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Abstract

Individuals behave differently when they know the objective probability of
events and when they do not. The smooth ambiguity model accommodates
both ambiguity (uncertainty) and risk. For an incomplete, competitive as-
set market, we develop a revealed preference test for asset demand to be
consistent with the maximization of smooth ambiguity preferences; and we
show that ambiguity preferences constructed from finite observations con-
verge to underlying ambiguity preferences as observations become dense.
Subsequently, we give sufficient conditions for the asset demand generated
by smooth ambiguity preferences to identify the ambiguity and risk indices
as well as the ambiguity probability measure. We do not require ambiguity
beliefs to be observable: in a generalized specification, they may not even be
defined. An ambiguity free asset plays an important role for identification.

Keywords: risk; uncertainty; identification.

JEL Classification Number: D11; D80; D81.



1 Introduction

Ambiguity preferences distinguish between uncertainty, where an individual
cannot assign unambiguous probabilities to specific events, and risk, where
such an assignment is possible.1 Indeed, over the years following the critical
contributions of Ellsberg (1961) in response to von Neumann and Morgen-
stern (1947) and Savage (1954), laboratory data have demonstrated that in-
dividuals often do not conform to expected utility that does not distinguish
between risk and uncertainty;2 and, recently, there has been a significant
increase in experimental tests that focus on this and related questions.

Even though the vast majority of studies of attitudes towards risk have
considered lottery experiments, an alternative empirical approach considers
an asset demand rather than a lottery setting. Indeed, Choi, Fishman, Gale,
and Kariv (2007) gave persuasive arguments for the potential superiority of
revealed preference tests based on asset demands over lottery tests; they also
provided several interesting applications. This approach has not, however,
of yet, been extended to the case of ambiguity preferences; in particular, for
incomplete asset markets. To this end, we develop a revealed preference test
to determine whether asset demand is consistent with the maximization of
a representation of ambiguity preferences; and, conditional on the existence
of such a representation, we derive sufficient conditions for the identification
of an individual’s distinct preferences over uncertainty and risk. Impor-
tantly, both the revealed preference test and identification process apply to
incomplete asset markets.

A number of alternative models distinguish between uncertainty and risk:
the seminal formulation of multiple priors and maxmin preferences of Gilboa
and Schmeidler (1989), multiplier preferences of Anderson, Hansen, and Sar-
gent (2003) and variational preferences of Maccheroni, Marinacci, and Rus-
tichini (2009). We choose to focus on the model of smooth ambiguity prefer-
ences of Klibanoff, Marinacci, and Mukerji (2005) for several reasons.3 First,
as the authors note, the model (i) achieves a separation of ambiguity as char-
acterized by their uncertainty beliefs and their aversion to uncertainty, and
it (ii) generates smooth indifference curves, rather than kinked indifference
curves that may obfuscate the argument. In addition, the approach applies
to first- and second-order distributions and, as a result, we can readily re-
late the analysis to the familiar expected utility case. Finally, the smooth
ambiguity model has been used in important asset demand analyses, such as

1Ghirardato (2004), p. 36.
2Camerer and Weber (1992) and Attanasi, Gollier, Montesano, and Pace (2014) and

the references cited therein.
3An interesting extension of this model is in Seo (2009).
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Gollier (2011). Mukerji and Tallon (2001) argued that competitive markets
in which investors maximize ambiguity preferences display properties that
are both empirically relevant and excluded by expected utility.4

For a finite set of observations, Varian (1983a), in an extension of Afriat
(1967), provided conditions necessary and sufficient for portfolio choices to be
generated by expected utility maximization with a known distribution of as-
set payoffs in incomplete markets. For the case of complete financial markets,
Kübler, Selden, and Wei (2014) eliminated quantifiers under the assumption
that the probability distribution over states of the world is known and can
vary; as did Echenique and Saito (2015) for subjective expected utility, un-
der the assumption that beliefs are unknown. Kübler and Polemarchakis
(forthcoming) proved the convergence of preferences and beliefs constructed
in Varian (1983a) or Echenique and Saito (2015) to a unique profile as the
number of observations becomes dense. Two important applications of this
approach to ambiguity preferences are Bayer, Bose, Polisson, and Renou
(2013) and Ahn, Choi, Gale, and Kariv (2014). In the former, the authors
derived testable inequality conditions for the data to be consistent with am-
biguity preferences; both sets of authors make the restrictive assumption
that the asset market is complete and all risks are insurable. Here, we re-
lax the assumption of complete markets and derive necessary and sufficient
conditions for the observed asset demand to be compatible with smooth am-
biguity preferences. And we demonstrate the convergence of preferences and
beliefs generated in the revealed preference argument to the unique underly-
ing characteristics. It is important to note that convergence bridges the gap
between the recoverability and the identification of ambiguity preferences,
and it answers the question whether demand is indeed generated by am-
biguity preferences. Identification refers to the uniqueness of unobservable
characteristics; recoverability refers to a method by which these characteris-
tics can be known. Kübler, Selden, and Wei (2014) gave a functional form
criterion for a demand function for consumption and assets to be derived
from expected utility maximization; Kübler, Selden, and Wei (2016) derived
necessary and sufficient conditions for consumption and asset demands to
be rationalized by Kreps-Porteus-Selden preferences, importantly, in an in-
complete asset market. Integrability or functional form conditions for the
demand for consumption and assets to be derived from the maximization of
ambiguity preferences is the subject of further research. In addition, we in-
troduce a generalized version of smooth ambiguity preferences that makes no
reference to subjective beliefs: they may not even be defined. The revealed

4The smooth ambiguity model has not been without controversy – Epstein (2010) and
Klibanoff, Marinacci, and Mukerji (2012).
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preference test as well as identification apply to this extended model.5

The identification of fundamentals from observable market data can be
posed, most simply, in the context of certainty; there, Mas-Colell (1977)
demonstrated that the demand function identifies the preferences of the con-
sumer. Importantly, the argument for identification is local: if prices are
restricted to an open neighborhood, they identify fundamentals in an asso-
ciated neighborhood. Evidently, the arguments extend to economies under
pure risk, but with a complete system of markets in elementary securities.
Identification becomes problematic, and more interesting, when the set of
observations is restricted. Under pure risk, this arises when the asset mar-
ket is incomplete and the payoffs to investors are restricted to a subspace of
possible payoffs. Nevertheless, Green, Lau, and Polemarchakis (1979), Dy-
bvig and Polemarchakis (1981) and Geanakoplos and Polemarchakis (1990)
demonstrated that identification is possible as long as the utility function has
an expected utility representation with a state-independent cardinal utility
index, and the distribution of asset payoffs is known. Polemarchakis (1983)
extended the argument to the joint identification of tastes and beliefs; but,
the argument relies crucially on the presence of a risk free asset and, more
importantly, does not allow risk due to future endowments. Recently, Kübler
and Polemarchakis (forthcoming) derived conditions that guarantee identi-
fication with no knowledge either of the cardinal utility index (attitudes
towards risk) or of the distribution of future endowments or payoffs of assets;
the argument applies even if the asset market is incomplete and demand is
observed only locally. Here, assuming the revealed preference test confirms
that asset demands are indeed consistent with smooth ambiguity preferences,
we derive sufficient conditions such that the uncertainty and risk indices can
be identified from asset demand. One key innovation in the extension of
prior results under pure risk is the introduction of an ambiguity free as-
set with payoff distributions that coincide across ambiguity or uncertainty
states. As a result, the identification process can be conducted for both the
smooth ambiguity model and its extended version, where for the latter ex-
istence of subjective probabilities is not required. The portfolio indifference
correspondence is an alternative to asset demand for identification.

The rest of the paper is organized as follows. The next section introduces
notation and the portfolio optimization problem. In Section 3, we give
revealed preference tests for the smooth ambiguity model and its generalized
version; and we show that smooth ambiguity preferences constructed from

5 Unlike Bayer, Bose, Polisson, and Renou (2013) who assumed that neither ambiguity
nor risk beliefs are known, but also assumed they are invariant across observations, here, in
the revealed preference test for the smooth ambiguity model, we assume risk probabilities
are known, but may vary across observations.
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finite observations converge to the unique true underlying preferences when
the number of observations becomes dense. In Section 4, we first review the
identification of the risk index in the traditional expected utility model, and
then develop the identification of the risk and ambiguity indices for ambiguity
preferences. In Section 5, we conclude. In the Appendix, we give proofs of
selected results and supplemental material.

2 Setup

States of the world are ω ∈ Ω, where Ω is a finite set and has the following
product structure: Ω = A × S, where a ∈ A are ambiguity states, and s ∈ S
are risk states. Ω can be interpreted as a set of possible outcomes of two-
stage lotteries; in this case, elements in A and S are, respectively, outcomes
of first and second stage lotteries.6 A probability measure on the set of states
of the world, π ∈ ∆(Ω), can be expressed as π = µ⊗ ν, where µ ∈ ∆(A) is
a probability measure over states of uncertainty, ν : A → ∆(S) is a family
of conditional probability measures over states of risk, and πas = µaνas.

A distribution of wealth across risk states is

x = (..., xs, ...) ∈ RS
+.

A utility function over distributions of wealth is

U(x;ν) : RS
+ → R, 7

that is smooth, strictly monotonically increasing and strictly quasi-concave
in x, continuous in ν and satisfies a boundary condition: the closure of the
indifference “curve” through any strictly positive distribution is contained in
the strictly positive orthant or

x ∈ R++ ⇒ Cl {x : U(x;ν) = U(x̄;ν)} ∈ R++.

In Klibanoff, Marinacci, and Mukerji (2005) and Seo (2009), the proba-
bility measure π = µ ⊗ ν is given, and a set of axioms are necessary and
sufficient for the existence of a risk index and an ambiguity index,

u : R++ → R, and φ̃ : u(R++)→ R,

respectively, such that

U(x;ν) = Eµφ̃
(
Eνau(xs)

)
(1)

6Segal (1990).
7We indicate explicitly the dependence of utility on the conditional probability measures

ν, since ν is typically observable and varies exogenously.
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represents ambiguity preferences. Alternatively, if

φ = φ̃ ◦ u, φ : R++ → R,

then (1) takes the form

U(x;ν) = Eµφ

(
u−1
(
Eνau(xs)

))
. (2)

For the representation (1), a positive affine transformation of the risk
index u does not change preferences if and only if a compensating transfor-
mation is applied to φ̃. In contrast, the preferences corresponding to (2) are
invariant to a positive affine transformation of the risk index.8 Under the for-
mulation (1), an individual is strictly ambiguity averse if φ̃ is strictly concave,
and ambiguity neutral if φ̃ is linear. As argued in Selden and Wei (2014),
for (2), an individual is strictly ambiguity averse if φ is strictly concave, and
ambiguity neutral if φ is linear. This difference is a matter of interpretation,
since clearly φ = φ̃ ◦ u establishes the equivalence of the formulations.9

Klibanoff, Marinacci, and Mukerji (2005) and Seo (2009) exploited the
insight in Segal (1990) that non-reduction of two-stage lotteries can accom-
modate the Ellsberg Paradox, and they derived the same functional form (1)
or (2). Since they considered different preference domains, the probability
measure over ambiguity states, µ, was subjective in Klibanoff, Marinacci,
and Mukerji (2005), and it was objective in Seo (2009). The non-reduction
of compound objective lotteries in Seo (2009) was confirmed by experimen-
tal studies in Halevy (2007) that demonstrated that ambiguity aversion and
compound objective lotteries are closely related. Our results cover both for-
mulations.

For revealed preference tests as well as for identification, it is appropriate
to assume that objective probabilities νa are known. Under the formulation
of Klibanoff, Marinacci, and Mukerji (2005), however, the assumption that
the subjective probabilities µ are also known is clearly a stronger require-
ment. The generalization of smooth ambiguity preferences we introduce here

8This point is discussed in Klibanoff, Marinacci, and Mukerji (2005), p. 1858.
9As in Example 1 in Selden and Wei (2014), suppose we interpret φ̃ and u in (1),

respectively, as the ambiguity and risk indices. Consider a specific lottery with no risk and
only uncertainty. Then increasing the decision maker’s risk aversion produces the counter
intuitive result that the certainty equivalent of the lottery decreases. A considerably more
intuitive conclusion is reached if, alternatively, we follow the suggestion of Selden and Wei
(2014) to use the representation (2) and interpret φ and u, respectively, as the ambiguity
and risk indices. Then, increasing the concavity of the risk index has no impact on φ and
the certainty equivalent of the lottery, referenced above, does not change.
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does not require or even refer to a probability measure over ambiguity states.
The certainty equivalent wealth for ambiguity state a is

wa(x) = u−1(Eνau(xs)),

and the distribution of certainty equivalent wealth levels across states of
ambiguity is

w(x) = (..., wa(x), ...).

Generalized ambiguity preferences can be represented by

U(x;ν) = Φ
(
w(x)

)
= Φ

(
..., wa(x), ..

)
, (3)

where Φ : RA
++ → R is an ordinal ambiguity index defined over the distri-

bution of certainty equivalent wealth levels across states of ambiguity. The
representation (1) is a special case of the functional form (3); for instance, if
Φ (u1, ..., uA) =

∑A
a=1 µaφ (ua), then

Φ(...,
S∑
s=1

νasu (xs) , ...) =
A∑
a=1

µaφ

(
S∑
s=1

νasu (xs)

)
.

By using (1) or (2) and (3), respectively, we obtain in Sections 3 and 4
revealed preference and identification results with and without requiring ex-
istence of the probabilities µ.10

We do not give an axiomatic characterization of the generalized smooth
ambiguity representation (3).

Assets are j ∈ J that is finite. Payoffs of asset j across risk states are

rj = (..., rsj, ...)
′
,

a column vector; conditional on risk state s, payoffs of assets are Rs =
(..., rsj, ...), a row vector; and the matrix of asset is

R = (..., rj, ...) = (...,Rs, ...)
′

that has full column rank or, equivalently, payoffs of assets, {rj} are linearly
independent.

10As will become clear in Section 3, for the revealed preference test associated with the
representation (1), it is not necessary to observe the probability measure µ; instead, it
suffices that a probability measure that satisfies the conditions in Lemma 1 exists. In
Section 4, the knowledge of probability measure µ in the representation (1) is not needed,
and µ can be identified under full row rank condition.
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A portfolio of assets is y = (..., yj, ...) and it generates the distributions
of wealth across risk states x = Ry. The set of portfolios that generate
strictly positive x is non-empty,

Y = {y : Ry � 0} 6= ∅,

that is open. The domain of asset prices not allowing for arbitrage is

P = {p : Ry > 0⇒ py > 0} = {p = πR,π � 0}.

Given the asset price vector p, the optimization problem of the individual
is

max
y∈Y

U (Ry;ν) , s.t. p · y ≤ 1. (4)

A solution to the optimization problem, y(p;ν), exists, satisfiesRy(p;ν)�
0, and it is unique; it defines the demand function for assets,

y : (P ;ν)→ Y .

Importantly, the demand function is invertible.

3 Revealed preference

The revealed preference results for smooth ambiguity preferences (and gen-
eralized smooth ambiguity preferences) that follow extend previous results
to an incomplete asset market setting; and they support the identification
results presented in the next section.

Perils of identification

It is standard in the literature on identification for pure risk expected utility
models to assume that asset demand is the result of the maximization of an
expected utility function; this is the case in Green, Lau, and Polemarchakis
(1979), Dybvig and Polemarchakis (1981) and Polemarchakis (1983). Anal-
ogously, in the identification of ambiguity and risk indices for the smooth
ambiguity preference model from asset demands in the next section, we shall
assume that the demand is the result of the maximization of smooth am-
biguity preferences. Revealed preference tests provide support for these as-
sumptions.

In the pure risk expected utility case, the functional form demand test in
Kübler, Selden, and Wei (2016) (that allows for incomplete markets) for a
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given set of asset demand functions validates that the demands were gener-
ated from expected utility preferences. For ambiguity preferences, no known
functional form demand test exists. Nevertheless, following our convergence
result, it is necessary and sufficient, that any finite price-demand data set
generated by an asset demand function of a given functional form must satisfy
the revealed preference test.

Suppose one performs an identification procedure without first verifying
that demand has been generated by the preferences assumed; what can go
wrong? In Appendix A, we give two explicit examples where a given set of
asset demands were generated by non-expected utility preferences, and, as a
consequence, it is incorrect to apply the identification process in Dybvig and
Polemarchakis (1981) that assumed demand is derived from expected utility.
Indeed, a perfectly natural candidate risk index is obtained, but, the corre-
sponding expected utility does not generate the observed demand.11 This
issue has not previously been stressed in the expected utility identification
literature. It should also be emphasized that when generating the data from
the given demand system, it is important to allow the probabilities to vary.
Otherwise, as argued in Kübler, Selden, and Wei (2016), it is not possible
to know whether the probabilities enter into the utility function linearly or
whether the risk indices are probability dependent. Clearly the same prob-
lem of identification of an erroneous representation can plague the smooth
ambiguity identification results in the next section and hence highlights the
importance of the revealed preference tests discussed in this section.

Smooth ambiguity

To test the smooth ambiguity preferences (1) or (2), consider a data set

DN = {pn,yn,νna ,R}
n=1,...,N
a=1,...,A ,

of N observations of asset prices p, asset demands (portfolio choices) y,
families of conditional probability distributions ν, and an asset payoff matrix
R.

We assume that the objective probabilities ν are observable; but, they
can vary across observations. Such an assumption is reasonable. In the
experiments of Ellsberg (1961) or Ahn, Choi, Gale, and Kariv (2014), the
conditional probabilities νna are objectively known to the subjects. The as-
sumption that objective conditional probability distributions νna are known

11One example assumes that the probabilities and payoffs enter into the asset demand
functions as numbers, and the other assumes they enter as symbols.
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or observed is allowed for in the asset setting of Varian (1983a) and the
incomplete market demand tests in Kübler, Selden, and Wei (2016).

Observation of probability measure µ is not required; but we assume
they do not change across observations.12 Within the two-stage lotteries
framework of Anscombe and Aumann (1963), it is not plausible to know the
probability measure µ, since it is subjective. However, if the domain of pref-
erences is compound objective lotteries, assuming observation of probability
measure µ is not unreasonable. In the following lemma, we state the con-
ditions assuming the ν is known and can either vary or be fixed across the
set of demand and price observations, but the µ is unknown and fixed. If
the probability measure µ is observable (and variable across observations),
the conditions are still necessary and sufficient for the existence of smooth
ambiguity preferences.

Lemma 1 The following conditions are equivalent:

(i) There exists a continuous utility function13

U (Ry;ν) =
A∑
a=1

µaφ̃

(
S∑
s=1

νasu

(
J∑
j=1

rsjyj

))
, (5)

where φ̃ and u are twice continuously differentiable, strictly increasing,
and strictly concave on their domain,14 such that, for all n ∈ {1, ..., N},

yn ∈ arg max
y∈Y

U (Ry;νn) s.t. pn · y ≤ pn · yn. (6)

(ii) There exist real numbers (Un
s ,M

n
s )n=1,...,N

s=1,...,S > 0,15 (Φn
a)n=1,...,N
a=1,...,A , (Kn

a )n=1,...,N
a=1,...,A

> 0, (µa)
A
a=1 > 0 and (λn)Nn=1 > 0, such that for all n,m ∈ {1, ..., N},

12The probability µ enters preference as a parameter. If µ is unobservable but fixed, the
unobservable preference will not change, which places strong restriction across observa-
tions. However, if µ is unobservable and changes across observations, there is, effectively,
only one observation from each unobservable preference, which makes the theory not
testable. See also footnote 10 above.

13Here, we use the representation (1) since it is not easy to deal with u−1 in the revealed

preference test. Evidently, since, given φ̃ and u, we can simply define φ = φ̃ ◦ u to obtain
the utility (2), the revealed preference test in Lemma 1 also works for the representation
(2).

14As noted above, φ̃ = φ ◦ u−1.
15In condition (ii), the numbers (Un

s )n=1,...,N
s=1,...,S represent the utility levels, which are

not necessarily positive. However, the translation of any negative solution by a positive
constant will still be a solution, and positivity of these numbers is without loss of generality.
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s, s′ ∈ {1, 2, ..., S}, a, a′ ∈ {1, 2, ..., A} and j ∈ {1, 2, ..., J} ,

Un
s − Um

s′ < Mm
s′

(
J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j

)
, (7)

with equality if
∑J

j=1 rsjy
n
j =

∑J
j=1 rs′jy

m
j ;

Φn
a − Φm

a′ < Km
a′

(
S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s

)
, (8)

with equality if
∑S

s=1 ν
n
asU

n
s =

∑S
s=1 ν

m
a′sU

m
s ; and

A∑
a=1

(
µaK

n
a

S∑
s=1

νnasM
n
s rsj

)
= λnpnj . (9)

(Unless indicated otherwise, proofs are provided in the Appendix.)

Remark 1 The conditions in (ii) are analogous to those in traditional re-
vealed preference tests such as in Varian (1983b). Conditions (7), (8) and
(9) correspond, respectively, to the strict concavity inequality of the von
Neumann-Morgenstern (NM) index in each ambiguity state, the strict con-
cavity inequalities of the ambiguity index, that has as its argument

∑S
s=1 νas

u
(∑J

j=1 rsjyj

)
, and the first order conditions of the portfolio optimization.

Remark 2 Bayer, Bose, Polisson, and Renou (2013) can be viewed as pro-
viding the complete markets version of Lemma 1 (and a special case of Lemma
2 below). If strict inequalities are changed to weak inequalities, then the con-
ditions for strict concavity become necessary and sufficient for the data to be
consistent with the maximization of a weakly concave smooth ambiguity util-
ity in incomplete markets. The assumption of strict versus weak concavity
results in the presence of the nonlinear term (B.2) in the proof of Lemma
1 that is not present in that of Bayer, Bose, Polisson, and Renou (2013).
The resulting utility functions constructed from data are almost everywhere
smooth rather than piece-wise linear. This latter distinction parallels that of
the certainty tests of Varian (1983a) and Matzkin and Richter (1991).

Remark 3 As in Matzkin and Richter (1991), it is possible to make the
constructed utility function in the revealed preference test be infinitely differ-
entiable on its domain. To do so, we can impose the additional restrictions:
Mn

s = Mm
s′ if

∑J
j=1 rsjy

n
j =

∑J
j=1 rs′jy

m
j , and Kn

a = Km
a′ if

∑S
s=1 ν

n
asU

n
s =∑S

s=1 ν
m
a′sU

m
s ; the convolution methods in Chiappori and Rochet (1987) gen-

erate a smooth function.
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It should be noted that in condition (ii) in Lemma 1, the strict inequalities
are satisfied, implying that SARP is satisfied. It is obvious that SARP is
only necessary but not sufficient for the preferences to be representable by a
strictly concave smooth ambiguity model.

Generalized ambiguity

We next derive a revealed preference test for the case where the probability
measure over ambiguity states, µ, is not referred to. The test is based on
maximization of the generalized smooth ambiguity preference representation
U(x;ν) = Φ(..., Eνau(xs), ...) discussed in Section 2. The assumed data set
is

DN = {pn,yn,νna ,R}
n=1,...,N
a=1,...,A .

Lemma 2 The following conditions are equivalent:

(i) There exists a continuous utility function16

U (Ry;ν) = Φ

(
...,

S∑
s=1

νasu

(
J∑
j=1

rsjyj

)
, ...

)
, (10)

where u is twice continuously differentiable, strictly increasing, and
strictly concave, and Φ is continuously differentiable, strictly increas-
ing, and strictly quasi-concave on their domain, such that for all n ∈
{1, ..., N},

yn ∈ arg max
y∈Y

U (Ry;νn) s.t. pn · y ≤ pn · yn. (11)

(ii) There exist real numbers (Un
s ,M

n
s )n=1,...,N

s=1,...,S > 0, (Φn)Nn=1, (Kn
a )n=1,...,N
a=1,...,A >

0, and (λn)Nn=1 > 0 such that, for all n,m ∈ {1, 2, ..., N}, s, s′ ∈
{1, 2, ..., S}, a, a′ ∈ {1, 2, ..., A} and j ∈ {1, 2, ..., J} ,

Un
s − Um

s′ < Mm
s′

(
J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j

)
, (12)

with equality if
∑J

j=1 rsjy
n
j =

∑J
j=1 rs′jy

m
j ;

Φn − Φm <
A∑
a=1

Km
a

(
S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s

)
, (13)

16Following an argument similar to that in footnote 13, we do not include u−1 in the
following representation.
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with equality if
∑S

s=1 ν
n
asU

n
s =

∑S
s=1 ν

m
a′sU

m
s ; and

A∑
a=1

(
Kn
a

S∑
s=1

νnasM
n
s rsj

)
= λnpnj . (14)

Under the assumption that a data set constructed from a given set of
asset demand functions satisfies the revealed preference test in Lemma 1 or 2,
and, thus, the data is consistent with the assumption that the demands were
generated by smooth ambiguity preferences, we derive in the next section
sufficient conditions for the identification of the underlying ambiguity and
risk indices.

Convergence

In the revealed preference test, we can ascertain the consistency of asset
demand with the maximization of ambiguity preferences based on the finite
observations of asset demands, prices and objective probabilities

{pn,yn,νna ,R}
n=1,...,N
a=1,...,A .

Certainly, it is not possible to identify uniquely the underlying preferences
from finite observations. However, the convergence result we establish here,
implies that if the underlying preferences and asset payoff structure satisfy
conditions in the identification results of Theorem 2 or Theorem 3, and the
number of observations increases to infinity and eventually becomes dense,
then the associated utility indices converge to the unique true ones. When
there is no risk, the problem of convergence of revealed preferences to true
preferences has been investigated by Mas-Colell (1978). Our proof differs
from his in that we work in the space of utility functions while he showed
convergence in preferences. It is not clear how to directly apply his proof
strategy and show that the limiting preferences over assets can be represented
by expected utility over consumption. Recently, Kübler and Polemarchakis
(forthcoming) established the convergence of revealed risk preferences and
beliefs to the unique true von Neumann-Morgenstern utility index and beliefs.
Our argument follows their approach.

We explicitly prove the convergence of the constructed utility indices and
probability measure from Lemma 1; we comment on the generalized case in
Lemma 2 in a remark. Denote by BN a set of N observations of (normalized)
prices (alternatively, N budget sets) and conditional probability measures,
and by B an open set of (normalized) prices and conditional probability
measures at which the asset demand function is well defined and invertible.
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Given N observations of asset prices and conditional probability measures
BN , if the corresponding asset demand satisfies the revealed preference test
in Lemma 1, we can construct a smooth ambiguity preference; that is, a pair
of a risk aversion index uN(·) and an ambiguity aversion index φ̃N(·) , and a
probability measure µN over ambiguity states.

Let (BN ⊂ B : N = 1, 2, ...) be an increasing sequence of finite ob-
servations of (normalized) prices and conditional probability measures with
BN ⊂BN+1 and ∪NBN dense in an open set B ⊂ RJ × RAS

+ . Let ŷ(p,ν)
be a continuous function on B, and let

ynN = ŷ(pnN ,νnN), n = 1, ..., N.

Suppose there is a compact set K such that for each n,N , each vector of
numbers

(
UnN ,MnN ,ΦnN ,KnN ,λN ,µN

)
∈ K satisfy (7), (8) and (9) for

observations {pnN ,ynN ,νnNa ,R}n=1,...,N
a=1,...,A .

Let uN be the strictly concave function with slopes α(MnN
s − δ

2
T−1/2) at

xnNs for all (n,N), s, with an α > 0 that ensures the normalization uN(1) = 0

and uN
′
(1) = 1, and let φ̃N be the strictly concave function with slopes

β(KnN
a − ε

2
T−1/2) at

∑S
s=1 ν

nN
as U

nN
s for all (n,N), a, with a β > 0 that

ensures the normalization φ̃N(1) = 0 and φ̃N
′
(1) = 1.17

Theorem 1 There exist fundamentals (u∗(·), φ∗(·),µ∗), such that

ŷ(p,ν) = y(p,ν;u∗(·), φ∗(·),µ∗) for all (p,ν) ∈B .

Moreover, if these fundamentals and the asset returns satisfy the sufficient
conditions in Theorem 2, then µN → µ∗, uN(·)→ u∗(·), and φ̃N(·)→ φ∗(·).

Proof. Take a sequence ((uN(·), φ̃N(·),µN) : N = 1......); by compactness of

K, the uN(·) and φ̃N(·) are equicontinuous and there exists an accumulation
point (ū(·), φ̄(·), µ̄). Since ū(·) and φ̄(·) must be concave, it must be contin-

uous. Note that each (uN(·), φ̃N(·),µN) as well as (ū(·), φ̄(·), µ̄) correspond
to continuous, increasing and concave indirect utility functions, vN(y) and
v̄(y), over assets.

We first prove that the limit utility indices and the limit probability
measure (ū(·), φ̄(·), µ̄) must generate a demand function that is identical to
ŷ(p,ν): that is, for all (p,ν) ∈ B,

y(p,ν; (ū(·), φ̄(·), µ̄)) = ŷ(p,ν).

17Here T , δ and ε are constants chosen in the constructing of the risk index u and the
ambiguity index φ̃, as in the Proof of Lemma 1 in Appendix B.
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If not, there exists (p∗,ν∗) ∈ B and y∗ = ŷ(p∗,ν∗) as well as ȳ ∈ RJ

such that v̄(ȳ) > v̄(y∗), while p∗ȳ ≤ 1. By the continuity and concavity of
ū and φ̄, without loss of generality,

p∗ȳ < 1.

Since ∪NBN ⊂ B is dense, there exists a sequence (pN ,νN) ∈ BN :
N = 1, 2, ..., such that (pN) → (p∗) and (νN) → (ν∗). By the continuity of
ŷ(p,ν), there is an associated sequence of demands (yN)→ (y∗).

Since v̄(·) is continuous, there is an N sufficiently large such that

v̄(ȳ) > v̄(yN),

and
pN ȳ < 1.

But since the sets BN are nested, we must have that for all m ≥ N
vm(yN) > vm(ȳ), which contradicts the fact that vm(·)→ v̄(·) point-wise.

To prove the second part of the result note the fact that ū(·) must be
differentiable almost everywhere on on its domain and φ̄(·) must be differen-
tiable almost everywhere on on its domain, then the identification result in
Theorem 2 implies that fundamental are unique and the accumulation point
must be the unique limit of the sequence ((uN(·), φ̃N(·),µN) : N = 1......),
i.e., ū(·) must coincide with u∗(·), φ̄(·) must coincide with φ∗(·), and the
probability measure µ̄ must coincide with the probability measure µ∗.

Remark 4 If the underlying generalized smooth ambiguity utility indices
(u∗(·),Φ∗(·)) and the asset returns satisfy the sufficient identification con-
ditions in Theorem 3, then the arguments in Theorem 1 can be extended
to prove the convergence of constructed generalized smooth ambiguity utility
indices (uN(·),ΦN(·)) from Lemma 2 to the true underlying utility indices
(u∗(·),Φ∗(·)). The details are omitted here.

4 Identification

We address the following question: Suppose that data based on asset demand
functions satisfy the revealed preference tests and is consistent with the ex-
istence of (generalized) smooth ambiguity preferences; can the underlying
ambiguity and risk indices be identified?

The demand for assets satisfies the necessary and sufficient first order
conditions for the optimization problem (4),

DU(Ry;ν) = λp, λ > 0,
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py = 1.

These conditions identify the family of marginal rates of substitution of as-
sets,

mjk : (Y ,ν)→ (0,∞)

defined by

mjk(y;ν) =

∂U(Ry;ν)
∂yj

∂U(Ry;ν)
∂yk

.

Before proceeding to the identification of ambiguity preferences, we review
the identification of risk preferences in Green, Lau, and Polemarchakis (1979),
Dybvig and Polemarchakis (1981) and Polemarchakis (1983).

4.1 Pure risk

The probability measure over states of risk is

π ∈ ∆(S),

and the utility function of the individual is

U(x) = Eπu(xs),

where u is the (cardinal) risk index.
Under pure risk, for an expected utility maximizer, the demand for assets

identifies the family of marginal rates of substitution

mjk(y) =
Eπu

′
(Ry)rj

Eπu
′(Ry)rk

> 0.

In Green, Lau, and Polemarchakis (1979), (1) the risk index u is analytic
on the nonnegative real line, strictly increasing and strictly concave and (2)
the probability measure over states of risk, π ∈ ∆(S), is known. Alterna-
tively, in Dybvig and Polemarchakis (1981), (1) the risk index u is twice
continuously differentiable on the positive real line, it is strictly increasing
and strictly concave, (2) there is an asset that is risk free across states of
risk, rs1 = 1, and (3) the probability measure over states of risk, π ∈ ∆(S),
is known. In both cases, the demand for assets identifies the risk index u up
to a positive affine transformation.

Remark 5 With a risk free asset, identification does not require full knowl-
edge of the distribution of payoffs (R,π). It is only necessary to know the
second moment of the payoff distribution of a risky asset.
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In Polemarchakis (1983), (1) the risk index u is smooth on the positive
real line, is strictly increasing and strictly concave, and, at some x in the
domain of u, u(n) = dnu/dxn 6= 0, n = 1, ..., (2) there is an asset that is risk
free, r1 = 1, across states of risk, and (3) the risk index u is known. The
demand for assets identifies all moments of the distribution of asset payoffs.

Remark 6 It suffices to know the variance of the distribution of returns of
a risky asset, instead of the risk index, u.

Remark 7 Knowing the second moment of the return of one risky asset
cannot be dispensed with. In a slightly different context, for simplicity, an
investor with a CARA (constant absolute risk aversion) risk index, u(x) =
−e−ρx, demands a risky asset with normally distributed payoffs, r2 ∼ N(µ, σ2)
against a risk free asset with payoff r1 = 1: y2 = (µ − 1)/(ρσ2). It follows
that the simultaneous identification of the risk index and the distribution of
asset payoffs is not possible, without at least partial knowledge of the distri-
bution.

4.2 Ambiguity

In this subsection, the ambiguity preferences of an individual are represented
by the utility function (1) (or (2)), or more generally by (3).

We first consider the case of the smooth ambiguity representation (1)
(or (2)). The demand for assets identifies the family of marginal rates of
substitution

mjk(y;ν) =
Eµφ

′
(u−1(Eνau(Ry)))

Eνau
′
(Ry)rj

u′ (u−1(Eνau(Ry)))

Eµφ
′(u−1(Eνau(Ry))) Eνau

′ (Ry)rk
u′ (u−1(Eνau(Ry)))

> 0, (15)

where µ is the probability measure over ambiguity states, and νa is the
probability measure conditional on each ambiguity state associated with the
distribution of returns for each asset.

An asset is ambiguity free if, conditional on each ambiguity state, it gen-
erates the same distribution of returns.

Example 1 There are 3 risk states and 2 ambiguity states. An asset pays
(1, a, a) across risk state. The probability distributions conditional on ambigu-
ity states are (1

2
, 0, 1

2
) and (1

2
, 1

2
, 0), respectively. Then this asset is ambiguity

free, even if a 6= 1 that would make the asset risky.
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Since the identification argument depends crucially on the existence of
an ambiguity free asset, it deserves attention.18 In particular, for arbi-
trary asset payoffs and conditional probabilities, an ambiguity free asset
need not exist. Being ambiguity free is a joint restriction on asset payoff
r = (r1, ..., rs, ..., rS)19 and the conditional probability distributions {νa}Aa=1

where νa = (νa1, ..., νas, ..., νaS). One extreme case is a risk free asset, i.e.,
rs = rs′ for all s and s

′
. Such an asset is ambiguity free independent of

conditional probabilities.20 The other extreme case is when rs 6= rs′ for
any s and s

′
. In this case such an asset can never be ambiguity free for any

conditional probabilities. A risky, yet ambiguity free asset lies in between,
and its existence is not guaranteed for arbitrary asset payoffs and conditional
probabilities.

To characterize the ambiguity free asset, we partition the risk states S =
{1, ..., s, ..., S} into disjoint subsets Sn, i.e., S = ∪nSn and Sn ∩ Sm = ∅ for
n 6= m, such that

Sn = {s, s′ ∈ S : rs = rs′},

that is, Sn is a set of risk states on which this asset pays off the same.

Lemma 3 An asset with payoff r = (r1, ..., rs, ..., rS) is ambiguity free under
conditional probability distributions {νa}Aa=1 iff

∑
s∈Sn νas =

∑
s∈Sn νa′s for

all n, a and a
′
.

From this lemma, we know if we restrict the space of asset payoffs and
conditional probability measures, the existence of an ambiguity free asset
is not a problem. For example, an ambiguity free asset is implied by the
restricted probability space P = {νa : ν11 = ... = νa1 = ... = νA1}, where
each conditional probability applies the same probability to the first state.
Then any return vector (a, b, . . . , b) is ambiguity free and risky for a 6= b.
Of course, other restrictions on the asset payoffs and conditional probability
measures, which satisfy the necessary and sufficient conditions in Lemma 3,
would also generate ambiguity free assets. The restricted probability space
P is not generic in the (non-restricted) probability space, but it is enough

18An ambiguity free asset appears in Klibanoff, Marinacci, and Mukerji (2005) (p.1876),
where the effect of ambiguity and risk attitudes on portfolio choice is examined numerically.
However, note that different from our assumption, asset payoffs in their example depend
on both ambiguity states and risk states, which is hardly observed in real-world asset
markets. In such case, the existence of an ambiguity free asset is trivial.

19For the analysis of an ambiguity free asset, we consider a single asset and ignore its
index.

20In the remainder of this paper when we refer to an ambiguity free asset, we will mean
it is ambiguity free and risky, even though we do not emphasize the latter property.
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for us to work on, and it is widely used in experimental work. Consider
the lab test setup in Ahn, Choi, Gale, and Kariv (2014) (p.196) where the
subjects are informed that state 2 occurs with probability 1/3 whereas states
1 and 3 occur with unknown probabilities, which sum to 2/3. This case is
consistent with a setting where one ambiguity free asset can be traded. The
next theorem gives sufficient conditions for the identification of the smooth
ambiguity model using the ambiguity free asset; moreover, the probability
measure over states of uncertainty, µ, is identified as well.

Suppose that

(1) the smooth ambiguity utility (2) satisfies the condition that φ (u−1(·))
is strictly concave on R++, with the indices u and φ both being twice
continuously differentiable, strictly increasing, and strictly concave on
R++,

(2) there is an asset j = 1 that is risk free, where r1 = 1 across states of
the world, and

(3) the family of conditional probability measures over states of risk, ν :
A→ ∆(S) is known.

Theorem 2 If

(1) there is an asset j = 2 that is ambiguity free: its payoff distribution is
invariant to the states of ambiguity, and

(2) the matrix  Eν1r2 ... Eν1rJ
... Eνarj ...

EνA
r2 ... EνA

rJ


A×(J−1)

has full row rank A,

then, the demand for assets identifies the risk index u on R++ and the am-
biguity index φ on R++, each up to a positive affine transformation, as well
as the ambiguity state probability measure µ.

Proof. Step 1−identification of the risk index u.
We restrict attention to the portfolios y = (y1, y2, 0, ..., 0), and let ỹ =

(y1, y2) be the associated truncated portfolio. Since the distribution of pay-
offs for assets 1 and 2 is invariant across states of ambiguity, there exists a
probability measure, ν̃ ∈ ∆(S), and a matrix of payoffs of assets over states
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of risk R̃ = (1#S, r̃2),21 such that, the distribution of payoffs of assets gener-
ated by (νa,Ry), for any state of ambiguity, coincides with the distribution
generated by (ν̃, R̃ỹ). As a consequence,

m12(ỹ; ν̃) =
Eν̃u

′
(R̃ỹ)

Eν̃u
′(R̃ỹ)r̃2

> 0. (16)

Identification of the cardinal risk index u on R++, then follows as under pure
risk.

Step 2−identification of the probability measure µ.
If we restrict attention to the portfolio ỹ = (x, 0, ..., 0), for each j (j =

2, ..., J), equation (15) gives

EµEνarj =
1

m1j(ỹ;ν)
,

which can be written in matrix form

[µ1, ..., µA]

 Eν1r2 ... Eν1rJ
... Eνarj ...

EνA
r2 ... EνA

rJ

 = [
1

m12(ỹ;ν)
, ...,

1

m1J(ỹ;ν)
]. (17)

The full row rank condition (2) implies that the probability measure µ
can be uniquely identified.

Step 3−identification of the ambiguity index φ.
We restrict attention to the marginal rate of substitution between risk

free asset 1 and one ambiguous asset j, m1j(y;ν), in equation (15). Take the
derivative on both sides of equation (15) with respect to yj, and evaluate the
resulting functional equation at ỹ = (x, 0, ..., 0), we get

[(EµEνarj)
2 − Eµ(Eνarj)

2]
φ
′′
(x)

φ′(x)
=

[EµEνa(rj)
2−Eµ(Eνarj)

2]
u
′′
(x)

u′(x)
+ (EµEνarj)

2∂m1j(x, 0, ..., 0;ν)

∂yj
. (18)

Since the conditional probability measures over risk states, ν, are known,
and the probability measure over ambiguity states, µ, has been identified,
all the moments EµEνarj, EµEνa(rj)

2 and Eµ(Eνarj)
2, can be computed.

The full row rank condition implies that there exists at least one ambiguous

asset j such that (EµEνarj)
2 6= Eµ(Eνarj)

2, i.e., the coefficient of φ
′′

(x)

φ′ (x)
does

not vanish. Given the risk index u identified, equation (18) in turn identifies
the ambiguity index φ on R++, up to a positive affine transformation.

211#S is the vector of 1’s of dimension #S, the cardinality of S.
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Remark 8 The identification in Theorem 2 does not require any knowledge
of probability measure over ambiguity states, µ, which can be identified from
asset demand under full row rank condition. And it is not necessary to know
the complete conditional probability measures over risk states; in particular; if
one ambiguous asset has payoffs (rj)

2 (j ∈ {3, ..., J}), then knowing the vari-
ance of the ambiguity free asset and the conditional means of the ambiguous
assets suffices.

Remark 9 As under pure risk, knowing the second moment of the distri-
bution of asset payoffs that is invariant across states of ambiguity permits
identification of the risk index u, as well as identification of the asset payoffs
independent of the states of ambiguity.

Remark 10 The full row rank condition requires variation of the conditional
mean return Eνarj across ambiguity states for an ambiguous asset j. That
is, there is ambiguity over the expected returns of the ambiguous assets.

Remark 11 Theorem 2 is proved with conditional probability measures ν be-
ing fixed, and the full row rank condition requires A ≤ (J−1), i.e., the number
of ambiguity states being less than or equal to the number of assets J minus 1.
However, since we allow conditional probabilities to vary across observations,
the marginal rate of substitution, m1j(y;νn), could be observed under differ-

ent observations of conditional probabilities νn. If

 Eν1
1
rj ... EνN

1
rj

... Eνn
a
rj ...

Eν1
A
rj ... EνN

A
rj

,

the matrix of conditional expected returns for an ambiguous asset j under N
observations of conditional probability measures, has full row rank, then the
identification argument in Theorem 2 goes through. Therefore, one ambigu-
ous asset, in addition to the risk free and ambiguity free assets, suffices.

If an individual is endowed with the generalized smooth ambiguity (3),
then her demand for assets identifies the family of marginal rates of substi-
tution

mjk(y;ν) =

∑
a
∂Φ
∂wa

Eνau
′
(Ry)rj

u′ (u−1(Eνau(Ry)))∑
a
∂Φ
∂wa

Eνau
′ (Ry)rk

u′ (u−1(Eνau(Ry)))

> 0.

Suppose that

(1) the generalized smooth ambiguity utility (3) is strictly quasi-concave
with respect to x, with the index u being twice continuously differen-
tiable, strictly increasing, and strictly concave on R++ and the index Φ
being continuously differentiable, strictly increasing, and strictly quasi-
concave on RA

++,
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(2) there is an asset j = 1 that is risk free, where r1 = 1 across states of
the world, and

(3) the family of conditional probability measures over states of risk, ν :
A→ ∆(S) is known.

Theorem 3 If

(1) there is an asset j = 2 that is ambiguity free: its payoff distribution is
invariant to the states of ambiguity, and

(2) the matrix Eν1u
′
(Ry)r2 . . . Eν1u

′
(Ry)rJ

... Eνau
′
(Ry)rj

...
EνA

u
′
(Ry)r2 . . . EνA

u
′
(Ry)rJ


A×(J−1)

has full row rank A at each portfolio y,

then, the demand for assets identifies the risk index u on R++, up to a positive
affine transformation, and the ordinal utility function Φ on RA

++, up to a
strictly increasing transformation.

Proof. Step 1−identification of the risk index u.
When we focus on the portfolio ỹ = (y1, y2, 0, ..., 0), the marginal rate of

substitution between risk free asset 1 and ambiguity free asset 2, m12, will
identify the cardinal risk index u on R++, as in Theorem 2.

Step 2−identification of the ambiguity index Φ.
For assets j = 2, ..., J , the first order conditions for an optimum,

∑
a

∂Φ

∂wa

Eνau
′
(Ry)R

u′(u−1(Eνau(Ry)))
= λp, λ > 0, (19)

can be written in matrix form,

[Φ1, ...,Φa, ...,ΦA]


Eν1u

′
(Ry)r2

u′ (u−1(Eν1u(Ry)))
. . .

Eν1u
′
(Ry)rJ

u′ (u−1(Eν1u(Ry)))
...

Eνau
′
(Ry)rj

u′ (u−1(Eνau(Ry)))

...

EνA
u
′
(Ry)r2

u′ (u−1(EνA
u(Ry)))

. . .
EνA

u
′
(Ry)rJ

u′ (u−1(EνA
u(Ry)))


= [λp2, ..., λpj, ..., λpJ ], (20)
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where Φa = ∂Φ
∂wa

. We denote by C the matrix in equation (20), and the
matrix C has dimension A times (J −1). Since we have identified the index
u and the conditional distribution of asset returns is known, the matrix C
is computable. Under the full row rank condition (2), C has full row rank,
then

[Φ1, ...,Φa, ...ΦA] = [λp2, ..., λpj, ..., λpJ ]CT [CCT ]−1. (21)

So we can trace out the marginal rates of substitution Φa

Φ1
(a = 2, ..., A)

uniquely. Under the assumption in the theorem, Φ is strictly quasi-concave,
continuously differentiable and has strictly positive gradient everywhere on
RA

++. Following Mas-Colell (1977), knowledge of the marginal rates of sub-
stitution Φa

Φ1
(a = 2, ..., A) identifies the function Φ on RA

++, up to a strictly
increasing transformation.

Remark 12 The full row rank condition (2) is not directly observable, but,
as shown in the proof, it can be checked once the risk index u is identified.
Actually, the full row rank condition (2) can be equivalently stated in terms
of asset demand, since the risk index u is identified from asset demand.

Remark 13 If the full row rank condition (2) only holds at the portfolio
ỹ = (y1, 0, ..., 0), that is, the matrix of conditional expected asset returns Eν1r2 ... Eν1rJ

... Eνarj ...
EνA

r2 ... EνA
rJ

 has full row rank A, then the demand for assets

identifies the ordinal index Φ, on an open neighbourhood of the uncertainty
free distribution w = (..., w, ...), up to a strictly increasing transformation.

Remark 14 The comment in Remark 11 applies here: marginal rates of
substitution are observable for different conditional probability measures, and
one ambiguous asset suffices for identification.

Remark 15 Both Theorem 2 and Theorem 3 require the existence of one
risk free asset. As argued under pure risk, we can show that without a risk
free asset, the marginal rate of substitution between two ambiguity free assets
identifies the risk index u, so long as the underlying risk index u is analytic
at x = 0. Once the risk index u is identified, the identification of ambiguity
index follows the same argument as in Theorem 2 or Theorem 3. We do not
repeat the results here.

The above identification arguments require observing an individual’s de-
mand for assets. An equivalent way to identify the risk and ambiguity indices
is to assume knowledge of the individual’s portfolio indifference correspon-
dence

I(y;ν) = {x ∈ RJ : Eµφ(u−1(Eνau(Rx))) = Eµφ(u−1(Eνau(Ry)))}.
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Remark 16 In Appendix D, we show in Proposition 1 that under the same
assumptions on underlying utility functions and asset returns as in Theo-
rem 2, we can obtain identification results from the portfolio indifference
correspondence. This should not be surprising, since we can trace out asset
demands from the indifference correspondence I(y;ν).

Remark 17 It can be shown that under the same conditions as in Theo-
rem 3, the generalized smooth ambiguity utility (3) can be identified from
the portfolio indifference correspondence. Here again, we do not repeat the
results.

5 Conclusion

In this paper, we give a revealed preference test for the smooth ambiguity
model and its generalized version. We also discuss the identification pro-
cess for the risk and ambiguity indices. As discussed above, a problem for
the identification process is the validation of the assumption that the de-
mands are rationalizable by an ambiguity model. Since there is no known
functional form demand test for the ambiguity model, we suggest using the
revealed preference test as an alternative. Kübler, Selden, and Wei (2014)
provided a functional form demand test and a local derivative demand test
for the expected utility model based on the contingent claim setting. Kübler,
Selden, and Wei (2016) extended these tests to the incomplete market case
and discussed the identification process. Thus one open question is whether
it is possible to analogously derive a functional form demand test and a local
derivative demand test for the smooth ambiguity model and its extended
version. Another open question is whether the conditional probability mea-
sures together with preference indices can be simultaneously identified from
asset demands.
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Appendix

A Non-expected utility examples, where

identification fails

In this appendix, we give two examples to demonstrate that the identifica-
tion process proposed in Dybvig and Polemarchakis (1981) can go wrong if
preferences are not expected utility representable.

Example 2 Assume that there is one risky asset and one risk free asset,
where the risky asset pays off ri with probability πi (i = 1, 2) and the risk free
asset always pays off 1. Suppose the demand functions for the risk free asset
and risky asset are given respectively by

y1 =
1

π2
1 + π2

2

(
r1π

2
1

r1p1 − p2

− r2π
2
2

p2 − r2p1

)
, (A.1)

and

y2 =
1

π2
1 + π2

2

(
π2

2

p2 − r2p1

− π2
1

r1p1 − p2

)
, (A.2)

where p1 and p2 denote the price of the risk free and risky asset, respectively.
The marginal rate of substitution (MRS) between the risk free asset and the
risky asset can be calculated from the inverse demands, yielding

m12 (y1, y2) =
p1

p2

=

π2
1

r1y2+y1
+

π2
2

r2y2+y1

r1π2
1

r1y2+y1
+

r2π2
2

r2y2+y1

. (A.3)

If the demands (A.1) and (A.2) were generated by the maximization of an
expected utility function, it follows from Dybvig and Polemarchakis (1981)
that

−u
′′(x)

u′(x)
=

∂m(x,0)
∂y2

ER

m12(x, 0)ER2 − ER
=

π2
1π

2
2(r1−r2)2(π1r1+π2r2)

(π2
1r1+π2

2r2)
2
x

(π2
1+π2

2)(π1r21+π2r22)
(π2

1r1+π2
2r2)

− (π1r1 + π2r2)

=
π2

1π
2
2 (r1 − r2)2 (π1r1 + π2r2)(

(π2
1 + π2

2) (π1r
2
1 + π2r

2
2) (π2

1r1 + π2
2r2)

− (π1r1 + π2r2) (π2
1r1 + π2

2r2)
2

)
x

=
π1π2 (r1 − r2) (π1r1 + π2r2)

(π2r1 − π1r2) (π2
1r1 + π2

2r2)x
, (A.4)
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implying that

u (x) = −x
−ρ

ρ
, (A.5)

where

ρ =
π1π2 (r1 − r2) (π1r1 + π2r2)

(π2r1 − π1r2) (π2
1r1 + π2

2r2)
− 1

=
(π1 − π2) (π2

1 + π2
2) r1r2

(π2r1 − π1r2) (π2
1r1 + π2

2r2)
, (A.6)

which is not zero. However, it can be verified that the demand functions
(A.1) and (A.2) are generated by the non-expected utility function

2∑
s=1

π2
s ln (y1 + rsy2) . (A.7)

In the above example, if probabilities and payoffs enter into the demand
functions as numbers, then the identified NM index (A.5) is well defined and
hence we can mistakenly conclude that the preferences are represented by

2∑
s=1

πsu (y1 + rsy2) . (A.8)

But if probabilities and payoffs enter into the demand functions as variables
(symbols), then since the identified NM index is probability and payoff de-
pendent, we can conclude that the preferences are not representable by an
expected utility function. The following example shows that even if probabil-
ities and payoffs enter into the demand functions as variables (symbols), the
identification process may still go wrong if the preferences are not expected
utility representable.

Example 3 Consider the following non-expected utility defined over contin-
gent claims

−A
S∑
s=1

πs (xs − 1)2 −
S∑
s=1

1

S

(
xs −

1

S

S∑
i=1

xi

)4

, (A.9)

where A > 0, 0 < xs � 1, and

xs =
J∑
j=1

rjsyj (s ∈ {1, ..., S}) .
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Then along the diagonal, xi = xj (i, j ∈ {1, ..., S}), we have

∂

∂yi

− S∑
s=1

1

S

(
xs −

1

S

S∑
i=1

xi

)4


= −
S∑
s=1

4

S

(
ris −

1

S

S∑
j=1

rij

)(
xs −

1

S

S∑
j=1

xj

)3

= 0,

and

∂2

∂y2
i

− S∑
s=1

1

S

(
xs −

1

S

S∑
i=1

xi

)4


= −
S∑
s=1

12

S

(
ris −

1

S

S∑
j=1

rij

)2(
xs −

1

S

S∑
j=1

xj

)2

= 0.

Next we want to argue that when 0 < xs � 1 and A is large enough, the
utility function

−A
S∑
s=1

πs (xs − 1)2 −
S∑
s=1

1

S

(
xs −

1

S

S∑
i=1

xi

)4

(A.10)

is increasing and concave in each of the contingent claims. Since

∂

∂xi

−A S∑
s=1

πs (xs − 1)2 −
S∑
s=1

1

S

(
xs −

1

S

S∑
i=1

xi

)4


= −2Aπi (xi − 1)−
S∑
s=1

4

S

(
xs −

1

S

S∑
j=1

xj

)3(
δsi −

1

S

)
, (A.11)

−2Aπi (xi − 1) > 0, and

S∑
s=1

4

S

(
xs −

1

S

S∑
j=1

xj

)3(
δsi −

1

S

)
is bounded, when A is large enough, eqn. (A.11) is always positive. Since

∂2

∂x2
i

−A S∑
s=1

πs (xs − 1)2 −
S∑
s=1

1

S

(
xs −

1

S

S∑
i=1

xi

)4


= −2Aπi −
S∑
s=1

12

S

(
xs −

1

S

S∑
j=1

xj

)2(
δsi −

1

S

)2

, (A.12)
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−2A < 0 and

−
S∑
s=1

12

S

(
xs −

1

S

S∑
j=1

xj

)2(
δsi −

1

S

)2

< 0,

eqn. (A.12) is always negative. As a consequence, if we apply the risk
free asset identification, that uses information only on (or, since it uses
derivatives, a neighborhood of) the diagonal, in eqn. (A.9), the second term

−
∑S

s=1
1
S

(
xs − 1

S

∑S
i=1 xi

)4

will be invisible. Thus, we shall identify the ex-

pected utility corresponding to the first term −A
∑S

s=1 πs (xs − 1)2 that, away
from the diagonal, generates a different set of asset demand functions.

B Proof of Lemma 1

Statement (i) implies Statement (ii)
The first order conditions for the optimization problem (6) based on the

utility function (5) are given by

A∑
a=1

µaφ̃
′

(
S∑
s=1

νnasu

(
J∑
j=1

rsjy
n
j

))(∑
s

νnasu
′

(
J∑
j=1

rsjy
n
j

)
rsj

)
= λnpnj (∀j ∈ {1, 2, ..., J}) ,

where λn is the Lagrange multiplier. Since u and φ̃ are both strictly concave,
we have the strict concavity inequalities

u

(
J∑
j=1

rsjy
n
j

)
< u

(
J∑
j=1

rs′jy
m
j

)
+u′

(
J∑
j=1

rs′jy
m
j

)(
J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j

)
,

and

φ̃

(
S∑
s=1

νnasu

(
J∑
j=1

rsjy
n
j

))

< φ̃

(
S∑
s=1

νma′su

(
J∑
j=1

rsjy
m
j

))
+ φ̃′

(
S∑
s=1

νma′su

(
J∑
j=1

rsjy
m
j

))

×

(
S∑
s=1

νnasu

(
J∑
j=1

rsjy
n
j

)
−

S∑
s=1

νma′su

(
J∑
j=1

rsjy
m
j

))
.
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Denoting

Un
s = u

(
J∑
j=1

rsjy
n
j

)
,Mn

s = u′

(
J∑
j=1

rsjy
n
j

)
,

and

Φn
a = φ̃

(
S∑
s=1

νnasu

(
J∑
j=1

rsjy
n
j

))
, Kn

a = φ̃′

(
S∑
s=1

νnasu

(
J∑
j=1

rsjy
n
j

))
,

the strict concavity inequalities and the first order conditions can be rewritten
as

Un
s − Um

s′ < Mm
s′

(
J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j

)
,

Φn
a − Φm

a′ < Km
a′

(
S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s

)
,

and
A∑
a=1

(
µaK

n
a

S∑
s=1

νnasM
n
s rsj

)
= λnpnj .

Statement (ii) implies Statement (i)
Given the solution to inequalities in (7), (8), and (9), i.e., the real num-

bers (Un
s ,M

n
s )n=1,...,N

s=1,...,S > 0, (Φn
a)n=1,...,N
a=1,...,A , (Kn

a )n=1,...,N
a=1,...,A > 0, (µa)

A
a=1 > 0 and

(λn)Nn=1 > 0, we next apply a modified version of the argument in Matzkin
and Richter (1991) to construct continuous, strictly increasing and strictly

concave utility indices u(x) and φ̃(u) to rationalize the observations.

Step 1: construction of a risk index u(x).

Since we have only a finite number of inequalities, we can choose a small
enough number δ0 such that

Un
s − Um

s′ < Mm
s′

(
J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j

)
− δ0, (B.1)

for
∑J

j=1 rsjy
n
j 6=

∑J
j=1 rs′jy

m
j .

Define a function g : R→ R by

g(x) = (x2 + T )
1
2 − T

1
2 , T ∈ (0,∞). (B.2)
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This function is nonnegative, differentiable, strictly convex, and has a bounded
derivative. And the inequality (7) implies that we can choose a small enough
number δ such that

Un
s −Um

s′ < Mm
s′

(
J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j

)
−δg(

J∑
j=1

rsjy
n
j −

J∑
j=1

rs′jy
m
j ), (B.3)

for
∑J

j=1 rsjy
n
j 6=

∑J
j=1 rs′jy

m
j .

Define the functions uns (x) : R→ R by

uns (x) = Un
s +Mn

s

(
x−

J∑
j=1

rsjy
n
j

)
− δg(x−

J∑
j=1

rsjy
n
j ), (B.4)

where n ∈ {1, 2, ..., N}, s ∈ {1, 2, ..., S}. The functions uns (x) are strictly
concave, and satisfy uns (

∑J
j=1 rsjy

n
j ) = Un

s .

Define a function u(x) : R++ → R by

u(x) = min
s,n
{uns (x)}. (B.5)

The function u(x) is strictly concave, and we can choose δ small enough that
the function u(x) is strictly increasing. This is possible since the function
g(x) has a bounded derivative and there are a finite number of inequalities.

We claim that u(
∑J

j=1 rsjy
n
j ) = Un

s , since

u(
J∑
j=1

rsjy
n
j ) = um

s′
(
J∑
j=1

rsjy
n
j )

≤ uns (
J∑
j=1

rsjy
n
j )

= Un
s ,

The inequality in the above equation cannot be strict. If it were strict, it
would violate inequality (7).

Step 2: construction of an ambiguity index φ̃(u).

We will only sketch the construction, since it follows the same argument
as above. Define a function G(u) : R→ R by

G(u) = (u2 + T )
1
2 − T

1
2 .
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Choose a small enough positive number ε such that

Φn
a − Φm

a′ < Km
a′

(
S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s

)
− εG(

S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s ),

(B.6)
for
∑S

s=1 ν
n
asU

n
s 6=

∑S
s=1 ν

m
a′sU

m
s .

Define the functions φ̃na(u) : R→ R by

φ̃na(u) = Φn
a +Kn

a

(
u−

S∑
s=1

νnasU
n
s

)
− εG(u−

S∑
s=1

νnasU
n
s ), (B.7)

where n ∈ {1, 2, ..., N}, a ∈ {1, 2, ..., A}. These functions are strictly concave

and satisfy φ̃na(
∑S

s=1 ν
n
asU

n
s ) = Φn

a .

Define a function φ̃ : R→ R by

φ̃(u) = min
a,n
{φ̃na(u)}. (B.8)

The function φ̃(u) is strictly concave, and we can choose ε small enough such

that φ̃(u) is strictly increasing. It can be shown that φ̃(
∑S

s=1 ν
n
asU

n
s ) = Φn

a .

Step 3: rationalization.

We claim that the constructed utility function rationalizes the observed
data, that is, if pi · yi ≥ pi · y and yi 6= y, then

A∑
a=1

µaφ̃(
S∑
s=1

νiasu(
J∑
j=1

rsjy
i
j)) >

A∑
a=1

µaφ̃(
S∑
s=1

νiasu(
J∑
j=1

rsjyj)).

A∑
a=1

µaφ̃(
S∑
s=1

νiasu(
J∑
j=1

rsjyj))

eqn.(1)
=

A∑
a=1

µa min
a′,m

{
φ̃ma′ +Km

a

( S∑
s=1

νiasu(
J∑
j=1

rsjyj)−
S∑
s

νm
a′s
Um
s

)

− εG
( S∑

s=1

νiasu(
J∑
j=1

rsjyj)−
S∑
s

νa′sU
m
s

)}
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eqn.(2)
=

A∑
a=1

µa min
a′,m

{
φ̃ma′ +Km

a

( S∑
s=1

νias min
s
′
,n
{Un

s′
+Mn

s′
(
J∑
j=1

rsjyj −
J∑
j=1

rs′jy
n
j )

− δg(
J∑
j=1

rsjyj −
J∑
j=1

rs′jy
n
j )} −

S∑
s

νm
a
′
s
Um
s

)

− εG
( S∑

s=1

νiasu(
J∑
j=1

rsjyj)−
S∑
s

νm
a
′
s
Um
s

)}

eqn.(3)

≤
A∑
a=1

µa

{
φ̃ia +Ki

a

( S∑
s=1

νiasU
i
s +M i

s(
J∑
j=1

rsjyj −
J∑
j=1

rsjy
i
j)

− δg(
J∑
j=1

rsjyj −
J∑
j=1

rsjy
i
j)−

S∑
s

νasU
i
s

)
− εG

( S∑
s=1

νasu(
J∑
j=1

rsjyj)−
S∑
s

νiasU
i
s

)}

eqn.(4)
<

A∑
a=1

µa

{
φ̃ia +Ki

a

( S∑
s=1

νiasU
i
s +M i

s(
J∑
j=1

rsjyj −
J∑
j=1

rsjy
i
j)−

S∑
s

νiasU
i
s

)}

=
A∑
a=1

µa

{
φ̃ia +Ki

a

S∑
s=1

νiasM
i
s(

J∑
j=1

rsjyj −
J∑
j=1

rsjy
i
j)

}
eqn.(5)

=
A∑
a=1

µaφ̃
i
a + λipi(y − yi)

eqn.(6)

≤
A∑
a=1

µaφ̃
i
a

eqn.(7)
=

A∑
a=1

µaφ̃(
S∑
s=1

νiasU
i
s)

Eq8
=

A∑
a=1

µaφ̃(
S∑
s=1

νiasu(
J∑
j=1

rsjy
i
j)),

where eqn.(1) follows from the definition of the function φ̃, eqn.(2) from the
definition of the function u, eqn.(3) from taking the minimum, eqn.(4) from
positivity of functions g and G, eqn.(5) from equation (9), and eqn.(6) from
the budget constraint.

C Proof of Lemma 2

The proof of Lemma 1 will be used to prove this result. To show that
Statement (i) implies Statement (ii), use the strict concavity of the functions
u and Φ together with the first order conditions. To prove that Statement (ii)
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implies Statement (i), the construction of u(x) follows the same argument.
We provide a sketch of the construction of Φ(u) : RA → R.

Define a function G(u) : RA → R by

G(u) = (u2
1 + ...u2

A + T )
1
2 − T

1
2 .

Choose a small enough positive number ε such that

Φn−Φm <
A∑
a=1

Km
a

(
S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s

)
−εG(...,

S∑
s=1

νnasU
n
s −

S∑
s=1

νma′sU
m
s , ...),

(C.1)
for
∑S

s=1 ν
n
asU

n
s 6=

∑S
s=1 ν

m
a′sU

m
s . Define the functions φn(u) : RA → R by

φn(u) = Φn+
A∑
a=1

Km
a

(
ua −

S∑
s=1

νma′sU
m
s

)
−εG(..., ua−

S∑
s=1

νma′sU
m
s , ...), (C.2)

where n ∈ {1, 2, ..., N}, a ∈ {1, 2, ..., A}. φn(u) are strictly concave and
satisfy φn(...,

∑S
s=1 ν

n
asU

n
s , ...) = Φn. Define a function Φ : RA → R by

Φ(u) = min
n
{φn(u)}. (C.3)

Φ(u) is strictly concave, and we can choose ε small enough such that Φ(u)
is strictly increasing. It can be shown that

Φ(...,
S∑
s=1

νnasU
n
s , ...) = Φn.

We omit the remaining details of the argument.

D Identification from the

portfolio indifference correspondence

Knowledge of the individual’s portfolio indifference correspondence I(y;ν)
gives the functional form of the indifference curve. In the case without am-
biguity, indifference correspondence was used to identify individuals’ pref-
erences in Dybvig and Polemarchakis (1981), Dybvig (1983) and as early
as Yaari (1969), who used the term ”acceptance frontier” instead. An in-
dividual’s portfolio indifference correspondence I(y;ν) can be observed or
estimated if this individual can specify all the portfolios she regards as indif-
ferent to a particular portfolio y under conditional probability distributions
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ν. Proposition 1 demonstrates that identification from such information is
possible.

Suppose that

(1) the smooth ambiguity utility (2) satisfies the condition that φ (u−1(·))
is strictly concave on R++, with the indices u and φ both being twice
continuously differentiable, strictly increasing, and strictly concave on
R++,

(2) there is an asset j = 1 that is risk free, where r1 = 1 across states of
the world, and

(3) the family of conditional probability measures over states of risk, ν :
A→ ∆(S) is known.

Proposition 1 If

(1) there is an asset j = 2 that is ambiguity free: its payoff distribution is
invariant to the states of ambiguity, and

(2) the matrix  Eν1r2 ... Eν1rJ
... Eνarj ...

EνA
r2 ... EνA

rJ


A×(J−1)

has full row rank A,

then, the portfolio indifference correspondence identifies the risk index u on
R++ and the ambiguity index φ on R++, each up to a positive affine trans-
formation, as well as the ambiguity state probability measure µ.

Proof. Step 1−identifying the risk index u.
Consider, in portfolio space RJ , the plane Λj = {y ∈ RJ : yi = 0, i 6=

1 or j}. For any point y = (y1, 0, ..., yj, ..., 0) in the plane Λj, from the implicit
function theorem, in some neighborhood ℵj of (y1, 0, ..., yj, ..., 0), y1 can be
written as a unique twice continuously differentiable function y1 = fj(yj;ν)
such that

Eµφ(u−1(Eνau(fj(yj;ν)r1 + yjrj))) = U (D.1)

everywhere on ℵj. This is the parametric expression of an individual’s indif-
ference curve passing through y in the plane Λj, and therefore function fj is
observable.

For each j (j = 2, ..., J), totally differentiating equation (D.1) with respect
to yj gives
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Eµφ
′
(u−1(Euνa(fj(yj;ν)r1+yjrj)))

Eνau
′
(fj(yj;ν)r1 + yjrj)(f

′
j(yj;ν)r1 + rj)

u′(u−1(Eνau(fj(yj;ν)r1 + yjrj)))

= 0. (D.2)

We restrict attention to plane Λ2 and the corresponding function f2. From
the fact that the payoffs of asset 1 and 2 are invariant to ambiguity states,
there exists a probability measure, ν̃ ∈ ∆(S), and a matrix of asset payoffs
over states of risk R̃ = (1#S, r̃2), such that, the distribution of asset pay-
offs generated by (νa,Ry), for any state of ambiguity, coincides with the
distribution generated by (ν̃, R̃ỹ).

With j = 2, the above equation (D.2) becomes

f
′

2(y2; ν̃) = −Eν̃u
′
(f2(y2; ν̃)r1 + y2r̃2)r̃2

Eν̃u
′(f2(y2; ν̃)r1 + y2r̃2)r1

. (D.3)

Further totally differentiating equation (D.3) with respect to y2, we have

f
′′

2 (y2; ν̃) = −Eν̃u
′′
(f2(y2; ν̃)r1 + y2r̃2)(f

′
2(y2; ν̃)r1 + r̃2)2

Eν̃u
′(f2(y2; ν̃)r1 + y2r̃2)r1

. (D.4)

At (y1, y2, 0, ..., 0) with y2 = 0,

−u
′′
(y1)

u′(y1)
=

f
′′
2 (0; ν̃)

Eν̃(f
′
2(0; ν̃) + r̃2)2

. (D.5)

Since the individual’s indifference correspondence is observable, so are

f
′
2(·) and f

′′
2 (·). Therefore, −u

′′
(y1)

u′ (y1)
is observable for all y1 > 0, and the risk

index u will be identified on R++, up to a positive affine transformation.
Step 2−identifying the probability measure µ.
For each j (j = 2, ..., J), if we restrict attention to the portfolio ỹ =

(x, 0, ..., 0), equation (D.2) gives

EµEνarj = −f ′j(0;ν),

which can be written in matrix form

[µ1, ..., µA]

 Eν1r2 ... Eν1rJ
... Eνarj ...

EνA
r2 ... EνA

rJ

 = [−f ′2(0;ν), ...,−f ′J(0;ν)]. (D.6)

The full row rank condition (2) implies that the probability measure µ
can be uniquely identified.
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Step 3−identifying the ambiguity index φ.
For an ambiguous asset j (i.e., j 6= 2), further differentiating equation

(D.2) with respect to yj, and evaluating the resultant equation at the portfolio
(y1, 0, ..., yj, ..., 0) with yj = 0, we get

[Eµ(Eνarj − EµEνarj)
2]
φ
′′
(y1)

φ′(y1)
=

[Eµ(Eνarj−EµEνarj)
2 − EµEνa(rj − EµEνarj)

2]
u
′′
(y1)

u′(y1)
+ f

′′

j (0;ν). (D.7)

Since the conditional probability measures over risk states, ν, are known,
and the probability measure over ambiguity states, µ, has been identified,
all the moments EµEνarj, EµEνa(rj)

2 and Eµ(Eνarj)
2, can be computed.

The full row rank condition implies that there exists at least one ambiguous

asset j such that (EµEνarj)
2 6= Eµ(Eνarj)

2, i.e., the coefficient of φ
′′

(y1)

φ′ (y1)

does not vanish for all y1 > 0. Given the risk index u identified, equation
(D.7) in turn identifies the ambiguity index φ on R++, up to a positive affine
transformation.
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