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Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but
only a small minority of them are stable under ambient conditions. The rest reacts and
decomposes in air, which has severely hindered their investigation and possible uses. Here we
introduce a remedial approach based on cleavage, transfer, alignment and encapsulation of air-
sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose
two archetypal two-dimensional crystals unstable in air: black phosphorus and niobium
diselenide. Our field-effect devices made from their monolayers are conductive and fully stable
under ambient conditions, in contrast to the counterparts processed in air. NbSe, remains
superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices
reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to
significantly expand the range of experimentally accessible two-dimensional crystals and their
heterostructures.

During recent years increasing attention has been paid to various two-dimensional (2D) crystals that
can be mechanically exfoliated down to a monolayer or grown as monolayers on sacrificial
substrates.!® These materials offer a wide range of properties and include metals, semiconductors,
normal and topological insulators, superconductors, etc. Moreover, individual 2D crystals can be
combined in van der Waals (vdW) heterostructures,® which allows a way to expand much further the
range of possible functionalities and assessable scientific problems. Unfortunately, current efforts in
this direction are severely limited by the fact that many of 2D crystals rapidly degrade in air, reacting
usually with oxygen and/or moisture.*® As a result, the research field has so far been revolving
mainly around a handful of highly stable and chemically inert monolayers such as graphene,
hexagonal boron nitride (hBN) and several semiconducting dichalcogenides (MoS;, WSe, and
similar). To overcome the problem with poor stability of other interesting monolayers, we have
developed a fabrication technique that allows air-sensitive crystals to be handled entirely under
oxygen and moisture free conditions. In this report, we demonstrate capabilities of this approach
using 2D crystals of black phosphorus (BP) and niobium diselenide.



Bulk NbSe; consists of covalently bonded Se—Nb—Se layers assembled in A-B-A-B fashion by weak
(vdW-like) Se-Se bonding. It is a type-ll s-wave superconductor with the transition temperature, Tg,
of 7.2 K. There have been four previous studies of cleaved 2D niobium diselenide.? *! The 1970s
investigation® used changes in resistivity p to estimate the number of layers, N, in the measured
NbSe, crystallites and, as a result, underestimated their real thickness by one-two orders of
magnitude. In other studies, NbSe, was found to be conductive down to a monolayer? and some
traces of superconductivity were reported even in a 2-3 layer device.® In contrast, the most recent
paper found that thin NbSe, deteriorated greatly, disallowing devices thinner than several
nanometres.!! The latter observation agrees with our own efforts to study superconductivity in 2D
NbSe;, using the standard microfabrication procedures that work well for graphene and air-stable
dichalcogenides'® (see below). The disagreement between different studies can be attributed to
either accidental polymer contamination that coated and protected NbSe; in refs. [* 9] or the use of
lithographic techniques in ref. [*1], which enhances oxidation during UV exposure.?

The second selected material, BP, has attracted huge interest during the last year.* % 1321 |ts atomic
layers have a hexagonal structure, similar to graphene, but strongly corrugated.’® The changes in
symmetry make BP a semiconductor with a direct band gap that strongly depends on the number of
layers.> Relatively thick crystals (=10 nm or 15 layers) have been shown to survive the standard
lithographic procedures and show hole mobilities u of up to 4,000 cm?V-ts? (refs. [28]). For thinner
devices, u rapidly decreases with N down to 10 — 100 cm? V- s for few-layer BP.»® Due to reactivity
with oxygen and moisture, thin BP is found to rapidly develop a porous structure, which can occur in
a matter of minutes, and eventually decomposes.* > ® Mono- and bi- layer crystals of BP were
studied by atomic force microscopy (AFM) and optical spectroscopy!” ¥ but their transport
measurements are lacking. Moreover, the reports of poor stability have raised questions whether
some of those results refer to intrinsic phosphorene or a partially decomposed material.* > 1®

Glove box assembly

To avoid oxygen and moisture, we have employed an argon environment provided by a glove box
with levels of H,O and O, below 0.1 ppm. The relatively small size of available 2D crystals
necessitates micrometre-scale precision in their positioning during transfer and encapsulation. Such
positioning is impossible using commercially available glove boxes, which permit high-resolution
optical microscopy but always rely on manual operation. To this end, a fully motorized
micromanipulation station has been specially built, which allows us to cleave, align and transfer
micrometre-sized crystals robotically, using translation stages and micromanipulators, all
programmed and operated remotely from the outside with joysticks.

As the first step during typical glove-box assembly, an air-sensitive bulk layered material is exfoliated
onto a thin PMMA film. Then, a 2D crystal chosen in an optical microscope is lifted with monolayer
hBN using a technique described in ref. [2?] but with remote control. The resulting stack is then
deposited typically onto a relatively large hBN crystal residing on a chosen substrate. The
encapsulating hBN crystals are impermeable to all gases and liquids® ?* and provide permanent
protection for air-sensitive 2D crystals against degradation. The final assembly can be taken out of
the glove box to be either investigated or processed further into devices for transport
measurements using common lithographic techniques.

Importantly, the monolayer hBN covers the assembled vdW heterostructures from the top and, for
its relatively high tunnel conductivity,?® allows electrical contacts by directly evaporating metal films
onto it, without etching openings in the encapsulation. The achieved contact resistances using
standard thin films (5nm Cr/ 100 nm Au) are between 1 and 10 kQ, depending on encapsulated



material, with the highest values observed for semiconducting 2D crystals such as few-layer BP.
Reactive ion etching can later be employed to define multiterminal mesas of a desired geometry. We
did not notice degradation due to the resulting open edges over many weeks of storage and
measurements.

Experimental devices

We have successfully studied electron transport in many BP and NbSe;, devices down to a monolayer
in thickness. Schematics of our devices are explained in Fig. 1. In the case of BP, we have used the
standard assembly described above: 20-100 nm hBN as an atomically flat substrate?> ¢ and
monolayer hBN as the encapsulating layer (Fig. 1a). It is easy to confuse been mono- and bi- layer
hBN3! and, occasionally, our devices had bilayer hBN as the top layer. This resulted in a contact
resistance by a factor of 10 higher, which was acceptable although complicated the transport
measurements. The whole multilayer stack was placed on top of an oxidized Si wafer (300 nm of
SiO3) which served as a back gate in our transport studies.

For 2D NbSe,, we often opted for monolayer graphene as the encapsulating top layer (Fig. 1c)
because it is much easier to visualize and transfer graphene than even thicker, few-layer hBN?’. The
parallel conductance through graphene encapsulation has little effect on superconductivity in NbSe;,
which has much higher carrier density per monolayer than graphene. To confirm that such influence
is indeed minor, we have also fabricated two devices (3 and 4 layers of NbSe;) encapsulated with
monolayer hBN. The reference devices exhibited practically the same p and T¢ as graphene-
encapsulated NbSe; of the same thickness. For consistency, we refer below to the latter devices. As
a substrate for NbSe; we used both hBN (on top of the oxidized Si wafer) and bare SrTiOs3 (STO),
which again yielded similar results. The latter substrates were made from commercially available
polished wafers (500 pum in thickness) which were annealed at 950°C in oxygen. The annealing
resulted in large (~1 um wide) atomically flat terraces.? Below we present mainly results for NbSe;
on STO, because of considerable current interest in high-temperature superconductivity observed in
conceptually similar structures (monolayer FeSe grown on STO) in which Tc = 100 K is often
attributed to STO’s high dielectric constant.?®

BP-BN 0.56 nm
BN-BN 0.33 nm
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Figure 1: Glove-box encapsulated air-sensitive 2D crystals. (a) Schematics of the studied BP devices: mono- or
few- layer BP is placed on an hBN substrate and protected with hBN. (b) Left — High angle annular dark-field
STEM image of a heterostructure consisting of bulk hBN / bilayer BP / bilayer hBN and a top gold contact.



Interlayer distances found from such images are stated on the right. Centre — STEM image superimposed with
elemental profiles for the boron-K edge (blue) and phosphorus-Lz3 edge (green) which are found using EELS for
the same area. (c) Schematics of our NbSe: devices: 2D NbSe: is placed on hBN or atomically flat STO and
covered with monolayer graphene. (d) Left — Cross-sectional bright field STEM image of a bulk hBN / bilayer
NbSez/ bulk hBN with the extracted interlayer distances on the right. Centre — Superimposed STEM-EELS image
with elemental profiles for the niobium—Ma,s edge (orange) and selenium-Lz edge (green).

Cross-sectional characterization

It has previously been reported that contamination trapped between 2D crystals of graphene, hBN
and stable dichalcogenides tends to segregate into isolated pockets leaving behind large areas with
atomically clean and sharp interfaces.?® The self-cleaning is however not a universal process and
does not occur for all interfaces (for example, not for those involving 2D oxides).?? In this work, we
have observed self-cleaning of both BP and NbSe; surfaces in contact with graphene and hBN so that
pockets of aggregated contamination clearly appear during glove-box assembly.?* 3% Accordingly, our
Hall bar devices were lithographically defined away from contamination pockets.>® To confirm that
the device interfaces are atomically clean, we have used a Ga* focused ion beam (FIB) to prepare
thin (50 nm) cross-sections from some of our devices after their transport measurements. Figs. 1b,d
show representative scanning transmission electron microscopy (STEM) images for 2D crystals of BP
and NbSe;, which are also accompanied by their cross-sections’ analysis using electron energy loss
spectroscopy (EELS).

The STEM image in Fig. 1d shows bilayer NbSe; sandwiched between two hBN crystals. Analysis of
the interlayer separations yields values close to those in bulk NbSe; and hBN, which indicates little or
no contamination trapped between the assembled layers. On the other hand, STEM studies of BP
heterostructures were hindered by their high sensitivity to air. Although our cross-sectional
specimens were exposed to air only for a few minutes during their transfer from FIB to STEM, BP
heterostructures (unlike NbSe;) already showed significant structural deterioration. In most of the
studied specimens, bilayer BP was found to expand fourfold and lost any signs of a layered structure.
Only in the contact regions where the heterostructures were covered with gold, we succeeded to
find the BP layer nearly intact. In Fig. 1b the following layer sequence can be clearly seen: bulk hBN /
bilayer BP / bilayer hBN / bulk Au. The interlayer distances calculated from the images for hBN are
close to those in the bulk, within our experimental accuracy. However, the interlayer distance in BP
is ~ 0.6 nm, somewhat larger than 0.55 nm for bulk BP. We attribute this enlargement to initial
stages of degradation of our cross-sectional specimens.

It is known that the exact thickness of exfoliated 2D crystals is difficult to measure accurately using
AFM, which vyields significant variations in apparent thickness. This has been attributed to the
presence of an additional contamination (‘dead’ layer) between 2D crystals and substrates and/or
differences in their mechanical and adhesive properties with respect to the AFM tip (see, e.g., ref.
[2]). For our devices with self-cleaned interfaces and covered with a protective monolayer over
atomic steps, we have found their height to follow exactly the layer number N multiplied by the bulk
interlayer distance with no evidence for any dead layer (Fig. 2a).

Electron transport in encapsulated 2D black phosphorus

We have studied more than 10 field-effect BP devices with thicknesses ranging from a monolayer to
N = 20. All the devices exhibited ambipolar behaviour such that both hole and electron gases could
be induced by applying sufficiently high gate voltage V. No degradation in the devices quality with
time was noticed over the whole period of investigations lasting for several months. A summary of
our transport studies for BP is given in Fig. 2. One can see that the response to field-effect doping is
strongly asymmetric (Fig. 2b) with much higher conductivities ¢ and, hence, higher u observed for



holes, in agreement with the previous reports.* 6% 1321 At liquid helium temperatures (T), field-effect
mobilities measured in the 4-probe geometry were found to reach >4,000 cm? Vs for our bulk-like
devices (> 10 layers) but 4 became progressively lower for thinner crystals, typically ~1,200, 80 and 1
cm? Vst for tri-, bi- and mono- layer devices, respectively (Fig. 2b). Note that gate-induced charge
carriers in BP reside within a near-surface quantum well that has a width of only a few layers® 2! and,
therefore, devices thicker than several atomic layers should conceptually be viewed as bulk BP with
near-surface 2D gases.

Trilayer and thicker devices exhibited strong T dependence of ¢, which indicates that room-T u of BP
is limited to <1,000 cm? V! s because of phonon scattering. Low-T u found from Hall effect
measurements were by a factor of ~ 2 lower than those determined from the electric field effect for
all N, in agreement with previous reports.* %% 1321 Close to room T, differences in Hall and field effect
u diminish (inset in Fig. 2b). As for dominant scattering mechanism at low T, we can safely rule out
charged impurities in hBN and, probably, contamination left at the hBN-BP interfaces. Most likely,
the observed low-T u are limited by structural defects and strain induced during cleavage and
transfer.
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Figure 2: Transport properties of atomically thin BP. (a) Left - Trilayer BP crystal (outlined in red and partially
folded) is encapsulated with monolayer hBN outlined with the black lines. Right top — AFM measurements of
thickness for several encapsulated BP samples. The dashed lines correspond to the interlayer spacing of 5.5 A.
Bottom — Optical micrograph of our typical Hall bar devices. Scale bars: 5 um. (b) Source-drain current at 10 K
as a function of Vg for BP devices of different thickness, bias voltage 30 mV. Inset: T dependences of u found
using Hall and field effect measurements (red and blue curves, respectively) for 3- and 20- layer BP. (c)
Changes in resistance (AR) for the devices in (b). The red arrows mark spin-splitting of Landau levels. Inset:
Angle dependence of the oscillation frequency. (d) Colour map p(Vg,B) for the 20-layer device. Navy to white: p
changes by 115 Ohm. (e) T dependence of SdH oscillations. Inset: Examples at different temperatures. Their
amplitude can be fitted by the Lifshitz—Kosevich formula (solid curves in the main plot). (f) Amplitude of SdH
oscillations in the 20-layer BP for different orientations of magnetic field. Examples are shown in the inset.



Two recent papers reported Shubnikov-de Haas (SdH) oscillations in BP devices thicker than 10
layers.> 20 The relatively high u achieved for our glove-box encapsulated devices allowed the
observation of SdH oscillations even for trilayer BP (Fig. 2c). The oscillations become visible in
magnetic fields B above a few Tesla, in agreement with the measured field-effect u. Their period,
1/Bs, is found to match the carrier concentration n estimated from the flat capacitor model, which
shows that the majority of gate-induced carriers participate in electron transport. In order to
confirm the two-dimensional nature of carriers in 2D BP, we have studied Br as a function of the
angle @ between B and the axis perpendicular to the BP plane. The data follow the expected cos(6)
dependence that describes the field component perpendicular to the 2D plane, B, (inset of Fig. 2c).
Furthermore, we have carried out analysis of T dependence of SdH oscillations” amplitude and, using
Lifshitz—Kosevich formula, determined the effective mass for holes as my = 0.24 £0.02 mo where mg
is the free electron mass (Fig. 2e). This is in good agreement with ab initio values expected for few-
layer BP® but notably smaller that mn 0.3 and 0.35 mo reported in refs. [ ?°], respectively. Note that
all the reported values are smaller than mn =0.42mo found for bulk BP.°

For devices with N > 10 layers we also observed lifting of the spin degeneracy in B above 18 T (Fig.
2d). The Zeeman energy depends on the total magnetic field B whereas the Landau level separation
is determined by B,. This allows one to distinguish between the two contributions and find the g-
factor by studying angular dependence of SdH oscillations. Figure 2f shows their amplitude
normalised by the value in the perpendicular field. Following the analysis suggested in ref. [3!], we
can fit the observed angular dependence using a single parameter g, which allows us to determine
the g-factor value for the near-surface 2D hole gas as ~ 2.3 £ 0.2.

Finally, to qualitatively illustrate how essential the glove-box encapsulation can be, we have tested
photoluminescence (PL) from our 2D BP devices. No signal could be detected in any of them. To
reconcile this observation with several recent reports on strong luminescence from few-layer BP
samples, we have prepared partially encapsulated crystals such as the one shown in Fig. 3a. Strong
luminescence could easily be detected from areas of thin BP crystals, which were exposed to air. The
observed spectra (Fig. 3d) are also similar to those reported earlier for few-layer BP crystals (see,
e.g., refs. [> ']). These observations suggest that the reported PL signals probably require some
disorder induced by exposure to air. Furthermore, we have found that scanning with even a mild
laser power of < 100 puW strongly increased the decomposition of BP, so that after only a few scans
the entire non-encapsulated region was no longer visible in an optical microscope and ceased to
yield any PL signal (Fig. 3d). This agrees well with the reports on optically-stimulated etching of BP in
air.> ¥ In contrast, encapsulated regions did not exhibit any changes even after many hours of
continuous laser light exposure at ~ 1 mW.



Figure 3: Only non-protected few-layer BP shows strong photoluminescence. (a) Bilayer crystal (outlined with
black dots) is partially covered with few-layer hBN (semi-transparent blue area with the edge marked by the
blue curve). Scale bar: 10 um. (b) Photoluminescence map for this sample. No signal comes from the
encapsulated BP but thin areas exposed to air are strongly luminescent. (c) After a few scans, clear structural
changes occur in the non-protected part of the same BP crystal, which is attributed to photo-activated
degradation.” (d) Subsequent scans of the damaged area yield no signal. Inset: Spectrum typical for few-layer
BP during the first scan as in (b).

Superconducting properties of few-layer NbSe;

To provide a reference for glove-box encapsulation, several NbSe; devices, all thinner than 10 layers,
were made by the standard encapsulation with hBN but in air. All of them were found to be
nonconductive, in agreement with the results reported in ref. [*]. In contrast, all the devices
prepared using glove-box encapsulation (Fig. 4a) exhibited metallic behaviour of their p as a function
of T (Fig. 4b) and a clear superconducting transition with a zero resistance (R) state (Figs. 4b, c). The
transition is remarkably sharp (Fig. 4c), and the derivative dR/dT found by numerical differentiation
of the measured resistance curves exhibits a single symmetric peak. The latter indicates high
homogeneity of the devices (cf. ref. [*]). The critical temperature (defined experimentally as the
peak position in dR/dT) gradually decreases with decreasing N (inset of Fig. 4c) but the suppression is
relatively small even for the bilayer, indicating that 2D NbSe, remains largely free of disorder (cf.
strong suppression of T¢ for few-layer Pb films®?). The robust Tc is consistent with the fact that the
normal-state R of our devices (Fig. 4c) remains well below the threshold given by the resistance
quantum, h/4e?, above which superconductivity is expected to be strongly suppressed by disorder.3*
35 Only for monolayer NbSe, do we observe a significant drop in Tc to values below 2 K, even though
the 2D superconductor still remains very far from the resistance-quantum threshold. The origin of
the observed rapid changes of Tc in few-layer superconductors remains to be understood.

Furthermore, we have studied the influence of electric-field doping on Tc for 2D NbSe; (Fig. 4c, d). To
this end, we applied a gate voltage, V;, to the metal film deposited on the back side of our 500 um
thick STO wafers. This is possible because STO has an extremely high dielectric constant (~10%) at
liquid helium temperatures.®® 3 For our particular wafers, we have calibrated their dielectric
response as a function of both T and V; by employing Hall bar devices made from graphene placed



on top of the same STO wafers. The measurements yielded the field-effect density An(V;) shown in
the upper x-axis of Fig. 4d. This axis shows that by applying Vz > 50 V at T < 10 K we induced An
~1.3x10% cm™. Above this voltage, the dielectric constant of STO drops to such low values that a
further increase in voltage results in little additional doping.?” The field-induced An should be
compared with the total carrier density n of intrinsic charge carriers in NbSe,. Literature values for
bulk NbSe; yield n. = 0.9x10**> cm per monolayer. Our Hall effect measurements employing the two
NbSe; devices encapsulated with hBN found n = N x 1.1+0.1x10*®* cm, which indicates little change
in carrier density for glove-box encapsulated 2D NbSe; with respect to bulk NbSe..
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Figure 4: Electron transport and superconductivity in few-layer NbSe.. (a) Optical micrograph showing 4
multiterminal NbSe: devices encapsulated with graphene. Scale bar: 2 um. Inset: AFM topography for one of
the devices (outlined with the green box in the main image) before its etching to define the Hall bar mesa (its
later position is indicated by the white lines). (b) Resistance as a function of T for representative devices with
different N. Resistivity is normalized to its value near the superconducting transition. (c) Changes in Tc with N.
The dotted line in the inset is a guide to the eye. (d) Example of maps R(VeT) measured near the
superconducting transition for N = 4. Blue to red: 0 to 20 Ohm. Yellow corresponds to the middle of the resistive
transition. The black dashed curve shows its expected shift given by eq. (1). The upper x-axis is nonlinear and
corresponds to the field-induced An. Inset: Changes in the critical temperature ATc for different N, which
correspond to swapping Vg between 0 and +100 V. The green curve shows the expected functional dependence
ATc oc 1/N. (e) Critical current at different T for bilayer NbSe:. (f) Superconducting phase diagram R(B,T) for the
same device. Blue to red: 0 to 80 Ohm. All the presented data are for NbSe; on STO and devices encapsulated
with monolayer graphene (see section Experimental devices).

Our 2D NbSe; devices show small but notable changes in Tc with applied gate voltage, despite the
maximum electric-field doping reaches only ~1% of n.. One can describe the observed changes by
the Bardeen-Cooper-Schrieffer (BCS) theory that suggests'©



ATAV;) = Te0)x 2 In (F520), (1)
where Tp =225 K is the Debye temperature in bulk NbSe; and T¢(0) the observed critical temperature
for different N at zero gate voltage. Eq. (1) implies that Tc should vary linearly with induced An and
the expected behaviour of T¢ as a function of V; is shown by the dashed curve in Fig. 4d. The changes
are strongly nonlinear and saturate at V, above +50 V because of the STO dielectric response.3® %
One can see from Fig. 4d that the centre of the superconducting transition in R(T), which is indicated
by yellow, shifts with increasing |V,| and closely follows the dependence expected from eq. (1).
Furthermore, according to (1), ATc/Tc(0) should increase with decreasing the number of layers as
1/N, and this functional dependence is shown by the solid green curve in the inset of Fig. 4d. The
observed field-effect changes in Tc qualitatively follow the theoretical dependences but their
absolute values are approximately 3 times smaller than eq. (1) predicts. This is in contrast to the
earlier measurements!® where changes significantly larger than those expected in theory were
reported for electric-field modulation of a partial superconducting transition in a NbSe;, device with
N = 2 - 3. The field-effect changes in Tc reported in ref. [*!] for thick NbSe, (~20 layer) strongly
scattered but are in better agreement with our observations. Possible reasons for disagreement
between experiments and theory have been discussed in ref. [1°]. In addition, eq. (1) may need
modification for this 2D limit, and the coupling constant and Tp may change in few-layer NbSe; due
to atomic thickness. Furthermore, let us point out that field-induced carriers reside within one
monolayer closest to the gate. This means that any changes in superconductivity within this layer are
affected by the proximity of other layers that do not experience any field effect. This observation
agrees with the fact that the superconducting transition becomes progressively sharper with
decreasing N and, rather surprisingly, is sharpest for bilayer NbSe,.

Finally, it is instructive to acknowledge recent reports where monolayer FeSe grown by molecular
beam epitaxy on STO was found to exhibit Tc reaching 100 K.% 32 The origin of this dramatic
enhancement is not understood and, as mentioned above, the use of STO as a substrate in our
experiments with mono- and few-layer NbSe, may provide some clues. For 2D NbSe; on STO, we
observed only suppression of Tc with respect to its bulk value and no difference with respect to using
hBN as a substrate. The difference in electronic properties for FeSe and NbSe; is not expected to be
crucial for any enhancement mechanism proposed so far. Nonetheless, it is also worth mentioning
that we have carried out similar experiments using 4- and 6- layer FeSe that remain superconducting
due to the glove-box encapsulation but FeSe on STO again showed reduced T, in qualitative
agreement with the behaviour of 2D NbSe; of the same thickness. Therefore, the critical difference
between our experiments and those reported in refs. [* 3?] could be different quality, disorder and
strain. The use of non-doped STO in our experiments could also be important in considering possible
enhancement mechanisms.

Conclusion

The described technology offers a universal platform for studying many new 2D crystals and vdW
heterostructures, which so far could not be assessed experimentally because of their decomposition
under ambient conditions and/or during lithography processing. The improvement provided by
assembly in oxygen- and water- free environment is exemplified by our observation of
superconductivity in monolayer NbSe, and the field-effect metallic conductivity for monolayer BP.
They show no evidence of degradation and photoluminescence, even after keeping the encapsulated
devices in air for many weeks. Despite the fact that the approach involves computer-controlled
remote cleavage, positioning and handling of micron-sized monolayers, the technology is relatively
straightforward, and we expect it to become wide spread within a short space of time.



Methods

Preparation of thin cross sections suitable for high-resolution STEM imaging was performed using
an approach similar to that reported in ref. [*°]. A dual-beam instrument (FEI Nova NanolLab 600),
combining a field emission scanning electron microscope (SEM) and focussed ion beam (FIB) in the
same chamber, has been used for site-specific preparation of cross-sectional samples using the lift-
out approach.3® Non-destructive SEM imaging of the device before milling allowed us to identify an
area suitable for side-view imaging. Protective coatings of carbon (20 nm) and Au-Pd (30 nm) were
sputtered onto the whole device surface ex situ, followed by an additional protective layer of Pt (2
pum thick) deposited in situ in the region of interest. Trenches were milled around the region of
interest using a 30 kV Ga+ beam with a current of 1-10 nA to reduce thickness of the prospective
slice to 1 um. An Omniprobe™ micromanipulator was brought to touch the Pt protective top layer
and secured there using additional Pt deposited in situ with the ion beam. The specimen lamella was
then cut free from the substrate by ion milling and transferred to an Omniprobe™ TEM grid through
a combination of Pt deposition and ion milling. The sample was thinned to near electron
transparency with 30 kV Ga* at 0.1-0.5 nA. Final polishing steps at 5 kV (50 pA) and 2 kV (90 pA)
reduced the lamella thickness to 20-70 nm and removed most of the amorphous surface layer that
resulted from the higher energy milling. Site specific preparation was confirmed by comparing the
region of interest viewed in SEM with the STEM image of the cross-sectional lamella, using gold
contacts and pockets of contamination as features of reference.

High resolution STEM imaging and spectroscopy was performed using a probe side aberration-
corrected FEI Titan G2 80-200 kV with an X-FEG electron source operated at 200 kV. Imaging and
spectroscopy were carried out using a Gatan Imaging Filter (GIF) Quantum ER system with a 5 mm
entrance aperture. High angle annular dark field (HAADF) and bright field STEM imaging was
performed using a probe convergence angle of 21 mrad, a HAADF inner angle of 62 mrad and a
probe current of ~ 75 pA. Electron energy loss spectroscopy (EELS) was carried out using the same
Gatan system with a 5 mm entrance aperture, a collection angle of 62 mrad and an energy
dispersion of 1 eV. The multilayer structures were oriented along an <hkl0> crystallographic
direction by taking advantage of the Kikuchi bands of the Si substrate.

Photoluminescence (PL) spectroscopy was performed at room temperature in air using a confocal
Raman spectrometer (Witec). A laser spot of 0.5 um in size was obtained using a Nikon 100x
objective. Samples were illuminated with a 514.5 nm (2.41 eV) light at 100 pW intensity. Spatially
resolved PL mapping was acquired using a piezoelectric stage, with an emission range of 690 to 810
nm (corresponding to a 600 g/mm spectrometer grating).
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