellers compete for them. Their main result shows that

sellers will not use the steepest instrument because they would not attract enough

bidders. We also obtain the same result but for di�erent reasons. In our case, using

a pure security is detrimental for seller's revenue because it allows buyers, who do

not intend to implement the project, to destroy the equilibria where good-type

buyers would have implemented it otherwise.

Meanwhile, Che and Kim (2010) modify DKS framework by assuming that

buyers with higher valuations also have a higher cost to implement the project.

This simple modi�cation leads to an adverse selection problem when the seller

uses a security, because buyers with high valuation would bid a lower amount, and

4In particular, they prove that when the seller uses securities the Revenue Equivalence The-
orem may not hold.

5Our �xed-equity hybrid resembles the way writers sell the rights of their books because there
is a �xed royalty rate and publishers compete on cash. On the other side our �xed-cash hybrid
captures the main feature of the oil rights auction in Mexico where buyers pay a �xed amount
and compete on equity.
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therefore, more often such buyers will win the auction. As the revenue of the seller

is tied to bidders' true type when he uses a security, this adverse selection problem

cause the revenue to decrease. We found that using securities when externalities

are present can lead to the same result. Here, the low-valuation buyers would bid

more aggressively because they want to avoid the negative externality, and can

block implementation at no cost when the seller uses pure securities. Nonetheless,

whereas Che and Kim (2010) makes assumptions on the cost structure of the

model, we make assumptions on the after-market behavior of �rms, which we

consider more signi�cant in many patent auctions where securities are normally

utilized.

Our article also contributes -in minor extent- to the literature of auctions with

externalities, initiated by Jehiel, Moldovanu and Stacchetti (1996, 1999). However,

rather than proposing an optimal mechanism exercise under an environment with

externalities, we analyze a small but widely used class of instruments, which unlike

Jehiel et al. also incorporates securities as a method of payment. We are able to

show that under negative externalities, a second price auction in cash is no longer

an optimal mechanism, because in our model we �nd that the best instrument is

a �xed-equity hybrid.

Organization of the chapter The rest of the chapter is structured as follows.

Section 2.2 states the environment of the model. In section 2.3 we introduce the

case of complete information, derive the equilibrium bidding strategies, and rank

the instruments with respect to revenue. Section 2.4 presents a robustness exercise

for the case of private information. Section 2.5 concludes. Some of the proofs are
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relegated to the appendix.

2.2 The Environment

A seller is interested in allocating an indivisible asset -which can be thought as

the rights of a project or innovation- among two di�erent buyers. The winner

is required to pay a cost of c > 0 in order to implement the project, which is

considered as the initial investment to run the project, and is commonly known.

We index buyers by i = 1, 2 whereas the seller is designated as player i = 0. Buyer

i's valuation vi is drawn identically and independently from [v, v̄], according to the

distribution F which corresponding non-atomic density f .

If the project is implemented by a competitor, buyer i su�ers a negative ex-

ternality of e ∈ [ē, 0], which we assume is symmetric and publicly known among

buyers. One important aspect of our model is that externalities are contingent

to the implementation of the allotted buyer. Second, private valuation refers to

the gross return of the project, and so a rational winner i will only implement it

if vi − c > 0. Third, even if a buyer does not want to implement the project it

would be bene�cial for him to acquire it to preclude the implementation by other

competitors, and thus avoiding the potential negative externality he might su�er.

The seller commits to use a second price auction to sell the project, but we

assume he can utilize two di�erent instruments: a �xed-equity hybrid and a �xed-

cash hybrid. In the former the seller �xes the equity over project's return requested

from the winner, and let bidders to compete in cash. The winner is the buyer who

submits the highest bid in cash but pays the bid of his opponent. Clearly, a
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standard second price auction with cash corresponds to the case when the seller

request zero equity. On the other hand, when the seller uses a �xed-cash hybrid,

he �xes an amount in cash the winner of the auction has to pay, and let buyers to

compete in equity. As before, the winner of the auction is the buyer who submits

the highest equity bid, but pays the lowest bid. In this case, when the seller asks

a �xed cash of zero, the auction is conducted in pure equity.

All players are risk neutral, and buyers' utility is additively separable. Let zi

be the return buyer i derives from the project after his implementation decision.

That is, zi = vi − c if he implements the project and zero otherwise. Thus, if

buyer i, with type vi, wins the auction his payo� is given by zi− ti(vi), where ti(vi)

represents the payment to the seller, which potentially depends on his valuation.

On the other hand, if the seller allocates the object to buyer j, then buyer i's

payo� corresponds to e, provided his competitor implements the project; and zero

otherwise. The value of the project for the seller is zero, and hence in any trade

with buyer i his utility is ti(vi).
6 If no trade occurs, the payo� is zero for all

players.

Figure 2.1 depicts the timing of the game. First, seller chooses a payment

instrument and commits to run a second price auction under this format. Then,

buyers learn their valuations and submit their bids to the seller, who determines

the winner of the auction. Next, the winner determines if he wants to implement

or not the project. Finally, payo�s are realized contingent on the implementation

decision.

6Think for example in a seller who owns a patent over a speci�c productive process that by
itself cannot be monetized, but can potentially enhance the productivity of the current technology
held by the buyers.
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Seller
chooses an
instrument

Buyers
learn their
valuations

Bids are
submitted

Winner
decides upon

implementation

Payo�s
are

realized

Figure 2.1: Timing of the auction

2.3 Public Buyer's Valuation

In this section we assume that before participating in the auction, each buyer

learns his own valuation as well as the valuation of his opponent. Without loss

of generality we will assume v1 > v2. The seller, on the other hand, only knows

the distribution where buyers' valuations come from. Nonetheless, the negative

externality is public information for all players. This setting plausibly corresponds

to a situation where both buyers have been operating in a market for long time

and have learned the technology of each opponent, but where a seller is an outsider

of the industry who has developed an innovation that can enhance the technology

of both buyers, but cannot evaluate to which extent.

The seller wants to maximize the ex-ante revenue and for that purpose has

to choose which instrument to utilize. Once the seller chooses an instrument he

commits to it. Thus, bidders are engaged in a game of public information, where

they have to choose their bid bi in the correspondent security space. In the case

of the �xed-equity hybrid bi ∈ R+, whereas in the case of the �xed-cash hybrid

bi ∈ [0, 1].

A Motivating Example In this section we will go through an easy example

that will highlight the main results of the chapter.
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A. No Externalties Consider an auction in which two buyers, Alice and Bob,

compete for a project. The project requires an initial �xed investment of c > 0

which can be interpreted as the minimum up-front cash payment required by

the seller. Alice expects that if she undertakes the project, it would yield her a

return of va, whereas Bob expects a cash �ow of vb. Without loss of generality,

c < vb < va. We assume that both valuations are common knowledge to both

buyers. As the seller commits to use a second price auction, the weakly dominant

strategy for both buyers is to bid their reservation value. As a result, Alice would

bid ba(va) = va − c and Bob would bid bb(vb) = vb − c. Hence, Alice wins the

auction and pays Bob's bid, which implies seller's revenue would be Πca = vb − c.

Now, suppose that rather than bidding with cash, the buyers compete by of-

fering equity over the return of the project. As we discuss later, in this case it is

also a weakly dominant strategy for both buyers to bid their reservation value. 7

Thus, Alice would make aa equity bid of ba(va) = va−c
va

, whereas Bob would make

an equity bid of bb(vb) = vb−c
vb

. As a result, Alice wins the auction and pays ac-

cording to Bob's bid. Seller's revenue would be Πeq = vb−c
vb
va. By an easy algebraic

manipulation, it is possible to see that sellers revenue under equity is higher than

under cash, as

Πeq =
vb − c
vb

va = (vb − c)
va
vb
> vb − c = Πca

B. Externalities Consider the same auction as before but now with the modi-

�cation that if buyer i wins the auction and implements the project, the payo� of

7The reservation value of buyer i is when his payo� equals 0: (1 − bi(vi))vi − c = 0 thus
bi(vi) = vi−c

vi
.

31



buyer −i will be e < 0.

Cash. When the payment instrument is cash, bidding the reservation value

continue to be a weakly dominant strategy for both buyers. Nonetheless, it now

should include the externality. Thus, ba(va) = va − c − e and bb(vb) = vb − c − e.

Seller's revenue becomes Πca = vb − c− e.

Equity. If buyers compete by o�ering equity the analysis is more interesting.

Here, Alice knows that if she bids ba(va) = va−c
va

then Bob has no incentives to

implement the project in case he wins, because (1− va−c
va

)vb− c < 0.8 This implies

that Alice will be willing to make the same o�er as without externalities. For Bob,

the incentives in the auction change. On one hand, he can bid his reservation

value, lose the auction, let Alice implement the project, and obtain a payo� of

e < 0. On the other hand, he can bid higher than Alice, win the auction, shut

down the project, and obtain a payo� of 0. By comparing both scenarios, it is

clear that Bob's optimal strategy is to bid anything on the interval (ba(va), 1] and

secure for himself a payo� of 0. Seller's revenue becomes Πeq = 0 in this case.

Fixed-Equity and Fixed-Cash. To conclude the example we will provide

a rationale for introducing a �xed-equity and a �xed-cash hybrid as methods of

payment. By de�nition, the revenue collected by both instruments depends on the

selection of the �xed component. The challenge for the seller resides in choosing

such �xed components when he only knows the distribution of valuations. For

instance, if the seller sets a very high �xed equity ᾱ, buyers may lose the incentive

to participate in the auction. Likewise, if he sets a very low �xed cash b̄, he would

not be extracting as much surplus as possible from the winner.

8As (1− va−c
va

)va − c = 0 and vb < va.
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The following table shows the values of ᾱ∗, Πfe, b̄∗, Πfc, Πca and Πeq for di�erent

distributions of types when the cost of implementing the project is c = 0.1 and

the externality is e = −0.2.

Table 2.1: Seller expected revenue under optimal securities: Public Info

Expected Seller Revenue
Distribution ᾱ∗ b̄∗ Πfe(ᾱ∗) Πca Πfc(b̄∗) Πeq

U [0, 1] 0.51 0.53 0.56 0.44 0.32 0
B[2, 2] 0.49 0.43 0.57 0.47 0.3 0
B[2, 7] 0.1 0.16 0.24 0.23 0.09 0
IB[2, 7]9 0.73 0.63 0.90 0.80 0.56 0

By looking at the distributions and the revenues some facts can be highlighted:

• When comparing symmetric distributions ᾱ∗, b̄∗, Πfe(ᾱ∗), Πca, and Πfc(b̄∗)

are very similar.

• When the relative likelihood of high types to low types increases, ᾱ∗, b̄∗,

Πfe(ᾱ∗), Πca, and Πfc(b̄∗) increase as well.

• Given c = 0.1 and e = −0.2 the rank of the instruments with respect to

revenue is as follows Πfe(ᾱ∗) > Πca > Πfc(b̄∗) > Πeq.

In the succeeding section we will formally introduce the instruments, charac-

terize the equilibrium bidding strategies, and obtain seller's expected revenue.

9The Inverse-Beta distribution is computed from a former Beta distribution. If f(x) represents
the PDF of a Beta then the PDF of an Inverse-Beta would be g(y) = f(−x + 1). If the former
Beta distribution had a right tail then the Inverse-Beta associated to it will have a left tail.
When the former Beta is symmetric then the Inverse-Beta is exactly the same.
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2.3.1 Fixed-Equity Hybrid

In the �xed-equity hybrid, seller �xes the equity ᾱ the winner of the auction has

to pay over the return of the project. Knowing this information buyers compete in

cash for the allocation of the project. Thus, winner's payment to the seller consists

of the lowest bid in cash, plus the �xed-equity fraction over projects' return.

Proposition 4 The dominant-strategy equilibrium of the second price auction un-

der a �xed-equity hybrid is characterized as follows:

i) If (1− ᾱ)v1 − c < 0, then b1 = b2 = 0.

ii) If (1 − ᾱ)v1 − c > 0 and (1 − ᾱ)v2 − c < 0, then b1 = (1 − ᾱ)v1 − c and

b2 = −e.

iii) If (1− ᾱ)v2 − c ≥ 0, then b1 = (1− ᾱ)v1 − c− e and b2 = (1− ᾱ)v2 − c− e.

Proof. In case i) the project is not pro�table to implement for any of the buyers,

and thus, their best strategy is to submit a bid of zero. On the other hand, in case

ii) the project is pro�table to implement for buyer 1 but not for buyer 2; hence,

the best strategy for buyer 1 is to bid his reservation value, and implement the

project if he is allocated. Given buyer 1's strategy, the best response of buyer 2 is

to bid his reservation value, which in this case is the negative externality he knows

will su�er if buyer 1 wins the auction. Finally, if the project is pro�table for both

bidders, both will bid their reservation value, which includes the avoidance of the

externality.

There are several interesting observations that can be highlighted from propo-

sition 4. First, the likelihood of allocations and payments are not necessarily
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weakly increasing in buyer's type. For instance, if buyer 2 -the one with the lowest

valuation- bids the absolute value of the externality, wins the auction, and pays

the reservation value of buyer 1. Moreover, if both buyers �nd pro�table to im-

plement the project, there cannot be an equilibrium in which buyer 2 implements

the project, and therefore, his incentives to participate in the auction reside in

avoiding the externality if he can win the auction at a price lower than the value

of the externality e.

Figure 2.2 shows the bidding strategy of bidder 1 as a function of the valuation

of bidder 2, given that v1 >
c

1−ᾱ , and thus when only cases ii) and iii) are possible.
10

v2

b1(v2)

10 c
1−ᾱ

b′1(v2)

b′′1(v2)

−e

(1− ᾱ)(v′′1 − v′1)

Figure 2.2: Bidding strategies with �xed-equity for buyer 1

It can be observed from �gure 2.2 that as soon as the project becomes pro�table

for buyer 2 (i.e. when v2 ≥ c
1−α) buyer 1 increases his bid by −e, to re�ect the

fact that he would su�er the externality in case he loses the auction.

The expected revenue generated by the �xed-equity hybrid under these equi-

librium strategies correspond to

10If v1 <
c

1−ᾱ then he will bid b1(v1) = 0 when v2 <
c

1−ᾱ , otherwise b1(v1) = −e.
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Πfe(ᾱ) = 2F (
c

1− ᾱ
)

∫ c−e
1−ᾱ

c
1−ᾱ

((1− ᾱ)v1 − c)f(v1)dv1 (2.1)

+ 2F (
c

1− ᾱ
)

∫ v̄

c−e
1−ᾱ

(ᾱv1 − e)f(v1)dv1

+

∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

[(1− ᾱ) min{v1, v2} − c− e+ ᾱmax{v1, v2}]f(v1)f(v2)dv1dv2

First, notice that if the project is not pro�table for any buyer, the auction will

generate zero revenue. In the case it is pro�table for buyer 1 but not for buyer

2, we need to identify two sub-cases: one when 0 < (1 − ᾱ)v1 − c < −e, and the

other one when −e < (1 − ᾱ)v1 − c. In the former, buyer 2 wins the auction but

does not implement the project, therefore the seller does not collect revenue from

the equity portion of the hybrid, but will get a transfer of (1 − ᾱ)v1 − c, which

is the lowest bid in cash. This case corresponds to the �rst term in equation (1).

Now, in the other case, buyer 1 will win and implement the project, which means

the seller will collect a contingent revenue of ᾱv1 plus a transfer in cash of −e.

This corresponds to the second term. Finally, when both buyers �nd pro�table

to implement the project, the seller collects the lowest reservation value in cash,

plus the fraction of equity corresponding to the highest type. This is precisely the

third term.

2.3.2 Fixed-Cash Hybrid

When the seller uses a �xed-cash hybrid he �xes the amount in cash the winner

of the auction has to pay, b̄. Knowing this information, bidders compete in equity
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for the allocation of the project, and it is allocated to the buyer with the highest

bid in equity. Therefore, winner's �nal payment to the seller corresponds to the

lowest bid in equity, times the return of the project when it is implemented by

him, plus the �xed-amount in cash.

Proposition 5 The Nash Equilibrium of the second price auction under a �xed-

cash hybrid is characterized as follows:

i) If v1 − c− b̄ < 0; then b1 = b2 = 0.

ii,a) If v1 − c− b̄ > 0 and −b̄ ≤ e; then b1 = v1−c−b̄
v1

and b2 = 0.

ii,b) If v1 − c− b̄ > 0 and −b̄ > e; then b1 = v1−c−b̄
v1

and b2 = (v1−c−b̄
v1

, 1].

Proof. In the �rst case the project is not pro�table for any of the buyers and then

no one will su�er the externality in case the project is allocated to his opponent.

Moreover, bidding a positive equity will give the buyers a positive probability of

winning the auction, which will force them to pay the amount b̄ to the seller.

Therefore, the best strategy for both buyers is to stay out of the auction. If the

project is pro�table for buyer 1 but not for buyer 2, and the �xed amount of cash

b̄ is higher or equal to the value of avoiding the externality −e, buyer 2 prefers to

stay out of the auction and su�er the externality. On the other hand, if −b̄ > e,

buyer 2 has an incentive to participate in the auction to bid high enough in order

to destroy the incentives of buyer 1 to implement the project in case he wins

the auction. In both cases, the best response of buyer 1 is to bid his reservation

value, which does not take into account the avoidance of the externality, because

he knows buyer 2 never will implement the project if he has the opportunity to do
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so. Finally if the project is pro�table for both, there is no equilibrium in which

buyer 2 wins the auction and implements the project. The reason is that as the

reservation value of buyer 2 is lower than the one of buyer 1, if buyer 1 is not the

winner then there is a pro�table deviation in which he o�ers a slightly higher bid

than buyer 2, wins the auction, and avoid the negative externality. Given that

situation, the best response for buyer 2 is to bid 0 if −b̄ ≤ e, or otherwise bid high

enough to destroy the incentive of buyer 1 to implement the project in case he

wins the project. Following the strategy of buyer 2, the best strategy for buyer 1

is to submit his reservation value.

Equity represents the particular case in which b̄ = 0. In this case implementa-

tion never takes place and blocking is always the best response of the weak buyer.

Notice that this is true for any e < 0 and moreover this is one of the possible

equilibrium for e = 0, being this equilibrium particularly robust.

In �gure 2.3 we present the bidding strategy of bidder 1 as a function of the

valuation of bidder 2, given that it is pro�table for him to implement (i.e. when

v1 > c+ b̄). In other words, we restrict attention to cases ii,a) and ii,b.11

Figure 2.3 shows that as v1 increases b1(v1, ·) increases as well (v′′1 > v′1), which

implies that the region of parameters under which buyer 1 just block the allocation

decreases.12

The revenue generated by these equilibrium strategies corresponds to

Πfc(b̄) = (1− F (c+ b̄)2)b̄ (2.2)

11If v1 < c + b̄ then he will bid b1(v1) = 0 when v2 < c + b̄ or b̄ > −e, otherwise he will bid
anything between 1 and the reservation value of buyer 2.

12Under v′1 he will block the allocation at the dashed plus dotted region whereas under v′′1 he
will block only at the dotted region.
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v2

b1(v2)

1− c− b̄

1

10 c+ b̄ v′1 v′′1

b′1(v2)

b′′1(v2)

Figure 2.3: Bidding strategies with �xed-cash for buyer 1

It states that the seller will collect the �xed amount of cash b̄ as long as at

least one of the buyers �nd pro�table to implement the project. The clear tradeo�

for the seller is that increasing b̄ diminishes the probability of implementation, but

increases the surplus extracted conditional on implementation.

Once we considered the expected revenues of both instruments given by ex-

pressions (2.1) and (2.2), the natural following step is to determine how do they

rank. This is precisely the matter of the following theorem.

Theorem 6 For any log-concave density f , there exists a cuto� values c̄ and e,

such that if c ∈ (0, c̄) and e < e the instruments can be ranked in expected revenue

as follows:

Πfe(ᾱ∗) > Πfe(0) > Πfc(b̄∗) > Πfc(0) (2.3)

Theorem 6 states that if the cost of the project and the negative externality
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are su�ciently low, the seller is globally better o� using a �xed-equity hybrid.

The reason of this result is that, as we discussed before, when payments are made

upfront in cash buyers have to face a sunk cost if they want to block the imple-

mentation of his opponent. Therefore, the willingness of a �bad type� to pay is

bounded above by the absolute value of the negative externality. If the externality

is so large that the bad type wins the auction, the seller secures for himself the

reservation value of the highest type; otherwise, he receives the �xed equity from

the good type, plus the value of the externality in cash. On the other hand, when

buyers can bid in equity they can destroy more often the equilibrium in which the

project is implemented. The e�ect is particularly dramatic when the seller uses a

pure security, because blocking can be done at no cost. This problem can be mit-

igated by incorporating a �xed cash component b̄; however as the theorem shows,

its presence is not su�cient to o�set the perverse incentives of the �bad type�

buyers. The result holds for any log concave density, which suggests that the in-

teraction between buyers is strong enough to hold under di�erent distributional

assumptions.
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Figure 2.4: Revenue as a function of ᾱ and b̄ for U [0, 1]

Figure 2.4 illustrates the result of theorem 6 when valuations are drawn inde-
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pendently and identically from a uniform distribution with support [0, 1], with a

negative externality of e = −0.2 and a cost of c = 0.1. As it can be seen, there is a

large range for the parameter ᾱ such that the �xed-equity hybrid renders a higher

revenue than cash, which in turn yields a higher revenue than the �xed-cash hy-

brid. Noticeably, the revenue obtained by cash is 50% higher than the one yielded

by the optimal �xed-cash hybrid.13

Monotone Comparative Statics Now we will inspect what happens to the

optimal �xed parameters b̄∗ and ᾱ∗ when the distribution improves in the sense of

the Monotone Likelihood Ratio property. This analysis will provide an insight of

how di�erent distributions a�ect the design of both hybrids

Theorem 7 Suppose f1 dominates f0 in the Monotone Likelihood Ratio (MLR),

then b̄∗1 ≥ b̄∗0. If additionally,
F1(y)
F0(y)

> f1(y)
f0(y)

for all y ∈ [c, v̄], then ᾱ∗1 ≥ ᾱ∗1

Proof. See the appendix.

Theorem 7 says that for a �xed cost and an externality, if the likelihood of

getting higher values improve in the sense of MLR, the optimal �xed cash amount

in its respective hybrid cannot decrease. If in addition the ratio of the densities is

majorized by the ratio of the distributions for all values greater than the cost, the

optimal �xed equity portion in its respective hybrid cannot decrease. It implies

that when the seller is using the �xed-equity hybrid he will apply a higher equity

portion over a higher expected return of the project. Likewise, when the seller

uses a �xed-cash hybrid, it means that now the barrier a bad type has to surpass

13Similar �gures for di�erent distributions are presented in the appendix.
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to enter the auction and block implementation is higher. Naturally, in both cases

expected seller's revenue increases.

2.3.3 Other Variations

Deposit Insurance Notice that depending on the security design, the seller

can collect a payment from buyers in two stages: after a buyer wins the auction,

and after a winner implements the project. As mentioned before, the idea of

introducing a payment in cash was a device to screen the low type buyers who

otherwise would always have an incentive to enter into the auction to destroy the

implementation incentives of the high type buyers. In particular, the �xed-cash

hybrid forces the winner to make a payment in cash right after winning the auction.

A variant of this instrument, is to introduce a cash deposit (or insurance). This

device would work as follows. The seller �xes an amount each buyer has to deposit

to participate in the auction. Then, a second price auction in equity is run. The

loser gets the deposit back. If the winner implements the project, he has to pay

the correspondent equity over project's return but the seller gives back the cash

deposit. On the other hand, if the winner does not implement the project the seller

retains the cash deposit.14 Although the cash transfer is determined in a di�erent

stage, it can be shown that bidding strategies are the same as in the �xed-cash

hybrid, and therefore the revenue for the seller does not change. In other words:

If the cash deposit is below −e then the �bad type� will block implementation,

otherwise his bid will be zero thus revenue is the same as in the �xed-cash hybrid.

14Another way of doing the same is by �xing the size of the deposit the winner should pay
upon winning the auction (only the winner pays) and he can claim it back upon implementation.
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Unconstrained Bids The two hybrids presented before share the characteristic

that the seller determines ex-ante the bid in one of the securities. For instance,

in the �xed-equity hybrid, the seller �xes the fraction of equity asked but let

buyers to compete in cash. Meanwhile, in the �xed-cash hybrid, the seller �xes

the possible bids of cash but let buyers to compete in equity. Alternatively, one

can think in a format where the seller decides to run a second price auction but

without imposing any restriction on buyers' bids. Thus, each player bid consists

on a tuple bi = (αi, βi) ∈ R × [0, 1], where αi represents the equity promised on

the return of the project and βi corresponds to an upfront payment in cash. The

critical di�erence of this approach with respect to the former is that now there is

no trivial way to rank bids and determine the winner of the auction. Suppose the

seller uses an order ψ such that (R× [0, 1], ψ) constitutes a linearly ordered set.

Proposition 8 Fix an arbitrary ψ. The dominant strategy equilibrium of the

second price auction under unconstrained bids corresponds to: b1 = (0, v1 − c− e)

if v1 − c > 0 and b1 = (1, 0) otherwise; b2 = (1, 0).

Proof. If the project is not pro�table for buyer 2 his dominant strategy is to bid

the whole equity and nothing in cash. Following this strategy, he makes sure the

project is never implemented at no cost, and so, he never su�ers the externality.

When the project is pro�table for both, bidder 1 o�ers his reservation value in the

cheapest way, which involves only cash, as he is the highest type and any marginal

fraction he bids in equity is only valued by the seller with respect to the expected

type. Given this strategy, bidder 2 o�ers the whole equity and no cash, to block

the allocation in which buyer 1 wins the auction and implements the project.
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Notice that this equilibrium is obtained irrespectively of the order ψ the seller

uses to rank the bids. The result follows because equity is the instrument that

permits to avoid the externality without paying any cost. This is the worst case

scenario for the seller, as the revenue under unconstrained bids is Πub = 0. The

critical assumption is that the auction is a second price, because the buyer is forced

to pay each component of his opponent bid.

2.4 Robustness: Private Buyer's Valuations

In this section we will analyze the set of securities under the assumption that

buyers do not longer know the valuation of his opponent, which turns our model

into a standard private values auction model. We will analyze how the information

structure a�ects our main result.

2.4.1 Fixed-Equity Hybrid

Analogously to section 2.3.1 we characterize the equilibrium under private infor-

mation. We use the Bayes-Nash equilibrium as the solution concept.

Proposition 9 Bayes-Nash equilibrium bidding strategies of the second price auc-

tion when the seller uses �xed-equity, ᾱ, are characterized by

i) bi(vi) = 0 if (1− ᾱ)vi − c < 0.

ii) bi(vi) = (1− ᾱ)vi − c+ (1− F ( c
1−ᾱ))(−e) if (1− ᾱ)vi − c > 0.

Proof. As the seller utilizes a second price auction, and buyers bid in cash, the best

strategy for a buyer who �nds pro�table to implement the project is to bid their
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reservation value. Now, buyer i's reservation value depends on the implementation

decision of his opponent. Thus, with probability F ( c
1−ᾱ) it is not pro�table for the

other buyer to implement the project, and so buyer i's reservation value is equal to

the net payo� of implementing the project: (1− ᾱ)vi− c. On the other hand, with

probability 1−F ( c
1−ᾱ) it is pro�table for the other buyer to implement the project,

which implies that in case buyer i loses the auction he will su�er the externality e,

and thus, such expected loss has to be added to his bid. For the buyer who does not

want to implement the project his reservation value is given by 1 − F ( c
1−ᾱ)(−e).

If he bids his reservation value, he will lose with probability one if he faces an

opponent who wants to implement the project. In such case his payment will be e.

On the other hand, when he faces an opponent who does not want to implement

the project neither, his expected payo� will be 1
2
(1− F ( c

1−ᾱ))(e). Hence, there is

clearly a pro�table deviation to zero. By doing this the buyer will continue losing

the auction when facing an opponent who wants to implement the project, and

then will obtain the same payo�, but now will obtain a zero payo� if he faces an

opponent who does not want to implement.

Following the same reasoning as with the public case, seller's ex-ante revenue

is given by

Πfe(ᾱ) = 2F (
c

1− ᾱ
)

∫ v̄

c
1−ᾱ

(ᾱv1)f(v1)dv1

+

∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

[(1− ᾱ) min{v1, v2} − c+ (1− F (
c

1− ᾱ
))(−e) + ᾱmax{v1, v2}]f(v1)f(v2)dv1dv2

The �rst term in the integral corresponds to the case when one buyer �nds

pro�table to implement the project and the other does not. In this scenario, the

seller collects the �xed equity portion from the highest type and receives zero in
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cash. Meanwhile, the second term represents the expected revenue when both

buyers want to implement the project. Here the seller receives the equity portion

from the highest type, plus the cash embedded in the lowest bid.

2.4.2 Fixed-Cash Hybrid

In a similar fashion to section 2.3.2 we characterize the equilibrium under private

information. We show that the existence of a Bayes-Nash equilibrium in pure

strategies depends on the relationship between the �xed amount of cash b̄ and the

value of the externality e.

Proposition 10 There are no equilibria in pure strategies in the �xed-cash hybrid

if:

i) −b̄ > e and (1− F (c+ b̄))e < −b̄.

ii) −b̄ > e and (1− F (c+ b̄))e > −b̄.

Proof. The problem to reach an equilibrium on case (i) resides in the optimal

strategy of the buyer's type who does not want to implement the project: the �bad

type.� If both buyers of such type bid zero, any of them would �nd pro�table to

deviate and bid the smallest amount that guarantees him to be the winner of the

auction. In such case the deviant buyer would get a payo� of −b̄ which is greater

than (1 − F (c + b̄))e. For the same reason, the other buyer also deviates to the

same bid, which yields a payo� of F (c+ b̄)(− b̄
2
)(1−F (c+ b̄))(−b̄) to both buyers.

Notice that in such situation both buyers block the implementation with certainty

and share the cost. Nonetheless, as soon as both buyers bid the same amount,
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any of them -say buyer i- has an incentive to bid an arbitrarily lower amount. It

guarantees to su�er the externality with a very low probability in case he faces

the good type of buyer −i, but saves his portion of the �xed amount of cash when

faces his fellow bad type. The moment buyer i deviates, buyer −i has two possible

deviations, either to bid lower than buyer i, or returning to the initial bid. The

former deviation is more pro�table. Continuing with this analysis, some buyer

will reach a level at which there is no downward deviation for his rival. That is,

a point where if his opponent submits a lower bid, he will su�er a payo� lower

than −b̄. Or in other words, a bid k ∈ (0, 1) such that F (b−1(k))(e) = b̄. Under

this scenario, if buyer i bids k, the best deviation for buyer −i is to return to

the initial bid, which will start again the cycle of deviations. In order to prove

case (ii) it is worth noting that �bad buyers� will make a bid of zero. Now the

problem resides on the �good buyers�. Consider the type vi = c + b̄. If he bids

bi(vi) = vi−c−b̄
vi

he wins against all the types that do now want to implement the

project getting a payo� of zero but loses against all the other types that want

to implement the project (it is clear that no bidder who wants to implement the

project has incentives to bid below his reservation value without considering the

externality). Whenever he loses, he gets e for sure (he only loses against types that

are willing to implement at his reservation value) which is worse than paying b̄ and

not implementing. Hence, he is better o� blocking every possible implementation:

bidding the smallest amount that guarantees him to be the winner of the auction.

Su�ciently many types will deviate to this bid as long as −b̄ > e, because they

can block potential implementation. At this point the cyclical logic of case (i)

comes into place, not for the �bad types� now but for the �good types�, and no
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equilibrium is reached in pure strategies.

Proposition 11 Bayes-Nash equilibrium bidding strategies of the second price

auction under the �xed-cash hybrid, when −b̄ ≤ e, are characterized by

i) bi(vi) = vi−c−b̄
vi

, if vi − c− b̄ > 0.

ii) bi(vi) = 0 if vi − c− b̄ < 0.

Proof. In case (ii) the project is not pro�table for the buyer, and moreover,

the negative externality e is lower than the loss he would get by winning the

auction and not implementing the project, −b̄. As there is no way to prevent the

implementation of the project by his competitor without winning the auction, the

best strategy of the �bad type� is to bid zero in equity. In case (i), the buyer �nds

pro�table to implement the project, and his best strategy is to bid his reservation

value -which does not depends on the implementation decision of his opponent. If

bi(vi) >
vi−c−b̄
vi

he will win whenever bi(vi) > b−i(v−i) but there are two di�erent

situations. When b−i(v−i) <
vi−c−b̄
vi

buyer i will win the auction and implement

the project, guaranteeing for himself a payo� of at least zero. When bi(vi) >

b−i(v−i) >
vi−c−b̄
vi

buyer i will win the auction but cannot implement the project,

thus his payo� is −b̄. By deviating to bi(vi) = vi−c−b̄
vi

he keeps the positive payo�s

(wins and implements in all the cases he wants to do so) and at most su�ers a

payo� of e upon losing which is better than −b̄.

Once we have derived the equilibrium strategies we can state the expression

for seller's expected revenue. Given we have equilibrium whenever −b̄ < e we can

state the revenue just for this particular case.
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Πfc(b̄) = 2(1− F (c+ b̄))F (c+ b̄)b̄

+

∫ v̄

c+b̄

∫ b̄

c+b̄

(min{v1 − c− b̄
v1

,
v2 − c− b̄

v2

}max{v1, v2}+ b̄)f(v1)f(v2)dv1dv2

2.4.3 Equity

To analyze equity, we cannot simply take bidding strategies as particular cases of

the �xed-cash hybrid, because now even for very low valuations the buyer can bid

su�ciently high, and still avoid a positive payment to the seller.

Proposition 12 Equilibrium bidding strategy when the seller uses equity is uniquely

characterized by bi(vi) = 1.

Proof. Clearly, if vi − c < 0 buyer i will not implement the project if he wins, so

winning the project only has value as long as it prevents the other agent to win and

implement the project, because in this case buyer i avoids the negative externality

it would entail. Now if vi−c > 0, in principle buyer i optimal strategy is to bid his

reservation value, as now he has the normal trade-o� any buyer faces in an auction:

increasing the bid increases the probability of winning but decreases the surplus.

However, the presence of the externality biases buyer's incentives towards winning

the auction. In concrete, if vi − c > 0 but small, the buyer might be better o� by

bidding one in equity and avoiding the externality with certainty, than gambling

on winning the auction and su�ering the externality with positive probability.

This behavior may give room for the possibility of having a cut-o� strategy. If

this were the case, there would exist a value ṽ such that if vi < ṽ then bi(vi) = 1 and
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vi

bi(vi)

1− c− b̄− e

1

10 ṽ

Figure 2.5: Threshold equilibrium under Equity

if vi ≥ ṽ then buyers bid their reservation value -which includes the externality

he would su�er in case of his opponent implements the project. In such case

the strategy of buyer i would have a discontinuity at ṽ, as shown in �gure 2.5.

However, if it were the case, at ṽ the bid of the agent will be the lowest possible,

which implies he loses the auction for sure and will su�er the externality with

positive probability. Thus, bidding one is a pro�table deviation. This observation

holds for any value ṽ < 1. Therefore, both agents will bid one in equilibrium and

the project is never implemented.

2.4.4 Example Revisited

Following the example presented in section 2.3 we show the values of ᾱ∗, Πfe, b̄∗,

Πfc, Πca and Πeq for di�erent distributions of types when the cost of implementing

the project is c = 0.1 and the externality is e = −0.2.
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Table 2.2: Seller expected revenue under optimal securities: Private Info

Expected Seller Revenue
Distribution ᾱ∗ b̄∗ Πfe(ᾱ∗) Πca Πfc(b̄∗) Πeq

U [0, 1] 0.67 0.42 0.54 0.39 0.35 0
B[2, 2] 0.58 0.32 0.55 0.45 0.34 0
B[2, 7] 0.23 ∗∗ 0.18 0.17 ∗∗ 0
IB[2, 7] 0.75 0.2 0.91 0.80 0.68 0
**: b̄ is in the no equilibrium range

Even though the table computes Πfc only for the case where we have an equi-

librium in pure strategies, our results are robust: Most of the entries on table 2.2

are similar to the ones presented on table 2.1. The only di�erence is b̄ for the

IB[2, 7] because now the seller can force bidders to bid in equity without consider-

ing the externality and he seems willing to do so.15 However the payo� he obtains

is similar to the case of public information.

2.5 Concluding Remarks

We analyzed a simple two-buyer second price auction, where the seller can use two

di�erent hybrids and the buyers su�er negative externalities upon the implemen-

tation of the project by their opponent. In particular, we consider a �xed-equity

hybrid, where the seller �xes a portion of equity over project's return and buyers

compete in cash; and a �xed-cash hybrid, where the buyers compete in equity and

the winner has to pay an amount in cash predetermined by the seller.

Our main observation lies in the fact that pure securities equip low-valuation

buyers (those who do not want to implement the project, or bad types) with a

150.2 is the ᾱ∗ that maximizes revenue on ᾱ∗ ∈ [0.2, 1] but it is still possible (although unlikely)
that ᾱ∗ < 0.2.
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powerful tool to block the implementation from the good types, which impacts

revenue negatively. Then, we �nd that in order to circumvent this problem the

seller has to incorporate a �xed payment in the instruments to be used as a device

to prevent �bad types� from blocking. However, mitigating this adverse selection

problem poses a tradeo� on the seller: by increasing the �xed portion of the

hybrid utilized, the project becomes less pro�table for buyers, and thus, induces

less participation.

The �xed-equity hybrid conducts the screening in cash, whereas the �xed-cash

hybrid conducts the screening in equity. If the seller decides to use the latter,

buyers retain the power of blocking the implementation, conditional on the fact

that they decide to participate in the auction -which now depends on the �xed-

amount of cash requested by seller to the winners. On the other hand, when the

seller uses the former, the screening is realized in cash, which is the cheapest way

�good types� can use to distinguish themselves. Therefore, the screening realized

is more e�ective, and the seller ends up trading with the good types more often.

This is the intuition that justi�es the preeminence of the �xed-equity hybrid as

the best instrument in the menu. At the same time, that is the reason why equity

is the worst. More surprisingly is the result that the optimal �xed-cash hybrid

performs worse than cash, if the value of the externality is su�ciently high (in

absolute value). However, it re�ects the fact that when buyers want to avoid a

su�ciently high negative externality, their willingness to pay upfront more than

o�sets the potential extraction through equity.

An interesting feature of our result is that it seems to be robust to the structure

of the information. That is, even when buyer's valuations are private information,
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the �xed-equity hybrid continues to be the best, and equity continues to be the

worst. However, the �xed-equity instrument now does not always have an equi-

librium in pure strategies, which increases the uncertainty over seller's revenue in

the more general case.

Finally, we analyze what would happen to the optimal �xed-payment portion

in both hybrids when the distribution improves in the Monotone Likelihood Ratio

property. Intuitively, we obtain that the amount of cash in the �xed-cash hybrid

is non-decreasing, and that under some condition of the distributions, the equity

portion in the �xed-equity hybrid is also non-decreasing. These results state that

when buyers draw better valuations, the seller is less concerned about inducing

participation, and can extract a higher surplus from the winner of the auction.
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Appendix

A. Omitted Proofs

Proof of Theorem 6.

We will prove the theorem following three steps. First we will prove that

the optimal �xed-equity hybrid involves a portion of equity ᾱ∗ ∈ (0, 1), which

immediately implies that the hybrid dominates pure cash in revenue. Analogously,

in the second step we will show that the optimal �xed-cash hybrid involves a

positive amount of cash (i.e. b̄∗ > 0), which in turn implies that it dominates pure

equity in revenue. Finally, we will prove that the revenue under cash is higher

than the revenue under the optimal �xed-cash hybrid.

Step 1 We take �rst order conditions by applying Leibniz' rule to the three

di�erent terms in (2.1). First derivative D1(ᾱ, c, e) corresponds to:

2F (
c

1− ᾱ
)[

(c− e)e
(1− ᾱ)2

f(
c− e

(1− ᾱ)
)−

∫ c−e
1−ᾱ

c
1−ᾱ

v1f(v1)dv1]

− 2f(
c

1− ᾱ
)

c

(1− ᾱ)2

∫ c−e
1−ᾱ

c
1−ᾱ

((1− ᾱ)v1 − c)f(v1)dv1

Likewise, second derivative D2(ᾱ, c, e) is given by
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2F (
c

1− ᾱ
)[

(ᾱc− e)
1− ᾱ

(c− e)
(1− ᾱ)2

f(
c− e

(1− ᾱ)
)

+

∫ v̄

c−e
1−ᾱ

v1f(v1)dv1]− 2f(
c

1− ᾱ
)

c

(1− ᾱ)2

∫ c−e
1−ᾱ

c
1−ᾱ

(ᾱv1 − e)f(v1)dv1

Finally, applying Leibniz rule twice in the third term and using the fact that val-

uations are independently and identically distributed, the third derivative D3(ᾱ, c, e)

becomes:

2[

∫ v̄

c
1−ᾱ

(ᾱv1 − e)f(v1)dv1]
c

(1− ᾱ)2
f(

c

1− ᾱ
)

+

∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

(max{v1, v2} −min{v1, v2})f(v1)f(v2)dv1dv2

Letting D̃(α, c, e) = D1(α, c, e) +D2(α, c, e) +D3(α, c, e) we have that

D̃(0, c, e) = 2F (c)[

∫ v̄

c−e
v1f(v1)dv1 −

∫ c−e

c

v1f(v1)dv1]

− 2f(c)c[

∫ c−e

c

(v1 − c)f(v1)dv1]− e(1− 2F (c) + F (c− e))]

+

∫ v̄

c

∫ v̄

c

(max{v1, v2} −min{v1, v2})f(v1)f(v2)dv1dv2

Now, we will explore the behavior of the �rst order condition when the cost
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tends to zero.

lim
c↓0

D̃(0, c, e) =

∫ v̄

0

∫ v̄

0

(max{v1, v2} −min{v1, v2})f(v1)f(v2)dv1dv2 > 0 ∀e < 0

Notice that for a given e, as D̃(0, c, e)) is continuous, there exists a cut-o� in

the cost

c̄1 := sup{c̃ > 0 : D̃(0, c, e) > 0 for all c ∈ (0, c̃)}

Moreover,

lim
ᾱ→1

Πfe(ᾱ) = 0

and,

Πfe(0) = 2F (c)[

∫ c−e

c

(v − c)f(v)dv +

∫ v̄

c−e
(−e)f(v)dv]

+

∫ v̄

c

∫ v̄

c

(min{v1, v2} − c− e)f(v1)f(v2)dv1dv2 > 0

Therefore, because revenue is strictly increasing at ᾱ = 0 and Πfe(0) > Πfe(1)

for all e, the optimal fraction of equity ᾱ∗ ∈ (0, 1).

Step 2 Now we will prove that the optimal portion of cash in the �xed-cash

hybrid is positive. That is, b̄∗ > 0.
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Taking �rst order conditions of (2.2) with respect to b̄ we have that

b̄∗ =
1− F (c+ b̄∗)

f(c+ b̄∗)

1 + F (c+ b̄∗)

2F (c+ b̄∗)
=

1

λ(c+ b̄∗)

1 + F (c+ b̄∗)

2F (c+ b̄∗)
(2.4)

where λ(·) is the hazard ratio associated with f .

Now, as the density f is log-concave, by theorem 3 in Bagnoli and Bergstrom

(2005) the hazard rate λ of F is an increasing function. Therefore, the second

derivative of (2.2) is negative for all b̄, and the expression in (2.4) corresponds

to its unique global solution. Intuitively, if the seller raises marginally the �xed

amount b̄, his revenue increases by this amount only with probability 1−F (c+ b̄),

which is the likelihood that the project is pro�table for a particular buyer. On

the other hand, f(b̄), measures the loss in implementation the seller will cause by

rising the �xed amount of cash requested. That is, the seller will gain the marginal

amount in the cash requested except in those cases where the winner was already

indi�erent between implementing or not the project. In those cases, if the seller

raises b̄ now the project is not pro�table for the winner, and the seller will reduce

participation. This expression is scaled by the factor at the right.

Step 3 In the last step we will show that the revenue under cash is higher than

the revenue under the optimal �xed-cash hybrid.

Let b̄∗ be the optimal �xed-cash amount when the cost is zero, and thus b̄∗ =
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1−F (b̄∗)
f(b̄∗)

1+F (b̄∗)
2F (b̄∗)

. Hence,

lim
c↓0

Πfe(0, c, e) = −e+

∫ v̄

0

∫ v̄

0

min{v1, v2}f(v1)f(v2)dv1dv2

> −e+

∫ v̄

b̄∗

∫ v̄

b̄∗
min{v1, v2}f(v1)f(v2)dv1dv2

That is, when the cost approaches to zero from above, the expected revenue

when the seller uses cash is higher than the expected revenue under the best �xed-

cash hybrid.

Now, �x c ∈ (c, c̄). Using the expressions of revenue for �xed-equity (2.1) and

�xed-cash (2.2) hybrids, we need to show that

Πfe(0, c, e) = 2F (c)[

∫ c−e

c

(v1 − c)f(v1)dv1 +

∫ v̄

c−e
(−e)f(v1)dv1]

+

∫ v̄

c

∫ v̄

c

[min{v1, v2} − c− e]f(v1)f(v2)dv1dv2

is greater than

Πfc(b̄∗, c, e) = 2

∫ c+b̄∗(c)

0

∫ v̄

c+b̄∗(c)

b̄∗f(v1)f(v2)dv1dv2

+

∫ v̄

c+b̄∗(c)

∫ v̄

c+b̄∗(c)

b̄∗f(v1)f(v2)dv1dv2

Or rearranging terms, we need that
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2F (c)[

∫ c−e

c

(v1 − c)f(v1)dv1 +

∫ v̄

c−e
(−e)f(v1)dv1] + (1− F (c))2(−c− e)

+

∫ v̄

c+b̄∗(c)

∫ v̄

c+b̄∗(c)

[min{v1, v2} − b̄∗(c)]f(v1)f(v2)dv1dv2∫ c+b̄∗(c)

0

∫ c+b̄∗(c)

0

min{v1, v2}f(v1)f(v2)dv1dv2

be greater than

(1− F (c+ b̄∗(c))2)

f(c+ b̄∗(c))
(1 + F (c+ b̄∗(c)))

where the last expression is obtained by replacing the functional form of b̄∗(c).

Hence, to show that Πfe(0) > Πfc(b̄∗(c)) is su�cient that

−e > 1 + F (c+ b̄∗(c))

f(c+ b̄∗(c))
+ c− 2

(1− F (c))2

∫ c+b̄∗(c)

0

(1− F (v1))f(v1)v1dv1

Therefore we can de�ne

−e = arg max
c∈(0,c̄)

{1 + F (c+ b̄∗(c))

f(c+ b̄∗(c))
+ c− 2

(1− F (c))2

∫ c+b̄∗(c)

0

(1−F (v1))f(v1)v1dv1}

Figure 2.6 shows the behavior of c̄ as a function of |e|. If c < c̄ then theorem

6 holds thus Πfc(0) > Πfc(b̄∗), otherwise the reverse is true.

On table 2.3 we explore theorem 6 by showing the value of e for di�erent

distributions. Alongside, we present the values of Πfe(0) and Πfc(b̄∗) for di�erent

values of e, to con�rm why the bound is needed although it is rather low.
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c̄
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U [0, 1]
B[2, 7]

B[2, 2]

IB[2, 7]

Figure 2.6: Upper bound of the cost for di�erent distributions

Table 2.3: Revenue in Cash and Fixed-Cash as a function of e

Expected Seller Revenue
Distribution e Πfe(0) Πfc(b̄∗) b̄∗ e

U [0, 1]
−0.001 0.334333

0.3849 0.57735 −0.0512−0.01 0.343333
−0.1 0.433333

B[2, 2]
−0.001 0.372429

0.375 0.5 −0.0036−0.01 0.381429
−0.1 0.471429

B[2, 7]
−0.001 0.15002

0.152539 0.222329 −0.0035−0.01 0.15902
−0.1 0.24902

IB[2, 7]
−0.001 0.705575

0.656547 0.718398 @−0.01 0.714575
−0.1 0.804575
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Proof of Theorem 7. We will prove the result using techniques of monotone

comparative statics on lattice programming, for which we need to introduce some

the de�nitions and results of this theory.

De�nition 13 (Milgrom and Shannon (1994)) Let X and T be non-empty

subsets of R and let g : X×T → R. We say g satis�es the strict single crossing

property (SSCP) in (x, t) if for every x′′, x′ in X and t′′, t′ in T , with x′′ > x′

and t′′ > t′

g(x′′, t′) ≥ g(x′, t′) implies g(x′′, t′′) > g(x′, t′′) (2.5)

and we write g(·, t′′) �SSCP g(·, t′).

De�nition 14 (Quah and Strulovici (2009)) Let X and T be non-empty sub-

sets of R, and let {g(·, t)}t∈T be a family of real valued functions de�ned on

X, we say that g(·, t′) is interval order dominated by g(·, t′′) -with the notation

g(·, t′′) �IDO g(·, t′′)- if equation (2.5) holds for all x′ < x′′ whenever g(x, t′) <

g(x′′, t′′) for all x ∈ [x′, x′′].

Proposition 15 (Quah and Strulovici (2009)) Let X and T be respectively

an interval and a non-empty subsets of R, and suppose that {g(x, ·)}t∈T is a family

of real valued functions, which are also absolutely continuous in intervals of X;

and that there is a positive an increasing function h : X → R such that g′(x, t′′) >

h(x)g′(x, t′) a.e. Then, g(·, t′′) �IDO g(·, t′)

Theorem 16 (Quah and Strulovici (2009)) Let X and T be non-empty sub-

sets of R and let g(·, t′′), g(·, t′) be two real valued functions de�ned on X, with
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t′′, t′ ∈ T such that t′′ > t′. If g(·, t′′) �IDO g(·, t′) then

argmaxx∈Jg(·, t′′) > argmaxx∈Jg(·, t′) for any interval J of X. (2.6)

Furthermore, if (2.6) is satis�ed then g(·, t′′) �IDO g(·, t′)

Suppose f1 dominates f0 in the monotone likelihood ratio (MLR) and rewrite

(??) as

Πfe(ᾱ, t) = 2Ft(
c

1− ᾱ
)

∫ c−e
1−ᾱ

c
1−ᾱ

((1− ᾱ)v1 − c)ft(v1)dv1 (2.7)

+ 2Ft(
c

1− ᾱ
)

∫ v̄

c−e
1−ᾱ

(ᾱv1 − e)ft(v1)dv1

+

∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

[(1− ᾱ) min{v1, v2} − c− e+ ᾱmax{v1, v2}]ft(v1)ft(v2)dv1dv2

with t ∈ {0, 1}. It is su�cient to show that there exists a positive and increasing

function h(α) such that Πfe
α (α, 1) > h(α)Πfe

α (α, 0) to show that α∗1 ≥ α∗0, in virtue

of proposition 15 and theorem 16.

De�ne h(α, c) =
f1( c−e

1−ᾱ )

f0( c
1−ᾱ )

and g(α, c) =
F1( c

1−ᾱ )

F0( c
1−ᾱ )

. Notice that h(α, c) is increasing

in α for all c, and hence, if we show that Πfe
α (α, 1) − h(α, c)Πfe

α (α, 0) > 0 we can

conclude that Πfe(α, 1) �IDO Πfe(α, 0) In order to show that, we can proceed

separately as we did with the derivative the proof of theorem 6.

Thus, for the �rst term we have
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2(c− e)e
(1− ᾱ)2

f(
c

(1− ᾱ)
) [g(α, c)− h(α, c)]− 2

∫ c−e
1−ᾱ

c
1−ᾱ

v1[g(α, c)
f1(v1)

f0(v1)
− h(α, c)]dv1

(2.8)

Likewise, the second term corresponds to

2(ᾱc− e)
1− ᾱ

c− e
(1− ᾱ)2

[g(α, c)− h(α, c)] + 2

∫ v̄

c
1−ᾱ

v1[g(α, c)
f1(v1)

f0(v1)
− h(α, c)]dv1 (2.9)

The third term is equal to

2c

(1− ᾱ)2

∫ v̄

c
1−ᾱ

(ᾱv1 − e)[
f1(v)

f0(v1)
− h(α, c)]dv1 (2.10)

+

∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

(max{v1, v2} −min{v1, v2})[
f1(v1)f1(v2)

f0(v1)f0(v2)
− h(α, c)]dv1dv2

Grouping the �rst terms in (2.8) and (2.9), respectively, we get

2ᾱ(c− e)2

(1− ᾱ)3
[g(α, c)− h(α, c)] (2.11)

Likewise, adding the second terms in (2.8) and (2.9) we obtain
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2

∫ v̄

c−e
1−ᾱ

v1[g(α, c)
f1(v1)

f0(v1)
− h(α, c)]dv1 (2.12)

Terms (2.10)-(2.12) imply the result because we assume that g(α, c) > h(α, c),

f0 is dominated in MLR by f1, and the inferior limit of all the integrals involved

is greater than or equal to c
1−ᾱ .

Applying the same argument, we can see that b̄∗1 > b̄∗0 if and only if

− 2b̄+
1

λ0(c+ b̄)

1 + F0(c+ b̄)

F0(c+ b̄)
> h(b̄)[−2b̄+

1

λ1(c+ b̄)

1 + F1(c+ b̄)

F1(c+ b̄)
] (2.13)

for h(·) increasing and positive.

Notice that as f1 dominates f0 in MLR then the hazard ratio is decreasing (i.e

λ0 < λ1). Moreover, it implies that F1 dominates F0 in �rst stochastic dominance

order (FOSD), which in turn implies that 1+F0(c+b̄)

F0(c+b̄)
< 1+F1(c+b̄)

F1(c+b̄)
. Therefore the

condition in (2.13) is satis�ed for h(·).

B. Simulation for Di�erent Distributions

Following the results presented on �gure 2.4, here we show the behavior of revenue

as a function of ᾱ and b̄ for the main distributions considered in this chapter.

Figure 2.7 has the functions for a Beta[2, 2], �gure 2.8 has the functions for a

Beta[2, 7] and �gure 2.9 has the functions for an InverseBeta[2, 7]
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Figure 2.7: Revenue as a function of ᾱ and b̄ for B[2, 2]
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Figure 2.8: Revenue as a function of ᾱ and b̄ for B[2, 7]
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Figure 2.9: Revenue as a function of ᾱ and b̄ for IB[2, 7]
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Chapter 3

Bidding with Securities: Insurance

and E�ciency

3.1 Introduction

In a seminal work, DeMarzo, Kremer and Skrzypacz (2005) (henceforth DKS) in-

troduces a general framework to analyse security-bid auctions�auctions where the

bidder's payment to the seller is securitized by the underlying return of the asset

being auctioned. Their central �nding is that securities that are more sensitive to

the winner's true type (steeper securities) yield the seller higher expected revenue.

DKS formalizes Hansen (1985) insight. Moreover, they show that the auction for-

mat to which the seller commits only a�ects revenues via its ability to modify the

steepness of the security utilized.

DKS analyze a setting with risk-neutral, ex-ante homogeneous bidders who

receive i.i.d. signals about the private value of the asset. Our contribution is to
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introduce ex-ante heterogeneously risk-averse bidders to their setting. In practice,

security auctions are often used to sell the rights to the stream of payo�s from

long-term projects, and there is extensive uncertainty over what those future cash

�ows will be.1 In such environments, it is paramount to understand how the

heterogeneous attitudes of di�erent bidders toward risk a�ects their bidding and

the auction e�ciency.

Greater risk aversion causes bidders to discount bids by more, because they

su�er greater disutility when asset revenues turn out to be low. The key conse-

quence of this heterogeneity is that bids' face values and bidders' types cease to

be aligned: a more risk-averse bidder may lose an auction even when its under-

lying distribution of payo�s stochastically dominates that of the winning bidder. 2

The ine�ciencies that result resemble those that arise when some bidders are �-

nancially constrained (e.g. Che and Gale (1998)). There, bidders with budget

constraints experience handicaps that limit their competitiveness in an auction,

even when they have better valuations. In a similar fashion, Board (2007) shows

that a second-price auction yields higher revenue for the seller than a �rst-price

auction when bankruptcy represents a concern.

In our realm, we show that steeper securities both alleviate these ine�ciencies

and increase seller's expected revenue. The central force underlying this result is

that steeper securities provide bidders more insurance, because they ask for lower

payments when the realizations of the project are low, and vice versa when they

are high. This insurance levels the �eld for more risk-averse bidders, inducing them

1Examples of such auctions include coal leases in the US, 3G telecommunication rights in
Hong Kong; see DKS for additional examples.

2A similar e�ect can be observed in takeover auctions when bidders have heterogeneous stan-
dalone values and exhibit di�erent synergies when merged with the target �rm (cf. Liu (2016)).
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to bid relatively more aggressively, and improving the alignment of private signals

and bids.

We show that when the seller switches from a �atter to a steeper security, the

valuation type of the winning bidder never decreases. This result has a clear e�ect

on both e�ciency and expected seller revenue: not only does the distribution of

project payo�s of the winner weakly improve, but, as DKS shows, steeper securities

also allow the seller to extract a higher share of the surplus.

Finally, we deliver a result on e�ciency that is non-classical in the auction

literature: we show that if the auction environment is su�ciently rich, the only

security that guarantees ex-post Pareto e�ciency is the steepest possible one�the

call option. Intuitively, the only dimension on which bidders and seller interests

could possibly be aligned is the steepness of the security, because steeper securities

allow the seller to extract a higher surplus and provide more insurance to the

bidders. Therefore, if bidders are su�ciently risk averse, using a locally steeper

security might be mutually bene�cial.

Our �ndings have direct policy implications for the design of auctions where

a government is interested in both, procuring e�ciency and maximizing revenue,

as in selling the right to exploit public resources. In our model, we abstract from

other possible schemes the seller might use to provide insurance or induce higher

participation.

We provide two cases where our setup is relevant. The �rst one took place in

the US, during the coal lease carried out by the government. The second exam-

ple comes from Hong Kong, where it was decided to perform the 3G auction on

70



equity.3 The Hong Kong auction was a reaction to the concerns raised at the 3G

European auction. Binmore and Klemperer (2002) state that during the British

3G auction, run with cash, one of the biggest concerns was to increase the num-

ber of bidders; namely, how to attract entrants �the incentives for incumbents to

participate is always higher. Klemperer (2002) states that revenue in other 3G

European auctions was lower than the British one mostly because of a failure on

attracting entrants. We show that the policy followed by Hong Kong was the cor-

rect one since it cannot do any harm, but it can also lead to discrete increases on

surplus by allowing risk averse bidders more likely to win the auction, thus making

it more attractive to them.

Another related paper corresponds to Gorbenko and Malenko (2011). They

argue that reserve prices are detrimental for e�ciency while securities are not.

We add that securities are bene�cial for e�ciency, representing a stronger result.

Moreover, we extend Abhishek et al. (2015) result to heterogeneous risk averse

bidders since they extend DKS for the case of homogeneous risk averse bidders.

Lastly, Abhishek et al. (2015) analyses the case of homogeneous risk averse

bidders and shows that DKS revenue result still holds.

Empirical Evidence. In this section, we cover some particular applications for

our results. They show cases where bidders were risk averse, there was no reason

to believe the less risk averse bidder had a better distribution and using some kind

of security was allowed.

The �rst case comes from the US. In the 20th century, the US conducted many

3Retrieved from http://archives.ofca.gov.hk/en/3g-auction/rules.pdf
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coal leases under di�erent formats.4 There were two main options to lease the

contracts: cash bonus and royalties. Cash bonus implied a �xed amount to be

paid for the lease, usually when it was issued, or on a �xed payment schedule.

A royalty is a payment made as production occurs based on the amount or value

of production. In terms of our model, cash is a �atter instrument than royalty

(equity).

One concern about coal leases was the ownership patterns that have resulted

from the history of public land disposal. Often, speci�c �rms had the lease of the

land prior to the auction taking place (incumbent), given them more information

about the mine that any other �rm (entrant). This information gap created more

risk for the entrants.

In order to close this gap, the U.S Geological Survey (GS) estimated the value

of each tract to be o�ered. The estimates obtained were disclosed to bidders prior

to the sale. In doing so, they were reducing the uncertainty of the project, reducing

the impact that risk aversion may have had.

In 1969, it was decided that the GS estimates would be con�dential, thus risk

aversion became a prominent issue again.

Since it is not clear that the most e�cient �rm to operate a coal tract is the

incumbent because there could be �rms that are better for the speci�c tract, we

would suggest that using royalty is a better way of mitigating the negative e�ect

of risk aversion because they not only improve e�ciency, but also revenue for the

government.

Our second case comes from Hong Kong. The 3G telecommunication auction

4The information comes from the report of the Linowes commission: Commission on Fair
Market Value Policy for Federal Coal Leasing (1984)
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in Hong Kong was conducted on equity and many economists were in favour of

such an idea (see for example Ure (2002)).

There were concerns about the value of the technology since it was not fully

known and there was no information available about alternative technologies at the

time, such as the 802.11 standard. Another concern in terms of valuing the licenses

was the growth of internet. The future market value of internet was di�cult to

be forecasted, thus the value of 3G was uncertain since it allowed accessing the

internet. As Ure argued at that time �Still, no one knows what services will be

available, which of them will sell, who will buy them or how the revenue will be

collected along the value chain�.

Looking at the uncertainty plus the arguments of several CEOs from the UK

complaining about the high price they paid to get a license, Ure proposed using

royalties in order to tie the payo� of the license to the auction payment. As he

stated �If no one could know the sensible value to place on a 3G licence, then an

up-front money auction was totally inappropriate�.

The lack of information increased the risk of the project. This environment

is similar to the setup of our model where bidders are averse as a consequence of

such risk.

Organization of the chapter The rest of the chapter is structured as follows.

Section 3.2 presents an example with the main result of the chapter, Section 3.3

introduces the model and presents the main results regarding asymmetric bidders

and Section 3.4 presents the conclusions.
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3.2 A Motivating Example

Consider two bidders participating in a second-price, security-bid auction. Bidders

compete for the rights to a project that has a stochastic revenue and requires an

initial investment of X. We assume that X is commonly known and equal to 0.2.

Each bidder has private information about the distribution of the project's payo�s

if they undertake it.

We assume that the risk-neutral seller runs a second price auction using one

of four security types: cash, debt, equity or call option. The seller commits to a

security design and announces it to bidders, who then submit bids. A winner is

then determined, project revenues are realized, and payo�s are made according to

the security chosen by the losing bidder.

We assume that the project's revenue Z can attain two values, ZH and ZL

�that stand for high and low. The high realization happens with probability pHi

and the low realization with probability 1−pHi . In this example we �x ZH = 1 and

ZL = 0.1. Given this simpli�cation, it can be argued that the auction is e�cient

if the winner is the bidder with the highest pHi .

Bidders are heterogeneously risk averse and seek to maximize expected utility.

We assume that the functional form for utility over money is the same for both

bidders, u(m) = 1 − e(−λim), but that bidders di�er in the parameter λ: the less

risk averse bidder a has λa = 1, whereas the more risk averse b has λb = 4. Before

submitting bids, each bidder receives a signal of the parameter pHi , which can be

regarded as his type. We further �x the probability of a high realization of the

less risk averse bidder to pHa = 0.5, and analyze the implications for e�ciency as

we vary the parameter pHb of the more risk averse bidder.
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Due to the second price structure of the auction, it is a weakly dominant

strategy for both bidders to bid their reservation values σi, as we will see later. A

bidder's reservation value depends on the security used:

i) Cash: σcai := si : E[ui(Zi −X − si)|pHi ] = 0.

ii) Debt: σdei := si : E[ui(Max(0, Zi − si)−X)|pHi ] = 0.

iii) Equity: σeqi := si : E[ui((1− si)Zi −X)|pHi ] = 0.

iv) Call Option: σcoi := si : E[ui(Min(Zi, si)−X)|pHi ] = 0.

The auction would be e�cient in the classical way if the winner is the bidder

with the highest pHi , since for the same security the expect revenue for the seller

is increasing on pH .

We begin by noting that the auction will always be e�cient whenever pHa > pHb .

The interesting case is where the more risk averse bidder also has the highest pH .

When this is so, the steepness of the security matters because the more risk averse

bidder bene�ts more from having insurance, bidding more aggressively in relative

terms as a result.
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Figure 3.1: E�ciency Range.

Figure 3.1 illustrates how e�ciency is a�ected by changes in the distribution of

the more risk averse bidder for the four di�erent types of securities. The gray area
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denotes the ranges of pHb for which the auction is e�cient for the four instruments.

To the right, it is e�cient because the more risk averse bidder wins�regardless

of the insurance�since his probability of obtaining ZH is considerably higher. To

the left, it is e�cient because the less risk averse has the highest pH and wins.

In the green area only debt, equity and call option are e�cient, implying that

some insurance is needed to allow the more risk averse bidder to win. In the

blue area equity and call option are e�cient. In the pink area only call option

is e�cient. Finally, when pHb ∈ (0.65, 0.77), no instrument is e�cient�even with

the maximum insurance that call option provides, the more risk averse cannot

compensate for the risk aversion gap.

An important feature of the example is that the more risk averse bidder might

prefer a steeper security for two reasons: (1) he may win the auction in cases he

would otherwise lose it with a �atter one; and (2) even if he wins in both cases,

the insurance provided by the steeper security may o�set the surplus extraction

done by the seller.5 This is the main reason why a su�ciently risk averse bidder

may not prefer ex post the �attest security conditional on winning.

3.3 The Model

The structure of the model follows DKS, but it is slightly modi�ed to allow for

heterogeneous risk aversion. There is a risk neutral seller interested in allocating

an indivisible project among a set of N di�erent buyers. The project is valuable for

5In the example, when the more risk averse bidder has a coe�cient pHb = 0.62, he wins
under equity and call option, but prefers call option because with equity he has to pay his
reservation value, thus his expected utility is zero, while with call option he pays strictly less
than his reservation value (he will only pay his reservation value if pHb = 0.57) implying a positive
expected utility.
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all buyers but is useless if the seller undertakes it. To implement the project, any

buyer needs to make a non contractible investment of X > 0, which is considered

as the initial �xed cost to implement the project and it is common knowledge to

all agents. If buyer i acquires the project, and makes the required investment,

then it will yield a (contractible) stochastic revenue of Zi.

Before buyers participate in the auction, they receive a private signal Vi of the

stochastic revenue Zi, which are identically and independently distributed accord-

ing to the positive everywhere density f on the support V := [v, v]. Likewise, the

conditional payo� Zi, on the signal Vi = vi, has a positive and continuous density

h(Zi|vi) everywhere on the support Z := [0,∞). We assume that the parametrized

family {h(·|v)} satis�es the Strict Monotone Likelihood Ratio (sMLRP). That is,

the likelihood ratio h(z|v)/h(z|v′) is increasing in z if v > v′. All densities are

common knowledge.

All buyers are expected utility maximizers, but they are ex-ante heterogeneous

in their level of risk aversion, which is captured by the private parameter θi ∈ [θ, θ].

We assume that if θi > θj then buyer i is more risk averse than buyer j Each buyer

i has a utility function over money m denoted by ui(m) := u(m, θi) which is jointly

continuous, and concave and increasing in m. Furthermore, it is normalized so that

ui(0) = 0.

Bids are expressed by derivative securities in which the underlying asset is the

project's revenue Zi. Formally, a security is a function S : Z → R, where S(z)

represents buyer's payment to the seller when the realized revenue of the project

is equal to z.

As in DKS, buyers choose their bids from a linearly ordered family of securities
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S, which can be written as S := {S(·, s)|s ∈ [s0, s1]}. Here, if buyer i submits a bid

of s, he expects to make a payment equal of S(zi, s) to the seller in case he wins the

auction. The interval [s0, s1] can be used to parametrize all families of securities

without loss of generality.6 We assume that an ordered family of securities satis�es

the following two conditions.

Assumption 1 For all s, (i) S(z, s) and z−S(z, s) are continuous and increasing

and (ii) 0 ≤ S(z, s) ≤ z for all z.

Assumption 2 For all bidder i and all signal vi

i) EUi[S(s, vi)] := E[ui(Zi−X−S(Zi, s))|Vi = vi] is continuous and decreasing

in s, nonnegative for s = s0, and nonpositive for s = s1.

ii) ES(s, vi) := E[S(Zi, s|Vi = vi)] is continuous and increasing in s.

Assumption 1 states that the payment for the seller and the net payo� for the

buyer are increasing in the revenue of the project for all security bids. Furthermore,

it says that securities have to be feasible: buyers cannot promise to pay more

than the revenue of the project, and the seller cannot �nance its implementation. 7

Meanwhile, assumption 2 merely says that securities are completely ordered from

the perspective of the buyer and the seller.

Following DKS, we rank securities using the notion of steepness.

6The interval can be normalized to any close interval independent of the security S by rescaling
and translating the parameter s in S(·, s). For instance, if the security S is equity, a bid s can
be expressed as s = (ŝ− s0)/s1 for some ŝ ∈ [s0, s1].

7This last assumption is crucial to rule out Crémer (1987) critique, who claims that if the
seller could �nance the implementation cost of the project, he would be able to extract the whole
surplus.
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De�nition 17 Let ESs(s, v) and ESv(s, v) be the partial derivatives of ES(s, v).

The family of securities S ′ is steeper than the family S ′′ if for all S ′ ∈ S ′ and all

S ′′ ∈ S ′′, ES ′v(s′, v) > ES ′′v (s′′, v) whenever ES ′(s′, v) = ES ′′(s′′, v).

Steeper securities are then more sensitive to the true bidder's type at the point

where the expected payment to the seller is the same.

In particular, debt represents the �attest instrument and call option the steep-

est.8 Indeed, for realizations below the debt value, the payment to the seller grows

at the same rate as the return of the project, whereas for realizations above the

debt value, the payment to the seller remains constant. Since it is impossible for

a security to generate a payment that grows faster than the return of the project

�in virtue of the liability constraint�, it implies that for realizations below the

debt value, debt cannot be crossed from below by any security. Once the payment

becomes �at, it can only be crossed from below. Thus, debt cannot cross any in-

strument from below, implying it is the �attest. By a similar argument, call option

is the steepest instrument. When the return is below the strike price, the payment

to the seller is constant and equal to zero, hence it cannot be crossed from below.

For realizations above the strike price, the payment to the seller grows at the same

rate as the realization of the project, and thus it can only cut other securities from

below. Therefore, since it cannot be crossed from below and it can only cut other

securities from below, it is the steepest instrument.9

8This �gure can be seen in chapter 1 �gure 1.
9The �gure for debt, equity and call option in terms of steepness is provided in chapter 1.
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3.3.1 Equilibrium

In order to solve the game, denote σi(vi, S) as the security payment that makes

buyer i indi�erent between implementing or not the project, conditional on the fact

that his signal is vi and the seller is using security S. That is, σi(vi, S) is de�ned

as the security bid s such that EUi[S(s, vi)] = 0. The existence and uniqueness of

s is guaranteed by assumption 2.

Lemma 18 The pro�le (σ1(v,S), · · · , σN(vN , S)) constitutes an equilibrium in dom-

inant strategies to the game induced by a the second-price auction under security

S.

Proof. Suppose that (sj)j 6=i are the bids submitted by the opponents of bidder i

and let s
(1)
−i = max{sj, j 6= i}. Then, bidder i has to choose the security bid si

that maximizes his expected utility,

E[Ui(Zi −X − S(Zi, s
(1)
−i ))1(si > s

(1)
−i )]

By the law of iterated expectations, the last expression can be rewritten as

E[E[Ui(Zi −X − S(Zi, s
(1)
−i ))|Vi = vi]1(si > s

(1)
−i )]

Using assumption 2, and by the de�nition of σi(vi, S) it is immediate to conclude

that si = σi(vi, S) uniquely maximizes bidder's expected utility.

Given σi(vi, S), we can compute Ri(vi, S) = ES(σi(vi, S), vi) as the revenue

for the seller from the equilibrium bid of bidder i, given the signal vi. The
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function B(vi, S, S
′) maps the revenue Ri(vi, S) into the bid s′ ∈ S ′ such that

ES(σi(vi, S), vi) = ES ′(s′, vi).

3.3.2 Insurance

Let φS : Z → Y ≡ [0, ȳ] be the function that maps the revenue of the project into

the space of net return to the bidder, under security S.10 Thus, yS = φS(z) ≡

z − S(z). For easiness in the notation, we write yS simply as y when there is no

risk of confusion. An example of the net return for standard securities is presented

in �gure 3.2.
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Figure 3.2: Payo� Diagrams for Call Options, Equity, and Debt. The

monetary payo� to the bidder exhibits the reverse single crossing property as in DKS. A

steeper instrument crosses from below a �atter one for the seller, whereas for the bidder,

the crossing pattern is reversed.

Furthermore, we let GS denote the lottery over the set of net payo�s Y , induced
10We call net return to the realized return of the project after subtracting the payment to the

seller, but without subtracting the implementation cost.

81



by the security S. We denote its density by gS.

Proposition 19 Let S ′ and S ′′ be two di�erent feasible securities, and suppose

that there exists a z∗ such that S ′(z) ≤ S ′′(z) for all z ≤ z∗, and S ′(z) > S ′′(z) for

all z > z∗. Then, if

∫ ȳ

0

ygS′(y)dy =

∫ ȳ

0

ygS′′(y)dy (3.1)

any risk averse individual would prefer the lottery GS′ to the lottery GS′′.

In other words, EUi[S ′(B(vi, S
′′, S ′), vi)|Vi = vi] > 0.

Proof. Notice that by the de�nition of net return and the single crossing property

in the �rst part of the theorem, it follows immediately that φS′(z) ≥ φS′′(z) for all

z ≤ z∗ and φS′(z) < φS′′(z) for all z > z∗. That is, under low realizations of the

project the security bid S ′ yields a higher net return than S ′′, and vice-versa for

lower realizations.

Moreover, it also implies that the induced distributions also satisfy a single

crossing property. That is,

GS′(z) ≤ GS′′(z) for all z ≤ z∗ and GS′(z) > GS′′(z) for all z > z∗

Since net returns are non-negative, we can use integration by parts in (3.1) to

show that ∫ ȳ

0

GS′(y)dy =

∫ ȳ

0

GS′′(y)dy

Then, we have that ∫ ỹ

0

[GS′(y)−GS′′(y)]dy ≤ 0
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for all ỹ ∈ Y . Otherwise, condition (3.1) would be violated.

Hence, we conclude that GS′ dominates GS′′ in Second Order Stochastic Dom-

inance (viz. GS′ �SOSD GS′′). Therefore, by theorem 2 in Rothschild and Stiglitz

(1970), every risk averse buyer prefers GS′ to GS′′ . In other words, for each concave

utility function u(·), we have that

∫ ȳ

0

u(y)gS′(y)dy ≥
∫ ȳ

0

u(y)gS′′(y)dy

A particular example of proposition 19 is shown in �gure 3.3.

The single crossing condition in the statement of proposition 19 implies that

any risk averse bidder would prefer the lottery induced by a steeper security. In

other words, steeper securities provide higher insurance to risk averse buyers.

3.3.3 E�ciency and Revenue

In this section, we provide the two core results on e�ciency. The �rst is more

standard to the auction literature, and says that the signal of the winning bidder

is weakly increasing in the steepness of the instrument utilized. The second one,

states that the only security that guarantees ex-post Pareto e�ciency is call option.

De�nition 20 Let V (n)(S) be the signal of the nth highest bid in a second-price

auction under security S, auction A(S). We say that A(S ′) is less ine�cient than

A(S ′′) (viz. A(S ′) �LIN A(S ′′)) if

V (1)(S ′) ≥ V (1)(S ′′)
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Figure 3.3: Distribution Function of the Payo� for Call Options, Equity,
and Debt. When the revenue distribution function is U [0, 1] and ES = 0.4 then GS(y)
follows the single crossing pattern of �gure 3.2. If we compare call option and equity,

the blue area is equal to the red area since the mean of both distributions is the same,

implying call option second order stochastically dominates equity. The same result holds

true when comparing a steeper instrument with a �atter one.

Notice that de�nition 20 does not rule out the fact that A(S) could be ine�cient

in the classical sense; that is, V (1)(S) < max{Vi : 1 ≤ i ≤ N}. However, if the

auction is e�cient under S ′′, then it has to be e�cient under S ′.

Proposition 21 If security S ′ is steeper than security S ′′ then A(S ′) �LIN A(S ′′).

Proof. First, we notice that for any two buyers i and j, such that θi > θj, if

vi < vj, then σi(vi, S) < σj(vj, S) under any feasible security S. That is, for two

given buyers, the individual with a higher signal and lower risk aversion will always

submit a higher bid in equilibrium.
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The interesting case corresponds to the situation when θi > θj and vi > vj.

Suppose the seller switches from the security S ′′ to a steeper security S ′. As

commented before, there are two e�ects that come into play: the insurance e�ect

and the extraction e�ect. The former positive e�ect helps to alleviate the latter

negative e�ect, and it is larger as more risk averse is the buyer. Let σi(S
′′, vi) and

σj(S
′, vj) the equilibrium bids under the security S ′′ and S', respectively. Now,

because both buyers are risk averse, ui and uj are concave. Moreover, ui can be

represented by a strict concave transformation of uj. Therefore, in virtue of our

previous discussion, EUi[S ′(B(vi, S
′′, S ′), vi)|Vi = vi] > 0 and by the concavity and

monotonicity we can obtain

EUi[S ′(B(vi, S
′′, S ′), vi)|Vi = vi] > EUj[S ′(B(vj, S

′′, S ′), vi)|Vj = vj]

since buyer i is more risk averse and the insurance provided by the steeper security

is more valuable.

Then, by assumption (2) we have that

|Ri(vi, S
′)−Ri(vi, S

′′)| ≥ |Rj(vj, S
′)−Rj(vj, S

′′)|

Therefore, the more risk averse buyers become relatively more aggressive at

the time to submit their bids. But then, it implies that the bid ranking for the

buyer with higher risk aversion cannot decrease when switching from S ′′ to S ′.

Corollary 22 Let S ′ be a family of securities steeper than S ′′. Then, the expected

revenue for the seller generated by any security of the family S ′ is at least as high
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as the expected revenue generated by any security of S ′′.

Proof. Let σ(n)(S) be the nth highest bid when the auction is run under security S.

Suppose that S ′ is steeper than S ′′, then by proposition 19 E(n)S ′(σ(n)(S ′), vn) >

E(n)S ′′(σ(n)(S ′′), vn) since all bidders become more aggressive because of higher

insurance. Furthermore, by proposition 21, V (1)(S ′) ≥ V (1)(S ′′). Therefore, by

assumption 2 and the sMLRP condition, we have that

ES ′(σ(2)(S ′), V (1)(S ′))− ES ′′(σ(2)(S ′′), V (1)(S ′′)) > 0

We turn to our second result: that call option is the only security that ex-ante

guarantees ex-post Pareto e�ciency. In order to do so, we need to introduce �rst

a notion of local steepness.

De�nition 23 Let S be a security �atter than call option. We say that S ′ is

an (ε, z∗)-steeper security of S if S ′(z, s) = (1 − ε)S(z, s) for all z ≤ z∗ and

S ′(z, s) = (1 + ε)S(z, s) for all z > z∗.

Notice that the only direction in which there might be an ex-post Pareto im-

provement in the auction is if the steepness of the security increases, since the

seller would extract more revenue and the bidders would bene�t from having more

insurance. The e�ect for the seller is unambiguous. Nonetheless, for bidders it is

necessary to provide conditions such that the higher insurance more than o�sets,

the higher surplus extraction, conditional on the fact that the winner remains the

same.
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Proposition 24 For all securities S �atter than call option, if θ is su�ciently

large, there exists a (ε, z∗)-steeper security of S, called S ′, and constants δ1 and

δ2, such that if θ − θ < δ1, and v − v < δ2, S
′ ex-post Pareto dominates S.

Proof. Let w(S) be the identity of the winner under security S. Hence, by the

continuity of u(θ, ·) in θ, the continuity of h(z|v) in v, and by assumption 1, there

exists δ1 and δ2, such that if θ − θ < δ1, and v − v < δ2, w(S) = w(S ′) for some

(ε, z∗)-steeper security of S, S ′.

Now, we have to prove that the higher insurance provided to the winner, more

than o�sets the higher bid he has to pay under the steeper security. Indeed, if

bidders are su�ciently risk averse (i.e. if the lower bound θ is su�ciently large),

then we have that for all θ ∈ [θ, θ]

∫ y∗

0

u(θ, yS′)gS′dyS′ −
∫ y∗

0

u(θ, yS)gSdyS >

∫ ȳ

y∗
u(θ, yS)gSdyS −

∫ ȳ

y∗
u(θ, yS′)gS′dyS′

where y∗ corresponds to z∗ in the Y space.

Remarkably, if the environment is su�ciently rich, the only security that guar-

antees ex-post Pareto e�ciency is call option, which also happens to be the security

that delivers the highest revenue to the seller.

3.4 Concluding Remarks

In this chapter, we incorporate ex-ante heterogeneous risk averse bidders into the

model of DKS to analyse the implications of using steeper securities for e�ciency
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and seller's revenue. We show that steeper securities provide higher insurance

to risk averse bidders because they induce payo� distributions that dominate in

second order stochastic dominance the ones derived from �atter securities. The

higher level of insurance levels the �eld for risk averse bidders and allows them

to be more aggressive in their bids. This increase in the aggressiveness has two

e�ects: (i) the signal of the winner under a steeper security is weakly higher, and

(ii) the expected revenue for the seller increases.

We also show that unlike standard auctions, the interest of the seller and the

bidders might be aligned if the seller utilizes a steeper security to run the auction.

The seller is better o� because it is extracting a higher surplus, whereas bidders

bene�t from having higher insurance, provided they are su�ciently alike and risk

averse. This alignment makes it possible to derive Pareto improvements for any

security �atter than call option if the environment is su�ciently rich. Therefore,

call option not only maximizes seller's expected revenue, but also increases classical

e�ciency in the sense that the winner tends to have a higher signal. Moreover, it

is the only security that guarantees ex-post Pareto e�ciency.

We present two applications to back up our results. The �rst application comes

from a decision of the US government a�ecting coal lease at the end of the 60s.

After deciding to stop providing an estimate of the mine value before the auction

the information across bidders became asymmetric, thus bidders with higher risk

aversion became less interested in the auction. Since royalty was a plausible scheme

to run the auction, we concluded that it would have been wiser to use it more often.

Afterwards, we analyse the 3G Hong Kong auction and argue that their decision

to conduct it on equity was the appropriate one.
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