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Insulators occur in more than one guise, a recent finding was a class of topological

insulators, which host a conducting surface juxtaposed with an insulating bulk. Here we

report the observation of an unusual insulating state with an electrically insulating bulk

that simultaneously yields bulk quantum oscillations with characteristics of an unconven-

tional Fermi liquid. We present quantum oscillation measurements of magnetic torque in

high purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation

frequencies characteristic of a large three-dimensional conduction electron Fermi surface

similar to the metallic rare earth hexaborides such as PrB6 and LaB6. The quantum oscil-

lation amplitude strongly increases at low temperatures, appearing strikingly at variance

with conventional metallic behaviour.

Kondo insulators, a class of materials positioned close to the border between insulating

and metallic behaviour, provide fertile ground for unusual physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14]. This class of strongly correlated materials is thought to be characterised by a
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ground state with a small energy gap at the Fermi energy owing to the collective hybridisation

of conduction and f -electrons. The observation of quantum oscillations has traditionally been

associated with a Fermi liquid state; here we present the surprising measurement of quantum

oscillations in the Kondo insulator SmB6 [15] that originate from a large three-dimensional

Fermi surface occupying half the Brillouin zone and strongly resembling the conduction elec-

tron Fermi surface in the metallic rare earth hexaborides [16]. Our measurements in SmB6 re-

veal a dramatic departure from conventional metallic Lifshitz Kosevich behaviour [18]; instead

of the expected saturation at low temperatures, a striking increase is observed in the quantum

oscillation amplitude at low temperatures .

Single crystals of SmB6 used in the present study were grown by means of the image furnace

technique [19] in order to achieve high purities as characterised by the high inverse residual re-

sistivity ratio. Single crystals with inverse resistance ratios [IRR = R(T = 1.8 K)/R(T = 300 K),

where R is resistance and T is temperature] of the order of 105 were selected for this study; the

IRR has been shown to characterise crystal quality, with the introduction of point defects by

radiation damage [20], or through off-stoichiometry [21] resulting in a decrease in low temper-

ature resistance and an increase in high temperature resistance. The resistance of a SmB6 single

crystal is shown in Fig. 1B measured as a function of temperature at zero magnetic field and

in an applied DC magnetic field of 45 T, demonstrating that activated electrical conductivity

characteristic of an energy gap ≈ 40 K at the Fermi energy persists up to high magnetic fields.

The non-magnetic ground state of SmB6 is evidenced by the linear magnetisation up to 60 T

(Fig. 1B, bottom inset).

We observed quantum oscillations in SmB6 by measuring the magnetic torque. The mea-

surements were done in magnetic fields up to 40 T and down to T = 0.4 K, and in magnetic

fields up to 35 T and down to T = 0.03 K. Quantum oscillations periodic in inverse magnetic

field are observed against a quadratic background, with frequencies ranging from 50 to 15,000 T
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Fig. 1: Quantum oscillations in the magnetic torque in SmB6. (A) Quantum oscillations in
magnetic torque are visible against a quadratic background. (Inset) Schematic of the magnetic
torque measurement setup using a capacitive cantilever and the notation for angular rotation
by angle θ. (B) Resistance as a function of temperature in zero magnetic field (blue line),
and at 45 T (green line) using an unchanged measurement configuration on a SmB6 sample of
dimensions 1.1 by 0.3 by 0.1 mm. (Top inset) Measured resistance from 80 mK up to high
temperatures, from which the high IRR can be ascertained [a fit to activated electrical conduc-
tivity is provided in [23]]. (Bottom inset) Magnetisation of SmB6 at 2.1 K remains linear up
to 60 T. (C) Dominant low frequency quantum oscillations can be discerned after background
subtraction of a sixth order polynomial. (D) Magnetic torque at the highest measured fields
after the subtraction of the low frequency background torque. Quantum oscillations are visible
in an intermediate frequency range (between 2,000 and 4,000 T) as well as a high frequency
range up to 15,000 T.
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(Fig. 1A,C, and D). A Fourier transform of the quantum oscillations is shown in Figure 2A as a

function of inverse magnetic field, revealing well-defined peaks corresponding to multiple fre-

quencies. The periodicity of the quantum oscillations in inverse magnetic field is revealed by

the linear Landau index plot in Fig. 2B.

Fig. 2: Landau quantisation in SmB6. (A) Fourier transforms of magnetic torque as a function
of inverse magnetic field, from which a polynomial background has been subtracted, revealing
multiple quantum oscillatory frequencies ranging from 50 T to 15,000 T. Field ranges for anal-
ysis have been chosen that best capture the observed oscillations, with the highest frequencies
only appearing in the higher field ranges. (B) The maxima and minima in the derivative of mag-
netic torque with respect to the magnetic field, corresponding to the dominant low frequency
oscillation, are plotted as a function of inverse magnetic field; the linear dependence signals
Landau quantisation.
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The observation, especially of rapid quantum oscillations with frequencies higher than 10 kT

(corresponding to approximately half the volume of the cubic Brillouin zone) in SmB6, is strik-

ing. This observation is in contrast to previous reports of very low frequency quantum os-

cillations corresponding to a few percent of the Brillouin zone in SmB6, attributed to a two-

dimensional surface contribution [22]. Our observation of very high quantum oscillation fre-

quencies requiring mean free paths on the order of a few micrometers would be challenging

to explain from a surface layer of a few atomic lengths thickness, which would typically yield

such rapid frequencies only at a special angle of inclination at which the cyclotron orbit lies

completely within the surface layer. Key to identifying the Fermi surface from which the ob-

served quantum oscillation frequencies originate is a comparison with previous quantum os-

cillation measurements on metallic hexaborides such as nonmagnetic LaB6, antiferromagnetic

CeB6, and antiferromagnetic PrB6 [16, 17]. These materials exhibit a metallic ground state in-

volving predominantly conduction electrons, with a low residual resistivity of the order of one

microhm.cm (≈ 106 times lower than in Kondo insulating SmB6), and are characterised by a

multiply connected Fermi surface of prolate spheroids (Fig. 3, D and E). Strikingly, the angular

dependence of the various quantum oscillation frequencies in SmB6 reveals characteristic sig-

natures of the three-dimensional Fermi surface identified in the metallic rare-earth hexaborides

(Fig. 3, A to C). In particular, the high observed α frequencies (Fig. 3A) reveal the characteristic

symmetry of large prolate spheroids centred at X-points of the Brillouin zone (Fig. 3,D and E),

whereas the lower observed frequencies (Fig. 3A) reveal the characteristic symmetry of small

ellipsoids located at the neck positions. Both of these types of ellipsoids are universal Fermi

surface features identified from experiment and band structure calculations in the metallic rare-

earth hexaborides [16, 17]. Similar features are also revealed in density functional calculations

of SmB6 when the Fermi energy is shifted from its calculated position in the insulating gap

either up into the conduction or down into the valence bands (Fig. 3,D and E).
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Fig. 3: Angular dependence of the quantum oscillation frequencies in SmB6. (A) Data
from two of the SmB6 samples in which oscillations were observed are shown, indicated by
solid and open circles. One of the samples (solid circles) was prepared as a thin plate with
the dominant face perpendicular to the [100] axis [sample 1 [23]]. (B and C) The second
sample (open circles) was prepared as a thin plate with the dominant face perpendicular to
the [110] axis (sample 2, [23]). The angular dependence strongly resembles that of the three-
dimensional Fermi surface in antiferromagnetic PrB6 shown in (B), and nonmagnetic LaB6

shown in (C) [17]. (D and E) The α orbit in red in all the rare earth hexaborides is fit to large
multiply connected prolate spheroids centred at the X points of the Brillouin zone, shown in
(D); a cross-section in the XM plane is shown in (E). The ρ and ρ′ orbits in each of the rare
earth hexaborides are fit to small ellipsoids located at the neck positions [not shown in (D)
and (E)]. More details of the fits are provided in [23]. The remaining intermediate orbits are
shown with lines as a guide to the eye. All orbit identifications have been made after measured
frequencies and band structure calculations in PrB6 and LaB6 [17]. (D) and (E) show Fermi
surfaces calculated for SmB6 using density functional theory [23], with a downward shift of the
Fermi energy from its calculated position within the gap to expose the unhybridised bands, and
yield pocket sizes similar to experiment.
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The observed angular dependence of quantum oscillations in SmB6 remains the same irre-

spective of whether the sample is prepared as a thin plate with a large plane face perpendicular to

the [110] direction, or to the [100] direction (fig. S1), and exhibits the same characteristic signa-

tures with respect to the orientation of the magnetic field to the crystallographic symmetry axes

of the bulk crystal (Fig. 3A). The bulk quantum oscillations we measure in SmB6 correspond-

ing to the three-dimensional Fermi surface mapped out in the metallic rare-earth hexaborides

may not be directly related to the potential topological character of SmB6, which would have

as its signature a conducting surface [24]. In addition to the magnetic torque signal from the

atomically thin surface region being several orders of magnitude smaller than the signal from

the bulk, the observation of surface quantum oscillations would be rendered more challenging

by the reported Sm depletion and resulting reconstruction of Sm ions at the surface layer of

SmB6 [25].

The unconventional character of the state we measure in SmB6 becomes apparent upon in-

vestigating the temperature dependence of the quantum oscillation amplitude in SmB6. We

found that between T = 25 K and 2 K, the quantum oscillation amplitude exhibits a Lifshitz-

Kosevich like temperature dependence (Fig. 4), characteristic of a low effective mass similar to

that of metallic LaB6, which has only conduction electrons [16]. The comparable size of low

temperature electronic heat capacity measured for our SmB6 single crystals to that of metallic

LaB6 [23] also seems to suggest a large Fermi surface with low effective mass in SmB6. How-

ever, instead of saturating at lower temperatures as would be expected for the Lifshitz Kosevich

distribution characteristic of quasiparticles with Fermi Dirac statistics [18], the quantum oscil-

lation amplitude increases dramatically as low temperatures down to 30 mK are approached

(Fig. 4). Such non-Lifshitz Kosevich temperature dependence is remarkable, given the robust

adherence to Lifshitz Kosevich temperature dependence in most examples of strongly corre-

lated electron systems, from the underdoped cuprate superconductors [26], to heavy fermion
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systems [27, 28], to systems displaying signatures of quantum criticality [29], a notable excep-

tion being fractional quantum Hall systems [30, 31]. The possibility of a subtle departure from

Lifshitz Kosevich temperature dependence has been reported in a few materials [32, 33].

Fig. 4: Temperature dependence of quantum oscillation amplitude. The dominant 330 T
frequency over the magnetic field range 25 to 35 T is shown, revealing a steep increase in am-
plitude at low temperatures. The measurements in the temperature range from 25 K down to
0.35 K were performed in a 3He fridge in the hybrid magnet [sample 1 [23], blue diamonds],
whereas the measurements at temperatures in the range from 1 K down to 30 mK were done in
a dilution fridge in the resistive magnet on two different samples [sample 1, purple diamonds;
sample 3 [23]: blue squares]. At low temperatures, a strong deviation from the conventional
Lifshitz Kosevich form can be seen in the inset by comparison with a simulated Lifshitz Kose-
vich form for effective massm∗ = 0.18me. A logarithmic temperature scale is used in the inset
for clarity.

The ground state of SmB6 is fairly insensitive to applied magnetic fields, with activated
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electrical conductivity behaviour across a gap remaining largely unchanged up to at least 45 T

(Fig. 1B). Such a weak coupling to the magnetic field is in contrast to unconventional states

in other materials that are tuned by an applied magnetic field [6, 7, 8, 9, 10, 11, 13]. Fur-

thermore, this rules out the possibility of quantum oscillations in SmB6 arising from a high

magnetic field state in which the energy gap is closed. The possibility that quantum oscillations

arise from static, spatially disconnected metallic patches of at least 1 µm length scale that do

not contribute to the electrical transport also appears unlikely. Similar quantum oscillations

are observed in all (more than 10) measured high quality samples in multiple high magnetic

field experiments, with the best samples yielding magnetic quantum oscillations of amplitude

corresponding to a substantial fraction of the expected size from bulk SmB6. The presence of

rare-earths other than Sm has been ruled out to within 0.01 % by means of chemical analysis and

scanning electron microscopy [23]. Off-stoichiometric metallic regions of SmB6 appear an un-

likely explanation for our results, given reports that up to 30% Sm depletion does not close the

energy gap [20], whereas scanning electron microscopy of our samples reveals a homogeneity

of within 1 % of Sm concentration over the sample area [23]. The possibility of spatially discon-

nected strained regions of SmB6, which is known to become metallic under applied pressures on

the order of 10 GPa, or static spatially disconnected islands of hybridised and unhybridised Sm

f -electrons also seems unlikely. An improvement in the IRR by means of the removal of strain

with electropolishing strengthens the quantum oscillation signal whereas straining the sample

by means of thermal cycling weakens the quantum oscillation signal [23]. Further, the interplay

between hybridised and unhybridised Sm f -electrons which may be an important ingredient in

the physics of SmB6, has been revealed by Mössbauer and muon-spin relaxation experiments

to be homogenous and dynamically fluctuating, rather than being manifested as static spatially

inhomogeneous regions [34, 35].

The insulating state in SmB6 in which low energy excitations lack long range charge trans-
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port as shown by the activated dc electrical conductivity, but display extended character as

shown by quantum oscillations, poses a mystery. A clue might be provided by slow fluctuations

between a collectively hybridized insulating state and an unhybridized state in which the con-

duction electrons form a solely conduction electron Fermi surface, similar to that we observe [2,

35, 36, 37, 38, 39]. A fluctuation timescale in the range between 10−8 and 10−11 seconds is

suggested by previous x-ray absorption spectroscopy and Mössbauer measurements [40]. This

timescale is longer or comparable with the inverse cyclotron frequency (1/ωc) which is on the

order of 10−11 seconds for the measured cyclotron orbits. Intriguingly, similar slow fluctuations

have been invoked to explain quantum critical signatures in the metallic f -electron system β-

YbAlB4 [41]. SmB6 may be viewed as being on the border of quantum criticality in the sense

that it transforms from a non-magnetic insulating phase to a magnetic metallic phase under ap-

plied pressures on the order of 10 GPa [42, 43, 44, 45], which is in contrast to other metallic rare

earth hexaborides in which the f -electrons order magnetically in the ambient ground state. Our

observation of a large three-dimensional conduction electron Fermi surface revealed by quan-

tum oscillations may be related to reports of a residual density of states at the Fermi energy in

SmB6 through measurements of heat capacity [23, 46], optical conductivity [47], Raman scat-

tering [48], and neutron scattering [49]. Another possibility is that quantum oscillations could

arise even in a system with a gap in the excitation spectrum at the Fermi energy, provided that

the size of the gap is not much larger than the cyclotron energy [50]. Within this scenario,

the residual density of states observed at the Fermi energy with complementary measurements,

and the steep upturn in quantum oscillation amplitude we observe at low temperatures appear

challenging to explain.
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