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Abstract

Malaria is an infectious tropical disease responsible for hundreds of thousands of

deaths every year. It is caused by a parasite from genus Plasmodium of which fal-

ciparum is the most deadly and the focus of this study. The limited number of

currently available drugs are further threatened by the rising frequency of resis-

tance. This has greatly emphasised the need for new drugs with novel modes of

action. The current drug development pipelines rely on large scale compound li-

brary screens for antimalarial effect. Computational chemometric methods are then

used for selecting promising hits for further investigation. Such analyses however

rely on indirect characterisation of compound effects. In this project we investi-

gated three approaches aimed at developing compound screening assays based on

compound effects on live cells. The first two approaches relied on metabolomics

techniques. Based on the assumption that the drug induced metabolic changes in

the malaria parasite could be uniquely assigned to the drug mode of action we

hypothesised that if such metabolic states could be measured they could be used

to cluster the compunds into groups based on their modes of action. By compar-

ison to well established antimalarials the clusters of novel compounds could then

be characterised and novel compound clusters identified. The third method relied

on the phenotypic information for drug exposed malaria parasites derived from the

analysis of fluorescent microscopy images. This assay aimed at characterising the

modes of action of the compounds as well as the speed of kill. The first method

investigated was based on metabolic fingerprinting using Fourier transform infrared

spectroscopy. The sample preparation and data acquisition protocols were devel-

oped and tested. The results suggested that the sensitivity of the technique was

xiii



insufficient for the detection of drug induced effects in P. falciparum. Next a nu-

clear magnetic resonance (NMR) spectroscopy-based method was developed. While

the method was promising in terms of high throughput capabilities, consistency and

the breadth of information posed a series of issues, mainly associated with sensi-

tivity. In the absence of a suitable automated data processing solution a custom

software “ProcNMR” was developed and used to process the data collected in the

experiments. A full experimental procedure was developed and tested, however the

NMR sensitivity issues, exacerbated by the complex intraerythrocytic nature of P.

falciparum resulted in suboptimal outputs. Lastly a high content imaging-based

technique was investigated. Data processing and predictive analysis methods were

developed and implemented. A pilot experiment was used to demonstrate the po-

tential of the technique to discriminate between fast and slow acting drugs. The

compounds of the “Malaria Box” were screened using this technique and a gorup of

fast acting compounds identified.
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Chapter 1

Introduction

1.1 Malaria

Malaria is an infectious tropical disease caused by parasites of the genus Plasmodium.

There are five species that cause disease in man: Plasmodium falciparum, malariae,

vivax, ovale and knowlesi. Parasites are transmitted to humans through the bite

of a female mosquito of genus Anopheles. There are up to 800 million cases of

malaria every year in tropical and subtropical regions including sub-Saharan Africa,

Southeast Asia, Oceania and some regions of Central America. Of those about

500,000 cases end in death from severe complications, especially among children and

pregnant women [WHO, 2014]. The global burden of malaria in disability-adjusted

life-years (DALY) as quoted by Hotez et al. [2014] is 83 million, where DALY is a

number of years lost due to disability or early death caused by a disease. While the

most prevalent strain of Plasmodium is P. vivax the most of the deaths from malaria

are in cases of infection with P. falciparum [WHO, 2014]. It is distinguished from

other strains by its ability to infect erythrocytes of any age allowing parasitemia of

up to 80% as well as the production of proteins that facilitate red blood cell (RBC)

binding to endothelial cells on capillaries - sequestration - especially in the brain,

causing a range of severe complications including bleeding, seizures and coma [Rowe

et al., 2009].

1.1.1 The Deadliest Strain

There are around 120 Plasmodium species that infect mammals and birds of which

five are known to infect humans. Almost all malaria deaths in humans are caused

by P. falciparum. Understanding of its life-cycle has helped greatly in the search

for measures to fight the spread of infection and look for treatments. P. falciparum
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has a 42-53 hour life-cycle depending on the growth conditions (Fig. 1.1).

Figure 1.1: A schematic illustration of the lifer-cycle of P. falciparum (source: Klein
[2013])

When an infected female Anopheles mosquito takes a bloodmeal it releases

Plasmodium sporozoites into the bloodstream of the host where they are taken to

the liver and infect hepatocytes. In the hepatocytes the parasites undergo the first

asexual replication that ends in the production of the first generation of merozoites

that are then released into the bloodstream and invade red blood cells (RBCs).

When the merozoite invades the RBC it develops within a vacuole formed from the

host cell material until it reaches maturity. The parasite starts the life cycle at the

ring stage and over around 18 hours develops into a trophozoite stage. In the process

it consumes hemoglobin as a source of amino acids. Heme - the toxic side product

of hemoglobin digestion - is stored in an exclusion body in a crystalline form known

as hemozoin. When the parasite reaches the trophozoite stage it starts to produce

2



protein adhesins on the erythrocyte membrane that allow the red blood cells to

bind to the endothelial cells in the host microcirculation. The process is called

sequestration and protects the infected RBCs from removal from the bloodstream

by the spleen. The parasites spend the last 24-34 hours of their development in

this state. During this time they develop into schizonts and produce on average

16 merozoites each. Once the parasites are fully mature the RBC is ruptured,

the merozoites enter the bloodstream and infect new RBCs. The cycle continues

subsequently raising the the level of parasitemia up to 20 times every 48 hours. Some

of the parasites do not go through the asexual replication cycle and instead develop

into sexual stages - gametocytes. The gametocytes, when ingested by a mosquito

during a bloodmeal, undergo gametogenesis that result in formation of micro- and

macrogametes. Microgametes fertilize macrogametes that result in formation of

zygotes and subsequently oocysts. Through asexual replication oocysts produce

sporozoites thus completing the life-cycle of Plasmodium. Almost any part of this

life cycle can be targeted by treatment and prevention measures. The exclusive

focus of this thesis will be the asexual intra-erythrocytic part of the P. falciparum

life-cycle, the life cycle stage associated with the clinical manifestations of malaria.

1.1.2 Prevention and Treatment

The fight against malaria has been ongoing since the formal discovery of the disease

at the end of the nineteenth century [Cox, 2010]. The efforts towards eradication of

malaria have been divided between vaccine development, vector control and treat-

ment of infection.

Due to extensive antigenic variation and the complex immune evasion re-

sponse of Plasmodia the attempts to develop vaccines have proven difficult. RTS,S

- a fusion of the hepatitis B surface antigen and a recombinant antigen protein

derived from sporozoite coating - was for a while considered the most promising

vaccine candidate. After successful human trials [Agnandji et al., 2012, 2014] the

vaccine was approved for commercial use by European regulators in July, 2015. It

is the first vaccine registered for use against malaria and the first registered vaccine

against any human parasite. Malaria vector control is another major contributor

to the fight against malaria. Insecticide-treated bednets and repellents have been

effective in considerably reducing infection rates [Muller et al., 2006; Giardina et al.,

2014]. Despite the success of these prevention measures the treatment of malaria

patients remains the largest part of the fight against malaria. The main objec-

tives of treatment of malaria are to kill parasites (treatment) or prevent infection

from becoming established (prophylaxis) thereby avoiding the severe complications
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that can often lead to morbidity and death. Currently available antimalarial drugs

can be classified into four main categories: quinoline-like compounds; artemisinins;

mitochondrial inhibitors, of which atovaquone is the only one available; and antifo-

lates. Some antibacterial compounds, including sulfones, macrolides, tetracyclins,

lincosamides and chloramphenicol have antimalarial activity but are rarely used and

only ever in combination with other more active compounds.

Quinoline-like compounds including quinine, chloroquine (CQ), amodiaquine,

piperaquine, mefloquine and others act by inhibiting haem detoxification within the

asexual parasite food vacuole e.g. chloroquine binds to heamoglobin degradation

products, inhibits haem dimerisation and hemozoin formation. The heam toxicity

is therefore the explanation of the mode of action of quinolines [Fitch, 2004].

Artemisinins are endoperoxides derived from a natural product found in the

Artemisia annua plant. They are fast acting compounds capable of affecting the

broadest range of the parasite asexual life cycle. There are a range of artemisinins

currently in use including artemether, dihydroartemisinin and artesunate. The exact

mode of action of the artemisinins is still controversial, although it is thought that

it could be linked to iron-dependent cleavage of the unique endoperoxide bridge,

triggering formation of carbon-based radicals and epoxides that then target essential

parasite macromolecules generating drug adducts [Olliaro et al., 2001].

Atovaquone inhibits the parasite electron transport chain by targeting the cy-

tochrome bc1 complex. This results in the collapse of the mitochondrial membrane

potential and inhibition of pyrimidine biosynthesis [Srivastava et al., 1997].

Antifolates including pyrimethamine, cycloguanil and trimethoprim interfere with

pyrimidine synthesis in P. falciparum by inhibition of dihydrofolate reductase -

thymidylate synthase (DHFR) [Muller and Hyde, 2010].

The range of currently used antimalarials is very limited and in all cases

examples of resistance have been reported. Resistance to CQ was first reported in

the 1960s [Harinasuta et al., 1965]. It is associated with increased loss of drug from

parasite digestive vacuole [Martin et al., 2009] and is linked to point mutations in

the CQ resistance transporter (PfCRT) gene [Fidock et al., 2000]. P. falciparum

multidrug resistence genes PfMDR1h and PfMRP1 have also been linked to CQ

resistance [Duraisingh and Cowman, 2005; Nkrumah et al., 2009] as well as other
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quinolines - mefloquine and quinine [Price et al., 2004; Nkrumah et al., 2009]. The

efficacy of antifolates is reduced up to 1000-fold by a mutations in DHFR (N51I,

C59R, S108N) and DHPF (A437G,K540E) genes that reduce the binding affin-

ity of the drug [Gregson and Plowe, 2005]. Resistance to atovaquone arises from

point-mutations (N268N/S/C) in the cytochrome-b encoding gene [Srivastava et al.,

1999]. Artemisinin resistance has emerged in recent years and is reported to be as-

sociated with mutations in the P. falciparum protein kelch encoded on chromosome

13 [Ariey et al., 2014; Takala-Harrison et al., 2015]. Artemisinin combination thera-

pies are currently the preferred treatment for malaria worldwide. While artemisinin

monotherapies are now not recommended and are being gradually phased out fol-

lowing the WHO recommendations [WHO, 2015] the emergence of artemisinin re-

sistance threatens the efficacy of combination therapies as well.

1.1.3 Drug Discovery

Resistance to antimalarial drugs has been rising since the 1960s and now blights all

available drug classes having a major impact on malaria control and treatment ef-

forts worldwide. The only solution to this problem is the discovery of new drugs with

unique mechanisms of action. Today new antimalarial drug discovery is a world-

wide effort led mainly by a few private-public organisations including the Medicines

for Malaria Venture (www.mmv.com) as well as the Drugs for Neglected Diseases

initiative (www.dndi.org).

The development of new drugs is usually carried out either by modification

of well established drugs, in order to circumvent the resistance or some other un-

wanted property, or by searching for completely new scaffolds with new mechanisms

of action. The latter approach can include high throughput whole-cell assays as

well as biochemical assays against a specific biochemical target within the parasite.

The whole-cell assays comprise of high throughput screens of compounds in search

for new molecules with in vitro activity against Plasmodium. Biochemical assays

are designed to show activity against a specific target that is usually an enzyme

involved in a pathway vital to the parasite [Flannery et al., 2013]. After the se-

quencing of the P. falciparum genome [Gardner et al., 2002] bioinformatic analysis

was expected to yield a vast array of new targets, however the majority of newly

identified targets have been intractable with the exception of dihydroorotate dehy-

drogenase. The discovery of this enzyme has helped to identify a new compound

DSM265 [Coteron et al., 2011] which became the first compound to emerge from a

rational genetic analysis pipeline. Compounds inferred from genetic and chemioin-

formatic analysis still have to be validated as they must adhere to the requirements
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for efficacy in live cells, acceptable toxicity margins and good drug metabolism and

pharmacokinetics (DMPK) including adequate oral bioavailability [Flannery et al.,

2013]. For example, cysteine proteases such as falcipains are vital to Plasmod-

ium life cycle [Rosenthal, 2011] and nonspecific inhibitors of cysteine proteases are

effective against the parasite [Joachimiak et al., 2001], however none of the poten-

tial compounds that target this pathway have successfully reached the clinic due

to problems with toxicity as well as poor pharmacokinetics. Development of high

thoughput whole cell screens has allowed rapid identification of novel compounds

in high numbers [Plouffe et al., 2008]. Such compounds have guaranteed activity

against the parasites without any detailed understanding of their targets or modes

of action. Millions of compounds have been screened in whole-cell assays in recent

years. The effort was led by St. Jude Children Hospital who screened 300,000 com-

pounds against P. falciparum [Guiguemde et al., 2010], GlaxoSmithKline (GSK)

screening over 2,000,000 compounds [Gamo et al., 2010] and an academic/industry

consortium led by Novartis that screened over 800,000 compounds [Rottmann et al.,

2010; Plouffe et al., 2008]. These screens have resulted in the identification of thou-

sands of compounds with activity against Plasmodium that have been collected in

the ChEMBL repository for medicinal chemistry data directed at neglected tropical

diseases (http://www.ebi.ac.uk/chemblntd). Due to obvious restrictions in financial

and time cost the vast number of hits requires a further selection of compounds for

more detailed study. Such an triaging effort was carried out by MMV in the gener-

ation of the “Malaria Box”, a selected set of validated hits that are recommended

for further investigation [Spangenberg et al., 2013]. The “Malaria Box” includes

400 compounds that have been selected in two categories: drug-like compounds and

probe-like compounds. These compounds are publicly available on request from the

MMV as is a newer screening compound set called the “Pathogen Box”.

1.2 Aims of The Study

The potential chemical space which antimalarial compounds can come from is enor-

mous and high throughput screening studies are producing thousands of hits that

need to be investigated further. This represents a significant challenge in terms of

costs and time. Further insight into the properties of the compounds found to have

antimalarial activity would allow extensive triaging and clustering of the current

hits into more manageable sets. Strategies that contribute to understanding the

compound space in terms of their specific targets and modes of action would greatly

increase our efficiency of turning hits into drugs. It would facilitate better under-
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standing of currently used compounds as well allowing selection of compounds with

novel mode of action. This thesis is focused on the study of strategies that can help

classify antimalarial hits based on their mode of action.

In order to classify compounds by mechanism a metabolomic fingerprinting

approach was chosen. This choice was made based on a series of assumptions.

Firstly it was assumed that P. falciparum has a finite number of druggable targets.

This assumption implies that if there are more effective compounds than potential

targets there is redundancy in the compound set that should allow clustering based

on mechanism. It was also assumed that drugs with different modes of action induce

different metabolic perturbations in the parasite leading to arrest of development

or death. If those metabolic states could be identified and uniquely assigned to the

modes of action they could serve as a proxy for compound classification.

The metabolic fingerprinting approach was chosen for the measurement of

the global metabolic state in the parasite after exposure to compounds. A series of

currently used compounds will be first employed in order to develop and validate

the method followed by experiments involving the “Malaria Box” compounds with

unknown mechanism. The data collected from experiments using well-understood

antimalarial drugs as probes will generate the framework against which the clus-

tering structure of the unknown compounds can be evaluated, highlighting clusters

with novel modes of action.

1.3 Metabolomics

Metabolomics is the field of study of small molecules, with molecular mass lower

than 2kDa, as products of metabolism in cells and intracellular space as a whole

called the “metabolome”. In the literature the name metabolomics was first men-

tioned in the 1990s [Oliver et al., 1998] however the study of the metabolome is a

couple of decades older. The first paper that could be considered a metabolomics

study was published in 1971 and described analysis of urine vapour and breath by

gas chromatography [Pauling et al., 1971]. In 1999 another similar term “metabo-

nomics” was introduced by Nicholson et al. with the definition of the “quantitative

measurement of the dynamic, multiparametric, metabolic response of living systems

to pathophysiologic stimuli or genetic modification” [Nicholson et al., 1999]. Since

then the terms have largely lost the differences meant by the authors and are used

interchangeably to refer to the study of the metabolome. In this text we will follow

this trend as well. Depending on the scope of the study the metabolome can include

the metabolites in a cell, organ or the whole organism. It is a well established mem-

7



ber of the ’-omics’ family together with genomics, transcriptomics and proteomics.

It is often seen as arguably being “closer to phenotype” subject of study. Significant

changes at the metabolite level have been demonstrated to be possible even when

changes in transcript or protein concentrations are relatively low [Kell and Mendes,

2000]. Metabolomics in the most general sense is a global discovery science. In

many cases analysis starts without a hypothesis and aims at identifying “points

of interest” around which hypotheses can be built. Depending on the aims of the

study, the analysis can take one of a few configurations including (a) fingerprinting,

(b) footprinting, (c) profiling, (d) flux analysis and (e) targeted analysis. Metabolic

fingerprinting is a global investigation of all measurable metabolites in the system

without identification or quantification. It is usually performed for comparison of

system metabolic states under different conditions. Footprinting is fingerprinting of

the metabolome outside of the targeted system or the environment of the system and

is usually performed for investigation of metabolite exchange. Metabolome profiling

includes identification of metabolites and relative quantification in order to estab-

lish an interpretable profile of the metabolome under specific conditions. Tracing

isotope labelled molecules allows flux analysis of metabolites in the target system

and between the system and its environment. Targeted metabolomics usually refers

to identification and absolute quantification of pre-specified metabolites in order to

quantitatively characterise the effects of treatments or experimental conditions at

the metabolic pathway level. All of these methods of study of the metabolome are

only possible because of the progress in analytic platforms as well as the associated

data analysis techniques.

1.3.1 Analytic Techniques and Applications

In principle collection of metabolomics data is a complex task. Metabolites in a

biological system include a wide range of organic compounds such as nucleotides,

amino acids, vitamins, hormones and other signalling molecules. There is no single

analytic technique that would be able to quantify or even detect all the metabolites

in the system. A range of analytic techniques have been adopted including Fourier

transform infrared spectroscopy (FT-IR) and Raman spectroscopy, nuclear magnetic

resonance (NMR) spectroscopy and mass spectrometry (MS) in metabolomic studies

in order to acquire data appropriate for the aims of the study.

FT-IR and Raman spectroscopy are two techniques often referred to as vi-

brational spectroscopy. FT-IR is based on the principle that when infrared light is

emitted towards the sample, the functional groups in the molecules absorb part of

the energy and convert it into rotational or vibrational energy. The infrared light
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that is not absorbed is detected and the absorbance spectrum is obtained. The

absorption pattern then can be correlated to the chemical species present in the

sample [Stuart, 2006]. This forms a spectrum that can be unique to the sample

like a “fingerprint”. While FT-IR is not as sensitive as other spectroscopic tech-

niques such as mass spectrometry, its high throughput and reproducibility are seen

as valuable advantages in a wide range of applications such as biomarker discov-

ery [Harrigan and Goodacre, 2003], food science [Ellis et al., 2002] and bacterial

metabolism studies [Kaderbhai et al., 2003]. Raman spectroscopy is different from

FT-IR with the exchange of energy from a source is measured usually in the visible

part of the electromagnetic spectrum. The Raman shift in energy of the light is

observed that is traceable to specific chemical species. The advantage of Raman

spectroscopy over FT-IR is that the water signal is not present and therefore the

samples can be in tissue, in solution or even in vivo [Hata et al., 2000; Buschman

et al., 2000; Yu et al., 2006]. The main limitation of Raman spectroscopy is that the

Raman effect is weak and therefore the sensitivity of the technique is low compared

to FT-IR.

Nuclear magnetic resonance (NMR) spectroscopy is a technique based on

the phenomenon of nuclear magnetic resonance and provides information on the

electronic environment of atoms including 1H , 13C, 15N and 31P (for more de-

tailed discussion see Section 1.5). It produces information rich data however in-

terpretation of spectra and information extraction is challenging. One-dimensional

(1D) NMR experiments are the most popular however in complex mixtures like

biological samples peak overlap becomes a problem due to high number and com-

plexity of different resonances. Traditional 1D NMR experiments include nuclear

Overhauser effect spectroscopy (NOESY) and Carr Purcell-Meiboom-Gill (CPMG)

experiments. In order to address the problem of peak overlap in 1D spectra, two-

dimensional (2D) spectra are used [Jeannerat and Furrer, 2012]. It gives additional

information on signal connections in the spectra providing additional evidence for

peak co-dependence. Common 2D NMR experiments include homonuclear cor-

relation spectroscopy (COSY) [Xi et al., 2006] and total correlation spectroscopy

(TOCSY) [Sandusky and Raftery, 2005], heteronuclear single-quantum correlation

spectroscopy (HSQC) [Meier and Beeren, 2014] and J-resolved NMR spectroscopy

[Huang et al., 2014]. Another limitation of NMR, especially in 2D experiments, is

low sensitivity. This issue is partly remedied by improvements in technology such

as increase in magnetic field strength [Gruetter et al., 1998], introduction of super-

conducting cryoprobes and low volume microprobes [Grimes and O’Connell, 2011].

While NMR spectroscopy has limitations it presents a variety of advantages over
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other spectroscopic approaches. Firstly the relatively low sensitivity is compensated

by very high reproducibility [Keun et al., 2002]. It requires small volume of sample

and, in case of biofluids such as urine, blood plasma or cerebrospinal fluid, requires

little sample preparation. It is also non-destructive and has relatively fast data ac-

quisition. Due to non-destructive nature of the technique it allows other analyses

to be performed on the same samples. No prior knowledge of the sample contents

or separation steps (as in case of MS) is required. The samples can be analysed in

an exploratory manner and sample contents inferred from the resulting data. For

these reasons NMR is often used in untargeted metabolomics studies such as finger-

printing or footprinting where simple discrimination between samples from different

treatments or experimental conditions is desired.

Mass spectrometry (MS) is a technique aimed at studying of molecular struc-

ture by measuring mass to charge ratios (m/z) of ionized molecules in a vacuum

environment. The ionised molecules of the sample are produced in the ion source,

accelerated and sorted by their m/z in the ion-analyzer and eventually measured

by some form of detector. The relative abundance of each ion or ion fragment with

unique m/z is then outputted as a peak in a spectrum. For accurate results each

of the steps has to optimized and the system needs calibration as no single set of

parameters is optimal for all types of analytes. The ion source [Bhardwaj and Han-

ley, 2014] and the ion analyzer [Forcisi et al., 2013] have to be carefully selected

according to the type of study. MS suffers from the same problem as NMR when

complex mixtures are analysed. Due to m/z overlap between ions the identification

and quantification of molecules is difficult. This is partly solved by coupling MS with

molecular separation techniques such as gas chromatography (GC) [Tsugawa et al.,

2011], liquid chromatography (LC) [Becker et al., 2012] or capillary-electrophoresis

(CE) [Volpi and Maccari, 2013]. These allow analytes to be eluted over time and

therefore reduce the complexity of the mixture. MS is currently the most popular

technique used in metabolomics. It is often used in metabolic profiling and tar-

geted metabolomics studies where information on change in concentration of specific

metabolites is required.

1.3.2 Metabolomics in Drug Discovery

A relatively new application of metabolomics is in the area of drug discovery and de-

velopment. As a “close-to-phenotype” approach it provides tools to track and better

understand drug action in cells and organisms [Kosmides et al., 2013]. Metabolomic

techniques have been used in a variety of ways in the drug discovery and de-

velopment process. These include investigation of drug modes of action [Creek
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and Barrett, 2014], lead identification [Wu et al., 2012], quality control [Frederich

et al., 2011; van der Kooy et al., 2009] as well as bioactivity assessment of natu-

ral sources of bioactive molecules such as medicinal plants [Yuliana et al., 2011].

Many metabolomic studies have focused on the search for diagnostic biomarkers

especially in cancer [Patel and Ahmed, 2015]. Biomarker identification can be in-

strumental in drug development as well. Biomarkers can be used for disease progres-

sion and prognosis under treatment in order to assess drug efficacy and variability

in patient response. Such approaches have already shown positive results in in-

vestigations of biomarkers for progression and prognosis of chronic kidney disease

[Nkuipou-Kenfack et al., 2014], arthritis [Weljie et al., 2007] and lung cancer [Mathe

et al., 2014] among other diseases. Another important application of metabolomics

in drug development is assessment of drug toxicity through identification of tox-

icity biomarkers [Lindon et al., 2004; Vangala and Tonelli, 2007]. For example

in Robertson et al. [2000] Wistar rats were exposed to hepatotoxic (CCI4 and α-

naphthylisothiocyanate) and nephrotoxic (4-aminophenol and 2-bromoethylamine)

compounds. Urine samples from the rats analysed using 1D 1H NMR showed dif-

ferences between the rats experiencing toxicity and the healthy controls. In another

study 1D 1H NMR was used to show toxicity of candidate drugs by analysis of

Wistar rat urine samples after administration of the drug [Dieterle et al., 2006b].

One of the most promising metabolomic approaches in drug discovery and

development is metabolic fingerprinting. Due to the high throughput nature it

can be used in high volume studies for lead selection or target validation. An

example of target validation for specific compounds could be carried out as follows.

A wild-type (WT) strain of a microorganism and a knock-out (KO) strain for the

targeted enzyme could be used as controls. The drug exposure experiment would

be carried out treating both strains with the compound generating a total of four

conditions: WT, KO and both strains treated with the compound (WT+ and KO+).

A fingerprinting approach e.g. NMR or MS could be used to collect the data and

a chemometrics technique e.g. PCA or PLS-DA could be applied to investigate the

sample clustering structure. In theory such a study could produce four different

patterns in the results depending on the compound activity. If the compound was

inactive, the data would show that the samples from each strain cluster together

showing only difference induced by the knock-out. If the compound was active and

specific to the target the WT+ would cluster with the KO and KO+ since the

effects of target inactivation would be detected. In case of active but non-specific

compound the treated samples would form a separate cluster as some secondary

effects would be detected in both strains. The most ambiguous case would be if the
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compound was active but specific to a different target. In such case no clusters would

be formed as each sample group would show a different combination of metabolic

effects. As the development of KO strains can be challenging it is important to note

that the same aim could be achieved by using other well understood inhibitor of

the target or monoclonal antibodies. A similar approach has been applied to show

that 8-azaxanthine is a selective inhibitor of urate oxidase in Aspergillus nidulans

Forgue et al. [2006]; D-Cycloserine (a tuberculosis drug) is a non-selective inhibitor

and that alanine racemase is not its lethal target as previously thought [Halouska

et al., 2007]. A similar study was performed with the aim to infer modes of action

of unknown active compounds against tuberculosis [Halouska et al., 2012a]. Here

instead of the KO strain a group of well known drugs were used as positive controls

and the modes of action of unknown compounds were predicted from the clustering

of metabolic readouts after exposure to known and unknown drugs.

1.4 Fourier Transform Infrared Spectroscopy

FT-IR is a spectroscopic technique based on the phenomenon that when molecules

are irradiated with an infrared beam functional groups in the molecules will absorb

part of the radiation and convert it into vibrations of chemical bonds. It has been

used for decades in chemistry for compound characterisation and since the 1990’s

it has found its way into the biological sciences. As biological mixtures can be

highly complex FT-IR has been used as a fingerprinting method for discrimination

of samples collected under different conditions e.g. different microorganism strains,

healthy and diseased tissues, biofluids from healthy and unhealthy individuals (see

Section 1.3). FT-IR is a very rapid technique that can be performed on samples in

a range of physical states including solutions, suspensions, viscous liquids, solids or

powders [Colthup et al., 1990]. In principle there are no restrictions to the sample

conditions employed including temperature, pH or pressure. This property is very

convenient in biological and biomedical research where sample conditions are often

desired to be altered as little as possible between the natural state and the measure-

ment state. The rapid data acquisition and versatility in sample conditions makes

FT-IR a potent tool for biological studies including high throughput screening.

1.4.1 Working Principles Behind FT-IR

Infrared (IR) radiation is a bandwidth between visible light and microwaves on the

electromagnetic spectrum. The origin of IR radiation is usually thermal emission

from a hot source. According to a convention IR is usually subdivided into three
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regions, namely near infrared (NIR; 0.75 - 5 µm,), mid-wavelength infrared (MIR;

5-30 µm) and far infrared (FIR; 30-1000 µm), although some studies use different

subdivisions. For most biological applications NIR or MIR is used. While the

wavelength of electromagnetic radiation is usually measured in µm in IR studies

it is often substituted for the wavenumber, which is the number of waves of the

particular length that fit into a length unit, usually a centimetre, and measured in

cm−1. The IR spectrum consists of the measurements of IR radiation before (IS)

and after (IR) passing through the sample. Data is usually presented in units of

absorption A = −log(IS/IR). The different bands in the spectra are the result of

interaction between molecules in the sample and the IR light. The molecules in

the sample absorb part of the energy at specific frequency and transform it into

vibrational motions of the chemical bonds. The amount of energy at each frequency

absorbed by the sample during the measurement forms the IR spectrum. FT-IR is

different to traditional (dispersive) IR spectroscopy techniques in that a range of

frequencies are emitted and measured at the same time. The data collected is called

an interferogram and is mathematically processed into a spectrum. This approach

provides much higher speed of measurement compared to dispersive IR. Emission of

the range of frequencies is achieved through a Michelson interferometer that consists

of two mirrors and a beam splitter that splits the IR beam into to equal parts (Fig.

1.2). One mirror is stationary and the other is movable.

Fixed position mirror 

Movable mirror 
Single frequency source 

Sample 

Detector 

Beam splitter 

Figure 1.2: A schematic illustration of the FT-IR spectrometer.

The light originates at the source and is split by the beam splitter into

two parts. One part is reflected to the stationary mirror and the other onto the
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movable one. The beams reflected from the mirrors are combined and directed to

the detector, where the difference of the intensities of the beams are measured as a

function of the paths travelled by each beam. The measured signal is then amplified,

digitized by the analog-to-digital converter and recorded. The result is a wave in

time domain called an interferogram (Fig. 1.3).

Optical path difference (cm) 
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Figure 1.3: An example interferogram from an FT-IR reading.

The interferogram contains all frequencies of IR measured in the experiment

superimposed into one signal. In order to convert the time domain interferogram

into a frequency domain spectrum a Fourier transform is performed on the data

(Fig. 1.3). After the transformation the data is ready to be processed and analysed.

1.4.2 Data Acquisition and Analysis

FT-IR readouts are usually taken of the sample positioned on a specially designed

silicon plate. If the sample is in solvent a measurement of the background is taken

in order to later be able to subtract the signal from traces of solvent molecules and

gases dissolved in the solvent. In biological studies the data is acquired in the 4000-

600 cm−1 range as it contains the molecule vibrational modes and in principle can

be assigned to specific functional groups in the sample (Table 1.1). For metabolic

fingerprinting applications the data is subject to multivariate analysis. Prior to the

analysis the data is corrected for the CO2 absorbances and parts of the spectra are

often removed due to the non-relevant information contained in those parts. The
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data is then scaled to unit variance to prevent variables with relatively greater values

being weighted heigher in the results of the analysis. The data processing results in a

data set where each sample is represented by a spectrum, and each spectrum consists

of numeric values corresponding to absorbances at each wavenumber. In this format

data can be subject to statistical analysis. The multivariate analysis techniques often

used on FT-IR (and other spectroscopic techniques) data are discussed in Section

1.7.

Table 1.1: Tentative assignment of bands frequently found in biological FT-IR spec-
tra.

Frequency (cm−1) Assignment

3500 O-H str of hydroxyl groups
3200 N-H str (amide A) of proteins
2959 C-H str (asym) of -CH3

2934 C-H str (asym) of > CH2

2921 C-H str (asym) of > CH2 in fatty acids
2898 C-H str of →C-H methine
2872 C-H str (sym) of -CH3

2852 C-H str (sym) of > CH2 in fatty acids
1741-1715 > C = O str of esters, carbonic acids, nucleic acids

1695 Amide I band components
1685 resulting from antiparallel β-pleated sheets
1675 β-turns of proteins
1655 Amide I of α-helical structures
1637 Amide I of β-pleated sheet structures
1548 Amide II
1515 ”Tyrosine” band
1468 C-H def of > CH2

1400 C=O str (sym) of COO−

1310-1240 Amide III band components of proteins
1250-1220 P=O str (asym) of > PO−2 phosphodiesters
1200-900 C-O-C, C-O dominated by ring vibrations

or carbohydrates, C-O-P, P-O-P
1085 P=O str (sym) of > PO−2
720 C-H rocking of > CH2

900-600 ”Fingerprint region”

Key: asym = asymmetric; sym = symmetric; str = stretching; def = deformation.
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1.5 Nuclear Magnetic Resonance Spectroscopy

NMR spectroscopy is a powerful tool for metabolomics. It relies on elements that

possess a magnetic spin number higher than zero and most of elements in organic

compounds have an isotope with this property. The technique is operated in a

magnetic field and uses electromagnetic radiation at radiofrequencies that allow

for non-destructive data collection. It is also very robust and reproducible further

adding to its value as a metabolomics tool. The one disadvantage of NMR spec-

troscopy is its low sensitivity compared to techniques like mass spectrometry. The

most abundant nucleus observed by NMR is 1H and therefore 1D 1H NMR is the

most popular among metabolomics researchers. We chose this type of NMR for

this study and therefore all the following discussions of NMR spectroscopy will be

describing 1D 1H NMR experiments.

1.5.1 Working Principles Behind NMR

Nuclear magnetic resonance is a property of the nucleus of an atom that arises from

its magnetic property called spin (I). Nuclei of atoms can have a range of values of

I, the most useful for NMR are nuclei with I = 1
2 . This includes 1H, 13C, 15N, 19F,

31P. A nuclear spin can be understood as an equivalent to a bar magnet. Placed

in a magnetic field a particle with I = 1
2 aligns itself either along or against the

magnetic field entering one of two possible energy states. The nuclei in parallel

with the magnetic field are in the lower energy state while the nuclei that oppose

the direction of the external magnetic field are in the higher energy state. A pulse

of radiofrequency can be absorbed by the nuclei in the lower energy state and be

shifted to the higher energy state. This absorption or subsequent gradual release

of the energy as the nuclei shift back to the lower energy state is recorded as the

free induction decay (FID) and is the output of the spectrometer. In a sample each

particle is affected by not just the external magnetic field but also the magnetic force

exerted by the nearby particles. The effective magnetic field arising from combined

magnetic influences to a nucleus determines the frequency of radiation it absorbs -

its effective resonance frequency. Each observable nucleus in the sample contributes

a signal to the spectrum at its resonance frequency with the area under the curve

proportional to the abundance of that chemical group in the sample.

The Anatomy of an NMR Spectrometer

The NMR instrument consists of several major components:

• the magnet
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• the probe

• radiofrequency sources

• the field frequency lock system

• the shim system

• signal amplifier

• analog/digital converter (ADC)

• computer

The magnet provides the external magnetic field B0 to the sample. Nowadays

it usually is a superconducting magnet, consisting of a coil submerged into liquid

helium in order to reduce the electric resistance in the coil to zero. The probe is po-

sitioned inside the magnet within a shim tube. It contains the receiver/transmitter

coil (in some cases two coils tuned to different frequencies) that detects the signal.

The radiofrequency sources produce the sine/cosine shaped waves as well as mod-

ulated and shifted waves that are used to excite the nuclei during the experiment.

The signal amplifiers are connected to the probe and are used to amplify the signal

delivered from the probe before it reaches the ADC. The signal detected in the NMR

spectrometer is analog and has to be digitised before it can be subject to Fourier

transformation. The digitisation of the signal is performed by the ADC. Usually 16

- 18 bit digitizers are used which places a bound on the signal amplitude resolution

at 218 points. Due to this technical limitation the receiver gain of the spectrometer

has to be adjusted so that the peak with the highest amplitude in the spectrum is as

close to 218 as possible to achieve the maximum amplitude resolution. The digitized

signal is then sent to the computer where it is stored, processed and analysed.

The shim system is a system of small coils that act as adjustable magnets

around the sample. Since the signal depends on the magnetic field strength a highly

homogeneous magnetic field is required to collect high resolution data. Inhomogene-

ity of the magnetic field in the sample would result in broadening of the peaks in

the spectrum due to slightly varying frequencies of resonance of the same functional

groups in different parts of the sample volume. The shimming system is used to

correct such inhomogeneities in the magnetic field provided by the main coil.

The deuterium lock system is used to ensure the stability of the magnetic

field. The magnetic field in the spectrometer drifts over time. Due to the field drift

the resonance frequencies of nuclei also drift resulting in peak broadening. The lock

system measures the frequency of deuterium in the sample (every sample is prepared

with deuterated solvent) and uses its peak position as the anchor-point to keep the

magnetic field stable. As the magnetic field changes over time it is detected by the
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lock system as a shift in the deuterium peak which prompts the system to adjust

the magnetic field so the peak is shifted back to its original position consequently

keeping the data signal stable.

Origin of the NMR Signal

As mentioned previously NMR spectroscopy relies on nuclear spin that gives rise

to the effect of nuclear magnetic resonance. Spin is a fundamental property of

elementary particles and can have values that are multiples of 1
2 . Proton has a spin

of 1
2 and is the most popular nucleus (we will refer to it as proton) in NMR studies.

The spin can be understood through the analogy of a magnet bar that has south and

north poles, or a needle of a compass and can be represented as a magnetic vector.

When placed in a magnetic field B0 the magnetic vector aligns to the direction of

the field in a parallel or anti-parallel way that corresponds to two energy levels:

lower α and higher β, respectively. A proton in α state can absorb a photon of a

specific energy and shift to the β state. The energy of the photon is

E = hγB (1.1)

where γ is the gyromagnetic ration of the particle (for hydrogen, γ = 42.58

MHz/T), B is the magnetic field strength and h is Planck’s constant (h = 6.626×
10−34Js). This energy is equal to the energy difference between the α and β states.

In the experimental conditions we always speak about a group of protons in the

sample as opposed to each proton separately. All the protons align parallel or anti-

parallel to the external magnetic field. The populations of protons in each spin state

at room temperature are not equal. The number of protons in the lower energy level

(N+) is higher than the number of protons in the higher (N−). From Boltzmann

statistics

N−

N+
= e−E/kT (1.2)

where E is the energy difference between the spin energy states, k is the

Boltzman constant (k = 1.3805 × 10−23J/K) and T is the temperature in Kelvin.

As the temperature increases the ratio approaches one. The signal in the NMR

originates from the differences in energy absorbed and subsequently released by

the spins as they transition between energy states. For this reason the signal is

proportional to the difference between populations in each state.

The energy difference between spin states determines the energy of the pho-

ton needed to be absorbed for the particle to shift to the higher energy state. This
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Figure 1.4: Schematic illustration of the flip of magnetisation vectors of nuclear
spins through application of a radiofreaquency in the NMR probe. B0 - external
magnetic field, α, β - two energy states of the nuclei.

energy depends on the magnetic field strength the particle is in. In an NMR ex-

periment the magnet provides the external field (B0) however this field is not expe-

rienced equally by all protons. The magnetic field affecting each proton is altered

by the magnetic fields created by the neighbouring nuclei. This alteration is often

called the magnetic shielding and it determines the size of the effective magnetic

field (Beff ) a particle is affected by. The energy required to excite a proton to

the higher energy state therefore depends on Beff rather than B0. Subsequently in

experimental conditions the population of protons consists of subpopulations that

differ in the energy required to excite the protons in that subpopulation.

In an NMR experiment the energy is provided by the electromagnetic pulse

that contains a range of frequencies. The energy can be related to frequency (ν)

through

E = hν (1.3)

and in an NMR experiment falls in the radiofrequency range. The differences

in excitation energy (frequency) are recorded in the NMR spectrum as different

peaks.

When the spins are in the magnetic field aligned to the magnetization vector

of the external magnetic field, the alignment is not perfectly parallel or anti-parallel
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Figure 1.5: Schematic illustration of magnetisation vector synchronisation after the
application of the radiofrequency pulse. Top - a view in 3 dimensions, bottom -
projection onto the xy plane. The red arrows represent the projection of the net
magnetisation vector in the xy-plane that is measured by the detector.

to the field. The spins form an angle with the vertical magnetization vector of

the external field (as a convention in a 3-dimensional (xyz) representation of the

system the external field magnetization vector is thought to be on the vertical (z)

axis). Furthermore the magnetization vector of each particle is not stationary but

precesses around the vertical axis. If we look at the projection of the vector in the

xy plane it would appear as a vector rotating around the origin. Since the protons

in a real system are not correlated in phase the sum magnetization vector on the

xy plane is zero. A pulse of radiofrequency can be used to correlate the phase of

the precession of magnetization vectors that makes the sum projection on the xy-

plane greater than zero and therefore measurable by the detector. Since the detector

only records the signal on one axis the signal oscillates like a sine function as the

magnetization vector rotates around the z axis. Over time the system returns to the

initial equilibrium state and the the magnetization on the xy plane reduces to zero.

This is referred to as relaxation. The signal recorded by the detector is therefore a
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decaying oscillation over time - the free induction decay.

1.5.2 An NMR Experiment

Data Acquisition

An NMR experiment consists of the following steps:

• preparation and insertion of the sample

• setting the temperature

• locking

• shimming

• acquisition parameter set-up

• tuning of the probe

• calibration of the 90◦ pulse

• data acquisition

The sample is prepared with a deuterated lock solution and a reference com-

pound, typically tetramethylsilane (TMS) or trimethylsilyl propionic acid (TSP).

The sample is transferred to a glass NMR tube (1.7mm, 3mm or 5mm diameter)

and placed into a spinner. The spinner with the sample is then placed at the top

of the magnet and lowered into the probehead via air-lift. Setting the correct tem-

perature is important depending on the sample properties e.g. higher temperature

is recommended for more viscous samples. Once the sample is placed in the probe-

head the lock is set. Locking to the deuterium signal is required in order to keep the

magnetic field from drifting. Since each sample has slightly varying magnetic prop-

erties shimming is carried out. This consists of adjusting shimming coils in order

to homogenize the magnetic field in the sample in order to avoid peak broadening.

The probe has to be tuned to each sample as well due to the varying impedance

of each sample. Sample properties such as ionic strength and pH can significantly

influence the signal. The signal in the NMR spectrometer is detected when the

magnetisation is flipped to the xy plane. The pulse that flips the magnetisation

has to be adjusted for each sample by adjusting the pulse duration. This is usually

achieved by repeated collection of spectra with increments of pulse duration until

the maximum value of the signal is found which corresponds to the signal achieved

with optimal 90◦ pulse. The data can then be collected according to the acquisition

parameters set for the experiment.
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Data Processing

The acquired data is in the form of a FID. It is a complex composite signal consisting

of a series of oscillating signals (one for each group of nuclei with unique resonance

frequency) that is detected by the receiver, amplified, digitized and recorded. In

order to obtain an NMR spectrum ready for analysis from a FID there are a series

of processing steps:

1. FID processing

(a) apodization

(b) zero-filling

(c) Fourier transform

2. spectrum processing

(a) phase correction

(b) baseline correction

(c) warping

(d) binning and integration

3. bin processing

(a) normalization

(b) scaling

Apodization is a transformation of the FID in order to manipulate spectral

resolution and signal to noise ratio (S/N). The resolution of the spectrum depends

on the speed of decay of the FID therefore the amount of signal remaining will

determine the resolution (more signal at the end of the FID means more resolution).

The S/N on the other hand depends on the amount of the signal at the beginning

of the FID. Therefore by manipulating the FID it is possible to trade between S/N

and resolution. e.g. multiplying the FID by an exponential function (exponential

apodization)

W (t) = e−πlbt (1.4)

where lb is the value of line broadening to apply, will result in improved S/N

at the cost of resolution, while multiplication by a Lorentz-to-Gaussian

W (t) = eπlbt × e−gbt2 (1.5)
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where lb is the line broadening factor and gb is the centre of the Gaussian

emphasizes the middle and tail parts of the FID and will increase the resolution at

the cost of S/N.

Zero filling is a procedure used to maximise the resolution of the spectrum

obtained from the Fourier transform. It consists of adding a series of zeros after

the FID equal to the number of points in the FID. After the zero-fill the Fourier

transform is performed in order to transform the time domain FID into the frequency

domain spectrum. The Fourier theorem states that every periodic function can be

decomposed into a series of sine and cosine functions with different frequencies and

is defined as

f(ω) =

∫ ∞
−∞

f(t)e−iωtdt =

∫ ∞
−∞

f(t)[cos(ωt)− isin(ωt)]dt (1.6)

where ω is the frequency and t is time. In practice the FID is discrete and the

Fourier transformation is performed using the Cooley-Tukey fast Fourier transform

(FFT) algorithm [Cooley and Tukey, 1965] which converts a discrete time-series xk

of length N into a spectrum with N points:

f [n] =
1√
N

N−1∑
k=0

xke
−2πkn/N (1.7)

It has a constraint that the number of points in the FID has to be a power

of 2. Therefore the number of points collected in a FID is usually 16384, 32764,

65536, etc.

The phase of the NMR signals in the spectrum depends on the phase at the

begining of the FID which is determined by the phase of the magnetization vector

in relation to the receiver coil. If it starts as a sine wave the spectrum is going to be

purely dispersive (asymmetric peaks) while if FID starts as a cosine wave it is purely

absorptive (symmetric peaks). The purely absorptive signal makes the analysis eas-

ier as the narrower base peak differentiation makes it more convenient. In order to

achieve the pure absorptive signal the measurement would have to start at exact

moment after the pulse. However due to cable delay as well as the delay for protec-

tion of the probe against overload the signal detection and digitization delayed. For

this reason in order to obtain a purely absorptive spectrum post-acquisition phasing

has to be performed. It is usually done by hand by adjusting the phasing angle

until a fully positive-valued spectrum is achieved, however algorithms for automatic

phasing have been proposed [Cieslar et al., 1988; Chen et al., 2002; Bao et al., 2013].

For effective NMR data analysis it is desirable that the baseline of the spectrum is
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as flat as possible. This is not always achieved by default and baseline correction

is required in the processing phase. A variety of methods for baseline correction

of NMR spectra have been proposed [Bartels et al., 1995; Brown, 1995; Golotvin

and Williams, 2000; Xi and Rocke, 2008]. The methods are based on fitting func-

tions to the baseline and subtracting the fitted values from the spectrum to flatten

the baseline. Another frequent problem in preparation of NMR data for analysis

especially in metabolomics studies is peak shifts due to pH and ionic strength vari-

ation between samples. This makes data comparison, especially using automated

methods, harder. There have been a series of algorithms proposed for automatic

alignment (warping) of NMR spectra [Forshed et al., 2003; Lee and Woodruff, 2004;

Veselkov et al., 2009]. The algorithms are usually based on dividing the spectra

into segments and using an optimization algorithm to shift the segments until the

optimal alignment is achieved.

In metabolomic studies, after the spectrum is processed it is reduced in di-

mensionality through binning and integration under the curve. Since the spectra

acquired in the NMR experiments often contain more than 30,000 data points it

is not efficient to perform statistical analysis on such a high-dimensional dataset.

Therefore the spectra are divided into segments and for each segment the area under

the curve is computed. The most popular methods of binning are “uniform”, when

binning is performed in intervals of a constant preset length (e.g. 0.05 ppm), and

“adaptive”, when the intervals are of variable length and each spans a peak or a

group of peaks. The latter can be performed manually by creating a bin table that is

used for the whole experiment or through the use of an automated algorithm [Keun

et al., 2003; Davis et al., 2007; Worley and Powers, 2015].

A binned dataset is then subject to normalization and scaling. Normalization

is a process of transformation of data to account for differences between samples (e.g.

dilution factors) making them comparable to each other. In such a case the spectra

can be normalized either by the area of a peak that is invariant between samples, the

reference peak or the total integral of the spectrum [Craig et al., 2006]. Data scaling

on the other hand is performed on each variable (in this case each bin) across the

dataset. It makes the variables more comparable and avoids unwanted weighting

of the data without biological content contributing to the results and suggesting

errorneus conclusions [van den Berg et al., 2006].

Correct data processing is a key step to obtaining high quality data that will

yield high quality information and correct interpretation of the results. In the NMR

experiments many of the processing steps have a range of alternative methods to

choose from and often there is no “gold standard”. It is often trial and error that
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yields the best results for each specific case.

1.6 High Content Imaging

High content imaging (HCI) technique, often more generally called high content

screening (HCS), can be defined as imaging based approaches for understanding

cell processes, morphological structures, viability and drug interactions. Its most

popular applications are cell assays in biological and biomedical research and espe-

cially drug discovery. Automated cell imaging techniques have been used in drug

discovery research for at least two decades. They have been used in identification

of a variety of compounds, including monastrol - a mitotic inhibitor [Mayer et al.,

1999] and src family kinase inhibitor SU6656 [Blake et al., 2000]. It has also been

applied in quantitative studies such as the characterisation of NF-κB translocation

to the nucleus [Ding et al., 1998]. With the development of high content imaging

(HCI) technology, combining automated bright-field and fluorescent imaging with

powerful image analysis methods, the imaging-based studies have gained scalability

and their applications have broadened to include high throughput studies such as

cell-screening assays [Rausch, 2006]. Besides the rapid data collection the high con-

tent imaging platforms have the ability to collect a diverse set of parameters that

are rich in information for analysis. HCI is used in, among others, cell viability

assays [Gilbert et al., 2011], tracking the effects of gene knockdown [Winograd-Katz

et al., 2009; Zhang and Boutros, 2013] and gene function analysis through temporal

cell phenotyping [Neumann et al., 2010; Failmezger et al., 2013]. Due to its high

throughput capabilities HCI has been rapidly adopted in the field of drug discov-

ery. It has been applied for drug target identification for cancer [Adams et al.,

2014] and obesity [Kim et al., 2014], drug toxicity assays [Persson et al., 2013; Peyre

et al., 2015], lead identification assays for diabetic cardiopathy [Drawnel et al.,

2014], Hutchinson-Gilford Progeria Syndrome (HGPS) [Kubben et al., 2015] and

infectious tropical diseases such as trypanosomiasis [Sykes and Avery, 2015], leish-

maniasis [Siqueira-Neto et al., 2012; Aulner et al., 2013] as well as onchocerciasis

and lymphatic filariasis [Clare et al., 2015]. HCI has been applied to a variety of

aspects of malaria biology including drug efficacy assays [Biagini et al., 2012], target

validation [McNamara et al., 2013] as well as life stage classification and viability

quantification [Moon et al., 2013].
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1.6.1 HCI Experiments and Data Collection

The three key components in an HCI experiment are cells bound with a fluorophore

in order to visualize appropriate cellular components, an image collection platform

and image analysis algorithms. The fluorophores can roughly be classified into

three categories: autofluorescing proteins that are engineered into the cells [Talman

et al., 2010], fluorescent dyes that enter the cells and concentrate in a particular

compartment or bind intracellular components such as SYBR Green [Zipper et al.,

2004] or Hoetch [Latt et al., 1975], and antibodies with affinity to the desired target

that are directly tagged with a fluorescent molecule. The fluorescent tag helps to

visualize the target component of the cell.

The image collection platform usually consists of a fluorescence microscope,

a dynamic system for positioning the cell culture plate under the microscope, a high

resolution camera system for capturing the images and a mechanism for data storage

[Gough and Johnston, 2006]. The system is usually equipped with a set of excitation

and emission filters to allow for selection of wavelengths during image capture. This

allows multiple probes to be used in the same sample without much interference.

Some systems (Opera, Perkin Elmer) come with multiple digital cameras that allow

simultaneous multichannel image capture. Simultaneous image capture is quicker

than the sequential method however it requires careful selection of fluorescent probes

to avoid wavelength overlap [Lee and Howell, 2006].

Software plays a very important part in the high content imaging pipeline.

The first part is the software that controls the imaging system. It is used to set

the parameters for the experimental procedure. It collects the images and stores

them in a database system, reports faults and performs quality control. The second

part of the software in the pipeline is the data analysis software. The analysis

software is used for data visualization and data processing which includes artefact

detection, selection of the fluorescent signal fields and measurement of a variety

of parameters including size, intensity, various shape and texture parameters, and

behaviour over time. The user defines the analysis parameters and the images are

automatically processed. Once the assay is tested and validated the system can run

mostly automatically allowing for robust high throughput data collection [Berlage,

2005; Pepperkok and Ellenberg, 2006].

1.7 Statistical Data Analysis

Both metabolomics and high content screening studies produce multivariate data.

Whether it is a raw spectrum, a set of spectral bins or a set of measurements of image
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regions the data consists of multiple measurements per sample and often the num-

ber of variables (measurements) exceeds the number of samples. Such cases demand

multivariate techniques for analysis - data explorations and hypothesis generation,

pattern detection or hypothesis testing. Here we briefly introduce the statistical

techniques used in this work. We discuss some mathematical definitions, the intu-

ition behind the methods and result interpretation as well as suitable applications

and their merits.

1.7.1 Principal Component Analysis

Principal component analysis (PCA) is a linear data transformation that yields a

set of latent (unobserved) variables, usually referred to as principal components

(PC). Principal components are linear combinations of raw variables such that the

first principal component contains the most variation from the original data. The

subsequent principal components are selected to be orthogonal to the first one and

contain maximum variance unaccounted by preceding PCs. This procedure creates

a new data set where each variable is substituted by a PC however only a small

number of PCs is required to account for the majority of the variance in the original

data. As only a small amount of variance is accounted for by a large set of PCs

they can be ignored without losing much information, effectively reducing the data

set to a smaller number of variables. PCA is often referred to as a dimensionality

reduction technique as the reduction of number of variables can be seen as project-

ing the data to a lower-dimensional space. PCA is usually performed in order to

reduce the dimensionality of the data for easier visualization or more robust mod-

elling. Plotting the first two or three principal components as a scatterplot is often

used as an exploratory method to get insight into the structure in the data. For ex-

ample clustering of data points (each point represents a sample) might be observed

suggesting similarities between treatment effects if points cluster together (and vice

versa). PCA is often used to reduce the number of variables before applying a pre-

dictive modelling technique as the smaller number of variables often lead to simpler

and subsequently more robust models.

PCA is usually performed in one of two ways: either through Eigen decompo-

sition of the covariance matrix of the data or through singular value decomposition

(SVD). The latter method is more numerically stable and therefore is preferred in

most cases. SVD decomposes a mean-centered (each column has its mean subtracted

from it) m× n matrix X into three parts:

X = UDVT (1.8)
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where U is an m × m matrix containing the left singular vectors, D is an

a×a diagonal matrix containing the singular values and V is a n×a matrix of right

singular vectors. The product UD constitutes the so called PCA scores matrix.

The scores matrix is the transformed data obtained from the PCA and used for

visualization of further analysis. The V matrix is the loadings matrix whose columns

contain the weights of the original variables in each PC. They can be investigated

in order to determine variable contribution to each PC. The diagonal matrix D

contains values whose squares are proportional to the variances accounted for by

each corresponding PC

λi = d2i /(n− 1) (1.9)

where λ is the variance of the i-th component and the fraction of variance

accounted for by each PC can be calculated from

F (i) = λi/
a∑
j=1

λj (1.10)

The fraction of the variance accounted for by each PC can be used to assess

the information provided by keeping each principal component. Often the first few

principal components account for the majority of the variance and the structure in

the data can be adequately visualized by plotting the PCs.

1.7.2 Linear Discriminant Analysis of Principal Components

Linear discriminant analysis (LDA) is a classification technique that transforms

the data into a different space where the discrimination between groups in data is

maximised while within group differences are minimised. It is similar to PCA in

that the data is linearly transformed into a different space, however while PCA aims

to find the directions of maximum variance in the data as a whole, LDA finds the

directions of maximum separation between groups. LDA is therefore performed on

data that has grouping labels (e.g. sample treatment groups) and is often used as

a technique to show differences between treatments. The resulting model can also

be used to assign new data samples to groups in the data that model was built on

(this procedure is usually referred to as model training). Formally the LDA finds

the linear combination of variables a that maximises the ratio of the sum of square

differences between groups B and the sum of square differences within groups W:

aTBa/aTWa (1.11)

28



where W and B are calculated as

W =
G∑
i=1

X̃T
i X̃i (1.12)

B =
G∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T (1.13)

where G is the number of groups, X̃i is the mean-centered data matrix only

containing objects of group i, x̄i is the mean vector for the group i and x̄ is the

mean vector for the whole data. The W is the variation within each group (around

group centre) and B is the variation of the group centres around the global mean.

The solution a is found by maximising Equation 1.11.

As the number of variables in the data increases the LDA model becomes

less robust and requires more data. In cases when the data is high-dimensional it

is often beneficial to reduce the dimensionality of the data before performing LDA.

PCA is a frequently used method for this purpose. The technique is then referred to

as LDA-PC or DA-PC. In order to build a robust LDA-PC model and avoid fitting

to the noise in the data (overfitting) the number of PCs to be used for LDA has

to be determined. A popular way of model selection is cross-validation. It consists

of splitting the data into subsets and training the model on the data leaving one

subset out - so called N-fold cross-validation, where N is the number of partitions -

and using that partition to test the model. A robust model will perform similarly

on each of the partitions. Such a cross-validated scheme of model building can be

then used on data consisting of increasing number of principal components and each

time a model fit metric e.g. Q2 can be used to assess the model. The best average

metric value will determine the optimal number of PCs to use.

1.7.3 Partial Least Squares Discriminant Analysis

Partial least squares discriminant analysis (PLS-DA) is an application of partial least

squares (PLS) regression method using a nominal response vector (or matrix in case

of more than 2 group problem) in order to perform classification. PLS is similar to

PCA in that it also computes a linear combination of data variables. However while

PCA aims to produce a weights matrix that reflects the structure of the covariance

between the data variables (predictors), PLS aims to find a weights matrix that

reflects structure of the covariance between the predictor and the response variables.

Given data matrix X and response matrix Y PLS computes a weight matrix W that

is used to produce a score matrix T
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T = XW (1.14)

such that covariance between Y and T is maximised. Ordinary least squares

procedures are used to regress Y on T in order to compute a weights matrix Q such

that

Y = TQ + E (1.15)

where E is an error matrix. The model is then defined as

Y = XB + E (1.16)

B = WQ (1.17)

The model is usually computed using the NIPALS algorithm [Geladi and

Kowalski, 1986]. While PLS regression is used to predict response variables PLS-

DA is used to predict classes of the observations. It is done by using “dummy”

variables to form a binary n × p matrix Y where n is the number of observations

and p is the number of groups minus one such that Yij = 1 if observation i belongs

to class j and otherwise Yij = 0. This matrix is then used in the PLS algorithm as

the response matrix. In order to avoid model over-fitting an appropriate number of

components to be used in the model has to be selected. For this purpose the same

cross-validation procedure as in Section 1.7.2 can be used.

1.7.4 Permutation Test

A permutation test is a type of statistical randomization test when the null distribu-

tion of a test statistic is obtained by random permutations of the class labels on the

observations. It is assumed under the null hypothesis that if there is no difference

between groups (treatments, classes) of the observations, permutation of the class

labels will not influence the statistic. However is the null hypothesis is false the

test statistic will differ based on the label assignment. The null distribution derived

from the random permutations of class labels is used to calculate the p-value of the

test statistic of the real-labelled data. For example if a two-sample test of difference

between the means (∆x̄) had to be computed the null distribution for the ∆x̄ could

be obtained by randomly permuting the group membership labels on the samples

and calculating the difference between the means of the “new” data groups (∆x̄∗).

Repeating this a number of times (1000 is a good rule of thumb) forms a distribu-

30



tion of possible ∆x̄ values under the null hypothesis. The p-value would then be

the proportion of the samples as or more extreme than the value obtained from the

correctly labelled data.

The permutation test is a non-parametric test that is useful in cases where

assumptions about the distribution of the test statistic are weak or the distribution

is intractable.

1.7.5 Hierarchical Clustering

Hierarchical clustering (HC) is an algorithm designed to describe grouping structure

in the data. Clustering algorithms are usually used for finding groups of observa-

tions where no information about the grouping of observations is present. The HC

algorithm builds a clustering tree based on the similarity/dissimilarity of the ob-

servations. The similarity is usually defined as a distance function, most often the

Euclidean distance between data points. The algorithm works in either agglom-

erative (most popular) or divisive fashion. In the first case the data points start

as separate clusters and based on the similarity the two closest points are linked

together and become a cluster. The cluster substitutes the points and the distance

matrix is recalculated to include the cluster. The same procedure is repeated until

there are no unlinked points left. In the divisive case the process is opposite : all

points are linked, the least similar clusters are found in each iteration and separated

until there are as many clusters as there are points. There is a variety of linkage

methods that can be used to compare the points/clusters. Given two clusters of

points (if there is only one point in the cluster its position is used) the single linkage

measures the distance between the closest points in each cluster, the average linkage

between the centres of the clusters, while the complete linkage takes into account

the most distant points in each cluster. The result of HC is a tree-like structure of

cluster memberships. The most popular way to visualize the result is a dendrogram

- a tree diagram with the stem at the top and “leaves” that represent observations

at the bottom. The vertical distances between the branches are proportional to the

distances between the neighbouring groups. All the “leaves” are connected to the

stem and the branching structure describes the similarity between the observations.

The dendrogram does not perform clustering per se but assigns a hierarchical struc-

ture to similarities of the points. It has to be cut across the branches to separate

the observations into groups. The usual way to cut the dendrogram is to find the

longest vertical distance between branching points on the dendrogram and cut the

it at that level. The cutting of the dendrogram assigns the cluster membership to

each observation. Hierarchical clustering is a popular technique as the intuitive tree
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structure of data representation is informative and easy to interpret. However it

has a downside that there is no failsafe mechanism to prevent the algorithm from

finding clusters in the data where there is no clustering structure. In such cases

the tree can still be built and, when cut, will produce cluster assignments. The

easiest way to avoid this is through data exploration or prior knowledge. Plotting

original observations is often helpful in order to find general patterns in the data.

If the data is known (or seen in the plots) to contain some clustering structure it

can be expected to be present in the dendrogram and the clustering results. When

applying hierarchical clustering it is advisable to be careful with data lacking known

structure and exploratory analysis prior to clustering is often very useful.

1.7.6 Multiple Dataset Integration

Multiple dataset integration is a Bayesian correlated clustering method that per-

forms clustering of observations between multiple datasets [Kirk et al., 2012]. The

clustering is called correlated because the clustering structure within one dataset

influences the clustering within the other datasets. This method was developed in

order to detect similar clustering structure between datasets that contained similar

information from different data sources, e.g. gene expression and protein-protein in-

teraction data. Each dataset is modelled separately and the similarities between

clustering structures in each dataset are learned. This provides the ability to

use datasets of various data types (real-valued, categorical, time-series) together.

The model produces cluster assignments for each measured entity (gene expression,

metabolite concentration, etc.) in each dataset and thus provides information about

the groups of measured entities that show similar behaviour. On the other hand

MDI can also be used to compare datasets containing measurements of the same

variables but under different conditions (drug treatments, growth conditions, etc.).

Similar clustering structure would then suggest similarity between conditions and

vice versa. The method is significantly more complex than other methods described

above a and more detailed explanation is omitted here.
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Chapter 2

Materials and Methods

In this chapter we describe methods of P. falciparum culture, experimental proce-

dures, setups for FT-IR, NMR and high content imaging data acquisition and the

data analysis techniques used in this study. The methods are described in detail

to allow reproducibility of the experiments. Method development procedures that

resulted in some of the experimental protocols provided below are discussed in the

following chapter.

2.1 Parasite Cultures

The P. falciparum cultures were maintained in standard medium containing human

erythrocytes at 2.5% haematocrit and below 10% parasitemia, incubated at 37◦C.

All the manipulations were performed in an Envair class-II laminar flow cabinet in

aseptic conditions. 70% Ethanol (Aldrich Chemical Co.) was used during work in

the safety cabinets in order to minimize risk of contamination. All solutions were

prepared with distilled water and filter-sterilized through a bottle top filter with a

0.22 µm membrane (Fisher Scientific) and stored at 4◦C. Parasites were cultured in

25 cm2 and 75 cm2 NuncTMtissue culture flasks (Fisher Scientific). P. falciparum

strain 3D7 was used throughout this study.

2.1.1 Culture Medium

The culture medium was prepared by adding 12.5 mL of sterile 1M HEPES (4-(2-

hydroxyethyl)-1-piperazine ethane sulphonic acid), 200 µL of 50 mg/mL gentamycin

(Sigma, UK), 25 mL of 5% Albumax I (Gibco, UK) solution and 5 mL of 4 mM

hypoxanthine solution to 500mL of RPMI-1640 (Sigma, UK) [Trager and Jensen,

1976; Radfar et al., 2009b]. Culture medium was filter sterilized before use unless
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specified otherwise. It was prepared each week with unused medium discarded after

one week.

HEPES - 1 M stock solution was prepared from powder (VWR International, UK)

in distilled water and pH adjusted to 7.4 with NaOH. The stock HEPES solution

was then filter sterilized and stored at 4◦C for up to 6 months.

Albumax I - 5% stock solution was prepared from powder (Gibco, UK) in distilled

water, filter sterilized and stored at 4◦C for up to 6 months.

Hypoxanthine - 4 mM stock solution was prepared from powder (Sigma, UK) in

0.1 M solution of NaOH, filter sterilized and stored at 4◦C for up to 3 months.

2.1.2 Uninfected Red Blood Cells

Uninfected red blood cells (RBCs) used in cultures were obtained from whole O+

human blood, donated by the North West Regional Transfusion Service, Liverpool,

UK. The blood was supplied in citrate-phosphate-dextrose bags after being tested

for HIV and HBV antibodies. The blood was stored at 4◦C for up to 2 weeks and

RBCs were separated only immediately before use. In order to separate RBCs from

the other constituents of blood, RPMI-1640 and gentamycin solution (200 µM of

50 mg/mL gentamycin in 500 mL of RPMI-1640) was added to the whole blood

aliquots, the suspension was centrifuged at 3000 rpm for 5 min and the supernatant

together with the while buffy coat layer of cells was removed using a sterile glass

aspiration pipette. The procedure was repeated 3 times in order to obtain a pellet

of washed packed RBCs. The RBC suspension was then stored at 4◦C for up to a

week. In the experiments where uninfected RBC cultures were used as controls, the

RBCs were cultivated in the same conditions as infected RBC cultures for 2 days

prior to the experiment.

2.1.3 Gas Phase

It has been shown by Scheibel et al. [1979] that successful growth of Plasmodium for

extended periods of time requires optimum atmosphere composition that is different

from normal air, micro-anaerobic. The gas used for parasite incubation in this study

was supplied by British Oxygen Special Gases. The composition of the gas was 4%

CO2, 3% O2 and 93% N2. The gas was administered to the culture flasks through

a sterile cotton plugged pipette for 1 minute per 75 cm2 flask and 30 seconds per

25 cm2 flask.
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2.1.4 Parasite Synchronisation

For all experiments highly synchronous parasite cultures were used. A standard

procedure for parasite synchronisation with sorbitol described in Lambros and Van-

derberg [1979] was used. The method is based on the fact that in later stages of the

parasite life cycle the “new permeability pathway” allows sorbitol to enter through

plasma membranes, followed by water causing the parasite to swell and eventually

lyse and die. This procedure allows selection of young ring stage parasites and

results in synchronised cultures. 5% Sorbitol (Sigma, UK) solution was used for

the procedure. Cultures were transferred to sterile 50 mL tubes and centrifuged at

500 g for 5 minutes, the supernatant removed and discarded. Then ten volumes

of sorbitol solution was added to the pellet and gently shaken. Cultures were then

incubated at 37◦C for 12 minutes gently shaking every 4 minutes. After incubation

cultures were washed three times in full standard culture medium. The washing was

carried out by adding 30 mL of full culture medium to each pellet, gently mixing

and centrifuging at 500 g for 5 minutes. The supernatant was then removed and

procedure repeated for a total of three washes. Washed pellets were then introduced

into new flasks with fresh culture medium and incubated as usual for no less than

48 hours prior to any experiment.

2.1.5 Estimation of Parasitemia

Parasite cultures were maintained below 10% parasitemia for most efficient growth.

The excess parasites were removed by dilution of cultures with fresh uninfected

RBCs. The parasitemia was estimated by counting infected and non-infected RBCs

on thin blood film slides. The slides were prepared by spreading a drop of RBCs

from each culture onto a glass slide (Fisher Scientific, UK) forming a thin film

of cells. The blood film was then fixed for 5 seconds in 100% methanol (Fisher

Scientific, UK) and stained in 10% Giemsa solution (VWR International Ltd, UK)

for 10 minutes, then washed under running tap water and dried. The prepared slides

were then inspected through an oil immersion microscope (Zeiss, Germany) at x1000

magnification. The parasitemia was estimated by counting infected and uninfected

RBCs, no fewer than 500 in total per per slide. The percentage of parasitemia was

estimated as follows:

Parasitemia(%) =
# of infected RBCs

# of total counted RBCs
× 100% (2.1)
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2.1.6 Haemocytometry

For FT-IR experiments an accurate cell count had to be established for determi-

nation of a standard uniform sample size. The cells were counted using a heamo-

cytometer (Hawksley, UK). The red blood cell suspension was diluted in culture

medium at ratio 1:99. The suspension was well mixed and 10 µL was transferred

into the heamocytometer chamber. The cells were then counted under a microscope

with 50x magnification in a central square of the chamber. The total cell count per

millilitre was then calculated by multiplying the count by 50 000.

2.1.7 Magnetic Separation of Infected Erythrocytes

For FT-IR experiments the synchronous parasite cultures were purified to 90%

parasitemia using magnetic column ”VarioMACS” (Miltenyi Biotec, Germany). The

purification was performed when parasites were at the trophozoite stage and at a

8-10% parasitemia.

Cytoprotective solution - consisted of 2% bovine serum albumin (BSA) and 20

mM glucose in 1x PBS solution.

For the purification cultures were transferred to sterile 50 mL tubes and

centrifuged at 500 g for 5 minutes, the supernatant was removed and the pellets

of infected RBCs were suspended in 10 volumes of cytoprotective solution. The

magnetic column was assembled and placed into the magnet. The suspensions were

poured through the column. Every three cultures the column was removed from

the magnet and the cells trapped in the column eluted by pouring cytoprotective

solution through the column. The elutant was collected in a sterile 50 mL tube.

A Giemsa stain slide was prepared and inspected to confirm the success of the

procedure after the last cultures were purified. The concentrated infected cells were

then centrifuged at 500 g for 5 minutes, the supernatant was removed and cells were

re-suspended in full culture medium.

2.1.8 Cryopreservation of Parasites

P. falciparum cultures were initiated by thawing frozen high parasitemia cultures.

The cultures were cryopreserved according to a modified method presented by Rowe

et al. [1968]; Wilson et al. [1977]. Cultures of over 5% parasitemia were transferred

to sterile 50 mL tubes, centrifuged at 500 g for 5 minutes and the supernatant was

removed. An equal volume of cryoprotectant solution was added to the pellet. The
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suspension was left to rest for 5 minutes at room temperature, then mixed with the

pipette and aliquoted into cryotubes (Nunc, UK) as 1 mL of suspensions. The tubes

were then transferred to a liquid nitrogen tank (vapour phase) for storage.

Cryoprotectant solution - 1.9 g sodium chloride (Sigma Chemical Co, UK) was

added to 200 mL of distilled water to obtain 0.95% physiological saline. Then 8.4 g

of sorbitol (Sigma, UK) and 70 g of glycerol (Sigma Chemical Co, UK) was added to

obtain the cryoprotectant solution. The resulting solution was filter sterilized and

stored at 4◦C.

For thawing of the parasite cultures the tubes with frozen pellets were removed

from liquid nitrogen storage and allowed to thaw at room temperature. An equal

volume of 3.5% sodium chloride solution was then added to the thawed culture,

mixed and the tubes centrifuged at 500 g for 5 minutes. The supernatant was re-

moved and cell pellet was washed twice in an equal volume of full culture medium.

The cell pellet was then introduced into a sterile 25 cm2 culture flask with fresh

medium, gassed and incubated at 37◦C for 48 hours.

2.1.9 Determination of IC50 Concentrations of Drugs

Cultures for The IC50 concentration determination were prepared as usual (see

Section 2.1.). The cultures were transferred to sterile 50 mL tubes and centrifuged

at 500 g for 5 minutes. The supernatant was removed and the cell pellet used for

the experiment.

The stock drug solutions of 2 mM were prepared in DMSO or methanol.

Artemisinin was used as a positive control and fresh culture medium was used as

negative control. 96-well plates were used for the experiments. The experimental

set-up is shown in Figure 2.1.

Each drug to be tested (up to 2 per plate) was diluted as follows: 600 µL

of 2 µM drug solution was added to a sterile 1.5 mL tube. For each drug seven

more tubes containing 400 µL of fresh medium were prepared and a 1/3 serial

dilution was performed by transferring 200 µL from the first tube to the next and

repeating for each subsequent tube. This resulted in eight concentrations of each

drug. Artemisinin was used at 2 µM concentration.

On the 96-well plate the wells on three of the edges of the plate were filled

with 100 µL of fresh medium and not used due to different drying effects in those

regions. The rest of the plate was filled with 50 µL of medium containing appropriate

drug concentration or fresh medium for negative controls (Figure 2.1). Wells B-G
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Figure 2.1: 96-well plate setup for determination of drug IC50 concentrations. Color
code: grey - 100 µL of culture medium, not used in the experiment; red - Artemisinin;
green - culture medium, positive control; teal - drug 1 serial dilutions, 3 replicates
(1 row each); orange - drug 2 serial dilutions, 3 replicates (1 row each).

in column 1 were used for positive control and contained medium with Artemisinin.

The same wells in the columns 6 and 11 were used for negative controls and contained

fresh medium. The rest of the wells (columns 2-5 and 7-10) in order from left to

right contained the serial dilutions of drugs in medium. Rows B, C and D were

reserved for one drug and rows E, F and G for another 50 µL of parasite pellet was

then added to each well of the 96-well plate. The plates were appropriately labelled

and placed into a modular gas chamber. The chamber was gassed for 2 minutes with

the standard gas mixture (Section 2.1.3) and incubated at 37◦C for 48 hours. After

incubation the plates were removed from the chamber and refrigerated to −20◦C

for storage until fluorescence measurement. 1 Hour before reading the plates and

the SYBR green solution were removed from the freezer and thawed in a laminar

flow cabinet.

Lysis Buffer - The buffer is composed of EDTA 5 mM (Sigma Aldrich E5154),

Triton x100 0.08% (BDH chemicals 30632), Tris 20 mM (Sigma Aldrich, T1503) and

saponin 0.08% (Sigma Aldrich, S7900).

The lysis buffer was diluted 1:9 in distilled water and 0.2 µL of SYBR green

(Sigma Aldrich, S9430) was added per 1 mL of the solution. 100 µL of the solution

was added to each well used for the experiment and the plates were incubated for

1 hour at 37◦C. The fluorescence in the wells was measured using a ”Varioskan”

(Thermo Electron, US) spectrophotometer. The readings were performed at 100 ms
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duration, three times per well and values were averaged. The excitation wavelength

was 485 nm and emission - 518 nm. The three replicates were averaged, positive

control was subtracted from the average and the result divided by the negative

control value obtaining the percentage of inhibition by the drug with respect to

positive control. A logistic curve was then fitted to these percentages to obtain the

IC50 value and associated error.

2.2 Experimental Procedures for FT-IR Metabolomics

Experiments

Prior to experiments FT-IR plates were washed with a 5% SDS solution then rinsed

with distilled water, iso-propanol solution and dried in a 40◦C oven for at least an

hour. A randomized template for sample placement on the plate was created for

each experiment in order to reduce effects of any systematic errors or machine drift.

2.2.1 Sample Preparation

Parasite cultures were prepared for the experiments as explained in Section 2.1. All

cultures were randomized during culturing procedure in terms of treatment order

and placement in the incubator. Parasite cultures were synchronized (Section 2.1.4)

and purified (Section 2.1.7) to 90% parasitemia. The amount of cells in each

suspension was estimated using haemocytometry (Section 2.1.6) and the volume

containing the required number of cells (2×107) was calculated. For the time-series

experiments 24-well flat bottom culture plates (Costar, USA) were used. Samples

on the plates were randomized in the same way as on FT-IR plates.

2.2.2 Sampling at T=0 h and Time-Course Set-up

A standard volume of each suspension, containing 2× 107 RBCs, was transferred to

sterile 15 mL tubes on ice containing 5 mL of ice-cold PBS solution, mixed and put on

ice. The tubes were centrifuged at 500 g in a centrifuge chilled to 4◦C, supernatant

was carefully removed and the wash step was repeated. After the second wash step

the cell pellets were transferred onto a prepared FT-IR plate using a 10 µL pipette

according to the randomized template, followed by drying.

24-Well plates were prepared for time course experiments by adding 2 mL of

full medium containing 3× IC90 concentration of drug or an equivalent amount of

DMSO. A standard volume of each sample containing 2×107 RBCs was then added

to an appropriate well on the plate. The plates were closed, appropriately labelled

39



and put into a modular gas chamber (Billups-Rothenberg, US). The chamber was

then gassed for 2 minutes with the standard gas mixture (Section 2.1.3) and the

chamber was placed into an incubator at 37◦C.

2.2.3 Sampling at Later Time-points

At sampling time points the plates were removed from the chamber and placed on

ice to quench the cell metabolism. Each sample was then transferred to a sterile

15 mL tube containing 5 mL of ice-cold PBS solution, mixed and put on ice. The

tubes were then centrifuged at 500 g at 4◦C, supernatant was carefully removed

and the wash step was repeated using 5 mL of ice-cold PBS. After the second

wash the supernatant was carefully removed without disturbing the pellets and cells

were transferred onto a prepared FT-IR plate using a 10 µL pipette according to

a randomized placement template, followed by drying. The complete plates were

transferred to a desiccator and kept until the FTIR reading within 24 hours.

2.2.4 FTIR Readings

FT-IR experiments were performed using a Bruker Equinox 55 FT-IR spectrometer

using OPUS software v.4. Spectra were collected in the absorbance mode within

the wavenumber range of 4000-600 cm−1 with 4 cm−1 resolution and sampling time

of 64 scans. The raw values of the spectra were extracted from Bruker digital files

using a specialized MATLAB (The MathWorks, UK) script and annotated in Excel

(Microsoft, US). All the FT-IR data manipulations and analysis were performed

using R statistical computing software.

2.3 Experimental Procedures for NMR Metabolomics

Experiments

Each NMR metabolomics experiment was performed following the procedures de-

scribed below. First the required number of parasite cultures were cultivated (Sec-

tion 2.1) to 8-10% parasitemia at the early trophozoite stage. Each flask was pre-

pared with 1 mL of infected RBCs. However to account for cell loss during culture

and manipulation procedures it was assumed that each flask had 800 µL of infected

RBCs per flask.
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Figure 2.2: A standard 6-well plate set-up for a drug exposure experiment. 4 Drugs
were used usually with one well left for negative control. If only 2 drugs were used,
2 replicates would be fit on one plate also adding another control sample.

2.3.1 Drug Exposure Time-Course Setup

Each parasite culture was transferred to a sterile 50 mL tube, centrifuged at 500

g for 5 minutes, and supernatant removed by aspiration. The resulting cell pellets

were then pooled. Full culture medium aliquots containing calculated concentration

of drugs were prepared and added to 6-well plates, 8 mL per well, arranged as shown

in Figure 2.2. For the specific concentrations drugs and solvents used refer to Table

2.1. 250 µL of pooled parasite culture was added to each well. Each plate was

treated as a replicate of the experiment.

The plates were appropriately labelled and placed into a modular gas cham-

ber (Billups-Rothenberg, US). For improved gas access to each plate a custom made

shelf was constructed to be placed inside a chamber in order to avoid directly stack-

ing plates onto each other. The chamber was then closed and gassed for 2 minutes

with the standard gas mixture (Section 2.1.3).

Table 2.1: Drugs used in NMR experiments. MW - molecular weight; * - in-house
determined IC90(nM) concentrations.

Drug name MW (g/mol) IC90(nM)* Solvent

Chloroquine 319.87 50 Water
Amodiaquine 355.86 50 DMSO
CK-268 443.85 50 DMSO
5-Fluoroorotic acid 174.09 15 DMSO
Piperaquine 535.51 50 DMSO

For experiments including 1 mL cell samples and a 5 or 6 hour time-courses

the plates were substituted with 25cm2 flasks containing 10 mL of culture medium.
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For the 48 hour time-course experiment the 75cm2 flasks containing 40 mL of culture

medium were used. The gas chamber was not used and the flasks were gassed

individually 30 seconds per 25cm2 flask and 1 minute per 75cm2 flask.

2.3.2 Sampling

At time T = 0 h the samples were taken from the pooled parasite culture. 250-

1100 µL (depending on the experiment) of culture was taken for each sample and

transferred to sterile 15 mL tubes containing 5 mL of ice-cold PBS. The samples

were gently shaken and centrifuged in a 4◦C centrifuge at 500 g for 5 minutes.

Supernatant was removed and the wash was repeated. After the second wash 200-

1000 µL of each pellet was transferred to a 1.5 mL tube containing four volumes of

extraction solution (2.3.3). In case of 1 mL sample the pellet was split between 3

tubes (333 µL each), each extraction was carried out separately and the extracted

material pooled back together at the end of the procedure (Figure 2.3).

At later time-points the sampling was performed depending on the containers

the cells were incubated in. When plates were used, the samples were transferred to

sterile 15 mL tubes containing 5 mL of ice-cold PBS using a 12 mL cotton-plugged

pipette and washed as described in case of T=0 h sampling. In cases when flasks

were used for incubation the cells were re-suspended into the medium by gently

shaking the flasks and transferred to sterile 15 mL tubes containing 5 mL of ice-cold

PBS using a 12 mL cotton-plugged pipette and washed as described above. After

the washes 200-1000 µL of each pellet was transferred to a 1.5 mL tube containing

four volumes of extraction solution (2.3.3). The 1000 µL samples were split into

three tubes each for extraction as explained above.

2.3.3 Metabolite Extraction

The metabolite extraction procedure was adapted from Beckonert et al. [2007b].

The changes made and the motivation is discussed in more detail in Chapter 3.

Extraction solution - was prepared by mixing experiment grade acetonitrile

(VWR, UK), methanol (VWR, UK) and distilled water (VWR, UK) in proportions

2 : 2 : 1. The solution was mixed thoroughly and stored at 4◦C.

Prepared extraction solution was added to appropriately labelled 1.5 mL

tubes prior to the experiment, at volume 4x the planned sample volume. Each

sample was then added to the designated tube with extraction solution, vortexed
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Figure 2.3: A schematic of metabolite extraction procedure for 250 µL and 1 mL
cell samples. Each 1 mL sample was split into three 333 mL samples and extraction
is performed separately on each part. The extracts were pooled at the end before
drying.

for 5 seconds and frozen on dry ice. The samples were then kept on dry ice for 15

minutes, thawing and vortexing every 5 minutes. After the extraction procedure

samples were centrifuged at 13000 g, supernatant was transferred to fresh tubes,

frozen and stored at −80◦C until lyophilisation.

2.3.4 Lyophilisation

Before the NMR experiments were performed all the samples were freeze-dried to

remove any solvent that would interfere with the readings. The lyophilisation proce-

dure was carried out using a Heto PowerDry LL3000 freeze-dryer (Thermo Scientific)

equipped with a RV5 (Thermo Scientific) vacuum pump. Each tube containing a

frozen sample had a hole made in the cap and was placed into a plastic freeze-drying

container and left overnight in the freeze-dryer loop. Dried samples were then stored
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at −80◦C until the NMR readings could be performed.

2.3.5 Sample Preparation For NMR Readings

The lyophilised samples were re-suspended in 580 µL of NMR buffer (see below)

and vortexed for 10 seconds. The samples were then centrifuged at 13000g and 550

µL of supernatant was each transferred to a clean 1.5 mL Eppendorf tube. Each

sample was then transferred from the 1.5 mL tube to a 5 mm glass NMR tube

(Fisher Scientific, UK) using a glass pipette (Fisher Scientific, UK). The outside of

each tube was cleaned with a tissue to remove any fingerprints or dust. The samples

were then placed into a 96-tube rack (Bruker, UK) and loaded into an automatic

sample changer (SampleJet, Bruker). In cases when the 800 MHz spectrometer was

used the samples were changed manually and a spinner was used instead of tube

rack.

NMR buffer - 100 mM sodium phosphate buffer solution, pH 7.4 in deuterated

water (2H2O) containing 0.3 mM TSP as chemical shift reference Beckonert et al.

[2007b].

2.3.6 NMR Parameter Set-up

NMR experiments were performed using 600 MHz and 800 MHz Bruker Avance III

spectrometers equipped with TCI gradient cryoprobes. The 600 MHz spectrometer

was fitted with a SampleJet autosampler. The spectrometers were controlled using

Bruker TopSpin 3.1 software (Bruker, UK) operating in Centos 5 Linux OS.

The NMR readings were collected using standard Bruker 1D NOESY and

CPMG pulse sequences unless stated otherwise. 128 Scans were collected for each

sample with 4 dummy scans (DS) and spectral width of 20 ppm at 298 K. For each

experiment the temperature was calibrated using a standard deuterated methanol

sample. A pre-saturation water suppression technique was used throughout the

experiments.

2.4 Experimental procedures for High Content Imaging

Study

Here we describe the procedures used in the high content imaging experiments. We

first discuss the experimental set-up followed by the data acquisition and processing.
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2.4.1 Experimental Set-up

High content imaging studies were carried out according to the following proce-

dures. The parasites were cultured in a standard manner described in Section 2.1.

The parasites were synchronised using the sorbitol method (Section 2.1.4) twice

within 6 hours in order to obtain a narrow synchronization window. The cultures

were then continued for additional an 48 hours until the next life-cycle, changing

medium after 24 hours. At 48 hours the synchronous cultures were at ring stage

(0.2% haematocrit and 5% parasitemia) and were exposed to the antimalarial com-

pounds at 9×IC50 concentrations in a flat-bottomed 96-well plate (Fischer, UK) and

incubated for 32 hours until the negative control cultures reached late trophozoite

stage. The cells were then transferred to a 384-well imaging plate (Perkin Elmer,

Cell-Carrier 384 TC) at final haematocrit of 0.02%. The cells were incubated with

1 µg/mL of Hoechst fluorescent stain for 3 minutes. After 3 minute incubation

paraformaldehyde was added up to 1% concentration. The imaging experiments

were performed using Operetta High Content Imaging Platform (PerkinElmer) at

60x high numeric aperture objective. The images were collected at 20 ms exposure

time, 100% excitation using an excitation filter of 360 - 400 nm and emission filter

of 410 - 480 nm. 42 fields were collected per well resulting in 500-1000 detected cells

in each well.

2.4.2 Data Acquisition and Processing

Images collected in the study were first analysed using Harmony High Content

Imaging and Analysis software (PerkinElmer). The measurements collected included

a set of size, intensity and texture features (Table 2.2). The texture features were

detected using the Laws convolution filters [Laws, 1980]. The filters when applied

highlighted various texture elements (Fig. 2.4) in the images and highlighting their

location. Subsequently the intensity values of the highlighted features were averaged

and presented as texture parameter values for the analysis.

The data acquisition was constrained to exclude any obvious artefacts as

given in the Table 2.3. After object selection the data was saved and further pro-

cessing was performed using R statistical programming environment [R Core Team,

2013].

The data was further cleaned by removal of the most anomalous cases in

terms of Area and Intensity values. This was accomplished by fitting a multivariate

Gaussian distribution to Area and Intensity variables and calculating the probability

of each measured case under the fitted distribution. The data points with probability
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Table 2.2: The measurements of the cell nucleus selections in the Harmony software.
Laws - the average intensity of the selection after application of a respective Laws
[Laws, 1980] filter indicated by the parameter name.

Parameter Description

Area The area of the selection in µm
Intensity The average intensity of the selection
Length-to-width ratio The ratio of 2 perpendicular

measurements of a selection
Roundness The roundness of the selection
Spot Laws filter
Hole Laws filter
Edge Laws filter
Ridge Laws filter
Valley Laws filter
Saddle Laws filter

Table 2.3: The Image analysis constraints on the selected field inclusion in the
dataset. * - intensity constraints varied between experiments due to varying focus
of the objective and stain binding.

Variable min max

Intensity 100-400* 4000
Area (µm2) 0.5 80
Width-to-length ratio 0.3 -
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Figure 2.4: The shapes of texture features detected by the Laws filters in the Har-
mony softare.

of 0.1 or less were removed from further analysis. This allowed us to reduce the data

to approximately 90% of the most “average” cases.

2.5 Data Analysis

In this section we present statistical methods used for analysis of the data collected

in the experiments conducted. We present the methods in sections corresponding

to various techniques used to collect the data. For more in-depth explanations of

each technique refer to the data analysis part of the Chapter 1. All of the follow-

ing analysis was performed using R statistical computing language unless specified

differently.

2.5.1 FTIR Data Analysis

FT-IR data was imported and processed using the R statistical programming envi-

ronment. As each well was measured three times the data was averaged by well and

assembled to one data set for further analysis. Processed data was subject to PCA

(Section 1.7.1) and LDA-PC (Section 1.7.2). The LDA-PC was performed using R

package “adegenet” [Jombart and Ahmed, 2011].

47



2.5.2 NMR Data Analysis

NMR data was first subject to processing using our custom software ProcNMR (ref.

to Chapter 4). The standard procedure of data processing included exponential line

broadening by 0.3 Hz, Fourier transformation and automatic phasing and referencing

to TSP signal. We also performed quality control by measurement of TSP mid-peak

width in Hz. A measurement of over 1.5 Hz was taken as an indication of badly

calibrated readings. The data was then binned either uniformly, selecting 0.05 ppm

width bins or a custom binning pattern was used. The custom binning pattern was

developed based on the data obtained in the experiments and included the peaks

that did not vary in terms of chemical shift. The binned data was then subject to

multivariate analysis. The raw data was also retained for visual inspection.

Principal Component Analysis was the most regularly employed technique for

the NMR data analysis. Before the analysis the data was mean centred and each

variable normalised by the standard deviation. Pareto scaling was also tried but did

not significantly improve the results compared to scaling by the standard deviation.

The first two principal components were plotted as a scatter plot. In some cases

further principal components were plotted for better visualization of the data.

Hierarchical Cluster Analysis was another multivariate technique employed

in the analysis of NMR data. Since the first 2-3 principal components in PCA did

not always account for the majority of variance HCA was employed in order to

investigate the data further. The technique was performed using Euclidean distance

metric and complete linkage method. The results were plotted as a dendrogram.

Multiple Dataset Integration was used for modeling the data including the

time-related information. The source code for the software was obtained from

“http://github.com/smason/mdipp” and compiled for the Linux operating system.

Simulations were run for 100,000 iterations and the clustering agreement matrices

were plotted for inspection. The data was mean-centred prior to analysis. Analysis

was performed on infected RBC data before and after the subtraction of control

RBC data.

2.5.3 Image analysis

As noted above the image data was cleaned and presented as a standard data matrix

with samples in the rows and variables in the columns. All data manipulation and
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permutation testing programs were custom written for this work in the R statistical

programming environment.

The data modelling was performed using PLS-DA (1.7.3) models using 10-

fold cross validation for hyperparameter fitting and 20 model ensemble for testing

and predictions (Fig. 2.5). The data set X was first randomly split into training

set Xtr and test set Xts keeping the ratio of samples in each group as close to the

starting ratio as possible. In this case there was 5:4 ratio of “fast” drug samples to

“slow”. Both resulting data sets kept the ratio of samples close to 5:4. Next a 10-fold

cross-validation procedure was applied in order to select the number of components

n̂ to be used in the final model. The training data set Xtr was randomly split into

a training subset X ′tr and a validation subset Xv. A PLS-DA model was then fitted

to the data X ′tr 10 times with a different value of n = {1..10}. The resulting models

were tested on the data Xv and Q2 metric calculated for each model. The procedure

was repeated ten times and the resulting Q2 values collected into a 10x10 matrix.

The mean Q2 value was then calculated for each value of n. The n with the highest

mean Q2 was then selected to be used in the final model. A PLS-DA model was

then fitted to the dataset Xtr and tested on the dataset Xts. Q2 was calculated

and stored with the model for further use. The whole procedure was repeated 20

times. It resulted in 20 models that had been fitted to various splits of data. The

predictions were then performed using the whole ensemble of 20 models. The 20

predictions were combined by averaging the predicted probabilities of the sample

being in the “fast” group.

After processing Image data was subjected to permutation testing by fitting

PLS-DA models to the data with random permutations of labels as explained in

Section 1.7.4. A total of 1000 permutations were run on each dataset with 10-fold

cross-validation for selection of number of components for PLS-DA and 20 model

ensemble used for prediction. An empirical distribution of model “goodness-of-

prediction” metric Q2 was constructed and a p-value for Q2 of correctly labelled

data was calculated. The models fitted to the real-labelled data were then used for

classification of the MMV data. Each sample group membership was predicted by

averaging the predictions of the 20 models.

49



//////	  

X 
Xtr 

X’tr 

Xv 

n={1..10} 

Fit(X’tr, ni) 

Test(Xv) 

Q2
n 

Xts 

Fit(Xtr,ñ) 

Test(Xts) 

ñ 

Q2 Model 

10 
20 

Figure 2.5: A schematic illustration of the model training, testing and validation
approach employed for image analysis. Each block of operations contained in a
dotted square is repeated a number of times given in the top right corner of the
square.
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Chapter 3

Method Development

3.1 Introduction

As an integral part of this thesis there has been the need to develop and opti-

mize a series of methods and experimental protocols for which no well-established

methods were present or where no consensus was reached from evaluation of the

literature. The experimental procedure for the FT-IR did not require any special

sample preparation; the sampled RBCs were washed and used intact. Since no FT-

IR experiments involving plasmodium infected RBCs had been published previously

we had to optimize the sample size before the experiments could be performed ef-

fectively. The experiment designed for RBC sample size optimization is described

in Section 3.2. Sample preparation for NMR experiments was more complex. There

had been a wide range of metabolomics studies performed using NMR to study a

range of microorganisms, tissues and biofluids [Beckonert et al., 2007a; Brennan,

2014; Schripsema, 2010; Zhang et al., 2013]. The samples for NMR readings are

usually in solution (solid-state NMR was not applicable to this study and is omitted

from the discussion). In cases of biofluids the analytes are already dissolved and the

sample preparation usually only focused on removal of undesired components in the

sample before analysis [Vuckovic, 2013; Sheedy et al., 2010]. When dealing with tis-

sues, cell membrane disruption and metabolite extraction is a key step in the sample

preparation and a variety of methods have been proposed [Mushtaq et al., 2014].

Metabolite extraction methods are often adapted from studies on similar tissues or

organisms; for example in Tiziani et al. [2009] a metabolite extraction method de-

veloped for fish liver extraction was adapted for leukemia cells and in Bolten et al.

[2007] metabolites of various bacteria were extracted using a protocol developed for

yeast. At the time of this study there were very few NMR metabolomics studies of P.

51



falciparum. Studies reported in the literature included Olszewski and Llinas [2013];

Teng et al. [2009, 2014] however none of the methods used had been developed with

high throughput fingerprinting or profiling in mind. These studies focused primarily

on metabolite identification and quantification. Our aim was to develop a procedure

for collecting p. falciparum infected RBC samples at any stage of the parasite intra-

erythrocytic life-cycle, performing metabolite extraction and preparing the extracts

for NMR spectroscopy, preferably with high numbers of samples, in a robust, vali-

dated and reproducible manner. We have adapted and tested metabolite extraction

methods used in NMR and LC-MS experiments on P. falciparum as well as other

organisms [Olszewski and Llinas, 2013; Brennan, 2014]. Sample drying is another

important step in sample preparation. While sample drying under a nitrogen flow is

a standard procedure in drying of organic solvents some authors prefer freeze-drying

due to the low temperatures deployed during the process [Tiziani et al., 2009]. We

tested both methods of drying of metabolite extracts in order to select the optimal

method for these studies. The optimisation of metabolite extraction and drying is

described in Section 3.4. Acquisition of NMR spectra is dependant on a range of

parameters and settings such as pulse sequence, temperature, sampling rate and

number of scans. We started the study using a standard Bruker NOESY pulse

sequence with presaturation (noesypr1d) for NMR data acquisition on a 600 MHz

spectrometer. However as the experiments increased in complexity we introduced

a CPMG pulse sequence, sample quality control as well as the use of an 800MHz

NMR spectrometer for higher resolution data. The optimisation steps for NMR

data acquisition are discussed in Section 3.5.

3.2 Determination of Optimal RBC Count for FT-IR

Experiments

In this study RBC suspension was used as samples in FT-IR experiments. In order

to keep the data comparable and optimize the signal the sample size had to be kept

uniform. As the samples were not in solution the number of cells per sample was

the most accurate measure of the sample size. Optimal signal intensity in FT-IR

sepectroscopy experiments needs to be in the 0.4-1.4 AU range and the protocols

were adapted to achieve this. In this range the signal is known to be linear and

is most appropriate for statistical analysis. Therefore the optimal signal in an FT-

IR experiment is as close as possible to but below 1.4 AU. A 2-fold serial dilution

(1 − 1/16) of RBC samples was prepared starting with a 1.7 million cell sample

and FT-IR spectra were collected in order to determine the optimal cell count per
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sample needed to obtain the desired signal intensity. The data was inspected (Fig.

3.1) by plotting an overlay of all the spectra. It was clear that the 1/2 dilution

was the closest to the 1.4 AU target while still being under 1.4 AU. This dilution

corresponded to 865,000 cells per sample. In all further FT-IR experiments the

sample size was kept around 850,000 cells.

wavenumber (cm−1)

AU
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Figure 3.1: FT-IR spectra acquired from a 2-fold serial dilution of RBCs starting
with 1.7 million cells as the initial count. The dotted line represents the 1.4 AU
cut-off. For an optimal signal the spectrum under 1.4 AU is desired.

3.3 Signal Maximisation in NMR Experiments of P.

falciparum Infected RBCs.

Before starting the discussion of the sample preparation for this study it is impor-

tant to note that the intraerythrocytic nature of P. falciparum presents a unique

challenge for metabolomic studies. The parasites are cultured in human red blood

cells and the parasitemia in normal conditions does not reach much higher than 10-

12%. If metabolite extraction would be performed on a sample of such a culture the

metabolites from the red blood cells would account for a large portion of the total

metabolome signal apparent in the extract. Consequently, in order to investigate

the P. falciparum metabolism some concessions have to be made for which there are
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a range of alternative approaches. The parasites can be removed from RBCs before

metabolite extraction using for example saponin lysis [Bangham et al., 1962]. This

allows subsequent metabolite extraction without RBC metabolome contamination.

This procedure however is most effective in the later stages (late trophozoite) of the

parasite life-cycle [Fernandez, 2008]. This was not an option in the curent studies

where methods were required that could analyse any part of the parasite 48h life-

cycle. This was essential in order to explore drug effects that could operate at any

stage of cell cycle of the parasite. An alternative method is to obtain high para-

sitemia cultures thereby reducing the relative contribution of the RBC metabolome

to the signal. There are multiple ways to achieve high parasitemia P. falciparum

cultures including procedures using magnetic separation [Kim et al., 2010] of in-

fected RBCs and maintaining low haematocrit cultures [Radfar et al., 2009a]. The

magnetic separation is only possible in the trophozoite stage of the parasite due

to the presence of paramagnetic heme in malaria pigment. It is then possible to

control the number of RBCs added to the culture in order to obtain high para-

sitemia of ring-stage parasites in the next life cycle following separation with the

magnet. We tested the magnetic separation (Section 2.1.7) and reinvasion strategy

however the results were erratic and suboptimal. The parasitemia levels obtained

were very variable between cultures, the rate of multiple cell invasion of merozoites

was higher than desirable and the parasite growth after the procedure was atypical

and slower than standard indicating that the viability of the separated parasites

was compromised in some way. This made it impossible to plan and get timings of

experiments optimised. The procedure was also time consuming and did not pro-

vide clear improvement in signal over lower (10-12%) starting parasitemia samples

(results discussed in more detail further in the text). Therefore it was concluded

that while magnetic separation is a viable strategy for achieving high parasitemia,

the resultant stress to the cultures and the bottlenecks it introduced raised serious

concerns about the impact this could have on the underlying metabolome. An-

other, indirect, way of separating the parasite signal from the RBC signal could be

conducted after data acquisition. The infected RBC samples could be duplicated

with non-infected RBCs under identical experimental conditions. The signal from

the RBCs could then, at least in theory, be subtracted from the parasite plus RBC

signal yielding the data specifically originating from the parasite metabolite pool.

This method increases the size and complexity of each experiment and slows down

throughput considerably. Lastly the experiments could be designed with the aim

of maximising the overall signal. This would potentially provide enough contribu-

tion from the parasite metabolites over the signal from the RBCs. This alternative
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poses less restrictions on the experimental design than any other and the culture

conditions can be held as “natural” as possible.

We decided to rely on a mixture of the two last strategies: subtraction of

the parasite-free RBC signal and maximisation of overall signal and number of

replicates. This strategy was considered the the most likely to generate data that was

reproducible and biologically relevant to parasite life in standard culture conditions.

3.4 Development of Sample Preparation Procedures for

NMR Experiments

As mentioned previously there are a range of metabolite extraction methods for P.

falciparum samples described in the literature [Teng et al., 2014, 2009; Olszewski

and Llinas, 2013]. The most widely used extraction solutions included pure per-

chloric acid, pure methanol as well as mixtures of acetonitrile, methanol and water,

methanol and water, and methanol and chloroform. The perchloric acid extraction

strategy was suggested by Teng et al. [2009] to be superior to other methods due to

the higher number of polyamines and adenine nucleotides detected in the sample ex-

tracts using this method. However, such measure of efficiency of sample extraction

was inadequate for the aims of our studies. We based our choice on extraction repro-

ducibility, robustness and suitability for high throughput experiments. We aimed

for a simple metabolite extraction procedure that would limit the number of steps in

order to reduce the experimental error. A simple extraction procedure also allowed

us to maximise the number of samples processed per unit time, supporting the high

throughput demands of our experimental approach. We rejected the perchloric acid

and methanol:chloroform based extractions without testing. The decision against

using a perchloric acid extraction protocol was made due to likely higher variance

in sample pH after extraction as well as formation of perchlorate salts [Mushtaq

et al., 2014] that can interfere with the subsequent analysis. Due to the nature of

NMR spectroscopy pH variation between samples as well as salt content has a severe

negative impact on data quality making it highly undesirable. This approach would

have demanded manual adjustment of pH and removal of perchlorate salts making

it more time consuming and opening up additional apportunities to introduce vari-

ability into the extraction process. The methanol and chloroform based extraction

method was rejected due to its relative complexity without clear improvement in

results [Teng et al., 2009]. Therefore, the remaining candidate methods included

variations on the theme of acetonitrile, methanol and water mixtures.
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3.4.1 Optimisation of Metabolite Extraction Protocol

First we tested two extraction solutions: equal amounts of methanol and water

and a 2:2:1 mixture of acetonitrile, methanol and water. The latter had been used

previously in NMR experiments [Olszewski and Llinas, 2013] as well as in mass spec-

trometry experiments in our in-house facility. We adapted the extraction method

used by our group for mass spectrometry sample preparation using ice-cold extrac-

tion solutions as follows:

1. Spin the cultures at 500 g for 5 min. and remove the culture medium.

2. Add 10ml of ice-cold saline and mix.

3. Spin at 500 g for 5 min. and remove the supernatant.

4. Repeat steps 2-3.

5. Transfer 100 µl of cell pellet to a 1.5 ml tube containing 500 µl of ice-cold

extraction solution and vortex.

6. Spin the sample at 500 g and transfer supernatant to a sterile 1.5 ml tube for

drying.

7. Dry the samples under the flow of N2 and store at −20◦C.

Two P. falciparum samples were extracted according to this protocol us-

ing either methanol:water and acetonitrile:methnol:water extraction solutions. The

samples were dried under the flow of nitrogen and stored at −20◦C. Before NMR

data acquisition each sample was resuspended in 580 µL of NMR buffer, containing

100 mM phosphate buffer, pH 7.4 in 2H2O and 0.3 mM trimethylsilyl propionate

(TSP), following the method of Beckonert et al. [2007b]. TSP was used as chemical

shift reference (δ = 0 ppm). We acquired 1D 1H NMR spectra using a standard

Bruker NOESY pulse sequence with presaturation (noesypr1d) collecting 64 scans

per sample at 298K.

The resulting spectra (Fig. 3.2) contained a high number of broad peaks

(compare to Figure 3.3) originating from larger molecules - likely proteins - and

masking the majority of narrow peaks of small molecules that were of interest. The

presence of protein in the samples is a frequent problem in metabolomics experiments

and a range of solutions have been tried ranging from ultrafiltration [Daykin et al.,

2002] to use of magnetic micro-particles [Konig et al., 2013], however such methods

are expensive and require special equipment. Simpler solutions using organic acids

and salts and centrifugation, including perchloric acid treatment have also been

shown to be effective however we rejected these approaches for the reasons discussed
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Figure 3.2: 1D 1H NMR spectra of P. falciparum infected RBC samples, extracted
using ice-cold 1:1 methanol and water and 2:2:1 acetonitrile, methanol and water.
The spectra were referenced to tsp signal at 0 ppm. Both spectra contain broad
peaks suggesting high abundance of protein in the samples.

previously. We decided to modify our protocol as suggested in Olszewski and Llinas

[2013] and include freezing and sonication steps in the extraction protocol. It was

argued that these steps help disrupt the cell membranes as well as facilitate protein

precipitation. The metabolite extraction protocol was therefore modified as follows

(steps 1-5 were kept the same):

1. Spin the cultures at 500 g for 5 min. and remove the culture medium.

2. Add 10ml of ice-cold saline and mix.

3. Spin at 500 g for 5 min. and remove the supernatant.

4. Repeat steps 2-3.

5. Transfer 100 µl of cell pellet to a 1.5 ml tube containing 500 µl of ice-cold

extraction solution and vortex.

6. Freeze the samples on dry ice for 15 min. vortexing every 5 min.

7. Spin the sample at 13 000 g at 4◦C and transfer supernatant to a sterile tube

for drying.

8. Add 500 µl ice-cold extraction solution to the remaining pellet.

9. Sonicate for 15 min.

57



10. Spin the sample at 13 000 g at 4◦C and transfer supernatant to the tube

containing the first half of the extract.

11. Dry the samples under the flow of N2 and store at −20◦c.

The experiment was repeated following the modified protocol. The metabo-

lite extraction this time was performed on dry ice at −78.2◦C and included an

additional step of sonication to improve cell membrane disruption [Olszewski and

Llinas, 2013]. As can be seen in Figure 3.3 the protein signal in the resulting spectra

was reduced and sharp small molecule peaks were much more prominent. Appar-

ent differences between the two extraction solvents however were minimal. Lacking

replicate samples, a definitive decision as to which method to select could not made.

Samples were also prepared using the same metabolite extraction protocol

but omitting the sonication step in order to assess the improvement of the extraction

by the additional sonication based cell disruption (Fig. 3.4). While the samples

prepared using the protocol including sonication seemed to contain fewer braod

peaks, the overall intensity of many peaks was smaller. The “one step” extraction

method seemed to be at least as good, containing some higher intentsity peaks,

especially in the aliphatic region. Due to this observation as well as the “one step”

extraction being simpler and faster we chose to omit the sonication step in the

extraction procedure.

3.4.2 Comparison of Metabolite Extraction Solutions

In order to further compare the extraction procedures and decide which extraction

solution performed better the experiment was repeated with an increased number

of replicates. As a measure of quality the variance each method added to a group of

samples was compared. The procedure that introduced the least random variation

into the data was preferable. The variance in the data was compared by inspection

of PCA scores plots.

Two sets of conditions were compared. Infected and uninfected RBCs were

extracted using methanol:water and acetonitrile:methanol:water and dried using ei-

ther freeze-drying or enhanced N2 evaporation. NMR spectra were collected using

NOESY pulse sequence with presaturation, 64 scans per sample at 298K. The ob-

tained spectra were uniformly binned into 0.05 ppm bins and PCA was performed.

A scatterplot of the first two principal components was produced (Fig. 3.5).

The assessment was carried out as follows. Given two groups of data points

that were separable in a PCA scatterplot (in this case infected and uninfected RBCs)

and two methods of sample preparation (two different extraction solutions) the
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difference in the spread of data points within each preparation group would suggest

the randomness introduced by each method to be different, while similar spread

would mean that neither method made a higher contribution to sample variation.

The between-group spread of points (here separation of infected and uninfected

RBCs) could be interpreted as information content. If the two groups of samples had

significant biological differences the method with higher difference between groups in

the plot would be superior as it would provide more information about the biological

differences between the samples.

The plot (Fig. 3.5) clearly showed differences between the groups of points

corresponding to the two extraction techniques suggesting different compositions of

each extract. Furthermore, the samples extracted using acetonitrile, methanol and

water showed less spread within groups of infected and uninfected RBC samples

forming tight clusters of points while between group separation was clear. The

data corresponding to samples extracted using methanol and water formed much

more sparse clusters that were hardly separable between groups. These observations

suggested that acetonitrile, methanol and water extraction was more robust and was

preferable over the methanol and water extraction.

3.4.3 Comparison of Sample Drying Methods

An important step in sample preparation for NMR is sample drying. Up to this

point we relied on N2 flow drying. However freeze-drying or liophylisation has been

shown to be a valuable alternative [Mushtaq et al., 2014]. We therefore compared

the two sample drying methods in a similar manner to the comparison of extraction

solutions (see previous section). We collected NMR spectra of samples of infected

and uninfected RBCs dried with either method. The spectra were collected using

NOESY pulse sequence with presaturation, 64 scans per sample at 298K, uniformly

binned into 0.05 ppm bins, processed and PCA was performed on the resulting data.

We plotted the first two principal components and inspected the clustering

of the data (Fig. 3.6). Since the difference between extraction methods was signifi-

cant we inspected each group of points (RBC/i-RBC and both extraction methods)

separately. Both drying methods performed similarly however in the group of sam-

ples extracted using methanol and water the spread of points corresponding to the

samples dried under the flow of N2 was larger. To make a decision we took into

account the fact that a freeze-dryer is a closed system and no contamination is

possible during the procedure, a situation that does not apply to drying under the

flow of N2. Freeze drying also has the advantage of low temperature preventing

any unwanted enzymatic reactions taking place during sample preparation due to
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protein enzyme contamination. The resultant data indicated that freeze drying was

best drying technique for the further experiments.

3.4.4 Optimization of Sample Size

The effect of the sample volume on the quality of NMR results was investigated.

Up to this point in each experiment we had been using 100 µL of cell pellet. We

aimed to investigate how the information we could derive from the data changes in

samples prepared from varying volumes of cell pellet. This was motivated by the

need to optimise signal to noise ratio against a background concern over sensitivity

and low biomass. We tested the chosen method of sample extraction using ace-

tonitrile, methanol and water and freeze-drying. Samples of three volumes of cells,

namely 50 µL, 100 µL and 200 µL from either parasite cultures at 10% parasitemia

or concentrated 90% parasitemia samples obtained from magnetic separation were

evaluated.

The ability to capture the differences between the various stages of life cycle

of P. falciparum was chosen as the information measure. At each stage the para-

site metabolic activity is different and we chose to investigate how sample volume

affected our ability to discriminate between samples prepared from different para-

site stages. The results of the experiment are shown in Figure 3.7. The samples

were separated into groups. While the presence of replicates would have definitely

improved the interpretation, it was clear that the samples in each group were dis-

placed in different directions from the zero point indicating difference in the data.

It is interesting to note that 50 µL samples were clearly separated from the higher

volume samples (in relation to 0 point) and the 200µL samples were the furthest

from 0. The high parasitemia samples were in between the ring and trophozoite

stage parasites which was unexpected as the parasites selected by magnetic separa-

tion were predominantly trophozoite stage. We did not observe the expected large

discrimination between the high parasitemia samples and the uninfected RBCs or

low parasitemia samples. Since high parasitemia samples contain more parasite de-

rived analyte content there was an expectation that this would be reflected in the

information content of these samples compared to uninfected controls and samples

from low parasitemia cultures.

The raw data was also inspected (Fig. 3.8). Overall the spectra collected

from the 100 µL and 200 µL samples were very similar in peak area while there was

a distinct difference between these samples and the 50 µL samples, especially in ring

stage parasite samples. While this suggested that 100 µL pellet was not significantly

different from 200 µL the PCA results indicated that the global pattern of the peaks
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provided additional information for sample separation. These results, coupled with

the bottleneck introduced by the need for magnetic separation, led to the conclusion

that the most pragmatic approach to sample processing was to use a 200 µL cell

pellet obtained from 10% parasitemia culture for all further investigations.
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Figure 3.3: A comparison of two 1D 1H NMR spectra of P. falciparum infected RBC
samples, extracted using 1:1 methanol and water and 2:2:1 acetonitrile, methanol
and water following the modified metabolite extraction protocol at dry-ice temper-
ature −70◦C. The aromatic region of the spectrum is shown in (a) while aliphatic
region in (b).
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Figure 3.4: A comparison of two 1D 1H NMR spectra of P. falciparum infected RBC
samples, extracted using 1:1 methanol and water and 2:2:1 acetonitrile, methanol
and water following the modified metabolite extraction protocol on dry-ice at
−78.2◦C. Two samples were extracted including a sonication step (+s). Two sep-
arate regions of the spectra overlay are shown. The spectra are similar in the
aromatic region (a). The aliphatic region (b) has peaks of different height with
sonicated samples (+s) showing lower signal intensity.
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Figure 3.5: PCA scores plot of the NMR experiment carried out using two different
metabolite extraction approaches and two different sample drying methods. The
points are labelled by cells extracted: RBC - uninfected red blood cells, Inf - P.
falciparum infected red blood cells at 10% parasitemia. The number in the brack-
ets on the axes specifies the percentage of variance accounted for by the principal
component.
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Figure 3.6: A PCA scores plot of the NMR experiment carried out using two different
metabolite extraction approaches and two different sample drying methods. The
point are labelled by cells extracted: RBC - uninfected red blood cells, Inf - P.
falciparum infected red blood cells. The number in the brackets on the axes specifies
the percentage of variance accounted for by the principal component.
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Figure 3.7: A PCA scores plot of the NMR spectra acquired from an experiment
carried out on various stages of P. falciparum parasites life cycle and at different vol-
umes of culture used per sample. High - 90% parasitemia samples, RBC - uninfected
red blood cells, Ring - ring stage parasites, Troph - trophozoite stage parasites.
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Figure 3.8: A comparison of three 1D 1H NMR spectra acquired from P. falciparum
infected RBC metabolite extracts, using varying volumes of cell pellet. The ring
stage parasite extracts show larger differences between the 50µL sample and the
100 − 200µL samples. The differences between the 100µL and 200µL samples are
minimal. Ring stage parasite extract data given in (a) and trophozoite in (b).
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3.5 Determination of Optimal NMR Parameter Set

At the beginning of the study we adopted the NMR acquisition parameter set used

in work performed in [?]. The 1H NMR spectra were acquired using a nuclear

Overhauser enhancement spectroscopy (NOESY) pulse sequence with pre-saturation

(noesypr1d) with t1 = 4 µs and tm =100 ms. We collected spectra at 298K, col-

lecting 128 free induction decays (FIDs) with 4 “dummy scans”. The ppm range

of spectra collected was -5 - 15 ppm, with 32,768 data points collected. The data

was processed using 0.3 Hz line broadening by multiplication with an exponential

function and the number of frequency domain points was doubled by a zero fill at

the end of the FID before Fourier transform.

The spectra initially contained a significant protein contamination signal.

The quality of the spectra was improved by alterations in sample preparation pro-

cedure (ref. to Section 3.4). While this manoeuvre resulted in higher spectral

quality, further improvements and refinements were made once the experiments had

been optimised and the experimental complexity had increased.

3.5.1 Introduction of CPMG Pulse Sequence

In order to further improve the quality of the data we tested a Carr-Purcell-Meiboom-

Gill (CPMG) pulse sequence for NMR data acquisition. This pulse sequence is con-

vinient when acquisition of small molecule data is desired [Meiboom and Gill, 1958]

while ignoring the signal from large molecules such as proteins. As we increased the

volume of cell pellet per sample to 1 mL we noticed an increase in protein signal in

the resulting spectra. CPMG was a potential solution to the problem. We performed

an experiment (the results are discussed in Section 6.3) involving a time course of P.

falciparum infected RBCs exposed to antimalarial compounds and collected spectra

using the standard NOESY with presaturation and CPMG pulse sequences. The

spectra were compared visually in order to assess the baseline and the presence of

broad peaks corresponding to residual protein signal (Fig. 3.9).

The spectra acquired using CPMG pulse sequence had a flatter baseline than

spectra acquired using NOESY and did not have any noticeable protein signal. The

NOESY results however were similar to our earlier collected spectra when testing

the 1 mL cell pellet extracts. While the quality of the spectra was acceptable

the baseline shifts and the broad peaks underneath the small molecule peaks were

skewing the data and making the analysis inaccurate. Due to higher quality data

we changed the standard NMR data acquisition procedure to include the CPMG

pulse sequence.

68



3.5.2 Quality Control and Resolution Increase

Since we were developing a high throughput screening method a quality control

procedure for NMR spectra was needed. Checking data would be time consuming

and was undesired. Automated NMR spectra acquisition had calibration steps (such

as shimming) that did not always finish successfully. We needed an automated and

reliable way to identify spectra that were not collected optimally. A feature of bad

calibration that we decided to exploit for quality control was peak width increase.

The spectra that were collected after unsuccessful calibration had broader peaks.

We implemented an automatic step in the data processing that measured the width

at the mid-height of the TSP peak in Hz. A measure greater than 1.5 Hz was

considered to indicate a badly calibrated data acquisition event and indicate the

spectra to be of low quality. These data were discarded.

The experimental procedures and data acquisition parameters in this study

were optimized using a Bruker Avance II 600 MHz spectrometer. However, in order

to test the possible improvement of signal with increased resolution we also col-

lected spectra using a Bruker Avance III 800 MHz spectrometer. This experiment

was aimed at assessing the possibility of using the more powerful spectrometer for

our routine data collection. We performed a drug exposure experiment (for more

detailed discussion of the results refer to section 6.3) and collected the data on both

spectrometers using CPMG pulse sequence with 128 scans per sample at 298K. We

carried out the routine FID processing and inspected the raw data for comparison

(Fig. 3.10). As expected, the spectra collected using the 800 MHz spectrometer

were of significantly higher resolution. This resulted in new peaks being resolved

that were unobserved in the spectra acquired using the less powerful machine. This

prompted us to rely on the 800 MHz spectrometer for all further data collection.

While only the 600 MHz spectrometer was equipped with automatic sample changer

the difference in signal quality was a deciding factor. The data for the time course

experiments ( see Sections 6.3 - 6.4) were collected using the 800 MHz NMR spec-

trometer.
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Figure 3.9: A comparison of 1D 1H NMR spectra acquired from P. falciparum
infected RBC metabolite extracts, using two different pulse sequences: nuclear
Overhauser enhancement spectroscopy (NOESY) and Carr-Purcell-Meiboom-Gill
(CPMG). The spectra acquired using CPMG pulse sequence have a flatter baseline
and less broad peaks.
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Figure 3.10: A comparison of 1D 1H NMR spectra acquired from P. falciparum
infected RBC metabolite extracts, using two different spectrometers: 600 MHz and
800 MHz. The resolution in the spectra acquired using the 800 MHz spectrometer
is significantly higher allowing for more accurate binning.
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Chapter 4

ProcNMR - Custom NMR Data

Processing Software

4.1 Introduction

The ever-accelerating progress in computational techniques and the rise of the -

omics family of sciences (including genomics, proteomics, transcriptomics and oth-

ers) have brought bioinformatics into the forefront of biological sciences. As the

experiments have grown in size and complexity the requirements for data process-

ing and analysis tools have increased drastically. However, not all the branches of

-omics have developed at a similar pace. While genomics was the fastest growing

with the next generation sequencing technologies and the human genome project

driving the progress and proteomics not far behind, metabolomics still seems to be

rather immature as a science in terms of available tools and techniques. In particu-

lar NMR spectroscopy based metabolomics tools seem to be quite scarce and those

available are quite limited.

In this chapter we introduce a custom piece of software developed for this

PhD project - ProcNMR. It was built for NMR data import and processing in order

to automate the procedure and reduce the required human input when handling data

prior to analysis. The motivation for creating the software and available alternatives

are discussed in Section 4.2. It is followed with the description of the implemented

functionality and future plans (Section 4.3). In Section 4.4 we review some details of

implementation and general design decisions that were taken. The software is being

developed further and in Section 4.5 the potential development ideas are outlined.
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4.2 Motivation and Alternatives

NMR data is collected in a shape of a free induction decay (FID) and stored on the

computer controlling the spectrometer. It is then processed in order to convert it

to a frequency domain and prepare for further analysis. The data is then inspected

and subject to structural or statistical analysis algorithms. All these steps require

specialised software solutions.

There are a wide array of NMR-related software currently available, ranging

from large commercial products to free academic projects that implement some

functionality required for particular applications. The commercial vendors that

supply NMR spectrometers offer their proprietary software (e.g. Bruker Topspin and

Amix, Varian Vnmr). This software is provided together with the spectrometers and

is often seen as industry standard. There are companies that specialise in software

such as Chenomx. inc and SpinWorks. While high quality, the commercial software

is usually expensive and comes with predetermined features that in many cases can

not be tailored to individual needs. New features only come in new versions of

the software that has development cycles that can last years. On the other end of

the spectrum are small software projects usually started in academic institutions in

order to meet the needs of specific projects that are not be fulfilled by commercial

solutions. Academic projects often tackle novel problems and required functionality

that is often not present in well-established and standardised commercial software.

Such projects however are usually developed in programming languages popular in

academic circles such as Matlab (MetaboID [MacKinnon et al., 2013], Focus [Alonso

et al., 2014]), or R (Batman [Hao et al., 2014] and BQuant [Zheng et al., 2011]) and

are often abandoned past the stage of publishing the first working version. There

is also an inbetween category of projects that started as academic open source

initiatives and have grown into large scale projects e.g. CCPN [Chignola et al.,

2011], NMRPipe [Delaglio et al., 1995].

ProcNMR at the moment of writing belongs to the second category. The

software has been written to meet the specific needs of this project in the process

trying to circumvent the shortcomings of software available to the project. First we

chose Python as a programming language for this work. It is relatively fast (for a

scripted language) and supports but does not rely on an object oriented paradigm.

It is free and has a huge community of open source project contributors which often

helps projects survive long term after being released as open source software.

ProcNMR was developed due to the lack of a software solution that would

fulfil the requirements of the project. We required a tool for 1D NMR data import
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and automated processing for analysis. It also had to be customizable, preferably

free, completely automated and easily extendable. A high throughput pipeline in-

tended for drug screening needed a robust method for processing the data acquired.

One of the aims was to reduce the human input when it came to processing indi-

vidual spectra due to possible human bias and time demands. This prompted the

design and implementation of a command line tool that would allow high through-

put data import and processing based on a set of predetermined parameters without

any additional input from the user during the process. Such a solution would allow

robust data treatment and save time once the method had been established and

validated.

4.3 Functionality

ProcNMR is written as a command line tool and so far has been tested on Linux

operating systems. While it is designed to be run in automatic mode it has a manual

mode that allows the user to set up the parameters manually before the first run.

The automatic mode requires the input, output and configuration files to be specified

as command line parameters and runs without any interference from the user. The

software prints feedback messages in the terminal describing the pipeline contents

as well as the progress of the run (Fig. 4.1). The output can be conveniently piped

into a text file and saved as a report of the run.

The manual mode invokes the configuration tool that facilitates the genera-

tion of the configuration files. It is a text based question and answer system that

allows the choice of pipeline steps to be performed. The user is informed about the

processing nodes available, chooses the processing steps required in turn and speci-

fies the parameters required for each step (Fig. 4.2). It also includes a mechanism

for assessing the pipeline in order to check for possible mistakes in the processing

order e.g. any spectra processing steps would not be allowed before the data has

been Fourier-transformed. Once the configuration parameters are set they can be

saved in a file and reused later.

At the time of writing ProcNMR is capable of reading Bruker proprietary

data files and import the raw FID data as well as metadata including the acquisition

parameters. Once the data is imported it initiates a pipeline of processing steps

that is assembled based on the processing parameters supplied either through the

configuration file (automatic mode) or a text user interface (manual mode).

The functionality of the pipeline is presented in Table 4.1. Once the configu-

ration is set the pipeline is assembled from functional modules the data is processed.
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Data import Reading of Bruker proprietary data files
Apodisation Exponential, sine-bell or Gaussian transformations of FID
Zero-fill Variable length zero fill
Fourier transform Transforms the data from time domain to frequency domain
Phasing Automatic or manual phasing of spectra
Referencing Referencing the spectra to a standard peak e.g. TSP
Quality control Control for spectra acquired with bad calibration
Slicing Slicing of spectra for removal of unnecesary parts
Normalization Normalization of spectra by total area, reference peak

height or probabilistic quotient normalization
Binning and Integration Uniform or custom binning and integration
Data export saving the processed data to CSV format

Table 4.1: The functions performed by ProcNMR pipeline.

The spectra can be plotted and saved as pdf or png files for inspection. Once all

the steps have been performed the data is saved as a comma separated value (CSV)

file. Besides the configuration tool the software does not require any input from the

user allowing performance of identical data processing procedures on any number of

spectra or experiments.
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Figure 4.1: Example output of a ProcNMR run.
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Figure 4.2: Example output of a ProcNMR configuration tool run.
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4.4 Implementation Details

As previously mentioned ProcNMR is implemented in Python programming lan-

guage and currently supports versions 2.6+. The implementation follows an object

oriented design and is modular to facilitate extendibility. A series of packages are

used in implementation including SciPy [Jones et al., 2001–], NumPy [van der Walt

et al., 2011], Matplotlib [Hunter, 2007], Pandas [McKinney, 2010] and Nmrglue [Hel-

mus and Jaroniec, 2013]. The last is a well designed library for NMR data import

and manipulations that ProcNMR is heavily based on. NumPy arrays are utilized

for storing spectra allow fast and efficient numerical calculations. Scipy is used for

optimization procedures and Matplotlib for its high quality plotting capabilities. A

schematic representation of the workflow is shown in Figure 4.3.

The Spectrum object holds the data as well as meta-data extracted from

the Bruker data file. A collection of spectra are stored in an Experiment object

and are treated as a single entity. The experiment is assumed to be composed of a

collection of spectra that are to be processed in a uniform manner. However, this

only applies to processing steps and parameters. Since each spectrum is stored in a

separate object there are no limitations on uniformity of the spectral parameters in

the experiment e.g. each spectrum could be acquired using varying pulse sequences

or contain different number of points. Each spectrum carries its own meta-data and

is processed accordingly.

The Pipeline is initiated from user supplied parameters. It consists of a

series of processing nodes that each perform a processing step on the spectra. The

ProcessingNode class is designed as an abstract class of objects that is used to

implement various processing steps in a uniform manner. Each processing node is

then built on this class and contains a process() method that the pipeline calls in

order to apply the funtionality of the node to a spectrum. This design allows the

processing nodes to be modified without any changes to the rest of the pipeline.

Each node is a separate module of the pipeline and only interacts with the pipeline

through the generic process() method. It allows easy addition of new nodes when

a new piece of functionality is required. Many nodes have a series of methods they

can apply. When the pipeline is initiated each node is dynamically assigned the

function it will perform as well as processing parameters set by the user. Since all

the nodes are composable in the order they are assembled, the pipeline does not

have to know anything about the operations performed by each node. There are

eight nodes currently included in ProcNMR.

FID processing node performs apodization using one of the following methods:
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Figure 4.3: A schematic of the workflow in ProcNMR. The raw data is imported and
stored as an Experiment object. The pipeline is assembled from processing nodes
according to the user-supplied parameter file. The data is then processed in each
node and outputted as a CSV file.

Exponential: multiplies the spectrum by the exponential function. The apodiza-

tion window: e(xi) = exp(−π × i × lb), where lb stands for line broadening

parameter in Hz.

Sine-bell: multiplies the spectrum by the exponential function. The apodization

window: sb(xi) = sin(π×off+π×(end−off)×in−1 )p, where off is the offset from the

start of the spectrum, end - end of sine-bell, size is the size of the spectrum

and p is the power to raise sine-bell to (1 by default).

Gaussian: multiplies the spectrum by the Gaussian function. The apodization

window: f(xi) = exp(−a × i − b × i2), where a is an exponential term and b

is the Gaussian term of apodization.

It then performs the zero fill at the end of the spectrum and Fourier transforms the

data. The effect of apodisation (exponential) are demonstrated in Figure 4.4.

Spectrum phasing node performs manual (based on angles given) or automatic

spectrum phase correction. The auto-phasing is performed by entropy minimisation,
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implementing the method in Chen et al. [2002].

Clean-up node performs general house-keeping operations in preparation for fur-

ther analysis. Currently it removes the imaginary part of the signal and reverses

the spectrum.

Reference node finds the reference peak (TSP or TMS) and generates the Hz

and ppm scales for the spectrum starting from this point (δ = 0 ppm).

Quality control node performs quality control of the data (QC). Currently QC

is performed by measuring the width of the reference peak in Hz at its mid-height

point. In case this measurement is greater than 1.5 Hz the spectrum is flagged for

bad quality.

Trim node performs the slicing of the spectra. It removes parts of the spectra

that are not required for the further analysis. Currently mostly used to remove the

noninformative ends of the spectra. However the node is being extended to include

possibility of slicing the spectra into subsets e.g. when removing water signal or

residual solvent peaks.

Normalisation node performs the spectra normalisation by the total area under

the curve, the height of the reference peak, probabilistic quotient normalisation

method [Dieterle et al., 2006a] or any chosen point in the spectrum. The last option

is used in cases when an external standard of known concentration is present in the

sample.

Binning node divides the spectrum into intervals (bins) and calculates the area

under the curve. Currently uniform binning by specified ppm window or custom

binning according to a custom bin table is possible. Custom binning uses a user

supplied file where bins are given as ppm intervals. The integration is performed

using the trapezoidal rule.

The Experiment object also has plotting functionality using Matplotlib li-

brary. Currently the spectra can be plotted in full or as a subset and is mainly

used for checking the results of the processing. As the pipeline runs, the nodes give

feedback about the results of processing that are streamed to the command line.

This allows either real time following of the pipeline or redirecting the output to a

log file for later review.
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4.5 Further Develoment

At the time of writing the software is in fully working state and has been used for

processing of most of the data described in the following chapters. However there

still remain many improvements that can be made before the software is robust and

ready for release.

Firstly the automatic phasing of spectra can take up to a few minutes per

spectrum on slower machines. The routine can be optimized by adjusting the se-

quence of computations. It could be further improved by adding the possibility

of processing spectra in parallel. This could potentially generate a significant im-

provement in processing time, especially since most desktop computers now have

multi-core processors.

Currently the pipeline outputs the data in a CSV file format that is con-

venient for further analysis however the acquisition parameters and the processing

parameters are not output at all. This information could be useful for further anal-

ysis as well as reporting the findings and depositing data in online repositories.

For this purpose a different output format would be needed. While there is no

established data standard for NMR data, nmrML is the most promising standard

currently in development www.nmrml.org). Once released this standard could be-

come the default data type to be used by ProcNMR as it would not only help to

preserve the experimental meta-data but also facilitate data sharing. The user in-

terface for making processing parameter files is not very convenient and could be

improved using a graphical dialogue window or web interface. Lastly there are pro-

cessing steps that should be added such as spectral alignment and variable binning.

At this time algorithms are being tested for alignment however a suitable solution

had not been found yet. The potential misalignment is currently partly mitigated

by custom binning of spectra.

ProcNMR is being developed further and hopefully can be released and used

as a standalone tool or integrated into a larger pipeline.
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Chapter 5

Metabolic Fingerprinting of P.

falciparum Using FT-IR

Spectroscopy

5.1 Introduction

FT-IR has been used in numerous metabolomic studies to date [Ellis and Goodacre,

2006]. It has proven to be a powerful technique for identification and research of

a variety of species of bacteria, fungi and yeast [Naumann, 2000; Beekes et al.,

2007]. However none of the studies have been carried out on Plasmodium species.

P. falciparum is a complex target to study due to its intracellular life-cycle. Here we

describe an FT-IR-based P. falciparum metabolomic fingerprinting study performed

in order to assess the technique for use in antimalarial drug screening. As the drug

modes of action potentially induce rather subtle changes in parasite metabolism the

discriminatory power of the technique was first tested when applied to P. falciparum

infected and uninfected RBCs followed by test of its discriminatory power of various

stages of the parasite life-cycle. FT-IR was chosen due to its relatively rapid data

acquisition and easy sample preparation (see Chapter 2). An experiment was also

performed in order to test the DMSO effect on the RBC metabolic fingerprint as

there was some evidence of such an effect from an earlier pilot study (not published).

5.2 Study of the Effects of DMSO on RBCs

In a previous study a difference between RBC samples incubated in standard RPMI

medium and RPMI medium with 1% DMSO was observed. As some drugs are
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dissolved in DMSO it was essential to account for potential solvent effects that

might undermine future experiments. Therefore the initial experiment was designed

with the aim of testing whether DMSO had any observable effects on the RBC

metabolic fingerprint when cultured in standard culture media. The experiment

was performed using P. falciparum infected and uninfected RBCs with and without

DMSO treatment over 8 hours with sampling every 2 hours. Three replicates of

each sample were collected resulting in a total of 42 collected spectra. PCA was

performed in order to visualize the structure in the data and assess the similarity of

samples in normal medium and DMSO-containing medium. The first two principal

components of the PCA were plotted as a scatter plot (Fig. 5.1). The DMSO and

control samples did not show any separation suggesting no difference between the

sample groups. There was no clear time-related pattern either indicating that the

cells did not exhibit any observable change over time. The analysis was repeated

on infected and uninfected RBC data separately with the same results (data not

shown).
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Figure 5.1: PCA scatterplot of an FTIR experiment testing DMSO effects on the
RBCs. Control RBCs were incubated in standard RPMI-based medium, while the
DMSO treated samples were incubated in the same medium with added 1% DMSO.
The samples were taken for 8 hours every 2 hours. The numbers in the plot corre-
spond to sampling time.

The data was further analysed using DA-PC. Since there were only two

groups to be discriminated only one discriminant function was used and each group
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of data-points was plotted as densities on one axis (Fig. 5.2). The groups of points

overlapped significantly supporting the results of the PCA. The data suggested that

the presence of 1% DMSO in culture medium did not have a significant impact on

P. falciparum infected or uninfected RBC metabolic fingerprint or the impact was

not observed in the FT-IR data due to sensitivity issues.
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Figure 5.2: DA-PC density plot on the first discriminant function. The densities of
each data set are significantly overlapping showing the similarity of the treated and
untreated samples.

5.3 Discrimination Between P. falciparum Infected and

Uninfected RBCs

As the first assessment of the suitability of FT-IR fingerprinting for P. falciparum

studies the discriminatory power of the technique was tested on infected and unin-

fected RBCs. The ultimate aim was to show that FT-IR could be used in screening

of antimalarial compounds based on their mode of action. Central to this aim is the

ability of the analytical approach to be able to discriminate signal from the parasite

from the background signal from the RBC. Samples of infected (parasitemia 90%,

trophozoites) and uninfected RBCs we prepared and FT-IR spectra collected. PCA

of the data was performed and the first two principal components plotted as a scat-
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terplot (Fig. 5.3). The plot showed separation between data points collected from

infected and uninfected RBCs. While there was a significant amount of variation in

each group the between group separation suggested that the FT-IR data contained

a significant amount of signal contributed by the parasites.
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Figure 5.3: PCA scatterplot of the FTIR experiment comparing infected and unin-
fected RBCs. The plot shows that there is significant variation within each group
however the between group variation still allows discrimination between the two
conditions. It shows that FTIR data collected from P. falciparum infected and un-
infected RBCs contains information contributed by the parasite that can be recog-
nised.

The data was further analysed using DA-PC with the aim of separation of the

two groups of spectra on one discriminant function. The results (Fig. 5.4) showed a

clear separation between data points. This confirmed our findings in PCA. Infected

and uninfected RBC samples produced significantly different FT-IR spectra. The

loadings plot of the discriminant function in order to find the parts of the spectra

that contributed the most to the discrimination of the groups is shown in Fig. 5.5.

Most of the significant bands corresponded to carbon, nitrogen and hydrogen bond

stretching. While the absorbance bands can usually be approximately assigned,

in complex biological samples it is not practical and the data is better used as

a metabolic “fingerprint” of the sample. Since the data showed clear separation
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between P. falciparum infected and uninfected RBCs the discriminatory power of

FT-IR was investigated further.
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Figure 5.4: DA-PC density plot of the comparison between infected and uninfected
RBC data from an FTIR experiment. The two densities are separated showing the
clear difference between groups. This further confirms the PCA results in Fig. 5.3.
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Figure 5.5: The loadings plot of the DA-PC shown in Fig. 5.4. The dotted lines show
the region of spectra that has been removed due to lack of any biologically relevant
information. Each peak corresponds to a region contributing to the separation of
groups. The spectral bands can be approximately assigned to : a-b) =C-H or
C=H stretching in aromatic compounds, secondary amine N-H stretching, c) C=C
stretching or aromatic isonitrile -N≡C stretching, d-e) combination N−H or O−H
stretching.

5.4 Discrimination Between Infected RBCs At Various

Stages of the P. falciparum Life-cycle

Using FT-IR spectra we were able to show clear differences between P. falciparum

infected and uninfected RBCs. In order to further investigate the information con-

tent of the data acquired in FT-IR fingerprints an experiment was performed to

compare parasites at different stages of the intraerythrocytic life cycle. The samples

were collected at the early (0-6 h post invasion) and late (6-12 h post invasion)

ring, as well as trophozoite (24-38 h post invasion) and schizont (38 h post invasion)

stages. The trophozoite stage parasites were collected using magnetic separation

(Section 2.1.7) and samples were taken from the enriched culture. The rest of the
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parasites were further incubated in standard medium. After incubation for 6 hours

the parasites reached the schizont stage and were sampled again. The early and late

ring stage samples were collected after further incubation of the culture for 6 and 12

hours respectively. The data was processed as usual and first analysed using PCA.

The first two principal components of the PCA were plotted (Fig. 5.6) in order to

assess the grouping structure in the data. It was clear from the plot that the four

groups did not show any meaningful separation. None of the groups could be dis-

criminated from the rest based on approximately 96.5% of the variance accounted

for in the first two principal components.
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Figure 5.6: PCA scores plot of the FTIR experiment comparing the data collected
from P. falciparum infected RBCs at different stages of the parasite life-cycle. There
is no clear separation between groups of points showing similarity between the groups
in the FT-IR data.

In order to investigate the data further DA-PC was performed using 3 dis-

criminant functions. The DA-PC transformed data was plotted on the first two

discriminant functions as a scatter plot. The trophozoite and schizont samples

showed slight difference to ring samples in the DA-PC however the differences were

minor and the majority of samples could not be discriminated. The data did not

contain enough information of parasite composition and metabolism to discriminate
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between the life-cycle stages.

Early rings
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Figure 5.7: DA-PC plot of the first two discriminant functions of the FTIR exper-
iment comparing RBCs infected with various stages of P. falciparum. The ellipses
represent the 95% confidence region for each group. There is no clear separation
between the groups of points indicating no differences between the different stages
of the parasite in the FTIR data.

5.5 Discussion

FT-IR spectroscopy is a high throughput analytic tool that requires little sample

preparation and allows data acquisition with minimal limitations to subject matter

or state. It has also been shown to be effective at identification of bacterial species

[Goodacre et al., 1998, 2004; Lin et al., 2004b,a, 2005; Al-Qadiri et al., 2006b,a; Al-

Holy et al., 2006] often to subtypes. These results led to our trial application of FT-

IR to antimalarial drug screening. However the problem at hand was of considerably

higher complexity. The previous work done on bacteria was always performed on

pure cultures. Purification of P. falciparum cultures while possible is not viable in

high throughput studies especially when the whole life-cycle is to be studied. The

background of the RBCs presented an obstacle in signal detection in a form of a

substantial background signal in the collected spectra. Studies of mixed cultures

by FT-IR were deemed non-viable by some authors [Naumann, 2000] without an
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additional source of data (e.g. microscopy). While challenging the study attempted

was motivated by the relative simplicity and potential high throughput capabilities

of FT-IR spectroscopy.

The main aim of the study was to discriminate parasite metabolomes based

on the modes of action of compounds they had been exposed to. It required a tool

that could detect differences in the metabolic states of the parasites beyond large

scale differences, e.g. in amount of membrane, used in previous drug sensitivity

studies [Sockalingum et al., 1997; Bouhedja et al., 1997] and therefore the sensitiv-

ity of FT-IR spectroscopy had to be evaluated. The sensitivity of the technique

was assessed in a step-wise manner by measurements of samples with differences of

decreasing scale at every step requiring higher sensitivity to be detected.

We attempted to maximise the signal contributed by the P. falciparum par-

asites by magnetic separation of infected cells in order to enrich the samples. The

P. falciparum infected RBCs were expected to be easily differentiable from the un-

infected population due to the addition of the molecular structures present in the

parasite that are not found in RBCs. The data collected from the two RBC pop-

ulations showed a clear difference and the study was moved to the next stage of

sensitivity estimation.

During its life-cycle the P. falciparum parasites go through considerable mor-

phological changes. The differences in the parasites over the life-cycle were expected

to be observable in FT-IR spectra as metabolic demands change. The data did not

show any clear discrimination between the samples collected at different stages of

the parasite life-cycle. This confirmed the limitation of the technique expressed by

Naumann [2000]. The signal could potentially be improved by removing the para-

sites from the RBCs prior to measurement however this solution was not compatible

with the aim of the study.
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Chapter 6

The Effect of Drug Exposure to

the Metabolome of P.

falciparum : an NMR

Spectroscopy Study

6.1 Introduction

As described earlier NMR spectroscopy is one of the most popular analytical tools

used in metabolomics. It has some clear advantages over other techniques such as

mass spectrometry in terms of reproducibility, relative simplicity of sample prepa-

ration and data collection as well as the possibility to identify metabolites if needed.

These features of NMR experiments also make it a very useful tool for high through-

put studies, especially since the introduction of automated sample changers and

robotic sample preparation systems. We have performed a series of experiments

with the aim of developing and optimizing an NMR spectroscopy-based P. falci-

parum screening method for the detection of novel modes of action of antimalarial

compounds. The method described is based on metabolic fingerprinting of P. fal-

ciparum after exposure to antimalarial compounds. The protocol was developed

to detect the metabolic perturbations induced in P. falciparum parasites following

drug exposure in vitro. The resultant NMR data was used for compound clustering

based on the shared modes of action. Our strategy was based on the comparison

of the metabolic fingerprints of parasites exposed to well understood antimalarial

drugs with the metabolic effects of novel compounds. A series of pilot experiments

were designed and carried out in order to assess and implement an optimal strategy
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for sample preparation and data collection. We first discuss the experiments carried

out in order to assess the short term (5 hours) effects of established antimalarials

with known or partially understood mechanisms of action. NMR was used to dis-

criminate between known classes (Section 6.2). Initial experiments used a five-hour

drug exposure window and subsequent studies, post optimisation, were carried out

over a 6-hour time course (Section 6.3). The effect of life-cycle stage dependent drug

effects is presented in Section 6.4.

6.2 5-Hour Drug Exposure Study

Initial studies used a reduced sample size as a proof of concept in order to test

whether drug induced metabolic changes in P. falciparum could be observed at

all using this NMR approach. The experiment was designed consisting of four

drug treatments exposed at their predetermined IC90 concentrations over a 5-hour

period of exposure. The drugs were selected in pairs based on their known modes

of action. The four drugs used were the aminoquinolines chloroquine (CQ) and

amodiaquine (AQ), an experimental drug CK-268, and 5-fluoroorotate (5-FOA).

The first two compounds are heme binders and affect the parasites’ ability to digest

haemoglobin while the latter two target the respiratory chain in the parasites’ single

mitochondrion. Using this strategy of two example compounds targeting two very

distinct mechanisms of action should be an adequate validation tests for the overall

experimental approach. The prediction would be that the differences between groups

in such case would be greater than the differences within groups. This idea of

drug selection will be used in the later experiments as well. Data from untreated

parasites in standard medium were used as negative controls. The experiments were

performed following the optimised protocol described in Chapter 3. All samples were

collected in triplicate.

The NMR spectra were collected using NOESY pulse sequence with presat-

uration and the data were investigated after uniform bucketing of 0.05 ppm and

custom peak picking. PCA was performed in order to assess whether there was any

clustering structure corresponding to treatments in the derived data. After inspec-

tion of the results (Fig. 6.1) it was clear that there was discrimination between some

of the data points. Further analysis showed that all of the points on the left and

top came from the same replicate (same culture). This suggested that the culture

from which these samples were prepared was not viable and all the corresponding

data points were removed from further analysis.

After removal of the data points it was possible to investigate the clustering
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Figure 6.1: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5-hour drug exposure; T0 - iRBC samples at the start of the experi-
ment. Treatments : NT - untreated, 5-FOA - 5-fluoroorotate, CK-268 - an in-house
compound, CQ - chloroquine, AQ - amodiaquine.

structure in the data (Fig. 6.2). The points corresponding to the two groups of

drugs separated clearly from the untreated samples. While the differences between

sample points especially in the respiratory chain targeting drug group were large,

the separation between groups suggested that drug induced perturbations in the

metabolism could be captured by the NMR measurements. Since only two remaining

replicates were taken into consideration the results were inconclusive. A similar

experiment was performed with the aim of providing more evidence for the findings.

6.2.1 A repeat of the 5-hour study

The 5-hour exposure experiment was repeated with five replicates and chloroquine

was substituted by piperaquine (PPQ). Justification for this substitution was due to

data from parallel LCMS studies that suggested that PPQ and AQ shared greater

overlap in terms of metabolomic mechanism of action profile than chloroquine.

(Mubaraki M, personal communication). The experiment was performed follow-

ing the same protocol as previously described. Each replicate was derived from a
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Figure 6.2: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 hour drug exposure; One replicate has been removed due to bad
quality of the data. Treatments : NT - untreated, 5-FOA - 5-fluoroorotate, CK-268
- an in-house compound, CQ - chloroquine, AQ - amodiaquine.

separate parasite culture as before and was incubated in a separate 6-well plate (ref.

to Section 2.3). Each culture was sampled before the incubation at time 0 hours.

As previously PCA was performed on the processed data and the scores of the first

two principal components plotted (Fig. 6.3).

After an inspection an outlier “untreated” sample was identified that did

not cluster with the rest of the points. The other data points formed three clearly

separable clusters. Points corresponding to the samples collected at the start of the

experiment formed a cluster as did the untreated controls. All the treated samples

formed the third cluster in between the first two. This suggested that based on

the NMR data metabolic differences in the parasites at the start and at the end

of the experiment as well as drug exposed parasites could be established. This

result matched expectations as the drugged parasites were expected to be further

developed in the life-cycle compared to the start of the experiment. However due to

drug action limiting viability they would not have been expected to have developed

as far as the untreated controls. In order to look more closely at the structure of
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Figure 6.3: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 hour drug exposure; A repeat of the previous experiment including
5 replicates of each sample. Chloroquine has been substituted with piperaquine.
Treatments : NT - untreated, 5-FOA - 5-fluoroorotate, CK-268 - an in-house com-
pound, PPQ - piperaquine, AQ - amodiaquine.

the cluster of treated samples the analysis was repeated after removing the data for

untreated and time 0h samples (Fig.6.4).

The results showed some structure in the data point location. Firstly, it was

clear that two of the CK-268 samples had rather big differences compared to the

rest of the data points, these were seen as potential outliers. It is also important

to note that CK-268 treated samples had generated the most variable data in the

previous experiment. We then inspected the cluster formed by the rest of the data

points. The AQ/PPQ cluster seemed to be barely overlapping with 5-FOA cluster

and slightly more with the CK-268 points. That could indicate greater similarity

between AQ and PPQ than between AQ and 5-FOA. This result was promising as

the clustering structure corresponded to the expected clustering by mode of action.

In order to reinforce the findings and collect more data we repeated the experiment

following the same procedure.

The data was processed and analysed in the same manner as previously. The

first two principal components of the PCA were plotted in order to compare the
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Figure 6.4: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 hour drug exposure; a repeat of the previous experiment including
5 replicates of each sample. The untreated and T=0 h samples have been removed.
Treatments : NT - untreated, 5-FOA - 5-fluoroorotate, CK-268 - an in-house com-
pound, PPQ - piperaquine, AQ - amodiaquine.

structure in the data to the previous experiment (Fig. 6.5). From the first inspec-

tion of the plot it was clear that the structure observed in the previous experiment,

although not very significant, was totally absent. The samples from the start of the

experiment (T=0 h) while more variable were still different to the rest of the samples.

However, the samples from the negative controls, previously clearly different from

the rest, were indistinguishable from treated samples. In turn the treated samples

did not exhibit any visible discriminatory pattern at all. The results of this exper-

iment indicated that the methodology needed further improvement. While some

structure potentially corresponding to the drug treatments could be observed in the

data, the variance either from biological sources or variability introduced in the ex-

perimental procedures was masking any real information pertaining to drug mode

of action. The inability to generate any meaningful results forced a re-evaluation of

the experimental procedures with the aim of finding further points of optimization

or sources of unexpected variation that could be controlled for in the study design.
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Figure 6.5: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 hour drug exposure; a repeat of the previous experiment. T0 -
iRBC samples at the start of the experiment. Treatments : NT - untreated, 5-
FOA - 5-fluoroorotate, CK-268 - an in-house compound, PPQ - piperaquine, AQ -
amodiaquine.

6.2.2 Further Optimization of the Experimental Procedure

A serious limitation in expanding the number of replicates to five was the inability to

co-locate the culture plates within a single gassing chamber without stacking. This

introduced concerns about uneven gas distribution inside the plates which in turn

could cause differences in growth conditions. This would undoubtedly introduce

additional variation in the parasite metabolism. To address this problem a “shelf”

was constructed to hold the incubation plates. It was assembled from parts of a

similar incubation chamber and allowed the culture plates to be arranged at two

levels inside the same chamber without stacking.

Secondly the replicate sampling procedure used so far was reconsidered. Until

this point the production of biological replicate samples relied on separate parasite

cultures. However it was recognized that such a strategy could potentially intro-

duce additional variation to the experiments. The cultures used in the experiment

were always split from the same “source culture” at least one life-cycle earlier. As
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the parasites in each culture would replicate at least once before the experiment

some additional variability could have been introduced between the samples during

this single growth cycle. Other potential sources of variation that were considered

included anything that could contribute to local differences in environmental con-

ditions as parasite material was bulked up. This variability was initially considered

an advantage as it allowed the natural variability to be taken into account, but it

made data much harder to interpret. In response to these experimental problems

the experimental design was re-evaluated.

The experimental strategy was modified and pooled parasite bulk cultures

were used for all further experiments. The parasites were cultured as previously,

but before the experiment was initiated individual culture flasks would be pooled,

mixed and then re-split prior to starting experiments. This method also allowed

some additional freedom in terms of experimental design. Firstly, if needed, larger

sample volumes became possible as the size of the cultures was no longer a limitation.

Also pooling the cells provided an effect of “averaging over” the variation in the

parasite populations. This allowed avoidance of such events as reduced parasite

viability in any one culture flasks, imperfect synchronization of cultures or slight

alterations of parasite metabolism, resulting from different culturing parameters,

such as nutrient availability due to differences in parasitemia.

6.2.3 A Test of Drug Viability

The failure of earlier experiments (Fig. 6.5) triggered a complete re-evaluation

of all stages of decision making. An important factor to be considered was the

antimalarial drug potency in the in vitro cultures. The drug potency was tested in

a standard SYBR-Green-based IC50 assay. A fresh stock of artemisinin was used

as a positive control. The calculated IC50 values are presented in Table 6.1. IC50

values vary between studies, strains and even isolates. The values reported in Table

6.1 are in line with expected values and supported the exposure levels selected for

the subsequent metabolomics studies.

Table 6.1: The IC50 values for the antimalarials used in the study obtained from a
standard SYBR green assay.

Compound measured IC50 value (nM) reported IC50 value (nM)

Piperaquine 3.18 36.9 [Fivelman et al., 2007]
Amodiaquine 4.67 18.4 [Fivelman et al., 2007]

CK-268 13.87 15.0 [Mubaraki M, personal comm.]
5-Fluoroorotate 5.22 6.0 [Rathod et al., 1989]
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6.2.4 The Improved 5-hour Study Design

After the alterations to the experimental procedure outlined in Section 6.2.2 the 5-

hour drug exposure experiment was repeated. Parasite cultures were pooled before

the experiment and the 6-well plates containing the cultures during the incubation

period were arranged in two levels in a well gassed culture chamber to avoid stacking

and microenvironments. The data collected in the experiment were analysed using

PCA and plotted as before. The results are shown in Figure 6.6. There was no im-

provement from previous experiment in terms of sample separation or differentiating

patterns between treatments. Some of the samples were clustered separately from

the rest of the points however they did not form any meaningful group suggesting

some other artefact effect. As previously the time 0 group was clearly separable

from the rest of the data, however the points corresponding to samples collected

at the end of the exposure time were clustered together without any meaningful

pattern.
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Figure 6.6: PCA of 1H NMR spectra collected from P. falciparum infected RBC sam-
ples after 5 hour drug exposure at IC90 drug concentrations; T0 - iRBC samples at
the start of the experiment. Treatments : NT - untreated, 5-FOA - 5-fluoroorotate,
CK-268 - an in-house compound, PPQ - piperaquine, AQ - amodiaquine.

Drug exposure concentrations were pharmacologically relevant. An expla-
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Figure 6.7: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 hour drug exposure at 10 × IC90 drug concentrations; T0 - iRBC
samples at the start of the experiment. Treatments : NT - untreated, 5-FOA -
5-fluoroorotate, CK-268 - an in-house compound, PPQ - piperaquine, AQ - amodi-
aquine.

nation for the lack of a drug effect could be due to the exposure timeframe of five

hours. It is worth noting that IC50 concentrations are determined during a 48-hour

assay and do not account for drug action variation over the different life-cycle stages

of the parasite. As a next step the experiment was repeated using 10 × IC90 drug

concentrations.

The experiment was repeated following the same protocol with these 10-fold

increased drug concentrations. The data processing and analysis were as in previous

experiments. The results (Fig. 6.7) again did not show improvement in terms of

information content. The samples collected at time 0 were clearly different from

the rest of the data as before, however the data collected from the drug treated

samples 5 hours after the start of the incubation did not show any separation. The

untreated samples did not differ from the treated samples. We repeated the analysis

after removal of the time 0 samples in order to investigate the structure within the

cluster (Fig. 6.8) of points after 5-hour incubation. The cluster of data points

did not show any meaningful structure. These experiments essentially ruled out
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Figure 6.8: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 hour drug exposure at 10 × IC90 drug concentrations; T=0 sam-
ples have been removed from the analysis. Treatments : NT - untreated, 5-FOA -
5-fluoroorotate, CK-268 - an in-house compound, PPQ - piperaquine, AQ - amodi-
aquine.

the possibility of under-dosing which left the exposure time as the last variable to

consider. In order to address this problem further experiments were conducted, one

including a 20-hour exposure window and another including sampling every two

hours.

6.2.5 20-Hour Drug Exposure

In addition to investigating potential changes in parasite metabolome in these stud-

ies the culture medium was also investigated as a potential source of information on

nutrient utilisation and parasite waste elimination during the experimental proce-

dures. The experimental set-up was altered to include sampling at two time points

(5 and 20 hours post exposure). Together medium samples were collected at each

time point. Because of the scope and complexity of the protocol and the demand

for parasite biomass only two drugs could be investigated, namely amodiaquine and

CK-268, with three replicates for all conditions under investigation. The samples
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were collected at the beginning of the drug exposure as well as 5 and 20 hours after

the start.
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Figure 6.9: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 5 and 20 hour drug exposure at 10× IC90 drug concentrations; Treat-
ments : NT - untreated, CK-268 - an in-house compound, AQ - amodiaquine, T0 -
samples at the start of the experiment, T5 - samples after 5 hour exposure, T20 -
samples after 20 hour exposure.

The same analysis was repeated as previously described and the results were

plotted and are presented in Figures 6.9 and 6.10. Looking at the results of the

parasite sample analysis (Fig. 6.9) there was a clear difference between time points.

The clusters of points corresponding to each sampling time differed significantly.

The data from samples collected at 5 hours were quite variable and did not clus-

ter by treatment while the 20 hour samples seemed to have more structure. The

medium analysis (Fig. 6.10) showed similar results. The samples collected at times

0, 5 and 20 hours were clearly separable. While the 5-hour samples did not seem to

show any patterns in terms of treatment, the pattern in 20-hour samples was quite

clear. Although the fact that there were only 3 replicates makes the result less sig-

nificant the treatments seem to be separable showing differences in the composition

of the medium after incubation of parasites with various antimalarials. Whether the

differences were due to the varying length of parasite survival under drug exposure
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Figure 6.10: PCA of 1H NMR spectra of medium samples collected from P. fal-
ciparum 20 hour drug exposure experiment using 10 × IC90 drug concentrations;
Treatments : NT - untreated, CK-268 - an in-house compound, AQ - amodiaquine,
T0 - samples at the start of the experiment, T5 - samples after 5 hour exposure,
T20 - samples after 20 hour exposure.

resulting in different rates of nutrient consumption or there were treatment-related

changes in consumption and excretion of metabolites still had to be determined.

This could also have been the result of presence or absence of the drug molecule

signal in the medium samples. Even though the 5-hour time point samples did not

show the same pattern the possibility of drug concentration being high enough to

be detected in the NMR spectra was tested.

Three medium samples with the drugs used in the experiment as well as no

treatment control were prepared. Samples contained 500 nM of CK-268, 500 nM of

amodiaquine and a comparable amount of DMSO that would be used to dilute the

drugs. The resulting spectra were inspected visually. No peak differences between

spectra were observed suggesting that the drugs were not detectable at 500 nM

concentration.
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6.3 Re-interrogation of Short Time-course Drug Expo-

sures

Drug exposures over 5 hours were inconclusive in terms of distinguishing NMR

profiles. One explanation for this could have been that all the suble effects leading

to parasite death occur even earlier after drug exposure. In order to address this

the experimental protocol was modified to provide three sample times of 2, 4 and 6

hours post exposure. The working hypothesis was that for drugs with rapid onset

of action (and especially at high concentrations) the observations made at 5h and

beyond might represent dying parasites with distinct metabolic pathways leading to

death only apparent at earlier periods of drug exposure.

6.3.1 The 6-Hour Time-Course

The experiment was carried out as described previously including collection of

medium samples. The data analysis was performed and the results plotted follow-

ing the same procedure as described in the previous section. Looking at the PCA

scores plot of the cell samples (Fig. 6.11) the differences between the time points

were clear. The amodiaquine treated samples were more similar to the control than

CK-268 treated samples, especially at the 6-hour time-point. The loadings of the

first two principal components were inspected as well as the raw spectra, however it

was unclear which peaks would have made the CK-268 treated samples differ more.

It suggested that rather than specific peaks the general pattern of peak intensity

(areas under the peaks) was different. This could either have been the result of the

treatment, e.g. large portion of parasites killed much earlier and contributing less

to the signal, or some systematic effect in the data processing. One possibility could

have been that normalization by the total area of the spectrum introduced a bias

depending on highly variable residual solvent peaks. This possibility was investi-

gated by normalizing raw data before and after removal of residual solvent peaks

and reproducing the PCA on both data sets. The results did not vary significantly

as a similar pattern of data points was obtained in each case. Investigation of raw

data did not show any clear differences between spectra indicating that the drug

induced perturbations were either not present or more likely not visible in the data.

The results of analysis of medium sample data (Fig. 6.12) showed a similar

pattern. There were clear differences between time-points while the treatments at

each time point were similar. It is important to note the similarity in medium com-

position during the whole experiments whether from treated or untreated samples.

This suggested that the overall parasite use of media components and elimination
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Figure 6.11: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 2, 4 and 6 hours of drug exposure at 10× IC90 concentrations; Treat-
ments : NT - untreated, CK-268 - an in-house compound, AQ - amodiaquine, T0 -
samples at the start of the experiment, T2-T6 - samples after 2-6 hour exposure.

of by-products was normal over those time periods.

Since the results to this point had proven inconclusive, in an attempt to

improve the signal the number of parasite cells used per sample was increased. This

optimisation step was left as one of the last measures since obtaining the parasite

biomass was one of the major bottlenecks in terms of time. It is also important

to note that the parasite biomass that is possible to obtain for one experiment is

limited by the number of cultures that can be sustained simultaneously under similar

conditions. To date 100 µL of cell pellet (centrifuged at 500 g for 5 min.) per sample

was used in order to keep the experiment sample demands low with the scalability

in mind. The starting incubation approach was changed from 6-well plates to 120

mL culture flasks in order to accommodate the higher number of cells. Each sample

was additionally divided into three parts at extraction time. In order to be able to

perform the extractions in 1.5 mL tubes thereafter the extracts were pooled (for the

detailed protocol refer to Section 2.3). The rest of the protocol remained unchanged.

The experiment was performed and spectra collected using the standard pro-
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Figure 6.12: PCA of 1H NMR spectra collected from medium samples of P. falci-
parum infected RBC drug exposure experiment 2, 4 and 6 hours after the start of the
exposure. 10 × IC90 drug concentrations were used; Treatments : NT - untreated,
CK-268 - an in-house compound, AQ - amodiaquine, T0 - samples at the start of
the experiment, T2-T6 - samples after 2-6 hour exposure.

tocol as previously described. Inspection of raw data showed baseline inconsistencies

and broad peaks. This could be explained by the changes in the experiment design.

As the samples in this experiment were extracted from higher volume of cell pellet

the protein content could not be precipitated as efficiently resulting in more residual

protein in the NMR samples. In order to address this problem the NMR data acqui-

sition was repeated using an alternative pulse sequence - Carr-Purcell-Meiboom-Gill

(CPMG). This pulse sequence was designed to “ignore” large molecules in the sam-

ple, potentially reducing residual protein signal in the spectra. For comparison of

the data collected using both pulse sequences refer to Section 3.5. As the CPMG

pulse sequence proved to produce better results all data collected in the further

experiments has been collected using an NMR parameter set including the CPMG

pulse sequence.

Data processing and analysis was carried out as described previously. The

results are shown in Figure 6.13. After inspection of the PCA plot similar patterns

were observed as in the previous experiment. The differences between time points
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Figure 6.13: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 2, 4 and 6 hours of drug exposure at 10× IC90 concentrations; 1mL of
cell pellet per sample was used. Treatments : NT - untreated, CK-268 - an in-house
compound, AQ - amodiaquine, T0 - samples at the start of the experiment, T2-T6
- samples after 2-6 hour exposure.

were much more prominent than between treatments. One exception was the CK-

268 treated samples at time 6 hours. The investigation of the loadings of the first

two principal components and raw data again did not yield any clear conclusions as

to what made the CK-268 treated sample different in terms of the NMR spectrum.

It is important to note that in the last two data sets we did not have any replicates

of samples due to constraints imposed by the high number of cells required for

the experiments. While the PCA results could not be held in any way conclusive

the data was also visually compared. Overlapped spectra at each time point were

carefully inspected in an attempt to find peaks that differed significantly between

the treatments indicating some potentially associated metabolite changes.

Due to the absence of any conclusive evidence for metabolic changes present

in the data artemisinin was added as another drug treatment. Artemisinins are

known to be the fastest acting antimalarial killing parasites within a few hours of

exposure with death complete within 6 hours. The protocol was a repeat of the

previous experiment but with addition of artemisinin as the third drug treatment.
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Figure 6.14: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 2, 4 and 6 hours of drug exposure at 10× IC90 concentrations; 1mL of
cell pellet per sample was used. Treatments : NT - untreated, CK-268 - an in-house
compound, AQ - amodiaquine, AT - artemisinin, T0 - samples at the start of the
experiment, T2-T6 - samples after 2-6 hour exposure.

While the PCA was repeated as before (the results are presented in Figure 6.14)

the main aim of the experiment was to inspect the raw data in order to determine if

there were any significant differences between treatments at different times. While

no clear metabolite differences could be identified there were some peaks that were

variable between the treatments.

The conclusion from this series of very time consuming and resource demand-

ing experiments suggested that NMR, under the conditions applied here, was unable

to provide information that would allow to discriminate parasite metabolomes un-

der suprapharmacological drug exposure for relatively short (0-6 h) periods. The

project was continued by looking at longer exposure periods to see if the data would

be more informative.

An experiment was designed adding 24 hour sampling time point. Due to

technical problems the CK-268 treatment was removed from the design and only

artemisinin and amodiaquine were used for comparison. These drugs have distinct

mechanisms of action [Krishna et al., 2004; Marquez et al., 1972] and act at different
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Figure 6.15: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 2, 4 and 6 hours of drug exposure at 10× IC90 concentrations; 1mL of
cell pellet per sample was used. Treatments : NT - untreated, AQ - amodiaquine,
AT - artemisinin, T0 - samples at the start of the experiment, T2-T6 - samples after
2-6 hour exposure.

stages of the life cycle [Delves et al., 2012]. These features were considered optimum

for looking at discriminatory patterns between metabolomes in the NMR spectra,

if indeed they were present. Spectra were collected as previously and data was pro-

cessed and analysed (Fig. 6.15). The raw spectra were also inspected in search of

peaks differing between treatments. Some differences were found in the spectra sug-

gesting that potentially some perturbations in the metabolism were being captured.

However as in the previous experiment the results were inconclusive.

In an attempt to get conclusive evidence and determine whether the method

had any potential to be used for drug screening an experiment spanning the whole

48h parasite life cycle was designed including replicate samples.

6.4 Full Life-Cycle Drug Exposures

The results presented up to this point were mainly of relatively short time-course

experiments designed to look for evidence of drug induced metabolic perturbations
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in P. falciparum observed in the NMR spectra. The results obtained were both

inconsistent and inconclusive and suggested that NMR spectroscopy, despite some

strengths, is not a suitable analytical method for looking at drug action in P. fal-

ciparum at scale. In a last effort to test the potential of the approach a study was

designed in the spirit of the envisioned procedure spanning the whole life-cycle of

P. falciparum parasite.

The experiment was designed with four conditions including artemisinin,

chloroquine, atovaquone and an untreated control and three replicates. Due to

the scale of the experiment the data was collected over four separate experimental

periods. The fourth repeat of the experiment was carried out using uninfected red

blood cells as controls (values that could be subtracted from drug treated data

sets as background in some analyses). Samples were collected at the beginning

of the experiment and then at 3, 6, 12, 24 and 48 hours post drug exposure at

10 × IC90 resulting in a total of 63 samples and 189 metabolite extractions. The

sample preparation was carried out as in previous drug exposure experiments using

1 mL of cell pellet per sample. The NMR spectra were collected using the standard

parameter set with CPMG pulse sequence in an 800 MHz spectrometer. The data

were processed as explained previously (Section 3.4) and the three replicate data

sets averaged. The data sets for uninfected RBC data as well as the mean infected

RBC data with uninfected RBC measurements subtracted were also prepared for

analysis.

First the spectra were inspected visually in order to assess the data quality in

terms of peak shifts due to pH or salt content variation. We also looked for significant

differences between treatments at each time point. The data were inspected by

plotting overlapped spectra as well as using quantile plots. NMR quantile plots were

produced by taking a group of spectra and plotting a “ribbon” between maximum

and minimum peak height values at each point on the x-axis. The top of the

“ribbon” then spanned all the maximum-height points in the group of spectra while

bottom spanned the minimum-height points. The ribbon was then coloured based

on quantile values of the group of spectra at each point on the x-axis resulting in

a vertical colour gradient spanning quantiles from 0 to 100. A median spectrum is

plotted on top for reference. Such a plot is a good visual cue of where the most

variation is located in the group of spectra. Each time point was inspected separately

in order to assess changes appearing over time (Fig. 6.16 - 6.18).

After 3 hours of drug incubation with drugs some differences started to ap-

pear between the samples (Fig. 6.16). It is worth noting that the quantile plots

have a downside that if the peaks shift on the horizontal axis it is reflected in the
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Figure 6.16: A quantile plot of 1H NMR spectra collected from a P. falciparum
drug exposure experiment after 3 hours of exposure. The fragments of the spectra
presented contain the peaks that differ between spectra. The colour bar shows the
gradient of colours representing percentiles of data calculated at each point of the
spectrum. The black line represents the median (50th percentile) spectrum.

plots as a difference between spectra. We inspected the overlapped spectra for such

instances and ignored the differences in the quantile plots when they resulted from

the misalignment of spectra. It was clear from the spectra that there were differ-

ences between the treatments already 3 hours after incubation. The peak at 7.1

ppm as well as peaks at 4.48 ppm and 4.43 ppm showed differences in height.

After 6 hours of incubation some new peak variation appeared in the aromatic

region (Fig. 6.17a). The peaks at 8.54 and 8.59 ppm were showing some variation

between treatments. At the 12 hour time point a new peak appeared at 6.69 ppm

that was only present in the control sample (Fig. 6.17b).

After 24 hours of incubation new changes in peak height appeared in the

4.55-4.57 ppm region (Fig. 6.18). The previously identified differences around 6.68

ppm were more pronounced and contained multiple new peaks. However, no new

changes were observed in the spectra at 48 hours after the start of the incubation
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Figure 6.17: A quantile plot of 1H NMR spectra collected from a P. falciparum drug
exposure experiment after 6 and 12 hours of exposure. The fragments of the spectra
presented contain the peaks that differ between spectra.The colour bar shows the
gradient of colours representing percentiles of data calculated at each point of the
spectrum. The black line represents the median (50th percentile) spectrum.

compared to previous time point. This was unexpected as by the 48 hour time

point the control parasites should have re-entered the next life cycle while most

of the drug-exposed parasites were expected to be either arrested in development

or dead (note the IC50 values were determined over 48 h). The data was further

investigated through multivariate analysis. Notably while there were differences

between some of the peaks in the spectra as illustrated in the quantile plots the

majority of the spectra contained very little variation showing the reproducibility of

NMR and the robustness of the sample preparation procedure, albeit with absence

of any meaningful discriminatory information.

As mentioned above a total of three data sets were prepared for further

analysis, namely an infected RBC extract dataset, an uninfected RBC dataset, and

“parasite only” dataset, obtained after subtracting the RBC data from the mean
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Figure 6.18: A quantile plot of 1H NMR spectra collected from a P. falciparum
drug exposure experiment after 24 hours of exposure. The fragments of the spectra
presented contain the peaks that differ between spectra. The colour bar shows the
gradient of colours representing percentiles of data calculated at each point of the
spectrum. The black line represents the median (50th percentile) spectrum.

data. First a PCA was performed in order to investigate the structure in the data

as done previously. The first two principal components of the iRBC data were

plotted (Fig. 6.19). Some patterns were clearly visible in the distribution of points.

The data points clustered by the time they were sampled at. There seemed to

be little difference between samples at 3 and 6 hours (in agreement with previous

observations) - the data from those time points formed a cluster. The data points

corresponding to samples collected at 12 and 24 hours had greater spread and could

be clearly distinguished from earlier and later time points. It was interesting that

the sample from the start of the experiment (T=0 h) was in this cluster as well.

The last cluster we observed was the group of 48 hour time points. This cluster

was the most distinct. The treated samples, however, did not separate from the

untreated as anticipated. Drug treated parasites are arrested (or dead) compared
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Figure 6.19: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 3, 6, 12, 24 and 48 hours of drug exposure at IC90 concentrations; 3
replicate spectra per sample were averaged. Treatments : NT - untreated, ATO -
atovaquone,CQ - chloroquine, AT - artemisinin, T3-T48 - samples after 3-48 hour
exposure.

to the untreated parasites that continue through the life cycle. It is inconceivable

that these parasites have an equivalent metabolic state that should be discernable

at the level of the metabolome.

PCA was also carried out on the uninfected RBC data. RBCs are relatively

metabolically inactive while in culture yet as shown in Figure 6.20. PCA plot was

very similar to that from iRBCs although although in this case the clusters were

less distinct. Notably the time 0 sample here was clustered with early time points.

We also noticed two outliers in the chloroquine group at 6 h and atovaquone at 12

h. After inspection of the spectra it was discovered that these samples were likely

contaminated and were clearly different from the rest of the spectra. Consequently

these data were discarded.

The iRBC data set was also investigated after subtraction of the RBC back-

ground. Since the RBC data set included two samples that were unusable they were

excluded from this particular analysis. The plot of the first two principal compo-

nents of the PCA (Fig. 6.21) showed similar patterns as before with some notable
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Figure 6.20: PCA of 1H NMR spectra collected from RBC samples after 3, 6, 12, 24
and 48 hours of drug exposure at IC90 concentrations; Treatments : NT - untreated,
ATO - atovaquone, CQ - chloroquine, AT - artemisinin, T3-T48 - samples after 3-48
hour exposure.

differences. Firstly without the RBC “background” a gradient distribution of points

was observed, spreading from right to left according to the time they had been col-

lected. The sample from the start of the experiment was now distinct from the

rest of the data points and the groups of points from different time points form a

trajectory following top to bottom and right to left. Some of the temporal effect in

the data seemed to be removed through the subtraction of RBC data. However, it

was not possible to draw any conclusions on whether the apparent temporal effect

was introduced by the sampling procedure or RBC changes over time that might

dominate the metabolic readouts.

Since only about half of the variance in the data was accounted for in the

first two principal components of the PCA in each case, the data was further inves-

tigated using hierarchical clustering analysis (HCA). This clustering technique (ref.

to Section 1.7.5) agglomerated points into groups in a stepwise manner allowing the

clustering relationships to be represented in a tree-like structure - dendrogram. Hi-

erarchical clustering was performed on all three datasets with the aim of elucidating
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Figure 6.21: PCA of 1H NMR spectra collected from P. falciparum infected RBC
samples after 3, 6, 12, 24 and 48 hours of drug exposure at IC90 concentrations;
3 replicate spectra per sample were averaged and uninfected RBC data has been
subtracted. Two samples (CQ-T6 and ATO-T12) have been removed due to bad
quality data. Treatments : NT - untreated, ATO - atovaquone, CQ - chloroquine,
AT - artemisinin, T3-T48 - samples after 3-48 hour exposure.

any further structure in the data that might have not been captured in the PCA

plots. The dendrogram of the clustering structure of iRBC data (Fig. 6.22) showed

similar clustering structure to the PCA. The data points grouped by time into three

large clusters (here T=0 h is in the 48 h cluster) where two of the clusters further

split into smaller clusters containing data from one time point each.

In addition the dendrogram of the RBC data (Fig. 6.23) confirmed the re-

sults of the PCA. The early data points formed a separate cluster while the later

time points were more ambiguous. The outliers were clearly shown in a separate

cluster. After subtraction of RBC data the clustering of the data remained essen-

tially unchanged. Besides the outliers the rest of the points grouped by time and

the time 0 sample here was in the cluster with the samples collected at 48 hours.
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Figure 6.22: HCA dendrogram of 1H NMR spectra collected from P. falciparum
infected RBC samples after 3, 6, 12, 24 and 48 hours of drug exposure at IC90

concentrations; 3 replicate spectra per sample were averaged. Samples at t=0 h
cluster with the samples at t=48h possibly due to the the parasites at 48 hours
reaching the same stage in the next life cycle as they were at the start of the time-
course. Treatments : NT - untreated, ATO - atovaquone, CQ - chloroquine, AT -
artemisinin, T3-T48 - samples after 3-48 hour exposure.

119



Figure 6.23: HCA dendrogram of 1H NMR spectra collected from RBC samples
after 3, 6, 12, 24 and 48 hours of drug exposure at IC90 concentrations; Treatments
: NT - untreated, ATO - atovaquone,CQ - chloroquine, AT - artemisinin, T3-T48 -
samples after 3-48 hour exposure.
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Figure 6.24: HCA dendrogram of 1H NMR spectra collected from P. falciparum
infected RBC samples after 3, 6, 12, 24 and 48 hours of drug exposure at IC90

concentrations; 3 replicate spectra per sample were averaged and uninfected RBC
data was subtracted. Samples at t=0 h cluster with the samples at t=48h possibly
due to the the parasites at 48 hours reaching the same stage in the next life cycle
as they were at the start of the time-course. Treatments : NT - untreated, ATO -
atovaquone, CQ - chloroquine, AT - artemisinin, T3-T48 - samples after 3-48 hour
exposure.
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6.5 Modeling Time-course data

In the analysis so far each sample has been treated as an independent data point

only taking into account the time dependency in the interpretation of the results.

This is a rather over simplification that could result in potential loss of information.

While it was not necessarily incorrect, an important source of information in the

data was being ignored. Due to the time-course nature of the experiment the data

points were not independent samples and therefore were correlated. Each time point

except for the time 0 was dependent and a direct consequence of the preceding time

point. Taking into account this information could prove crucial for finding differences

between the drug treatments as well as helping remove the time dependent pattern

in the data. Such analysis required more advanced data modelling involving time

series analysis. For this purpose we employed a method called multiple dataset

integration (MDI) (ref. to Section 1.7.6). This method is capable of modelling

time-series data and was used in order to investigate the similarity of behaviour

of metabolites between conditions over time. MDI allows detection of clustering

structure among the metabolites (NMR bins) and allows comparison of samples

based on it. Similar clustering structure implies similar time-course behaviour of

the metabolites between treatments.

MDI produces cluster assignment probabilities that are visualized by plot-

ting heatmaps with intensities corresponding to the probabilities. A darker colour

indicates a higher probability that these two items belong to the same cluster. The

results of the analysis of iRBC data (Fig. 6.25) showed no differences between drug

treatments. This indicated that the temporal behaviour of metabolites (NMR peaks)

was similar between all conditions suggesting that none of them were affected by a

treatment in any significant manner. Similar results were obtained after analysis of

the data after subtraction of RBC data.
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Figure 6.25: MDI cluster dependency heatmaps plotted for each treatment sepa-
rately (on the right) and a consensus (on the left) calculated by averaging all the
individual heatmaps. The darker fill indicates the probability of two points be-
longing to the same cluster. Each heatmap is represents a symmetric probability
matrix where each row/column corresponds to one NMR bin. Gaussian process
models have been fitted to the time-course of each metabolite. The spectra bins
have been rearranged by cluster they have been assigned to. ATO - atovaquone, AT
- artemisinin, C - control, CQ - chloroquine.

6.6 Discussion

Since its widespread adoption as a metabolomics technique NMR spectroscopy has

been applied to a variety of biological problems [Kruger et al., 2008; Halouska et al.,

2012b; Beckonert et al., 2007b; Frederich et al., 2011; Yuliana et al., 2011; Weljie

et al., 2007]. Investigation of P. falciparum metabolism using NMR spectroscopy

however has only been attempted on a handful of occasions [?Teng et al., 2014; Ol-

szewski and Llinas, 2013; Lian et al., 2009]. ?] investigated the effects of metabolite

extraction solutions to the number of metabolites detected in the NMR experiments

of Plasmodium. Over 50 metabolites were identified in the extracts using 1D and

2D NMR experiments and over 40 metabolite concentrations were estimated. In

a similar study later Teng et al. [2014] established metabolics profiles of different

Plasmodium strains using NMR spectroscopy. Both studies were performed using
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parasites at the late trophozoite stage. This allowed parasite removal from the

RBCs using saponin lysis, the limitations of which are discussed in earlier chapters.

The study presented in Lian et al. [2009] followed a similar protocol. Alternatively

Olszewski and Llinas [2013] have suggested a method for preparation of samples

without saponin lysis. This method relied on performing extractions of the para-

sites together with the RBCs and was used as a basis for the method developed

for this project. The publication did not present any results of an application of

the method in NMR-based experiments. A similar method has been successfully

applied by the same authors to MS-based metabolomics experiments of Plasmod-

ium [Olszewski et al., 2009] where it helped to elucidate some peculiar features of

the parasite metabolism. Numerous other metabolomics studies used LC-MS or

GC-MS (or both) for investigation of P. falciparum metabolism [MacRae et al.,

2013; Cobbold et al., 2013; Ke et al., 2015; Cobbold et al., 2016]. However, these

techniques, while providing higher accuracy, are less reproducible, require complex

sample preparation and longer data acquisition times due to the separation step

before the analysis [Nagana Gowda and Raftery, 2015]. This makes application of

MS difficult in high throughput Plasmodium studies.

The results presented in this chapter provide some insight into the advantages

and limitations of the NMR-based metabolomics of malaria parasites and shed some

light on the reasons for its rare adoption for such studies.

The intraerythrocytic nature of the parasite life cycle makes it inconvenient

for metabolomics studies. The red blood cell background adds an enormous amount

of undesired signal and removing the parasites from the RBCs before the exper-

iments is not viable. The preferred parasitemia of P. falciparum in culture to

ensure optimal viability is less than 10%. While a higher level of parasitemia is

possible [Radfar et al., 2009a] due to limited availability of nutrients or frequent

manipulations (with increases frequency of media changes) parasite growth can be

compromised and metabolic states can be triggered through stress unrelated to the

drug action. This constraint results in the low parasite to RBC biomass ratio in the

culture and subsequently samples and metabolite extracts. Samples have to be pre-

pared with the aim of maximising signal with the signal contributed by the parasite

being readily detectable. In this work the parasite contributed signal was maximized

by gradually increasing the sample size while keeping the parasitemia fixed at the

optimal 8-10%. The largest amount of biomass used per sample was derived from a

whole cell culture. The requirement of such a large amount of biomass is a serious

limitation of NMR spectroscopy as a metabolomics technique in studies where the

sample volume is a limiting factor, compared to other techniques such as LCMS
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or GCMS where relatively low sample volumes can be effectively interrogated. For

similar studies using MS the suggested volume of cell pellet used per sample was as

low as 50 µL [Olszewski and Llinas, 2013], when the corresponding volume in our

experiments was up to 1 mL.

A further challenge, especially in drug screening studies, is the selection of

time points for sampling. During its 48-hour life cycle P. falciparum undergoes a

series of morphologic as well as transcriptomic and metabolic changes [MacRae et al.,

2013; Olszewski et al., 2009]. Currently used drugs have a range of modes of action

and times of onset [Delves et al., 2012; Wilson et al., 2013]. In order to detect the

mode of action in the metabolic fingerprint the time of sampling must coincide with

the metabolic state that is uniquely attributable to the mode of action. As a drug

screening would interrogate a range of compounds with a potentially diverse set of

modes as well as times of action, in order to detect the drug effects the measurements

of the metabolism would have to be made at appropriate times while keeping the

experiments of manageable size. The assumption would be that dead parasites, no

matter what the cause, would have a common metabolome reflecting death and not

the subtle effects of drug that resulted in death. Frequent sampling would quickly

increase the size of the experiment beyond manageable. Therefore a suitable set of

sampling points has to be selected in order to maximize coverage of all potentially

critical action-time points. In this work the question was addressed multiple times

during the method development. The experimental design was changed from one

fixed time sampling point to sampling at multiple time-points over durations ranging

from 2 to 48 hours. In the metabolic profile analysis the time component always

played the major role as the differences between the profiles at different time-points

were more prominent than treatment effects. This could be explained in two ways.

Firstly the differences could be arising as batch effects between separate sample

preparations at each time point. While the conditions at each sampling time were

kept as uniform as possible the possibility of a batch effect cannot be discounted.

Another, and in our opinion more likely possibility, is that the death of parasites

was not instant and not all parasites were affected by the compounds equally and

synchronously. Even though the parasites were exposed to very high concentrations

of antimalarial it is probable that there was a distribution of effects within the

parasite population confounding the signal readouts. The challenge going forward

is to be able to ensure that almost all of the population of parasites experience the

effect of the drug and respond in synchrony, that the background RBC signal can

be cleanly removed from the data and a method can be developed that removes

the non-specific temporal changes seen in these experiments. Attempts to reduce
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non-specific noise in the data was investigated by increasing drug concentrations

to 10 × IC90, using alternative drug probes with different mechanisms of action,

increasing parasite biomass to the limit, increasing the number of replicates and

looking at multiple exposure times. None of these manipulations generated any

useful data linked to drug action. There is the possibility that the data just wasn’t

robust enough and there was the a need for greater signal or an alternative analytical

approach such as LCMS. It is also possible that there is some useful information in

the collected data that requires more advanced tools to be uncovered. A solution to

this could be provided by a more advanced statistical analysis modelling the data

as a time-course e.g. treating the data-points as sequential and correlated instead

of independent. This was attempted using MDI [Kirk et al., 2012]. While the

results suggested presence of different clustering patterns in NMR peaks between

treatments, the variance between separate MDI runs was high indicating instability

of cluster assignments. This could be explained by high variance in the data as well

as low number of replicates per time-point and treatment (n=3).

The concentration of drugs used in the screening experiment is another key

variable to be optimised. In most drug studies IC50 or IC90 concentrations are

determined and used as indicators for drug efficacy. However, these concentrations

are usually determined based on parasite survival after the 48-hour life cycle and do

not provide information about possible dose dependent speed of action or targeted

life cycle stages. As a forerunner to all future studies there need to be detailed

evaluations of the time to kill, stage phasing and sensitivity to each test drug in

order to design an exposure strategy that best fits with the pharmacology of the

drug. In the current work range of drug concentrations used was from 1× IC90 to

10× IC90. This did not result in any improvement in the data.

The assumption that it would be possible to uniquely assign the modes of

action of antimalarial compounds to their induced metabolic states relies on the

ability of the analytical method, in this case NMR, to capture the information rel-

evant to these states in a spectroscopic fingerprint. It is implied that at least a

minimal number of affected metabolite concentrations have to be captured in the

metabolic readouts. NMR spectroscopy was chosen for this work for its speed, ro-

bustness and relative simplicity in sample preparation and data collection. However,

these advantages come at a heavy price in sensitivity. While signals from a wide

range of metabolites can be captured (and identified) in complex biological mix-

tures [?], only the metabolites of highest abundance produce a measurable signal.

Molecules at sub-micromolar concentrations are unlikely to be detectable in the re-

sulting spectra. This is the major concern of this study. While similar attempts
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have been successful in identifying metabolites altered by drug effects or toxicity,

most of them were in experiments involving human or animal tissue or biofluids

[Rozen et al., 2005; Lindon et al., 2004; Coen et al., 2004; Serkova and Boros, 2005]

where the amount of starting material was not limiting. Due to the intraerythrocytic

nature of P. falciparum many of the metabolites that could be detected in “pure”

parasite samples are of relatively low concentration in infected RBC samples. There-

fore an extensive analysis of metabolites detected in P. falciparum cultures (with

and without RBCs) by NMR would be instrumental in any further considerations of

using NMR spectroscopy as a metabolomics tool in studies of the malaria parasite.

The latest study by Cobbold et al. [2016] demonstrated metabolic changes in the

malaria parasite induced by a series of antimalarials. The study relied on both LC-

MS and GC-MS in order to maximise the number of detected metabolites and used

enriched parasites cultures as well as 13C-labeled glucose for tracking of glycolytic

intermediates. This huge effort illustrated the magnitude and the complexity of the

task of investigating drug induced metabolic perturbations in malaria parasites.
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Chapter 7

High Content Imaging Study of

P. falciparum Phenotype After

Exposure To Antimalarial

Compounds.

High content imaging techniques have been growing in popularity in drug screening

assays including in the targeting of a variety of tropical diseases [Sykes and Avery,

2015; Siqueira-Neto et al., 2012; Aulner et al., 2013; Clare et al., 2015]. However,

although HCI platforms have been used to screen for drug activity [Plouffe et al.,

2016; Lucantoni et al., 2015; Duffy and Avery, 2012] there have been no studies

looking at the potential of HCI to identify common mechanisms of action based on

drug treated phenotype. The intra-erythrocytic life-cycle of the malaria parasite

makes metabolomic studies of P. falciparum particularly difficult due to contami-

nation from signal originating from the host cell. However the spatial resolution of

fluorescent imaging-based techniques avoids this problem. Here we present a proof

of concept method of high throughput high content imaging to discriminate mech-

anisms of action of screening hits. The pilot study presented here was designed

as a proof of concept that phenotypic changes that can be quantified in P. falci-

parum exposed to various antimalarial compounds are indicative of drug speed of

kill and underlying mechanisms of action. Subsequently the method could be ap-

plied in high throughput screening of novel compounds in order to cluster drugs of

unknown mechanisms of action with phenotypes characteristic of drugs with known

mechanisms. We first used permutation testing coupled with PLS-DA models to

show that the data generated by HCI contained information about the drug speed
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of kill. A series of PLS-DA models were then built in order to learn the patterns

from the known drug data and applied to the data collected from samples exposed

to the original Malaria Box of 400 MMV compounds. The design of the study and

discussion of the design decisions is presented first in Section 7.1, followed by the

results of the data modelling and analysis in Section 7.2.

7.1 Study Design

The pilot study was designed with the aim of determining whether high content

fluorescent imaging of P. falcipatrum nuclei could be used to discriminate between

parasites exposed to drugs with different speeds of kill. We hypothesized that the ex-

posure to various antimalarial compounds with specific modes of action would have

a unique effect on P. falciparum phenotype as observed with HCI. With appropriate

parameter measurements the fluorescent microscopy images could then be used to

determine the speed of kill of the drug which could potentially contain additional

information about the mode of action. A group of well established antimalarials

with well characterised speeds of kill and modes of action were chosen for the study.

The chosen drugs are summarized in Table 7.1.

The study observational period was 32 hours. The duration of the experiment

was chosen based on the observation of the average time needed for parasites to

reach late trophozoite-schizont stage from the early ring stage taking into account

the window of synchronisation (about 8 hours). This duration was chosen to allow

enough time for drugs to exert their pharmacological effect prior to cell division and

merozoite formation. In these HCI experiments the focus was on the nucleus and the

imaging software collected a series of parameters (nucleus size, average fluorescent

Table 7.1: The antimalarial drugs used in the imaging study. The speed of kill is
assigned based on well established knowledge of drug action. DHODH - Dihydrooro-
tate dehydrogenase.

Compound Speed of kill Group

Artemether (ATH) fast artemisinins
Artemisinin (AT) fast artemisinins
Dihydroartemisinin (DHA) fast artemisinins
Chloroquine (CQ) fast quinoline-like
Amodiaquine (AQ) fast quinoline-like
Quinine (Q) slow quinoline-like
DSM1 slow DHODH inhibitor
Atovaquone (ATO) slow antifolate
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intensity, roundness and texture features, see Table 2.2) from a series of imaging

fields. The parasite nucleus undergoes significant and relatively rapid changes in

the later stages of schizont development when merozoites are formed. Such changes

significantly increased the noise in the data if the timing of the experiment was

marginally off, e.g. if the measurements of nucleus size were taken at the late schizont

stage when some of the parasites had already started nuclear division, progressed

to merozoites or even reinfected and transitioned to the early ring stages while the

rest of the culture were still in early schizogony (Fig. 7.1, right panel), then the

average size measurement would be reduced. The size of the nucleus of a parasite

arrested by drug action early in the life cycle would potentially be indistinguishable

from a “second generation” parasite unaffected by the drug or a mixture of early

schizonts and merozoites. The parasites at the late trophozoite - preschizont stage,

the time when the measurements were taken, had the largest nucleus which allowed

more accurate measurements of texture to provide the most discriminatory data for

drug classification.

During the 32 hour observational period parasites were exposed to an IC90

concentration of the antimalarial drug or MMV probe compound cultured in a

96-well flat-bottomed plate. Each individual plate contained a set of the known

antimalarials as positive controls and a non-drugged control medium (CM) wells

used as the negative controls. After the exposure, the parasites were transferred

to a 384-well imaging plate, fluorescent stain Hoechst [Latt et al., 1975] was added

and the plates were incubated for 30 minutes. The parasites treated with different

compounds were arranged on the plate in a staggered manner in order to diminish

any systematic effects. Each plate contained five replicates of each known drug

and ten replicates of the negative control. The rest of the plate contained MMV

compounds - one replicate per plate. The replicate wells were arranged on the

plate in columns while the readings were taken row-by-row to further diminish any

machine drift or temporal biological effects. The reading of one plate took up to

an hour and therefore potential temporal effects had to be taken into account. For

added confidence in the predictions two plates of each set of MMV compounds were

prepared. Each plate was prepared with an identical arrangement of samples. The

HCI measurements were taken using an Operetta High Content Imaging platform

and the data was extracted using Harmony software.
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7.2 Data Processing and Analysis

The data collected in the experiment consisted of a set of measurements (See Table

2.2) of regions selected in the high resolution images. The region selections were

made in an automated fashion by an algorithm set up to select high intensity fields

in the images taken after the application of an emission filter. While the nuclei of the

parasites were selected efficiently the images also included a range of artefacts (Fig.

7.2). Due to random clusters of dye molecules in the background, high intensity

regions were occasionally formed that were detected and selected by the software

as nuclei. In order to reduce the number of such artefacts a processing procedure

was designed in Harmony software that was used to filter out the selections of the

image regions that were unlikely to correspond to parasites by specification of area,

intensity and roundness constraints. The regions that did not fit at least one of

these constraints were removed from further analysis.

After filtering in Harmony the data was further cleaned and structured for

analysis. First it was checked for outliers by visual inspection of scatterplots of signal

size and intensity (Fig. 7.3). As mentioned previously the data contained some

artefact signals and it was clear from the scatterplots that some artefacts remained

even after filtering in Harmony. As each well contained a separate population of

parasite cells, they were inspected separately. Each well contained a number of

signals significantly larger or smaller in size or intensity (or both) than the average

signal in the well.

Outliers were selected and removed using an anomaly detection algorithm

on cell nucleus area and intensity values. First a two-dimensional Gaussian was

fitted to logged cell ‘Intensity‘ and ‘Area‘ variables. Data from each well was fitted

separately and probabilities of each data point were calculated from the resulting

model. The signals that corresponded to values with probability less than 0.9 were

then removed from further analysis. After cleaning, the majority of the outliers were

removed as confirmed by visual inspection of the scatterplots of the data. Figure

7.4 shows the data from the same wells shown in Figure 7.3 after outlier removal.

The data was then formatted to only include size, intensity and texture

parameters (see Table 2.2) and split into groups corresponding to ‘knowns‘ - the

positive control compounds - and ‘MMVs‘. The ‘knowns‘ dataset consisted of 40

samples and was used for model building and validation. The trained models were

used to predict the speed-of-kill of the ’MMV’ group of probe compounds.

Modelling was performed using partial least squares discriminant analysis

(PLS-DA) (see Section 1.7.3). A ten-fold cross-validation was performed for selection
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Figure 7.3: Example scatterplots of four wells from one of the imaging plates. The
data includes a number of points that are quite different in area or intensity from
the rest of the items; these were removed from further analysis.

of the number of PLS components in order to avoid overfitting and a 20-model

ensemble was used for predicting the grouping of new unknown compound data.

In order to show that the images contained information about difference of

effect in the two groups of compounds permutation tests (see Section 1.7.4) were

performed. A series of PLS-DA models for each dataset with randomly permuted

labels were used to simulate an empirical distribution of Q2 “goodness-of-prediction”

metric

Q2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(7.1)

where yi is the group (1,0) of ith well, ŷi is the predicted probability for ith

sample to be in group 1 and ȳ is the mean response. This distribution was used to

calculate a p-value for the Q2 of the model fitted to correctly labelled data - Q̂2.

The p-value in this case demonstrated how likely it was that the labels on the data

were meaningful. If Q̂2 was close to the mean of the distribution, the model fit

would be similar to those for randomly labelled data, suggesting that any random

permutation of the labels could give similar predictions and the grouping of the
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Figure 7.4: Example scatterplots of four wells from one of the imaging plates. The
dataset has been cleaned in order to remove outliers.

drugs was not meaningful or their differential effects were not adequately captured

in the data. On the other hand a low p-value would suggest that it was unlikely

to obtain similar predictions from the models with any other permutation of labels.

Therefore the labels must be meaningful and possibly correspond to drug effects

captured in the data and detected by the model.

A permutation test was performed for each dataset (Fig. 7.5a). The results

of all the runs are given in Table 7.2. It was clear that the differences between

groups were significant and the method seemed to readily discriminate between

the two groups of drugs. There was one case however where the p-value was high

(pval = 0.194). After further inspection of collected images and cell nucleus size data

of the negative controls (Fig. 7.6) it was clear that the experiment did not work as

expected. Due to unknown reasons the parasites did not grow in the majority of

wells on the plate which is reflected by the lower mean area of the parasite nuclei

compared to the other experiments. The results of the permutation test of that

experiment are shown in Figure 7.5b.

This result suggested an additional application of the permutation test. After

the models are shown to predict the drug effects, the results could be used as a qual-

ity control for future experiments. Since each experimental plate contains the same
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Figure 7.5: A histogram representing the empirical distribution of Q2 values cal-
culated in a permutation test using PLS-DA models fitted to two groups (“fast”
and “slow” acting compounds) of treatments. The red line denotes the Q2 value of
the model trained on the correctly labelled data. (a) The results using data from a
successful experiment; (b) results from a technically unsuccessful experiment;

set of “known” drugs, each new experiment could be subjected to a permutation test

and have the p-value calculated as described above. Since the differences between

drug effects have been established an arbitrarily low (< 0.01) p-value would indicate

a successful experiment. An ensemble of models could then be used to predict the

unknown compound grouping.

PLS-DA models were fitted to data producing an ensemble of 20 models

per dataset. The model fitting procedure included testing the model performance

on a randomly selected partition of the data (see Section 2.5). The Q2 value was

calculated for each model and a mean Q2 value for each model ensemble was reported

(Fig. 7.7).

In order to fit a PLS-DA model the number of PLS components used for

classification had to be optimized first. This procedure was performed by fitting

a series of PLS-DA models with a varying number of components and the optimal

number of components was selected based on the ‘goodness-of-prediction‘ metric

Q2. The best performing parameter was then used to train 20 models using dif-

ferent splits of the data into training and test subsets in order to obtain robust

models. The resulting model performances were assessed based on their respective

Q2 values. The 20 model “ensemble” was then used for the prediction of samples

treated with “MMV” probe compounds. Each model predicted a probability of
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Figure 7.6: A violin plot of nucleus area measurements from control (untreated)
parasites in four experiments. The violin plots show the density of the points along
the y axis making the data distributions easier to compare. Experiments 1, 2 and
4 show a similar range of nucleus area while the majority of points in experiment 3
are lower, indicating insufficient growth of the parasites.

sample membership in the “fast” set. An average probability from the 20 models

was used as the final prediction result. The samples with probabilities larger than

0.5 were classified as “fast”. The prediction results were saved for validation of the

assay. The set of compounds predicted as “fast” included 121 compound out of the

400 tested. This suggested that around a third of the compounds induced a parasite

phenotype similar to the phenotype resulting from exposure to fast acting drugs.

Since the method relied on fitting a model to latent variables the results were not

easily interpretable. External validation is required in order better characterise the

predictions. Further development of the method will involve parasite viability and

time till death assays [Sanz et al., 2012; Linares et al., 2015]. These methods would

provide additional information on the characteristics of the selected compounds and

allow better understanding of the model properties such as the false discovery rate.
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Table 7.2: The p-values from permutation tests in each experiment rounded to three
significant digits. The p-values smaller than the significance level of 0.01 are marked
with *.

Experiment MMV set p-value

1a 1-100 < 0.001∗
1b 1-100 < 0.001∗
2a 101-200 < 0.001∗
2b 101-200 < 0.001∗
3a 201-300 0.009∗
3b 201-300 0.194
4a 301-400 0.004∗
4b 301-400 0.002∗
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Figure 7.7: Mean Q2 values for each ensemble of 20 models fitted to experiment
data. The dashed line at 0.5 shows an arbitrary boundary for an acceptable model.
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7.3 Discussion

Due to the high number of potent antimalarial hits reported in the literature from

large chemical library screens there is a pressing need for new high throughput

assays that can triage this data in order to select the most promising hits for lead

development. Importantly since the emergence of artemisinin resistance the need

for novel fast acting compounds has become particularly important [Diagana, 2015].

The current drug discovery pipelines start with whole cell assays and target-

based screening and are capable of producing thousands of hits [Guiguemde et al.,

2010; Gamo et al., 2010; Rottmann et al., 2010; Plouffe et al., 2008]. The next

step usually is left to computational analysis and triage. The hit compounds are

investigated based on their predicted chemical properties, cost, ease of synthesis

as well as by scaffold comparison to already known compounds [Flannery et al.,

2013]. However properties such as speed of kill, mode of action or the part of

the parasite life cycle when the compound is active cannot be readily predicted.

Therefore there is a need for novel hit selection methods that would allow the pre-

selection of compounds based on their in vitro kill dynamic properties as opposed

to general chemical properties or simple IC50.

We have presented a prototype assay for antimalarial compound screening

based on high content imaging. It has been designed to detect compounds acting

quickly on the early stages of P. falciparum asexual growth and development. HCI

was used to detect phenotypic features of the parasite nucleus by comparison to par-

asites exposed to well known fast acting drugs in the artemisinin family (artemether,

artemisinin and dihydroartemisinin) and fast quinoline-like compounds (chloroquine

and amodiaquine).

There is no unified definition of a fast-acting antimalarial besides clearance

from patients or animal models, systems that cannot be used in triaging hits from

library screens. Therefore we have used the phenotypic similarity of parasites af-

fected by fast acting antimalarials as a measure of “speed of kill”. Compounds that

affect the parasite phenotype in a similar way to fast acting compounds are easily

detected. Since the measurements of the phenotype are indirect measurements of

the drug effects we first showed that the measured effects were associated with the

treatment groups as expected. Antimalarials with well known action profiles were

used as a proof of concept as well as the basis for subsequent comparison with novel

compounds. While the assay has been validated by demonstration of the consistent

predictive power within the scope of these well-established compounds it should be

further validated against an alternative method such as the parasite reduction ratio
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(PRR) based assay [Sanz et al., 2012] or a reinvasion based assay [Linares et al.,

2015]. Nevertheless, the method has shown promise in the initial testing stages

and has been used to make initial predictions on the compounds included in the

“Malaria Box”. Once the assay is validated the modelling procedure can be im-

proved by receiver-operator characteristic (ROC) curve analysis in order to adjust

the decision boundary and optimise the false discovery rate.

The prototype method presented here is a proof of concept that a high con-

tent imaging platform can be used for untargeted compound screening for hit pre-

selection before lead optimisation in a manner that is related to in vitro effects

rather than simple chemoinformatics analysis that lacks biological context.
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Chapter 8

Conclusions

With the development of new technologies and improving quality and especially

quantity of data collected in experiments, new challenges arise. In particular the

development of high-throughput whole cell assays have allowed drug discovery to

progress on an unprecedented scale. Antimalarial drug screening efforts have pro-

duced thousands of molecules able to kill malaria parasites at nanomolar concen-

trations. However with big numbers come new challenges. The time and capital re-

quired to investigate such a number of compounds is enormous and therefore further

triage selection processes are needed. In this work we have investigated three ways

to address the problem of hit pre-selection from antimalarial drug screening. Two

of the methods investigated were based on metabolomic fingerprinting approaches

aiming to classify antimalarials based on their biochemical modes of action. The

third method was based on the measurement and classification of P. falciparum

phenotypic changes under drug treatments using high-content imaging.

As one of the desired features of a hit screening method is high throughput,

Fourier-transform infrared spectroscopy was investigated first. It allows for easy

sample preparation and storage and as it also has been applied in similar work on

bacteria the method was a natural choice for this study. The results however did

not live up to expectations. While it could clearly capture information about the

constituents of the parasite cells, with the infected RBCs readily differentiable from

the uninfected RBCs, life cycle stages of P. falciparum were not discriminated. The

sensitivity required to detect the differences in metabolite concentrations in drug

mechanism studies needed to be much higher. Admittedly, the experiments were

performed against a background of RBC signal potentially masking information

specifically from the parasite. Therefore FT-IR was considered not sensitive enough

as a metabolic fingerprinting technique for antimalarial compound screening.
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In order to obtain improved quality information content without losing the

high throughput potential NMR spectroscopy was selected as an alternative tech-

nique with the potential to discriminate the actions of different drugs/probes. NMR

has been growing in popularity in the metabolomics world and as well as the collec-

tion of global information about the metabolites present in the sample it also allows

metabolite identification in case this was required. While it proved to be more sen-

sitive than FT-IR it still faced similar challenges posed by the complex nature of

the P. falciparum life-cycle. Significant signal contamination originated from the

red blood cells and in order to get any parasite signal a large parasite biomass was

required prior to extraction and concentration of samples. Additionally there were

further challenges to be addressed that emphasised the complexity of the problem.

In order to investigate the drug impact on parasite metabolism it had to be mea-

sured at the right, tightly controlled, time. Without any prior knowledge of the

drug action profile the assay would have to rely on a set of optimized time and dose

choices that would suit a wide range of possible compounds. For an assay based

on measurement of parasite metabolism, which is very dynamic, this was a crucial

step to optimize. Despite significant effort and multiple strategies and attempts the

metabolic perturbations resulting from the impact of an antimalarial drug could

not be detected. The time dependent component of the metabolomic fingerprint

constantly dominated the profiles from samples under different drug stresses. The

assumption is that the subtle effects of drug on parasite metabolism important in

the action of the drug was masked by the signals originating form the red blood cells

and from the unperturbed aspects of the parasite metabolome. Depite significant

effort to optimise all steps in the protocol, sample preparation, data acquisition and

data analysis this approach failed to generate any data that could be used to cluster

drugs with common mechanisms. The sensitivity issue could be addressed by a sys-

tematic study of all P. falciparum metabolites detected in the NMR, however this

would steer the method into the realm of metabolic profiling and would arguably

be better performed by using MS approaches. In order to eliminate the temporal

effects on the the fingerprint that dominated the signal the data was analysed and

modelled as a time series. Even with this more complex approach to the analysis it

was still not possible to discriminate the effect of drug on the metabolome. It could

be argued that the sample sizes used were small (3-5) which may have impacted on

the resolving power of these studies. However the availability of parasite biomass is

a constant issue that that is not easily overcome and would preclude this approach

for high throughput demands.

The high-content imaging study was a completely different approach for com-
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pound selection. It was based on the hypothesis that the phenotypic changes in P.

falciparum nucleus under drug treatment would be indicative of the properties of

the drug in terms of stage specific killing mechanism. In this study the method

aimed to select and cluster compounds based on the speed of kill. The experiments

were designed with reproducibility and robustness in mind. First, using statistical

analysis, we were able to prove that the method captured differences in the nuclei

of the parasite cells treated with two groups of antimalarial drugs that had differ-

ent speed of kill profiles. We then developed a series of classification models for

compound classification based on the high-content imaging data. As expected an

important feature in the data was the size of the nucleus, as the parasites affected by

the drugs earlier in the life cycle had shorter period to grow, however other features

of the nuclei were able to improve the discriminatory quality of results. While the

model predictions still have to be fully validated by an orthogonal approach the

internal model validation showed clear differences between the groups of parasites

treated with fast-acting compounds such as the artemisinins compared to slower

killers such as atovaquone and quinine. The method could be further expanded

to include selection of screening criteria and enable adjustments of false positive

rate. This would allow further fine-tuning of the assay. The method is general

enough so that a different stain could be used in order to collect a different set of

features e.g. mitochondrial stain (MitoTracker, Thermo Fischer) could potentially

allow detection of phenotypic changes after exposure to respiratory chain target-

ting compounds. A more systematic investigation of phenotypic changes under the

effects of compounds with various modes of action could produce a library of spe-

cific profiles that could later be used for a more targeted screening approach. This

study has demonstrated the potential of image-based assays for P. falciparum drug

screening and suggested a simple framework for hypothesis testing, quality control

and classification of compounds.

To conclude, P. falciparum is a complex parasite in terms of its life cycle

and it provides a series of challenges for researchers. Metabolomics approaches

attempted in this study highlighted the difficulties of studying the malaria para-

site. However, a high-content imaging-based approach suggested a new angle on

antimalarial compound screening. This approach showed potential in a pilot study

and if pursued could become a new high-throughput platform for compound screen-

ing based on direct effects on the cells and so complement the currently popular

chemoinformatic analyses.
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Appendix A

NMR spectra of ring and

trophozoite life cycle stages of

P. falciparum

The spectra have been collected on a 600MHz Bruker Avance III spectrometer

equipped with TCI gradient cryoprobe using CPMG pulse sequence, 4 dummy scans

and 128 scans per sample with spectral width of 20 ppm at 298K. Spectra are di-

vided into four regions: 0.7 - 2.7 ppm, 2.7 - 4.7 ppm, 5.5 - 7.0 ppm and 7.0 - 9.5

ppm for better visualisation. The region containing water signal (4.7 - 5.5 ppm)

has been removed. Figures A.1-4 contain raw spectra while Figures A.5-8 contain

quantile plots.
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