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Abstract 
In this thesis we present theoretical and computational studies for the p-type and 

n-type dye-sensitized solar cells (DSSCs), and the photo-catalytic reduction of 

carbon dioxide to generate methane. For p-type DSSCs, we computed the hole 

injection and recombination rate at the semiconductor-dye (NiO-C343) interface 

based on theories applied previously for electron injection and recombination in 

n-type DSSCs, derived from Fermi golden rule and non-adiabatic charge transfer 

theory. Our analysis showed that the faster recombination in p-type in 

comparison to n-type was due to difference in Franck-Condon factor of the 

relevant transitions.  

For n-type DSSCs, we devised a statistical model based on the electronic 

structural properties of dyes for predicting the efficiency of this device with 

confidence when a new dye was employed. The approach for constructing the 

model was QSAR-like and involved examining correlations between the 

efficiency of the device and a number of predictors that were properties of the 

dye. We also quantified the donor-π-acceptor (D-π-A) character of dyes and 

showed statistically that increasing the strength of this character was ineffective 

for improving the efficiency of n-type DSSCs.  

For photo-catalytic reduction of carbon dioxide to produce methane, we 

studied with DFT calculations three competing reaction mechanisms on TiO2 

anatase(101) proposed in literature on the basis of experimentally observed 

reaction intermediates. By comparing the thermodynamics of mechanisms we 

showed that the formaldehyde pathway was the most favorable reaction 

mechanism. The computational methodology employed was useful for testing 

mechanistic hypotheses for reactions on the surface of solid catalysts. 
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Chapter 1  Introduction 
A main objective of this work is to employ theories and computational chemistry 

to aid the design of new materials for dye-sensitized solar cells (DSSCs) and 

photo-catalysis. Both technologies are currently developing to gain a stronger 

position in the sustainable energy market. In this chapter we will first provide a 

brief description of the current challenge in the energy industry, followed by the 

motivations for developing DSSCs and photo-catalysis, as well as their 

respective challenges for attaining high efficiencies. We will then briefly 

introduce the possible roles of theories and computational chemistry in the 

development of these technologies. Subsequently we will provide introductions 

of DSSCs and photo-catalysis, including their operational principles, some 

research focuses, common experimental techniques employed and examples of 

theoretical works. This chapter will end with an outline of this thesis.  

 

1.1 Challenges in the energy industry 

The new oil extraction1 and recovery2 techniques that have emerged in recent 

years have cast doubts on the existence of a global energy shortage.3 The 

contemporary development of alternative energy sources to fossil fuels is 

therefore motivated more strongly by our concern over the climatic and 

environmental changes; the burning of fossil fuels is notorious for increasing the 

emission of greenhouse gases, leading to dramatic variation of climatic patterns 

relative to what the human race has experienced over the past decades.4 

Alternative sustainable energy sources, however, do not necessarily possess 

environmental advantages over fossil fuels. Nuclear energy, which provides 

around 11% of the global electricity production,5 is far from being a popular 
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choice of energy source due primarily to the tragic catastrophes occurred in, for 

instances, Ukraine 19866 and Japan 2011.7 The nuclear wastes and radiation 

released in these accidents had a far-reaching environmental impact, threatening 

the well-being of many living organisms by, for example, increasing the risk of 

cancer.6   

An outstanding candidate for a sustainable energy source is solar energy. Such 

type of energy is perceived as clean, abundant and freely available, despite its 

dependence upon geography. The attractiveness of solar energy is well-reflected 

by the large sum of investments received, where in 2013 over half of the 214 

billion US dollars invested in renewable energy worldwide were devoted to solar 

energy.8 The international energy agency (IEA) have optimistically predicted that 

solar energy will provide about 16% of global electricity production by 2050, 

even though it is likely that solar energy provides only 2% by 2020.9 Another 

striking advantage of solar energy is that the design of photovoltaic devices are 

highly flexible, leading to a wide range of applications: from pocket calculators 

using small-sized amorphous silicon solar cells to rooftop solar panels for 

powering a household using ‘second generation’ thin-film solar cells. This unique 

aspect that is often not possessed by other renewable energy offers large leeway 

for ‘levelised cost’ improvement, production scale, sites for installation and even 

aesthetic of the devices. It is expected that the price/performance ratio will keep 

reducing with the advancement of ‘third generation’ cells, and there are explicit 

signs showing that the cost of solar power is plunging; for example, the cost of 

power generated by residential photovoltaic systems has dropped by 21% in 

Japan in 2013.8 Edward Lucas, a senior journalist of the Economist, suggested 

that solar energy will bound to be cheaper and become ‘a dagger in the heart of 

the fossil-fuel industry’.8 
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A key disadvantage of solar energy is that the supply of energy is mostly 

intermittent, where no device thus far is known to function efficiently under dim 

lights or nocturnally; hence energy storage is of paramount importance. Solar 

energy storage is not only for ‘battening down the hatches’ for a household at 

night, but also induces large savings in power consumptions and financial 

returns.8,10 The storage of solar energy can be in many forms, be it warm water, 

ice or in the battery of an electric car,8 which should lead to a crucial reminder 

that solar energy is not restricted to generating electricity with photovoltaic cells. 

It can be converted to thermal energy to drive turbines,11 or it can also be 

employed in visible light chemical synthesis with the aid of a photo-catalyst,12 

where in this case solar energy can be stored in high energy-density chemical 

compounds such as methane.13 Methane has long been a part of renewable energy, 

being a major constituent of natural gas, a major product in the bio-fuel 

industry,14 and also a preferred ‘stepping stone’ for a cleaner usage of coal for 

energy application.15 
There are, therefore, two pivotal elements for solar energy to beat fossil fuel, 

especially oil: the first is the further reduction of price/performance ratio, 

reaching a competitive level to that of the oil technology; and the second is a 

cost-effective approach for efficiently storing solar energy. Both elements can be 

strongly influenced by the materials employed in the technology for harvesting 

solar energy. The understanding of the physical and chemical processes, such as 

the charge dynamics in solar cells, and the chemical reactions for producing 

methane, would be important for informing the systematic search and design of 

new materials.  
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1.2 Motivations and challenges in the development of 

DSSCs and photo-catalysis 

At present the solar cell market has been dominated by silicon-based solar 

cells,16 where the price per Watt has been dropping over the last four decades.17,18 

The efficiency of silicon solar cells will be, however, ultimately limited by the 

factors considered in the Shockley-Queisser model19 and the Auger 

recombination.20 There has been therefore a surge of alternative solar cells with 

the potential of attaining efficiency higher than that can be achieved by 

silicon-based solar cells. One of the low-cost alternatives is dye-sensitized solar 

cells (DSSCs).  

The first DSSC that was feasible for practical applications was developed by 

O’Regan and Grätzel,21 in which they demonstrated a breakthrough that involved 

using a charge-transfer dye adsorbing on semiconductor particles with high 

surface area for light absorption, allowing the device to harvest solar power 

much more efficiently than previous attempts. DSSCs can be assembled with 

low-cost materials with relatively simple and inexpensive fabrication, and be 

available in various colours. The rather desirable price/performance ratio of 

DSSCs has already allowed the device to be commercialized, and at present they 

are likely to find applications in building-integrated photovoltaic systems, 

flexible electronics, and perhaps other niche markets.16 The considerably special 

operation principles and constructs (see section 1.4.1) of DSSCs have also served 

as a model system for other innovative development in solar energy technology, 

such as dye-sensitized photo-catalysis.22 

The current power conversion efficiency (PCE) of DSSCs, however, is still 

typically lower than that of silicon solar cells by approximately 10-15%.23 The 
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key challenge for increasing DSSCs’ competitiveness is therefore the 

improvement of PCE, among some other stability issues.24,25 The improvement 

of PCE is closely related to the efficient generation of photo-current, which is 

pertained to the optical and electronic properties of dyes. The understanding of 

how charges can be transferred efficiently between the dye and the electrode is 

therefore important for the improved design of both components. It is, however, 

challenging to understand solely with macroscopic experiments due primarily to 

two elements: (i) the elementary processes at multiple time-scales that can span 

from seconds to femto-seconds, and (ii) the complicated devices’ physics and 

chemistry that originates from the interactions between various components in 

the device.  

Photo-catalysis is perceived as a clean method of storing solar energy in the 

form of chemical energy, most notably as hydrogen fuel and methane, 

synthesized using water and carbon dioxide as initial reactants respectively. The 

combination of such methods with photo-electrochemical cells, such as fuel cells, 

which generate electricity with chemical energy, can potentially lead to 

sustainable photo-driven energy cycles that can complement the intermittency of 

solar cells and prepare energy feedstock for urgent energy shortage. As such the 

technology would be advantageous against conventional combustion of fossil 

fuels in terms of environmentally friendliness, a strong motivation for developing 

photo-catalysis instead of improving existing fossil fuels technology; fossil fuels, 

however, would most likely possess advantage in terms of cost, in which even 

advanced photo-catalysis may still require external help such as legislation to 

reduce such disadvantage.26 

The extensive research effort devoted to photo-catalysis27 was initiated by the 

reports in the 1970s on the observation of water splitting28 and methane from 
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reducing CO2.29 Over roughly 40 years, however, the technology for fuel 

generation is still far from commercialization.30,31 The key challenge in 

photo-catalysis is to identify a catalytic system that is capable of (i) absorbing 

solar light efficiently, (ii) providing electrons and holes at the surface for redox 

reactions efficiently, and (iii) catalyzing the reaction efficiently. These 

requirements are difficult to achieve simultaneously. The different requirements 

have also led to different measures for characterizing the performance of a 

catalytic system, which generally would be either catalyst-based or light-based.13 

Both types of measure have their drawbacks and combining them would still be 

insufficient to encompass all the important limiting factors for the performance 

of a photo-catalytic system. For example, if one considers using turnover 

frequency with Brunauer-Emmett-Teller (BET) surface area to characterize a 

photo-catalyst, some errors may be introduced in the determination of surface 

area since not all surface area is photo-active.13,32 All in all, the lack of a single 

measure of efficiency for catalytic systems does not allow a universal ranking of 

photo-catalytic systems, which causes difficulty for identifying the best catalytic 

systems among a large number of candidates. 

In any case the systematic improvement of requirement (iii) for a catalytic 

system should only be possible when there is sufficient knowledge of the 

reaction mechanism. The understanding of the reaction mechanism would help 

identify the rate-limiting step of the reaction, and further understanding of the 

physical origin of the kinetic barrier associated with this step should provide 

hints for changing and/or modifying the catalytic system to improve the reaction 

efficiency. Many proposed reaction mechanisms are educated guesses based on 

intermediates identified in experiments, in which the connections and roles of the 

intermediates are not given directly by the experimental techniques.33,34 Incorrect 
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guesses can lead to wasteful analysis and proposed mechanisms should therefore 

seek agreement from further studies on, for example, the thermodynamics and 

kinetics of the reactions.  

 

1.3 The roles of theories and computational chemistry 

One of the possible roles of theories for DSSCs would be to complement the 

understanding of interfacial charge transfer processes from macroscopic 

experiments. Theories for electron transfer35 are well-documented and have been 

applied to electrochemical systems,36 and the modelling of organic-solid 

interfaces is now possible with a number of computational tools.37,38 Models for 

charge transfer events are therefore both possible and highly desirable, especially 

when capable of revealing the determining factors that control these processes. 

Computational chemistry is also invaluable for rationalising the correlations 

between the chemical structures of materials and device performance.39 The 

optical and electronic properties of dyes are now commonly explored with 

density functional theory (DFT) and its time-dependent version, and when in 

conjunction with quantum dynamics calculations, these methods have also 

contributed to the understanding of elementary processes (see section 1.4.3).  

For photo-catalysis, computational chemistry can be useful to improve the 

certainty of a proposed reaction mechanism. Examples of using computational 

chemistry to understand reaction mechanisms are abundant, typically by allowing 

examination of the potential energy surfaces of the reactions,40–42 although the 

same objective can perhaps be achieved by considering other methods such as 

the united reaction valley approach.43 In many cases the chemical structure and 

the energetics of the intermediates and transition states are now computationally 
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accessible, offering understanding of the kinetics and thermodynamics of a 

reaction mechanism. A number of examples are given in section 1.5.3 to 

demonstrate how computational chemistry has been employed in this respect for 

photo-catalytic reactions. 

 

1.4 An introduction to dye-sensitized solar cells 

1.4.1 Background 

The most common types of DSSCs are the n-type DSSCs, where the 

photo-electrode is constituted by n-type semiconductor nano-particles such as 

TiO2, which are covered with molecular dyes and submerged in electrolyte 

solution. The ideal operation principles for a n-type device is (Fig.1.1), initially, 

the injection of a photo-excited charge from the lowest unoccupied molecular 

orbital (LUMO) of the dye to the conduction band (CB) of the semiconductor. 

Subsequently this injected charge should migrate through the external circuit and 

interact with the electrolyte at the counter-electrode. The electrolyte then donates 

an electron to the oxidized dye, completing a charge transfer cycle. The power 

conversion efficiency (PCE) of the cells is hampered when serious charge 

recombination occurs, which can be between the dye and the semiconductor, the 

electrolyte and the semiconductor and/or within the dye immediately after 

photo-excitation. 
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Figure 1.1 Illustration of the operation principles of n-type DSSCs. The ideal 
electron transfers (red arrows) start from 1.) photo-excitation of the dye, 
followed by 2.) charge injection, 3.) reduction of electrolyte and finally 4.) 
reduction of oxidized dye. The unwanted electron transfers (blue dashed arrows) 
include 5.) charge recombination between semiconductor and dye and 6.) 
between semiconductor and electrolyte. Ec is the conduction band edge, EF is the 
quasi-Fermi level and Ev is the valence band edge.  

 

A n-type DSSC with a Zn-based porphyrin dye (SM315) and cobalt (II/III) 

shuttle currently holds the record PCE of about 13% for liquid-electrolyte-based 

DSSCs,44 which is still far from the theoretical limit of 32% calculated by 

Shockley and Queisser.19 The dye in the device has been widely conceived as one 

of the most important components for maximizing the PCE of the device, and 

large amount of research effort45 has been devoted to the discovery and/or the 

creation of the best dye. An ideal dye should demonstrate excellent electronic 

and optical properties, such as wide absorption spectrum, long excited state 

lifetime and appropriate energy level alignment relative to TiO2. One of the 

earliest and renowned examples that exhibits these properties is the Ru(II) 
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complexes,45 such as dye N346 and dye N719,47 which were the model dyes 

‘to-beat’ for two decades. Another popular class of dye is the organic dyes, which 

typically exhibit higher molar extinction coefficients (50,000 to 200,000 

M-1cm-1)48 than the Ru(II) complexes, and can be more environmentally-friendly 

by allowing metal-free designs.49 Many organic dyes are designed in accordance 

with the donor-π-acceptor (D-π-A) scheme,45,48,49 which allows flexible structural 

modification of the dyes for attaining more desirable dyes’ properties. Such a 

design scheme, however, does not guarantee high PCE and we will discuss in 

Chapter 5. Apart from the D-π-A scheme, there is no widely adopted design rules 

for organic dyes, despite the large amount of dyes created. The synthesis of dyes 

can be both laborious and time-consuming, and quick estimation of resulting 

PCE using certain hypothetical new dye should facilitate the development of 

dyes, reducing wasteful attempts. A tool designed for this purpose is 

demonstrated in Chapter 4. 

The n-type device utilizes only a single photo-active electrode, but in theory 

the counter-electrode (Fig.1.1) can also be photo-active by employing a p-type 

semiconductor, harvesting more solar light and so resulting in PCE50 higher than 

an n-type device. A tandem DSSC with two photo-active electrodes has been 

shown to exhibit higher photo-voltage but lower PCE than a comparable n-type 

device, where one of the attributions to the difference observed in PCE is that the 

dyes at different electrodes were competing for photons.51 Apart from 

harmonizing the spectral response of the two dyes, the PCE of a tandem cell can 

also be improved by more efficient photo-current generation, which will be 

limited by the weaker electrode when the photo-electrodes are connected in 

series. The current record PCE of a p-type device is about 10-fold52 less than that 

of the n-type, and therefore substantially limits the ability of a tandem cell to 
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generate high photo-current.  

 

 
Figure 1.2 Illustration of the operation principles of p-type DSSCs. The ideal 
hole transfers (red arrows) start from 1.) creation of photo-excited hole, followed 
by 2.) hole injection, 3.) oxidation of electrolyte and finally 4.) oxidation of 
reduced dye. The unwanted electron transfers (blue dashed arrows) include 5.) 
hole recombination between semiconductor and dye and 6.) between 
semiconductor and electrolyte.  

 

The operation principles of a p-type DSSC (Fig. 1.2) are similar to those 

introduced for the n-type (Fig. 1.1). Ideally, photo-excitation would lead to hole 

injection from the dye to the semiconductor, which is typically NiO, and the dye 

is oxidized by the redox mediator thereafter. The hole can recombine with the 

electron from the LUMO of the dye and/or from the electrolyte. Notice that since 

the flow of the current is reversed, the appropriate electronic level alignments for 

efficient charge transfer at the semiconductor-dye interface are different from 

those in the n-type DSSCs. In this case the HOMO of the dye should be lower in 

energy than the valence band (VB) edge of the semiconductor, while the CB edge 
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of the semiconductor should be higher in energy than the LUMO of the dye. The 

hole injection and recombination at the semiconductor-dye interface are modeled 

in Chapter 3 and we will discuss possible strategies to alleviate recombination in 

p-type devices. 

 

1.4.2 Experimental techniques for PCE and charge dynamics 

measurements in DSSCs  

In DSSCs, the PCE (η) is the ‘figure of merit’ and it is related to the short-circuit 

current density (Jsc), open-circuit voltage (Voc), the fill factor (FF) and the power 

of incident radiation (Pin) by:  

sc oc

in

J V FF
P

K                                                (Eq. 1.1) 

The Jsc is the maximum current density achievable by a device at zero voltage, 

and it is related to the electronic and optical properties of a dye. The Voc is the 

maximum voltage at zero current, given by the energy difference between the 

quasi-Fermi level and the redox potential of the electrolyte. The FF is the ratio of 

maximum attainable power to the product of Jsc and Voc, and Pin is the power of 

the incident light. 

The measurement of η is typically performed under 1 Sun (1000 Wm-2) 

irradiation at air mass (AM) of 1.5G, where AM, or the optical path length of 

sunlight through the atmosphere, of 1.0 is equivalent to the path length from the 

Zenith to sea level. A major source of error in estimating η is the determination of 

the active area, a quantity required when converting the measured short-circuit 

current in unit of A, to Jsc in unit of Am-2.53 When the best experimental practice 

for this conversion is not used, one should expect higher η of the device as a 

result.53 
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In many cases the timescales of charge transfer dynamics in DSSCs are in the 

range from nano- (ns) to femto-seconds (fs), and a suitable technique to detect 

these processes is transient absorption spectroscopy (TAS).54–56 This technique 

monitors the variation in absorbance and/or transmission of the sample as a 

function of time by applying a ‘probe’ light after flashing UV or visible ‘pump’ 

light to excite the sample. Species can be identified by relating the absorbance to 

the molar extinction coefficients in accordance with the Beer-Lambert Law. The 

time constants can be obtained, for instance, by characterizing the transient 

absorbance curves with optimized Gaussian curves.56 An important source of 

error would simply be that the timescales of the charge transfer processes do not 

fall within the instrument and/or method response function, such as when charge 

injection is in the range of less than 100 fs.57 The ‘probe’ light should also have a 

fluence (number of incident photons per unit area) much lower than that of the 

‘pump’ light to avoid influencing the population of the excited states when 

measuring the absorbance.58 

Electrochemical impedance spectroscopy (EIS) is also adequate for 

characterizing charge transfer processes in DSSCs.59,60 This method involves 

applying a small AC potential to the device, and recording the resultant current 

response due to this perturbation as a function of frequency. The 

frequency-dependent impedance can be expressed in Euler’s form and visualized 

as a Nyquist plot, or with a Bode phase plot where the frequency can be read 

directly. Typically two or three semicircles would be observed in measurements 

of DSSCs under illumination, and the time constant of charge injection and 

recombination is characterized by intermediate frequency range of 10 to 100 

Hz.60–62  
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1.4.3 Theoretical studies for charge dynamics in DSSCs  

While experiments are capable of measuring fast electron transport time and 

short electron lifetime in femto-seconds in DSSCs,45 various phenomena can 

occur concurrently at multiple timescales,45,63 which can create difficulty for 

analyzing results. The inability of experiments to disentangle processes at 

different timescales implies difficulty to understand the effect of the 

condensed-phase environment on a particular process. Kinetic modeling has 

accompanied experimental measurements since the early developing stage of 

DSSCs for studying the electrical characteristics of the device.45 Another 

important role of theoretical modeling is to establish correlations between the 

electronic structure of materials and the elementary processes in the device, 

which complements the understanding of elementary mechanisms based on 

experimental studies, and aids the design of materials by predicting materials’ 

properties.39 Although the complexity of DSSCs cannot be fully captured in 

current theoretical models, agreements are commonly seen between theoretical 

and experimental charge transfer times.64,65 Current theoretical models are 

therefore deemed capable of providing reliable understanding of charge 

dynamics in DSSCs.39  

Models for electron injection at the semiconductor-dye interface in n-type 

DSSCs are particularly abundant.39,66–70 One of the common computational 

approaches for modeling injection was to employ a model Hamiltonian 

parameterized from first-principle electronic structure calculations and/or 

experimental references.71 Thoss et. al.,64,72,73 for instance, studied injection in a 

number of semiconductor-dye systems based on this approach and combined 

with multi-configuration time-dependent Hartree method74,75 for acquiring a 

quantum dynamical description of the process. In their studies the injection 
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process was characterized as ultrafast and agreed with experimental 

measurements. They had also revealed the influence of the electron-vibration 

coupling on the nuclear degree of freedom at different frequency modes of the 

dye, demonstrating an example of the quantum Zeno effect.67,76 May et.al.77–79 

also adopted the model Hamiltonian approach, using parameters obtained from 

experimental linear absorption spectra of some semiconductor-dye systems, and 

computed the injection rate with a Fermi-Golden rule type expression. They 

showed that electronic coupling can be altered by changing the bridge-anchoring 

group of the dye, and generalized the Fano effect with their models. Deriving an 

injection rate expression from a model Hamiltonian within the Green’s function 

framework, Jones et. al.80 and Martsinovich et. al.65 had employed this rate 

expression for comparing injection rates of a set of dyes. Such approach will be 

further discussed in Chapter 2.  

Another type of method that has been commonly used to model electron 

transfer processes in DSSCs is the non-adiabatic molecular dynamics (NAMD) 

method. NAMD can provide detailed descriptions of the system evolution but 

restricted by high computational cost for slow processes, such as those slower 

than ~10 ps.39 Prezhdo et. al.,63,67,81–84 for instance, simulated electron dynamics 

at the semiconductor-dye interface with a few different approaches, but in 

general based on NAMD with approximations such as the quantum-classical 

mean-field approach. In one of the studies81 they showed that the non-adiabatic 

transfer pathway for photo-induced electron injection was always present after 

photo-excitation and dominated the short transfer times, whereas the adiabatic 

pathway was usually slow. Batista et. al.85,86 employed ab initio DFT molecular 

dynamics, in combination with quantum dynamics calculations, for 

characterizing electron transfer at the semiconductor-dye interface and the 
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influence of thermal fluctuations on these processes. They showed ultrafast 

interfacial electron transfer was sensitive to the symmetry of the initial electronic 

state in the dyes, and the thermal nuclear fluctuations would elevate the rate of 

injection. 

In contrast to electron injection, fewer attempts87,88 have been made to model 

charge recombination in isolation. A possible reason is that the accuracy of the 

computed charge recombination rate is known to be highly sensitive to the 

relative energy levels alignment at the semiconductor-dye interface.39 Standard 

first-principle computational methods such as DFT may not be capable of 

satisfying such requirement, and large uncertainty in the computed charge 

recombination rates could be introduced as such. Maggio et.al.89 had, for instance, 

modeled charge recombination based on non-adiabatic charge transfer theory at 

semiconductor-dye87 and semiconductor-electrolyte interfaces,88 and reduced the 

errors of the energy levels alignment at the interface by introducing experimental 

parameters (also see Chapter 2). A phenomenological model90 based on Marcus 

theory of electron transfer for describing charge recombination was developed in 

parallel with experimental measurements, which had accounted for both 

recombination from electronic states in the conduction band, as well as from 

surface states. With this model it had been shown that the Marcus ‘inverted’ 

region can be exploited by employing a redox shuttle with a strongly positive 

potential to slow recombination from the conduction band, but would at the same 

time accelerate recombination from the surface states. 

The introduced theoretical and computational methods have all been 

developed consistently for charge dynamics in n-type DSSCs. On the other hand, 

there has been a lack of theoretical efforts towards understanding the charge 

dynamics at the semiconductor-dye interface for p-type devices, the weaker 
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component in a tandem cell. A possible reason is that less research effort has 

been devoted to p-type devices than for n-type devices. However, both 

experimental charge transfer time constants and well-defined theoretical 

framework for transfer rate constants were available, and it was possible to study 

theoretically the interfacial charge dynamics for p-type devices. Such type of 

study is given in Chapter 3. 

 

1.5 An introduction to photo-catalysis for fuel generation 

1.5.1 Background 

Photo-catalysis presents a clean and environmentally-friendly opportunity for 

alleviating future and global energy demand in terms of chemical energy storage. 

The main objective for photo-catalysis in the context of fuel generation is to 

perform efficient photo-driven solar fuels synthesis. Two prominent examples are 

photo-catalytic water splitting and photo-catalytic reduction of CO2, which can 

generate high-specific-energy hydrogen fuel (~129 - 152 MJ/kg)91 and methane 

(~55 - 61 MJ/kg)91 respectively.  

The ideal operation principle for photo-catalysis (Fig. 1.3) is, as a first step, 

the creation of an electron-hole pair in the bulk due to photo-excitation of the 

catalyst. Following charge separation is the migration of electron and hole 

towards the surface of the catalyst, and subsequently the electron and hole 

undergo interfacial charge transfer with surface adsorbates. Holes and electrons, 

however, can also recombine at the surface and/or in the bulk, especially when 

these particles are trapped at surface defect sites, instead of reacting with surface 

species as an outcome. Recombination at the surface are generally serious,27,92,93 

hence in practice electron or hole scavengers, such as molecular oxygen and 
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simple amines and alcohols respectively,94 are incorporated in the system to 

alleviate these unwanted processes. The interfacial redox reactions are also 

dependent on the relative electronic energy level alignment, which can be 

sensitive to a number of factors such as solvent environment and surface 

morphology. 

 

 
Figure 1.3 Illustration of the operational principles of photo-catalysis, using 
oxidation (H+/H2) and reduction (O2/H2O) of water as an example. The ideal 
electron (red arrows) and hole (blue arrows) transfers start from 1.) 
photo-excitation leads to charge separation, 2.) excited electrons and holes 
migrate to the surface, and 3.) undergo redox reactions with surface adsorbates. 
Charge recombination can occur 4.) in the bulk and 5.) on the surface of 
semiconductor nano-particles.  

 

Photo-catalytic water splitting has been one of the main research focuses in 

photo-catalysis, due not only to the generation of hydrogen fuel but also to the 

frequent presence of water in other photo-catalytic reactions.27,95 In a 

photo-electrochemical water splitting cell, the splitting of water to produce 
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molecular oxygen and hydrogen requires an energy supply of 1.23 eV. The 

overall reaction consists of two half-reactions, the hydrogen evolution reaction 

(HER): 

22H 2e H� �� o                                             (Eq. 1.2) 

and the oxygen evolution reaction (OER): 

2 22H O 4h O 4H� �� o �                                      (Eq. 1.3) 

The HER is generally inefficient on a conventional TiO2 catalyst, due to the 

considerably positive CB edge of TiO2, and weak absorption of solar light in the 

visible light spectrum. Attempted solutions include anionic doping with N and S 

atoms,96 attaching dyes,22,97 or replacing with p-type semiconductors.98 All these 

modifications are not ideal, with either limited improvements seen or other 

problems arise, such as dye regeneration in dye-sensitized systems22 and 

sacrificing reactive photo-holes for OER when p-type semiconductors are 

employed.98 The kinetics of the HER is also unfavorable on a bare 

semiconductor; hence co-catalysts such as Pt metal are frequently 

incorporated.98,99  

A large over-potential is typically associated with OER on TiO2, leading to the 

requirement of an energy supply of greater than 1.23 eV in practice to drive the 

reaction. The OER reaction mechanism is still under debate67,94,100–102 but it is 

generally agreed that the surface-trapped photo-holes are essential and have 

sufficient oxidizing power to produce oxygen via four sequential hole transfer 

steps. Without a clearly elucidated reaction mechanism the physical origin of the 

OER over-potential has therefore remained implicit. A number of dopants have, 

however, already been tested for promoting OER but without significant 

improvements.96,101 Co-catalysts such as Mn3O4, IrO2 and RuO2 often only lead 

to moderate improvement of water-splitting rate by a factor of 1.4 at most when 
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co-loaded with co-catalysts for HER.103 The more recently designed Z-scheme 

hybrid configured catalytic systems may present an opportunity for 

simultaneously promoting HER and OER, where now the two half-reactions are 

performed upon two separate semiconductor nano-particles.103–105 Yet, current 

efficient configurations for photo-catalytic water splitting106 such as 

NaTaO3:La(2%) under UV-spectrum (with hydrogen production rate of 19.8 

mmolg-1h-1),107 are far from comparable with the efficiency of hydrogen 

generation with steam reform of natural gas, the process that produces the 

majority of global hydrogen fuel.108,109 

In photo-catalytic reduction of CO2 in water, the transformation to methane is 

a reduction half-reaction that requires 8 protons and 8 electrons, or 8 hydrogen 

radicals, to complete:13 

2 4 2CO 8H CH 2H Ox� o �                                    (Eq. 1.4) 

The 8 holes generated at the VB edge of the semiconductor, e.g. TiO2, should 

also react with surface species which would otherwise cause unwanted charge 

recombination27,93 and hinder reaction efficiency. In theory the holes can be 

consumed in an OER (Eq. 1.3), where the protons generated can be reduced for 

acquiring hydrogen radicals. The total ideal reaction would be: 

2 2 4 2CO 2H O CH 2O� o �                                    (Eq. 1.5) 

To study the photo-reduction of CO2 in isolation, additional hole scavengers such 

as amines and alcohols are typically employed to remove surface holes.13 The 

generation of oxygen (Eq. 1.3) is not common due to difficult four-hole 

chemistry.93  

There is currently no photo-catalyst that allows this conversion to be efficient 

for industrial practice. The formation rate of CH4, one of the common measures 

for the efficiency, is extremely low, typically less than tens of μmol g-1 h-1.13,110 
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This is lower than the aforementioned hydrogen production rates from efficient 

photo-catalytic water splitting. There is a growing interest in developing new 

catalysts for improving efficiency, with attempts already made that are not 

limited to conventional concepts such as doping, adding metal co-catalysts and 

replacing with other transition metal oxides,13,110 but also with more innovative 

organic approaches such as enzyme mimicking.111 There is, however, no widely 

accepted reaction mechanism of photo-catalytic reduction of CO2 to CH4 and the 

development of catalytic systems are largely based on trial-and-error.  

The main research focus in both water splitting and photo-reduction of CO2 is 

evidently the development of catalytic systems with improved efficiency in terms 

of light absorption, interfacial charge transfer and catalyzing the reaction. 

Trial-and-error has been the main approach for catalyst development112–114 but 

this approach has been ineffective, where catalytic systems with sufficient 

efficiency for commercialization have yet to be identified after almost 40 years 

of research. Systematic improvement of catalysts, on the other hand, should 

require at least (i) a widely adopted metric for comparing the performance of 

catalysts; (ii) knowledge of the reaction mechanism, which should reveal the 

rate-limiting step and provide possible hints for controlling product selectivity; 

and (iii) some design rules for catalysts, where only rather few of them114–117 

have been proposed thus far. These requirements are currently far from being 

completely fulfilled, and can be time-consuming to achieve. However, successful 

fulfillment of these requirements should not only accelerate the discovery and/or 

the invention of efficient catalytic systems for water splitting and 

photo-reduction of CO2, but also serve as important examples for other 

photo-catalytic reactions. 
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1.5.2 Experimental techniques for identifying reaction 

intermediates in photo-catalysis 

Electron paramagnetic resonance (EPR) spectroscopy and infra-red (IR) 

spectroscopy are two of the most common techniques to identify reaction 

intermediates in photo-catalysis, among a few others.118 Both techniques have 

been employed in the experimental studies to identify intermediates in 

photo-catalytic reduction of CO2.119–122 EPR spectroscopy is designed for the 

detection of open-shell intermediates, which are likely to evolve upon interfacial 

charge transfer and hydrogen radical transfer on the surface. In the presence of an 

external magnetic field, unpaired electron of an intermediate would have spin 

quantum number (ms) of either ½ or −½, each of them with a specific energy that 

can be computed in accordance with the Zeeman equation. The energy difference 

between the two spin states is the absorption energy that is typically recorded as 

first derivative in EPR spectrum at a fixed microwave frequency. Intermediates 

can be identified by analyzing the g-factors and/or the hyperfine structures, in 

which the difference of these factors between intermediates originates from the 

different couplings between the electron spins and local magnetic fields, and 

between electron spins and the nucleus spins respectively. EPR experiments are 

typically performed at 77K120 for the purpose of avoiding low sensitivity due to 

high population of the excited electron spin states. The technique is incapable of 

detecting closed-shell species,119 hence should be employed together with 

techniques such as gas chromatography to complement this weakness.  

  IR spectroscopy represents a number of techniques that reveal the structure of 

an IR-active intermediate upon absorption at specific frequencies that correspond 

to the motion of normal vibrational modes. These techniques vary from one 

another in terms of, for instance, experimental setup and/or data manipulation. 
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Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS),123 for 

example, allows measurements with powder samples and hence records diffuse 

reflection patterns alongside absorbance for characterizing materials. Polarization 

modulation infrared reflection absorption spectroscopy (PM-IRAS),118 on the 

other hand, isolates the contribution of the surface-bound species to the spectra 

by taking the difference between spectra obtained with s-polarized and 

p-polarized light, in which gas phase species are sensitive to both types of light 

but surface species are much more sensitive to the p- than s-polarized light.  

  Often the ultimate objective of identifying reaction intermediates is to aid the 

understanding of a molecular reaction mechanism, but the introduced methods 

themselves are not capable of informing the role of the identified intermediates in 

the reacting systems. Major sources of errors in proposed reaction mechanisms 

are therefore the inaccurate chemical intuition from the researcher, and/or the 

incorrect assignments of spectral features. Kinetic modeling,124 isotope labeling 

experiments,125 and computed potential energy surfaces,40 are all complementary 

tools that have shown to add confidence to hypothetical mechanisms in the past. 

We will demonstrate in Chapter 6 how potential energy surfaces computed with 

DFT can aid the discrimination of competing mechanisms of photo-catalytic 

reactions. 

 

1.5.3 Theoretical studies for reaction mechanisms in 

photo-catalysis  

As introduced in section 1.2 and section 1.5.1, the research field of 

photo-catalysis is largely focusing on the discovery of a photo-catalytic system 

that can efficiently (i) absorb solar light, (ii) deliver electron and holes to the 

surface for redox reactions and (iii) catalyze the reaction. In terms of improving 
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criteria (i) and (ii), theoretical studies have taken chiefly the role of revealing the 

electronic structures, the optical properties and the relative electronic energy 

level alignment with surface adsorbates of photo-catalytic materials. The 

knowledge of these properties would be useful for informing the experimentalists 

about the appropriate tuning of the electronic structure of a given photo-catalyst, 

such as the appropriate energy range for electronic states to be introduced within 

the band gap by doping.126  

Another important role of theoretical studies is to reveal the thermodynamics 

and kinetics of the surface molecular reaction, as well as the adsorption 

geometries of reaction intermediates, in order to complement the understanding 

of the reaction mechanism proposed based on experiments. The understanding of 

reaction mechanism allows identification of the rate-limiting step, and further 

analysis to understand the origin of the kinetic barrier of this step should provide 

valuable insights into modifying catalysts for the improvement of criterion (iii). 

The focus of this section will be placed on the role of theoretical studies to 

understand reaction mechanisms in photo-catalysis. 

A relatively large amount of theoretical work has been devoted to study 

photo-catalytic water splitting,67,126 and we will therefore use studies on the 

reaction mechanism of OER to demonstrate the role played by theoretical studies. 

Valdes et.al.,127 for example, had employed the computational hydrogen 

electrode (CHE) method128 and analyzed a few possible reaction mechanisms on 

rutile(110) with different surface terminations. They showed that the surface fully 

covered with oxygen was the relevant surface for reaction, and the rate-limiting 

step was a deprotonation step: 

2H O S OH S H e� �� o � � �                                    (Eq. 1.6) 
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where S was a coordinatively unsaturated site on the surface. They had also 

pointed out that water oxidation could be light-driven on ideal TiO2 rutile(110) 

surface without external bias. Li et.al.101 had determined the microscopic 

mechanisms for OER on 3 different anatase surfaces. They showed that visible 

light provided sufficient energy to drive OER kinetically, that the first 

deprotonation was the rate-limiting step, and that the reaction was not sensitive 

to the surfaces investigated. They also discussed the physical origin of the 

over-potential by analyzing the electronic structures of rutile, anatase and 

co-doped anatase with (Mo, C) and (Nb, N). The origin of the over-potential was 

attributed to the instability of the surface-adsorbed OH state in the rate-limiting 

step, and introducing occupied states higher in energy than the VB states in TiO2 

by doping could enhance OER activity. Nguyen et. al.129 and Hellman et. al.130 

had studied OER on α-Hematite(0001) with different surface terminations by 

adopting the CHE method. Both studies had agreed that one of the 

oxygen-terminated surfaces was the most stable surface termination under 

photo-illumination. Reaction mechanisms had been proposed for this surface 

accordingly. Hellman et.al.130 suggested that the formation of O2 could be 

considered as the rate-limiting step, while Nguyen et.al.129 had suggested the 

formation of surface O from the oxidation of surface OH was the most 

energetically demanding step. The main objective of these studies was to identify 

the surface termination responsible for OER activity, which was important for 

establishing the reaction mechanism on α-Hematite(0001). Although further 

analysis of possible rate-limiting steps had not been given in these studies, their 

findings and proposed reaction mechanisms had offered suggestions for further 

experimental studies. 

Theoretical studies had also contributed to the understanding of the 
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mechanism of elementary electron and proton transfer reactions in OER, such as 

sequential or concerted transfer mechanisms. Chen et. al.,102 for instance, studied 

the chemical dynamics of the first proton and electron transfer step of the OER 

with DFT-based first principle molecular dynamics, and showed that the 

mechanism of this step was a proton transfer (PT) step followed by an electron 

transfer (ET) step. They explained the influence of pH on the rate of OER, in 

which PT was a rate-limiting step at low pH (pH < point of zero charge (pzc)) 

while at high pH the rate-limiting step was the ET. The barrier for ET at high pH 

was much lower than the barrier of PT at low pH and therefore the rate of OER 

was faster at high pH, where the surface was covered by hydroxide. Cheng et. 

al.131 studied the elementary mechanisms of four assumed elementary steps of 

OER by computing the reaction energies of these steps. They showed that the 

mechanisms should be sequential ET and PT for all four steps, and the second 

step had the highest reaction energy. They also separated the protonic and 

electronic component of the thermodynamic over-potential and showed that this 

over-potential was attributed mainly to the scattered alignment of the electronic 

levels, not to the component from deprotonation. The devised representation of 

the electronic and protonic component for the reaction could also be useful to 

understand a catalyst’s activity or inactivity.  

Although a substantial amount of theoretical studies have been devoted to 

study OER, the reaction mechanism of OER currently remains debatable (see 

also section 1.5.1). Some details of the resulting reaction mechanism from 

different theoretical studies are often in disagreement. For instance, Liu et. al.101 

have not included adsorbed OOH in their identified reaction mechanism, while 

OOH is a common intermediate in other theoretical studies.127,131,132 The 

discrepancy can be caused by the different catalysts’ surfaces, computational 
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methods and experimental evidences employed in these studies. On the other 

hand, an important agreement between different theoretical studies101,127,132 is 

that, the identified rate-limiting steps have appeared to be similar, which is the 

first deprotonation step, similar to (Eq. 1.6). Hence, the analysis of the origin of 

the over-potential associated with this step by Liu et. al., and the explanation of 

the effect of pH on the elementary mechanism of this step by Chen et. al., are 

seemingly important understanding for new design of photo-catalyst to achieve 

higher OER activity.  

The purpose of understanding the OER mechanism is ultimately to facilitate 

water-splitting. Hitherto theoretical studies have been able to provide some 

understanding on a single process in isolation, but the reaction system of water 

splitting involves various processes occurring simultaneously, including the HER, 

and charge recombination on the surface of the catalyst.67 Current theoretical 

models are incapable of examining the mutual influence of various important 

concurrent processes involved in water splitting, and the development of 

multi-scale models133,134 to provide such detailed picture remains a challenge. 

Another challenge will be the identification of suitable materials. There is 

currently a large number of catalytic materials available,106 and more are 

expected to be synthesized and studied. It is therefore important to develop a 

method for identifying materials that may match the requirement of an efficient 

photo-catalyst. In this respect, it is perhaps useful to continue the development of 

computational models designed previously for screening catalysts, such as the 

volcano plots.67,98,116 

While there is an accumulating amount of theoretical studies on 

photo-catalytic water-splitting, there are comparatively much fewer studies on 

the photo-catalytic reduction of CO2. These theoretical studies either focused on 
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the reduction of CO2 to form products other than CH4, or considered a subset of 

mechanistic hypotheses proposed for the conversion to CH4. Indrakanti et.al.,135 

for instance, studied the adsorption of CO2 on small clusters using both 

post-Hartree-Fock and DFT methods, and they showed that transferring an 

excited electron from a stoichiometric TiO2 surface to CO2 was energetically 

unfavourable, but the charge transfer might be more favourable when oxygen 

vacancies were present. He et. al.136 studied 2-electron reduction of CO2 on 

anatase(101), using a periodic slab model with the GGA+U scheme, and they 

identified competitive pathways to form HCOOH and CO. In the same study a 

simple model was devised to screen a large number of dopants for lowering the 

reaction barriers. Ji and Luo137 studied a proposed reaction pathway on the 

anatase(101) surface, and subsequently proposed a new pathway.  

Photo-catalytic reduction of CO2 to gain CH4 (Eq. 1.4) is a complicated 

reaction that many intermediates can possibly form in the course of the reaction, 

which has led to several proposed reaction mechanisms.13 For TiO2, three 

reaction mechanisms proposed based on experimentally identified intermediates 

have been summarized in the literature,13 but only one of the proposed reaction 

mechanisms has been studied theoretically.137 Without comparing all three 

proposed reaction mechanisms, it is not possible to rule out mechanistic 

hypotheses with supporting evidence given on a common basis, such as 

thermodynamics, and identify the most likely mechanism and/or the reaction 

conditions that favor a particular mechanism. In chapter 6, we have therefore 

considered all three proposed reaction mechanisms on defect-free TiO2 

anatase(101) and compared their thermodynamics, with the objective to identify 

the most favorable mechanism. The method employed in the study is general for 

testing mechanistic hypotheses for reactions occur on the surface of solid 
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catalysts.  

 

1.6 Thesis Outline 

In Chapter 2 we introduce the theories and methods employed in this thesis in a 

general context. In Chapter 3 we demonstrate how we modeled the charge 

injection and recombination in p-type DSSCs with non-adiabatic charge transfer 

theories and suggest possible modification for PCE improvement. In Chapter 4 

we present a statistical model for predicting the PCE of DSSC based on 

quantum-chemically computable properties of dyes. In Chapter 5 we present our 

work on attempting to answer the question of whether increasing the strength of 

D-π-A character would improve PCE of n-type DSSC, based upon statistical 

grounds. In Chapter 6, we show the thermodynamic landscapes of three proposed 

reaction mechanisms of the conversion of CO2 to CH4 on TiO2 anatase(101), and 

discuss the most favorable pathway for this reaction. We conclude this thesis in 

Chapter 7. 
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Chapter 2  Theory and methodology 
The theories and methodologies to be introduced in this chapter include some 

standard computational theories in quantum chemical calculations, the charge 

transfer theories for modeling charge dynamics in DSSCs (Chapter 3), and the 

general methodologies for statistical modeling with regression (Chapter 4).  

 

2.1 Standard computational methods 

2.1.1 Density functional theory  

The majority of electronic structure calculations performed in this thesis, 

including the geometry optimization of dyes (Chapter 4 and 5) and relaxation of 

periodic systems (Chapter 3 and 6), were based on Density Functional Theory 

(DFT).138–140 DFT is a variational ground-state theory in which the computation 

of the total energy functional (E[ρ]) using the Kohn-Sham equations141 is given 

by:  

[ ] [ ] [ ] [ ] [ ]ext H xcE T V V EU U U U U � � �                            (Eq. 2.1) 

where T[ρ] is the kinetic functional, Vext[ρ] is the external potential functional, 

VH[ρ] is the Hartree energy functional and Exc[ρ] is the exchange-correlation 

functional. Computed results may depend on the choice of Exc[ρ], which is the 

sum of the difference in kinetic energy and electron-electron interaction between 

real system and the fictitious system with non-interacting Fermions under the 

Kohn-Sham equations. DFT with functional-type such as Local Density 

approximation (LDA) and Generalized Gradient Approximation (GGA), 

possesses the crucial advantage of producing some predictions with acceptable 

accuracy but low computational cost (scale to ~N2-3, where N is the relative 

measure of system size) in comparison to alternatives.142 Hence, often used in 
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combination with Bloch wave-functions, DFT is widely adopted in the 

simulations of large periodic systems.143 

A challenge for DFT is the modeling of the electronic energy level alignment 

at the semiconductor (inorganic) –dye (organic) interface. Such kind of interface 

is common in photo-voltaic devices such as DSSCs, since organic materials can 

often provide tunable and desirable optical properties with rather poor charge 

carrier mobility, while it is vice versa for inorganic materials. The combination of 

the two types of material can therefore complement the weaknesses of one 

another.37 The efficient charge separation at the interface, however, is still very 

much depending on the electronic energy level alignment. Standard DFT/GGA is 

incapable of describing simultaneously the electronic properties of both inorganic 

and organic parts with sufficient accuracy.37 The method is notorious for 

over-delocalizing wave-functions in organic materials,37,140 and generally 

wrongly predicts the band gap of a semiconductor (typically underestimation is 

~30% to 100% for solids),144,145 as well as the HOMO-LUMO gap of the organic 

material (typical error for non-hybrid functional is ~0.73 eV).146 These 

weaknesses of DFT can be problematic for the computation of charge transfer 

rates at these types of interfaces, especially when the rate has an exponential 

dependence on the energy gap between the initial and final states of the reaction. 

There are a number of alternatives which are capable of providing a 

comparatively accurate alignment, such as the GW approach37,147,148 and 

time-dependent density functional theory (TDDFT),149,150 but these methods 

typically require much higher computational cost. It is also possible to compute 

the interfacial charge transfer rates with sufficient accuracy based on DFT/GGA 

alignment; for instance, if the errors introduced by DFT in the band gap of the 

semiconductor and the HOMO-LUMO gap of the organic material cancel out, an 
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acceptable alignment may be acquired on a relative scale;65 and/or when 

experimental parameters are introduced to the DFT/GGA alignment to correct for 

the error.87  

For strongly-correlated materials, such as NiO, standard DFT cannot describe 

the band structure with satisfaction and special treatment of the strong on-site 

Coulomb interactions in total energy calculations is required. For instance,  

, ,

( )[{ }]
2DFT DFT i lj jl

l j

U JE E V V

V

H U U�
 � ¦                            (Eq. 2.2) 

where {εi} is the set of Kohn-Sham eigenvalues, U and J are the spherically 

averaged matrix elements of the screened Coulomb electron-electron interactions, 

and lj
VU  is the density matrix of d-electrons with spin σ. The development of Eq. 

2.2 leads to the DFT+U151–153 computational scheme, a widely applied method 

for treating strongly-correlated materials, among other alternatives154 such as 

dynamical mean field theory155 and many-body perturbation theory based on 

Green’s function.148 A limitation of DFT+U is that the parameter U is normally 

chosen rather arbitrarily by, for instance, fitting properties of interest against 

experimental results, instead of based on physical understanding.154 Other 

limitations of DFT include systematic underestimation of reaction barriers140 and 

inability of describing charge-localized states, in which the latter may be dealt 

with by using constrained DFT (cDFT).156  

 

2.1.2 Other standard methods 

Time-dependent density functional theory (TDDFT)150 was employed for 

providing excitation energies and oscillator strength for simulating absorption 

spectrum of dyes in Chapter 4. This method has been commonly applied in the 

field of DSSC for understanding dyes’ optical properties,39,157 as well as the 
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relative energy level alignment between the semiconductor and the excited 

dye.149 TDDFT is the time-dependent analogue of DFT, providing the energy of 

the system by solving the time-dependent Kohn-Sham equation.  

The climbing-image nudged elastic band (CI-NEB)158 was employed for the 

search of transition states of reactions in Chapter 6. The NEB159–161 is a 

chain-of-state elastic-band type method for the acquisition of a minimum energy 

path, while the CI is implemented for the purpose of improving the accuracy of 

the location of the transition state. The NEB optimizes the intermediate images 

along a path by moving images in accordance with the total force acting on 

images, which is the sum of the spring force along the local tangent (
||

s
iF ) and 

the true force perpendicular to the local tangent ( ( )iE
A

� R ): 

||
( )s

i i iE
A

 ��F F R                                           (Eq. 2.3) 

where Ri denotes the coordinates of image i. The CI then identifies the image 

with the highest energy imax, and the total force of this image, instead of 

computing with Eq. 2.3, is now given by the full force of the potential with 

inverted component along the band: 

max max max ||
( ) 2 ( )i i iE E �� � �F R R                                 (Eq. 2.4) 

 

2.2 Physical modeling of charge transfer at the semi- 

conductor/dye interface in DSSC 

2.2.1 Theory of charge injection  

The computation of hole injection rate is based on a theory of charge injection 

derived based on the Fermi-Golden rule formalism,162 within the framework of 

Green’s function. The theory stems from the News-Anderson model 
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Hamiltonian,163,164 and was developed and applied for identifying dyes65,80 and 

their possible anchoring groups165 that promoted fast charge injection. Using 

charge injection in n-type DSSC as an example, we illustrate key points of the 

theory of charge injection employed to study hole injection in Chapter 3. A 

detailed account of the theory is given in ref. 166. 

The charge injection process in n-type DSSC at the semiconductor-dye 

interface is the transfer of electron from a localized state s  in the dye to the 

manifold of states ^ `l  in the semiconductor (Fig 1.1), which ideally would be 

the states in the conduction band. The time-dependent probability of finding a 

system at state s  (Ps(t)) can be given by: 

2( ) ( )s ssP t G t                                               (Eq. 2.5) 

where Gss(t) is the forward time propagator of state s , and can be written in 

terms of Fourier transform of retarded Green’s function matrix elements. The 

(causal) Green’s operator is a common way of expressing the time evolution of a 

system.167 Since the retarded Green’s function operator can be related to a system 

Hamiltonian by: 

1( )G E
E H iH

 
� �

                                          (Eq. 2.6) 

where ε is a positive infinitesimal quantity, Gss(E) can therefore be evaluated for 

the Newns-Anderson model Hamiltonian163,164 by writing: 

1( )
( )ss

s ss

G E
E E E

 
� �¦

                                    (Eq. 2.7)  

where Es is the energy of state s  and ( )
ss

E¦  is the self-energy of state s , 

which consists of a real part and an imaginary part: 

( ) ( ) ( )
2ss ssss

iE E E ' � *¦                                   (Eq. 2.8) 
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The imaginary part of the self-energy is related to the charge injection rate (Гss) 

in a golden-rule type relation: 

( ) 2 ( )ss sl sl l
l

E V V E ES G
*  �¦                                  (Eq. 2.9) 

where Vsl is the coupling between states s  and l , and δ(E − El) is the Dirac 

delta function, where the sum of this function over all states l  is the density of 

states of the semiconductor.  

  A crucial property for efficient injection is the appropriate relative energy 

alignment of the state s  in the dye to the state l  in the semiconductor (Fig. 

1.1). Errors can therefore be introduced by the inaccuracies in the computation of 

the energies of both states s  and l . For instance, ground-state DFT/GGA is 

known to perform weakly in the computation of energies of virtual orbitals,65 

which can result in incorrect relative energy alignment as introduced in section 

2.1.1. The coupling between the dye and the semiconductor is also important for 

determining the injection efficiency.165 Many dyes have been designed with 

LUMOs localized on the anchoring group of the dye, in order to attain proximity 

between the LUMOs and surface electronic states for maximizing the coupling. 

This coupling, however, is also subject to other variables such as adsorption 

geometries, which are typically determined with computational studies.  

Eq. 2.9 can be conveniently applied for screening dyes with the same 

anchoring group for fast injection, when combined with a practical 

computational partitioning scheme.65 In this case Eq. 2.9 is rewritten as: 

*

,
( ) ( )ss mn m n

m n
E E c c*  *¦                                     (Eq. 2.10) 

where cm are the molecular orbital coefficients, and: 

' '
'

*

,

2( ) ( )mn mk nk kk
k k

E V V ES U*  ¦                                 (Eq. 2.11) 
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where Vmk is the coupling between the anchoring group and the substrate, when 

the initial state s  and final state l  are expressed as linear combination of 

localized basis functions {χm} and {Mk} respectively, and ρkk’(E) is the 

energy-dependent local density of states of the substrate. Generally the most 

computationally expensive calculations will be those involving the substrate, but 

in this case Гmn(E) can be reused for different dyes with the same anchoring 

groups, where the coupling Vmk can be reasonably assumed to be the same. The 

screening can therefore be performed without repeating the calculations 

involving the substrate for different dyes, and requires only geometry 

optimization of dyes to attain cm for Eq. 2.10. 

 

2.2.2 Theory of charge recombination  

The computation of hole recombination in Chapter 3 is based on the theory of 

charge recombination derived from the Fermi Golden rule formalism and Marcus 

theory for electron transfer, developed and applied to the electron recombination 

in n-type DSSCs by Maggio and Troisi.87,88,168 In a n-type device the 

recombination process at the semiconductor-dye interface is an electron in the 

manifold of the semiconductor, ^ `l , transfers to a localized state of the 

oxidized dye, i  (Fig 1.1). A distinction between charge recombination to 

charge injection is the typical time frames of the two processes, where the former 

is slow (s to ns) and the latter is fast (fs). Such discrepancy in the duration of the 

processes suggests different importance of the nuclear motions; essentially the 

equilibrium nuclear configurations for the initial and final states in injection 

would be unchanged, while the relaxation of the nucleus is necessary to be part 

of the rate expression of charge recombination.  

  Charge recombination in n-type DSSCs is generally deemed as a non-adiabatic 
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charge transfer process, which has a small Landau-Zener transition probability at 

the crossing region of (at least) two electronic potential energy surfaces, or the 

coupling between the donor state and the acceptor localized state is weak. The 

rate expression of charge recombination in a n-type device, which follows the 

energy gap law,169 can be written as: 

( ) ( ) ( , , )n ii F n n
cbm

k E f E E F E G dEO * � '³                        (Eq. 2.12) 

where cbm is the conduction band minimum of the semiconductor, Гii(E) is the 

transfer rate in the absence of nuclear relaxation, similar to Eq. 2.9 but recast as: 

*2( ) ( )ii il il l
l

E V V E ES G*  �¦                                 (Eq. 2.13) 

since the recombination is between state i  and ^ `l . f(E − EF) is the 

Fermi-Dirac distribution, which provides the probability of an electron 

occupying a state with energy E in the manifold: 

1( )( )

1( )
1 F B

F E E k T
f E E

e
��

�  
�

                                  (Eq. 2.14) 

where EF is the quasi-Fermi level at non-equilibrium, such as when the device is 

under illumination, kB is the Boltzmann constant and T is the temperature. F(E, 

ΔGn, λn) is the thermally-average Franck-Condon term that can be expressed with 

classical nuclear modes as: 

2( )1( , , ) exp[ ]
44

n n
n n

n Bn B

E GF E G
k Tk T

OO
OSO

� �' �
'                  (Eq. 2.15) 

where E is the energy of the electron in the conduction band for recombination, 

ΔGn is the free energy change of the oxidation of dye and λn is the reorganization 

energy of the same process. ΔGn and λn will be further discussed in the following 

section. When the vibrations are treated quantum mechanically the 

Franck-Condon term can be written as: 
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where Seff is the effective Huang-Rhys factor and hωeff is the energy of the 

effective quantum mode. Both Eq. 2.15 and Eq. 2.16 are able to reproduce 

experimental recombination times at reasonable values of the cbm.87 Further 

details on the theoretical background of the Franck-Condon term in the 

semi-classical limit and bridge-mediated electronic coupling are available 

elsewhere.89  

The derivation of Eq. 2.12 is based on the assumption that the initial and final 

multi-electronic states of the process can be represented by Slater determinants 

differing from each other only in the occupation of one orbital. The coupling 

between the two states is therefore approximated by the coupling between a 

conduction band orbital of the semiconductor and the HOMO of the dye.87 The 

theory is also not appropriate for treating situations where the trap state is in the 

immediate vicinity of the dye,87 unless the theory is combined with another 

model such as a tight-binding model.168 The rate expression (Eq. 2.12) is 

conveniently related to a number of parameters that are practically tunable by 

modifying the structure of dyes, such as Vil (Eq. 2.13), ΔGn and λn (Eq. 2.15), 

which has led to some new design concepts for dyes to minimize charge 

recombination in recent years, including using the symmetry of orbitals and 

tailoring a chemical bridge.170,171  

 

2.2.3 Free energy change and reorganization energy  

We first clarify the symbols for denoting these two parameters in various 

contexts. In n-type DSSCs, these two parameters correspond to the 

single-electron transfer to the oxidized dye (D) at the semiconductor-dye 
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interface: 

D e D� �� o                                               (Eq. 2.17) 

and will be denoted as ΔGn and λn respectively. In p-type DSSCs, these two 

parameters correspond to the single-hole transfer to the reduced dye at the 

semiconductor-dye interface: 

D h D� �� o                                               (Eq. 2.18) 

and will be denoted as ΔGp and λp respectively. For discussion in a general 

context, where the distinction between p-type and n-type devices is not necessary, 

the free energy variation and reorganization energy are denoted as ΔG and λ 

respectively, unless specified otherwise. 

In the general rate expression of charge recombination, where ΔGn and λn in 

Eq. 2.12, Eq. 2.15 and Eq. 2.16 are replaced by ΔG and λ, the ΔG is given by the 

free energy difference between the equilibrium neutral dye and the equilibrium 

singly-charged dye. The λ is given by the sum of the internal vibrational λi of the 

dye, and the external solvational λs. In a two-sphere model of reactants the 

internal λi can be computed as:172 

21 ( )
2

r p
i j j j

j
k Q QO  �¦                                       (Eq. 2.19) 

where r
jQ  and p

jQ  are the jth normal mode coordinates Q for reactant and 

product at equilibrium respectively, and k is the reduced force constant. In the 

presence of non-classical vibrations λi can be computed as:169,173  

i j j
j

SO Z ¦                                              (Eq. 2.20) 

where ωj is the vibrational frequency of jth normal mode, and S is the 

Huang-Rhys factor, a measure of the strength of the electron-phonon coupling. 

  The λs is the reorganization energy due to solvent rearrangement upon electron 

transfer. The solvent environment is also likely to influence ΔG, since the energy 
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of the charged dye is sensitive to polar solvent medium. The influence of polar 

medium on slow charge transfer has in fact been demonstrated in various studies. 

Vaisser et.al.,174 for instance, showed that λs constituted at least 80% of the total λ 

for Ruthenium dyes in their calculations. They achieved a much improved 

matching with experimental references when the total λ instead of the λi alone 

was used in their computation of diffusion coefficients of hole transfer between 

dyes in DSSCs. Fletcher175 showed that polar solvents could catalyze electron 

transfer reactions in the exergonic region, or the ‘inverted’ region, where the 

driving force of the reaction was strongly negative, as well as in the endergonic 

region, or the ‘superverted’ region, where the driving force of the reaction was 

strongly positive.  

For a two-sphere model of reactants for electron transfer based on Marcus 

theory35,36,172 λs can be computed as:  

2 1 1 1 1 1( ) ( )( )
2 2s

o s

e
a b R

O
H H

 ' � � �                               (Eq. 2.21) 

where εo and εs are the optical and static dielectric constant respectively, and the 

term (1/εo − 1/εs) is known as the Pekar factor which represents the longitudinal 

nuclear polarization,35,176 a and b are the ionic radii of the reactants and R is the 

separation of the reactants. Eq. 2.21 can be further developed to provide 

analytical expression suitable for charge recombination in n-type DSSCs.90,177 

The effect of solvent dynamics on electron transfer can also be incorporated in 

this term, where in Zusman theory178–181 λs is a dynamical term computed in the 

classical limit as: 

21 1 1( ) ( )
8s

m s

D r drO
S H H

 � '³                                  (Eq. 2.22) 

where εm is the dielectric constant of the solvent at intermediate frequencies, εs is 

the dielectric constant of the solvent, and ΔD(r) is the difference of inductions in 
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the first and second dynamics states.  

In this thesis a computational scheme89,182 for total λ is followed, instead of 

computing λs and λi separately. λs is static and λ is given by: 

1 1 2 2
[0.5( ) 0.5( )]r p p r

q q q qE E E EO  � � �                              (Eq. 2.23) 

where 
1

r
qE  and 

1

p
qE  are the energies of the reactant and product in solution at 

reaction coordinate q1, in which the product is in ground-state equilibrium; and 

2

r
qE  and 

2

p
qE  are the energies of the reactant and product in solution at reaction 

coordinate q2, in which the reactant is at ground-state equilibrium. This method 

of computing the λ has been tested using Polarized Continuum Model (PCM) for 

mimicking the solvent environment.89 Eq. 2.23 can also be used for computing λi 

by acquiring the energies in vacuum instead of solution, and hence obtaining λs 

by simply taking the difference between λ and λi. When evaluating charge 

recombination rate based on Eq. 2.16 only λs is necessary. Stabilizing effects due 

to H-bonds between solvent molecules and solutes, however, are not taken into 

account with this computational scheme since only a continuum model, a 

‘reaction field’ controlled by a dielectric constant without explicit molecules, is 

employed to mimic solvent environment. In addition, these two terms are 

typically approximated from total energy differences in this thesis, unless 

specified otherwise. 

The accurate evaluation of λ for an adsorbing dye is deemed difficult, since the 

solvent effect on the substrate and the exact exposure of dye to the solvent 

typically cannot be determined. While it is difficult to estimate the impact of 

solvent on the substrate, the partial exposure of an adsorbing dye suggests the 

total λ computed in accordance with Eq. 2.23 will likely be an overestimate of 

the total λ in reality. In previous evaluation of λn for charge recombination,87 an 
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approximation183 was introduced: only half of the adsorbing dye was exposed to 

the solvent, and numerically the solvent part of the λn was also halved. Such 

approximation was unnecessary when λn was acting as a predictor of the PCE for 

a set of dyes in Chapter 4, since all dyes included were assumed to subject to the 

same condition. 

 

2.3   Statistical modeling for material screening  

Statistical methods were employed to predict PCE (Chapter 4) and understand 

correlations between properties (Chapter 5), and this type of study was rare in the 

field of DSSCs. The objective of this section is to provide a brief introduction of 

quantitative structure-activity relationships (QSAR), a dominant type of 

application of statistics in science, as well as some specific statistical techniques 

used in the validation of the regression model in Chapter 4. 

 

2.3.1 An introduction to QSAR  

QSAR is a quantitative method to correlate hypothetically relevant physical or 

chemical properties of a chemical or material, known as the predictors, to the 

response value of interest such as the biological activity of a drug, resulting in a 

predictive model for the response. Such an approach is particularly important in 

combinatorial drug design, especially when the possibilities for substituent are 

numerous.184,185 An early example of QSAR was the prediction of biological 

activity based on its linear relationship with the octanol-water partition 

coefficient, log P, which was a representative quantity for the hydrophobic 

character of a drug.186 Another example was the synthesis of Norfloxacin,187 

designed for targeting Gram-positive and Gram-negative bacteria.188 On the basis 
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of QSAR the antibacterial activities were shown to be correlated parabolically 

with steric parameters, which assisted in identifying substituents that were 

effective for decreasing bacterial activities. 

  In a typical QSAR study, the first step is the selection of predictors. There are 

in general no strict rules for selection, where the number and type of predictors to 

be included in the model is a choice of the researcher. The type of predictors can 

be highly diverse, from experimentally-derived to computable,189,190 from 

classical to quantum-mechanical,189 from 2-dimensional (topological) to 

3-dimensional (conformational),190 and depends upon the targeting activity or 

property and the regression model. In many cases, a small set of predictors that 

offers sufficient accuracy is desirable, implying relatively short time and little 

input for reliable prediction. Increasing the number of predictors does not imply 

increase in accuracy, due to the occurrence of over-fitting, meaning that the 

model is overly complex and therefore fitting random errors or noise rather than 

revealing true correlations. Over-fitting can typically be avoided by following 

some rules of thumb, such as 1 fitting parameter for 10 data points, or the ratio of 

the number of molecules of interest to the number of predictors in QSAR should 

be greater or equal to 5.191 The methods to reduce predictors can be roughly 

classified into either the wrapper method or the filter method.191 The wrapper 

method involves using an optimization algorithm for selecting predictors for an 

objective function; whereas the filter method does not rely on algorithms but 

removes predictors from an initially large set by considering, for instance, the 

correlation between predictors. Other methods such as the mutual 

information-based method192 and the χ2 method193 are perhaps less commonly 

applied. 

  For a given set of predictors, the next step is the examination of 
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structure-activity relationship (SAR), which can be based on computing various 

correlation coefficients such as Person’s r coefficient or Spearman’s ρ rank 

coefficient. A model can be constructed if correlations can be established, and the 

model can take different mathematical forms depending on the SARs. In a simple 

multiple linear regression model for linear SAR the response (y) is given by: 

0 i i
i

y n n x �¦                                             (Eq. 2.24) 

where ni is the fitting coefficient for ith predictor xi, and n0 is the intercept. One 

can consider other types of model such as polynomial,194,195 neural-network196 or 

kernel197 for non-linear SARs. Generalized linear models can be considered 

when the response distribution is regarded as arbitrary, but still within the 

exponential family of distributions, instead of simply normal.198 

Similar applications of QSAR, or QSPR, are also well-known in materials 

discovery,195 although perhaps the same level of usage as in drug discovery was 

not reached. For examples, various scaling relations between adsorption 

energies113 and neural network models195,199 were developed for computational 

screening and design of catalysts; QSPR was also common for predicting the 

melting points of ionic liquids and the glass transition temperatures for 

polymers.195 

Thanks to the increasing quality and quantity of data on dyes in DSSCs in 

recent years, it is now also possible to conduct statistical studies to understand 

their structure-property relationships, and generate tools for predicting the 

performance of new dyes. A group of such models were built for coumarin and 

phenothiazine dyes, with the objectives to reveal structure-photovoltaic 

performance relationships and designing new molecular structures with optimal 

properties for these families of dyes, using descriptors relating to properties such 
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as vibrational normal modes and topology of dyes, among other predictors.200–203 

We have developed a QSPR-like model for DSSCs’ dyes and will be introduced 

in chapter 4. 

 

2.3.2 Some statistical techniques for validating regression models  

In this section we introduce a number of statistical techniques employed for 

validating the statistical model developed in Chapter 4. Consider a generalized 

linear model, which allows incorporation of non-normal response distribution 

and with the linear predictor defined by: 

[ ( )]K  i ig E y                                               (Eq. 2.25) 

where E(yi) is the expected value of the response yi and g is the link function. g 

can take any mathematical form in the exponential family,198 such as the 

Gaussian distribution, which is also known as the identity link. One can test if the 

data can fit well with a particular distribution by comparing their probability 

distributions, which is typically represented with a quantile-quantile (Q-Q) plot.  

To assess the precision of estimates, such as predictions and/or regression 

coefficients, one can consider calibrating the model with iterative bootstrap 

re-sampling.204,205 Such a procedure is particularly useful when no standard 

procedure is available for estimates or they are approximated based on 

asymptotic theory.198,206 In general, the bootstrap re-sampling starts with 

selecting a random sample of size n, where n is the size of an original sample for 

a fitted model. The random sample is the original sample with some observations 

omitted or duplicated, and will be fitted with the model developed initially with 

the original sample. By repeatedly re-sampling and fitting for, for example, 100 

times, where a bootstrap estimate is obtained in each iteration, a bootstrap 

standard deviation of the sampling distribution of the estimate, or the precision of 
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the estimate, can be acquired.198 The calibration can be assessed by a bootstrap 

shrinkage estimator, where the ideal results should be the shrinkage estimator 

taking the value of 1. The reliability of estimating the shrinkage can be improved 

by incorporating shrinkage in the original estimation process, where different 

shrinking factors can be assigned to difference parameters.207 

  In the event of a lack of complexity, the model can encompass more fitting 

parameters, but such action would also increase the risk of over-fitting. A 

possible solution is to consider statistical penalization of the model fitting criteria 

for complexity. Consider estimating parameters for a model following the 

common maximization of the (log of) likelihood function (MLF), such as solving 

the first derivative of joint probability of observations with respect to a parameter, 

or equivalently, maximizing the likelihood ratio (LR) χ2 statistic of the model 

with respect to the “null” model, a model without predictors. The likelihood ratio 

is the ratio of the likelihood with the hypothesized parameters to the likelihood of 

the data at the parameters given by MLF.207 

A method for penalizing the LR achieved by a given model for its complexity, 

for obtaining a more unbiased assessment of the model’s worth, is the 

employment of the Akaike’s information criterion (AIC), which in ‘adjusted χ2’ 

can be written as:207  

2AIC LR 2F � p                                          (Eq. 2.26) 

where p is the number of parameters in the model. It is evident from Eq. 2.26 that, 

a model with large p will reduce the effective LR, so the optimal model will 

result from a trade-off between maximizing LR and reducing p. It turns out the 

above criterion can still be biased when the sample size is small, so one can 

consider a corrected AIC that takes into account the sample size n: 
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                             (Eq. 2.27) 

From the formula we can see that a small sample size incurs a greater penalty 

than a large sample size as the sample size tends to infinity AIC AICC nof
o .  

When some parameters appear to have low predicting power, such as with low 

F-statistics in analysis of variance (ANOVA), it is tempting to remove these 

parameters to simplify the model. This, however, can introduce bias and produce 

optimistic estimates of the parameters’ covariance matrix. An alternative is to 

simplify the full model by approximating it.207 For instance, a new set of 

estimated responses can be produced as predicted by the full model, and the new 

response is then regressed against a chosen subset of predictors. Such approach is 

termed ‘simplification by approximation’. 
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Chapter 3 Computation of hole transfer rates in 

p-type dye-sensitized solar cells: why is charge 

recombination faster than in n-type devices? 

3.1  Introduction 

The development of p-type dye-sensitized solar cells (p-type DSSCs) was 

motivated by the recognition of the high theoretical efficiency that could be 

achieved by tandem cells with two photo-active electrodes,50 as introduced in 

Chapter 1. In such types of device the generation of photo-current is limited by 

the weaker electrode, which is the photo-cathode that operates in accordance 

with the principles of p-type DSSCs (Fig. 1.2). Understanding the origin of the 

weak photocurrent generation in p-type DSSCs was therefore deemed important 

for improving the performance of tandem DSSCs.  

The primary charge generation process in p-type DSSCs is promoted by a 

photo-excited dye that injects a hole into the semiconductor. Hole injection is the 

transfer of a hole from a localized orbital of the dye, typically the HOMO, to a 

one-electron state of the VB of the semiconductor. The analogous process in 

n-type DSSCs is the electron injection from the LUMO of the dye to the CB of 

the semiconductor. Hole recombination, on the other hand, is the transfer of a 

hole from a one-electron state of the valence band of the semiconductor to an 

orbital of the dye, typically the LUMO, or it could be more intuitive to visualize 

as an electron transfer from the LUMO of the dye to an empty orbital in the VB. 

This process is an analogue to charge recombination in n-type DSSCs, where 

electrons back-transfer from the CB of the semiconductor to the HOMO of the 

dye. Charge recombination processes contribute to the decrease of the solar cell 
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efficiency and should be minimized. 

While hole injection in p-type DSSCs appeared to be as efficient as electron 

injection in n-type DSSCs, hole recombination was considered as one of the 

main causes for the low photo-current observed in p-type DSSCs.208 A number of 

experimental investigations on the hole transfer kinetics in p-type DSSCs 

demonstrated that the hole recombination was much faster than desirable. TAS 

and kinetic analysis of Coumarin 343 (C343) sensitized NiO showed that, while 

charge injection had an ultrafast component and was similar to common n-type 

DSSCs,209,210 charge recombination occurred at the timescale of tens of 

pico-seconds,56,211 and it was faster than the recombination times observed in 

C343 sensitized TiO2. Electrochemical impedance spectroscopic studies also 

addressed the charge recombination problem in NiO p-type DSSCs.60,212 

Attempts to suppress recombination included adjusting molecular dipole 

alignment on NiO surface,212 increasing the tunneling distance by extending 

oligo-thiophene linker in donor-π-acceptor dyes,51 and substituting conventional 

I3
-/I- redox shuttle with alternatives such as the Co(II)/(III) pair.52 While some 

success on retarding recombination had been achieved, such as slowing down the 

process from ns to μs,51,213 the extent of improvement was insufficient for 

producing p-type DSSCs with PCE comparable to that of n-type DSSCs. The 

origin of the fast recombination had in fact remained unclear, and intuitive 

suggestions on retarding recombination might negatively influence other 

processes in the device, such as hole injection,213 hence resulting in small 

improvement of PCE even with slower recombination. In this chapter we attempt 

to explain why recombination is faster in p-type DSSCs than in n-type DSSCs. 

Based on the injection and recombination theories introduced in section 2.2, we 

evaluate the hole injection and recombination rates at the NiO-C343 interface, a 
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typical semiconductor-dye interface in p-type DSSCs, and compare results with 

analogous interface in n-type DSSCs.  

 

3.2 Theoretical background and computational methods 

3.2.1 Theory of hole injection   

The method for computing the rate of hole injection in this chapter is essentially 

identical to that for computing electron injection in n-type DSSCs (see section 

2.2.1) except for the orbitals involved.65 The rate (Γss(E)) of a hole transfers from 

a one-electron state s , such as the HOMO of the dye, to a manifold of states 

{ l }, such as an orbital in the VB of the semiconductor, can be expressed as Eq. 

2.9. In this case, in Eq. 2.9, E is the energy of the HOMO of the dye, El is an 

eigenvalue of the manifold of eigenstates in the semiconductor, such as the 

valence band (VB) maximum; Vsl is the coupling between state s  and state 

l  and δ(E − El) is the Dirac delta function, which in this work is approximated 

by a normalized Gaussian function with 0.1 eV broadening. The states s  and 

l  are conveniently represented as linear combinations of basis functions {χm} 

and {Mk} localized on the dye and the semiconductor respectively: 

ms m
m

s c F ¦                                               (Eq. 3.1) 

kl k
k

l a M ¦                                                (Eq. 3.2) 

where {cms} and {akl} are the orbital coefficients derived from the calculations of 

isolated dye and semiconductor respectively. The coupling Vsl can be expressed 

in terms of the coupling Vmk between localized orbitals χm and Mk:  

sl ms kl m k
m k

V c a VF M ¦¦                                    (Eq. 3.3) 

and the rate can be expressed as: 
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where  
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2( ) ( )mn mk nk kl k l l
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E V V a a E ES G*  �¦¦                         (Eq. 3.5) 

The equation above can be re-written by defining the local density of states ρkk’(E) 

as: 

*
' '( ) ( )kk kl k l l

l
E a a E EU G �¦                                   (Eq. 3.6) 

which gives Eq 2.11. For non-orthogonal basis sets, Γmn(E) should be modified to 

become: 

*
' ' '

, '

2( ) ( )( ) ( )mn mk mk nk nk kk
k k

E ES V ES V ES U*  � �¦                   (Eq. 3.7) 

In practice, to compute the charge injection rate one needs (i) the energies, El, of 

the considered NiO Kohn-Sham eigenstates, l , relative to the HOMO energy E; 

(ii) the coefficients of the basis functions of NiO, alk, and of C343, cms; (iii) the 

coupling term Vmk; and (iv) the overlap matrix element Smk. 

 

3.2.2 Theory of hole recombination 

The approach to calculate hole recombination in p-type DSSCs is similar to that 

for calculating charge recombination in n-type DSSCs.87 The hole recombination 

rate (kh,rec) is given by: 

, ( )(1 ( )) ( , , )p pii Fh reck E f E E F E G dEO * � � '³                  (Eq. 3.8) 

The first term of the integrand, Γii(E), is given by Eq. 2.13, where the coupling 

Vil is between one-electron states { l } in the semiconductor and a one-electron 

state i  in the dye, which corresponds to the LUMO of the dye. Γii(E) can 

therefore be expressed in terms of the orbital coefficients of the LUMO, {cmi}: 
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E E c c*  *¦                                      (Eq. 3.9) 

In Eq. 3.8, f(E – EF) is the Fermi-Dirac distribution and EF is the Fermi level, or 

the quasi-Fermi level in non-equilibrium situations. The term 1 – f(E – EF) is 

therefore the probability of a hole occupying a state at a given energy. F(E, ΔGp, 

λp) is the thermally averaged Franck-Condon integral between initial and final 

vibrational states: 

2( )1( , , ) exp[ ]
44

O
O

OSO
�' �

'  � p p
p p

p Bp B

E G
F E G

k Tk T
               (Eq. 3.10) 

which is similar to Eq. 2.15 and differs most notably with the use of different ΔG 

and λ in these expressions, as discussed in section 2.2.3. In practice, to compute 

the charge recombination rate given by Eq. 3.8 one needs (i) the function Γii(E), 

which is calculated with the same procedure used in hole injection, except that 

the MO coefficients in Eq. 3.9 are those of the LUMO instead of the HOMO of 

the dye; (ii) the quasi-Fermi level, EF; (iii) λp for Eq. 2.18; and (iv) ΔGp for Eq. 

2.18. 

 

3.2.3 Electronic structure calculation of the semiconductor and 

the interface  

The electronic structure of NiO is known to be dominated by strong on-site 

Coulombic repulsion between d-electrons,214–216 which cannot be described 

satisfactorily by standard DFT methods. Bredow and Gerson,217 for instance, 

compared the performance of unrestricted Hartree-Fock (UHF) and DFT with 

several different functionals on predicting the bulk properties of NiO. They 

showed that UHF overestimated the band gap, whereas DFT underestimated the 

band gap, except when the computation was performed with B3LYP functional. 



53 

DFT with B3LYP, however, described incorrectly the electronic structure near the 

VB maximum. This part of the valence band should be dominated by the O 2p 

orbitals,218 but B3LYP predicted a larger weight of Ni 3d orbitals in this region. 

In this case we considered modeling NiO with DFT/SGGA + U scheme as 

introduced in section 2.1.1., which has the advantage of low computational cost 

when compared to other methods (see section 2.1.1) for modeling strongly 

correlated materials. In the rest of this section we will provide the computational 

details and methods for modeling the NiO slab and NiO-C343 interface that were 

employed in our evaluations of the hole transfer rates.  

All DFT and DFT+U calculations were performed using the SIESTA code219 

with Pardew-Burke-Ernzerhof (PBE)220 exchange-correlation functional. The 

atomic core potentials were approximated by the Troullier-Martins 

norm-conserving pseudo-potentials221 and the basis set was double-ζ polarized 

(DZP) for all atoms. All the +U calculations were spin-polarized, in which the 

total spin of NiO was fixed as zero throughout these calculations. The initial spin 

density was set with an anti-ferromagnetic order. A rather large effective U (Ueff 

= U − J) of 8.25 eV (J = 0.95 eV) was employed with the intent to attain a 

computed band gap close to the experimental band gap, as the energy level 

alignment was an important property in this study. This Ueff value was close to 

that suggested by Anisimov et. al (Ueff = 7.1 eV, J = 0.95 eV).222  

The surface considered was NiO(100), which is known to be non-polar and 

rather stable.223,224 To model the adsorption of the dye C343 on NiO, we first 

tested two adsorption modes of a much smaller molecule (acetic acid) that shares 

the same anchoring group (carboxylic acid anchoring group) with C343 (Fig. 3.1 

(c)). The anchoring group is the part of the dye that facilitates adsorption of dye 

on the surface. Generally the surface energy and the band gap of NiO(100) were 
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considerably invariable with slab thickness,225 and we had adopted a 3-layer slab, 

constructed with surface unit cell extended by 1 unit, with a total (2 × 2) 

extended surface unit cells. The extension of unit cell along the y-axis was 

necessary for describing the anti-ferromagnetism of NiO.153 The adsorption 

modes tested were non-dissociative molecular (Fig. 3.1(a)) and dissociative 

bridging (Fig. 3.1(b)). In the computations of dissociative adsorptions, it was 

assumed that the carboxylic hydrogen bound to the surface oxygen closest to the 

adsorption site after dissociation. The counterpoise corrections for eliminating 

basis set superposition error226 were included in the calculations of the adsorption 

energy. The most stable adsorption mode was the molecular adsorption mode, 

with absolute adsorption energy of 0.86 eV, which was about 0.2 eV lower in 

adsorption energy than dissociative bridging. This value was close to the 

adsorption energy of carboxylic acid anchoring on anatase (101), which was 

about 0.9 eV.165  

 

               

 
 

 
 
      
 
Figure 3.1 Acetic acid adsorbs on 3-layer NiO (100) in (a) non-dissociative 
molecular mode and (b) bidentate dissociative mode. (c): Chemical structure of 
C343.  

(a) (b) 

(c) 
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The acetic acid-slab model was then used to evaluate the required matrix 

elements, Vmk and Smk, the eigenvalues El, and the coefficients of the basis 

functions of the NiO slab, alk, for computing the charge transfer rates (Eq. 3.7 

and Eq. 3.8). The model was initially optimized with DFT calculation, and 

subsequently with the Ueff correction implemented in a single-point calculation of 

the optimized structure at the Gamma point. We noticed that convergence in 

DFT+U relaxation of slabs was difficult to achieve, where self-consistent field 

(SCF) calculations generally required long computational time and large number 

of cycles to reach convergence. 

 

3.2.4 Computational methods and details for the dye component 

C343 dye (Fig. 3.1(c)) was one of the simplest and considerably efficient organic 

dyes that had been studied experimentally for both p-type56 and n-type DSSCs.227 

The MO coefficients needed for evaluating Γss(E) (Eq. 3.4) and Γii(E) (Eq. 3.9) 

were obtained from structure optimization using SIESTA219 at the GGA/PBE220 

level with DZP basis set. The starting lattice vectors were 20 Å × 20 Å × 20 Å, 

which should provide a simulation box that is large enough to avoid interactions 

between individual C343 molecules under periodic boundary conditions. 

The computational strategy for the total reorganization energy λp of C343 was 

discussed in section 2.2.3, based on Eq. 2.23 and the approximation that only half 

of the adsorbing dye was exposed to the solvent. In the computation of λp, the 

required optimization and single-point calculations were performed with 

B3LYP/6-31++G**, and the solvent environment (acetonitrile) was simulated 

with the Polarized Continuum Model (PCM).228 These calculations were 

performed with Gaussian03.229  
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The computed charge recombination rates could be very sensitive to the 

energy levels of the dye component relative to the energy levels of the 

semiconductor. Results that were more comparable to the experimental literature 

may be obtained using data deriving from the experiments, especially for the 

dye’s free energy change for recombination, ΔGp,. We would therefore discuss 

the most convenient method to evaluate this quantity in the result section, after 

comparing the computed and experimental interfacial relative energy levels. 

 

3.3 Results 

3.3.1 Hole Injection   

In this study hole injection was a hole transferred from the oxidation potential of 

C343, Es, to one of the VB states of NiO, where the maximum of these states was 

denoted as Ev, and the energy difference between Ev and Es represented the 

driving force of the hole injection. The experimental and computed Ev and Es are 

both reported in Table 3.1, where the redox potentials provided were converted 

from their values against the standard hydrogen electrode (SHE) to absolute 

electrode potentials with an additive constant of −4.6 eV.45 For the computed Ev 

reported we were unable to check the energy of the zero-energy level for the 

DFT+U slab calculation due to technical difficulties of retrieving electrostatic 

potential data,230 but the computed Ev was not significantly different to another 

previous report of Ev (−5.11 eV).231 However, the computed Es based on the 

HOMO energy given by B3LYP/DFT calculation, was 5.7 eV, implying that the 

energy difference between computed Ev and Es did not match that evaluated from 

experimental Ev and Es. In this respect, we employed the experimental energy 

levels by shifting consistently the band energies from DFT calculations to render 
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the calculated VB maximum coincided with the experimental VB maximum, and 

used the experimental oxidation potential in place of the computed result (Table 

3.1).  

 

Table 3.1 Numerical values of interfacial energy levels and parameters that 
entered the computation of the rates. The numbers underlined are values 
employed for computing the injection rates, and the numbers in bold are values 
employed for computing the recombination rates. (d): property of the dye, (s): 
property of the semiconductor. All values are in eV.  

Energy levels      Symbols  Numerical values  
  Experimental Computed 
Reduction potential (d) ΔGp  −3.4a   −2.9 

Quasi-Fermi level (s) EF  −4.95b   
Valence band maximum 
(s) 

Ev  −5.0,c −4.8d    −5.4e 

Oxidation potential (d) Es  −5.8a    −5.7 

Other parameter    

Reorganization energy (d) O    0.7 
a: ref. 232; b: see main text below for derivation; c: ref. 233; d: ref. 234; e: 
uncertainty is associated with this value as we were not able to check the energy 
of the zero-energy level for DFT+U calculations. 

 

The computed injection time τinj, which is given by the reciprocal of the 

injection rate (Eq. 2.9), is reported in Fig. 3.2 (a) as a function of Es, in order to 

provide an estimate of the uncertainty in the computed injection time associated 

with the uncertainty in the relative energy levels. The injection time of E = Es is 

16 fs, a value that is rather insensitive to the uncertainty in Es: the injection rate is 

changed by a factor of about 3 at most for changes of Es up to 1 eV. Fig. 3.2(b) 

illustrates the density of states (DOS) and the projected density of states (PDOS) 

on O and Ni atoms, and shows that the dependence of the hole injection rate on 

the energy (Fig. 3.2(a)) follows the PDOS of the O atoms, which dominates the 
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region close to the VB maximum. This implies that the DFT+U describes the 

band structure correctly (see section 3.2.3) near the valence band maximum of 

NiO, and is necessary for the computation of the hole transfer rate at the interface 

involves NiO. 

Experimentally, the injection time constant for C343 had been determined 

quantitatively with a kinetic analysis based on TAS measurements. Our 

computed injection time was faster than this experimentally measured injection 

time for C343 (~210 fs;56 the experimental set up of this measurement, however, 

was unable to record injection time faster than ~150 fs). Other TAS 

measurements also show that the injection time was generally fast (~180 fs, 

measured with a Ruthenium(II) complex;235 and <200 fs with a 

triphenylamine-based chromophore).236 In addition, the standard deviations in 

measured injection times could also be large for TAS (up to r 50 fs).210 It was 

therefore likely that there were injection times faster than the injection time 

constant reported from TAS experiment for the C343-NiO interface.56  

An important observation was that the computed hole injection time was close 

to the computed electron injection time in n-type DSSCs (~11 fs),65 essentially 

because, in both cases, the couplings and the DOSs that entered the expression of 

the injection time were not too dissimilar. This observation, which agreed with 

experimental observation, suggested that the semiconductor-dye interaction, as 

measured by Γ(E), was not significantly different for the two classes of DSSCs.  
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Figure 3.2 (a) Computed hole injection rates (orange line) against injection 
energies in eV. The black-dotted line indicates experimental Es. (b) Plots of total 
density of states (black line), partial density of Ni atoms (red dotted line) and O 
atoms (green dotted line) of 3-layer NiO slab.  
 

 

3.3.2 Hole recombination 
The computation of hole recombination rates is known to be highly sensitive to 

the accuracy of relative energy levels at the semiconductor-dye interface.39 This 

sensitivity is evident from Eq. 3.8 and Eq. 3.10, where the relative energy 

difference enters the rate expression as a quadratic quantity in the exponential 

term, and hence the impact of any associated uncertainty on the rate is likely to 

be magnified significantly. For this reason, the experimental energy gap was 

employed by shifting consistently the band energies from DFT calculations, same 

as the procedure used in the computation of injection rate. The computed 

reduction potential in acetonitrile (PCM) at B3LYP/6-31++G** with Gaussian 

03229 yielded a result that deviated substantially from the experimental value. The 

(a) 

(b) 
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experimental value was underestimated by 0.5 eV without zero-point energy and 

entropic correction; these effects were minor for computing redox potentials,237 

and no improvement was observed when the basis set was increased to 

aug-cc-pVTZ.237 The sensitivity of the computed rates to the relative energy 

levels would be examined by evaluating the rates as a function of a range of ΔGp.  

The computed Γii(E) function in the rate expression (Eq. 3.8) followed the 

DOS and PDOS of the O atoms in NiO (Fig. 3.2), in line with Eq. 2.13. Another 

crucial parameter affecting the hole recombination rates is the quasi-Fermi level 

EF of the semiconductor (Table 3.1), controlling the probability distribution of 

the holes under illumination. EF is related to the Voc of DSSCs as Voc = (EF – 

EF,redox )/e, where EF,redox is the Fermi level of the electrolyte and e is the 

elementary charge. Evidently, EF depends on light intensity and our hole 

recombination rate would be computed under 1 sun illumination, where Voc is 

close to 0.1 V in these devices.212 The effect of the illumination was therefore 

introduced in our model by setting the quasi-Fermi level of the semiconductor 

(−4.95 eV) to an energy of 0.1 eV below the redox potential of I3
-/I- redox shuttle 

(−4.85 eV).  

Fig. 3.3 shows the relationship between the computed recombination time 

against a range of ΔGp (Eq. 3.8) and for three different values of λp, in order to 

illustrate the sensitivity of the computed charge recombination time on these 

parameters. Using the experimental 'Gp of C343 and the computed 

reorganization energy (0.7 eV), the computed recombination time was ~500 ps, 

which was in reasonable agreement with the experimentally determined time of 

~20 ps,7 and other reported recombination times of a few tens of ps.8 This level 

of agreement suggests that the main physical phenomenon of charge 

recombination was captured correctly by the model. 



61 

  The high sensitivity of recombination time to the relative energy levels is 

highlighted in Fig. 3.3, where one order-of-magnitude difference in 

recombination time could be produced by shifting ΔGp by only 0.1 eV with 

respect to a constant Ev. Similarly, the results could also be strongly affected by 

λp� as illustrated by the curves showing recombination times computed with λp 

increased or decreased by 0.2 eV with respect to the computed value for C343. 

The results in Fig. 3.3 suggest how both parameters could be tuned via chemical 

synthesis to produce dyes with longer recombination times.  

Similar to what had been observed for n-type DSSCs,87 the strong dependence 

of the charge recombination rate on parameters that could not be computed with 

sufficient accuracy suggested that a prediction of charge recombination rate 

entirely from first principles (i.e. without experimental input) was currently 

unfeasible. On the other hand, once experimental reference data were introduced, 

it was possible to predict how the charge recombination rate would change with 

respect to the chemical modifications of the dye, where these modifications 

would alter the oxidation free energy change, reorganization energy and the 

orbital shape. 
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Figure 3.3 Log of computed recombination time (s) against ΔGp (eV). The black 
solid line represents the experimental recombination time and the black dotted 
line represents the ΔGp of C343 in acetonitrile.  
   

In general, charge recombination time in p-type DSSCs are substantially (~3 

order-of-magnitudes)208 faster than the charge recombination time in n-type. To 

identify the source of this difference, we compared the terms in the charge 

recombination rate expression for p-type and n-type devices. The first term in the 

integrand, Γ(E), was similar between the two types as discussed earlier in section 

3.3.1. In the Fermi-Dirac distribution, the separation between the quasi-Fermi 

levels and the band edges are different in the two types under 1 sun illumination, 

but we had verified that under a ‘like-for-like’ comparison (by setting the 

separation equal to 0.1 eV in both cases), the effect on recombination time was 

negligible (<< 1 order of magnitude). The remaining term was the Franck 

Condon (FC) term, in which the p-type and n-type differed from each other by 

the driving force for recombination: 
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where in Eq. 3.12, Ec is the conduction band edge of the semiconductor. 

Eq. 3.11 and Eq. 3.12 assumed for simplicity that the carrier recombined by 

transferring from the dye to an orbital at the relevant band edge of the 

semiconductor. Given the results thus far, and at a given temperature, the 

observed difference in recombination time between the two types of cell could 

only be due to the difference in reorganization energy and/or the driving force of 

the recombination, i.e. v pE G�' and c nE G� �' . In section A3.1 we have 

demonstrated that the reorganization energies were similar for dyes with similar 

size, and therefore the different kinetics observed in p-type and n-type was 

unlikely due to different reorganization energies. 

It was therefore expected that the origin of the difference in recombination 

times between n-type and p-type devices lies in their different driving forces. To 

verify this hypothesis we considered 30 dyes for which the experimental 

oxidation potential and reduction potential are known, and combined them with 

the experimental Ec (−4.0 eV for TiO2)238 and Ev (−5.0 eV for NiO)233 

respectively to obtain averages and standard deviations for the driving forces in 

n-type and p-type recombination. The detailed data are reported in section A3.2. 

Figure 3.4 illustrates the range of FC values that were pertinent to the two types 

of devices for different values of reorganization energy. The few 

order-of-magnitudes slower recombination rate in n-type seemed to be entirely 

due to the different typical driving force in the two types of devices, leading to a 



64 

few order-of-magnitudes smaller FC factors for n-type devices. 

 

 
Figure 3.4 Log of FC terms against the driving force of recombination in eV, 
where (Ev − ΔGp) is the driving force for p-type and (−Ec + ΔGn) is the driving 
force for n-type. Three O�values have been considered (0.5 eV (green), 0.7 eV 
(blue) and 0.9 eV (red)). The n-type and p-type ranges represent the means and 
standard deviations of the experimental oxidation potentials (black) and 
reduction potentials (orange) of 30 dyes designed for p-type DSSCs.  
 

On the basis of our results, there are two general strategies for lengthening the 

recombination time at the semiconductor-dye interface in p-type DSSCs, either 

increasing the driving force or decreasing the reorganization energy. The first 

strategy could be achieved by either lowering the VB maximum of the 

semiconductor and/or shifting the reduction potential of the dye up the energy 

scale. Practically the former could be realized by substituting NiO with another 

semiconductor, but the search for a cost-effective alternative could be difficult. 

The reduction potential of a dye could be adjusted by introducing chemical 
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structural modifications, such as systematically changing the structure of the 

conjugation bridge of the linker in donor-π-acceptor dyes.239 The adjustment 

should at the same time (i) retain the reduction potential lower in energy than the 

conduction band edge, (ii) attain a reasonable optical gap for light absorption, (iii) 

avoid excessive energy loss due to neutralization of the dye by the redox shuttle. 

The reorganization energy of a dye could perhaps be decreased by increasing the 

size of the dye (Fig. A3.2), such as by adding simple inactive alkyl chain, 

remembering however that most changes that affected the reorganization energy 

would also alter the redox levels. 

Apart from the strategies based on our results, a number of strategies proposed 

to improve the efficiency of n-type devices by maximizing the coupling for 

charge injection and minimizing it for charge recombination170,171 could also be 

adapted for p-type devices.171 In addition, this study had not considered the 

impact of defects in the semiconductor, which are known to reduce the driving 

force and accelerate charge recombination. 

 

3.4  Conclusions 

We evaluated hole injection and recombination times at the 

semiconductor(NiO)-dye(C343) interface in p-type DSSCs with non-adiabatic 

charge transfer theories, and explained the similarities and differences in 

interfacial charge transfers between p-type and n-type DSSCs. The methodology 

was adapted from a similar one developed for the study of charge injection and 

recombination in n-type devices. Reasonable charge injection times were 

obtained from electronic structure calculations of the dye, the semiconductor and 

a model system to evaluate the coupling between the two. The computed charge 
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injection time was not critically affected by the uncertainty in the alignment of 

the energy levels. The calculation of the charge recombination rate was instead 

very strongly dependent on the alignment of the redox and semiconductor energy 

levels and we have therefore performed the evaluation of the rate by combining 

computational data and experimental data pertaining to the energy level 

alignment. 

The computed rates were broadly in agreement with the experimentally 

available data. The methodology was therefore used to explain the reason for the 

faster charge recombinations observed in p-type devices. Having verified that the 

dye-electrode coupling was similar for both devices, and also considering a 

larger number of experimental data on n-type and p-type devices, we concluded 

that the difference in the rates were derived from different Franck-Condon 

factors in the rate expressions, which ultimately depended on the different 

driving forces for the charge recombination processes. As the charge 

recombination took place in the Marcus inverted region, we suggested that, to 

slow down the charge recombination in p-type devices, the simplest strategy was 

to modify either the dye or the semiconductor to increase the charge 

recombination driving force. 
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3.7 Appendix 

A3.1 The effects of sizes and functional groups of dyes on 

reorganization energy 

Correlation between reorganization energy and the size of a dye was observed for 

n-type devices (Fig. A3.2; see also Fig. 4.2(b)), and we have also tested whether 

the same correlation could be observed for p-type devices. The reorganization 

energies for hole and electron recombination in p-type and n-type devices were 

computed for four dyes (Fig. A3.1(a) and Fig. A3.2). From Fig. A3.2 we 

expected that this correlation would hold for p-type devices (blue data points). 

The spread of data illustrated quantitatively that the size was an important factor, 

although other molecule-specific properties may also be important. The 

differences observed between reorganization energies for hole and electron 

recombination of the same dye was from 0.07 eV to 0.16 eV (Table A3.1). These 

differences were chiefly originated from the internal part of the total 

reorganization energies which account for approximately 18-38 % of the total 

reorganization energy, based on the assumption that only half of a dye is exposed 

to the solvent.  

We have also examined the effect of different functional groups on 

reorganization energies. Reorganization energies of a number of hypothetical 

derivatives of C343 (Fig A3.1(b)) were computed and it had been observed that 

the variations in reorganization energies were small (0.02 eV to 0.07 eV). 

Change of functional groups peripheral to the main chromophore seemed to have 

a smaller effect than the sizes of dyes. We therefore concluded that the different 

kinetics observed in p-type and n-type was unlikely due to different 

reorganization energies. 
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D1                        D2                      D3  

                                  

                        

C343-d1                C343-d2                   C343-d3       
 

X =  or  or  

 

Figure A3.1 (a) Chemical structures of dyes (D1 to D3) for testing the 
correlation between reorganization energies and the size of a dye in Fig. A3.2; 
and (b) Chemical structures of a range of hypothetical C343 derivatives 
(C343-d1 to C343-d3) for examining the effect of functional groups on 
reorganization energies.  

 

Table A3.1 Internal and solvent λ for hole and electron recombination of dyes 
C343, D1, D2 and D3. The total reorganization energies are computed with the 
solvent part being halved. 

Dye Hole recombination Electron recombination 
 λi,p / eV λs,p / eV λp / eV λi,n / eV λs,n / eV λn / eV 
C343 0.26 0.89 0.71 0.12 0.85 0.55 
D1 0.14 0.70 0.49 0.12 0.60 0.42 
D2 0.11 0.70 0.46 0.07 0.61 0.38 
D3 0.21 0.67 0.55 0.07 0.64 0.39 

 
 
 

(a) 

(b) 



69 

 
Figure A3.2 Correlation between λ (eV) and cavity volume (Å3). Red circles 
were λ computed for n-type DSSCs with the dataset employed in Chapter 4 (see 
section 4.2). Blue squares and orange triangles were λ computed for hole and 
electron recombination respectively with the dyes in Fig. A3.1(a). The cavity 
volume is the volume of the cavity generated in PCM, where the computational 
details are given in section 4.3.1.  

 

A3.2 Oxidation and reduction potentials data in Fig. 3.4 

Table A3.2 shows the redox potentials data used in Fig. 3.4 in section 3.5, which 

were acquired from 30 dyes designed for p-type DSSCs. The data were converted 

from V (vs NHE) to eV (vs absolute electrode potential) with the additive 

constant of −4.6. 

 

Table A3.2 Redox potentials data of 30 dyes designed for p-type DSSCs used in 
Fig. 3.4 in section 3.5. 

Dye ΔGp / eV ΔGn / eV Ref. 
TPPC −3.70 −5.61 233 

Erythrosin B −3.49 −5.79 233 
Triphenylamine dye P1 −3.73 −5.98 240 

http://en.wikipedia.org/wiki/%C3%85
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Triphenylamine dye P2 −3.90 −5.90 236 
Triphenylamine dye P3 −4.24 −6.00 236 
Triphenylamine dye P4 −3.87 −5.92 241 
Triphenylamine dye P7 −3.94 −5.88 236 
Triphenylamine dye O2 −3.82 −6.00 242 
Triphenylamine dye O6 −3.98 −6.04 242 
Triphenylamine dye O7 −3.76 −5.95 242 

Ruthenium polypyridine 1 −3.88 −6.22 243 
Ruthenium polypyridine 2 −3.43 −6.08 243 
Ruthenium polypyridine 3 −3.74 −6.17 243 
Ruthenium polypyridine 4 −3.61 −6.12 243 
Ruthenium NDI Dyad O25 −3.27 −5.29 235 
Ruthenium NDI Dyad O26 −4.27 −5.28 235 

PMI 18 −3.83 −6.03 244 
PMI 19 −3.81 −6.05 244 

PMI NDI −3.94 −6.02 244 
PMI PhNDI −3.83 −5.98 244 
PMI PHC60 −3.87 −6.12 244 

Arylamine dye 1 −3.64 −5.89 245 
Arylamine dye 2 −3.71 −5.87 245 
Arylamine dye 3 −3.83 −5.91 245 
Arylamine dye 4 −3.74 −6.09 245 
Arylamine dye 5 −3.92 −5.97 245 
Arylamine dye 6 −3.69 −5.85 245 

IrPhen −2.37 −6.14 213 
IrDPQCN2 −3.13 −6.14 213 
IrBpystyryl −2.69 −5.95 213 
MEAN / SD −3.69r 0.39 −5.94r 0.22  
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Chapter 4  Predicting with confidence the PCE of 

new dyes in DSSC 

4.1 Introduction 

In this chapter an attempt has been made to construct a predictive model with 

confidence levels for the PCE (η) of a n-type DSSC with a new dye, based on the 

known performance of existing dyes. In the development of n-type DSSCs an 

important fraction of the research effort was devoted to the synthesis and testing 

of new dyes as introduced in Chapter 1. The very few design rules49,246–248 

emerged over the past years have guided the exploration of a large set of dyes 

that, when tested under standardized conditions and fabrication methods, should 

inform the development of new dyes. As such, this provided the motivation to 

develop a tool for predicting the resulting PCE by ‘considering the history of 

dyes in n-type DSSCs’. 

In the field of DSSCs it was very common to build models for systems under 

investigation starting from physical principles, and this type of predictive 

modeling, such as the model introduced in Chapter 3 and many others,67,85,249 has 

been part of the development since the early days. The understanding of the 

physical principles that governed the PCE of the device was however very 

challenging, due primarily to the intervening interactions between different 

components in the device and largely remained unclear. QSAR, one of the main 

approaches currently used to rationalize large medicinal chemistry data sets (see 

Chapter 2), could be effective for identifying correlations or lack of correlations 

between properties, and contribute to the understanding of the underlying 

physical principles for a given problem. In any case, it can be used to narrow 
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down the exploration of materials, when synthesis and testing constitute the 

slower step. 

 

4.2 Dataset and general computational strategy 

To build a structure–property relation for dyes in n-type DSSCs, a sufficiently 

large database of dyes tested under similar conditions, such as with the same 

electrolyte and similar fabrication methods, was needed. In any convincing 

statistical analysis the data cannot be handpicked, and it was also desirable that 

they were derived from a relatively uniform set; in this case, for example, a set of 

dyes with related chemical characteristics such as a shared anchoring group 

would be desirable. To address both issues we considered dyes listed in Table 1 

of the review by Mishra et al.,49 all being synthetic neutral organic dyes tested in 

similar devices. To avoid the risk of involuntary bias, new dyes reported after the 

publication of Mishra et. al.49 review were not included. Dyes were also excluded 

from the review that did not have the common carboxylic anchoring group.  

We aimed to find some correlations between the properties of the dyes that can 

be accessed very easily via routine quantum chemistry calculations and PCE. We 

could then compute these properties for a new dye and predicted the probability 

that its PCE in a DSSC was larger than a given threshold. The calculations 

should be relatively inexpensive so that all the calculations could be performed 

semi-automatically for all dyes considered. Importantly, such a procedure was 

useful only if new potential dyes could be screened rapidly after the statistical 

regression. It has been tested that, for dyes that required more than 760 basis 

functions for the electronic structure calculation, our devised automatic 

procedure would be inefficient and a manual optimization would be required. 
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These dyes with over 760 basis functions were also excluded in our dataset 

employed. The systematic and random errors in these computed properties would 

be fully accounted for in a statistical analysis.  

By considering all these criteria a dataset of 52 dyes was established. The dyes 

employed should be representative of the chemical structures used for organic 

dyes and the PCE were very broadly distributed, with an average of 5.61% and a 

standard deviation of 1.95%. This suggested that, until the data have been 

collected, there was no evident bias toward reporting only high performing dyes, 

where our dataset contained the same number dyes of high ( > 8%) and low ( < 

3%) PCE.  

 

4.3 Predictors 

As demonstrated by a broad range of QSAR, there was no best or conclusive way 

to select predictors for statistical analysis (see Chapter 2), and it was expected 

that the selections of predictors could be improved in the future. In this attempt, 

computable predictors that were sufficiently independent from one another, easy 

to evaluate, and expected to influence the PCE of the device from physical 

considerations were included.250 Importantly, it was not possible to increase the 

number of predictors for a given data set without risking an over-fitting of the 

data. Therefore, the common rule-of-thumb of not having more than 1 fitting 

parameter for every 10 data points was followed. A list of the predictors 

considered in this analysis with motivation and a description of the 

computational methods is given in the following sections. All quantum chemical 

calculations required for the predictors were performed with Gaussian03.229  
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4.3.1 Free energy of oxidation and reorganization energy of dye 

These properties of dyes entered into the theory of charge recombination (see 

Chapter 2) and were therefore deemed relevant to the PCE. The free energy of 

oxidation (ΔGn) and reorganization energy (λn) were approximated from the total 

energy differences computed using the B3LYP functional251 and the 3-21G* basis 

set, where all structures were optimized at this level. The Polarized Continuum 

Model (PCM)228 was included to mimic solvent effects in DSSCs, using the 

solvent parameters appropriate for acetonitrile (dielectric constant = 36.64). The 

model was built with a solvent excluding surface (SES), where the overlapping 

index between two interlocking spheres was 0.8 and the minimum radius was 0.5 

Å. Construction of the SES was based on the GePol method252 and the set of 

atomic radii was defined according to the UAKS model.253 The computational 

approach to calculate ΔGn and λn was identical to that adopted by Maggio et. 

al.,87 except the approximation that only part of the molecule was exposed to the 

solvent was not taken into account (see section 2.2.3). It should be noted that the 

component of the reorganization energy associated with the iodide/triiodide 

redox shuttle in a number of possible chain of reactions254 was neglected as it 

was expected to be common to all dyes. 

 

4.3.2 Spectral overlap 

It was expected that high PCE was associated with strong absorption of solar 

radiation. The absorption spectrum for each dye was computed with the inclusion 

of solvent, and the overlap ( kS ) between the computed absorption spectrum for 

dye k (εk(E)), and the solar spectrum (P(E)):  

( ) ( )k kS P E E dEH ³                                          (Eq. 4.1) 
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was evaluated. To have convenient data, kS  was normalized to the value (3.27) 

of one of the dyes ( 0k kS S S ; dye 50 in table 1 in Mishra et. al.49 review). 

  The excitation energies and their corresponding oscillator strength for the 

computation of absorption spectrum were obtained by single-point TDDFT 

calculations with the 6-31G* basis set, B3LYP functional251 and solvent effects 

mimicked based on PCM.228 The input geometries were the optimized 

geometries of neutral dyes from B3LYP/3-21G* calculations. The number of 

excited states included in the calculation was set to 11 as the lowest energy of the 

11th excited state is typically closer to 4 eV with the lowest energy among all 

dyes being 3.5 eV. The calculation of the dye absorption above 3.5 eV was 

however not very important for DSSCs since the optical band gap of TiO2 is just 

above 3 eV.255 The solar spectrum employed was the AM 1.5 direct normal plus 

circumsolar spectrum taken from ASTM G173-03.256,257 The simulated 

absorption spectrum of dye k, ( )k EH , was computed by:  

� � 1/22 2 2( ) 2 exp( ( ) / 2 )H SV V
�

 � �¦k i i
i

E f E E                      (Eq. 4.2) 

where Ei and fi were the excitation energy and the dimensionless oscillator 

strength for ith transition respectively, σ was a broadening parameter of 0.2 eV. 

The integral for computing
kS was evaluated numerically in the range between 0 

and 10.3 eV.  

 

4.3.3 Orbital Asymmetry 

A good fraction of dyes, often referred to as donor-π-acceptor (D-π-A) dyes, 

were synthesized to have a large orbital density of the LUMO and a small orbital 

density of the HOMO on the anchoring group, such as a carboxylic acid group, 

so that charge injection was favored and charge recombination was prevented. To 
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represent the strength of this orbital distribution of dyes, a quantity known as 

orbital asymmetry (OA) was defined as the log of the ratio of the orbital density 

of LUMO (ODLUMO) to the orbital density of HOMO (ODHOMO) on the anchoring 

group.170 The OD of the molecular orbitals was computed by:  

, ,
( ),

MO MO i MO j ij
i anchor j

OD c c S ¦                                    (Eq. 4.3) 

where ijS  was the overlap between basis set function i and j, ,MO ic  were the 

molecular orbital coefficients, MO was either LUMO or HOMO of the dye k. i 

ranged over all basis functions on the anchoring group of the molecule and j 

ranged over all basis functions of the molecule. The calculations on the neutral 

dyes were used to obtain the molecular orbital coefficients.  

 

4.3.4 Normal dipole density 

The dipoles of the ground-state dyes were thought to affect the conduction band 

level of the semiconductor if the dyes were in a similar orientation with respect 

to the surface, and hence affecting the Voc of the cell. Such effect of the dipole on 

Voc has been demonstrated with a few acid derivatives adsorbed on TiO2 

surface.258,259 We assumed that the orientation of the dye was guided by the 

carboxylic anchoring group oriented on the surface as in a calculation of a 

benzoic acid on TiO2. The following components were therefore evaluated: 1.) 

the component of the dipole of the dye k perpendicular to the surface μk,z and 2.) 

the area of the same dye on the TiO2 surface Ak. The normalized dipole density 

(NDD) for dye k was given by: 

,k z
k

k

NDD
A
P

                                                (Eq. 4.4) 

In the computation of NDD, all dyes had the same (carboxylic) anchoring 
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group and were assumed to adopt the same orientation on the anatase(101) 

surface as a model compound benzoic acid,65 where the adsorption mode was 

mono-dentate non-dissociative molecular (Fig. 4.1(a)). The optimized geometry 

of each dye was rotated into the orientation of the benzoic acid on anatase(101), 

so that the plane of the C-COO group of the reoriented molecule was the same as 

in the benzoic acid and the C-COO bond was pointing in the same direction as 

the reference (Fig. 4.1(b)). The anatase(101) plane in the reference structure was 

perpendicular to the z Cartesian axis so that the molecular electrical dipole 

moment of the rotated molecule in the z direction was used to establish any 

correlation between surface dipole and PCE. The area occupied by the molecule 

in the xy plane was estimated by projecting the atomic coordinates on the plane, 

assuming that each atom spanned a circle with radius of 1.5 Å. 

 

 
Figure 4.1 (a) Structure of the optimized model anchoring molecule on 
anatase(101) and (b) assumed structure of a dye260 on the surface for computing 
the surface coverage and electrical dipole moment perpendicular to the surface.  

 

4.3.5 Other predictors 

Since the rule-of-thumb of 1 predictor for 10 data point to avoid over-fitting was 
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followed, a number of other initially considered predictors, which were either 

correlated strongly with the chosen predictors, or lack of a strong hypothetical 

reasoning to correlate with PCE, were therefore excluded in the model. The 

alternative predictors that were correlated with chosen predictors included 1.) 

The HOMO-LUMO gap of a dye, which correlated strongly with the absorption 

spectrum (first excitation energy), and acquired from single-point TDDFT 

calculations with B3LYP/6-31G* in PCM; 2.) the volume of a dye, or the cavity 

volume of a dye in PCM calculations, which correlated strongly with λn and 

acquired from B3LYP/3-21G* optimization of neutral dyes with PCM based on 

the GePol method; 3.) the HOMO energy of a dye, which correlated strongly 

with ΔGn and acquired from B3LYP/3-21G* optimization of neutral dyes with 

PCM. Fig. 4.2 shows the correlations between these alternative predictors and the 

chosen predictors. For indicative purpose, the correlation coefficients are 

provided in Table 4.1 for the 5 predictors included in the initial model. The 

correlations were much weaker than those illustrated in Fig. 4.2, with the largest 

correlation found between λn and S.   

Other considered predictors that were not computed include: (i) Electronic 

properties of the excited states, which may affect the charge injection rate, but 

considering charge injection was the fastest process in the device it rarely 

determined the PCE;45 (ii) single-triplet splitting,261 which may be important for 

metal-containing dyes, but these dyes were not included in our dataset; (iii) 

simple topological predictors, such as the number of aromatic rings in a dye,189 in 

which their physical relevance to PCE were not clearly known. 
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Figure 4.2 Correlations between (a) first excitation energy (eV) and 
HOMO-LUMO gap (eV) of a dye (b) cavity volume (Å3) and λn (eV) of a dye 
and (c) ΔGn (eV) and HOMO energy (eV) of a dye. r is the Pearson’s correlation 
coefficient and ρ is the Spearman’s correlation coefficient. 

 
Table 4.1 Pearson’s r and Spearman’s ρ correlation coefficients between the five 
predictors used in the main statistical analysis. The Pearson’s r (Spearman’s ρ) 
coefficients are in higher (lower) triangle of the square table. 
 

 
λn / eV ΔGn / eV S 

NDD / 

D/Å2 
OA 

λn / eV - ������ ������ ������� �������

ΔGn / eV ������ - �������� ������ �������

S ������ �������� - ������ ������

NDD / D/Å2 �������� �������� ������ - �������

OA ������ �������� ������ �������� - 
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4.4 Correlations between selected predictors and PCE 

Since the correlation between PCE and Jsc was stronger than that between PCE 

and Voc (Fig. A4.1), we have attempted to establish a relationship between the 

five computed properties and the expected PCE (ηexp) in the form of a function 

ηexp(ΔGn, λn, S, NDD, OA). A diagram of the measured PCE against the 

computed parameters (Fig. 4.3) immediately gave some useful indication. It 

appeared that there was an important correlation between λn and η, with high η 

associated with small λn as suggested by phenomenological models. A 

correlation was also evident between the computed ΔGn and η, i.e. it seemed that 

high η were found in a range of ΔGn as expected from microscopic theories, 

which also suggested that ΔGn would affect η nonlinearly.168 Surprisingly, no 

correlation was evident in the plots of measured η against S, NDD and OA. More 

quantitatively, Fig. 4.3(f) shows the Spearman ρ2 statistics207 for each predictor 

and suggested a higher degree of correlation, potentially non-linear and 

non-monotonic, between η and the predictors ΔGn and λn. 
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Figure 4.3 (a)-(e) Correlations between PCE of the dyes in our dataset against 
five computable parameters ΔGn, λn, S, OA, NDD. (f) Strength of marginal 
relationship between predictors and PCE using the Spearman ρ 2 statistics. 

 

 



82 

4.5 Construction of predictive model for PCE 

A model was first constructed between ηexp and the predictors with an intuitive 

approach, and subsequently a more rigorous statistical procedure was considered. 

Both models would be introduced in the following, with detailed account of the 

procedure and computed statistics provided in the appendix (sections A4.2 and 

A4.3).  

 

4.5.1 An intuitive model 

On the basis of the visual inspection of Fig. 4.3(c-e), the roles of S, NDD and OA 

were ignored in this intuitive approach, and a model (Fig. 4.4(a)) was constructed 

with the simplest 5-parameter non-linear function of ΔGn and λn:  

2 2
exp n n n na b G c G d eK O O � ' � ' � �                              (Eq. 4.5) 

where the parameters a, b, c, d, e can be uniquely determined to minimize the 

squared difference between ηexp and measured η. The residuals, or the difference 

between predicted and actual values, were normally distributed with standard 

deviation σn = 1.67 % (Fig. 4.4(b)), and therefore it was possible to predict the 

probability that, for a dye with a computed (ΔGn, λn��pair, the η was higher than a 

given threshold Kc : 

� � � �� �21/22 2
exp( ) 2 exp 2P dK K

K
K K SV K K V K

�
f

c
c!  � �³           (Eq. 4.6) 
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Figure 4.4 (a) Predicted η (%) from the fitting in Eq. 4.6 with an indication of 
the data points included in the fitting procedure. (b) Distribution of the difference 
between “predicted” and actual η values. (c) Map of the probability (%) that η 
exceeds 7% as a function of the computed parameters ΔGn, λn following the 
polynomial fit in Eq. 4.5. 
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Fig. 4.4(c) shows the probability that the η was higher than 7% as a function of 

computed ΔGn and λn. Interestingly, there were “accessible” regions of the map 

with probability higher than 60% and lower than 20%, implying that the map was 

a good tool for planning the synthesis of new dyes considering it took only a few 

minutes to set up the calculation of ΔGn and λn, and perhaps a few hours for their 

execution on a standard desktop computer. 

 

4.5.2 A rigorous model 

A more rigorous procedure was based on the construction of a generalized linear 

model where the ηexp was initially expressed as  

50 1 2 3 4exp ( ; ) ( ; )
n nn nG Ng G g S DD OAOK E E O E E E E' � ' � � � �         (Eq. 4.7) 

where gΔGn(ΔGn; β�) was the link function for ΔGn with parameter β1 to be 

estimated, gλn(λn; β�) was the link function of λn with parameter β2 to be 

estimated, and β3, β4 and β5 were the parameters to be estimated for S, NDD and 

OA respectively. Eq. 4.7 was linear in S, NDD, and OA and contained linear and 

non-linear components in ΔGn and λn, although the overall function would still be 

linear in all the parameters. In particular, gΔGn(ΔGn; β�) and gλn(λn; β�) expanded 

ΔGn and λn into restricted cubic splines with parameter vectors β�, β� 
respectively.207 The spline expansions were defined uniquely from the data for 

ΔGn and λn; this was a well-established methodology to include non-linear terms 

in regression procedures where the analytical form of the non-linearity could not 

be derived from a physical basis. 

Eq. 4.7 contained too many fitting parameters with respect to the 52 data 

points available, which would violate the empirical rule of thumb of allowing 

one parameter for, at most, 10 data points. The initial fitting was therefore 
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performed using a statistical penalization procedure,207 based on using the 

corrected AIC (Eq. 2.26) to penalize the likelihood ratio (LR) of the model. The 

analysis of variance (ANOVA) (Table A4.3) of the fitting confirmed that there 

was no evidence of correlation between the predictors S, NDD, OA and η. A 

reduced model was therefore built from the total model (Eq. 4.7) by 

“simplification by approximation”,207 as introduce in section 2.3.2, which 

produced the fitting as 

0 1 2exp ( ; ) ( ; )
n nG n ng G gOK E E O E' � ' �                     (Eq. 4.8) 

The standard deviation of the residuals for this more advanced model was 1.71% 

and, as before, it was possible to predict the probability that η was higher than a 

given threshold for any values of computed ΔGn and λn. Fig. 4.5 shows a map 

with the probability of η higher than 7% with this more accurate model. The 

differences between the intuitive and the rigorous procedures were not large but 

the rigorous procedure guaranteed that the effect of potentially more complex 

nonlinearities was not neglected. In addition, the functional form in Eq. 4.8 

produced more conservative estimates outside the region where data points were 

present, while the polynomial fit of Eq. 4.5 produced unphysical estimates in 

these regions. The calibration graph of the model in (Eq. 4.8), obtained by 

bootstrap re-sampling (Fig. A4.4), shows that this model is much more 

appropriate than the model based on (Eq. 4.5) (c.f. Fig. A4.3).207  

The proposed map could be used to either direct the synthesis of new dyes 

where the maximum η was predicted, or prepare dyes in the region of the map 

where there were few or no data points, to learn more about the system in these 

conditions. The advantage of this statistical approach was that the confidence 

intervals of the prediction included both the existence of effects and parameters 
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that were not included in the predictors, as well as the inaccuracies of both the 

computational chemistry and the experimental measurements: all inaccuracies 

and missing effects would simply decrease the level of confidence of the 

prediction. Considering that new families of DSSC were being used, for instance, 

with different electrolytes, it was believed that the construction of a similar map, 

with perhaps a larger set of data and predictors, should constitute a priority in the 

rational exploration of the chemical space. 

 

 
Figure 4.5 Map of the probability (%) that η exceeds 7% as a function of the 
computed parameters ΔGn, λn based on Eq. 4.8. 

 

It is also important to stress the difference between our approach, where 

correlations were searched for between computables and a target experimental 

property, and the alternative computational tools for material discovery that 

generated a large set of “theoretical” materials and directly computed the 

property of interest, such as the band gap or other electronic properties. The latter 
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approach was particularly suitable when the underlying physics was relatively 

well-understood and the direct computation of the property of interest was 

possible. For n-type DSSCs it was not possible to compute the η from first 

principles and a closer alliance between theory and experiment was therefore 

necessary.   

Finally, such analysis in larger and unbiased data sets offered the best 

opportunity to validate some hypotheses put forward to describe the physics of 

DSSC. After considering the results, it was not too surprising that the overlap 

with the solar radiation did not correlate with the PCE, possibly due to cells with 

small absorptance were not even reported and beyond a threshold of absorptance 

the PCE did not change. On the other hand, it was quite surprising to see that 

there was no effect in having HOMO and LUMO localized in different regions of 

the dye, considering the enormous effort put into the preparation of large families 

of D-π-A dyes. The efficacy of D-π-A character on PCE of dyes was further 

investigated in Chapter 5. 

 

4.6 Conclusions 

A general method was proposed to predict the PCE of n-type DSSCs with new 

dyes from easily computable quantities, including, for the first time, the degree 

of confidence of such predictions. Carboxylated organic dyes studied with 

iodide/tri-iodide electrolyte were considered, but the method could be applied to 

a different family of DSSCs and the accuracy of its prediction could be improved 

over time by expanding the set of data and/or the set of predictors. 
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4.7 Appendix 

A4.1 Correlations between PCE and Jsc, and PCE and Voc 

Fig. A4.1 shows the correlations between PCE and Jsc, and PCE and Voc of the 52 

dyes in the dataset. The Pearson’s r indicated that the PCE was more strongly 

influenced by the Jsc, suggesting that it was more suitable to use predictors that 

were relevant to the dye’s properties, rather than other components that 

influenced the Voc of the device, such as the electrolyte’s properties.  

 

 
Figure A4.1 (a) Correlation between PCE and Jsc of the 52 dyes in the dataset. (b) 
Correlation between PCE and Voc of the 52 dyes in the dataset. 

 

A4.2 Model construction with an intuitive approach 

The results of fitting the data with the expression 2 2
exp a b G c G d eK O O � ' � ' � �  

were given in Table A4.1, including the 95% confidence interval in the fitting 

parameters. The interval was reported for completeness but it was not meaningful 

considering the nature of the data, i.e. it was known that additional effects 

beyond ΔGn and λn contribute to the coupling. A better way to evaluate the 

quality of the fitting was to consider the distribution of the difference between 

actual PCE and PCE computed by the fitting above (Fig. 4.4(b), the standard 

(a) (b) 
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deviation was 1.67 %).  

 
Table A4.1. Results of polynomial fitting for the intuitive model. 
 

Parameter Fitted value 95% confidence interval Units 

A -290.1 -585.6 : 5.32 % 

B -125.9 -243.0 : -8.77 % eV-1 

C -12.67 -24.54 : -0.804 % eV-1 

D -37.22 -128.28 : 53.8 % eV-2 

E 19.32 -42.64 : 81.38 % eV-2 

 

A4.3 Model construction with a rigorous approach 

A quantile plot of the response variable has been preliminarily constructed with 

respect to the Gaussian distribution (Figure A4.2), showing that its distribution 

could be reasonably approximated by a Gaussian distribution, as implied in the 

simplified model.  

 
 

Figure A4.2. Q-Q plot of the variable with respect to the Gaussian distribution.  
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Based on Fig. A4.2, the approximation of the distribution of ηexp is satisfied by 

a Gaussian distribution. In a generalized linear model the vector of the predictors 

and possible non-linear functions of them was indicated by X, where in our case, 

for example, X= 1 2( , , , , , ( ), ( ),...)G S DD OA g G gO O' ' . The conditional expected 

value of the PCE on a particular set of predictors was expressed formally as 

[ | ] ( ; )E fK E X X                                          (Eq. A4.1) 

where β was a parameter vector to be estimated and f was a nonlinear additive 

function of the predictors, which was 1 1 1 2 2 2( ; ) ( ; ) ...f g X g XE E � � . However, 

each of the gk was a linear function of βk, so overall f was a linear function of β. 

A simple linear regression model, which was when g was the identity function 

and X was the vector of the five linear predictors, gave rather poor results, as 

illustrated by the calibration graph obtained with bootstrap resampling207 (Figure 

A4.3). The bootstrapped shrinkage estimate is 0.75,207 which denotes rather poor 

validation performance (i.e. about 25% lack of fitting). 

The poor fit might be explained with effective lack of complexity (as the 

above model is linear in the data).  We would therefore consider a more 

complex model; given the information provided by the Spearman ρ2 statistic (Fig. 

4.3(f)) and the limited sample size, nonlinearities for ΔGn and λn were introduced 

with penalisation also considered. In the intuitive model higher powers of ΔGn 

and λn were introduced in the fitting function but this was far from ideal when 

there was no physical reason for such an expansion; furthermore, polynomials 

have some undesirable properties, most notably non-locality, where the fit in one 

region could be greatly affected by data in another; polynomials also tend to 

infinity considerably rapidly when predicting outside of the range of the data 

used for the fit.  
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Figure A4.3. Predicted η against observed η for a simple linear regression. One 
hundred bootstrapped predictions of the model were averaged. Apparent and 
bias-corrected estimates were reported. The mean absolute error for the 
bias-corrected estimates is 0.149. A perfect fit would lie on the dashed line. The 
tags on the upper part of the graph denote the coordinates of the predicted points 
(the graphs are obtained by smoothing). 
 

A more general approach was to construct restricted, or natural, cubic 

regression splines, where if using third order restricted cubic spline as an 

example the nonlinear function took the form: 

0 lin 1 nonlin 2( ; ) E E E � �βg X X X                              (Eq. A4.2) 

where 1X X ,  

3 3 33 1 2 1
2 1 2 3

3 2 3 2

( ) ( ) ( )t t t tX X t X t X t
t t t t� � �

� �
 � � � � �

� �
     (Eq. A4.3) 

and ( )z �  was equal to z if z > 0 and zero otherwise. Note 0 lin nonlin( , , )E E E β  

was a parameter vector. Higher order splines could be defined but were not used 

here. Note that constant and linear terms were included in the expansion, and that 

for 3X tt  the function was linear. The parameters t1, t2 and t3 were known as 

the knots of the spline and were determined uniquely for the data set, being 
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located respectively at the 0.1, 0.5 and 0.9 quantile of the data for the predictor X. 

For the predictor ΔGn, the function ( )
nG ng G

'
'  contained nodes t1,ΔGn, t2,ΔGn and 

t3,ΔGn at -5.1685, -4.9277 and -4.6784 respectively; for the predictor λn the 

function ( )
n ngO O  has nodes t1,λn, t2,λn and t3,λn (at 0.6086, 0.6936 and 0.7734 

respectively).  

A general model containing all five predictors and the non-linearity in ΔGn and 

λn would have the following form: 

[ | , , , , ]n nE G S DD OAK O'  

0 1 2 3 4 5( ; ) ( ; )G n ng G g S DD OAOE O E E E' � ' � � � �β β    (Eq. A4.4) 

The number of parameters in the above model was 8, where two for each of the 

spline expansions; note that the intercept β0 was common to both and was made 

explicit, so it was not double-counted to avoid identifiability issues. A widely 

accepted heuristic was to consider 1/20th to 1/10th of the sample size as the upper 

bound for the number of parameters in the model. Violation of this limit could 

produce biased results and over-fitting. However, it was possible to go beyond 

this limit by penalizing model fitting criteria for complexity. The likelihood ratio 

(LR) χ2 statistic of the model was maximized with respect to the “null” model, 

which was the model without any predictors, and only β0 was trivially “fit” to the 

average of the response. The correct AIC (Eq. 2.26) was then employed to 

penalize the LR. 

The ANOVA table of the penalized model (Table A4.2) shows that there is 

some predictive power in ΔGn and λn, since they have the highest F statistics. 

Notice that the relation with λn seemed to be mostly linear. Although it would be 

tempting to simplify the model and remove the remaining variables, this would 

also bias the results and produced optimistic estimates of the parameters’ 
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covariance matrix, since we had “cheated” by looking at a more complex 

hypothesis, and had already expended the degrees of freedom. 

 

Table A4.2 ANOVA table of full model.  
 

Factor Degrees of freedom F test statistics p-value 

ΔGn 2 1.39 0.26 

nonlinear 1 2.57 0.12 

λn 2 3.43 0.04 

nonlinear 1 0.37 0.55 

NDD 1 0.07 0.79 

S 1 0.44 0.51 

OA 1 0.24 0.62 

 
By following the approach of “simplification by approximation”, as introduced 

in section 2.3.2, a final model was produced in which confidence limits and 

statistical tests were unbiased, and included the effects of model selection. The 

simplified model, with a new response value Z, could be written as 

[ | , ]n nE Z G O' 0 1 2( ; ) ( ; )
n nG n ng G gOE O' � ' �β β      (Eq. A4.5) 

The calibration graph in Fig. A4.4 shows the good performance of the reduced 

model. The bootstrapped shrinkage estimate was 0.99 and denoted good 

validation performance, with about 1% lack of fitting. The ANOVA table of the 

reduced model and its final parameters were given in Tables A4.3 and Table 

A4.4.  
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Figure A4.4. Predicted η against observed estimated PCE Z. One hundred 
bootstrapped predictions of the model were averaged. Apparent and 
bias-corrected estimates were reported. The mean absolute error for the 
bias-corrected estimates was 0.044. A perfect fit would lie on the dashed line. 
The tags on the upper part of the graph denoted the coordinates of the predicted 
points (the graphs are obtained by smoothing.) 
 

 

Table A4.3. ANOVA table of reduced model.  
 

Factor Degrees of 
freedom 

F test statistic p-value 

ΔGn 2 42.48  <0.0001 

nonlinear 1 48.86  <0.0001 

λn 2 141.04  <0.0001 

nonlinear 1 4.32  <0.0001 
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Table A4.4. Estimated coefficients of general linear regression model fit 
(reduced model). 
 

Parameter Fitted value 95% confidence interval Units 

β0 20.26 15.54:24.99 % 

β1,lin 1.531 0.576:2.486 % eV-1 

β1,nonlin -3.699 -4.860:-2.537 
 

% eV-3 

β2,lin -9.613 -12.373:-6.853 
 

% eV-1 

β2,nonlin -0.036 
 

-2.556:2.483 % eV-3 

 

In conclusion, this more rigorous procedure for the regression of η against a 

set of predictors shows that the ones with the greatest predictive capability were 

ΔGn, which had a strong nonlinear component, and λn, which was mostly linear. 
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Chapter 5 Does the donor-π-acceptor character of 

dyes improve the PCE of DSSC?  

5.1 Introduction 

In this chapter we discuss whether the D-π-A design scheme for organic dyes in 

DSSCs is effective for elevating the PCE by observing simple statistical 

correlations. The development of organic dyes has in fact been very much 

dominated by this single design rule.45,48,49 It has been postulated that a good dye 

should contain an electron acceptor (A) portion (where the LUMO is localized) 

close to the surface of the semiconductor and an electron donor (D) portion 

(where the HOMO is localized) close to the solution, and the two should be 

connected by a π-conjugated bridge, in which this overall design was then known 

as the D-π-A design scheme (Fig. 5.1).45,49,262 In theory such a design scheme 

should be effective for facilitating charge injection from the dye to the 

semiconductor (the dye’s LUMO interacted strongly with the conduction band 

states of the semiconductor), and for increasing the efficiency of charge 

neutralization by the electrolyte with respect to charge recombination (the 

HOMO should accept more readily an electron from the electrolyte than from the 

semiconductor).   

It was well-known that D-π-A scheme provided not only the advantage of 

creating long-lived charge separated state, but also great flexibility to modify the 

chemical structure of dyes. This in turn led to myriad of possibilities to idealize 

dye’s performance, such as adjusting the amount of π conjugation to refine a 

dye’s ability to absorb solar radiation,49 and inserting alkyl side chain to avoid 

dye aggregation.263 As such, there has been a large volume of work devoted to 
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the widely adopted D-π-A scheme for metal-free organic dyes,45,49,264 but the 

PCE based on these dyes has seen little improvement in recent years, in which 

the pinnacle achieved has remained at around 9%45,49 over some time. 

 

 

 

 

Figure 5.1 (top) Illustration of D-π-A character of a dye265 adsorbed onto a 
semiconductor such as TiO2. The acceptor part is close to the semiconductor to 
facilitate charge injection, whereas the donor part is far from the semiconductor 
to avoid charge recombination. The EDM of a dye is the separation between the 
LUMO’s centroid and the HOMO’s centroid. (bottom) Illustration of the HOMO 
and LUMO of the dye.  
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It has also been suggested that D-π-A character would supposedly lead to a 

dye with high reorganization energy, which would negatively impact its 

performance.45 All in all this led to the question of whether D-π-A character 

could truly pave the way to DSSC with higher PCE. We therefore assessed the 

influence of D-π-A character on PCE with simple statistical analysis. We devised 

a quantitative measure for D-π-A character, computed this measure for 116 

metal-free organic dyes, and examined the correlation between the D-π-A 

character and PCE of these dyes. 

 

5.2 Constructing a new dataset 

The critical prerequisite for any statistical analysis was the availability of an 

unbiased and sufficiently large set of experimental data, which has not been 

available for DSSC. A strategy to develop such a set was therefore pivotal for our 

analysis. The following properties would be essential for the data set: (i) it should 

represent a good account of historical data but also account for more recent 

progresses in the field; (ii) it should refer to data collected under similar 

experimental conditions with sufficient chemical similarity between the dyes; (iii) 

the data set, which would be unavoidably a subset of all those available, should 

be collected without being handpicked by the analyst, to exclude any type of bias 

and, in particular, confirmation bias266 in the dataset.  

In order to satisfy these criteria, our data were collected in accordance with the 

following strategy. We initially considered, as done in Chapter 4, the neutral 

metal-free organic dyes reported in Mishra et.al.’s review in 200949 to sample 

work precedent to the publication of this review. To sample more recent work but 

maintain uniformity in the data set we collected data on the PCE of new dyes 
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subject to the following constraints: (i) dyes contained only a single carboxylic 

anchoring group; (ii) the measurements of PCE were performed under AM1.5G 

illumination; (iii) the redox shuttle was iodide/triiodide redox shuttle in 

acetonitrile. The first criterion was implemented for avoiding strong deviation in 

PCE due to adsorption geometry and charge injection rates of dyes with different 

anchoring groups;165 the second and third were to ensure the data were originated 

from measurements under similar conditions. It has been noticed that the best 

current cells were based on cobalt(II/III) redox shuttle,44 but for the benefit of 

obtaining a larger statistical sample the iodide/triiodide redox shuttle was 

considered instead.  

Next, a strategy was required to collect data that have been reported after the 

publication of Mishra et.al.’s review.49 A pseudo-random procedure devised 

which guaranteed the absence of bias, but was also fully reproducible by other 

researchers with the aim of collecting the chemical structure and the PCE of ~60 

dyes appeared in the literature over the past 6 years. All data were collected from 

the search results provided by Web of Science (WoS), using the keywords 

‘dye-sensitized’ and ‘solar’ and ‘organic’ and ‘synthesi*’ (the asterisk represents 

any number of characters in WoS) by year, starting from year 2010 to year 2015. 

For each year the search results were sorted according to ‘relevance’ and were 

refined by ‘articles only’. Only dyes reported in journals with an impact factor of 

over 4 were considered, to limit the number of hits and ensure in a rough way 

that the data were of sufficient quality. The first 10 dyes for each year were then 

included in the search results. Many studies, however, reported more than one 

dye and it was generally difficult to achieve exactly 10 dyes for each year 

without omitting dyes from some studies. Hence, all dyes reported within a study 

were included, except when a dye did not satisfy the criteria stated previously. 
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The number of dyes for each year was therefore equal or greater than 10 dyes. 

The search results and the papers used have been recorded to ensure 

reproducibility and given in appendix A5.1. From this preliminary data set of 133 

dyes we excluded dyes which required more than 860 basis functions in the 

quantum chemical calculation (approximately those with more than 155 atoms) 

to make sure all calculations could be performed automatically and could 

converge without human intervention. The final data set contained 116 dyes. 

 

5.3 Quantification of donor-π-acceptor character 

It should be noted that, D-π-A character was not a well-defined property of dyes. 

Many dyes have been classified as D-π-A dyes based primarily on chemical 

intuition. A number of qualitative and quantitative indices267–269 have been 

devised for D-π-A character, but they have not yet been applied consistently to 

examine the efficacy of D-π-A character on improving PCE. We have considered 

three possible descriptors for the D-π-A character including (i) the excitation 

dipole moment (EDM) (Fig. 5.1), which was similar to some descriptors 

introduced previously in the literatures;267,269 (ii) the “orbital asymmetry” (OA) 

parameter, defined in Chapter 4 as the ratio of the weight of LUMO and HOMO 

at the anchoring group of the dye; and (iii) the dipole difference between the 

ground-state and first excited-state dipole moments of the dye (Δμ). The EDM 

was computed as the difference between the centroid of the weight of HOMO 

( HOMOC ) and the centroid of the weight of LUMO ( LUMOC ): 

HOMO LUMOEDM  r �C C                                    (Eq. 5.1) 

i ij iMO iMO iMO iMO jMO
i i j i

a a a a S
!

 �¦ ¦¦C r r                        (Eq. 5.2) 
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where aiMO was the atomic orbital coefficient of either HOMO or LUMO, Sij was 

the overlap matrix elements of basis functions i and j, and ri was the 

3-dimensional Cartesian coordinates where the atomic orbital i was centred. The 

sign of EDM was determined by the dot product of the vector between the 

centroids ( HOMO LUMO�C C ) and the vector of the Carbon-Carbon bond at the 

anchoring group, which indicated the direction of charge excitation.  

The orbital coefficients, atom coordinates and overlap matrix required for 

computing EDM were acquired from single-point calculations of geometrically 

optimized dyes in acetonitrile. Geometry optimizations were performed with a 

relatively small basis set (3-21G*), and the energies of the optimized structures 

were subsequently re-evaluated with 6-31G* basis set. The orbital coefficients 

and overlap matrix for computing OA (Eq. 4.3) were acquired from the geometry 

optimization with 3-21G*. For Δμ, the ground state dipole moments of dyes were 

acquired from the 6-31G* single-point calculations of the optimized geometries, 

and the first excited state dipole moments were obtained from TDDFT/6-31G* 

calculations. All calculations were performed with DFT/B3LYP hybrid functional, 

with the acetonitrile environment mimicked with polarized continuum model 

(PCM).228 All calculations were performed with the Gaussian 03 package.229  

 

5.4 Correlations 

Fig. 5.2 shows the correlations between different descriptors, the correlation 

between OA and PCE (η), and the correlation between Δμ and PCE. In Fig. 5.2(a), 

it could be seen that there was good correlation between OA and EDM when 

some outliers (hollow data points) were omitted. However, whether these outliers 

were included or not we observed no correlation between OA and η (Fig. 5.2(c)). 
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In Fig. 5.2(b) we observed excellent correlation of r = −0.98 between EDM and 

Δμ for the subset of dyes included in Mishra’s review.49 This excellent 

correlation suggested that EDM and Δμ were equivalent for describing the D-π-A 

strength, and for saving computational expense we would only compute EDM for 

the full dataset considered (116 dyes). Fig. 5.2(d) shows the correlation between 

Δμ and η of a subset of dyes as employed in Fig. 5.2(b), and the correlation was 

negligible, which was qualitatively consistent with Fig. 5.2(c). 

 

 
Figure 5.2 (a) Correlation between EDM and OA of 116 (blue line) and 111 
(black lines) dyes. The black line is fitted with the date set without OA greater 
than 3 (hollow data points). (b) Correlation between EDM and Δμ of 52 dyes; (c) 
Correlation between η and OA of 116 (blue line) and 111 (black lines) dyes, 
follows the same fitting method as described in (a); and (d) Correlation between 
η and Δμ of 52 dyes. 

(a) (b) 

(c) (d) 
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Figure 5.3 Correlation between η (%) and EDM of 116 dyes. Mean of EDM 
(μ(EDM)) = −6.61. Standard Deviation (S.D.) of EDM = 2.43. μ(η) = 5.31 %. 
S.D. of η = 1.80 %. Pearson’s correlation coefficient (r) = −0.01.  

 

Fig. 5.3 shows the correlation between PCE and EDM with 116 data points. A 

more negative EDM represented a stronger D-π-A character. It could be seen that 

there was no linear correlation between the two properties, which was supported 

by an extremely low Pearson’s correlation coefficient (r = −0.01) from simple 

linear regression analysis. By visual inspection it was unlikely that the fitting can 

be improved with higher order polynomials. The results did not directly imply 

that the D-π-A design did not work but that the combination of all other effects 

was so dominant that there was no measurable benefit in introducing a D-π-A 

character. Suppose, for example, that D-π-A character was only helpful (i.e. it 

correlated positively with the efficiency) if the dye molecule was correctly 

oriented on the surface and with the D-π-A director perpendicular to the surface; 
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we had not included orientation effect in the analysis. Our results would therefore 

imply that the D-π-A character could be helpful or detrimental for the efficiency 

depending on the orientation and that helpful and detrimental orientations were 

equally likely. A completely opposite interpretation was that the D-π-A character 

had no influence. In the first case one should work toward better orientation of 

the dyes rather than strengthening the D-π-A character and in the latter one 

should consider a different design rule. 

To illustrate that some correlations could be found and could provide new 

physical insights we revisited the correlation between η and λn, first explored 

statistically in Chapter 4 (Fig. 4.3). The computational procedure of λn was the 

same as described in Chapter 4. As shown in Fig. 5.4, dyes with low λn were 

more often associated to large η. Such an observation agreed with predictions 

originated from physical principles, where in the evaluation of charge 

recombination rate decreasing λn would retard charge recombination,87 and hence 

should increase η. The correlation shown in Fig. 5.4 illustrated how statistical 

analysis could be useful to validate any given physical model of DSSCs. 

Due to the correlation observed between η and λn, it should be meaningful to 

examine also the correlation between EDM and λn, in order to study whether 

D-π-A character could influence η through associated λn. Fig. 5.5 shows the 

correlation between EDM and λn, where large absolute value of EDM (strong 

D-π-A character) would generally associate with low λn. Such an observation 

clearly disagreed with the previous suggestion45 that a stronger D-π-A character 

was associated with higher λn (another example of how a statistical analysis 

could support or disprove physical hypotheses). 

 



105 

 
Figure 5.4 Correlation between η (%) and λn (eV) of 116 dyes. μ(λn) = 0.70 eV. 
S.D. of λn = 0.06 eV. r = −0.26. 

 

 
Figure 5.5 Correlation between λn (eV) and EDM of 116 dyes. r = 0.40.  
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In view of the observed correlations between λn and η, and λn and EDM, one 

could argue that an increased D-π-A character should lower λn and therefore 

increased η. If there were no other benefits from the D-π-A character apart from 

reducing λn, we would expect the correlation coefficient between EDM and η to 

be still a significant −0.22, which was estimated based on the correlation 

coefficients between λn and η (r = −0.26), and between λn and EDM (r = 0.4) (see 

appendix A5.2 for method of estimation). Having observed a correlation 

coefficient of r = -0.01 between EDM and η one could even speculate that the 

D-π-A character was detrimental to efficiency (the standard error on the 

correlation coefficient with this sample size was approximately 0.09, as 

discussed in the Appendix A5.2). 

 

5.5 Conclusions 

In conclusion, we have considered a large set of dyes and found no correlation 

between their D-π-A character and the experimental PCE. Equivalently, this 

meant that other effects were much more important and washed out any 

potentially beneficial effects of the D-π-A character. We have shown that such 

type of statistical analysis could be used to validate structure-property hypotheses 

derived from basic physical principles. For examples we have seen that, as 

predicted, there was an improved PCE for dyes with reduced λn, while it was not 

true that the increased D-π-A character increased the λn. We could speculate that 

the erroneous emphasis on the D-π-A character has been due to a number of 

factors. Probably there has been an element of confirmation bias (i.e. good D-π-A 

dyes were used to support the theory but counter examples were ignored). The 

lack of quantification of D-π-A character and the predominance in literature of 



107 

papers comparing the performances of just few dyes have certainly contributed to 

this misconception. More importantly, we thought, that the popularity of this 

design rule has caused a large majority of new dyes to be synthesized with the 

D-π-A character built in. High performing dyes have therefore been discovered 

with higher probability within this class of compounds, i.e. confirming the 

erroneous hypothesis by a bias in the sampling. A retrospective look at a uniform 

set of data was probably the best way to test the validity of any given design rule.  
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5.7 Appendix 
A5.1 New dataset 
As discussed a new dataset of dyes was developed in accordance with the 

procedure described in section 5.2. Table A5.1 provided the chemical structures, 

corresponding PCE (η (%)), year of the report and references of dyes in the 

dataset (excluding dyes taken from Mishra’s review49). 

 

Table A5.1 A new dataset with chemical structures and PCE of dyes. 
 

Label Dye η / % Year Ref. 
53 

 

5.4 2010 [270] 

54 

 

2.8 2010 [270] 

55 

 

5.1 2010 [271] 

56 

 

8.0 2010 [271] 

57 

 

9.1 2010 [271] 

58 

 

6.7 2010 [272] 
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59 

 

7.6 2010 [272] 

60 

 

3.1 2010 [273] 

61 

 

5.1 2010 [273] 

62 

 

6.8 2010 [273] 

63 

 

2.9 2010 [273] 

64 

 

4.9 2010 [273] 

65 

 

4.5 2010 [273] 

66 

 

7.0 2010 [273] 

67 

 

6.8 2010 [273] 

68 

 

3.9 2010 [273] 

69 

 

5.7 2010 [273] 
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70 

 

8.0 2011 [274] 

71 

 

6.7 2011 [274] 

72 

 

6.0 2011 [275] 

73 

 

6.7 2011 [275] 

74 

 

6.3 2011 [275] 

75 

 

3.4 2011 [276] 

76 

 

3.8 2011 [276] 

77 

 

5.7 2011 [276] 
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78 

 

3.9 2011 [277] 

79 

 

4.9 2011 [277] 

80 

 

5.3 2011 [277] 

81 

 

6.0 2011 [277] 

82 

 

3.3 2012 [278] 

83 

 

7.4 2012 [278] 

84 

 

8.3 2012 [278] 

85 

 

3.5 2012 [278] 
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86 

 

2.4 2012 [279] 

87 

      

2.6 2012 [279] 

88 

 

4.0 2012 [279] 

89 

     

3.6 2012 [279] 

90 

 

5.0 2012 [279] 

91 

 

7.4 2012 [279] 

92 

 

2.0 2013 [280] 
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93 

 

1.6 2013 [280] 

94 

 

3.2 2013 [280] 

95 

 

5.1 2013 [281] 

96 

 

5.9 2013 [281] 

97 

 

5.9 2013 [281] 

98 

 

5.1 2013 [282] 
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99 

 

4.4 2013 [282] 

100 

 

3.3 2013 [282] 

101 

 

5.0 2013 [283] 

102 

 

4.0 2013 [283] 

103 

 

5.8 2013 [283] 

104 

 

5.9 2013 [283] 

105 

 

6.0 2014 [284] 
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106 

 

5.7 2014 [284] 

107 

 

5.7 2014 [284] 

108 

 

5.7 2014 [284] 

109 

 

5.4 2014 [284] 

110 

 

5.2 2014 [284] 

111 

 

5.8 2014 [284] 

112 

 

5.1, 
 

2014 [285] 
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113 

 

3.8 2014 [285] 

114 

 

2.6 2014 [285] 

115 

 

1.8 2014 [285] 

116 

 

5.0 2015 [286] 

117 

 

1.7 2015 [286] 



117 

118 

 

5.6 2015 [286] 

119 

 

4.9 2015 [286] 

120 

 

4.3 2015 [286] 

121 

 

5.2 2015 [286] 

122 

 

5.2 2015 [286] 

123 

 

6.0 2015 [287] 

124 

 

6.9 2015 [287] 

125 

 

7.5 2015 [287] 
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It should be noted that: 

1. Dyes reported on chemsuschem and chemistry: an asian journal were not 

included since we did not have straightforward access to literatures from 

these journals; 

2. For studies included comparison with the addition of additives, such as 

CDCA, we used the data obtained without the additives. 

 

A5.2 Estimation of Correlation coefficients of mutually 
dependent variables 
If there was a linear correlation xyr  between variables x and y (due to normally 

distributed random fluctuations of variable y) and a linear correlation yzr  

between the variable y and z (due to normally distributed random fluctuation of 

variable z not correlated to the fluctuations of variable y) the linear correlation 

between x and z was given by:   

2 2 2 2

xy yz
xz

xy yz xy yz

r r
r

r r r r

�
 

� � �
                                   (Eq. A5.1) 

Furthermore, it has been shown that the standard error on the computed 

correlation was approximately given by288  
2(1 )
1r

r
n

V �
 

�
                                              (Eq. A5.2) 

where n is the number of data points. The two equations above are used in 

section 5.4. The first one could be derived simply noticing that, if xy x R � , 

where xR  was a random variable normally distributed around zero with 

standard deviation xV , the correlation between xyr  could be expressed as: 

2

1
1

xy

x

r
V

 
�

                                             (Eq. A5.3) 

If yz y R � , where yR  was a random variable normally distributed around 
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zero with standard deviation yV . If xR  and yR  were uncorrelated the relation 

between z and y would be x yz x R R � �  whose correlation would be 

2 2

1
1

xy

x y

r
V V

 
� �

                                        (Eq. A5.4) 

Combining Eq. A5.3 and Eq. A5.4 would yield Eq. A5.1. Note that the result was 

insensitive to scaling the variable x or y by any arbitrary constant and it was 

therefore valid for the general case ( )xy a x R �  and ( )yz b y R � . 
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Chapter 6 Computational study of competing 

reaction mechanisms of photo-catalytic reduction 

of CO2 on TiO2 anatase(101) 

6.1  Introduction 

In this chapter we study three proposed reaction mechanisms for photocatalytic 

reduction of CO2 to gain CH4 on a defect-free TiO2 anatase(101) surface with 

DFT calculations. There was no widely accepted reaction pathway for the 

molecular transformation of CO2 to CH4 on TiO2, or Eq. 1.4., and each proposed 

reaction pathway had some weaknesses. The effects of reaction conditions on the 

reaction mechanisms were also not well-understood. The main objective of this 

study is to identifying the most favorable pathway among the three proposed 

reaction pathways. We would compare the thermodynamic landscape of the 

reaction mechanisms, suggest methods for verifying the identified pathway, and 

note possible mechanistic hypotheses.  

 

6.2  Proposed reaction mechanisms 

In this section we report briefly the key intermediates in the mechanisms as 

described in the literature13 with the evidence in support and the possible doubts 

that have been cast. The pathways, named in accordance with an intermediate 

along the pathway, are known as the carbene pathway, the formaldehyde pathway 

and the glyoxal pathway. These pathways mainly differentiate from one another 

after the presumable activation of carbon dioxide (CO2) via one-electron 

reduction. In the carbene pathway,120 the subsequent steps are the formation of 

carbon monoxide (CO), carbon residue (C), and a series of step-wise abstractions 
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of 4 H radicals by the carbon to gain methane (CH4), in which carbene (CH2) is 

expected in the last series of steps. In the formaldehyde pathway,29 the main 

intermediates are formic acid (HCOOH), formaldehyde (HCHO) and methanol 

(CH3OH), forming in this order along the pathway. The glyoxal pathway is the 

most complex pathway among the three proposed mechanisms, postulated based 

on a series of Electron paramagnetic resonance (EPR) experiments and DFT 

calculations.119 After the activation of CO2, it is expected that the HCO radical 

would form and dimerize to give glyoxal (HOCCOH). A series of electron and 

proton transfers thereafter lead to the formation of trans-ethane-1,2-semidione, 

glycol-aldehyde, vinoxyl radical and acetalaldehyde. The next step is a hole 

transfer to acetalaldehyde, to produce unstable acetyl radicals. The C-C bond in 

acetyl radical is then cleaved to give CO and CH3, of which the latter can 

consume another H radical to produce CH4.  

  While the proposed mechanisms appeared to be reasonable based on chemical 

intuition and supported by some experimental evidence, there were details in 

each pathway that have not been elucidated or verified. For the carbene pathway, 

some important reaction intermediates (C, CH3, CO, H) have been confirmed 

with EPR studies, and experimental data were able to fit with the kinetic model 

for this mechanism.289 This mechanism, however, did not explain the absence of 

HCOOH, a competitive product to CO that has been reported earlier in the 

proposed formaldehyde pathway.29 Although there were reports of C residual 

detected on surfaces,121 in theory the formation of a carbon atom was expected to 

be a thermodynamically unfavorable process, and the reaction to form C from 

CO has not been verified. 

For the formaldehyde pathway, the closed-shell products were commonly 

observed and supported by the electrochemical reduction potential data (Eq. 6.1 
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to Eq. 6.4, vs NHE, pH = 7),290 where reduction potentials of CO2 to form a 

number of products (HCOOH, H2CO, CH3OH and CH4) via multiple electron 

and proton transfer were generally less negative than the conduction band 

potentials of TiO2 ( E 0.50V � ):  

2CO 2H 2e HCOOH� �� � o            E=−0.61V          (Eq. 6.1) 

2 2 2CO 4H 4e H CO H O� �� � o �         E=−0.48V          (Eq. 6.2) 

2 3 2CO 6H 6e CH OH H O� �� � o �        E=−0.38V          (Eq. 6.3) 

2 4 2CO 8H 8e CH 2H O� �� � o �          E=−0.24V          (Eq. 6.4) 

There was, however, no experimental evidence for multiple-electron transfer and 

it was more likely that the reaction proceeded via single-electron transfer, but the 

expected radical intermediates from these reductions were not observed.13,291 

Experimental data were also unable to fit the kinetic model of this pathway.289  

  The glyoxal pathway encompassed some possibilities that were not considered 

in the other two proposed pathways, including the formation of C2 compounds as 

intermediates, and having oxidation with the photo-generated hole as an 

elementary step. In addition, the proposed mechanism took into account the 

formation of commonly observed products such as CO, H2CO and CH3OH, even 

though these intermediates were not included in the conversion pathway to CH4. 

For H2CO and CH3OH, both species were expected to undergo oxidation with 

surface holes to generate HCO and CH2OH radicals, taking mainly the role of 

sacrificial hole scavengers, and would not undergo one-electron reduction.119,291 

Therefore this proposed mechanism suggested the formaldehyde pathway would 

only occur with 2-electron 2-proton transfer reactions. The main weakness of this 

pathway was that glyoxal and glycolaldehyde have not been reported.119 In the 

study with EPR that led to the postulation of this pathway, the transformations of 

the radicals to molecules were not demonstrated, and the identification of the 
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vinoxyl radical was rather tentative.119 Table 6.1 summarized the key points of 

the proposed mechanisms. 

 

Table 6.1. Summary of the detected species in the proposed mechanisms, the 
supporting evidence and the uncertain details for the proposed mechanism.  

Pathway 
Detected species 

in proposed 
mechanisms 

Supporting evidence Uncertain details 

Carbene 
C, CO, H, 

CH3OH, CH4, 
CH3

120 

EPR experiments; 
kinetic model fitting 

Formation of C 
atom; 

No explanation on 
the absence/role of 

HCOOH  

Formaldehyde 
HCOOH, H2CO, 
CH3OH, CH4

29 
Electrochemical 

reduction potentials 

Lack of 
experimental 

support e.g. EPR; 
No explanation on 
the absence/role of 

CO 

Glyoxal 
CH3, CH4, H 290 

HCOCH3
292 

EPR experiments; 
DFT calculations 

Glyoxal and 
glycolaldehyde are 

deduced from 
EPR,119,293 but are 

not reported  

 

Although there was no accepted mechanism, various views regarding some 

important aspects of the reaction, such as rate-limiting steps, have been 

advocated. It was generally believed that the activation of CO2 was a difficult 

reaction to realize and likely to be the rate-limiting step, suggested also by the 

electro-chemical potential of CO2/CO2
.− ( E 1.90V � ). Adsorption of CO2 on the 

surface seemed to be able to make the reaction viable, but there were very few 

reports of such anion on TiO2.294 Some studies have therefore suggested that the 
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reduction of CO2 may occur only under specific circumstances, such as when 

oxygen vacancies were introduced.122,135 Another possible rate-limiting step for 

the reaction was the adsorption of reactants, where a pseudo-first order 

relationship has been observed between photo-reduction of CO2 and initial CO2 

concentration.295 

 

6.3 Computational method and details 

All calculations were performed with GGA/PBE functional with ultra-soft 

pseudo-potentials with Quantum Espresso,296 unless specified otherwise. The 

total energy of the intermediates were computed with the anatase(101) surface, 

which was modeled as a two tri-layer slab with (2 × 2) surface unit cells. The 

two-layer slab was a rather thin slab but has been shown to be sufficient for 

modeling adsorption of molecules on the surface,297 and we employed this slab 

also with the intention to save computational expense, in view of the rather large 

number of computations required in this study. For the most important results, 

where the thermodynamic landscapes of different pathways were being compared, 

we computed also the energies of the intermediates with a 5-layer slab for 

checking the main conclusions (see section A6.5). The Monkhorst-Pack k-point 

grid used was 2 × 2 × 1, and the kinetic energy cutoffs for wave-functions and 

charge density were 35Ry and 280Ry respectively.297 For intermediates involving 

radical species, spin-polarized calculations were performed. The energies of the 

transition states were computed using the climbing-image nudged elastic band 

(CI-NEB) method.158 We have first performed NEB based on an initial guess of 

the path, and subsequently improved the transition state energy of the NEB 

minimum energy path by using the climbing-image technique. 



125 

Our reaction (Eq. 1.4) involved many reactants in sequence. To compare 

different reaction paths it was important to include the energy of the unreacted 

species in the intermediates’ energy. To illustrate the procedure we considered the 

simple reaction: 

2 2CO 2H CO H Ox� o �                                      (Eq. 6.5) 

We first computed the total energy of CO2 adsorbed on the surface (denoted as 

(E1)), which was the sum of the total energy of the surface adsorbate (CO2), the 

surface slab employed and the associated adsorption energy. Similarly and 

separately, we computed also the total energy of a H atom adsorbed on the 

surface (EH), which was the sum of the total energy of the H atom, the surface 

slab and the associated adsorption energy. The total energy of the reactant in Eq. 

6.5, which was one adsorbed CO2 and two adsorbed H atoms far away from CO2 

(Eint1), was simply: 

int1 1 2 HE E E �                                              (Eq. 6.6) 

In the next step, we assumed a H atom has diffused and was adsorbed close to 

CO2, and we computed the energy of this configuration (E2). The diffusion 

process was not studied explicitly. In addition, the total energy of the surface 

(denoted as MS) that has initially accommodated the diffused-away hydrogen 

(EMS) was also computed. The total energy of this intermediate, which was one 

adsorbed CO2 with one adsorbed H atom close to it and the other far away from 

it (Eint2), was: 

int 2 2 H MSE E E E � �                                          (Eq. 6.7) 

Thereafter the total energy of COOH on the surface (E3), as well as the transition 

state of the hydrogen transfer to produce COOH, were both computed and 

aligned with other intermediates by adding appropriate energies of EH and EMS. 

The same procedure was repeated until CO and H2O were formed.  
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The elementary steps in the proposed pathways considered could have 

different mechanisms, such as sequential Electron transfer (ET) and Proton 

transfer (PT), concerted coupled proton-electron transfer (CPET) and hydrogen 

atom transfer, which may lead to the computation of an unmanageable number of 

possible intermediates for this study. We therefore modeled the photo-reduction 

process based on the hypothesis that the conversion from CO2 to CH4 proceeded 

via a series of hydrogen atom transfer reactions. In support of this hypothesis 

there was an expectation that hydrogen atom transfer reactions very often exhibit 

low-energy barriers (less than 1.0 eV).298,299 On the more practical side, this 

hypothesis would also allow a consistent computational setup to be applied for 

the three reaction mechanisms considered. We noted that the Lowdin charge for 

an adsorbed H atom was typically ~0.6 in our calculations, and partial reduction 

of the TiO2 slab was observed when there was no co-adsorbate. We have also 

observed that co-adsorbates were partially reduced when in the presence of a 

nearby adsorbed H atom. We noticed that the transfer of an adsorbed H atom had 

been considered as sequential ET and PT in some studies,136,137 but in this study 

we would refer to this process as H atom transfer, as we preferred to define a 

pure electron transfer reaction when two potential energy surfaces with different 

localization of the electron were involved. 

Once reactants and product were connected via the computed intermediates 

under the hypothesis of sequential H atom transfer it was possible to assess the 

potential impact of alternative sub-mechanisms connecting the same 

intermediates. If two reaction paths had relatively low barriers and very different 

energy of the intermediates, one could conclude that the lower energy 

intermediate path was more likely even if new lower energy paths connecting the 

intermediates could be found. If, on the contrary, the energy of the intermediates 
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was similar and the reaction path was determined by the barrier heights, it would 

be important to study the details of the rate determining steps. The approach 

presented here, depending on the results, would provide either the most likely 

mechanisms among those proposed or an indication of the elementary steps to be 

studied in greater detail.      

The hypothesis of sequential H atom transfer required some minor 

modification of the carbene pathway as described in the literature.13 We have 

considered alternative intermediates in this study to connect CO2 to CO 

(connected via COOH) and CO to C atom (connected via HCO and HCOH) in 

the carbene pathway, to be compatible with our scheme. These alternative 

intermediates could be reasonably formed when an adsorbed H atom was close to 

the reactant on the surface (see section A6.2 for adsorption geometries), and/or 

have also been observed in other related reactions, which would be discussed in 

the results section. In the figures where our computed reaction pathways were 

defined (Fig. 6.1, Fig. 6.4(Top) and Fig. 6.5(Top)) we would use different 

representations to distinguish intermediates in proposed reaction pathways and 

intermediates suggested in this study.  

Due to the rather large number of calculations required in this study, we have 

opted for the PBE functional for its relatively low computational cost. The 

adsorption energy of H atom on anatase(101), an important quantity to the 

relative energies in our energy profiles, may be dependent on the choice of 

functional. We have noticed that the PBE approach was able to produce the 

adsorption energies of H atom at the surface bridging O site of anatase(101) 

similar to that with the PBE+U approach (the difference was in between the 

range of 0.04 eV to 0.28 eV).300,301 A limitation of the PBE approach was that the 

method was not able to describe localized excess electron, but pure, or 
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non-adiabatic, electron transfer reactions were not considered in this study. In 

additions, there were reports of both localization and delocalization of the excess 

electron in TiO2 anatase,302 and the localized and delocalization arrangements 

were found to be close in energy.303 Hence localized excess electrons of the slab 

were deemed unimportant in this study. An accurate description of the localized 

states at the expense of higher computational cost, such as using DFT+U, would 

be needed when considering non-adiabatic electron transfer reactions. 

 

6.3 Reaction profiles 

6.3.1 Carbene pathway 

Fig. 6.1 shows how the carbene pathway was defined in our study, where the 

adsorption geometries of all the intermediates were reported in section A6.2. The 

pathway began with the formation of CO (8) from CO2 (1) via the formation of 

COOH (4), a typical intermediate in the water-gas shift reaction on a solid 

surface.41 CO then detached from the surface and reacted with a H atom (11) to 

spawn HCO (12), and a subsequent H atom transfer produced HCOH (14). HCO 

was a common species detected in experiments119 and HCOH was a species 

expected in carbene chemistry304 and the photo-catalytic formation of 

carbohydrates.305 HCOH was then rearranged to produce C atom and water (16), 

and this C atom would sequentially abstract 4 H atoms on the surface to generate 

CH4 (26). 



129 

 
Figure 6.1 Illustration of the intermediates involved in the carbene pathway in 
this study. ‘Ad. change’ meant the intermediate has undergone adsorption mode 
and/or site change. ‘H diff.’ meant diffusion of H atom between sites close to the 
adsorption of the intermediate. The underlined intermediates include species in 
the proposed reaction pathway,13,120 while other intermediates are suggested in 
this study. 

 

Fig. 6.2 shows the energy profile of the carbene pathway. The solid black lines 

denote the energies of the intermediates, the blue solid curves denote the kinetic 

barriers, the blue dashed lines represent the processes where hydrogen diffused 

and adsorbed close to the intermediate, or a water molecule diffused away from 

the intermediate, for which the barrier was not computed. The zero energy in Fig. 

6.2 corresponds to the linear adsorption of CO2 on anatase(101) (1). 

We first noted that the rate-limiting step was the formation of a C atom from 

HCOH (15 to 16), which was both thermodynamically (total energy difference 

(ΔEtot) of 2.04 eV) and kinetically (kinetic barrier height (Eact) of 2.80 eV) 

unfavorable. Other possible paths to form C atoms, such as CO + H2O + e-,306 

were not examined (see section 6.3). Once the C atom was formed, the 

subsequent H atom transfers went steeply downhill. It should be noted that the 

ease of these H atom transfers were related to the adsorption geometries of the 

carbon-based radicals. For instances, if the carbon atom of CH2 was bonded to 

both a surface unsaturated Ti atom and a bridging O atom, the transfer of a H 



130 

atom would have to be facilitated by breaking the C-O bond (23) (see section 

A6.2 for adsorption geometry); we were also unable to identify a reasonable 

transition state geometry for H atom transfer by CH3, when CH3 was strongly 

adsorbing on a surface unsaturated Ti atom via the carbon atom. 

 

 

 
Figure 6.2 Energy profile of the Carbene pathway. The energy profile in the top 
panel was magnified along the energy scale.  

 

6.4.2 Approximating kinetic barriers with total energy difference 

In the course of building the energy profile for the carbene pathway the 

computation of kinetic barriers was the most time-consuming component, which 
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essentially limited the number of reaction paths that could be explored. There has 

been endeavor to establish simpler and quicker methods to determine 

rate-limiting steps without computing explicitly the kinetic barriers. For instance, 

some heterogeneous catalytic reactions298,307 have been found to obey the 

Bells-Evans-Polanyi (BEP) relation,308,309 a linear relationship established 

between reaction barrier and reaction enthalpy change, and hence the barriers of 

reactions of the same families that obeyed BEP relation could be computed easily. 

Norskov et al. have developed the Computational hydrogen electrode (CHE) 

method127,128,310 that allowed estimation of the over-potential and the 

rate-limiting steps based on the assumed linear relationship between kinetic 

barrier and free energy difference, which appeared sometimes to be an acceptable 

estimate.67  

To investigate whether the energetics of the intermediates alone was sufficient 

for identifying the rate determining step and assessing the plausibility of different 

reaction mechanisms, we reported in Fig. 6.3 the activation energy Eact against 

the ΔEtot for all H atom transfer (both forward and backward) reactions. This was 

the main type of reaction that we would consider when constructing the energy 

profiles for the formaldehyde and glyoxal pathways. The black lines indicated 

the minimum acceptable activation energies (since Eact t  min(0,ΔEtot)). It could 

be seen that high activation energies (1.0 eV to 2.8 eV) were always associated 

with very positive ΔEtot, and the difference, Eact − ΔEtot, was much smaller than 

the typical range of activation energies. BEP-type relationships for H atom 

transfer reactions have in fact been observed in the past.298,299  



132 

 
Figure 6.3 Correlation between ΔEtot and Eact computed based on energies of the 
intermediates and transition states of H atom transfer reactions presented in Fig. 
6.2. The red circles were Eact of the forward reactions (8) and the blue squares 
were Eact of the backward reactions (8).  

 

This suggested that ΔEtot often contained enough information to identify the 

slower steps in a reaction mechanism. More quantitatively, we could consider the 

following criteria to determine whether it was necessary to compute the kinetic 

barriers in the other two proposed pathways: (i) if the energy profile contained 

only the energies of the intermediates, and the resulting thermodynamic 

landscape was completely ‘downhill’ (ΔEtot < 0) or with ‘uphill’ steps having 

small ΔEtot, e.g. ΔEtot < 0.5 eV, it would be necessary to compute the kinetic 

barriers in order to determine the rate-limiting step, as well as the potential 

maximum to assess the plausibility of the proposed reaction mechanism; (ii) if, 

however, the greatest ΔEtot was > ~ 1eV, the energetics of the intermediates were 

likely to be sufficient to determine the rate-limiting step. We would then compute 
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the barriers for this likely rate-limiting step identified in each pathway. 

 

6.4.3 Formaldehyde pathway 

Fig. 6.4 shows the intermediates in the formaldehyde path in this study and the 

energy profile of this pathway. The path started with the formation of HCOOH (5) 

from linearly adsorbed CO2 (1) via the formation of HCOO (4). Subsequent 

step-wise abstractions of H atoms yield OCH2OH (8), H2CO (9), H2COH (12), 

CH3OH (14), CH3 (16) and CH4 (20), in this order. Noted that, unlike other 

intermediates included in this pathway (Table 6.1), OCH2OH (8) and H2COH 

(12) have not been detected experimentally.13 Noted also that, for the formation 

of HCOO (4) and OCH2OH (8), we have placed an extra H atom on the surface 

((3) and (7)) before H atom transfer. This was due to the observation that, while 

the energies between intermediates with and without a co-adsorbed H atom 

nearby were typically very similar, such as intermediates (1) and (2) in Fig. 6.4, 

HCOO (4) and OCH2OH (8) were much lower in energy in the presence of an 

adsorbed H atom nearby than when adsorbed H atom was absent. The adsorption 

of two H atoms on the surface, such as intermediates (3) and (7), has been used 

as a model for the initial state of two-electron one-proton transfer reaction in 

DFT+U study elsewhere,136,137 but we would consider this as a H atom transfer, 

since only a partial reduction of reactant was observed, as discussed previously 

in section 6.3. 

The rate-limiting step was likely to be the formation of CH3 (15 to 16). The 

ΔEtot of this step was 1.29 eV, and the Eact was 1.49 eV. The second most 

unfavorable step was the H atom transfer to H2CO (11 to 12; ΔEtot = 0.69 eV). 

Considering the criteria given previously, it has been determined that the 

computation of kinetic barriers was not necessary for this pathway, except for the 
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rate-limiting step. It should be noted that the energies of the most 

thermodynamically stable adsorption mode for HCOOH311 and H2CO312 were not 

used in Fig. 6.4. In this case we have employed adsorption modes that could 

facilitate H atom transfer without requiring changes in adsorption geometry or 

site that could yield OCH2OH (8) and H2COH (12). 

 

 
Figure 6.4 (Top) Illustrations of the intermediates involved in the formaldehyde 
pathway in this study. The underlined intermediates were species in the proposed 
reaction pathway,13,29 while other intermediates were suggested in this study. 
(Bottom) Energy profile of the formaldehyde pathway.  

 

It has been suggested in the literature291 that H2CO (9) and CH3OH (14) were 

acting mainly as hole scavengers. From Fig. 6.4 it could be seen that it was more 

thermodynamically favorable for H2CO (9) to form the oxidation product 

OCH2OH (8) rather than being reduced to gain H2COH (12), which was in 
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agreement with literature.291 Similar preference to form oxidation product 

H2COH (12) by CH3OH was however not observed from Fig. 6.4. Such 

observation was in line with some experimental results. For instance, it has been 

demonstrated that the hole-scavenging power of CH3OH was much weaker than 

other species such as H2CO;291 a temperature-programmed desorption (TPD) 

experiment313 has suggested that methoxy, rather than molecularly adsorbed 

CH3OH, was the effective hole-scavenging species in photo-oxidation of CH3OH 

on TiO2. Although in Fig. 6.4 the driving force for the forward reaction (15 to 16) 

was more favorable than the backward (14 to 13), the former was still highly 

thermodynamically unfavorable, which suggested CH3OH (14) was more likely a 

product or by-product rather than an intermediate, a feature that has also been 

considered in the proposed carbene pathway.13 The relative stability of CH3OH 

would also suggest that this species was likely to be involved in other side 

reactions, such as the indirect photo-oxidation, which was an oxidation 

mechanism of CH3OH that was equally supported in comparison to the direct 

oxidation,94 and/or the molecular CH3OH reacted with co-adsorb oxygen to 

generate methoxy.313 As such CH3OH may take mainly the role of a hole 

scavenger. 

 

6.4.4 Glyoxal pathway 

We first noted that in the glyoxal pathway CO was generated but did not act as a 

reaction intermediate. The fate of CO was however, not clear, where in theory it 

could also re-enter into the reaction cycle and act as an intermediate to produce 

CH4. This postulation was supported by the general observation of CO being a 

typical minor or trace product, unless a co-catalyst or propan-2-ol was 

employed.13 Therefore, in accordance with our postulation, when CO was formed 
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in the reaction of:  

2 4 22CO 10H CH 3H O COx� o � �                              (Eq. 6.8) 

It reacted with H atoms and produced CH4:  

4 2CO 6H CH H Ox� o �                                      (Eq. 6.9) 

and the total reaction was the doubling of Eq. 1.4. For the purpose of correctly 

aligning the energies of the intermediates and constructing an energy profile that 

was comparable with those of the other two pathways, we considered a total 

reaction which was the sum of (half) (Eq. 6.8) and (Eq. 6.9). The resulting ΔEtot 

between the initial reactant, CO2, and the final product, CH4, would therefore be 

the same as computed for the other two proposed pathways shown previously 

(-4.82 eV). The mechanism of converting CO to CH4 was, however, not studied, 

since they were not provided in the proposed pathway. In this case we would add 

a ‘virtual step’ of direct conversion of ½ CO to ½ CH4 after the formation of the 

first ½ CH4 in the profile. 

Fig. 6.5 shows how the glyoxal path was defined in this study and the energy 

profile of this pathway. The red dashed line connects the initial (½ CO + 3 H) 

and final state (½ CH4 + ½ H2O) of the ‘virtual step’, in which the intermediates 

in between were not studied. The reaction began with the formation of HCO (7) 

from linearly adsorbed CO2 (1) via the formation of formic acid (HCOOH) (5). 

Glyoxal (OHCCHO; (9)) was then produced from the dimerization of HCO (7). 

The subsequent step-wise H atom transfer produced trans-ethane-1,2,-semidione 

(11), glycolaldehyde (13), vinoxyl radical (15) and acetaldehyde (18). The 

acetaldehyde (18) was then transformed to give acetyl radical and a H atom (19). 

Thereafter the acetyl radical (19) was cleaved to form CO and methyl radical 

(20), which further abstracted a H atom to generate CH4 (23). The reaction was 

complete when CO released (20) and re-entered the reaction cycle (24) and 
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generated CH4 (Final). 

 

 

Figure 6.5 (Top) Illustrations of the intermediates involved in the glyoxal 
pathway in this study. The ‘½’ brackets indicated the energies of which 
intermediates were halved. The underlined intermediates were species in the 
proposed reaction pathway,13,119 while other intermediates were suggested in this 
study. (Bottom) Energy profile of the glyoxal pathway.  

 

From Fig. 6.5 it could be seen that the rate limiting step was likely to be the 

formation of the considerably unstable HCO (6 to 7). The ΔEtot of this step was 

1.61 eV, and the Eact was 1.69 eV. The second most unfavorable step was the 

formation of CH3 from acetaldehyde (18 to 19; 0.96 eV). Similar to the 

formaldehyde pathway, by considering the criteria given previously, we have 

omitted the computation of kinetic barriers for this pathway, except for the 

rate-limiting step. We also noted that acetaldehyde (18) would be the preferred 
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product over ½ CH4 (23) and ½ CO (20), but if ½ CO (20) was allowed to be 

further reduced and the product of this mechanism would be CH4 (Final) only. 

From Fig. 6.5 acetaldehyde (18) was relatively stable on the surface, but it was a 

rather rare product.13,292 This suggested acetaldehyde (18) was also likely to be 

involved in other side reactions, hindering the conversion to CH4 (Final). The 

mechanism in Fig. 6.5 would also be consistent with the difficulty of detecting 

glyoxal (9) and glycolaldehyde (13),119 as there was currently, to the best of our 

knowledge, no report of these species.  

 

6.5  Discussion 

Fig. 6.6 shows the simplified version of the three proposed pathways, where only 

important intermediates from H atom transfer reactions are included. Fig. 6.6 was 

constructed based on the computation of intermediates with a two-layer slab; a 

comparison with this figure based on a five-layer slab saw our qualitative 

conclusions remaining unchanged, and this comparison was given in section 

A6.5. 

From Fig. 6.6 it was evident that the formaldehyde pathway was the most 

thermodynamically favorable pathway, where the energies in general go 

‘downhill’ from one closed-shell product to another (0th Æ 2nd Æ 4th Æ 6th Æ 

8th H transfer, blue), whereas high-energy intermediates were involved in the 

other two pathways (HCO (1.5th H transfer, green) in the glyoxal pathway and 

COOH/C (1st/4th H transfer, red) in the carbene pathway). An observation was 

that H2CO (4th H transfer, blue) was a favorable ‘stepping stone’ for all 

proposed pathways; it was seemingly more favorable for CO in the carbene 

pathway (2nd H transfer, red) and the HCO in the glyoxal pathway (1.5th H 
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transfer, green) to form H2CO rather than a C atom (4th H transfer, red) and 

glyoxal (3rd H transfer, green) respectively. The formation of H2CO from CO 

has also been suggested in other DFT studies of CO2 methanation on Cu 

surface310 and the anatase(101) surface.137  

 

 
Figure 6.6 Comparison of the intermediates’ energy for the carbene (red), 
formaldehyde (blue) and glyoxal (green) pathways. The green arrow from the 5th 
to the 4.5th H atom transferred indicated CH3HCO lost a H atom to form CH3, 
and the green arrow from the 4.5th to the 5th H atom transferred indicated CH3 
regained a H atom to form CH4. Note that the region of 3rd to 5th H atom 
transferred was magnified. Intermediates with‘+ H’ meant a H atom co-adsorbs 
on the surface with the species. 

 

We have also tested the dependence of our identification of the most 

favourable pathway on our chosen functional. We have computed the reaction 

energies between CO2 and the highest-energy intermediates in each pathway with 

PBE + U (U = 4.0 eV)137 and a five-layer slab, and compared them. The reaction 

energies in the carbene, glyoxal and formaldehyde pathways were 2.12 eV, 1.91 
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eV, and 1.21 eV respectively, and formaldehyde pathway should remain as the 

most favorable pathway.  

We also noted that the uncertainty in our comparison of reaction mechanisms 

due to the introduction of some alternative intermediates for the carbene pathway 

(1st and 3rd H transfer, red) was deemed unimportant. The highest-intermediate 

in the carbene pathway was the C atom (4th H transfer, red), which was much 

higher in energy than the intermediates in the formaldehyde pathways. This 

observation would not be influenced by considering alternative intermediates in 

the carbene pathway.  

Our observations based on Fig. 6.6 should be verifiable with currently 

available experimental techniques. For instance, according to the results in Fig. 

6.6, OCH2OH (3rd H transfer, blue) should be easier to detect than other radical 

species (5th and 7th H transfer, blue) in the formaldehyde pathway, and the 

identification of this species together with the following closed-shell products 

would be important supporting evidence for this pathway. OCH2OH has been 

identified in the reaction between atomic hydrogen and formic acid in Kr matrix 

with IR spectroscopy,314 giving rise to an IR signal, such as an intense band at 

around 3600 cm-1 due to O-H stretching. The assignment of the IR spectra might 

be simplified by using other versions of IR spectroscopic technique, e.g. 

polarization modulation infrared reflection adsorption spectroscopy 

(PM-IRAS).118 The conversion of CO and HCO to H2CO would require kinetic 

modeling and/or isotope labeling techniques for verification. 

From Fig. 6.6, we would also expect the main bottleneck for the formaldehyde 

pathway to be the unfavorable formation of CH3 (6th Æ 7th H transfer, blue). A 

new catalytic system should therefore improve the ease with which the C-O bond 

of CH3OH cleaved. Alternatively, without changing the catalyst, the cleavage of 
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this C-O bond may be facilitated by adding hydrogen iodide to react with 

CH3OH in order to generate CH3I. TPD experiment showed that the adsorption 

of a CH3I layer on TiO2(110) would produce CH4.315 CH3I was also known to 

dissociate to produce CH3 on other surfaces.316,317  

We have noticed, on the basis of Fig. 6.6, two possible alternative 

sub-pathways that would avoid this unfavorable step. The first possibility was 

that H2CO produced CH2 instead of CH3OH; but such reaction, to the best of our 

knowledge, was not known from literature. The second possibility was that the 

formaldehyde pathway proceeded via concerted 2-H atom transfers, i.e. the 

pathway incorporated only intermediates at 0th, 2nd, 4th, 6th, 8th H atom transfer 

(blue) in Fig. 6.6, without the formation of specific intermediates in between. 

This alternative pathway was similar to the mechanism suggested in another 

theoretical study137 but there was a lack of experimental evidence,13 and it was 

not clear from Fig. 6.6 what experiment could be performed to provide evidence. 

On the basis of literature, a third possibility was the formation of methoxy radical 

(OCH3) from H2CO, where OCH3 has also been reported previously,290 and was 

part of the mechanism of methanation of CO2 on Cu surface determined from 

DFT calculations.310 OCH3 was not included in Fig. 6.6, but it was expected that 

this alternative path would also have the difficulty to cleave the C-O bond to 

generate CH3, and the OCH3 may prefer hole scavenging.313 

A few effects of the reaction environment were not encompassed in our 

computation but might affect our prediction. The solvent molecules could 

stabilize strongly some of the species through, for example, H-bonding (the key 

intermediates were neutral so there were no major differences expected in the 

polarization energy). However, it could be noted that, considering the typical 

H-bond energy in water (~< 0.4 eV),318 it was not possible to alter significantly 
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the relative energies of the landscape depicted in Fig. 6.6. The mechanism might 

also be interfered by other possible species formed in side reactions, such as 

carbonates, hydrogen molecules and hydroxyl radicals.13 Surface defects might 

also alter the mechanism and/or the energetics of the mechanism prominently. It 

has been suggested that in the presence of oxygen vacancy CO was more easily 

formed,122,319 and the pathway would be more similar to the carbene pathway.137  

The results presented alongside the tests performed to rule out important 

computation errors allowed the identification of a reaction path among three that 

was clearly more favourable. As noted above the energy difference between 

intermediates was sufficiently large and the barriers sufficiently low that the 

detailed investigation of alternative mechanisms for the elementary reaction steps 

would not change the conclusion for the given energy landscape. It should be 

noted that the study of the direct non-adiabatic electron transfer from the defect 

required a very different type of study from the one we presented. Possibly the 

study should focus on a single reduction step and the other mechanisms it could 

follow, such as ET followed by PT, PT followed by ET, concerted 

proton-electron transfer, and multi-electron transfer as proposed in previous 

theoretical studies136,137,290 but deemed unlikely13,136,320 and without strong 

experimental support. Each elementary step would require adjustment to standard 

DFT, such as constrained DFT156,321 for electron localization, and/or a periodic 

charged slab with background compensating charge that the energy may depend 

on the width of the vacuum layer in the simulation box.322 Alternative model for 

the charged slab could perhaps be the adsorption of H atom on anatase(101),136 

but the treatment of localization of the excess electron would require relatively 

costly computational method such as DFT+U, and the results would be 

dependent on the U value employed.136,323 Thus, a possible strategy for 
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investigating photo-catalytic reaction mechanisms was to consider initially a 

broad exploration of global reaction mechanisms, as we did here, followed by an 

in-depth study of some elementary steps if necessary. 

 

6.6  Conclusions 

In conclusion, we have investigated theoretically three proposed reaction 

mechanisms for the photo-catalytic reduction of CO2 to gain CH4 (Eq. 1.4) on 

defect-free TiO2 anatase(101) with first-principles DFT calculations, and we 

determined that the formaldehyde pathway was the most likely on the basis of a 

greater thermodynamic stability of the intermediates. Formaldehyde was a 

thermodynamically preferred intermediate to form in the hydrogenation of CO 

and the hydrogenation of HCO, over C atom in the carbene pathway and glyoxal 

in the glyoxal pathway respectively. Our computational approach appeared to be 

useful for both developing sensible mechanistic hypothesis and designing 

experiments to validate them.  
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6.7 Appendix 
A6.1 Dependence of reaction energy and adsorption energy on 
slab thickness 
Fig. A6.1 shows the dependence of reaction energy (eV) on slab thickness (2 to 6 

layers), using 

2CO 2H HCOOH� o                                       (Eq. A6.1) 

as an example. The reaction energy was converged at five-layer, where the 

reaction energy difference between five-layer and six-layer was 0.05 eV. 

Table A6.1 shows the adsorption energies of CO2, HCOOH and H atom on the 

slabs with different thicknesses. The adsorption energy computed with PBE 

changes negligibly for CO2 and HCOOH (less than 0.1 eV), but for H atom the 

difference between two and five layers was 0.3 eV, and considered converged at 

four-layer. All adsorption energies of H atom computed with PBE were close to 

literature values, which were in between −2.01 eV301 to −2.31 eV,300 depending 

on the surface coverage and computational details apart from the functional 

employed.  

The adsorption energy for CO2, HCOOH and H atom were also computed with 

PBE+U,324 with U = 4.0 eV.137 The difference between PBE with and without U 

for CO2 and HCOOH were considerably small (0.07 eV and 0.12 eV 

respectively). For H atom, this difference (0.2 eV) was similar to those observed 

in the literatures,301 but the value for +U computation was ~0.3 eV larger than 

some literature values (~ −2.30 eV).300,301  
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Figure A6.1 Dependence of reaction energy (eV) on slab thickness. 

 

Table A6.1 Adsorption energies (eV) of CO2, HCOOH and H on anatase(101) 
slab with 2 to 6 layers, computed with PBE. Numbers in bracket are computed 
with in PBE+U. 

Number of layers EAd of CO2 / eV EAd of HCOOH / eV EAd of H / eV 

2 −0.14 −0.41 −2.10 

3 −0.14 −0.45 −2.27  

4 −0.14 −0.44 −2.35  

5 −0.14 (−0.21) −0.46 (−0.58) −2.40 (−2.61) 

6 −0.15 −0.48 −2.43 
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A6.2 Adsorption geometries of intermediates and transition states 

in the carbene pathway 

Fig. A6.2 shows the adsorption geometries of the intermediates and transition 

states in our computed carbene pathway (Fig. 6.1). ‘TS’ means transition states. 
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Figure A6.2 Adsorption geometries of the reaction intermediates and transition 
states in our computed carbene pathway.  
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A6.3 Adsorption geometries of intermediates in the formaldehyde 
pathway 
Fig. A6.3 shows the adsorption geometries of the intermediates in the carbene 

pathway (Fig. 6.4(Top)). ‘TS’ means transition states. 
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Figure A6.3 Adsorption geometries of the reaction intermediates in our 
computed formaldehyde pathway.  

 

A6.4 Adsorption geometries of intermediates in the glyoxal 

pathway 

Fig. A6.4 shows the adsorption geometries of the intermediates in the carbene 

pathway (Fig. 6.5(Top)). ‘TS’ means transition states. 
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Figure A6.4 Adsorption geometries of the reaction intermediates in our 
computed glyoxal pathway.  
 

A6.5 Effect of slab thickness on the identification of the most 

favorable mechanism   

Our main objective in this study was to identify the most favorable mechanism 

by comparing three proposed mechanisms, as illustrated in Fig. 6.6 in section 6.5. 

As shown in Fig. A6.1 the reaction energy changed with the slab thickness, it was 

therefore deemed necessary to check if the formaldehyde pathway remained as 

the most favourable mechanism when thicker slab was employed.  

Fig. A6.5 shows Fig. 6.6 in section 6.5 constructed with 5-layer-slab 

calculations. A comparison between the Fig. A6.5 and Fig. 6.6 in section 6.5 

shows that the highest-energy intermediate in each pathway remained unchanged, 

and we would expect the formaldehyde pathway remained as the most favorable 
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pathway. In both cases, H2CO (4th H transfer, blue) was a favorable ‘stepping 

stone’ for CO in the carbene pathway (2nd H transfer, red) and the HCO in the 

glyoxal pathway (1.5th H transfer, green).  

 

 

Figure A6.5 Modified Fig. 6.6 in section 6.5, constructed with computations of 
intermediates based on a 5-layer slab. The intermediates proposed in experiments 
were labeled in black, while intermediates labeled in blue were suggested in this 
study.  
 

On the other hand, some differences in reaction energies were observed 

between the two profiles, which were mostly originated from the difference in 

the adsorption energy of H atom. For instance, the reaction energy of CO2 to CO 

(2nd H transfer, red) had ~ 0.5 eV difference. This was similar to the example of 

HCOOH given in section A6.1, where the difference in the adsorption energy of 

H atom between two-layer and five-layer slab was 0.3 eV for one H atom (0.6 eV 

in this case due to two H atoms involved). The reaction energy difference in the 

two profiles for CO2 to CH4 was ~2.2 eV, which was also close to the 

accumulated difference of 2.4 eV (due to the requirement of 8 H atoms). As 

discussed, our adsorption energies of H atom with different slab thickness were 

close to the range of literature values observed (~-2 eV to ~-2.30 eV). Accurate 
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reaction energies were therefore difficult to be determined, due to the uncertainty 

contained within the reported values of adsorption energy of H atom, which was 

subject to the computational method and details, as well as surface coverage. 
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Chapter 7  Conclusion 
In this work we attempted to aid the design of new materials in DSSCs and 

photo-catalytic reduction of CO2, by specifically studying elementary processes 

(Chapter 3), providing predictive tools (Chapter 4) and testing hypotheses 

(Chapter 5 and 6). All attempts were based primarily on electronic structure 

calculations, but in conjunction with various strategies that were philosophically 

distinctive, such as statistical and physical modeling. One reason for the 

employing different strategies was that the technological statuses of the explored 

solar energy technologies were different, and a single strategy was not suitable. 

For p-type DSSCs, the device is currently under-developed, with low PCE that 

is far from other commercialized photo-voltaic systems, and would also hinder 

the development of tandem DSSCs. The hole recombination at the 

semiconductor-dye interface of this type of device is deemed one of the main 

causes for the low PCE, and the reason for such process being much faster than 

the analogous recombination in relatively efficient n-type DSSCs is not known. 

Non-adiabatic charge transfer theories were used to evaluate the hole injection 

and recombination rates at the NiO-C343 interface, with the prime intention to 

understand the fast interfacial recombination in p-type DSSCs in chapter 3. It has 

been shown that the difference in the Franck-Condon factor for the two types of 

recombination was the main reason for the difference in the reaction rates. On the 

basis of this analysis it was therefore suggested that increasing the reduction 

potential and/or reducing reorganization energy of dyes should alleviate 

recombination. An area of this work that can be improved would be the modeling 

of the electronic structure of the surface. Our computation of the transfer rates 

rely on the introduction of experimental parameters, and it would be desirable if 
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a more accurate electronic structure can be obtained and reduce or even eliminate 

this dependence. A possibility would be to use higher level of theory such as the 

GW approach.147,148  

For n-type DSSCs, the understanding of charge dynamics in the device is 

better in comparison to the p-type device. Simple physical models are in place 

and applied, and further unknown physical principles are likely to be unraveled 

with advanced models, which may be dependent on the availability of advanced 

computational power. On the other hand, many dyes have been attempted but the 

research progress in terms of PCE is slow. A method that allows quick estimation 

of the PCE of a hypothetical dye before time-consuming synthesis to avoid 

wasteful attempts would be desirable. We have adopted a QSAR-like statistical 

modeling approach to create a tool for this purpose. As such, given the 

reorganization energy and free energy change of dye oxidation of a hypothetical 

dye, it is possible to predict the probability of this dye achieving PCE over a 

certain threshold. This work can be extended further by considering other 

families of dyes in terms of anchoring groups and/or electrolyte, or possibly 

improved by considering a larger dataset or a different set of descriptors. In 

addition, a common design philosophy for dyes, the D-π-A scheme, has not been 

formally questioned. We have tested the efficacy of such design scheme by 

observing the correlation between some quantified measures for D-π-A strength 

and PCE with a large sample of 116 dyes, but no correlation was found. Such 

statistical study has demonstrated how statistics can be used to test postulation 

based on physical understanding.  

For photo-catalytic reduction of CO2 to form methane, the design of new 

catalyst is largely based on trial-and-error, and the molecular reaction mechanism, 

and therefore the rate-limiting step, is not clearly known. Since competing 
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proposed reaction mechanisms exist, it is important to first identify the most 

favorable pathway before any further attempts of in-depth understanding on the 

origin of the rate-limiting step. With this objective we have therefore compared 

the thermodynamic landscapes of three proposed reaction mechanisms, 

constructed with the DFT total energy of relevant reaction intermediates. The 

most favorable pathway was identified as the formaldehyde pathway. This work 

can be improved by incorporating solvent effects101,325 and the impact of defects 

such as oxygen vacancies on the reaction mechanism. 

  In terms of technological aspects, only around 5% of PCE improvement was 

seen in the last 25 years for n-type DSSCs and therefore it seems reasonable to 

consider devoting more efforts into tandem cells for further PCE advancement. 

As discussed, improving p-type devices would be crucial for the realization of 

efficient tandem cells. An area that has not been explored theoretically was the 

hole recombination at the electrolyte-semiconductor interface, which was another 

important limiting factor for high PCE.208,326 It appears that both NiO326 and the 

dye-electrolyte interaction327 can catalyze this process. The recombination theory 

introduced in this thesis can be adopted to study also the recombination at the 

electrolyte-semiconductor interface.88  

Research progress for DSSCs must be accelerated in order to compete with the 

fast-growing perovskite solar cells, which at the moment suffer from stability 

issues328 but can be low-cost and much more efficient than DSSCs.329,330 To 

accelerate the research progress, it is perhaps important to develop first-principle 

tools that allow prediction of the PCE of DSSCs with hypothetical materials 

within short time. Apart from the example given in Chapter 4, the PCE may be 

predicted by reproducing the experimentally measured parameters that enter into 

Eq. 1.1, such as the short-circuit current density,331 but both models are not the 
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most accurate.  

The research progress of photo-catalysis is also considerably slow. Perhaps the 

most important aspect would be to establish a common characterization of the 

performance of catalytic systems, measured under similar well-defined 

conditions c.f. DSSCs. This is highly challenging since the performance of a 

catalyst cannot be characterized by contemplating only a single aspect, e.g. 

photo-response of the catalyst or the catalyzing power of the catalyst, and the 

effects of various interactions in the reaction system are largely unknown. This in 

turn can be an opportunity for theory since computations are not affected by the 

reaction environment. Possibly, a theoretical ranking of catalysts can be produced 

based on a selected predictor for catalysts’ performance, and comparing this 

ranking with existing experimental ranking based on various efficiency 

measures13,106 may reveal important factors that cause matching or mismatching. 

Recently a descriptor model for metal oxide catalysts has been developed, which 

was based on radial distribution function as a descriptor.332 Alternative descriptor 

can be, for instance, adsorption energy.113 

While DFT has demonstrated its ability to provide potential energy surfaces 

for complementing the understanding of photo-catalytic reaction mechanism, this 

approach is time-consuming, especially when the reaction is complex and 

transition state search is required. This approach would also be cumbersome if 

one considers studying mechanism on different surfaces or with different 

solvents. A simpler method to test mechanistic hypotheses would be desirable 

when a large amount of them exist, and ideally this method would avoid 

expensive transition state searches. Establishing linear free-energy relationships, 

such as the BEP relations, to allow estimation of activation energy can perhaps 

be the first step towards a simpler method that requires only the energy of the 
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intermediates. The number of calculations may be further reduced by employing 

scaling relationships for adsorption energy.113  

In conclusion, this thesis serves as an example of using mixed strategies on the 

basis of electronic structure calculations for aiding the design of new materials in 

solar energy technologies, demonstrating that theories and computational 

chemistry can be flexibly applied in the development of these technologies. 

Researchers should contemplate different strategies instead of deciding 

intuitively before performing experiments; as demonstrated in this thesis, even in 

a subject dominated by physical modeling, statistical studies can be useful to, for 

example, test hypotheses and make predictions. We believe statistical studies 

similar to those presented in chapter 4 and 5 can be particularly helpful to shed 

light on future research direction when sufficient amount of suitable data is 

available. The different theories and methods presented in this work, such as the 

charge transfer theories and statistical methodologies, are all transferrable, and 

we will be excited to see these methods being adapted for future studies. 
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