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Abstract

Three types of actuators, i.e., oscillating walls, Lorentz force actuators and DBD

plasma actuators, were used to actively control turbulent boundary layer for the tur-

bulent skin-friction drag reduction with Direct Numerical Simulations. The main

object is to understand drag reduction mechanism in simple spanwise wall oscillation

case (Jung et al., 1992), then implement the control using more practical Lorentz

force actuators and plasma actuators. A large amount of 40 ± 2%, 30 ± 2% and

20± 2% drag reduction was observed at Reτ = 200 turbulent channel for oscillating

walls, Lorentz force actuators and plasma actuators, respectively. Different configu-

rations for Lorentz force and plasma actuators were intensively studied, with a new

configuration proposed for DBD plasma actuators. The present study suggests a

good prospective of skin-friction drag reduction by using Lorentz force actuators for

ocean transportation, and DBD plasma actuators for land and air transportation.

However, no net energy saving was obtained for both actuators considering the fluid

power required for flow control, and this situation was even worse if the electric

efficiency of the actuators was accounted for. For all three types of actuators, the

interaction between the actuators and the near wall turbulent structure is presented

using ensemble averaged method. DNS control cases were also performed at moder-

ate Reynolds numbers, i.e., Reτ = 800 and 1600, to understand the role of recently

discovered very large scale motions (VLSMs). The result suggests that the control

of the VLSMs in the outer region is necessary for maximising drag reduction at high

Reynolds number turbulent flows.
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Chapter 1

Introduction

The fluid flow settles down at two states, i.e., laminar or turbulent, depending

on whether a non-dimensionalised number, known as Reynolds number (Reynolds,

1883), is below or above a critical value, Recr. One big difference between the

two flow states is the higher skin-friction associated with turbulent state at the

same mass flow rate. This is due to the thin turbulent boundary layer (Prandtl,

1925), where the streamwise velocity profile is much steeper. If we can reduce the

turbulent drag, it will bring a huge economical and environmental impact. “A 1%

reduction in drag on a jet airliner in cruise conditions translates roughly to a 0.75%

reduction in fuel consumption, implying a potential reduction in emitted CO2 of

nine million tonnes per 1% drag reduction” (Leschziner et al., 2011). “A 1% drag

decrease corresponds approximately, to a 5 ∼ 10% increase in payload” (Bushnell,

2003).

There are two types of drags in turbulent flow, i.e., skin-friction drag due

to viscosity, and pressure drag due to interference, roughness, lift, shock wave. The

latter drag is important when the turbulent flow has regions with flow separations.

For the modern streamline airliner in cruising condition, about 60% of the total drag

comes from the skin-friction drag. Many different methods have been proposed to

reduce turbulent skin-friction. Based on whether the control needs energy input or

not, they can be categorized into passive and active controls. Active drag reduction

methods can achieve higher drag reduction if the energy input is not considered,

thus they are more attractive. For instance, spanwise wall oscillation can achieve

as much as 40% drag reduction at low Reynolds number (Jung et al., 1992; Baron

and Quadrio, 1996; Choi and Graham, 1998). The drag reduction achievable by

passive control, such as riblets, is typically around 7 ∼ 8% (Garćıa-Mayoral and

Jiménez, 2011a,b). All the drag reduction control methods also suffer from their
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own drawbacks. For example, the space size for riblets and the hole size for blowing

and suction are scaled in wall units. At flight Reynolds number, the viscous length

scale is extremely small, O(1µm) (see appendix A for the estimation), and this

makes the design of these control devices very difficult. Moreover, the riblet valley

and the blowing and suction holes can be easily filled by dusts in such a small scale,

which can significantly deteriorate the control efficiency.

Spanwise wall oscillation is a prospective drag reduction control method,

because it does not need small scale surface sensors or actuators on the wall. Some

smart wall surfaces are under design in the laboratory (Gatti et al., 2015a; Bird

et al., 2015). However, for an optimal drag reduction by spanwise wall oscillation,

the wall needs to oscillate at a very high frequency, and this is still a challenge

for the mechanical structure. Thanks to the electrical devices, like Lorentz force

actuators and plasma actuators, they bring an alternative way to create spanwise

wall oscillation. Lorentz force actuators requires the fluid to be electric conductive,

thus they are ideal for transportations in the ocean; while plasma actuators need

to ionize the fluid first, thus they are suitable for transportation on the land and in

the air.

Even though some experiments and numerical simulations have been con-

ducted to investigate the drag reduction by using Lorentz force actuators and plasma

actuators (Berger et al., 2000; Choi et al., 2011), there are two questions remaining

unclear: 1) What is the whole picture of drag reduction by travelling wave of Lorentz

force in a three dimensional wavenumber-frequency space, i.e., kx− kz −ω? 2) How

should we configure the plasma actuators to achieve skin-friction drag reduction?

These are the focus of the current work in order to take spanwise wall oscillation

drag reduction control from laboratory to engineering applications. Apart from the

implication, another two questions associated with spanwise wall oscillation itself are

also needed to be addressed: 1) What is the drag reduction mechanism for spanwise

wall oscillation? 2) Why does the drag reduction deteriorate when the Reynolds

number goes high? A better understanding about these two questions is directly

linked to whether we can successfully apply the skin-friction drag reduction control

by Lorentz force and plasma actuators to our ships, land vehicles and aircrafts.

With these four key questions in mind, the thesis is organised as follows:

Chapter 2 is a literature survey about the current state-of-the-art in turbulent flow

and its skin-friction drag reduction controls. Chapter 3 introduces the numerical

scheme and analysis methods used for the DNS datasets. Chapter 4 focuses on

the drag reduction mechanism of spanwise wall oscillation from structures’ point of

view. Chapter 5 is a systematic study of turbulent skin-friction drag reduction by
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Lorentz force actuators and explores the whole drag reduction picture in a three

dimensional parameter space, i.e., kx − kz − ω for a variety of travelling waves.

Chapter 6 explores six different configurations of plasma actuators for turbulent

skin-friction drag reduction, and demonstrates the successful way to achieve skin-

friction drag reduction. Chapter 7 studies the Reynolds number effect in spanwise

wall oscillation at the highest Reynolds number, i.e., Reτ = 1600, with a particular

emphasize on the role of the very large scale motions. Chapter 8 summarises the

works done in this study and gives the suggestions for the future works.
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Chapter 2

Literature Review

2.1 Near wall turbulence dynamics

2.1.1 The law of wall

Channel, pipe and boundary layer flows are three canonical wall bounded turbulent

flows. They are comparable to each other at the same Reynolds number when

the proper flow characteristic scales are chosen for reference. Based on the law

of the wall, wall turbulent flow can be divided into an inner region and an outer

region. In the inner region, viscosity dominates, so the flow is scaled in the viscous

length scale, i.e., δν = ν/uτ , where, uτ is the friction velocity. This layer contains

a viscous sublayer (y+ < 5, superscript + indicates the scaling using wall units)

and a buffer layer 5 < y+ < 30. The outer region is dominated by the inertia of

the flow, and the effect of the viscosity is negligible, thus the flow is scaled in the

outer unit, δ (half channel height h, pipe radius R, or boundary layer thickness

δ99) (Von Kárman, 1930). The overlap region between the inner and the outer

regions needs to satisfy both the scaling laws, and this leads the streamwise mean

velocity profile to be logarithmic, i.e., u+ = 1
κ ln y++B, where κ is the von Kármán

constant and B is another constant. For the turbulent boundary layer, there is a

wake region beyond the logarithmic region, and the velocity-defect law is applied,

i.e., U∞−U
uτ

= 1
κ{− ln

(y
δ

)
+2Π

[
1− sin2

(
π
2
y
δ

)]
}, where U∞ is the free stream velocity,

and Π is the wake strength parameter (Coles, 1956).

2.1.2 Near wall coherent structures

After Kline et al. (1967) found the near wall high- and low-speed streaks (figure 2.1),

the structures’ view of the turbulent flow started to form. Kline et al. (1967) found

the average spanwise spacing of the streaks was fixed in wall units, i.e., λ+z ≈ 100,
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which was also confirmed in the later DNS study (Kim et al., 1987). These near wall

streaks were found to be responsible for the production of the new turbulence and

the transport of the turbulence within the boundary layer. This effect was stud-

ied through the quadrant analysis of the streamwise Reynolds shear stress, −u′v′
by Lu and Willmarth (1973). They divided −u′v′ into four quadrant events based

on the sign of u′ and v′, and showed that the ejection event (Q2) contributes to

77% of −u′v′. Bogard and Tiederman (1986) compared different burst-detection

algorithms, and found that the quadrant technique was the most effective. Black-

welder and Eckelmann (1979) showed that these bursting phenomena were associ-

ated with pairs of counter-rotating quasi-streamwise vortices in the boundary layer

based on the hot-film measured statistics. Head and Bandyopadhyay (1981) used

the smoke visualisation to show the vortical structures in different regions of the tur-

bulent boundary layer. They identified horseshoe vortices or vortex loops in the low

Reynolds number region and vortex pairs or hairpins in the high Reynolds number

region. More varieties of the vortical structures were named in the literature, such

as, hairpin eddies, pancake eddies, surfboard eddies, typical eddies, vortex rings,

mushroom eddies, arrowhead eddies (Jeong et al., 1997). Generally, they all refer

to the same type of coherent structure with different forms. A nice review about

these coherent structures was given by Robinson (1991). Unfortunately, there is no

such a general definition of the coherent structure. Below was one used by Robinson

(1991):

“It is a three-dimensional region of the flow over which at least one fundamen-

tal flow variable (velocity component, density, temperature, etc.) exhibits significant

correlation with itself or with another variable over a range of space and/or time

that is significantly larger than the smallest scales of the flow.”

DNS provides an ideal tool to study the coherent structures in the turbu-

lent flow, due to the availability of the high accurate 3D flow fields (Kim et al.,

1987). With the visualisation technique, Zhou et al. (1999) successfully identified

the symmetrical hairpin type structure, which had two legs, connecting with the

head through the two necks. Jeong et al. (1997) proposed an eduction method to

get the ensemble averaged hairpin structure through “the forest of hairpins” (Wu

and Moin, 2009) in a fully developed turbulent channel flow. And they identified

that the general shape of the coherent structures in the near wall region (y+ < 60)

was two highly elongated counter-rotating quasi-streamwise vortices, which were

reminiscent of the legs of the hairpin structures. Jeong et al. (1997) showed that

the positive (clockwise rotating) and the negative (anti-clockwise rotating) quasi-

streamwise vortices were inclined in the xy plan with an angle of 9◦ and tilted in
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Figure 2.1: Near wall streaks at y+ = 9.6 visualised by hydrogen bubbles, taken
from Kline et al. (1967).

the xz plane with angles of ∓4◦, respectively. The positive and the negative quasi-

streamwise vortices had a diameter of around 25 in wall units, and extended to

around 200 wall units in length. Both of them generated the sweep on one side

and the ejection on the other side, and they were stagger arranged in the flow, thus

forming very long high- and low-speed streaks, typically 1000 in wall units (figure

2.2(a)). This conceptual model is consistent with the exact coherent structure (or

the travelling wave solution to the Navier-Stokes equations (Waleffe, 2001) shown

in figure 2.2(b)), and it shed some light on many turbulent phenomena, such as

the length scale of the low-speed streaks, the quadrant events of the streamwise

Reynolds shear stress, the energy transferring in the buffer layer etc. (Jeong et al.,

1997). The quasi-streamwise vortices acted as engines in the buffer layer to extract

energy from the mean flow and dissipate it close to the wall. Kravchenko et al.

(1993), Orlandi and Jiménez (1994), Solbakken and Andersson (2004) and Ge et al.

(2011) showed that the quasi-streamwise vortices were the origin of the high skin-

friction in the turbulent boundary layer. Adrian et al. (2000) found that 2 ∼ 3

individual hairpin structures could form hairpin packets. This “bottom-up” model

gave a nice explanation about the turbulent bulge (Head and Bandyopadhyay, 1981)

and the uniform momentum zone (Meinhart and Adrian, 1995) in the outer region.

2.1.3 Very large scales motions

The very large scale motions (VLSMs) are the third scale apart from the near wall

streaks (λ+x ≈ O(103)) and the turbulent bulges (or large scale motions (LSMs),

λx ≈ O(2δ ∼ 3δ)). The VLSMs can typically reach λx ≈ 10δ long. They were
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(a) (b)

Figure 2.2: (a) Ensemble averaged coherent structures (Jeong et al., 1997); and (b)
exact coherent structures (Waleffe, 2001).

first observed by Kim and Adrian (1999) in a turbulent pipe flow with the Reynolds

number, Reτ = 3175. A bi-mode patten was found in the 1D pre-multiplied energy

spectrum for the streamwise velocity fluctuation. The peak in the high wavenumber

end (also known as an inner peak) was well understood, which was associated with

the near wall cycle; while the peak in the low wavenumber end (also known as an

outer peak) was associated with much larger length scales. Kim and Adrian (1999)

found that the longest VLSMs exceeded 14 pipe radii. Jiménez (1998) studied the

spectra of the Reτ = 590 DNS channel data, and termed the VLSMs as “global

modes”. Hutchins and Marusic (2007b) also reported as long as 20 boundary layer

thickness structures in their high Reynolds number wind tunnel up to Reτ = 19960.

These structures were termed as “superstructures” by the authors. Two new fea-

tures were reported about the superstructures: 1) the superstructures had a mean-

dering feature, which made the real length of these structures even longer; 2) the

superstructures had footprints in the near wall region, and tended to influence the

near wall cycle. Hutchins and Marusic (2007b) offered a clear explanation about

the rising of the near wall peak of the streamwise velocity fluctuation intensity for

the first time. Monty et al. (2007), Monty et al. (2009) compared the VLSMs in

the internal flows, i .e., channel and pipe, and the superstructure in the external

flow, i .e., boundary layer flow at the similar Reynolds number, Reτ ≈ 3000, and

argued that the VLSMs and the superstructures were the same type of structure,

but due to the geometry difference, the VLSMs appeared further away from the wall

and contained more energy in internal flows than those in the external flows. Lee

and Sung (2013) compared the VLSMs in the turbulent pipe and boundary layer

flows, and showed that the VLSMs in the pipe flow in average were 1.5 ∼ 3.0 times

longer than those in the boundary layer flow. Guala et al. (2006) and Balakumar

and Adrian (2007) found that the structures (λx > 3R) contained not only half of
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the streamwise fluctuation energy, but also more than half of the Reynolds shear

stress for the pipe flow up to Reτ = 7959. In the near wall region, structures of

the size λx ≈ R were responsible for majority of the Reynolds shear stress; while

in the logarithmic region, structures with λx ≈ 5R were responsible for majority of

the Reynolds shear stress.

2.1.4 Inner-outer interaction

At high Reynolds numbers, the VLSMs have strong footprints in the near wall region

(Abe et al., 2004; Hutchins and Marusic, 2007b; Bernardini et al., 2014; Agostini

and Leschziner, 2014). Hutchins and Marusic (2007a) first noticed a high correla-

tion between the streamwise velocity signal in the near wall small scales and that in

the outer large scales for the Reτ = 7300 boundary layer. The authors termed this

as an amplitude modulation from the large scales to the small scales (“top-down

effect”). Mathis et al. (2009) defined a one-point amplitude modulation coefficient,

CAM to quantify the amplitude modulation effect from the VLSMs to the near wall

small scales. However, Mathis et al. (2011b) later showed that there was a simi-

larity between CAM and the term 3uLu
2
S in the skewness. To solve this dilemma,

Bernardini and Pirozzoli (2011) proposed a two-point amplitude modulation coef-

ficient, C2p
AM to quantify the amplitude modulation effect from the VLSMs on the

near wall small scales. In the 2D plot for C2p
AM , a second outer peak was formed at

the higher Reynolds number, which was the indication of the amplitude modulation

effect. This two-point amplitude modulation coefficient was used by Pirozzoli et al.

(2011), Ahn et al. (2013) and Nadeem et al. (2015) for the VLSMs study. Based

on the superimposition and the amplitude modulation effect, Marusic et al. (2010)

and Mathis et al. (2011a) proposed a predictive model to estimate the near wall

velocity signal by only measuring the velocity signal in the outer region (figure 2.3).

The predicted result agreed well with the measured data at Reτ = 2800, 7300, 19000

for up to the fifth order moment of turbulent channel, pipe and boundary layer

(Mathis et al., 2011a). Similarly, Mathis et al. (2013) further developed the pre-

dictive model to predict the wall shear stress fluctuation. However, Agostini and

Leschziner (2014) noticed that the modulation effect for the small scales differed

greatly under the positive VLSMs region and the negative VLSMs region. One

particular argument was that the near wall velocity fluctuation should be scaled in

the local wall units, rather than the global wall units, which was also supported by

Jiménez (2012) and Hwang (2013). Hwang (2013) showed that the near wall peak

of the streamwise velocity fluctuation was scaled very well in the global wall units

in a narrow channel, where the wide outer motions were artificially removed by the
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domain size restriction. Agostini and Leschziner (2014) and Agostini and Leschziner

(2015) redefined the universal near wall signal with the consideration of the local

effect from the VLSMs, and managed to collapse the probability density functions

for all the three velocity components of the universal field.

Figure 2.3: Inner-outer interaction, taken from Marusic et al. (2010).

Talluru et al. (2014) found that the VLSMs not only just modulated the

amplitude of the near wall small scales in the streamwise velocity component, but

also in the spanwise and wall normal velocity components. The modulation manner

was very similar to that reported by Hutchins and Marusic (2007a). Ganapathisub-

ramani et al. (2012) reported the frequency modulation from the large scales to the

small scales as well: under the positive large scales, the small scales had a higher

frequency; while under the negative large scales, the small scales had a lower fre-

quency. The authors also identified a phase modulation, i.e., a phase lag between

the envelop of the small scales and the large scales. These frequency and phase

modulations were further studied by Jacobi and McKeon (2013) and Baars et al.

(2015).

A bigger picture about the inner-outer structure interaction was given by Toh

and Itano (2005) from a streamwise confined channel simulation at Reτ = 349. A

“co-supporting cycle” was conjugated that “the large scale structures are generated

by the collective behaviour of near wall structures and that the generation of the

latter is in turn enhanced by the large scale structures”.

2.1.5 Self-sustained process

There is a widely accepted regeneration cycle in the near wall region. Jiménez and

Moin (1991) performed the DNS in a minimum size channel to study the dynam-

ics of the near wall streaks and the quasi-streamwise vortices, and found that the
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streaks and the quasi-streamwise vortices could still exist if the box is wider than

the typical spanwise spacing of the near wall streaks, i.e., λ+z ≈ 100, and the tur-

bulent statistics in the near wall region calculated from the minimum channel unit

was reasonably accurate. However, for the box size narrower than 100 in wall unit,

the near wall dynamics could not sustain. Jiménez and Pinelli (1999) explicitly

filtered the outer motions in a minimum channel box and showed that the near wall

structures could still survive. This clearly demonstrated a cycle in the near wall

region. Different mechanisms were used to explain the near wall cycle, for example,

the streak instability (Swearingen and Blackwelder, 1987; Hamilton et al., 1995),

the parent-offspring of hairpin structures (Zhou et al., 1999). A detailed review was

given by Panton (2001).

However, for the regeneration of the outer VLSMs, active debates are still

going on. When Kim and Adrian (1999) first observed the VLSMs, they conjec-

tured that the VLSMs was the consequence of the gathering of the hairpin packets

(so called “bottom-up” effect). Lee et al. (2014) defined “preserving”, “merging”,

“breaking”, “shortening”, “creating” and “extincting” six events in a turbulent

boundary layer and showed that “merging” event was dominant in the outer re-

gion. From the auto-correlation of the streamwise velocity at various wall normal

location in the pipe, Bailey et al. (2008) and Bailey and Smits (2010) found that

the large scale motions (LSMs) were detached from the wall in the outer region and

attached from the wall in the logarithmic region, thus it was conjectured that the

VLSMs should be formed from the detached LSMs, rather than the attached one.

Iwamoto et al. (2004) artificially blocked the energy transfer from the mean flow

to the large scales with λz > 0.6h in a Reτ = 1160 numerical channel, and showed

that the VLSMs could not be formed. Thus, they argued that the small scales did

not agglomerate autonomously to form the VLSMs, but became clustered with the

advective effect of the low-speed large scale structures.

In the other end, Hwang and Cossu (2010) quenched the near wall small scale

structures by using an elevated Smagorinsky constant in the LES channel flow, and

found that the large scale structures could still be self-sustained. However, if the

box size was reduced to be shorter than 3h long, or narrower than 1.5h wide, then

the large scale self-sustained mechanism was not active. Using the same technique,

Hwang and Cossu (2011) and Hwang (2015) further showed that there was a full

range of scales that could be self-sustained in the channel flow. Similarly, Mizuno

and Jiménez (2013) replaced the wall boundary with an off-wall boundary condi-

tion, and found that the buffer layer did not exist, but the logarithmic region and

other turbulent statistics were predicted reasonably well, which supported that the
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dynamics of the VLSMs was independent from the near wall small scale structures.

Analogous to the minimal flow unit for the buffer layer, Flores and Jiménez (2010)

studied the minimum channel for the large scale structures in the logarithmic layer,

and showed the turbulent structures were “healthy” from the wall to the layer whose

thickness scaled with the width of channel.

2.2 3D turbulent boundary layer

In reality, the turbulent boundary layer flow can be three dimensional subjected to

the spanwise pressure gradient, the surface curvature or the rotation, which means

the mean velocity changes the direction across the wall normal direction (see figure

2.4). Understanding 3D turbulent boundary layer is crucial for developing accurate

turbulent models (Coleman et al., 1996) and controlling the turbulence.

Figure 2.4: A schematic of the three dimensional turbulent boundary layers induced
by (a) spanwise pressure gradient and (b) rotating disk, taken from Littel and Eaton
(1994).

Bradshaw and Pontikos (1985) investigated the 3D turbulent boundary layer

on a swept wing. The main effort was spent on measuring the phase lag between

the shear stress angle, γτ and the mean velocity gradient angle, γg, and also the

variation of the structure parameter, a1, because the lag between γτ and γg could

not be predicted by the isotropic eddy viscosity models. The data confirmed that a1

decreased in the 3D turbulent boundary layer, which eventually led to the discovery

of the spanwise wall oscillation for the turbulent skin-friction control (Jung et al.,

1992). Moin et al. (1990) studied the 3D turbulent boundary layer in a numerical

channel with the spanwise pressure gradient and showed a decrease in the turbulent

production and an increase in the turbulent dissipation, thus the decrease in the

turbulent kinetic energy. Eaton (1995) used an upstream facing wedge to produce

the spanwise pressure gradient and generated a 3D turbulent boundary layer in
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the experiment. They showed that the two types of quasi-streamwise vortices were

affected very differently by the spanwise mean flow, one of which was strongly inhib-

ited. This vortex dynamics was intensively analysed by Sendstad and Moin (1992).

Littel and Eaton (1994) conditioned the streamwise velocity fluctuation based on

the strong sweep and ejection events, and found a strong asymmetry in the correla-

tion profiles, thus they argued that the two types of quasi-streamwise vortices were

modulated differently in the flow.

Le et al. (2000) imposed the transverse wall motion in a numerical channel

to create a 3D turbulent boundary layer. The authors observed that the wall shear

stress experienced three stages: the early reduction, the later reduction and the

recovery. During the recovery stage, the lag angle between γτ and γg became negli-

gible. The asymmetry in the conditioned strong quadrant events was also observed,

which again suggested that the positive (clockwise rotating) and the negative (anti-

clockwise rotating) quasi-streamwise vortices associated with the sweep and ejection

were modulated differently in a 3D turbulent boundary layer. Kang et al. (1998)

studied the same rotating disk experiment, and also found the asymmetry in both

the spanwise velocity correlation coefficient and the conditioned strong quadrant

events. Coleman et al. (2000) used a domain deformation method to create a 3D

turbulent boundary layer. Holstad et al. (2010) and Holstad et al. (2012) studied

the three dimensionality of the Couette-Poiseuille flow. The ensemble averaged λ2

structures were found to be asymmetric compared to the 2D turbulent boundary

layer case, thus the streamwise Reynolds shear stress was transferred to the span-

wise and the wall normal components. The authors argued that the staggered λ2

structure model should also hold in the 3D turbulent boundary layer. The ensemble

averaged λ2 structures were used to analyse the 3D turbulent boundary layer in a

concentric annulus with a rotating inner cylinder by Jung and Sung (2006). Despite

the slight curvature effect, the positive and the negative λ2 structures showed a

similar asymmetry as those in the flat plate 3D turbulent boundary layer.

2.3 Turbulent drag reduction control

Various drag reduction control methods have been developed. In general, they can

be divided into two types depending on whether the control needs energy input or

not: the passive controls (no energy input) and the active controls (with energy

input). Typical passive controls include riblets (Choi et al., 1993; Garćıa-Mayoral

and Jiménez, 2011b), random wall roughness (Sirovich and Karlsson, 1997), super-

hydrophobic surface texture (Jelly et al., 2014; Lee et al., 2015), vortex generators
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(Hutchins and Choi, 2001), polymers (Graham, 2014). Typical active controls in-

clude blowing and suction (Choi and Moin, 1994; Chung and Talha, 2011; Deng

et al., 2014, 2015; Bai et al., 2014; Kametani et al., 2015), wall deformation (Endo

et al., 2000; Tamano and Itoh, 2012), spanwise wall oscillation (Jung et al., 1992;

Gatti et al., 2015a), rotating disk (Ricco and Hahn, 2013; Wise et al., 2014), arti-

ficial forcing (Handler et al., 1993; Satake and Kasagi, 1996; Schoppa and Hussain,

1998; Lee and Kim, 2002; Iwamoto et al., 2005; Xu et al., 2007; Fukagata et al.,

2010).

One particular popular skin-friction control scheme is travelling wave. The

wave can be generated in various ways, and travels in the streamwise, the spanwise or

the oblique directions. A summary of all the travelling wave forms in the literature

is given in table 2.1. All these skin-friction control methods can achieve a significant

amount of drag reduction. Some led to re-laminarisation (Mamori et al., 2014) or

even to sub-laminar state (Min et al., 2006; Xu et al., 2007).

Fukagata and Kasagi (2002) provided a powerful tool to analyse the skin-

friction contribution from the streamwise Reynolds shear stress. By triple integra-

tion of the streamwise momentum equation, the skin-friction was found to consist of

three parts: the laminar contribution; the turbulence contribution; and the contri-

bution due to the inhomogeneity, the unsteadiness and the body force. This revealed

that the turbulent skin-friction control was mainly to reduce the second part. To

quantify the drag reduction, the flow control was applied under either constant flow

rate (CFR) or constant pressure gradient (CPG). Under CFR condition, a drag

reduction corresponds to a decrease of the driven pressure gradient and also wall

shear stress; under CPG condition, the wall shear stress does not change, and a drag

reduction corresponds to an increase of the mass flow rate. Frohnapfel et al. (2012)

considered both the energy saving and the pumping time into the cost function, and

defined a constant pumping power (CPP) control, which might give larger benefit

in reality when the time cost was important.

2.3.1 Spanwise wall oscillation

Jung et al. (1992) and Akhavan et al. (1993) observed that 40% skin-friction drag

could be achieved in a numerical channel at Reτ = 180, when a spanwise oscillatory

crossflow or spanwise oscillating wall was imposed. For spanwise wall oscillation,

the control scheme is as following:

Ww = Aw sin(ωt) = Aw sin

(
2π

T
t

)
, (2.1)
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Table 2.1: Travelling wave forms in literature.

Wave form Formula Source

By blowing and suctions
Streamwise vw = Af cos(κxx− ωt) Lee et al. (2008)

Lieu et al. (2010)
Spanwise vw = Af cos(κzz − ωt) Bai et al. (2014)

By wall deformation
Streamwise ax = Aa cos(κxx− ωt) Nakanishi et al. (2012)
Spanwise az = Aa cos(κzz − ωt) Zhao et al. (2004)

Itoh et al. (2006)
Klumpp et al. (2011)

Tomiyama and Fukagata (2013)
Koh et al. (2015)

By wall motion
Streamwise ww = Aw sin(κxx− ωt) Quadrio et al. (2009)
Spanwise ww = Aw sin(κzz − ωt) Quadrio and Xie (2015)

By Lorentz force

Streamwise fz = Afe
−y/∆ sin (κxx− ωt) Huang et al. (2010)

fy = Afe
−y/∆ sin (κxx− ωt) Mamori et al. (2014)

Spanwise fz = Afe
−y/∆ sin (κzz − ωt) Du and Karniadakis (2000)

Du et al. (2002)

Bi-direction fz = Afe
−y/∆ sin (κxx+ κzz − ωt) Huang et al. (2014)

By plasma actuators
Spanwise - Whalley and Choi (2014)

Choi et al. (2011)

where Aw is the maximum wall velocity and ω (or T ) is the oscillation frequency

(or period). Or equivalently,

Ww = Dm cos(ωt) = Dm cos

(
2π

T
t

)
, (2.2)

where Dm (= 2Aw/ω) is the maximum wall displacement. The optimal wall oscil-

lation period was found to be T+
opt ≈ 100. Baron and Quadrio (1996) showed that

around 10% net energy saving was possible by spanwise wall oscillation, which was a

similar level to the passive drag reduction controls, such as riblets. And the authors

argued that the induced Stokes layer by spanwise wall oscillation displaced the high-

and low-speed streaks relative to the quasi-streamwise vortices, thus reducing the

generation of streamwise Reynolds shear stress. Similar amount of drag reduction
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was observed in a numerical pipe by Quadrio and Sibilla (2000). In a numerical

boundary layer flow, Lardeau and Leschziner (2013) found 25% drag reduction at

Reτ = 520, and the optimal oscillation period was at T+
opt = 80, lower than the

channel and pipe cases. A 36.8% drag reduction was found in a numerical bound-

ary layer with higher maximum spanwise wall velocity of A+
w = 18 (Yudhistira and

Skote, 2011). The drag reduction by the spanwise wall oscillation was confirmed

experimentally by Laadhari et al. (1994), Trujillo et al. (1997), Choi et al. (1998),

Bogard et al. (2000), Choi and Clayton (2001), Choi (2002), Di Cicca et al. (2002),

Ricco (2004) and Ricco and Wu (2004) for the flat plate wall and by Choi and

Graham (1998) for the circular pipe.

The two control parameters, i.e., the maximum wall velocity A+
w and the

oscillation frequency ω+ were intensively explored for a scaling law of the drag re-

duction. The drag reduction value was not simply scaled by the maximum wall

displacement D+
m nor the oscillation frequency ω+. Choi and Graham (1998) ex-

perimentally studied the drag reduction in a circular pipe at two Reynolds num-

bers, Reτ = 650 and 1000, and found that the maximum wall velocity A+
w gave

a better scaling than the oscillation frequency ω+. Choi et al. (2002) proposed a

combined number Vc with a thickness l+, an acceleration rate a+, the maximum

wall velocity A+
w , and the Reynolds number Reτ : Vc = a+l+/A+

wRe
−0.2
τ , and the

authors found that the drag reduction was scaled in a quadratic form of V +
c , i.e.,

DR = 1000V +2
c +50V +

c . Similarly, Quadrio and Ricco (2004) proposed a combined

parameter S+ = a+l+/A+
w without the consideration of the Reynolds number effect.

The authors found that the drag reduction was scaled linearly well with S+, when

the oscillation period was small, i.e., T+ < 150, which was also the accurate predic-

tion regime of the model-based approach by Moarref and Jovanović (2012). Ricco

and Quadrio (2008) further explored the parameter space T+−A+
w and T+−D+

m for

the drag reduction region and also for the net energy saving condition at T+ < 150,

where the linear scaling correlation is held.

Vodop’yanov et al. (2013) imposed riblets on the oscillation wall, and found

that the drag reduction effect was larger than the effect of either the spanwise

oscillation of a smooth wall or a stationary riblet surface, when each was used

separately. Mito and Kasagi (1998) generated the spanwise oscillation by the vertical

wall deformation, rather than the spanwise wall velocity. The authors observed that

the coherent structures were modulated significantly and the skin-friction fluctuated

around the mean value of the no control case, but no long term sustained drag

reduction was observed. Mishra and Skote (2015) used a square wave to replace the

sinusoidal wave in order to save the power input for the control, and 18% net energy
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saving was achieved. More generally, Cimarelli et al. (2013) considered 9 temporal

waveforms for the spanwise wall oscillation, and they found that the optimal wave

form depended on the control parameters. However, at the optimal amplitude and

oscillation frequency, the maximum net energy saving was achieved by a sinusoidal

wave.

To investigate the initial response by the spanwise wall oscillation, Quadrio

and Ricco (2003) studied the flow immediately after the wall started to oscillate.

They found that the spanwise Stokes layer was formed just after one oscillation

period, but the response of the skin-friction was much slower, and it depended on

the applied maximum spanwise wall velocity. The turbulent flow went through a

non-monotonic process to reach its new equilibrium state. Skote (2012) compared

the spatial and the temporal transient responses in a turbulent boundary layer

subjected to the spanwise wall oscillation. Up to the first 3/4 oscillation period, the

temporal transient response followed that of the spatial one very well by using a

convection velocity U +
c = 10. As in the channel case, the temporal response went

through a non-monotonic process, but this process was not observed in the spatial

response. This difference was explained to be caused by the pressure-strain term

in the turbulent budget. Xu and Huang (2005) investigated the turbulent budget

terms during the first two oscillation periods, and noticed a sustained attenuation

of the pressure-strain terms for the spanwise and the wall normal Reynolds stress

components, and this eventually led to the reduction of the streamwise normal

Reynolds stress u′u′ and the Reynolds shear stress u′v′.

The drag reduction mechanism has been partially understood, with different

models coexisted. The earliest one was that the spanwise wall oscillation generated

the Stokes layer, and it shifted the position of the low-speed streaks relative to the

quasi-streamwise vortices (Akhavan et al., 1993; Baron and Quadrio, 1996). Galio-

nis and Hall (2005) theoretically studied the unstable Görtler vortex on a concave

surface subjected to the spanwise wall oscillation. The growth rate of the most am-

plified Görtler vortex was found to be significantly reduced. Dhanak and Si (1999)

considered a single coherent quasi-streamwise vortex dipole in a spanwise oscillation

flow, and argued that the spanwise wall oscillation deformed the quasi-streamwise

vortices and increased the mixing of the high- and low-speed streaks, resulting in the

drag reduction. Negi et al. (2015) used a localized volume forcing to generate the

low-speed streaks in a laminar boundary layer, and studied the interaction between

the low-speed streaks and the spanwise wall oscillation. The authors found that

the drag reduction values had a better correlation with the wall normal velocity

fluctuations, which was also observed by Hurst (2013). Using a generalized optimal
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perturbation (GOP) approach, Blesbois et al. (2013) found that in a spanwise os-

cillating turbulent boundary layer, the GOP modes were infinitely long structures

with certain angles to the mean flow, and the angle and the amplitude of the struc-

tures jumped suddenly at a certain instant during the oscillation period, which was

consistent with the conditioned streaks angle in the DNS by Touber and Leschziner

(2012) and the quasi-streamwise vortices tilting angle in the DNS by Hurst (2013).

Yakeno et al. (2014) performed the ensemble average of the quasi-streamwise vor-

tices and the associated quadrant events, and the authors argued that the drag

reduction for the cases with small oscillation periods was due to the suspension of

the Q2 event; while the drag increase for the cases with large oscillation periods was

due to the enhancement of the Q4 event. Considering these two effect, the authors

proposed a combined parameter, which gave a good scaling of the drag reduction for

various oscillation periods and spanwise wall velocity amplitudes. Iuso et al. (2003)

observed that there was an increase in the streak width, the spanwise spacing and

the waviness, but a reduction of the streak strength, thus the authors interpreted

that these were due to the density reduction of the unstable low-speed streaks, which

weakened the near wall cycle. Touber and Leschziner (2012) compared the turbu-

lent statistics between the spanwise wall oscillation case and the no control case in

much detail, and the authors argued that the origin of the statistics changes was the

spanwise distortion of the near wall streaks. This mechanism was further supported

by Agostini et al. (2014) at a higher Reynolds number. Ricco et al. (2012) calculated

the turbulent kinetic energy and the enstrophy balance, and argued that the drag

reduction by the spanwise wall oscillation was due to the increase of the turbulent

enstrophy and dissipation in the transient process. Duggleby et al. (2007) studied

the proper orthogonal decomposition (POD) modes for the spanwise wall oscillation

in a pipe flow, and showed that the Stokes layer pushed the propagating mode away

from the wall, resulting in a higher convection velocity and shorter interaction time

between the propagating modes and the roll modes, thus reducing the production

of the Reynolds shear stress and the skin-friction.

Viotti et al. (2009) found the spatial form of spanwise wall oscillation, i.e.,

streamwise oscillation of spanwise wall velocity (also known as stationary wave),

which has the formula as below:

Ww = Aw sin(κxx) = Aw sin

(
2π

λx
x

)
, (2.3)

where κx (or λx) is the streamwise wavenumber (or wavelength). The stationary

wave can be linked to the spanwise wall oscillation by a convection velocity U +
c = 10.
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The stationary wave case achieved slightly higher drag reduction than the spanwise

wall oscillation at the same maximum wall velocity and Reynolds number. The

optimal streamwise wavelength was found to be λ+x ≈ 1000 ∼ 1250. Skote (2011)

implemented the stationary wave into a boundary layer, and achieved around 50%

drag reduction. Yakeno et al. (2009) performed a large number of channel DNS

cases to create the drag reduction map A+
w − T+ for the spanwise wall oscillation

and A+
w − λ+x for the stationary wave, and showed that stationary wave was more

efficient than spanwise wall oscillation. Similar comparison was carried out in a

turbulent boundary layer by Skote (2013). As in the channel case, they confirmed

that the stationary wave case was more efficient in reducing skin-friction than the

spanwise wall oscillation.

Quadrio et al. (2009) combined the spanwise wall oscillation and the station-

ary wave, and proposed the streamwise travelling wave of the spanwise wall velocity,

Ww = Aw sin(κxx− ωt) = Aw sin

(
2π

λx
x− 2π

T
t

)
. (2.4)

The wave travelling speed was defined as c ≡ ω/κx (or c ≡ λx/T ). Positive (or

negative) c corresponded to the forward (or backward) streamwise travelling wave.

A total number of 250 simulation cases were performed at fixed A+
w = 12, Reτ =

200 to construct the drag reduction map in the κx − ω parameter space. It was

found that the drag increase region was a cone passing the origin with a travelling

wave speed equal to the convection velocity of the near wall coherent structures,

i.e., c+ = U +
c = 10. The optimal drag reduction was about 48% appearing at

(ω+, κ+x ) = (0.02, 0.008), and this drag reduction value was higher than the optimal

drag reduction by either purely the spanwise wall oscillation or the stationary wave.

A maximum net power saving of 18% was found at (ω+, κ+x ) = (0.02, 0.005). Quadrio

and Ricco (2011) analysed the generalized Stokes layer, and showed that the drag

reduction scaled with the Stokes layer thickness when c is sufficiently different from

the turbulent convection velocity Uc. The optimal Stokes layer thickness for the

drag reduction was found to be δ+ ≈ 6.5, and a minimum thickness of δ+ ≈ 1 was

required for the drag reduction. Duque-Daza et al. (2012) were able to generate a

similar DR map using the linearised Navier-Stokes equations, and extent the DR
map to a much higher Reynolds number Reτ = 2594. However, the linearised

Navier-Stokes approach relied on a careful selection of the cost function and an

optimization plane, and the base flow required a superimposition of a generalised

Stokes layer profile in the spanwise direction, which was assumed to be independent

from the streamwise mean flow. As stated by the authors, this approach needed
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an empirical calibration in order to be reliable. Auteri et al. (2010) designed an

experiment using 60 individual controlled pipe segments to generate the streamwise

travelling wave of spanwise wall velocity and verified the numerical result by Quadrio

et al. (2009). As a discrete spatial wave form, the experiment achieved a maximum

33% drag reduction. Quadrio and Xie (2015) further proposed a spanwise travelling

wave of the spanwise wall velocity (see table 2.1), but all the explored cases were

found to be not as good as purely the spanwise wall oscillation. A review about the

drag reduction using various wall motions (oscillation, stationary wave and travelling

wave) was given by Quadrio (2011).

2.3.2 Lorentz force actuators

Lorentz force is an electro-magnetic force applied for electro-conductive fluids, for

example sea water. Berger et al. (2000) performed the DNS for the drag reduction

using Lorentz actuators to create the spanwise oscillation, in a similar fashion to

the spanwise wall oscillation. 40% drag reduction was reported at Reτ = 100, with

an optimal oscillation period of T+
opt = 100. The effect of the Lorentz actuators was

treated as a body force coupled into the momentum equation of the fluid motion.

By solving the Maxwell equation with an ideal boundary condition, the magnitude

of the Lorentz force is formulated as

fz = Afe
− y

∆ , (2.5)

where Af is the strength of the Lorentz force, ∆ is the penetration depth of the

Lorentz force. Due to the simplicity, this explicit expression of the Lorentz force

was widely used in the numerical study (Du et al., 2002; Huang et al., 2010). The

drag reduction by Lorentz force actuators was experimentally confirmed by Pang

and Choi (2004) and Pang et al. (2004), who observed more than 40% drag reduction

with control parameters, A+
f ≈ 210 and T+ ≈ 100. Pang et al. (2004) argued that

the drag reduction was due to the stretching of the quasi-streamwise vortices in the

near-wall region.

Du and Karniadakis (2000) and Du et al. (2002) conducted experiments and

DNSs for the spanwise travelling wave generated by the Lorentz force (see table

2.1), and more than 30% drag reduction was achieved. The authors noticed that

most of the near wall streaks were eliminated, and a wide ribbon of the low-speed

velocity was formed. This wide ribbon pattern was found to be caused by the the

Lorentz force induced streamwise vortices, and the control cases with wider ribbons

corresponded to higher drag reduction. Xie and Quadrio (2013) performed around
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1000 DNS cases in the ω − κz − Af − ∆ 4D parameter space for the spanwise

travelling wave by the spanwise Lorentz force. Their results suggested: 1) the

spanwise travelling wave by the Lorentz force generated a non-negligible spanwise

mass flow rate for most of the cases; 2) the spanwise travelling wave was always less

efficient than the corresponding temporal oscillation case.

Other travelling wave forms by the Lorentz force were also studied in the

literature (see table 2.1). Huang et al. (2010) proposed the streamwise travelling

wave of the spanwise Lorentz force, and obtained 42% drag reduction for the optimal

cases. An oscillation frequency dependent optimal streamwise wavenumber κ+x,opt
was observed. Mamori et al. (2014) applied the Lorentz force in the wall normal

direction to create the blowing and suction effect, and the wave travelled in the

streamwise direction. The results suggested that drag reduction only happened when

the wave was stationary. It was argued that the spanwise rollers were responsible for

the creation of the negative Reynolds shear stress, resulting in the drag reduction.

Huang et al. (2014) studied the effect of the travelling wave angle to the mean flow,

and the streamwise travelling wave was found to be more effective than the spanwise

travelling wave.

One drawback of Lorentz force actuators is the low efficiency in converting

the electric power into the fluid power, which is the order of O(10−3) based on the

current technology (Berger et al., 2000). This makes Lorentz force actuators unlikely

to achieve a net energy saving at this moment.

2.3.3 DBD plasma actuators

The Dielectric Barrier Discharge (DBD) plasma actuator consists of an upper elec-

trode, a lower electrode and a dielectric barrier layer in between. When the high

voltage (∼ 1kV ) AC (alternative current) is applied, the air in the vicinity of the

electrode is ionized, and the ions and the neutral gas particles strongly collide with

each other to exchange the momentum and energy, resulting in an electric wind.

The thickness of the upper and lower electrodes is normally measured in µm and

the response frequency is in several kHz. DBD plasma actuators are very light,

cheap, and easy to be implemented on wall surfaces. All these features make DBD

plasma actuators a perfect candidate for the flow control of air vehicles. After the

DBD plasma actuator was first developed by Roth et al. (2000), it was quickly used

for the flow separation control of the air-foils (Roth, 2003). Some reviews about the

plasma actuators were given by Moreau (2007), Corke et al. (2010), Caruana (2010)

and Wang et al. (2013).

Unlike Lorentz force actuators, the physical process of the air discharge is
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very complicated, thus no explicit formula was available to describe the force dis-

tribution. Several groups have tried to model the DBD plasma actuators. From

the first principle, Boeuf and Pitchford (2005), Jayaraman et al. (2006), Unfer and

Boeuf (2009), Unfer and Boeuf (2010), Nishida and Abe (2011) and Likhanskii et al.

(2008) considered the time dependent continuity and momentum equations for the

electrons and ions, and numerically modelled the plasma force distribution. This

model captured the discharge details, including the microseconds scale discharge

filaments and the strong unsteadiness of the plasma force field. However, in this

model, the time step was extremely small, i .e., in picoseconds, and this led to a

multi-scale problem for the flow control. To simplify the problem, Jayaraman et al.

(2006) only used a frozen pre-calculated plasma force field at phase φ = π/2 to

avoid the multi-scale problem. Suzen et al. (2005), Suzen et al. (2007) and Belson

et al. (2012) derived the simplified Maxwell equations for the electric filed E and the

charge density distribution ρc, and proposed some empirical boundaries (Gaussian

distribution) for E and ρc, thus they could get the time dependent plasma force field.

In this model, the equations for the plasma actuators were only solved once, and

the force field varied according the AC current wave form. Orlov and Corke (2006),

Mertz and Corke (2009) and Mertz and Corke (2011) improved the boundary con-

dition for the dielectric material from Suzen et al. (2005) using a lumped-element

circuit model. In this mode, the increasing rate of the maximum velocity as the

7/2 law of the applied peak-peak voltage (V
7/2
p−p scaling (Murphy et al., 2013)) was

correctly predicted. The modelled space-time variation of the current showed a very

high correlation with the space-time variation of the plasma light emission observed

in the experiment. Interestingly, the model could also predict the directivity pattern

of the acoustic. Abdollahzadeh et al. (2014) empirically approximated the thrust

to match the V
7/2
p−p scaling. A simple linear model for DBD plasma actuators was

proposed by Shyy et al. (2002). In this mode, the plasma force was distributed in

a triangle region, where the plasma could be observed by naked eyes in the exper-

iment. The electric field E was assumed linearly decreasing from the maximum on

the surface between the upper and the lower electrodes, and the charge density ρc

was evaluated from the experiment. Instead of treating the DBD plasma actuator

effect as a body force, Marziali Bermudez et al. (2011) modelled the plasma actuator

effect in the fluid flow as a slip wall boundary condition within the plasma region.

As the increase in the accuracy of the modern PIV (Particle Image Velocime-

try) technique, some PIV measurement based plasma models were developed. The

idea is to solve an inverse problem governed by the momentum equation. However,

due to the lack of the pressure field from PIV, an additional assumption is needed

21



to close the problem. Using the PIV data, both the total thrust and the spatial

distribution can be estimated. To estimate the thrust force, Durscher and Roy

(2012) and Kotsonis et al. (2010) assumed the pressure was uniform along the two

horizontal boundaries of the control volume. With this assumption, the evaluated

plasma actuator thrust matched the trend of the directly measured data by the load

cell. In order to evaluate the spatial distribution of the plasma body force, different

assumptions are available from the literature, and they are summarized in table 2.2.

Kotsonis et al. (2010) assumed that at the initial stage when the plasma actuators

were actuated, the dominant terms in the momentum equations were the unsteady

term and the plasma body force term, thus the plasma force could be directly calcu-

lated. This method needed actuate time resolved PIV measurement. Wilke (2009)

assumed the pressure gradient term was much smaller than the plasma body force

when the plasma induced flow became steady, thus the plasma body force was di-

rectly balanced by the convection term and the viscous term. Kotsonis et al. (2010)

also proposed a “pressure gradient” method by considering the time derivative of

the momentum equation, and assuming the plasma body force was steady. After the

pressure gradient was known, the plasma body force could be evaluated from the

original momentum equation. Therefore, the “pressure gradient” method also relied

on the high resolution time resolved PIV data. Albrecht et al. (2011) instead consid-

ered the vorticity equation directly, where no pressure gradient term was involved.

The authors proposed an order of magnitude relation between the gradient term of

the two plasma body force components, then the plasma body force could be cal-

culated. A comparison of these PIV measurement based plasma body force models

was given by Kriegseis et al. (2013). In general, the spatial plasma body force dis-

tributions among all the PIV measurement based methods are very similar. Based

on this, Maden et al. (2013) proposed an empirical formulation to parametrise the

plasma body force, and also compared the plasma induced wall jet profiles among

different methods. The linear model by Shyy et al. (2002) and the PIV measure-

ment based models could predict the jet profile very well in the downstream, while

the PIV measurement based models had better prediction in the vicinity of the tip

of the upper electrode. Suzen et al. (2005)’s model almost failed to predict the jet

profile at any location.

The main property of the plasma actuators is the induced wall jet, which

was carefully studied in experiments by Jukes et al. (2006a), Jukes et al. (2008),

Whalley and Choi (2012) and Jukes and Choi (2013). The plasma wall jet is an

ideal candidate to replace the conventional vortex generator for the flow separation

control (Jukes and Choi, 2012; Jukes et al., 2012). However, due to the discrete
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Table 2.2: Assumptions to evaluate the plasma body force in PIV measurement
based methods.

Assumptions Source Remarks

NS :
∂ui
∂t︸︷︷︸
1©

+uj
∂ui
∂xj︸ ︷︷ ︸
2©

=
fi
ρ︸︷︷︸
3©

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
4©

+ ν
∂2ui
∂x2j︸ ︷︷ ︸
5©

2© → 0; 4© → 0; 5© → 0. Kotsonis et al. (2010) For initial stage
1© → 0; 4© → 0. Wilke (2009) For steady stage

1© → 0; ∂ 3©/∂t → 0. Kotsonis et al. (2010) Time derivative
1© → 0; ∂f1/∂y ≫ ∂f2/∂x. Albrecht et al. (2011) Curl of NS equations

nature of the plasma body force, the application of the plasma actuators for the

turbulent skin-friction control is not straightforward. Wilkinson (2003) did the

first attempt to generate the spanwise oscillation by the DBD plasma actuators

for the turbulent skin-friction drag reduction control. Unfortunately, due to the

limitation of the spanwise plasma wind speed achievable, the wind tunnel test for

the drag reduction was unable to be carried out. This concept was followed by

Jukes et al. (2006b), who managed to get 45% skin-friction drag reduction by the

oscillating plasma force at Reτ = 380 (see figure 2.5). The authors argued that the

drag reduction was due to the interaction between the plasma body force induced

streamwise rollers with the near wall quasi-streamwise vortices in the turbulent

boundary layer. This drag reduction was confirmed in the DNS by Elam (2012).

Inspired by the spanwise travelling wave of the Lorentz force (Du and Karniadakis,

2000), Whalley and Choi (2011) andWhalley and Choi (2014) proposed the spanwise

travelling wave configuration using the streamwise aligned plasma actuator array,

and 30% drag reduction was reported. Similar “ribbon” structures as the spanwise

travelling wave by the Lorentz force were observed. A review of the drag reduction

by the plasma actuators with the spanwise oscillation and the spanwise travelling

wave was given by Choi et al. (2002). Recently, Li et al. (2015) reported the drag

reduction by the spanwise aligned plasma actuator array (same configuration as in

(Ibrahim and Skote, 2014)).

2.3.4 Reynolds number effect

It has been observed that the turbulent skin-friction drag reduction efficiency de-

teriorates with increasing Reynolds number (Berger et al., 2000; Iwamoto et al.,

2002; Choi et al., 2002), which is known as the Reynolds number effect in the
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Figure 2.5: Spanwise oscillation by plasma actuators at four different phases, taken
from Jukes et al. (2006a).

turbulent skin-friction drag reduction control. Due to the computational power re-

striction in the DNS and the measurement accuracy limitation in the experiment,

the Reynolds number for the flow control research in laboratories is typically the

order of Reτ ∼ O(103), while the applications for the skin-friction control are at

the Reynolds number Reτ ∼ O(104) and above. Therefore, it is very important

to address whether a certain amount of drag reduction is still achievable at high

Reynolds numbers.

Berger et al. (2000) reported that the drag reduction control efficiency by the

spanwise oscillating Lorentz force control decreased as increasing Reynolds number

in a range of Reτ = 100 ∼ 400. Iwamoto et al. (2002) studied the drag reduction by

the V-control blowing and suction, and reported the decrease in the drag reduction

from 20% at Reτ = 110 to 12% at Reτ = 650. Koh et al. (2015) studied the drag re-

duction using the spanwise surface wave at Reτ = 540, 906, 1908 and 2250 turbulent

boundary layers. The drag reduction decreased from 11% at Reτ = 540 to 1% at

Reτ = 2250. For the spanwise travelling wave, Choi et al. (2002) reported the opti-

mal drag reduction decreased from 44.5% at Reτ = 100 to 34.1% at Reτ = 400. The

authors proposed a power law scaling DR ∼ Re−α
τ (α = 0.2) to quantify the drag

reduction deterioration. The Reynolds number effect was also confirmed by Ricco

and Quadrio (2008) at the similar Reynolds number and by Touber and Leschziner

(2012) at the Reynolds number up to Reτ = 1000 for the spanwise wall oscillation.
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It was also observed that the drag reduction decreased with increasing the Reynolds

number by the spanwise wall oscillation in the turbulent boundary layer (Skote,

2012). However, the Reynolds number effect was less clear in the experiment due to

the uncertainty in the measurement (Ricco and Wu, 2004; Choi and Graham, 1998).

Gatti et al. (2013) performed small box-size channel flow DNSs up to Reτ = 2100

for the streamwise travelling wave, and reported the performance loss. However, the

authors observed that the energy input for the streamwise travelling wave decreased

with the Reynolds number (Psp ∼ Re−0.136
τ ), thus they argued that a net energy sav-

ing by the streamwise travelling wave at the high Reynolds number was still possible.

The drag reduction deterioration by the streamwise travelling wave of the spanwise

wall velocity was also confirmed by Hurst et al. (2014) in the large box-size channel

DNSs with the Reynolds number ranging from Reτ = 200 ∼ 1600. The authors also

noticed some other interesting phenomena: 1) the optimal control parameter shifted

towards a higher oscillation frequency for the spanwise wall oscillation, and towards

a higher streamwise wavenumber for the streamwise stationary wave; 2) the power

law scaling parameter α was found to be control-parameters (ω, κx) dependent, but

α was positive for all the drag reduction cases, which suggested a drag reduction

deterioration.

The Reynolds number effect explored in the DNS is typically for a small

range of Reynolds numbers, namely Reτ < 1000, thus the prediction for even higher

Reynolds number is normally done with theoretical works (or affordable approaches).

For example, Iwamoto et al. (2005) derived an explicit formula for the drag reduc-

tion with the turbulent fluctuation in the near wall layer below a threshold location

yd completely damped, and showed that a 35% drag reduction was still achiev-

able at the Reynolds number up to Reτ = 105. Fukagata et al. (2006) applied

the same argument to the drag reduction control by the superhydrophobic surface,

and a large drag reduction was predicted to be possible at the Reynolds number

Reτ = 105 ∼ 106. For the streamwise travelling wave by the spanwise wall veloc-

ity, Duque-Daza et al. (2012) used the linearised Navier-Stokes to predict the drag

reduction map at the high Reynolds number Reτ = 2594, which was found to be

very similar to the one at Reτ = 200, with only ∼ 5% difference in DR (more pre-

cisely the streaks amplification). Similarly, a perturbation analysis was carried out

by Belan and Quadrio (2013), who suggested a much weaker DR deterioration as

the Reynolds number increased, and also an asymptotic value for the constant drag

reduction above a threshold Reynolds number. Quadrio and Gatti (2015) and Gatti

et al. (2015b) assumed the change of the constant B in the log law from the no con-

trol case to the streamwise travelling wave cases, is Reynolds number independent,
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thus the authors estimated that the drag reduction at high Reynolds number was

possible. Skote (2014) proposed an argument about the scaling of the streamwise

mean velocity profile for the near wall control strategies without changing the fluid

properties and the outer layer. The theory prediction agreed well with the available

DNS data, but the constant B is DR dependent. Those predictions are very opti-

mistic for the drag reduction control community, though it may take some time for

the DNS and the experimental validation.

The Reynolds number effect suggests that the control parameters are not

scaled in the inner units at high Reynolds numbers, similar to the inner scaling

failure for the turbulent statistics of the no control high Reynolds number flows

(DeGraaff and Eaton, 2000). Touber and Leschziner (2012) pointed out that the

Reynolds number effect in the spanwise wall oscillation was due to the VLSMs in

the outer region, which clearly caused the difference between the near wall streaks

under the positive and the negative VLSMs. The superposition and modulation

effects by the VLSMs were also used to explain the Reynolds number effect in the

blowing and suction control at Reτ = 1000 by Deng et al. (2015). The VLSMs

carry a significant amount of Reynolds shear stress (Guala et al., 2006; Deck et al.,

2014), and it was found that by purely controlling the large scale structures, it gave

as much as 20% drag reduction (Schoppa and Hussain, 1998; Fukagata et al., 2010;

Pujals et al., 2010; Schlatter et al., 2015). However, Iwamoto et al. (2002) showed

that for the opposition control, the DR deterioration was only strong for Reτ < 300,

and DR became insensitive to the Reynolds number for Reτ > 300. The asymp-

totic behaviour of DR was also observed by Hurst et al. (2014) for the stationary

wave of the spanwise wall velocity (see their figure 10(b)). Skote et al. (2015) thus

suggested a power law scaling to replace the log law for the DR scaling in the span-

wise wall oscillation control. Using FIK identity, Hurst et al. (2014) showed that

the DR deterioration mainly came below the critical layer (y+ < 2Re
1/2
τ ), while

the DR contribution from the outer region was almost constant from Reτ = 200

to 1600. This finding was consistent with Iwamoto et al. (2005), who showed that

the Reynolds number effect was mild if the near wall turbulence was completely

damped, though the damping layer thickness needed to increase slightly with the

Reynolds number for the same amount of DR. These results suggested the impor-

tance of the scale interaction across the wall normal direction. Iwamoto et al. (2002)

demonstrated this point using the Karhunen-Loeve decomposition, and they showed

that at Reτ = 110 and 300, the largest contribution to the skin-friction came from

the structures within 15 < y+ < 30, but the contribution from 30 < y+ < 75 is

also important for Reτ = 300. The structures within 30 < y+ < 75 was beyond the

26



direct control, but can transfer the energy to those structures within 15 < y+ < 30,

causing the DR deterioration. Thus the authors suggested the control of the struc-

tures within 30 < y+ < 75 was necessary at high Reynolds numbers. Iwamoto et al.

(2002) claimed that the structures at y+ > 75 remained inactive in terms of con-

tributing to the skin-friction, and this might be due to the limitation of the highest

Reynolds number studied, i.e., Reτ = 300. Very recently, de Giovanetti et al. used

three different approaches, i.e., FIK identity analysis, spanwise domain confinement

and artificial scale damping, and showed that the scales with 0.2h ≤ λz ≤ 1h con-

tributed the most to the skin friction at Reτ = 2000. The turbulent structures

within this scale range are in the logarithmic region, and they form a hierarchy of

the self-similar attached eddies (Flores and Jiménez, 2010; Hwang, 2015).

It is clear the outer structures (including the logarithmic structures, LSMs

and VLSMs) play an important role in the DR deterioration by indirectly transfer-

ring energy to the near wall structures, causing the control on the near wall structure

to be less effective. But whether or not we need to control the large scales from the

outer region for a better DR performance still remains open.
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Chapter 3

Methodology

In the present study, the incompressible Newtonian fluid in a channel geometry is

considered. The flow is governed by the Navier-Stokes equations, shown as below,

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

+ fi,

∂ui
∂xi

= 0.

(3.1)

Here all the variables are non-dimensionalised by half channel height h and bulk

mean velocity Um, thus the Reynolds number is defined as Re = Umh/ν, where ν is

the kinematic viscosity. Both subscripts i, j vary in {1, 2, 3}, representing {x, y, z}
directions, respectively. When the same subscript appears more than once in one

term, a summation from 1 to 3 is automatically taken, i.e., ∂2ui

∂x2
j
≡ ∂2ui

∂x2
1
+ ∂2ui

∂x2
2
+ ∂2ui

∂x2
3
,

∂ui
∂xi

≡ ∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

. Unless stated otherwise, x1, x2 and x3 represent the coor-

dinates x (streamwise), y (wall normal) and z (spanwise) directions, respectively;

and u1, u2 and u3 represent the velocity components u, v and w in three directions,

respectively. fi represents the body force component in x (i = 1), y (i = 2) and

z (i = 3) directions, respectively. In the present study, the body force is either

generated by Lorentz force actuators or plasma actuators.

A sketch of the channel geometry and coordinate system is shown in figure

3.1. The channel is bounded by two flat plates on top and bottom, where no slip

boundary condition is applied. In the other two directions, the flow is assumed to

be homogeneous, thus periodic boundary conditions are applied. The origin of the

coordinate is located on the bottom wall, therefore the domain size in wall normal

direction is 0 < y < 2.

In this chapter, a fully implicit finite volume method for solving equation
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(3.1) is explained first, then the coherent structure identification and the proper

orthogonal decomposition (POD) methods are addressed separately for the data

analysis in the following chapters. In the end, a series of grid resolution and domain

size tests are conducted for both no control and control baseline cases.

Figure 3.1: Sketch of the geometry and coordinate of a channel flow. The channel
length, width and height are Lx, Lz and 2, respectively.

3.1 Fully implicit frictional step method

Fractional step method (FSM) is one way to decouple the pressure field from the

velocity field in solving the Navier-Stokes equations. Depending on whether FSM

is applied for the continuous N-S equations or the discrete form, the method can

be viewed as time splitting (Temam, 1991; Kim and Moin, 1985) or approximate

factorisation (Dukowicz and Dvinsky, 1992; Perot, 1993). From time splitting point

of view, the physical interpolation for the two sub time steps is clear: 1) solving

the momentum equations for an intermediate velocity field with the pressure term

excluded; 2) projecting the intermediate velocity field into a divergence free space.

The disadvantage is that a proper boundary condition for the intermediate velocity

field is needed (Kim and Moin, 1985). In the other hand, approximate factorisation is

based on discrete N-S equations with the physical boundary condition matrix stored

separately, thus no boundary condition is required for the intermediate velocity field

(Perot, 1993). FSM guarantees the mass conservation, but introduces an additional

error terms into the momentum equations, by modifying the original pressure term

(Temam, 1991). For example, Kim and Moin (1985) showed that the equation

linking the original pressure and the modified pressure is p = φ+ (∆t/2Re)∇2φ. If

the modified pressure φ is directly used to approximate the original pressure p, this

gives a first-order time accuracy for the FSM (Perot, 1993).

The code used in the present study is based on an approximate factorisation
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FSM developed by Kim et al. (2002). The authors employed Beam & Warming

procedure to linearise the convection term first, then used Crank-Nicholson discreti-

sation for all the spatial terms, thus a fully implicit scheme was achieved. This fully

implicit FSM was implemented into our in-house channel flow code by Talha (2012),

and was parallelised by Hurst (2013) using a 2DECOMP&FFT library developed

by Li and Laizet (2010). To make the methodology complete, the overall numerical

method is briefly summarised in this section.

For convenience, the Navier-Stokes equations (equation (3.1)) are written in

a vector form, as below,

∂u

∂t
+Hu = −Gp+ 1

Re
Lu+ f ,

Du = 0,

(3.2)

where G is the gradient operator; L is the linear viscosity operator; H is the con-

vective operator and D is the divergence operator. And each of them is defined as

below,

• Gp := ∇p;

• Lu := 1
Re∇2u;

• Hu := (u · ∇)u;

• Du := ∇ · u.

For x-momentum equation,

∂u1
∂t

+Hu1 = − ∂p

∂x1
+

1

Re
Lu1 + f1, (3.3)

using Crank-Nicholson scheme for discretisation, this gives,

un+1
1 − un1

∆t
+

1

2
(Hun1 +Hun+1

1 ) = −∂p
n+1/2

∂x1
+

1

2Re
(Lun1 + Lun+1

1 ) + f1, (3.4)

where superscript n represents the information in the previous time step, which is

known; while superscript n+1 represents the information in the current time step, and

superscript n+1/2 represents the information in the half time step, both of which are

unknown. The body force used in the present study is decoupled from the velocity

and pressure fields, thus it is evaluated through f1 = f
n+1/2
1 , and this information

at each time step is known. The pressure field is half a time step staggered of

the velocity fields, and this is to make the splitting in the fractional step method

second-order accuracy (Kim et al., 2002), as shown later.
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For the convective term Hun+1
1 , the Beam & Warming scheme is used as

below,

un+1
i un+1

j =
(
uni + (un+1

i − uni )
) (
unj + (un+1

j − unj )
)

= un+1
i unj + uni u

n+1
j − uni u

n
j + (un+1

i − uni )(u
n+1
j − unj ),

= un+1
i unj + uni u

n+1
j − uni u

n
j +∆un+1

i ∆un+1
j ,

= un+1
i unj + uni u

n+1
j − uni u

n
j +O(∆t2),

(3.5)

which gives the second-order accuracy in time. Thus,

Hun+1
1 =(un+1 · ∇)un+1

1 =
∂(un+1

1 un+1
1 )

∂x1
+
∂(un+1

2 un+1
1 )

∂x2
+
∂(un+1

3 un+1
1 )

∂x3

=
∂(un+1

1 un1 )

∂x1
+
∂(un1u

n+1
1 )

∂x1
− ∂(un1u

n
1 )

∂x1
+

∂(un+1
2 un1 )

∂x2
+
∂(un2u

n+1
1 )

∂x2
− ∂(un2u

n
1 )

∂x2
+

∂(un+1
3 un1 )

∂x3
+
∂(un3u

n+1
1 )

∂x3
− ∂(un3u

n
1 )

∂x3
+O(∆t2)

=
∂(un+1

1 un1 )

∂x1
+
∂(un1u

n+1
1 )

∂x1
+
∂(un+1

2 un1 )

∂x2
+
∂(un2u

n+1
1 )

∂x2
+

∂(un+1
3 un1 )

∂x3
+
∂(un3u

n+1
1 )

∂x3
−Hun1 +O(∆t2).

(3.6)

An approximate non-linear operator N is introduced, so that,

Nun+1
1 =

1

2

(
∂(un+1

1 un1 )

∂x1
+
∂(un1u

n+1
1 )

∂x1
+
∂(un+1

2 un1 )

∂x2
+
∂(un2u

n+1
1 )

∂x2
+

∂(un+1
3 un1 )

∂x3
+
∂(un3u

n+1
1 )

∂x3

)
≈ 1

2
(Hun+1

1 +Hun1 ).

(3.7)

Therefore, equation (3.4) can be rearranged as below,

(
1

∆t
+N − 1

2Re
L

)
un+1
1 +

∂

∂x1
pn+1/2 =

(
1

∆t
+

1

2Re
L

)
un1 + f1. (3.8)

With the introducing of a combined operator M = N − 1
2ReL, and the pressure

increase δpn+1/2 = pn+1/2 − pn−1/2, equation (3.8) can be further rearranged as
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below,

(
1

∆t
+M

)
un+1
1 +

∂

∂x1
δpn+1/2 =

(
1

∆t
+

1

2Re
L

)
un1 − ∂

∂x1
pn−1/2 + f1. (3.9)

Similarly, the time discretision for the momentum equations in y and z di-

rections are shown as below,

(
1

∆t
+M

)
un+1
2 +

∂

∂x2
δpn+1/2 =

(
1

∆t
+

1

2Re
L

)
un2 − ∂

∂x2
pn−1/2 + f2. (3.10)

(
1

∆t
+M

)
un+1
3 +

∂

∂x3
δpn+1/2 =

(
1

∆t
+

1

2Re
L

)
un3 − ∂

∂x3
pn−1/2 + f3. (3.11)

Up to this point, the original Navier-Stokes equations are discretised fully

implicitly into equations (3.9), (3.10), (3.11), and subjected to the continuity equa-

tion constrain. Those equations can be then discretised in space using second-order

finite volume method. The boundary conditions are:

• x direction: periodic boundary, i.e.,

ui(Lx, y, z) = ui(0, y, z) and p(Lx, y, z) = p(0, y, z).

• y direction: no slip wall boundary, i.e.,

1) ui(x, 0, z) = 0 and ∂p(x, 0, z)/∂y = 0 for bottom wall;

2) ui(x, 2, z) = 0 and ∂p(x, 2, z)/∂y = 0 for top wall;

3) corresponding wall velocity is applied if the wall is not stationary, e.g.,

spanwise wall motion (chapter 4), travelling wave by spanwise wall velocity

(chapter 7).

• z direction: periodic boundary, i.e.,

ui(x, y, Lz) = ui(x, y, 0) and p(x, y, Lz) = p(x, y, 0).

The number of grid points in x, y and z directions of the interior domain are

Nx, Ny and Nz, respectively, and a vector of freedom of 3NxNyNz can be formed

for the velocity, i.e.,

vn+1 =
(
(vn+1

1 )T , (vn+1
2 )T , (vn+1

3 )T
)T

=(un+1
1|i=1, u

n+1
1|i=2, ..., u

n+1
1|i , ..., un+1

1|i=NxNyNz−1, u
n+1
1|i=NxNyNz

,

un+1
2|i=1, u

n+1
2|i=2, ..., u

n+1
2|i , ..., un+1

2|i=NxNyNz−1, u
n+1
2|i=NxNyNz

,

un+1
3|i=1, u

n+1
3|i=2, ..., u

n+1
3|i , ..., un+1

3|i=NxNyNz−1, u
n+1
3|i=NxNyNz

)T .
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And a vector of freedom of NxNyNz can be formed for the pressure increase, i.e.,

δpn+1/2 = (δp
n+1/2
|i=1 , δp

n+1/2
|i=2 , ..., δp

n+1/2
|i , ..., δp

n+1/2
|i=NxNyNz−1, δp

n+1/2
|i=NxNyNz

)T .

Therefore, the temporal and spatial discretised Navier-Stokes equations can be writ-

ten in the following matrix form,

(
A G

D 0

)(
vn+1

δpn+1/2

)
= ∆t

(
r

0

)
+

(
mbc

cbc

)
,

A = I+∆tM,

r =
vn

∆t
−Gpn−1/2 +

1

2Re
Lvn + f ,

(3.12)

where mbc and cbc store the boundary information for the momentum and conti-

nuity equations, respectively. A is a matrix with size of (3NxNyNz)
2.

An LU matrix approximation is employed to solve the above large matrix

inversion problem. With a new notation δv∗ = v∗−vn, where v∗ is the intermittent

velocity field, equation (3.12) can be split into the following two equations,

(
A 0

D −∆tDG

)(
δv∗

δpn+1/2

)
= ∆t

(
R

0

)
+

(
mbc

cbc

)
+

(
∆tMGδpn+1/2

0

)
,

R = r−Avn.

(3.13)

(
I ∆tG

0 I

)(
vn+1

δpn+1/2

)
=

(
v∗

δpn+1/2

)
. (3.14)

Since the pressure is introduced in a δ form, the error term in the above approxi-

mation is second-order (Kim et al., 2002).

Finally, the procedure to solve the velocity and pressure is clear, and is listed

as below:

1) solve δv∗ using equation (3.13), and get v∗ subsequently;

2) solve pressure difference δpn+1/2 using equation (3.13);

3) solve velocity vn+1 using equation (3.14);

4) get pressure pn+1/2.

The above procedure is essentially the same as the FSM used by Kim and Moin

(1985), except that they need to consider the boundary condition for v∗, and solve

a scalar function for pn+1/2.

Since the coefficient matrix A = I +∆tM has the size of (3NxNyNz)
2, the

difficulty lies in how to invert the coefficient matrix A efficiently in step 1). Matrix
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A can be written into small block matrix format as below,

A = I+∆tM =



I+∆tM11 ∆tM12 ∆tM13

∆tM21 I+∆tM22 ∆tM23

∆tM31 ∆tM32 I+∆tM33


 , (3.15)

where Mij contains all the coefficients for the jth velocity component δuj in the ith

momentum equation. The structure of matrix A is shown in figure 3.2.

Figure 3.2: Structure of matrix A. Coefficients in front of δu∗, δv∗ and δw∗ are
coloured red, green and blue, respectively.

This matrix can again be approximated using LU matrices with a second-

order accuracy (Kim et al., 2002),

A =



I+∆tM11 0 0

∆tM21 I+∆tM22 0

∆tM31 ∆tM32 I+∆tM33






I ∆tM12 ∆tM13

0 I ∆tM23

0 0 I


+



O(∆t2)J

O(∆t2)J

O(∆t2)J


 .

(3.16)

To further reduce the computational cost, the matrix I + ∆tMii can be

approximated with a second-order accuracy (Kim et al., 2002) as below,

I+∆tMii =I+∆tMz
ii +∆tMy

ii +∆tMx
ii

=(I +∆tMz
ii)(I+∆tMy

ii)(I +∆tMx
ii) +O(∆t2)J.

(3.17)
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where I+∆tMx
ii only contains the coefficient for δu∗1, I+∆tMy

ii only contains the

coefficient for δu∗2, I+∆tMz
ii only contains the coefficient for δu∗3, and J is the matrix

of ones. Thus, the original inversion of a (3NxNyNz)
2 size matrix A is transferred

to be the inversion of multiple tri-diagonal or pena-diagonal matrices with size of

N2
x , or N

2
y or N2

z .

Overall, the procedure to find δv∗ in equation (3.13) is listed as below:

• δv∗∗
1 = (I+∆tMx

11)
−1(I+∆tMy

11)
−1(I +∆tMz

11)
−1∆tR1;

• δv∗∗
2 = (I+∆tMx

22)
−1(I+∆tMy

22)
−1(I +∆tMz

22)
−1∆t(R2 −M21δv

∗∗
1 );

• δv∗∗
3 = (I + ∆tMx

33)
−1(I + ∆tMy

33)
−1(I + ∆tMz

33)
−1∆t(R3 − M31δv

∗∗
1 −

M32δv
∗∗
2 );

• δv∗
3 = δv∗∗

3 ;

• δv∗
2 = δv∗∗

2 −∆tM23δv
∗∗
3 ;

• δv∗
1 = δv∗∗

1 −∆tM12δv
∗∗
2 −∆tM13δv

∗∗
3 ;

In step 2), the Poisson equation for pressure (equation (3.13)) raised from

the continuity constrain, needs to be solved. To be noticed, in the time splitting

approach, the scalar in the Poisson equation is the modified pressure (Temam, 1991;

Kim and Moin, 1985), i.e., Gδpn+1/2 = Gδφn+1/2 + ∆tMGδφn+1/2. It has to be

mentioned that, we approximate B = ∆tI in the “generalized block LU decomposi-

tion” (Perot, 1993), which traditionally only gives first-order accuracy, but it is the

staggered in time arrangement of pressure that makes the error term ∆tMGδφn+1/2

second-order small, thus the overall splitting second-order accuracy (Kim et al.,

2002). For a single pressure control volume, the governing equation is written as

below,

∆tDGδp = Dδu∗ − cbc. (3.18)

Since un is divergence free, i.e., Dun = 0, equation (3.18) is equivalent to

the one below,

DGδp =
1

∆t
(Du∗ − cbc) ≡ g. (3.19)

Equation (3.19) can be transformed into Fourier space shown as below,

−k2xδ̂p(kx, y, kz) +
∂2δ̂p(kx, y, kz)

∂y2
− k2z δ̂p(kx, y, kz) = ĝ(kx, y, kz), (3.20)
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where ·̂ indicates the Fourier coefficient, and kx, kz are the streamwise and spanwise

wavenumbers, respectively. Using finite volume to discretise the term ∂2δ̂p(kx,y,kz)
∂y2

,

an algebra equation can be written as,

a1δ̂p(kx, y, kz)i,j−1,k + (a2 − k2x − k2z)δ̂p(kx, y, kz)i,j,k + a3δ̂p(kx, y, kz)i,j+1,k

= ĝ(kx, y, kz),
(3.21)

where a1, a2 and a3 are the derived coefficients. Once δ̂p(kx, y, kz) is solved, the

pressure in physical space can be obtained by the inverse Fourier transform.

Up to this point, the whole procedure for the implicit fractional step method

is finished. Three are three second-order accuracy approximations, i.e., equations

(3.13), (3.16) and (3.17), thus it gives an overall second-order temporal accuracy. A

minimum second-order central difference is used for the spatial discretisation, there-

fore it gives an overall spatial accuracy of second-order as well. The temporal and

spatial accuracy tests were given by Kim et al. (2002) and Talha (2012), respectively.

To avoid the checking board effect, a staggered mesh is used, i.e., the three

velocity components are defined on different surfaces of the mesh cell, and the pres-

sure is defined in the cell centre. The body force vector is treated in the same way

as the velocity vector. For detailed staggered mesh arrangement, please refer to

(Talha, 2012).

To make the code capable for high Reynolds number flow simulation, it is

paralleled using the MPI library. Since direct solvers are used for all the matrix

inversions, a 2DECMP&FFT library (Li and Laizet, 2010) is implemented to satisfy

this requirement, and also to guarantee the scalability of the code. Details about

the implementation can be found in Hurst (2013). The paralleled code is highly

scalable up to 1024 cores tested.

3.2 Coherent structure identification

The λ2 criterion proposed by Jeong and Hussain (1995) is used in the present study

to identify the vortex structures. λ2 is the second largest eigenvalue of the gradient

tensor S2 +Ω2, where S is the strain tensor, i.e., Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, and Ω is the

vorticity tensor, i.e., Ωij =
1
2

(
∂ui
∂xj

− ∂uj

∂xi

)
. According to Jeong and Hussain (1995),

the vortex cores correspond to regions, where the gradient tensor S2 + Ω2 has at

least two negative eigenvalues, equivalent to λ2 < 0. Figure 7.5(a) shows a snapshot

of the quasi-streamwise vortices in the buffer region identified by negative λ2 value

at Reτ = 800. Some hairpin structures can be observed, but majority of them are

36



single legged (Robinson, 1991). Essentially, there are two types of structures: the

positive one rotating in clockwise direction (ω′
x > 0) and the negative one rotating

in anti-clockwise direction (ω′
x < 0). However, the high population density and

irregular shapes of these near wall structures make the view very difficult. Jeong

et al. (1997) proposed an ensemble average method to extract the shapes of the

positive and negative structures. This ensemble average method is adopted in the

present study with a certain improvement. Detail of the ensemble average method

and its validation is given in the following part.

Generally, the ensemble average method includes two procedures: 1) identi-

fying the cores of the vortex structures; 2) selecting the identified vortex structures

and conditionally average them. To identify the vortex cores, the local minima of

the λ2 value in a small window with a diameter of D+
c = 20 are detected in every yz

plane. The two local minima in two adjacent yz planes are connected if they satisfy

the following two criteria: a) the two points form a vector which has a streamwise

angle −45◦ < θ < 45◦; b) the signs of the streamwise vorticity fluctuation ω′
x are

the same at the two points. A typical identified λ2 structure is shown in figure 3.3.

This is a negative λ2 structure, since ω′
x < 0 for all the identified local minima.

The quasi-streamwise vortices are within the buffer layer and have a typical length

of λ+x ≈ 300, which can be read through the energy peak in pre-multiplied density

spectrum kxkzΦvv (figure 3.12(b)), thus only those structures longer than λ+x = 150

and within the near wall region y+ < 60 are selected for the next procedure.

Figure 3.3: A typical identified λ2 structure. Iso-surface is λ+2 = −0.01 coloured by
wall distance. Black spheres indicate the selected local minima on each yz plane
and blue arrows indicate the searching directions.
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Once the positive (negative) λ2 structures in the flow field are all identified, a

crude averaged positive (negative) structure can be obtained by simply aligning the

streamwise centres of the positive (negative) λ2 structures and taking the average.

Then the correlation between the crude positive (negative) averaged structure and

each individual positive (negative) structure is calculated in a window size of 150×
60 × 40 wall units by shifting the individual positive (negative) structure for up

to 30 wall units in x and z directions, while the y location is kept unchanged. If

the maximum correlation is higher than 0.4, then the individual positive (negative)

structure is retained; otherwise it is discarded. The remaining positive (negative)

individual structures are averaged again by aligning the streamwise centre points of

the structures. This procedure can be repeated for more than once to make sure the

the remaining individual positive (negative) structures are highly correlated. At the

same time, the velocity and pressure fields associated with each individual positive

(negative) structure are also averaged to get the ensemble averaged flow fields. The

final ensemble averaged positive (negative) λ2 structures are calculated based on the

ensemble averaged velocity field.

The ensemble averaged positive and negative λ2 structures are shown in figure

3.4. A total of 10 well separated flow fields in time are used, and the total number

of selected positive and negative λ2 structures are 1601 and 1609, respectively. As

observed from figure 3.4, the positive and negative structures are highly symmetric

about streamwise direction. A rough measure by eyes suggests a ∓5◦ tilting angle

for positive and negative λ2 structures; and a 10◦ inclination angle for both. This

result is very close to the ∓4◦ tilting angles, 9◦ inclination angle reported by Jeong

et al. (1997), and the ∓6◦ tilting angles, 9◦ inclination angle reported by Jung and

Sung (2006).

(a) (b)

Figure 3.4: Ensemble averaged λ2 structures (λ+2 = −0.005) in yz, xz and xy plane
views: (a) positive one; and (b) negative one.
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The quasi-streamwise vortices are Reynolds stress carrying eddies. The pat-

terns for the three velocity fluctuation components, i.e., u′, v′, w′, and the three

Reynolds shear stress components, i.e., −u′v′, −v′w′, −u′w′ in a yz plane cutting

through the streamwise centre of the ensemble averaged λ2 structures (x = 0) are

shown in figure 3.5. Again, these patterns are symmetric or anti-symmetric between

the positive and negative λ2 structures. The Reynolds shear stress components show

a very good agreement with the ensemble averaged data shown by Jeong et al. (1997)

(figure 13 of their paper). The high- and low-speed streaks can be well observed on

both sides of the λ2 structures, with the high-speed streak peaking at y+ ≈ 23 and

the low-speed streak peaking at y+ ≈ 11. The high-speed streak is associated with

Q4 event (sweep), and the low-speed streak is associated with Q2 event (ejection).

Both Q4 and Q2 create positive streamwise Reynolds shear stress −u′v′, as shown

by two positive peaks in the left and right sides of the positive and negative λ2

structures in figure 3.5(d). The negative contribution to −u′v′ from Q3 and Q1

events are on the top and bottom sides of the λ2 structures. The different peak

locations of the high- and low-speed streaks agree with the quadrant analysis result

by Kim et al. (1987), who reported that sweep events dominated in the near wall

region, and ejection events dominated in the region further away from the wall, with

the crossing point at y+ ≈ 12. The high skin-friction region associated with the λ2

structures is clearly displayed in figure 3.5.

3.3 Proper orthogonal decomposition

Proper orthogonal decomposition (POD), also known as Karhunen-Loéve decom-

position (KL) provides a set of bases to study multi-scale turbulent flow (Berkooz

et al., 1993), in the sense that the energy decays the fastest across all the modes. In

this case, the key turbulent dynamics can be captured by a small number of leading

order POD modes. The modes in POD are not pre-fixed, but in the periodic direc-

tion the POD modes are statistically equivalent to Fourier modes. In the present

numerical channel flow, POD is only used for the wall normal direction, while direct

Fourier transform is used for streamwise and spanwise directions.

For the one dimensional POD modes in wall normal direction, the three

velocity fluctuation components form a vector φ(y) as below,

φ(y) = [u′(y1), u
′(y2), ..., u

′(yj), ..., u
′(yNy−1), u

′(yNy),

v′(y1), v
′(y2), ..., v

′(yj), ..., v
′(yNy−1), v

′(yNy),

w′(y1), w
′(y2), ..., w

′(yj), ..., w
′(yNy−1), w

′(yNy)]
T .

(3.22)
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(a) (b) (c) (d) (e) (f)

Figure 3.5: Patterns of Reynolds stresses in a yz plane (x = 0) cutting through
the streamwise centres of the ensemble averaged positive (top row) and negative
(bottom row) λ2 structures: (a) u′; (b) v′; (c) w′; (d) −u′v′; (e) −v′w′ and (f)
−u′w′. λ2 structures in the yz planes are indicated by contour lines λ+2 = −0.005.
Bright (dark) colour is for high (low) value. Negative contour lines are dashed.
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Figure 3.6: Skin-friction associated with: (a) positive λ2 structure; and (b) negative
λ2 structure. Full wall surface averaged Cf has been subtracted.

Thus the POD modes are defined in the sense to give the fastest spectrum decay

rate for the turbulent kinetic energy, k = 1
2 ||φ(y)||2. A space and time averaged

correlation tensor can be defined, R = 〈φ(y)φ(y′)T 〉x,z for the velocity vector φ(y).

The POD essentially solves the following eigenvalue problem,

∫ 1

0
Rψ(n)(y)dy = λ(n)ψ(n)(y), (3.23)

where ψ(n)(y) and λ(n) are the nth eigenfunction and eigenvalue. ψ(n)(y) represents
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the nth POD mode, and λ(n) represents the energy associated with the nth POD

mode, and

||φ(y)||2 =

3Ny∑

n=1

λ(n). (3.24)

Since the correlation tensor R is Hamiltonian, all the eigenvectors are orthogonal

to each other. Moreover, they are normalised, so that,

∫ 1

0
ψ(n)(y)ψ(m)(y)dy =




1, if m = n,

0, if m 6= n.
(3.25)

To be noticed that, this decomposition can be applied in any wall normal region

[ymin, ymax]. The smaller (ymax − ymin) is, the faster convergence can be achieved.

The NAG@ library is employed to solve equation (3.23). Since a non-uniform grid is

used in the y direction (equation (3.30)), following Moin and Moser (1989) and Ball

et al. (1991), a coordinate transformation is employed to preserve the symmetry of

R, thus equation (3.23) can be transformed to a symmetric matrix problem, i.e.,

(
ζ1/2Rijζ

1/2
)(

ζ1/2ψ(n)
)
= λ(n)

(
ζ1/2ψ(n)

)
, (3.26)

where ζ = ζ1/2ζ1/2 = [∆y1,∆y2, ...,∆yNy ,∆y1,∆y2, ...,∆yNy ,∆y1,∆y2, ...,∆yNy ]
T .

The above approach is called direct POD method, which is suitable for low

freedom vector φ (Berkooz et al., 1993). For example, in the present one dimen-

sional case, the freedom of φ is 3Ny, and the size of R is (3Ny)
2. However, when the

freedom of vector φ is large, which is especially true for two dimensional and three

dimensional turbulent databases, solving equation (3.23) is computational expen-

sive. Fortunately, in two or three dimensional cases, the number of available flow

fields (snapshots) Nt is typically lower than the freedom of a single flow field, thus

the snapshot method can be used to save the computational cost (Sirovich, 1987).

The idea is to change the kernel in equation (3.23) from a spatial correlation tension

R to a temporal correlation tensor K, which is defined as below,

Kij =

∫ 1

0
φ(y, ti)φ(y, tj)dy. (3.27)

Thus, equation (3.23) becomes

∫

t
Kϕ(m)(t)dt = λ(m)ϕ(m)(t), (3.28)
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where max{m} = Nt, smaller than the eigenvector space in the direct POD method.

Then the final eigenvector can be calculated by projecting all the snapshots φ(y, t)

into the vector ϕ(m)(t), i.e.,

ψ(m)(y) =

∫

t
φ(y, t)ϕ(m)(t)dt. (3.29)

For more detailed theory, please refer to Sirovich (1987).

Figure 3.7 shows the first four POD modes for streamwise, wall normal and

spanwise velocity fluctuation components, u′, v′ and w′. Following the assumption

given by Moin and Moser (1989), w′ is taken to be uncorrelated with u′ and v′

in the current channel flow, thus w′ is set to be zero in φ(y) when calculating the

POD modes for u′ and v′; similarly, both u′ and v′ are set to be zeros in φ(y) when

calculating the POD modes for w′. Both direct POD and snapshot POD methods

are used for this calculation, and they show a very good agreement with each other,

and also with the result from Moin and Moser (1989) at a slightly lower Reynolds

number, Reτ = 180. The peak locations calculated by Moin and Moser (1989) are

all slightly closer to the wall, which may come from the effect of different wall normal

coordinate used. Similar to the Fourier modes, higher POD mode has more local

minima and maxima.

Table 3.1 shows the turbulent kinetic energy contributions from the first four

POD modes compared with Moin and Moser (1989), Sen et al. (2007). A reasonable

agreement is achieved. To capture 90% total kinetic energy, 15 POD modes are

needed for the present data, while only 10 POD modes for Moin and Moser (1989),

Sen et al. (2007), which suggests that POD is indeed a powerful tool for turbulent

dimension reduction analysis.

Table 3.1: Contributions to turbulent kinetic energy k from different POD modes.

Case λ1/(2k) λ2/(2k) λ3/(2k) λ4/(2k) 90% of TKE

Present study 0.291 0.155 0.085 0.059 15
Moin and Moser (1989) 0.32 0.16 0.08 - 10

Sen et al. (2007) 0.28 0.16 0.085 0.05 10

Even though snapshot POD can significantly reduce the computational cost,

the convergence rate is slow for three dimensional flow fields. By taking advantage

of the periodic boundary in the streamwise and spanwise directions, the three di-

mensional POD can be reduced to a one dimensional POD in Fourier space for each

wave pair (m,n), where m and n are the integer numbers of sinusoidal waves in the
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Figure 3.7: The first four POD modes for velocity fluctuations, u′, v′, w′: (a) first
mode

√
λ1ψ

(1); (b) second mode
√
λ2ψ

(2); (c) third mode
√
λ3ψ

(3); and (d) fourth
mode

√
λ4ψ

(4). Solid lines are calculation using direct POD method; dashed lines
are calculated using snapshot POD method; and symbols are data from Moin and
Moser (1989).

streamwise and spanwise directions, i.e., λx = Lx
m , λz = Lz

n . Then equations (3.22)

to (3.26) can be written in the complex space for vector φ̂(m,n, y) (see detail in

Moin and Moser (1989), Ball et al. (1991)). After solving the eigenvalue problem, a

total number of q (an integer number) POD modes in y direction are found for each

(m,n) pair. Thus a single three dimensional POD mode is indicated by a quantum

group (m,n, q). Considering the first POD mode in wall normal direction q = 1 for

all the wave pairs (m,n), this gives the characteristic eddy in the turbulent field,

as defined by Moin and Moser (1989). Figure 3.8 shows the characteristic eddy

in a three dimensional view when the phase difference between each mode and its

reference phase is zero. It shows a high-speed streak with two low-speed streaks

accompanying aside. From a yz plan view, the spanwise spacing between the high-

and low-speed streaks is λ+z ≈ 50 in the near wall region, but the spacing increases
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as the wall normal distance becomes larger. The high-speed streak has a very long

tail in the near wall region, and a round head in the channel centre. This agrees with

that channel turbulence becomes more isotropic as it leaves the near wall region to

the channel centre, and again it is reminiscent of Townsend’s double cone eddies

(Townsend, 1976). Due to the homogeneity of the flow in the spanwise direction,

when a phase difference of π is used between each POD mode with its reference

phase, a similar characteristic eddy is expected, but the high- and low-speed streaks

swap positions in the spanwise direction. The captured characteristic eddy is similar

to those shown by Moin et al. (1989) and Moarref and Jovanović (2012), and it is a

perfect low dimensional structure for understanding the effect of flow control, which

is going to be discussed in the following chapters.

Figure 3.8: The characteristic eddy identified in CH200 case. Iso-surfaces are u′ =
−0.35 (red) and u′ = 0.35 (yellow).

3.4 Grid resolution and domain size test

3.4.1 No control baseline cases study

A survey of the grid resolution and domain size for DNS channel at low Reynolds

numbers is shown in table 3.2. Based on the grid study by Hurst (2013), who used

the same code as the present one, the baseline simulation in the present study C0

is set as in table 3.2. The turbulent statistics for the baseline case C0 gives a very

good agreement with literature data, as shown in figure 3.9 for the streamwise mean

velocity, velocity fluctuation, Reynolds shear stress and vorticity fluctuation profiles.

As C0 case working as the baseline, the grid resolution in each direction, x,

y and z is reduced separately. It is noticed that, a hyper-tangent function is used in

the wall normal direction, and the grid coordinate is controlled by the total number
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Table 3.2: Grid resolution and domain size used in literature.
Source Reτ ∆x+ × (∆y+min ∼ ∆y+max)×∆z+ Lx × Ly × Lz

1† 180 12× (0.05 ∼ 4.4) × 7 4π × 2× 2π
2† 180 17.7 × (0.05 ∼ 5.9) × 4.4 4π × 2× 4π/3
3† 180 8.9× (? ∼ 6.1) × 4.5 12π × 2× 4π
4† 200 15.7 × (0.8 ∼ 5.4) × 6.5 4π × 2× 4π/3
5† 200 17× (0.7 ∼ 6.2) × 8.3 4π × 2× 2π
C0 196 5.0 × (0.1 ∼ 2.5) × 2.5 16× 2× 6

† 1: Kim et al. (1987); 2: Moser et al. (1999); 3: del Álamo and Jiménez (2003); 4:
Quadrio and Ricco (2003); 5: Touber and Leschziner (2012).
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Figure 3.9: Comparison of turbulent statistics between present baseline case C0 at
Reτ = 200 (lines) with del Álamo and Jiménez (2003) at Reτ = 180 (symbols): (a)

U ; (b) −u′v′+, (c) u+i,rms and (d) ω+
i,rms.

of grid points Ny and a stretching parameter α, shown as below,

yj =
tanh

[
α
(
2(j−1)
Ny

− 1
)]

tanh(α)
. (3.30)
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The grid resolutions considered are given in table 3.3. A parameter χ is

defined for the grid resolution change, i.e., χ = ∆x+/∆x+C0 for the x direction; χ =

∆y+min/∆y
+
min,C0 and χ = ∆y+max/∆y

+
max,C0 for the y direction; and χ = ∆z+/∆z+C0

for the z direction. Figure 3.10 shows the actual friction Reynolds number Reτ for

a fixed bulk mean Reynolds number Re = Umh/ν = 3150. According to Dean’s

correlation (Dean, 1978), i.e., Cf = 0.073(2Re)−1/4 (or Reτ = 0.175Re7/8), it gives

the corresponding friction Reynolds number of Reτ = 201.6. As shown in figure

3.10, Reτ = 196 is calculated for the baseline case C0, and it is very sensitive to the

streamwise grid resolution, while it only has a small variation for a wide range of the

grid resolutions in the spanwise and wall normal directions. The changes of u+rms

and ω+
y peaks are shown in figure 3.11. It is obvious that: 1) the grid resolution

change in the y direction has a very weak effect on the u+rms and ω
+
y,rms peaks for the

χ range considered; 2) u+rms peak is more sensitive to ∆x+, while ω+
y peak is more

sensitive to ∆z+. Overall the grid test result suggests that the baseline case C0

achieves a similar accuracy as the spectra code by del Álamo and Jiménez (2003),

and the present simulation accuracy is acceptable for χ ≤ 2.0.

Table 3.3: Tested grid resolutions in x, y and z directions separately. († indicates
the grid resolution used for the baseline case C0.)

∆x+ 2.5 5.0† 7.5 10.0 12.5 15.0 20.0
∆z+ 2.5† 3.75 5 6.25 7.5 10.0
∆y+min 0.1† 0.2 0.3 0.4 0.5 0.6 0.7
→֒ α 2.04 1.95 1.73 1.58 1.42 1.34 1.25

∆y+max 2.5† 3.0 4.0 5.0 6.0 7.0 8.0
→֒ α 2.04 2.38 2.54 2.64 2.73 2.84 2.92

To check the effect of domain size, the domain size for C0 is doubled but

with the same grid resolution (CH200L, see table 3.4), then the two dimensional

spectra are checked (The definition of the density spectra is given in appendix B).

Figure 3.12 shows the comparison between the present CH200, CH200L cases and

the Reτ = 180 data from del Álamo and Jiménez (2003): 1) The present simulation

data at Reτ = 200 for both CH200 and CH200L cases shows a very good agreement

with the canonical DNS database for all the Reynolds stress components (v′w′ and

u′w′ are zero for the canonical turbulent channel). 2) Even though the turbulent

statistics show a very good agreement with literature data (figure 3.9) for CH200,

the two dimensional spectra clearly suggest that the domain is not long enough,

especially for the streamwise Reynolds stress u′u′. However, the width of the domain

46



1 2 3 4195

200

205

210

χ

R
e τ

∆x
∆z
∆ymin
∆ymax

Figure 3.10: Sensitivity of calculated friction Reynolds number Reτ to grid resolu-
tions.

1 2 3 42.4

2.5

2.6

2.7

χ

u
+ rm

s ,
m
a
x

∆x

∆z

∆ymin
∆ymax

1 2 3 40.16

0.17

0.18

0.19

0.2

χ

ω
+ y
,m
a
x

(a) (b)

Figure 3.11: Sensitivity of statistics peak values to grid resolutions: (a) u+rms and
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y . Dashed lines indicate the corresponding values from del Álamo and Jiménez
(2003).

for CH200 is large enough, apart from the spanwise Reynolds stress w′w′, for which

a small amount of energy is contained in scales wider than λ+z = 1200. 3) It is well

known that the size of the near wall streaks in the buffer region is scaled in wall

units, i.e., λ+x ≈ 103 and λ+z ≈ 102, which are clearly shown as a dominant energy

peak in figure 3.12(a). At the present low Reynolds number, the domain length

in wall units is even too small for both the CH200L and the case by del Álamo

and Jiménez (2003) (Lx = 12π and Lz = 4π, see table 3.2), since the spectrum

tails at long wavelength for kxkzΦuu and kxkzΦuv are clearly chopped beyond the
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domain length. However, the domain length seems to be just long enough for the

wall normal and spanwise Reynolds stresses, i.e., v′v′, w′w′.
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Figure 3.12: Comparison of two dimensional pre-multiplied density spectra at
y+ ≈ 15 among CH200 (shaded contour), CH200L (dash-dotted contour lines) and
literature data at Reτ = 180 from del Álamo and Jiménez (2003) (solid contour
lines) for (a) kxkzΦuu, (b) kxkzΦvv, (c) kxkzΦww, and (d) kxkzΦuv.

The accumulative one dimensional density spectra along streamwise and

spanwise wavelengths are shown in figure 3.13. This is done by integrating the

density spectrum in a wavenumber range of (0, kx] or (0, kz ], so that, a quantitative

comparison of the accumulated energy can be made starting from the largest scale

to the scale considered. In these plots, the total Reynolds stress u′iu
′
j can be read
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at the smallest wavelength λ+x (or λ+z ) (a direct comparison with figures 3.9(b) and

3.9(c)). Due to the restriction of available online data, the one dimensional spec-

tra are compared at y+ ≈ 10, and the literature data is taken from Moser et al.

(1999) at Reτ = 180, where a smaller domain was used (Lx = 4π and Lz = 4π/3)

compared to del Álamo and Jiménez (2003). Since a staggered grid is used in the

present simulation, no attempt is tried to interpolate the spectrum, thus the wall

normal location for the spectra of u′u′ and w′w′ is half grid shifted from that of v′v′.

Therefore, the total energy of v′v′ is slightly lower than that given by Moser et al.

(1999), but the agreement in u′u′ and w′w′ is very good. The spectrum of u′v′ is not

given by Moser et al. (1999), and the negative portion in figure 3.13(b) is truncated.

As can be seen from 3.13, the domain size affects the energy distribution among

different scales. For example, the tails of the largest wavelengths are lifted up when

the domain size is reduced, while the domain size effect on the small wavelength

side is nearly negligible. Overall, a large enough domain size is important for scales

interaction study in the turbulent field, but the scale integrated turbulent statistics,

such as Reynolds stresses, are less sensitive to the domain size when the domain is

larger than CH200 case.
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Figure 3.13: Comparison of one dimensional accumulated density spectra at y+ ≈
10 among CH200 (solid lines), CH200L (dash-dotted lines) and literature data at
Reτ = 180 from Moser et al. (1999) (dashed lines) for (a) streamwise wavelength
λ+x and (b) spanwise wavelength λ+z .

Based on the baseline case (C0) study, the final grid resolution and domain

size are chosen for another three higher Reynolds numbers, as shown in table 3.4. It

can be noticed that the grid resolution and domain size are slightly reduced in the

streamwise and spanwise directions at three higher Reynolds numbers, which is due

to the consideration of computational cost. A check of the turbulent kinetic energy
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budgets (k = 1
2 (u

′2+ v′2+w′2)) is shown in figure 3.14. The agreement between the

present high Reynolds number simulations and the literature data from del Álamo

and Jiménez (2003), Hoyas and Jiménez (2006) is still very good. The two dimen-

sional pre-multiplied density spectra for the streamwise Reynolds stress kxkzΦuu at

Reτ = 400, 800 and 1600 are shown in figure 3.15. As Reynolds number increases,

the dominant peak is better captured in the domain. However, the footprints of the

large outer scale motions become more and more important, as can be seen in figure

3.15(c) at Reτ = 1600. For the canonical channel flow at high Reynolds numbers,

much larger domain size has been used in literature, for instant, Lx = 8π, Lz = 4π

at Reτ = 550 (del Álamo and Jiménez, 2003), Lx = 8π, Lz = 3π at Reτ = 950

(Hoyas and Jiménez, 2006), and Lx = 8π, Lz = 3π at Reτ = 2000 (Hoyas and

Jiménez, 2006). As a careful interpolation of the large scale effect in the following

chapters, a domain size doubled case at Reτ = 800 is also performed, i.e., CH800L.

Table 3.4: Final grid resolution and domain size adopted for the four Reynolds
numbers studied.

Case Reτ Re ∆x+ ∆y+min ∆y+max ∆z+ ∆t+ Lx Lz

CH200 196 3150 5.0 0.4 6.0 2.5 0.2 16.0 6.0
CH200L 196 3150 5.0 0.4 6.0 2.5 0.2 32.0 12.0
CH400 397 7000 10.0 0.4 7.2 5.0 0.2 16.0 6.0
CH800 801 15700 10.0 0.4 9.7 5.0 0.2 12.0 4.0
CH800L 797 15700 5.0 0.4 9.7 5.0 0.2 24.0 8.0
CH1600 1609 34500 10.0 0.4 9.2 5.0 0.2 12.0 4.0

3.4.2 Control baseline cases study

A fully developed turbulent flow field from the no control baseline case C0 is used

as the initial field for the flow control. In the present studies, we consider three dif-

ferent types of spanwise motions generated by 1) spanwise wall velocity; 2) spanwise

Lorentz force; and 3) spanwise plasma actuators. Figure 3.16 shows the response

of the normalised skin-friction after the control is activated (at t = 0). All the

three controls show two separated stages: 1) a transient response, and 2) a new

equilibrium stage. As has been noticed by Quadrio and Ricco (2003) and Ricco

and Hahn (2013), the length of the transient period depends on both the control

parameters and the final skin-friction state. Generally, a higher drag reduction case

has a longer transient period. The longest transient period appears for ST1 config-

uration using plasma actuators, because a steady plasma body force is used, and it
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Figure 3.14: Turbulent kinetic energy k budgets comparison between present sim-
ulation at four Reynolds numbers (lines) with those from literature (symbols): (a)
Reτ = 200; (b) Reτ = 400; (c) Reτ = 800 and (d) Reτ = 1600. The symbols in
(a)(b)(c)(d) are for Reτ = 180 (del Álamo and Jiménez (2003)), Reτ = 395 (Moser
et al. (1999)), Reτ = 950 (Hoyas and Jiménez (2006)) and Reτ = 2000 (Hoyas and
Jiménez (2006)), respectively.

takes a very long time for the spanwise mean velocity profile to be developed. After

the mean level of Cf settles down, the Cf trajectories show an oscillation with two

different time scales: a small one associated with the control forcing, and a large

one associated with the outer large scale motions (Touber and Leschziner, 2012).

One particular case (W-OC, A+
w = 12, ω+ = 0.01) is chosen to show the very large

Cf variation caused by the control when the forcing period is low. This kind of

behaviour makes the Cf prediction expensive due to a long sampling time required.

Hurst et al. (2014) has shown a big variation in the DR prediction among literature

data for the spanwise wall oscillation case, even when the control parameters are

very close to each other.

In the present study, all the flow controls are applied at a constant mass flow
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Figure 3.15: Comparison of two dimensional pre-multiplied density spectra for
streamwise velocity kxkzEuu at y+ ≈ 15 between present data (shaded contour) and
literature data (contour lines) at (a) Reτ = 400; (b) Reτ = 800 and (c) Reτ = 1600.
The literature data are from the same source as in figure 3.14.

rate, thus a drag reduction corresponds to a decrease in skin-friction. The long term

drag reduction is defined as below,

DR =
1

tf − ti

∫ tf

ti

Cf,0 − Cf

Cf,0
dt× 100(%), (3.31)

where Cf and Cf,0 are xz plane averaged skin-friction coefficient of the controlled

and no control cases, respectively. ti and tf are the starting and ending time for
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Figure 3.16: Time history of skin-friction for three types of flow control cases: wall
motion (“W”, red lines), Lorentz force (“L”, green lines), and plasma actuators
(“P”, blue lines).

the time average. Correspondingly, the drag increase is defined as DI = −DR. ti

is the time instance after the transient period of the flow control, and the value is

determined by eyes from the Cf time history plot (the values of ti are listed in table

3.5). Similar procedure was used by Quadrio and Ricco (2004) and Ricco and Hahn

(2013). However, for turbulent statistics calculation, the transient period is set to

be longer by monitoring the streamwise total shear stress profiles in a window size of

∆T ≈ 300, since the flow response in the channel center is slower than uτ response

on the wall (Jung and Chung, 2012).

To quantify the uncertainty in DR caused by the grid resolution and the

domain size, a systematic check has been conducted for typical cases of each control.

They are listed in table 3.5, and the control parameters for each case are given at

the bottom of the table. Here the grid resolution test only focuses on the streamwise

and spanwise directions, since the turbulence statistics for the no control case is not

sensitive to the y grid resolution (see figures 3.10 and 3.11), and also the study by

Hurst (2014) suggested that for the same code, the DR and turbulence statistics for

the control by spanwise wall velocity did not change when doubling the wall normal

resolution or the time step. Therefore, the same wall grid resolution as C0 case is

used for all the test simulations, and the time step is fixed at ∆t+ = 0.2.
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For spanwise wall motion, three baseline cases are tested, i.e., optimal span-

wise wall oscillation (W-OC), optimal stationary wave (W-SW), and optimal stream-

wise travelling wave case (W-TW). An additional set of tests is also performed at

Reτ = 400 to check the Reynolds number effect. The largest change in DR is

1.7% for the optimal travelling wave case. For spanwise Lorentz force control, the

streamwise and spanwise resolution and domain size tests are done for the optimal

oscillation case (L-OC), and the travelling wave case (L-TW) with the highest drag

increase. The largest DR difference is around 1.5%. For plasma actuators, the tests

are done for two configurations, i.e., ST1 and SO4, and the largest DR different

due to the grid resolution and the domain size is around 1% for ST1 and 1.4% for

SO4. According to the typical control cases study, we give a 2% error bar for the

DR values in the present study.
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Table 3.5: Grid resolution and domain size test for flow controls by spanwise motion:
wall motion (W), Lorentz force (L) and plasma actuators (P).

Case Reτ Lx × Lz ∆x+ ×∆z+ ti Cf × 103 |∆Cf |(%)† DR(%)

W-OC1 200 16× 6 5× 2.5 200 4.93 - 36.1
W-OC 200 16× 6 5× 5 200 4.94 0.06 36.1
W-OC 200 16× 6 10× 5 200 5.05 0.02 34.6
W-OC 200 32× 12 5× 2.5 200 5.03 0.02 34.9
W-OC 400 16× 6 5× 5 100 4.46 - 29.8
W-OC 400 16× 6 10× 5 100 4.49 0.01 29.2
W-OC 400 32× 12 5× 5 100 4.42 0.01 30.4
W-SW2 200 16× 6 5× 2.5 250 4.25 - 45.0
W-SW 200 16× 6 5× 5 250 4.27 0.01 44.8
W-SW 200 16× 6 10× 5 250 4.30 0.01 44.3
W-SW 200 32× 12 5× 2.5 250 4.31 0.01 44.3
W-TW3 200 16× 6 5× 2.5 350 3.94 - 49.1
W-TW 200 16× 6 10× 5 350 3.96 0.01 48.8
W-TW 200 32× 12 5× 2.5 350 4.06 0.03 47.4

L-OC4 200 16× 6 5× 2.5 200 5.57 - 27.9
L-OC 200 16× 6 10× 2.5 200 5.59 0.01 27.6
L-OC 200 16× 6 2.5× 2.5 200 5.68 0.02 26.4
L-OC 200 16× 6 5× 5 200 5.60 0.01 27.5
L-OC 200 16× 6 5× 1.25 200 5.63 0.01 27.1
L-OC 200 32× 6 5× 2.5 200 5.68 0.02 26.4
L-OC 200 16× 12 5× 2.5 200 5.61 0.01 27.3
L-TW5 200 16× 6 5× 2.5 50 10.11 - −30.8
L-TW 200 16× 6 2.5× 2.5 50 10.22 0.89 −32.0
L-TW 200 16× 6 5× 1.25 50 10.14 0.34 −31.3
L-TW 200 32× 6 5× 2.5 50 10.11 0.01 −30.8
L-TW 200 16× 12 5× 2.5 50 10.12 0.13 −31.0

P-SO46 200 16× 6 5× 2.5 140 6.08 - 21.3
P-SO4 200 16× 6 2.5× 2.5 140 6.16 1.28 20.3
P-SO4 200 16× 6 5× 1.25 140 6.10 0.35 21.0
P-SO4 200 16× 12 5× 2.5 140 6.09 0.11 21.2
P-ST17 200 16× 6 5× 2.5 650 6.43 - 16.8
P-ST1 200 16× 6 2.5× 2.5 650 6.54 1.68 15.4
P-ST1 200 16× 6 5× 1.25 650 6.49 0.98 16.0
P-ST1 200 16× 12 5× 2.5 650 6.51 1.26 15.8

1 - A+
w = 12, ω+ = 0.06 (T+ = 105); 2 - A+

w = 12, κ+x = 0.008 (λ+x ≈ 800); 3 -
A+

w = 12, ω+ = 0.02 (T+ = 314), κ+x = 0.008 (λ+x ≈ 800); 4 - Af = 0.5, ω+ = 0.06
(T+ = 105); 5 - Af = 0.5, ω+ = 0.06 (T+ = 105), κ+x = 0.008 (λ+x ≈ 800); 6 -
Af = 1.0, s+ = 50, ω+ = 0.06 (T+ = 105); 7 - Af = 1.0, s+ = 50, c+ = 0.
† percentage change of Cf with respect to the baseline case (indicated by a

superscript) for each control.
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Chapter 4

Drag Reduction by Spanwise

Wall Oscillation

In this chapter, the spanwise wall motion refers to any form of spanwise velocity

imposed on the wall,Ww (figure 4.1). It can be a uni-direction spanwise wall velocity

(Le et al., 2000), or a temporal oscillating spanwise wall velocity (Jung et al., 1992),

or a spatial modulated spanwise wall velocity (Viotti et al., 2009; Quadrio et al.,

2009), or a uniform spanwise wall velocity of an arbitrary temporal wave form

(Cimarelli et al., 2013). Here we investigate the first two spanwise wall velocity

forms in this chapter. A mathematics formula for these two spanwise wall velocities

are shown as below,

Ww =Aw, (4.1)

or,

Ww =Aw sin(−ωt) = Aw sin

(
−2π

T
t

)
, (4.2)

where Aw is the magnitude of the spanwise wall moving velocity, and ω (T ) is the

spanwise wall oscillation frequency (period).

The aim of this chapter is to explore skin-friction drag reduction mechanism

and the near wall structure modulation by spanwise wall motion. Even though

spanwise wall oscillation control has been proposed for more than 20 years, and

both DNSs and experiments have confirmed its drag reduction effect at low Reynolds

numbers, the drag reduction mechanism is explained from different aspects (see table

4.1 for a brief summary), and some views are still in debate. A particular focus of the
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present study is on the near wall structures directly conditioned from a DNS channel

database, following the work of Hurst (2013), and this gives us a clear insight into

the near wall structure response to the initial impose of spanwise wall motion, and

the cyclic behaviour in the new equilibrium state. The findings provide a guide to

the study of skin-friction drag reduction by practical wall attached actuators in the

following two chapters, i.e., Lorentz force actuators and DBD plasma actuators.

Figure 4.1: Schematics of skin-friction control by spanwise wall velocity.

4.1 Uni-direction wall motion

Uni-direction wall motion is an ideal case to study the drag reduction at the initial

stage of the spanwise wall motion (Le et al., 2000). We consider a wide range of

spanwise wall velocities, i.e., A+
w = 1 ∼ 20, and the scenario when the top and

bottom walls move in the same direction (in phase) or in opposite directions (out of

phase). For all the cases in the present study, the x direction mass flow rate is kept

constant by dynamically adjusting the streamwise mean pressure gradient dP/dx.

Figure 4.2 shows the long time and short time history of skin-friction co-

efficient Cf for four typical cases, UA6 (A+
w = 6, in phase), UA12 (A+

w = 12, in

phase), UA6O (A+
w = 6, out of phase), UA12O (A+

w = 12, out of phase) after the

wall starts to move in the spanwise direction at t+ = 0. The flow passes a transient

process and then settles down at a new equilibrium state. The in phase cases, i.e.,

UA6 and UA12 experience some longer time Cf drop after hitting the peak values,

compared to the out of phase cases, i.e., UA6O and UA12O. However, the short

term transient process (t+ < 300) does not depend on the phase of the wall motion,

but purely on A+
w (figure 4.2(b)). Though all the control cases finally settle down at

a higher Cf state, there is an initial Cf drop for t+ < 100. The length of the initial

Cf decay seems not to be scaled in wall units, instead it is A+
w dependent: t+ ≈ 60

for A+
w = 6; and t+ ≈ 80 for A+

w = 12. Le et al. (2000) used t+ = 60 to define the
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Table 4.1: Drag reduction mechanisms by spanwise wall oscillation in literature.

Source Mechanism

Baron and Quadrio (1996) Spanwise wall oscillation disrupts the spatial co-
herence between streamwise vortices (10 < y+ <
50) and low-speed streaks (y+ < 10).

Choi et al. (1998) Negative spanwise vorticity is created in both
positive and negative movement of spanwise
wall oscillation, reducing velocity gradient in the
near wall region.

Xu and Huang (2005) The global turbulence suppression is caused by
the sustained attenuation of the pressure-strain
term in the turbulent budget.

Duggleby et al. (2007) The coherent vorticity structures are pushed
away from the wall into higher speed flow, caus-
ing a shorter time interaction between the prop-
agating wave modes and the roll modes, thus
less Reynolds shear stress production.

Ricco et al. (2012) Turbulent dissipation rate is largely enhanced
during the transient process, which leads to drag
reduction in the new quasi-equilibrium state.

Touber and Leschziner (2012) The unsteady cross-flow straining causes major
spanwise distortions in the streaks, and the re-
duction in wall normal and shear stresses.

Agostini et al. (2014) The drag reduction process is linked to the rate
of change in the Stokes strain in the upper re-
gion of the viscous sublayer where streaks are
the strongest.

Yakeno et al. (2014) Spanwise wall oscillation suppresses the near-
wall streamwise vortices rotating in the oppo-
site direction, and also tilt the structures into
spanwise direction.

Cf minimum in their case (A+
w = 8.5). They further divided the transient process

into three periods, i.e., the early reduction period (t+ < 20); the late reduction

period (20 < t+ < 60); and the recovery period (t+ > 60). This Cf reduction and

recovery process is very important for understanding the drag reduction mechanism

for a wide range of spanwise motions studied in this thesis.

We focus on UA12O case, and run simulations for the transient process using

10 different initial flow fields, then get the ensemble averaged statistics at each time

instance as indicated by the dashed line in figure 4.2(b). The wall normal profiles
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Figure 4.2: Time history of skin-friction coefficient Cf for uni-direction spanwise
wall motion: (a) long time history; and (b) transient process.

for the turbulent kinetic energy (q ≡ 2k ≡ 〈u′iu′i〉) and the enstrophy (〈ω′
iω

′
i〉) are

shown in figure 4.4 for t+ up to 220 with a time interval of ∆T+ = 20. The 〈u′iu′i〉
across the whole channel decreases up to t+ = 60, then starts to increase, which

is very consistent with the Cf drop. On the contrary, 〈ω′
iω

′
i〉 increases sharply at

t+ = 20, especially shows a peak at y+ ≈ 8, which indicates the enhancement of

turbulent dissipation at the start of the wall motion. After t+ = 20, the near wall

enstrophy starts to follow the change of 〈u′iu′i〉 to establish the energy balance in

the new state. A more pronounced change happens to the streamwise and spanwise

production terms, i.e., −2〈u′v′〉dU/dy and −2〈v′w′〉dW/dy. The streamwise pro-

duction terms decreases for up to t+ ≈ 40 then starts to recovery, in the mean time

the spanwise production term keeps increasing due to the increase of spanwise mean

shear. Therefore, both the reduction of production and the increase of dissipation

counted for the initial Cf drop (Moin et al., 1990). More precisely, in a 3D turbulent

boundary layer, Coleman et al. (1996) showed that small scales are more quickly af-

fected by the initial wall motion than the large scales, thus the imposed wall motion

enhanced the small scales, resulting in the turbulent dissipation increase. To verify

this point, we show the streamwise velocity spectra kxΦuu at four time instances,

i.e., t+ = 0, 20, 40 and 60 in figure 4.5. It is clear to see that at t+ = 20 a small

protrusion at λ+x ≈ 130 starts to form, while the energy at λ+x ≈ 1000 becomes

weaker. It is also noticeable that the most energetic site is pushed away from the

wall (from y+ = 14 to 19). This is consistent with the upward shift of the 〈ω′
iω

′
i〉

peak. The upward shift of the small scales enhances the dissipation in the region

y+ < 20. In the present study and the 3D boundary layer studies by Moin et al.

(1990) and Coleman et al. (1996), the spanwise wall velocity (or pressure gradient)

are imposed suddenly, thus there is a big jump in w at the first time step. However,
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recently Agostini and Leschziner (2014) studied the transient enstrophy response

for spanwise wall oscillation, where the spanwise wall velocity gradually increased

from 0, and they also observed an initial enstrophy increase during 0 < t+ < 10.

After t+ = 20, turbulent kinetic energy starts to transfer from the original stream-

wise aligned streaks to the new oblique streaks (see also figure 7 in (Coleman et al.,

1996)). The new energetic site in the kxΦuu spectrum is just the x projection of the

new streaks. Therefore, the very important phenomenon in the transient process is

the breaking down of the streaks. It leads to the drop of the turbulent kinetic energy

and more near wall small scale structures to enhance the turbulent dissipation.
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Figure 4.3: Wall normal profiles during the transient process of UA12O for (a)
turbulent kinetic energy (〈u′iu′i〉+); and (b) turbulent enstrophy (〈ω′

iω
′
i〉+).
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Figure 4.4: Wall normal profiles during the transient process of UA12O for (a)

streamwise turbulent production (−2〈u′v′〉dUdy
+
); and (b) spanwise turbulent pro-

duction (−2〈v′w′〉dWdy
+
).

We investigate the streaks breaking down during the transient process using

the conditioned λ2 structures, because those near structures form a regeneration
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Figure 4.5: One-dimensional pre-multiplied streamwise spectra for UA12O at (a)
t+ = 0, (b) t+ = 20, (c) t+ = 40 and (d) t+ = 60.

cycle with the near wall streaks (Hamilton et al., 1995). The procedure to extract

these λ2 structures has been explained in details in section 3.2 for the canonical

channel flow. For UA12O case, we apply the same procedure to each time instance

at t+ = 0 ∼ 220 with an interval of ∆T+ = 20. The ensemble averaged positive

and negative λ2 structures at t+ = 20, 40, 60, 80, 100, 120, 140 and 220 are shown

in figure 4.6. Comparing to the canonical flow case (figure 3.4), the λ2 structures

are strongly affected by the spanwise wall motion: 1) Both positive and negative

λ2 structures are tilted into negative z direction, since the head and tail of the λ2

structures are convected at different spanwise velocities. 2) Positive and negative λ2

structures response in different ways to the spanwise wall motion. Immediately after

the impose of the spanwise wall velocity, the positive λ2 structure starts to become

weaker and moves upward, with the weakest period at t+ = 80 ∼ 120. The negative

λ2 structure generates spanwise velocity underneath in the same direction as the

wall motion, and its strength is enhanced at t+ = 20, then weakened afterwards up

to t+ = 120. In the canonical channel flow, the positive and negative λ2 structures

are highly symmetric about the flow direction (see t+ = 0 in figure 4.6), and they are

responsible for the near wall long streaks (Jeong et al., 1997). With the spanwise wall

motion, this symmetry between the positive and negative λ2 structures is broken

up, leading to the breaking up of the near wall streaks as well (see figure 4.5).

The skin-friction in the domain (L+
x × L+

y × L+
z = 200 × 60 × 100) of the

conditioned λ2 structures are sampled (see figure 3.6 for the skin-friction pattern for

the canonical case). The skin-friction associated with the positive (Cf+) and the

negative (Cf−) λ2 structures is normalised by Cf at t+ = 0, and plotted in figure

4.7, together with the volume integrated turbulent kinetic energy and enstrophy.

Cf+ and Cf− follow closely Cf . At t+ = 20, the positive λ2 structure is pushed

away, thus generates less skin-friction; negative λ2 structure generates less skin-

friction mainly due to the spanwise tilting, thought its strength actually increases
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(a)

(b)

Figure 4.6: Ensemble averaged (a) positive and (b) negative λ2 structures during the
transient period for UA12O at t+ = 0, 20, 40, 60, 80, 100, 120 and 220. λ2 structures
are visualised with λ+2 = −0.005. Arrows indicate the wall moving direction.

at this time instance. However, Cf+ starts to recovery at t+ = 60, earlier than

Cf−, which recovers at t+ = 100. At t+ = 120, the two structures are almost

aligned in the same direction as the mean flow (see figure 4.6), and generate the

same level of skin-friction. The turbulent kinetic energy and enstrophy start to

recover earlier than skin-friction, and this is due to the w′w′ and ω′
xω

′
x components,

which are directly generated by the spanwise mean strain ∂W/∂y. Figure 4.7 also

compares the time trace of the volume integrated enstrophy between UA12O and

spanwise wall oscillation data at T+ = 100 from (Ricco et al., 2012) and T+ = 200

from (Agostini et al., 2014). All three datasets show an initial enstrophy increase.

This increasing period is t+ ≈ 13, 10, and 25 for UA12O, (Agostini and Leschziner,

2014) and (Ricco et al., 2012), respectively. The difference in this time scale might

be due to the fact that the simulation in (Ricco et al., 2012) was operated at a

constant pressure gradient, in contrast to the other two, which were at a constant

mass flow rate. For UA12O, the enstrophy increase period is around 1/6 of the Cf

dropping period, and for the other 5/6 time the enstrophy is below the original level.
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On the contrary, the summation of streamwise and spanwise productions does not

recovery to the original level until t+ ≈ 90, matching the Cf decay period. Thus it

suggests that the production decrease is more directly related to the initial Cf decay

compared to the transient enstrophy increase, at least for the present uni-direction

wall motion situation. The time scale for the λ2 structures to realign themselves

in the new flow direction matches well with the Cf decay period. From structures’

point of view, this is the tilting of the λ2 structure that breaks down the low-speed

streaks, reducing the production of the streamwise Reynolds shear stress and the

turbulent kinetic energy.
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Figure 4.7: Transient time history for skin-friction, turbulent kinetic energy and
enstrophy. The thin lines are enstrophy data from (Ricco et al., 2012) at T+ = 100,
and (Agostini and Leschziner, 2014) at T+ = 200 for spanwise wall oscillation.

The Cf decay period for UA12O, i.e., T+ ≈ 80, matches reasonably well

with half of the optimal oscillation period T+
opt in the spanwise wall oscillation,

which is going to be shown later. Quadrio and Ricco (2004) first linked T+
opt with

the Lagrangian time scale, T+ ≈ 60 for the longest-lived and statistically signifi-

cant turbulent structures. A similar optimal time scale from generalized optimal

perturbation (GOP) approach, T+
GOP ≈ 80 has also been predicted (Blesbois et al.,

2013). Recently, Cimarelli et al. (2013) has shown that the optimal oscillation period

T+
opt = 125 was almost fixed for many different temporal spanwise oscillation waves.

This implies that the near wall structures only adjust themselves to the new state

within T+ ≈ 80, and beyond that they start to recovery the strength and generate

higher skin friction. We have run simulations for a wide range of spanwise wall ve-

locity amplitude, A+
w = 1 ∼ 20, and all the cases end with drag increase (see figure
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4.8). If the wall alternates its moving direction before t+ ≈ 80, then a reflected

response as in figure 4.6 happens to the positive and negative λ2 structures, and

this brings the flow into a further lower Cf state. The study on the initial response

by Quadrio and Ricco (2003) suggested that this process can finally settle down

after 2 ∼ 3 cyclic periods. The above process is not sensitive to the exact temporal

wave form of the wall motion, which is a good news for practical drag reduction

applications.
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Figure 4.8: Drag increase for different spanwise wall moving velocities when the top
and bottom walls move in phase or out of phase.

For uni-direction wall motion, the flow finally settles down at a Cf state

depending on both A+
w and the moving phase between the top and bottow walls.

This is clearly demonstrated in figure 4.8. For A+
w ≤ 4, the DI value does not

dependent on the wall moving direction; while forA+
w > 4, theDI difference becomes

significant. The drag increases monotonously with A+
w when the top and bottom

walls are out of phase, but it saturates at DI ≈ 12 when they are in phase. This DI
behaviour is reflected in the spanwise mean velocity profiles, as shown in figure 4.9.

The spanwise mean shear ∂W/∂y keeps increasing with A+
w when the two walls are

out of phase; while a larger A+
w only leads to a higher spanwise bulk mean flow, not

the mean shear ∂W/∂y when the two walls are in phase. This also suggests that the

DR in channel flow controls can have different asymptotic behaviours depending on

the wall moving phase.

The skin-friction increase is also reflected in the Reynolds stress components,

shown in figure 4.10. As can be seen, the velocity fluctuations for the three velocity

components increase significantly across the whole channel height (figure 4.10(a)).
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Figure 4.9: Spanwise mean velocity profiles for different spanwise wall moving ve-
locities when the top and bottom walls are in phase or out of phase.

Higher spanwise wall moving velocity corresponds to larger increase in the u+i,rms

values. The spanwise wall motion also introduces the other Reynolds shear stress

components, i.e., v′w′, u′w′, which are zeros in the canonical flow (figure 4.10(b)).

Fukagata et al. (2002) proposed an identity, which is now known as F.I.K. identity,

to quantify the origin of the wall shear stress, and it is written as below for the

channel flow,

Cf =
6

Re
+ 6

∫ 1

0
(1− y)(−u′v′)dy, (4.3)

where the first and second terms on the right hand side are the laminar and turbulent

contributions to the skin-friction. Therefore, the increase of −u′v′ is directly linked

to the increase of Cf .

To close this section, we show the ensemble averaged λ2 structures for UA12O

in the new steady state (figure 4.11). A comparison can be made with the case for

a 2D boundary layer (A+
w = 0) in figure 3.4. The mean velocity and shear angles for

UA12O vary in wall normal direction, thus the positive and negative λ2 structures

have different preferred alignment angles, and they are less symmetric. Nevertheless,

the λ2 structures in a steady 3D turbulent boundary layer is very similar to its

2D counterpart. In the following part, we are going the further investigate these

λ2 structures within an unsteady 3D turbulent boundary layer subjected to the

spanwise wall oscillation.
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Figure 4.10: Comparison of the Reynolds stress profiles among no control case
(dashed lines), UA12O (solid lines) and UA6O cases (dash-dot lines): (a) normal

components, u+rms, v
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Figure 4.11: Ensemble averaged positive (yellow) and negative (red) λ2 structures
in the new equilibrium state for UA12O case. λ2 structures are visualised with
λ+2 = −0.005.

4.2 Spanwise wall oscillation

By continuously suppressing the positive and negative λ2 structures, spanwise wall

oscillation (equation (4.2)) can achieve a sustained drag reduction (Jung et al., 1992).

One interesting phenomenon for the turbulent statistics at the lower Cf state is the

phase variation (Touber and Leschziner, 2012; Agostini and Leschziner, 2014), thus

the main aim of this section is to show that the phase modulation and the rich near

wall turbulent phenomena can be directly linked to the positive and negative λ2

structures. In this study, the wall oscillation amplitude is fixed at A+
w = 12, and the

oscillation frequency ω+ ranges from 0.01 to 0.12 (or T+ = 52 ∼ 628).

We first show the time history of the skin-friction coefficient Cf for the

spanwise wall oscillation at four different oscillation frequencies, i.e., ω+ = 0.01,

0.03, 0.06 and 0.12 (T+ = 628, 209, 105 and 52) in figure 4.12. The flow experiences
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a long time transient to the new equilibrium state. A visual by eyes from the Cf

curves gives the length of the transient period to be t+ = 550, 1500, 1200 and 1800

for ω+ = 0.01, 0.03, 0.06 and 0.12 (T+ = 628, 209, 105 and 52), respectively. To be

noticed that Cf has an undershooting behaviour, which has been taken into account

for the present transient process. The initial Cf decreasing period roughly agrees

with the observation by Quadrio and Ricco (2003), who gave t+ = 200 ∼ 400.
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Figure 4.12: Skin-friction coefficient Cf time history for spanwise wall oscillation
cases with different oscillation frequencies.

Together plotted in figure 4.12 is the initial Cf time history for UA12O case,

which shows some similarity as that of ω+ = 0.01 (T+ = 628) case in the first half

wall oscillation period (t+ < 314). When the wall starts to move, Cf decreases for

0 < t+ < T+/4, then it begins to recover for T+/4 < t+ < T+/2. The turning

point is at t+ ≈ 150; while for UA12O case, a similar turning point is at t+ ≈ 80.

As explained in the previous section, for ω+ = 0.01 (T+ = 628) case, the wall

moves in one direction for t+ = 314 long, and the λ2 structures have enough time

to recover to the initial or even higher Cf level before the wall changes the moving

direction. Differently, for ω+ = 0.03 (T+ = 209) case, the Cf recovery period is very

short, as can be seen from the local peaks in the Cf time history curve, thus the Cf

level keeps decreasing in the first 3 oscillation periods. For even higher oscillation

frequencies, ω+ = 0.06 and 0.12 (T+ = 628 and 52), the wall changes the moving

direction before the Cf recovers. After several wall oscillation periods, a new quasi-

steady Cf state is reached, where Cf shows an oscillation behaviour for all the four

cases. The large time scale irregular variation is due to the limited box size used,

which can only capture a limited number of the very large scale structures (Touber
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and Leschziner, 2012); while the small scale regular variation is associated with

spanwise wall oscillation frequency. Apparently, at lower oscillation frequencies, the

Cf variation associated with the wall oscillation is larger. For the highest oscillation

frequency ω+ = 0.12 (T+ = 52), the small Cf oscillation is almost invisible. A long

time averaged Cf gives the drag reduction of −2±2%, 28±2%, 36±2% and 30±2%

for cases ω+ = 0.01, 0.03, 0.06 and 0.12 (T+ = 628, 209, 105 and 52), respectively.

Specially, we can treat the UA12O case as a spanwise oscillation case with

frequency ω+ = 0 (T+ = ∞). Then the uni-direction cases with A+
w = 1 ∼ 12

studied in the previous section can be used to predict the asymptotic DR value at

the extreme oscillation frequency (or period). It has to be pointed out that DNS is

not possible for the spanwise wall oscillation at ω+ = 0 (T+ = ∞), or even for finite

small ω+ (finite large T+), because the uncertainty in Cf prediction can be very high

due to the limited sampling number of the cyclic periods. At ω+ = 0 (T+ = ∞),

the spanwise mean velocity profiles are different depending on whether the top and

bottom walls move in phase or out of phase (see figure 4.9), thus different asymptotic

values are expected. The two predicted DR asymptotic values are DR = −8.6 when

top and bottom walls are in phase, and DR = −16.1 when they are out of phase.

The detail about how to get these two values is given in appendix C.

Figure 4.13 shows the two asymptotic DR values together with the DNS

data for ω+ ≤ 0.03 (T+ ≥ 209). The effect of the wall moving direction just start

to appear as ω+ ≤ 0.005 (or T+ ≥ 1260). A direct interpolation of this result is

that the λ2 structures only feel the effect from the opposite side wall motion when

the Stokes layer is thick enough, which corresponds to a small enough oscillation

frequency. The present DNS data tends to approach the two asymptotic DR values,

but the change in the range ω+ < 0.0025 seems to be very sharp. The DNS data

from Quadrio et al. (2009) tends to get very close to the in phase asymptotic DR
value. The DR asymptotic prediction further supports that the drag reduction in

the spanwise wall oscillation is the same as the mechanism for the transient Cf

decay in the uni-direction wall motion, i.e., due to the breaking up of the near wall

streaks. In the following sections, we are going to explore this point by focusing on

the interaction between the λ2 structures and the Stokes layer.

4.2.1 Turbulence statistics

The turbulence statistics are compared in figure 4.14 for the mean velocity, Reynolds

stresses and vorticity fluctuations. All the statistics are non-dimensionalised by the

wall units of the no control case. In this format, the DR cases have a streamwise

mean velocity decrease in the near wall region, corresponding to the thicken of the
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Figure 4.13: DR asymptotic for spanwise wall oscillation at Reτ = 200, A+
w = 12.

viscous sublayer; and a streamwise mean velocity increase in the outer layer due to

the constant mass flow constrain (Choi et al., 1998). For the first-moment statistics,

a triple decomposition is used for any turbulent property φ, i.e.,

φ = φ̃+ φ′ = φ+ φ̂+ φ′, (4.4)

where φ = 〈φ〉x,z,t is the time and space averaged value, and it is normally writ-

ten as an upper case Φ; φ̃ is the phase averaged component, and is defined as:

φ̃(t) = 1
N

∑N
n=1 〈φ(t+ nT )〉x,z (n is an integer) for spanwise wall oscillation cases

in the present chapter; φ̃(x) = 1
N

∑N
n=1 〈φ(x+ nλx)〉z,t for streamwise stationary

wave cases, φ̃(z) = 1
N

∑N
n=1 〈φ(z + nλz)〉x,t for spanwise stationary wave cases;

and φ̃(x) = 〈φ(x+ ct)〉z,t (c = ω/κx) for streamwise travelling wave cases, and

φ̃(z) = 〈φ(z + ct)〉x,t (c = ω/κz) for spanwise travelling wave cases in the following

chapters. φ̂ = φ̃− φ, and for no control case, φ̂ = 0. φ′ is the stochastic fluctuation.

The high order statistics are only considered for the stochastic fluctuation

component. Generally, compared to the no control case, DR cases by spanwise wall

oscillation show a reduction in the Reynolds stress components (see figure 4.14(b),

4.14(c), 4.14(d) and 4.14(e)) and in vorticity fluctuation components as well (see

figure 4.14(f), 4.14(g), 4.14(h)). As expected, all the statistics show an overall

increase for the drag increase case ω+ = 0.12 (T+ = 52). A better correlation is

found between the DR value and the wall normal components, i.e., v+rms and ω+
y ,

similar to the opposition flow control (Chung and Talha, 2011).
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Figure 4.14: Turbulence statistics at four oscillation frequencies for: (a) U+; (b)
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4.2.2 Stokes layer

Spanwise wall oscillation without streamwise flow is known as Stokes’ Second Prob-

lem, and the generated unsteady spanwise mean flow is called Stokes layer. It has

an analytical solution in the form as below,

W (y, t) = Awe
−η cos(ωt− η), (4.5)

where η = y
√
ωRe/2 (Schlichting, 1968). When equation (4.5) is non-dimensionalised

in wall units, it becomes

W (y+, t+) = A+
we

−η cos(ω+t+ − η), (4.6)

where η = y+
√
ω+/2. Therefore, the Stokes layer in wall units does not have

Reynolds number effect, as already shown by Hurst et al. (2014).

The spatial and phase averaged spanwise velocity profiles at four oscillation

frequencies, i.e., ω+ = 0.01, 0.03, 0.06 and 0.12 (T+ = 628, 209, 105, 52) are

shown in figure 4.15, and compared with the laminar solution. It is clear that

when the oscillation frequency is low, the turbulent Stokes layer differs significantly

from the laminar solution, and they get closer to each other as ω+ increases. This

was also the observation by Touber and Leschziner (2012), when they compared the

turbulent and laminar Stokes layer profiles at T+ = 100 (ω+ ≈ 0.063) and T+ = 400

(ω+ ≈ 0.016). Ricco and Quadrio (2008) pointed out that this difference was caused

by the additional Reynolds shear stress term ∂v′w′+

∂y+
raised from the spatial averaged

spanwise momentum equation, shown as below,

∂W̃+

∂t+
=
∂2W̃+

∂y+2
− ∂ṽ′w′+

∂y+
. (4.7)

Ricco and Quadrio (2008) showed that ∂ṽ′w′
+

∂y+
was large during the transient process,

reaching the maximum at t ≈ T/2, and it became negligible once the new equilibrium

state was reached after a few oscillation periods. The phase variation of ∂ṽ′w′
+

∂y+

after the transient process is shown in figure 4.16. It is clear that the variation of
∂ṽ′w′

+

∂y+
increases (especially for the region y+ < 20) as ω+ decreases, and this causes

the large discrepancy between the turbulent and laminar Stokes layer profiles for

ω+ = 0.01 and 0.03 (T+ = 628 and 209) cases.

The laminar Stokes layer thickness is given as δ+ =
√
4πT+ (or δ+ =

2π
√

2/ω+) (Schlichting, 1968), at which location the fluid motion is in phase with
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Figure 4.16: Phase variation of ∂ṽ′w′+/∂y+, ordered as in figure 4.15.

the wall motion, i.e., η(δ+) = 2π. In the present study, we define an effective Stokes

layer thickness for both the laminar and the turbulent cases as η(δ+) = 1, which

gives δ+ =
√

2/ω+. This is the same definition as used by Quadrio and Ricco

(2011) for the generalised Stokes layer study. A comparison between the turbulent

and the laminar Stokes layer thickness is shown in figure 4.17(a). At low frequency
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ω+ < 0.03 (or T+ > 209), the laminar Stokes layer thickness tends to increase much

faster as ω+ decreases. At high frequency, the agreement between the laminar and

the turbulent Stokes layer thickness is very good, and the change is not sensitive to

the frequency when ω+ > 0.15 (or T+ < 42), as has been observed in figure 4.15.

It has to be pointed out that, for the turbulent case, δ+(ω+ = 0.15) is the same as

δ+(ω+ = 0.18) in the graph, because the change of δ+ is within the wall normal grid

resolution at that height, and δ+ can not be distinguished for these two cases.
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Figure 4.17: Comparison between turbulent and laminar Stokes layers for (a) thick-
ness δ+; and (b) drag reduction DR.

Figure 4.17(b) shows theDR change as a function of the oscillation frequency.

The present data agrees reasonably well with (Quadrio and Ricco, 2004) for the

same control parameters. The optimal frequency around ω+ ≈ 0.06 (T+ ≈ 105) is

indicated by both DNS datasets, although the predicted DR value from the present

data is around 8% higher. Together given is the prediction from the S parameter

(Choi et al., 2002; Quadrio and Ricco, 2004; Ricco and Quadrio, 2008). The form

of S parameter for a laminar Stokes layer is as below,

S =
√
2ω+ ln

(
A+

w

W+
th

)
e−y+

√
ω+/2, (4.8)

where W+
th is a threshold value for the spanwise velocity, and y+ is the location

where a threshold value for the acceleration rate is taken. Quadrio and Ricco (2004)

proposed a linear correction between DR and S, and used available DNS data for

the linear fitting. The authors found that DR = 131S − 2.7 (W+
th = 1.2, y+ = 6.3)

gave the best linear fitting for T+ < 150. Based on the S parameter scaling, an

explicit relation between DR and ω+ is established, and this is shown as the dashed

line in figure 4.17(b). The optimal frequency predicted from the S parameter scaling
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is ω+
opt = 2/y+

2 ≈ 0.05 (T+ ≈ 125), very close the DNS prediction. Again it is clear

that the S parameter scaling becomes worse for small ω+ (or large T+). Quadrio

and Ricco (2004) explained that for T+ > 150, half of the wall oscillation period

is longer than the time period of the statistically significant turbulent structures

(t+ ∼ O(60)), and the turbulent structures can develop their inner dynamics during

half of the wall oscillation period, thus the S parameter scaling becomes invalid.

Figure 4.18 presents DR as a function of the Stokes layer thickness δ+,

compared between the DNS data and the S parameter scaling. As conjectured by

Akhavan et al. (1993) and Baron and Quadrio (1996), there is an optimal Stokes

layer thickness. It is δ+ ≈ 5.7 from the DNS prediction, and δ+ ≈ 6.3 from the

S parameter prediction. As has been shown by Ricco and Quadrio (2008), the S

parameter does not cross the origin, and this leads to a minimum wall oscillation

amplitude A+
w (or displacement D+

m ≡ 2A+
w/ω

+) for the drag reduction. The S

parameter scaling also suggests a minimum Stokes layer thickness, δ+min, and the

value is δ+min ≈ 1, which has been shown by Quadrio and Ricco (2011) for the

generalised Stokes layer (red solid line). For the generalised Stokes layer thickness,

DR scales linearly with δ+ for small δ+. It is the same case for the spanwise wall

oscillation suggested by the S parameter scaling. However, the present DNS data

has not reached this linear regime due to the computational cost to resolve this very

thin but very fast oscillating Stokes layer.
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Figure 4.18: Drag reduction DR against Stokes layer thickness δ+.

As a short summary, the spanwise wall oscillation tangles the λ2 structures

through its generated Stokes layer. If the Stokes layer is too thick (very large
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oscillation period), then the scenario is the same as uni-direction wall motion, and

no drag reduction is achievable. In the other end, for too thin Stokes layer (very

small oscillation period), the λ2 structures are completely outside of the Stokes

layer, thus their dynamics is not affected by the wall oscillation. In this scenario, we

conjecture the DR is close to 0, if it is not 0 according the minimum Stokes layer

δ+min shown in figure 4.18. The available DNS data points are still quite far away

from the uni-direction wall motion case, and the DR asymptotic may not follow

the linear prediction as in figure 4.13, thus this remains to be an interesting point

to be explored in the future. For the optimal Stokes layer thickness δ+opt, the λ2

structures are tilted in the flow, and the Reynolds shear stress associated with the

λ2 structures is minimized (Akhavan et al., 1993; Baron and Quadrio, 1996; Yakeno

et al., 2014).

4.2.3 Phase modulation

Touber and Leschziner (2012) and Agostini and Leschziner (2014) have shown the

strong phase modulation in turbulence statistics. In this section, we explore this

point through the ensemble averaged λ2 structures. The simulation is run for 10

oscillation periods in the new quasi-steady state, and instantaneous flow fields are

saved at 16 equally separated phases. At each phase, the same ensemble average

procedure described for the no control case in section 3.2 is employed. The final

ensemble averaged λ2 structures are shown in figure 4.19 for 16 phases. The positive

and negative λ2 structures show a dynamical variation during one oscillation period:

1) The positive and negative λ2 structures are symmetric with half an oscillation

period shift. For example, positive λ2 structure at φ = 3π/8 is symmetric about

x direction with negative λ2 structure at φ = 11π/8. 2) From the xz plane view,

the tilting angle varies from −18◦ to 0◦ for the positive structure, and from 18◦ to

0◦ for the negative structure. 3) From the yz plane view, both structures originate

very close to the wall, then gradually move away from the wall. 4) The strength of

the structure increases in the first 1/3 period, then it decreases in the following 2/3

period.

To quantitatively measure the ensemble averaged λ2 structure properties, the

centres of the ensemble averaged structures are identified, and then the wall normal

location of the structure centre h+, the structure tilting angle αt, the structure

length l+, and the maximum of −λ+2 are plotted in figure 4.20. This again confirms

the observation based on visualisation in figure 4.19.

The above λ2 structure variation has also been studied by Hurst (2013).

However, one unsolved puzzle is that the dynamics picture shown in 4.19 is not
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(a)

(b)

Figure 4.19: Ensemble averaged λ2 structure changes at 16 equally separated phases
during one oscillation period at ω+ = 0.06 (T+ = 105) for (a) positive structure and
(b) negative structure. Structures are visualised by λ+2 = −0.003.
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Figure 4.20: The measured properties from ensemble averaged positive (yellow sym-
bols) and negative (red symbols) λ2 structures: (a) the structure centre height h+,
(b) the structure tilting angle αt, (c) the structure length l

+, and (d) the maximum
value of −λ+2 .

continuous, which can be even further observed from the measured structure height

and tilting angle jumps in figure 4.20(a) and 4.20(b), respectively. This discontinuity

was also observed for the near wall streaks angle variation by Touber and Leschziner

(2012) and Blesbois et al. (2013). To answer this question, the λ2 structures are

further conditioned at phases, φ = π/8 ∼ 3π/8 for the positive one, and at φ =

9π/8 ∼ 11π/8 for the negative one. In this conditioning process, the near wall region

is split into two parts: one is at 0 < y+ < 20, and the other is at 20 < y+ < 60.

The new ensemble averaged λ2 structures are shown in figure 4.21. Immediately, a

stronger structure closer to the wall and a weaker structure further away from the

wall can be observed. This result suggests that the ensemble averaged structure

at the discontinuous phases in figure 4.19 actually represents two structures of the

same kind: one is further away from the wall following the weak structure in the

previous phase; the other one is closer to the wall leading the strong structure in
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the next phase. Therefore, the ensemble averaged λ2 structures monotonically move

away from the wall and do not return to the wall.

(a) (b)

Figure 4.21: Ensemble averaged λ2 structures in the lower wall region, i.e., 0 <
y+ < 20 and the upper wall region, i.e., 20 < y+ < 60 for: (a) positive structures;
and (b) negative structures.

The ensemble averaged λ2 structures at the other three oscillation frequen-

cies, i.e., ω+ = 0.01, 0.03 and 0.12 (T+ = 628, 209 and 52) have very similar phase

variation as the one shown above for ω+ = 0.06 (T+ = 105), and they are given in

appendix D. In general, the tilting angle and structure height variations decrease

as the wall oscillation frequency increases. This is consistent with the amplitude of

the small time scale Cf variation shown in figure 4.12. At ω+ = 0.01 (T+ = 628),

the maximum tilting angle reaches αt,max = 45◦; while αt,max = 9◦ for ω+ = 0.12

(T+ = 52) case, which is only slightly larger than the tilting angle of the no control

case.

We focus on the ω+ = 0.03 (T+ = 209) case to establish the link between the

λ2 structure variation and the phase modulation in the Reynolds shear stress and the

skin-friction. This case is a sub optimal DR case but with stronger phase variation

compared to the optimal case at ω+ = 0.06 (T+ = 105) (Touber and Leschziner,

2012). Figures 4.22(a) and 4.22(b) shows the full domain phase averaged turbulent

shear stress −ũ′v′ variation during one oscillation period for ω+ = 0.06 (T+ = 105)

and ω+ = 0.03 (T+ = 209), respectively. As can be seen, ω+ = 0.03 (T+ = 209) case

has stronger phase variation than ω+ = 0.06 (T+ = 105) case, which is mainly due

to the stronger tilting of the λ2 structures for ω
+ = 0.03 (T+ = 209) case. The −ũ′v′

variation averaged within the domain (L+
x ×L+

y ×L+
z = 200× 60× 100) associated

with the positive and negative λ2 structures are shown in figures 4.22(c) and 4.22(d),

respectively. There is a peak site at y+ ≈ 20 for positive λ2 structure (at φ = 0)
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and for negative λ2 structure (at φ = π). This matches well with the double peak

variation for the full domain statistics in figure 4.22(b). Agostini and Leschziner

(2014) reported a hysteresis phenomenon in the phase variation. For example, for

−ũ′v′ at a fixed wall normal location y+ in figure 4.22(b), the increasing time period

tends to be shorter than the decreasing period. This was explained as the phase-wise

asymmetric of the flow skewness by Agostini and Leschziner (2014). Figures 4.22(c)

and 4.22(d) can offer another view about this hysteresis phenomenon, i.e., the time

scale for the λ2 structure to be regenerated close to the wall is a very rapid process,

and is much shorter than its decay time scale.
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Figure 4.22: Phase modulation in Reynolds shear stress −ũ′v′ for: (a) ω+ = 0.06
(T+ = 105) case with full domain; and ω+ = 0.03 (T+ = 209) case with (b) full
domain; (c) positive λ2 structure domain only; and (d) negative λ2 structure domain
only.

Figure 4.23 shows the phase variation for the positive and negative λ2 struc-

tures in the identified number fraction (ϕ̃+, ϕ̃−), the skin-friction (C̃f+, C̃f−), and

the weighted skin-friction (Ĉfw = ϕ̃+C̃f+ + ϕ̃−C̃f− − Cf ). The spanwise strain

favours the positive and negative λ2 structures at different phases, which is again

symmetric with half a period shifted for ϕ̃ and C̃f associated with the positive and

negative λ2 structures. When the weighted skin-friction Ĉfw is compared with that

of the full domain Ĉf , a good agreement in the phase location of the peaks and

troughs is observed, though Ĉfw oscillates with an amplitude of ∼ 4%, larger than

the full domain statistics (∼ 2%). This is expected because the area without λ2
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structures in the full channel is not taken into account for the weighting.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

t/T

ϕ̃

ϕ̃+

ϕ̃−

0 0.2 0.4 0.6 0.8 15.4

5.6

5.8

6

6.2
×10-3

t/T

C̃
f

C̃f+
C̃f−

(a) (b)

0 0.2 0.4 0.6 0.8 1-0.05

0

0.05

t/T

Ĉ
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Figure 4.23: Phase variation for ω+ = 0.03 (T+ = 209) in (a) identified λ2 structure

fraction ϕ̃; (b) skin-friction C̃f ; and (c) weighted skin-friction Ĉfw compared with
the full domain case with Cf removed.

4.2.4 Streaks variation

The footprints of the quasi-streamwise vortices in the near wall region are the high-

and low-speed streaks. We keep focusing on ω+ = 0.03 (T+ = 209) case to investi-

gate the streaks variation during one wall oscillation period. The instantaneous near

wall streaks at y+ = 10 and 20 for the no control case and ω+ = 0.03 (T+ = 209) case

are shown in figure 4.24. In the no control case, the near wall streaks are aligned in

the streamwise direction and form a very long coherent pattern (see figure 2.2). The

tilting angles of the positive and negative λ2 structures (see figure D.1(b)), and the

characteristics eddy (figure 4.25) are superimposed into the plots to give a visual im-

pression about the spatial orientation between the streaks and the quasi-streamwise

vortices. For ω+ = 0.03 (T+ = 209) case, the streaks are significantly modulated by

the wall motion. Figure 4.24(b) shows that the streaks are strongly titled towards
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one side of the flow field at phase φ = 0. At this height y+ = 10, the streaks tend

to align between the positive and the negative λ2 structures. However, when the

cutting plane moves higher to y+ = 20, the streaks becomes less coherent (figure

4.24(c)), and they are shorter compared to those at y+ = 10. At phase φ = 0, the

positive and negative structures are located at very different wall normal locations,

and the tilting angles are very different between them (see figure D.1(b)). This is

reflected in the instantaneous flow field in figure 4.24(c): the streaks are broken up

and shorter. Figure 4.24(d) shows the streaks at phase φ = π/4, y+ = 10. This is

the phase that the streaks lose the orientation direction, and multiple streaks angles

can be observed. Since the positive structure is closer to the wall compared to the

negative one at phase φ = π/4, the main streaks angle is dominated by the positive

structure, as shown by the yellow line in the plot. However, newly generated small

streaks can also be identified, for instance, in the region around (x = 12, z = 5.5).

These weak streaks are almost perpendicular to the main streaks in the flow field,

and their angles match the alignment of the positive structure tail. The positive λ2

structure is ‘J’ shaped at φ = π/4, thus it can induce two different streaks angles.

Le et al. (2000) conjectured ‘J’ shape and ‘S’ shape λ2 structures in their 3D turbu-

lent boundary layer generated by uni-direction wall motion. In the present study,

the ‘J’ shape structures are direct captured from the ensemble average, and they

are important in generating new streaks at a particular phase of the spanwise wall

oscillation.

The near wall streaks can also be visualised by the characteristic eddy as

discussed in section 3.3. Figure 4.25 shows the characteristic eddies at 16 equally

separated phases for ω+ = 0.03 (T+ = 209) case. Compared to the characteristic

eddy in the no control case (figure 3.8), the length of them in the spanwise oscil-

lation case becomes shorter, with the long tail disappeared. The near wall part is

significantly tilted due to the Stokes layer, but the tilting is not in phase with the

wall motion, which is also the case for the ensemble averaged λ2 structure. The tilt-

ing angle of the modulated characteristic eddy represents the streaks alignment, as

shown by the superimpose in figure 4.24. The yz plane view shows that the streaks

angles also change with wall distance. The periodic variation of the characteristic

eddy at other three frequencies, i.e., ω+ = 0.01 (T+ = 628), ω+ = 0.06 (T+ = 105)

and ω+ = 0.12 (T+ = 52) are very similar, and they are given in appendix D. Two

observation of these characteristic eddies are: 1) The phase difference between the

characteristic eddy response and the wall motion depends on the wall oscillation

frequency. For ω+ = 0.01 (T+ = 628), the characteristic eddy has a long time to

response to the wall motion, thus it is almost in phase with the wall movement.
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(a) (b) (c) (d)

Figure 4.24: Streamwise velocity fluctuation u′ from instantaneous flow fields for (a)
no control case at y+ = 10; and ω+ = 0.03 (T+ = 209) case at (b) y+ = 10, φ = 0;
(c) y+ = 20, φ = 0; (d) y+ = 10, φ = π/4. The contour is clipped at [−0.15, 0.6].
Dark color is for low velocity, while light colour is for high velocity. The yellow and
red lines indicate the tilting angles of the ensemble averaged positive and negative
λ2 structures in figure D.1(b), respectively. The characteristic eddies from figure
4.25 are superimposed.

2) The modulation effect of the characteristic eddy by spanwise wall oscillation is

larger at lower oscillation frequency, and smaller at higher oscillation frequency. For

ω+ = 0.12 (T+ = 52), there is almost no visible change of the characteristic eddies

compared to the no control case.

We then choose the two cases with the largest streaks variation, i.e., ω+ =

0.03 (T+ = 209) and ω+ = 0.01 (T+ = 628), for the streaks angle study. The streaks

angles γ are identified from the characteristic eddy at a cutting plane of y+ = 10.

The phase-wise variation is compared with the mean velocity angle γ̃s, the mean

velocity gradient angle γ̃g, and the Reynolds shear stress angle γ̃τ at the same wall

normal location, and the definitions of which are given as below (Jung and Sung,
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Figure 4.25: The characteristic eddies changes at 16 equally separated phases during
one oscillation period at ω+ = 0.03 (T+ = 209). The positive (yellow) and negative
(red) eddies are visualised by u′ = 0.35 and u′ = −0.35, respectively.

2006),

γ̃s = tan−1 W̃ − W̃w

Ũ
,

γ̃g = tan−1 ∂W̃/∂y

∂Ũ/∂y
,

γ̃τ = tan−1 ṽ
′w′

ũ′v′
.

(4.9)

The comparison is shown in figures 4.26(a) and 4.26(b) for ω+ = 0.03 (T+ =

209) and ω+ = 0.01 (T+ = 628), respectively. As has been noticed by Touber and

Leschziner (2012), Blesbois et al. (2013) and Hurst (2014), the streaks angle has

two jumps during one oscillation period for ω+ = 0.03 (T+ = 209) case. This jump

in γ̃ is less obvious from the characteristic eddies, but it is clear that the streaks

tend to stay at around one positive angle for half a period, then switch to a negative
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angle. The transition period between them is very short. At y+ = 10, γ̃s, γ̃g

and γ̃τ are all phase-leading of the streaks angle γ̃. Touber and Leschziner (2012)

observed that γ̃g(y
+ = 10) matched γ̃ well. Figure 4.26(a) shows that γ̃τ (y

+ =

10) is also a good (or even better) candidate for tracing the streaks. It is worth

mentioning that Ricco (2004) proposed the maximum steaks angle γmax calculation

using a fixed near wall convection velocity U +
c = 10. The phase variation of this

indicator γ̃R = − tan−1
(
W̃/Uc

)
is plotted in figure 4.26(a). Though with some

phase difference, the maximum streaks angle prediction from γ̃R(y
+ = 10) agrees

well with γ̃, even better than the other three angles. The same observation is also

applied to ω+ = 0.01 (T+ = 628) case in figure 4.26(b). At this large oscillation

period, the streaks have enough time to reorganise themselves, thus the jump in the

streaks angle almost disappears.
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Figure 4.26: Variation of different angles at y+ = 10 during one oscillation period
for (a) ω+ = 0.03 (T+ = 209); and (b) ω+ = 0.01 (T+ = 628).

Figure 4.27 shows the change of the maximum streaks angle γmax with the

oscillation frequency ω+. As observed from the characteristic eddies, γmax increases

monotonously as ω+ decrease for fixed A+
w . The experimental data from Ricco (2004)

at three constant spanwise wall displacements D+
m are included for comparison. At

fixed D+
m, the maximum streaks angle γmax increases monotonously as ω+ increases

until an optimal frequency is reached, 0.08 < ω+
opt < 0.1 (60 < T+

opt < 80). An

optimal oscillation frequency for the maximum γmax is also observed by the γR,max

prediction using the laminar Stokes solution. This suggests the maximum streaks

tilting angle is closely linked to the maximum spanwise wall velocity at around

y+ = 10.

Figures 4.28(a) and 4.28(b) show the correlation between DR and the maxi-

mum streaks angle γmax and the maximum streaks length l+, respectively. An opti-

84



0 0.05 0.1 0.150

10

20

30

40
100 50200500

ω+

γ
m
a
x

T+

D+
m

Streaks

γR,max
D+
m = 240

D+
m = 360

D+
m = 480

Figure 4.27: Streaks angles as a function of oscillation frequency (period), compared
with (Ricco, 2004). Lines are γR,max prediction using the laminar Stokes solution
for W . The solid line is for A+

w = 12, and dashed lines are for D+
m = 200, 400, 800,

and 2400.

mal γmax is observed for the present data at fixed A+
w . The λ2 structure also shows

an optimal maximum tilting angle, but at a higher value. However, the experiment

data from (Ricco, 2004) shows a monotonic increase of DR as a function of γmax up

to γmax = 40◦. This contrast is caused by the fact that majority of Ricco (2004)’s

data are for fixed D+
m, as has been shown in figure 4.27. In figure 4.28(b), we identify

the phase-wise maximum streak length using a threshold value of u′ = 0.01 in the

xz plane (at y+ = 10) of the characteristic eddy fields, which is a somehow arbitrary

choice. This is even more difficult for the optimal wall oscillation case, ω+ = 0.06

(T+ = 105), where the streak formation process is strongly suppressed. Therefore, a

10% error bar for the streak length is included as a guide. Another dataset studied

for the Lorentz force is directly taken from the pre-multiplied streamwise velocity

spectra peaks (figure 5.24), and this process introduces a smaller arbitrary error.

The streaks are further normalised by the streaks length of the no control case, l+0 ,

identified from each streak extraction method. With the aid from the experimental

data by Ricco (2004), an optimal streaks length lopt ≈ 0.5l0 can be seen. However,

this argument only applies for the drag reduction cases, because for the drag increase

cases, such as ω+ = 0.01 (T+ = 628), they also show a streak length reduction.
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Figure 4.28: DR as a function of (a) streaks angles γ; and (b) normalised maximum
streaks length l+/l+0 .

4.3 Conclusions

Starting from the uni-direction wall movement, with particular focus on the transient

process where an initial skin-friction drop happens, we investigated the turbulence

response for t+ < 200 using the ensemble averaged λ2 structures and the turbulence

statistics tools for the drag reduction mechanism exploration. Then the spanwise

wall oscillation was studied at different oscillation frequencies, especially for ω+ =

0.01, 0.03, 0.06 and 0.12 (T+ = 628, 209, 105 and 52). A vivid presentation of the

near wall structure dynamics inside a spanwise oscillating Stokes layer is brought to

surface, and this sheds light on the origin of the phase modulation of the turbulence

statistics and the rich streaks behaviours. The following conclusions can be drew

from the study in this chapter:

• The positive and negative λ2 structures respond to the initial spanwise wall

motion in different ways, and they turn gradually in the spanwise direction to

adjust the new flow. During this process, the near wall streaks are broken up,

and the turbulent production cycle is weakened (Moin et al., 1990). Therefore,

successively alternating spanwise wall motion can bring the flow into a lower

Cf state. To achieve a sustained drag reduction by spanwise wall oscilation,

half of the spanwise wall oscillation time scale needs to match the Cf decay

time scale in the uni-direction wall motion, i.e., t+ ≈ O(80). This finding is in

line with a serial of earlier works (Dhanak and Si, 1999; Quadrio and Ricco,

2004; Blesbois et al., 2013).

• Uni-direction wall motion is an extreme spanwise wall oscillation case with

ω+ = 0 (T+ = ∞), and can be used to predict the DR asymptotic for spanwise
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wall oscillation.

• In the quasi-steady spanwise oscillating Stokes layer, the positive and nega-

tive λ2 structures have a cyclic dynamics, but with half an oscillation period

shifted. During this process, the structures keep moving away from the wall,

with their strength increasing initially, then decreasing till it is too weak to be

identified.

• The phase modulation in the Reynolds shear stress and the skin-friction is

closely linked to the identified λ2 structure dynamics.

• The near wall streaks alternate the tilting angle during one oscillation cycle,

but it is not in phase with the wall movement. The closest matching angle in

phase is the Reynolds shear stress angle, γτ .

• Non-ideal sinusoidal temporal wave generated by the Lorentz force and the

plasma actuators can be used for the drag reduction control.
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Chapter 5

Drag Reduction by spanwise

Lorentz Force

This chapter and the following chapter are two practical applications for skin-friction

drag reduction control using two types of actuators: Lorentz force actuators in this

chapter, and plasma actuators in the next chapter. The Lorentz force actuators use

the electro-magnetic principle to generate a near wall body force, and use this body

force to manipulate the flow, as sketched in figure 5.1. Therefore, the fluid needs

to be electric conductive, such as sea water. The idea of using Lorentz body force

is to replace the complex mechanical system which can ideally create spanwise wall

oscillation or travelling waves of spanwise wall velocity (Auteri et al., 2010; Gouder

et al., 2013; Gatti et al., 2015a).

Since the successful skin-friction control by spanwise oscillating Lorentz force

(Berger et al., 2000), both spanwise and streamwise travelling wave by spanwise

Lorentz force have been explored in a wide range of parameter space (Huang et al.,

2010; Xie and Quadrio, 2013; Mamori et al., 2014). However, the control parame-

ters were studied at different ranges for different travelling wave configurations, and

the whole picture by spanwise Lorentz force is still missing. The aims of this chap-

ter are three: 1) obtaining the whole drag reduction picture for different travelling

wave controls by spanwise Lorentz force, with a particular emphasise on the oblique

travelling wave; 2) demonstrating that there is no fundamental drag reduction mech-

anism difference among all these travelling wave controls by spanwise Lorentz force;

3) providing guides on the drag reduction control by plasma actuators in chapter 6.

88



Figure 5.1: Schematics of skin friction control by the travelling wave of spanwise
Lorentz force. The electro-magnetic tiles are represented by the small blocks on the
wall. The mean flow has an angle of θ to the travelling wave direction.

5.1 Lorentz force model

By arranging electric and magnetic actuators alternatively in space under sea water

(as shown in figure 5.1), an electric-magnetic body force can be generated. The

governing equations are the Maxwell equations, shown as below.

ǫijk
∂Ek

∂xj
= −∂Bi

∂t
,

ǫijk
∂Bk

∂xj
= µ0σEi,

Ji = σ(Ei + ǫijkujBk),

∂Bi

∂xi
= 0,

∂Ji
∂xi

= 0,

fi = ǫijkJjBk.

(5.1)

Here, ǫijk is the Levi-Civita symbol; fi is the Lorentz force term, which appears in

the right hand side of the N-S equations in equation (3.1); ui is the fluid velocity;

Ji is the current density; Ei is the electric field; Bi is the magnetic flux density;

and µ0 and σ are the magnetic permeability and the electrical conductivity of the

fluid, respectively. It is clear to see that this is a two-way coupling system, with

the electric-magnetic field acting on the fluid through the body force term ǫijkJjBk,

and the fluid motion affecting the electric-magnetic field through the term ǫijkujBk.

However, Berger et al. (2000) has shown that for the drag reduction control under

sea water using plasma actuators, ||ǫijkujBk|| is three order of magnitude smaller

than ||Ei||, therefore the electric magnetic field can be decoupled from the fluid
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motion, resulting in a one-way coupling system only.

In the present study, only permanent magnet is considered, thus the above

Maxwell equations can be further simplified by dropping the unsteady term for the

magnetic flux, i.e., −∂Bi/∂t. In this case the electric field Ei can be expressed by a

potential function, Ei = ∂φ/∂xi. The final form of the Maxwell equations to solve

in the present application is as below.

∂2φ

∂x2i
= 0,

Ji = σ
∂φ

∂xi
,

∂Ji
∂xi

= 0,

∂2Bi

∂x2j
= 0,

∂Bi

∂xi
= 0,

fi = ǫijkJjBk.

(5.2)

The derivation of equation (5.2) in a vector form has been given by Berger et al.

(2000). By assuming that the boundaries for both the electric and the magnetic

fields are sinusoidal, and the width of the electrode and magnetic tiles, a are the

same but much smaller than the thickness of the fluid layer, an idealised Lorentz

force expression can be obtained (see the appendix in (Berger et al., 2000)), shown

as below.

fz = Afe
−y/∆, (5.3)

where Af is the non-dimensionalised force strength, i.e., Af = J0B0h/ρU
2
m, where

J0 and B0 are the current density and the magnetic flux on the electrode and the

magnet surfaces, respectively; and ∆ is the force penetration depth, i.e., ∆ = a/π.

To be noticed, the ideal Lorentz force only has a wall parallel component, and the

wall normal component is zero. This ideal Lorentz expression has been widely used

in the literature for drag reduction control study (Du et al., 2002; Huang et al., 2010;

Mamori et al., 2014; Quadrio and Xie, 2015). Berger et al. (2000) also performed

simulations with more realistic boundary conditions for the electric magnetic fields,

and demonstrated that the effect on the skin-friction drag reduction is negligible.

Therefore, the idealised Lorentz force model is employed in the present study, but

in our case the wall parallel Lorentz force component is not necessary to be in z
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direction, especially for the oblique travelling wave cases in section 5.4.

5.2 Wave configurations

Different wave configurations have been studied in the literature (see table 5.1 for a

full list). In this section, four wave configurations are considered:

• Oblique oscillation – Lorentz force is applied with an orientation angle γ re-

spect to the mean flow direction in x, and the force strength changes sinu-

soidally in time, as below,

f = Afe
−y/∆ sin(−ωt),

fx = f cos(γ), fz = −f sin(γ),
(5.4)

where ω is the oscillation frequency.

• Streamwise travelling wave – Lorentz force is applied in spanwise direction,

and the force strength changes sinusoidally in x direction, as below,

fz = Afe
−y/∆ sin(−κxx), (5.5)

where κx is the streamwise wavenumber.

• Spanwise travelling wave – Lorentz force is applied in spanwise direction, and

the force strength changes sinusoidally in z direction, as below,

fz = Afe
−y/∆ sin(−κzz), (5.6)

where κz is the spanwise wavenumber.

• Oblique travelling wave – Lorentz force is applied in the spanwise direction of

the mean flow (not z direction). The force strength changes sinusoidally in

the wave travelling direction (either x or z direction), as below,

f = Afe
−y/∆ sin(−κξ),

fx = f sin(α), fz = −f cos(α),
(5.7)

where ξ is the wave travelling direction coordinate (either x or z); κ is the

corresponding wavenumber; and α is the mean flow direction angle respect to

x direction. The travelling wave angle θ = α, 180◦ − α, 90◦ + α or 90◦ − α

depending on the configuration.
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Table 5.1: Travelling wave of Lorentz force studied in the literature.

Source Reτ Wave form Af ∆+ T+ λ+

1 100, 200, 400 fz = Afe
−y/∆ sin (ωt) 0.13, 0.25, 0.5,

1.0, 1.5 ‡
5, 10, 20 25, 50, 75, 100,

125, 200, 500
-

2 150 fz = Afe
−y/∆ sin (ωt)

fz = Afe
−y/∆ sin (κzz − ωt)

1.3, 2, 4,
8, 20 ‡

0.5, 1
2, 3

25, 50,
100, 200

210, 420, 840

3 177 fy = Afe
−y/∆ sin (κxx− ωt)

fx = Afe
−y/∆ sin (κxx− ωt)

2.3 ‡ 5, 10 c = −2,−1,
0, 1, 2

70− 2000

4 180 fz = Afe
−y/∆ sin (κxx− ωt) 2.3 ‡ 3.6 100 60, 140, 280,

380, 1130

5 180 fz = Afe
−y/∆ sin (κxx+ κzz − ωt) 1.2 ‡ 3.6 120 50 − 750

† 1: Berger et al. (2000); 2: Du et al. (2002); 3: Mamori and Fukagata (2011); 4: Huang et al. (2010); 5: Huang et al. (2014).
‡ Converted value.
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These four configurations are sketched in figure 5.2. For all the control cases,

the mass flow rate is kept constant by dynamically adjusting the streamwise mean

pressure gradient. For oblique travelling wave case, the mean flow has an angle α

respect to x direction (figure 5.2(d1)), thus the mean pressure gradients in both

x and z directions are adjusted simultaneously to maintain a constant mass flow

rate, and their values at each time step are calculated based on the following force

balance,

dP/dx = −1

h

√
τw,x

2 + τw,z
2 cosα,

dP/dz = −1

h

√
τw,x

2 + τw,z
2 sinα,

(5.8)

where τw,x and τw,z are the xz plane averaged wall shear stresses in x and z direc-

tions, respectively.

5.3 Preliminary study

5.3.1 Effect of force parameters

The spanwise oscillating Lorentz force (γ = 90◦ in figure 5.2(a)) is first studied with

the change of the Lorentz force parameters, i.e., Af , T
+ and ∆+. A baseline case

is chosen at Af = 0.5, T+ = 100 and ∆+ = 10 according to the parameter study by

Berger et al. (2000). These parameters are also within the popular parameter range

explored in the literature (see table 5.1). Following Berger et al. (2000), the Lorentz

force is only applied to the bottom wall, and the DR is the skin friction reduction

between the bottom and top walls. The Lorentz force strength Af , oscillation period

T+, and the Lorentz force penetration depth ∆+ are varied to test the effect on the

drag reduction. The comparison is also made with the data from Berger et al. (2000),

as shown in figure 5.3. A good comparison can be observed, except the region where

the Lorentz force strength Af or the Lorentz force penetration depth ∆+ is small.

Overall, there is an optimal value for each control parameter when the other two

parameters are fixed, and the chosen baseline case with Af = 0.5, T+ = 100 and

∆+ = 10 is a local maxima.

5.3.2 Oblique oscillation

The angle effect in the oblique oscillation case is studied for Af = 0.5, ω+ = 0.06

(T+ = 105). The Cf response and the long time DR are shown in figure 5.4. At

γ = 0◦, there is a large oscillation in the skin-friction time history due to the pumping

effect created by the streamwise Lorentz force. The oscillation effect becomes smaller
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(d4) (d5)

Figure 5.2: Wave configurations for: (a) oblique oscillation with an angle γ to the
mean flow direction; (b) streamwise travelling wave; (c) spanwise travelling wave;
and (d1-d5) oblique travelling waves.
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Figure 5.3: Effect on drag reduction DR from (a) Lorentz force strength Af ; (b)
oscillation period T+; and (c) Lorentz force penetration depth ∆+. Close symbols
are the present data, and open symbols are from Berger et al. (2000).

as γ becomes larger. As expected, for the spanwise oscillating Lorentz force (γ =

90◦), the oscillation in Cf is the smallest. Drag reduction is only achieved for

γ > 45◦, and the DR value is almost constant at around 30± 2% for Lorentz force

angle γ ≥ 60◦. Zhou and Ball (2008) studied the effect of wall oscillation orientation,

and their data at A+
w = 12.48, ω+ = 0.063 (T+ = 100) is included in figure 5.4(b)

for the comparison. As mentioned by the authors, there is a break-point at γ = 60◦

where DR saturates above this angle. This is consistent with the present oscillating

Lorentz force case, though for the present oscillating Lorentz force case DR drops

slightly at γ = 90◦. A big difference between these two cases appears at small

γ, where DR ≈ 10 is still achievable for wall oscillation at γ = 0◦; while DR is

negative for γ ≤ 30◦ in the oscillating Lorentz force case. Based on this observation,

the Lorentz force is only applied in the spanwise direction (γ = 90◦) for the controls

in the following sections.

5.3.3 Spatial transient response

The Lorentz force normally can only be applied to one portion of the wall. To test

the effect of the force locality, the Lorentz force parameters of the baseline case

(Af = 0.5, ∆+ = 10, T+ = 100) is applied to only the first half of the channel

domain on both the bottom and the top walls. Periodic boundary conditions are

applied in the streamwise direction, thus this flow is different from a true boundary

layer flow simulation. To avoid the numerical instability due to the sharp change of

the Lorentz force at the interface, a step function (Yudhistira and Skote, 2011) is

applied with a window size of 0.5, as shown below,

S(x) =





0, if x ≤ 0,

1/
(
1 + e1/(2x−1)+1/(2x)

)
, if 0 < x < 0.5,

0, if x ≥ 0.5.

(5.9)
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Figure 5.4: Effect of oscillating Lorentz force direction γ: (a) time history of the
skin-friction Cf (dashed lines are for γ ≤ 45◦, and solid lines are for γ > 45◦); (b)
drag reduction values compared with wall oscillation cases (Zhou and Ball, 2008).

Figure 5.5 shows the instantaneous streamwise velocity contour at y+ ≈ 5

for three different channel lengths. Clearly, the high- and low-speed streaks are

skewed in the controlled region, while they recover and align again in the streamwise

direction in the second half of the channel, where the Lorentz force is off. At the

interface between the control and the no control regions, the streaks behaviour is

very similar to the experimental observation for spanwise wall oscillation (Choi et al.,

1998) and spanwise oscillating Lorentz force (Pang et al., 2004).

Figure 5.5: Near wall streaks at y+ ≈ 5 for test domain of Lx = 16, 32 and 64. The
oscillating Lorentz force (Af = 0.5, ∆+ = 10, T+ = 100) is applied in the first half
of the domain length (indicated by black blocks).

The time, spanwise and top-bottom wall averaged skin-friction coefficient Cf

is plotted in figure 5.6 as a function of the streamwise coordinate. When the Lorentz

force is applied, the Cf starts to drop quickly. This transient process is as long as

the case in the boundary layer (Choi et al., 1998; Ricco and Wu, 2004; Lee and Sung,
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2005; Yudhistira and Skote, 2011; Lardeau and Leschziner, 2013). To make the Cf

drop to the level of a full domain controlled case, the domain size must be very long,

up to Lx = 64. By further increasing the domain size to Lx = 128, the transient

Cf value can be even lower than the full domain controlled case, which is not the

case in the turbulent boundary layer. This undershooting of Cf may be related

to the periodic boundary condition effect. Once the flow enters the channel region

without the Lorentz force, the Cf level starts to increase quickly. Interestingly, the

increasing length seems to be domain size independent, and is fixed at around 15

for Lx = 32, 64 and 128 three cases.

0 30 60 90 1205

6

7

8
×10-3

x

C
f Lx = 16

Lx = 32
Lx = 64
Lx = 128

Figure 5.6: Skin-friction coefficient Cf distribution along streamwise direction for
different channel lengths. Two horizontal lines indicate the Cf levels of the no
control and the fully controlled cases, respectively.

The spatial transient behaviour is important in choosing the DR measure-

ment location for the boundary layer control in experiments. For example, Quadrio

and Ricco (2003) estimated that this spatial transient length could be around

2000 ∼ 4000 in viscous lengths for spanwise wall oscillation, and pointed out that

some published DR measurements were too close to the leading edge of the oscil-

lating section. Figure 5.7(a) compares the spatial response of the normalised Cf

between our simulation results and the boundary layer measurements by Choi et al.

(1998) and Ricco and Wu (2004). The experimental measurement by Ricco and

Wu (2004) shows a long plateau after x+ ≈ 3000, which clearly suggests that the

oscillating plate was long enough for Cf to settle down. Their Cf decay rate com-

pares very well with our simulation result with Lx ≥ 32, provided our simulations

are not for true boundary layers. Choi et al. (1998)’s experimental data was more
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scattering, and the Cf started to recover too early, which suggests the oscillating

plate might not be long enough. This is also the case for the boundary layer control

using spanwise oscillating Lorentz force by Lee and Sung (2005), where an even

higher DR should be expected if the control section was longer in their simulation.

The spatial response of Cf immediately after the trailing edge of the oscillat-

ing section is shown in figure 5.7(b). The recovery rate for Lx ≥ 32 compares well

with the experimental data by Ricco and Wu (2004), though the actual streamwise

recovery length are different, x+ ≈ 3000 in our case, and x+ ≈ 1500 in (Ricco and

Wu, 2004). It is worth mentioning that Lardeau and Leschziner (2013) showed a

5δ recovery length in their Reτ = 520 boundary layer simulation, which is close to

our recovery length in wall units. The simulation by Lee and Sung (2005) shows a

similar recovery rate to our Lx = 16 case, which again suggests that their control

domain might be not long enough.
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Figure 5.7: Spatial response of normalised Skin-friction coefficient Cf/Cf,0 after (a)
the leading edge, and (b) the trailing edge of the oscillating section.

The DR recovery is also checked from the instantaneous velocity field for

Lx = 32 case, as shown in figure 5.8. At this instance (t/T = 0.46), the Lorentz

force generates strong negative spanwise velocity in the controlled section (x < 16).

However, this spanwise velocity does not go to zero immediately after the trailing

edge. Instead, the temporal oscillation has been converted into a spatial oscillation

in the downstream, which can be observed by the positive and negative w contour

at x > 16. And this spanwise velocity keeps displacing the vortical structures

relative to the near wall streaks (Ricco and Wu, 2004). A direct comparison of

the vortical structures and the streaks orientation in yz planes is also shown in the

graph: one is within the control region (at x = 13), and the other one is at the

downstream of the trailing edge (at x = 19). The vortical structures at y = 0.1

(y+ = 20) are twisted in spanwise direction in a similar fashion at these two x

98



locations. However, the near wall high- and low-speed streaks have clearly recovered

at x = 19, and they are almost invisible at x = 13. Ricco (2004) visualised the near

wall streaks and vortical structures using hydrogen bubble technique at x+ ≈ 600

downstream of the oscillating wall section, and argued that the high- and low-speed

streaks were set to rest due to the no-slip wall condition, while the spanwise wall

movement was transferred by viscous diffusion to convey the vortical structures at

higher wall location, and this relative displacement between the streaks and vortical

structures led to a slow DR decay. This is generally the same situation for the

present oscillating Lorentz force case.

-0.05 0.1
-0.04 0 0.04 0.08

w

Figure 5.8: Instantaneous flow field visualisation around the trailing edge of an
oscillating section (x = 16) for Lx = 32 case (only one portion of the domain is
displayed). xy plane shows spanwise averaged w velocity contour; yz planes show
streamwise velocity fluctuation u′ contour, streamwise vorticity fluctuation ω′

x iso-
lines (blue for ω′

x = 1.5, and green for ω′
x = −1.5), and v′ − w′ velocity vectors.

5.4 Oblique travelling waves

The angle effect of the oblique travelling wave has been previously studied by Huang

et al. (2014). However, in their study, the domain size (Lx,Lz) was fixed, and

the total wavenumber κ (≡
√
κ2x + κ2z) was adjusted by changing κx and κz, thus

the total wavenumer κ was not a constant when the travelling wave angle θ (≡
tan−1(κz/κx)) varied. Also, since there must be an integer number of waves in x and

z directions, the total number of θ which could be studied (for a chosen domain size)

was very limited. To avoid this issue, we fix the wave travelling direction in either x

or z direction, and vary the mean flow direction to adjust the travelling wave angle θ,
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as shown in figure 5.2(d). We choose Lx = Lz = 16, thus with this configuration, the

wavelength is always fixed, and a continuous change of the travelling wave angle θ is

allowed. Moreover, the turbulence statistics can be sampled in the wave travelling

direction and its perpendicular direction.

Four base flows are performed for the no control case (figure 5.2(d1)), and

they have the angles of α = 0◦, 15◦, 30◦ and 45◦ to x direction. For each base flow,

the travelling wave can be applied in the positive x (figure 5.2(d2)), the negative

x (figure 5.2(d3)), the positive z (figure 5.2(d4)) or the negative z (figure 5.2(d5))

direction, which corresponds to an oblique wave angle of α, 180◦ − α, 90◦ + α and

90◦ −α. Therefore, the angle effect can be studied for a fixed wavelength in a range

of θ = 0◦ ∼ 180◦ with an interval of 15◦ (13 cases in total). To seek the possible

maximum drag reduction, the wavenumber is chosen to be κ+ = 0.002 (λ+ = 3142)

and the oscillation frequency ω+ = 0.06 (T+ = 105), which passes the optimal

travelling wave case BST (θ = 180◦), as shown in table 5.2. When θ = 0◦, it gives

the FST case. And when θ = 90◦, it is close to the SP case, since the spanwise

domain is Lz = 12 for SP case, while it is Lz = 16 for the oblique travelling wave

case. More details of BST, SP, BST and Oblique cases can be found in table 5.2.

It has to be mentioned that the grid resolution in x direction has been improved to

be the same as z direction, i.e., ∆x+ = ∆z+ = 2.5 to compensate the effect caused

by the new streak orientation in the present simulation set up.

Instantaneous snapshots for the velocity magnitude at y+ ≈ 5 are shown

in figure 5.9 for the oblique travelling wave cases at Af = 0.5, ∆+ = 10, κ+ =

0.002 (λ+ = 3142) and ω+ = 0.06 (T+ = 105). The “ribbon” structure, which is

caused by the travelling wave can be clearly seen as dark bands in the plots. As

observed by Pang and Choi (2004) for the spanwise oscillating Lorentz force and by

Huang et al. (2010) for the streamwise travelling wave case, the near wall streaks

are strongly twisted in the direction parallel to the wave travelling direction. As

expected, the twisting effect on the near wall streaks is the strongest for θ = 0◦

and 180◦, where the Lorentz force is perpendicular to the near wall streaks; and the

twisting effect is hardly visible for θ = 90◦, except at the interface where Lorentz

force changes directions. This might be the reason that Du et al. (2002) thought

the near wall streaks modulation was fundamentally different for spanwise travelling

wave case. However, figure 5.9 clearly demonstrates the gradual change of the

interaction between the “ribbon” structure and the near wall streaks from θ = 0◦ to

180◦. The nature of this interaction is similar among all the oblique travelling wave

cases, and there is always a twisting effect of the near wall streaks.

The drag reduction obtained for all the 13 oblique travelling wave cases is

100



Figure 5.9: Instantaneous velocity magnitude
√
u2 + v2 + w2 at y+ ≈ 5 for different

travelling wave angles. On each snapshot, the white wide arrow indicates the main
flow direction, and the green long arrow indicates the wave travelling direction. The
view size is 16 in diameter.

shown in figure 5.10. The DR prediction at θ = 0◦, 90◦ and 180◦ compares well

with that from FST, SP and BST cases. The maximum DR value is achieved at

θ = 180◦. However, when θ > 90◦, the DR value is not sensitive to the wave angle

θ, and the DR variation is within a range of ∆DR = 3. A sharp increase of DR is

observed for θ < 90◦, which has ∆DR = 15.

The turbulence statistics are sampled in both x and z directions. A coordi-

nate transformation is used to transform the turbulence statistics into the streamwise

and spanwise directions. The relationship between the velocities in the transformed

coordinate system (u, v, w) and the original coordinate system (u1, u2, u3) for the

streamwise velocity, the streamwise velocity fluctuation and the streamwise turbu-

101



0 30 60 90 120 150 1800

10

20

30

40

θ

D
R

BST

SP

FST

Figure 5.10: DR against travelling wave angle θ for oblique travelling waves. Open
circles are data from table 5.2 for FST, SP and BST cases.

lent shear stress is shown as below,

u = u1 cos θ − u3 sin θ,

u′2 = (u21 − U2
1 ) cos

2 θ + (u23 − U2
3 ) sin

2 θ − (u1u3 − U1U3) sin(2θ),

u′v′ = u1u2 cos θ − u2u3 sin θ.

(5.10)

The transformed velocity r.m.s. u+i,rms and the weighted streamwise turbu-

lent shear stress −(1− y)u′v′ are shown in figure 5.11. For all the 13 cases, the wall

normal velocity fluctuation v+rms and the spanwise velocity fluctuation w+
rms show

a monotonic decrease as θ increases. However, the streamwise velocity fluctuation

u+rms shows an interesting phenomenon at the peak location: when θ increases from

0◦ to 90◦, the peak slightly moves away from the wall, but the strength is dramat-

ically weakened; when θ increases from 90◦ to 180◦, the peak keeps moving away

from the wall, but the strength slightly increases. This peak behaviour is closely

linked to the near wall streaks and quasi-streamwise structures. Some evidence can

be seen from the snapshots in figure 5.9, but more analysis will be described in the

following sections. The weighted turbulent shear stress −(1 − y)u′v′ gives the con-

tribution to the skin-friction from the turbulent fluctuation (equation (4.3)), and it

shows a monotonic decrease, which is in agreement with the DR plot in figure 5.10.

Again, larger change of −(1− y)u′1u
′
2 appears for θ < 90◦, while smaller change for

θ > 90◦.
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(a) (b)

(c) (d)

Figure 5.11: Turbulence statistics in transformed coordinate for: (a) u+rms, (b) v
+
rms,

(c) w+
rms, and (d) −(1− y)u′v′. The three solid lines represent θ = 0◦, 90◦ and 180◦,

respectively. The inserted contour plots are the corresponding statistics in polar
coordinate.

5.5 Streamwise and spanwise travelling waves

5.5.1 DR maps

The drag reduction maps for both the streamwise and the spanwise travelling waves

as a function of the oscillation frequency ω+ and the wavenumber κ+ are shown

in figure 5.12, at fixed Lorentz force strength Af = 0.5 and penetration depth

∆+ = 10. The horizontal axis is the oscillation frequency ω+ (or period T+),

while the vertical axis represents the wavenumber κ+ (or wavelength λ+). A total

number of 113 simulations are performed to create the DR maps. The DR map

for the streamwise travelling wave (figure 5.12(a)) shows a great resemblance to the

streamwise travelling wave induced by spanwise wall velocity (Hurst et al., 2014;

Quadrio et al., 2009): a drag increase (DI) region (light colour) accompanied by

the drag reduction (DR) regions (dark colour) at each side. The DI region appears

when the wave travels at a speed similar to the convection velocity U +
c of the near
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wall turbulence structure, which is typically around U +
c = 10 (Kim and Hussain,

1993). However, several differences in the streamwise travelling wave DR map

between the spanwise Lorentz force and the spanwise wall motion (see figure 7.3

and figure 2 in (Quadrio et al., 2009)) can be observed:

• The DI region in the spanwise wall motion has a wave speed c+(≡ ω+/κ+x ) =

12, while it is c+ = 8 in the spanwise Lorentz force case.

• The maximum drag reduction occurs in the backward streamwise travelling

wave case with DR = 31 ± 2 at ω+ = −0.06 (T+ = 105), κ+x = 0.002 (λ+x =

3142). However, in spanwise wall motion case, the optimal DR case is within

the forward travelling wave region with DR = 48±2 at ω+ = 0.02 (T+ = 314),

κ+x = 0.008 (λ+x = 785).

• The DI region is broader in the Lorentz force case, which means the control

is less effective than the spanwise wall motion case.
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Figure 5.12: Drag reduction maps for (a) streamwise travelling wave and (b) span-
wise travelling wave. The zero contour level is indicated by the black bold lines.
Cross symbols mark OC, FST, SP and BST cases in table 5.2.

Figure 5.12(b) shows the DR map for the spanwise travelling wave cases. It

also has a DR region and a DI region. However, the shape is very different from

the DR map for the streamwise travelling wave. The DR region and the DI region

are almost vertically separated. The optimal frequency ω+
opt shifts only slowly as

κ+z increases (it is almost fixed at ω+ ≈ 0.06 (T+ ≈ 104) for small κ+z ). All the
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spanwise stationary wave cases (ω+ = 0) show a drag increase, and the DI value is

much larger than that in the streamwise travelling wave cases. Large drag reduction

is associated with small spanwise wavenumber κ+z , and this is consistent with the

finding by Du et al. (2002). As has been pointed out by Xie and Quadrio (2013),

spanwise oscillation case indeed results in the largest drag reduction compared to

all the spanwise travelling wave cases at the same oscillation frequency.

From the drag reduction maps in figure 5.12, four typical cases are selected:

the spanwise oscillation case (OC), forward streamwise travelling wave case (FST),

spanwise travelling case (SP) and backward streamwise travelling wave case (BST).

The four cases are indicated in figure 5.12 by cross symbols, and their control pa-

rameters are given in table 5.2. The selected BST is the case with the highest

drag reduction among all the streamwise and spanwise travelling wave cases. The

three travelling wave cases have roughly the same wavelength, and they are also the

reference cases for the oblique travelling wave studied in section 5.4.

Table 5.2: Main case parameters with Af = 0.5, ∆+ = 10.

Case Lx × Lz ∆x+ ×∆z+ ω+ κ+x κ+z θ DR
OC 16× 6 5.0× 2.5 0.06 0 0 - 28± 2
FST 16× 6 5.0× 2.5 0.06 0.0020 0 0◦ 11± 2
SP 16× 12 5.0× 2.5 0.06 0 0.0026 90◦ 26± 2
BST 16× 6 5.0× 2.5 −0.06 0.0020 0 180◦ 31± 2

Oblique 16× 16 2.5× 2.5 ±0.06 0.002\0.0 0.0\0.002 - -

The optimal oscillation frequency ω+
opt for the spanwise oscillating Lorentz

force and the optimal streamwise wavenumber κ+x,opt for the streamwise stationary

wave are both changed from the spanwise wall motion cases. Quadrio et al. (2009)

showed ω+
opt = 0.06 (T+

opt = 105) for the spanwise wall oscillation case and κ+x,opt =

0.005 (λ+x,opt = 1257) for the streamwise stationary wave case. These two optimal

values are linked by a convection velocity U +
c . In the present spanwise Lorentz force

case, there also appear to be an optimal oscillation frequency, ω+
opt, and an optimal

streamwise wavenumber, κ+x,opt, as shown in figure 5.13. However, the optimal values

are different from the case of spanwise wall motion, and they are very sensitive to

the Lorentz force penetration depth, ∆+. As shown in figure 5.13, at ∆+ = 10,

the optimal values are ω+
opt = 0.08 (T+

opt = 79) and κ+x,opt = 0.014 (λ+x,opt = 449);

at ∆+ = 5, these two optimal values are ω+
opt = 0.05 (T+

opt = 126) and κ+x,opt =

0.01 (λ+x,opt = 628). By taking a look at the absolute DR values for the spanwise

oscillation cases and the streamwise stationary wave cases, surprisingly, it is found

that for the spanwise oscillation case, the DR value at ω+
opt is higher when ∆+ =
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10, but for the streamwise stationary wave case, the DR value at κ+x,opt is higher

when ∆+ = 5. This means that the exact shape of the DR map can change with

the penetration depth ∆+. Also, as observed from figure 4.13, DR has different

asymptotic behaviours depending on ∆+. However, due to the computational cost,

no exploration is attempted for the effect of the Lorentz force penetration depth

∆+.
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Figure 5.13: Drag reduction for (a) spanwise oscillation cases and (b) streamwise
stationary wave cases at Af = 0.5 with ∆+ = 10 and ∆+ = 5.

Berger et al. (2000) showed that the optimal wavenumber κ+x,opt for the

spatially oscillating Lorentz force was linked to the optimal oscillation frequency

ω+
opt of the temporal oscillating Lorentz force at the range of ω+ = 0.05 ∼ 0.25

(T+ = 25 ∼ 125) by a constant convection velocity U +
c = 10. The comparison

between the spatially oscillating Lorentz force and the temporal oscillating Lorentz

force for the present data is shown in figure 5.14. A convection velocity of U +
c = 5

is used for the convection. In a broad range of ω+ = 0.05 ∼ 0.2, the DR trends are

similar. A more general way is to extend the time scale T + proposed by Quadrio

et al. (2009) for the streamwise travelling of spanwise wall velocity to the following

form, with the travelling wave angle considered,

T
+ =

λ+

|U +
c cos(θ)− c+| . (5.11)

The oscillation frequencies for the forward streamwise travelling wave, spanwise

travelling wave, backward streamwise travelling wave at κ+ ≈ 0.002 (λ+ ≈ 3142)

(as shown by the white solid lines in figure 5.12), and all the 13 oblique travelling

wave cases (from figure 5.10) are converted using equation (5.11) with U +
c = 8.

The data are shown in figure 5.14 for the comparison with the temporal oscillation
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case. All the curves for the travelling waves almost collapse with the one for the

temporal oscillation case. Overall, figure 5.14 suggests that all the travelling waves

at κ+ ≈ 0.002 (λ+ ≈ 3142) can be analogue to the temporal oscillation case, and all

of them show an optimal converted optimal oscillation frequency at ω+
opt = 0.05 ∼

0.1. The good agreement between the converted oblique travelling wave case and

the temporal oscillation case strongly supports that the interaction between the

“ribbon” structure in the travelling wave case (Du and Karniadakis, 2000) and

the near wall streaks is similar to the case in temporal oscillation case, where the

interaction comes from the homogeneous Lorentz force. In the following sections,

the similarity in the turbulence statistics and the structure dynamics will be further

explored.
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Figure 5.14: DR comparison for travelling wave cases with the oscillation frequency
converted using equation (5.11), where U +

c = 5 is used for streamwise stationary
wave (Stat), and U +

c = 8 for all the others. Stationary, forward streamwise trav-
elling wave, spanwise travelling wave and backward streamwise travelling wave are
indicated by the while lines in figure 5.12, and the oblique travelling wave is from
figure 5.10.
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5.5.2 Power budget

Following Ricco et al. (2012), the kinetic energy balance in the controlled channel

unit is given as below,

EP + Ef = DU + DW + DT , (5.12)

EP =

[
Um

∂P̃

∂x

]

g

, Ef =
[
f̃w
]
g
,

DU =



(
∂Ũ

∂y

)2


g

, DW =



(
∂W̃

∂y

)2


g

, DT =

[
˜∂ui
∂xj

∂ui
∂xj

]

g

,

where ·̃ indicates phase average as shown in equation (4.4), and [·]g is defined as,

[·]g =
1

TV

∫ T

0

∫

V
· dV dt = 1

2TLxLz

∫ T

0

∫ 2

0

∫ Lx

0

∫ Lz

0
· dx dz dy dt.

EP is the pumping power through the streamwise pressure gradient, Ef is the power

input through the spanwise Lorentz body force, DU , DW and DT are the dissipation

rates in the streamwise mean flow, the spanwise mean flow and the turbulent fluc-

tuations, respectively. Therefore, the fluid power input due to the Lorentz force can

be either calculated from Ef directly or from its balance terms in equation (5.12).

However, f and its generated w are not always in phase, thus the fluid is less efficient

in extracting power from the Lorentz body force. This process is demonstrated for

a laminar case at ω+ = 0.06 (T+ = 105) in figure 5.15(a). In this case, Ef is in

balance with DW . However, 1
V

∫
V f̃wdV is negative in some phase, corresponding

to the power output from the fluid to the Lorentz force actuators. However, this

energy recycling mechanism does not exist for our one-way coupled plasma actuator

model, and the Lorentz force actuator has to consume power to do the negative

fluid work. Therefore, we define the minimum power spent (relative to the pumping

power) from our Lorentz force actuators as,

Psp =
[
|f̃w|

]
g
/EP × 100 (%), (5.13)

and correspondingly the relative net energy saving is defined as,

Pnet = DR− Psp. (5.14)

Here the minimum power spent is in the sense that we do not consider any electric

power lost due to the electric efficiency of the actuators. Figure 5.15 shows that
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[
|f̃w|

]
g
/EP is always larger than [Ef ]g /EP for a wide range of oscillation frequencies.
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Figure 5.15: Power calculation for the laminar case in figure 5.18: (a) power input
and dissipation variation during one period (ω+ = 0.06, (T+ = 105)); (b) power
input against different frequencies.

The power spent maps for the streamwise and spanwise travelling waves

are shown in figure 5.16. The highest power spent roughly coincides with the DI
regions. The minimum Psp are located furthest away from the origin, and with a

value of around 20 for both the streamwise and the spanwise travelling waves, and

the corresponding Psp minimum are at (κ+x , ω
+) = (0.024,−0.18) (or (λ+x , T

+) =

(260,−35)) and (κ+z , ω
+) = (0.031, 0.18) (or (λ+z , T

+) = (200,−35)), respectively.
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Figure 5.16: Power spent (Psp) maps for (a) streamwise travelling wave and (b)
spanwise travelling wave.
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The net energy saving is shown in figure 5.17. The most notable feature on

the maps is that no positive Pnet is achieved. The best performance case for the

streamwise travelling wave is at (κ+x , ω
+) = (0.002, 0.12) (or (λ+x , T

+) = (3140, 50))

with Pnet ≈ −10, and for the spanwise travelling wave case, it is at (κ+z , ω
+) =

(0.005, 0.12) (or (λ+z , T
+) = (1260, 50)) with Pnet ≈ −9.

For a real Lorentz force actuator, the power supply is provided by electric-

ity, and the electricity power used can be expressed as Pe = V0J0Ae, where V0 is

the voltage drop and Ae is the wetted surface area of the electrodes. By substi-

tuting Af = J0B0h/ρU
2
m into the above expression, the final estimated electricity

consumption (non-dimensionalised by the pumping power EP ) can be obtained as

below,

Pe =
AeρU

2
m

B0LxLzhEP
AfV0. (5.15)

Af can be adjusted through either changing the current density J0 or changing

the permanent magnet flux B0. Roughly, Pe ∼ Const. for purely changing B0;

and Pe ∼ A2
f for purely changing V0. To achieve Af = 0.2, Berger et al. (2000)

estimated Pe ∼ 600 (please notice that their pumping power was expressed in τwuτ

form). For the best scenario we take Pe ≈ 600 for Af = 0.5 used in the present

study. Considering that the general power input is around the same order as EP

(see figure 5.16), the efficiency for the Lorentz force actuators to convert the electric

power to the fluid power is η ∼ 1/600 ∼ O(10−3). To achieve a net energy saving,

Pe < 1 is required, thus it is more challenging to achieve a net energy using Lorentz

force actuators.

5.5.3 Lorentz force induced Stokes layer

The spanwise mean velocity profiles for the spanwise oscillating Lorentz force are

shown in figure 5.18(a), and are compared with the profiles generated by the span-

wise oscillating wall and pressure gradient. The Stokes layer due to the spanwise

Lorentz force is termed as the Lorentz force Generated Stokes Layer (LGSL) in the

present study. The governing equation for the laminar LGSL is given as below,

∂W+

∂t+
=
∂2W+

∂y+2 +A+
f e

−y+/∆+
sin(−ω+t+),

B.C. : W+|y+=0 = 0, W+|y+=∞ = 0.

(5.16)

The analytical solution is given in appendix E, and is compared with the turbulent

spanwise mean velocity profiles at 8 equally separated phases. They are similar
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Figure 5.17: Net energy saving (Pnet) maps for (a) streamwise travelling wave and
(b) spanwise travelling wave.

to each other close to the wall, while they deviate from each other further away

from the wall. The discrepancy is caused by the additional Reynolds stress term

∂ṽ′w′/∂y as shown in figure 5.18(b), and this point has been discussed in figure

4.16 for spanwise wall oscillation. Due to the no-slip wall boundary, the maximum

spanwise mean velocity appears around y+ ≈ ∆+. This gives the obvious difference

of the spanwise mean velocity profiles between OC case and either the spanwise

wall oscillation case or spanwise oscillating crossing flow case (Jung et al., 1992).

It was demonstrated by Jung et al. (1992) that oscillating spanwise crossing flow

(equivalent to spanwise oscillating pressure gradient) had a similar DR effect as

spanwise wall oscillation. There are two ways to explain this point. First, we

investigate the momentum equations for u and w in the spanwise wall oscillation

case, shown as below,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
=

1

Re

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
,

B.C. : u|y=0 = 0, w|y=0 = Aw sin(−ωt).

Following the approach by Sendstad and Moin (1992) (pp. 20), a transformation

for w is used, and the new spanwise velocity is defined as w̌ = w − Aw sin(−ωt).
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Plug the transformation into the above equations, we can have,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w̌

∂u

∂z
=

(
−∂p
∂x

−Aw sin(ωt)
∂u

∂z

)
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

∂w̌

∂t
+ u

∂w̌

∂x
+ v

∂w̌

∂y
+ w̌

∂w̌

∂z
=

(
Awω cos(−ωt)−Aw sin(ωt)

∂w̌

∂z

)

+
1

Re

(
∂2w̌

∂x2
+
∂2w̌

∂y2
+
∂2w̌

∂z2

)
,

B.C. : u|y=0 = 0, w̌|y=0 = 0.

If we ignore the small term −Aw sin(ωt)∂u∂z (compared to − ∂p
∂x , since

∂u
∂z is small)

and Aw sin(ωt)∂w̌∂z (compared to Awω cos(−ωt), since ∂w̌
∂z is small), the transformed

equations become identical to the governing equations for a spanwise oscillating

pressure gradient problem, with ∂p
∂z = −Awω cos(−ωt). Second, it is widely accepted

that in spanwise wall oscillation case the Stokes layer displaces the near wall streaks

respect to the vortical structures, resulting in the drag reduction (Akhavan et al.,

1993; Laadhari et al., 1994; Baron and Quadrio, 1996). For the spanwise oscillating

pressure gradient case, as pointed out by Ricco (2004), it is the vortical structures

oscillating transversally over the near wall streaks that causes the drag reduction.

But in general, both cases decorrelate the spatial arrangement between the near

wall streaks and the vortical structures.
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Figure 5.18: (a) Spanwise mean velocity profiles for OC case compared with the
laminar solution (equation (5.16)), spanwise wall oscillation, and spanwise crossing

flow; (b) ∂ṽ′w′+/∂y+ profiles for spanwise oscillating Lorentz foce.

Unlike OC case, whose spanwise mean velocity profile varies in time, for

FST, SP and BST cases, these profiles vary in space as well. The spanwise mean

velocity profiles for FST, SP and BST cases are compared with the OC case in

figure 5.19, with only the profiles at two phases shown. Again, within the viscous
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sublayer (y+ < 5), the spanwise mean velocity profiles are very similar, but they

are different further away from the wall. For SP case, the Lorentz force travels in

the positive spanwise direction, thus it induces a positive net mass flow near the

wall, while a negative mass flow away from the wall (W = −0.05 at the core region),

as also observed by Xie and Quadrio (2013). The thickness of the LGSL δ+ can

be defined as a wall distance where the spanwise mean velocity decreases to e−1 of

the maximum spanwise mean velocity as in the spanwise wall oscillation case. For

spanwise travelling wave, the induced spanwise mean velocity is removed first before

determining δ+. This gives δ+ = 19, 25, 19 and 18 for the OC, FST, SP and BST

cases, respectively.
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Figure 5.19: Spanwise mean velocity profiles for travelling wave cases.

To further check the correlation between DR and δ+, the LGSL thickness is

calculated for all the streamwise and spanwise travelling wave cases, and is shown in

figure 5.20. The two δ+ maps show a similar pattern as the DR maps. Generally in

the DI region, δ+ is much larger. The optimal DR region corresponds to δ+ ≈ 18.

The correlation is further presented in a 1D format as shown figure 5.21, similar

to Quadrio and Ricco (2011) for generalised Stokes layer study. Cases with too

large δ+ or DI values are excluded for a clearer view. The data here is scattering,

but it suggests that: 1) δ+ can hardly go below δ+ = 10, which is the penetration

depth ∆+ of the Lorentz body force; 2) there is an optimal thickness of δ+opt ≈ 17.5.

Streamwise travelling wave with small T + tends to follow the fitting line given by

Quadrio and Ricco (2011) (shifted by ∆δ+ = 10), but the linear correlation in this

regime for the spanwise travelling wave is poorer. Since the current dataset is small,

it is not clear whether a similar minimum LGSL thickness exists as the streamwise
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travelling wave of spanwise wall velocity. For the four studied cases, i.e., OC, FST,

SP and BST, they are all located above δ+opt, and their DR values roughly correlate

with their LGSL thickness linearly.
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Figure 5.20: δ+ maps for: (a) streamwise travelling wave; and (b) spanwise travelling
wave.
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5.5.4 Statistics and spectra

The turbulent velocity and vorticity fluctuations for OC, FST, SP and BST are

shown in figure 5.22. For the three travelling wave cases, u+i,rms behaviours are

the same as the oblique travelling wave study shown in figure 5.11. The statistics

modulation for the travelling wave cases is similar to the oscillation case. As can be

seen, over the entire channel, u+rms decreases for all the four drag reduction cases,

especially for the near wall peak, which has a maximum decrease of around 30%

for the OC case. The near wall u+rms peak appears at y+ = 14 for the no control

case (Kim et al., 1987), while it moves to y+ = 16, 20, 24 and 28 for the OC, FST,

SP and BST cases, respectively. The peak of v+rms monotonically decreases, which

is roughly proportional to the DR value. The peak values modulation on w+
rms is

quite different for FST case, where 30% increase in the w+
rms peak value is observed

despite that FST case gives around 10% drag reduction. For the vorticity plots,

ω+
y,rms is normally used to measure the strength of the near wall streaks (Le et al.,

2000). As we can see, ω+
y,rms decreases for all the control cases (figure 5.22(e)), which

is the same as v+rms plot. Surprisingly, ω+
x,rms does not decrease for all cases (figure

5.22(d)). For example, ω+
x,rms increases in the region of 4 < y+ < 14 for OC and

SP cases, while ω+
x,rms increases within the whole channel height for FST case. This

is reminiscent of the drag reduction mechanism given by Du et al. (2002) that the

appropriate enhancement of the streamwise vortices leading to the weakening of the

streak intensity. Considering that all four travelling wave cases give drag reduction,

the drag reduction correlates better with the wall normal fluctuations, i.e., v+rms and

ω+
y,rms (Chung and Talha, 2011). Among all the three velocity fluctuation statistics,

the SP case is very similar to the OC case. Since the travelling wavelength λ+z ≈ 2400

(κ+z = 0.0026) for SP is large, the near wall structure can not sense the difference

between the spatial Lorentz force and the homogeneous temporal one.

Figure 5.23 shows the vorticity fluctuation profiles for FST scaled by the no

control case wall units and the control case wall units, respectively. This is compared

with the constant pressure gradient control case for streamwise travelling wave of

spanwise wall velocity from (Quadrio and Ricco, 2011). In their case, the wall units

are fixed, which gives a clear inner scaling. Zhou and Ball (2008) have made an

intensive comparison of the turbulent statistics for spanwise wall oscillation between

constant mass flow rate (CFR) and constant pressure gradient (CPG) controls. Our

CFR data under two different scaling are very similar, with just an upward shift

when a smaller uτ associated with the control case is used. There is a big difference

in the near wall vorticity modulation under CFR and CPG, especially for ω+
y,rms and

ω+
z,rms. But both FST and the travelling wave case by Quadrio and Ricco (2011)
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Figure 5.22: R.m.s. of the velocity and vorticity fluctuations comparison among no
control, OC, FST, SP and BST cases for (a) u+rms, (b) v

+
rms, (c) w

+
rms, (d) ω

+
x,rms,

(e) ω+
y,rms, and (f) ω+

z,rms.

show a significant increase of ω+
x,rms up to y+ ≈ 50. As pointed out by Quadrio and

Ricco (2011), this is quite surprising, because these two cases have a large amount of

drag reduction (DR = 11±2 for FST and DR = 45 for (Quadrio and Ricco, 2011)).

Clearly, it suggests that the DR by the travelling waves is not directly linked to the

weakening of the near wall quasi-streamwise vortices (such as for ribblet case (Choi

et al., 1993)), but to decrease the spatial correlation between the quasi-streamwise

vortices and the streaks (Baron and Quadrio, 1996). This non-monotonous change

of ω+
x,rms is also reflected in the spanwise wall oscillation cases (see figure 4.14(f)).

The energy change in the streamwise velocity fluctuation is checked by the

two-dimensional pre-multiplied streamwise velocity spectrum kxkzEuu at y+ = 10,

as shown in figure 5.24. At this location, the near wall streaks in no control case

are shown by an energy peak site of a streamwise length scale λ+x ≈ 1000 and a

spanwise length scale λ+z ≈ 100. When the flow is controlled by spanwise Lorentz

force, there is a significant reduction in the streamwise length scale of the near wall

streaks, with λ+x ≈ 350 for OC and SP cases, λ+x ≈ 200 for FST case, and λ+x ≈ 400

for BST case, as indicated by the arrow in the 1D pre-multiplied streamwise spectra.

However, the length scale change in the spanwise direction λ+z (as indicated by the

arrows) is not obvious. This again suggests that the near wall streaks are broken-up

by the travelling waves, resulting in a significant amount of energy reduction in the

large scales λ+x > 1000, which is also evident from the instantaneous streaks plot in
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Figure 5.23: R.m.s. of vorticity fluctuations for FST (bold solid lines) scaled by: (a)
the no control wall units, and (b) the control wall units, compared with streamwise
travelling wave of spanwise wall velocity at A+

w = 12, ω+ = 0.045, κ+x = 0.012
(Quadrio and Ricco, 2011) (solid lines with circles). Dashed lines are for the no
control case.

figure 5.9.

Figure 5.24: 2D and 1D pre-multiplied streamwise velocity spectra kxkzEuu at y+ =
10 for no control case (black solid line) and control cases (see figure 5.19 for the line
key). 7% and 60% of the no control case peak value are shown by contour lines in
the 2D plot for each spectrum.

The one-dimensional pre-multiplied spectra for the streamwise velocity over

the channel are shown in figures 5.25(a)-5.25(d) for the OC, FST, SP and BST

cases compared with the no control case. It is clear to see the peak location of

the streamwise velocity fluctuation in the wall normal direction for all the four

travelling wave cases. Again, this energy peak site moves further away from the

wall for all the control cases. To emphasise the energy in the LGSL, kzEww is
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shown for SP case, while kxEww is shown for the other control cases. The energy

contained in the LGSL as shown in figure 5.19 has the scale of the domain size and

keeps energetic in the whole LGSL. For OC case, there is no energy in the LGSL

due to the force homogeneity in space, thus this part of energy is contained in the

phase mean component. A complicated interaction exists between the LGSL and the

most energetic spanwise velocity structure, which has a length scale of λ+x ≈ 300 and

λ+z ≈ 200. The LGSL does not obviously change the scale of the spanwise velocity

structure, but mainly changes the containing energy. This modification seems to be

closely related to the thickness of the LGSL. For the FST case, the LGSL is the

thickest, and the spanwise velocity structure is amplified. But for OC, SP and BST

cases, this part of energy is reduced. This observation is consistent with the w+
rms

plot in figure 5.22(c).
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Figure 5.25: One-dimensional pre-multiplied spectra over the half channel height
for OC case ((a)(e)); FST case ((b)(f)); SP case ((c)(g)) and BST case ((d)(h)).
The spectrum for no control case is shown by contour lines, while the control cases
are shown by shaded contour. (a)-(d) are spectra of kxEuu; (e)(f)(h) are spectra of
kxEww and (g) is the spectrum of kzEww. The same contour levels are used for the
same variable.

5.5.5 λ2 structures

The above analysis shows a significant similarity in the skin-friction control between

Lorentz force and spanwise wall motion. In this section, the dynamics of the λ2

structures and the streaks is further investigated to show the similarity between the

travelling waves and the temporal oscillation by spanwise Lorentz force.
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Same as spanwise wall motion, instantaneous flow fields of the OC case (ω+ =

0.06, T+ = 105) are saved at 16 equally separated phases for 10 periods after the

transient period. The conditional averaged positive λ2 structures at each phase

are shown in figure 5.26 for ∆+ = 10. The drag reduction values for this case is

DR = 28± 2 (see table 5.2). As has been understood from figure 4.19, the negative

structure dynamics is half a period phase shift from the positive one, therefore it

is not shown. The positive λ2 structure changes the tilting angle periodically in

the xz plane, and the centre position moves away from the wall towards the outer

region of the flow in wall normal direction. At the beginning of the period, the

positive structure is most negatively tilted in the xz plane, and it is closest to the

wall. As the spanwise Lorentz force goes to the negative spanwise direction (left),

the positive structure starts to rotate in clockwise direction in the xz plane until

the tilting angle is positive in the end of the oscillation period. In the mean time,

the positive structure keeps moving away from the wall and its strength increases

in the first half period and decreases in the second half period. This is similar to

what has been observed in the spanwise wall oscillation case (see figure 4.19). It

is interesting to notice that at phase φ = 15π/8, two positive λ2 structures are

identified simultaneously: a strong structure close to the wall; and a weak structure

further away from the wall. This is consistent with figure 4.21, where an additional

condition was used to split the lower structure from the upper one.

Similar analysis for the characteristic eddies (as for the spanwise wall oscilla-

tion case) is conducted, and the result is shown in figure 5.27. The high-speed streak

is λ+x ≈ 500 in length from a xz plane view (not shown), much shorter than that in

the no control case (figure 3.8) (Choi et al., 1998; Ricco, 2004). Recalling that the

thickness of the LGSL is δ+ = 20 for OC case (figure 5.19), the high- and low-speed

streaks are significantly twisted in this layer; while they are almost un-modulated

outside of this region (Baron and Quadrio, 1996). A comparison with figure 5.26

suggests that the streaks twisting angle generally matches the angle of the stronger

λ2 structure. However, due to the two-fold twisting, for example at phase φ = π/2

and 3π/2, multiple streaks angle are observed from different heights of the wall.

Overall, the ensemble averaged λ2 structures and streaks analysis shows

the similar structure dynamics in a spanwise oscillating flow induced by spanwise

Lorentz force and by spanwise wall velocity. To verify the λ2 structure behaviours

in FST, SP and BST cases, the positive and negative λ2 structures are conditioned

in the positive and negative Lorentz force regions separately. The conditioned λ2

structures are shown in figure 5.28. Since one wavelength is only divided into two

parts, the resolution is much lower than the conditioned structures in OC case shown
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Figure 5.26: Conditional averaged positive λ2 structure at 16 equally separated
phases of one oscillation period for OC case. The structures are visualised by λ+2 =
−0.01.

Figure 5.27: End view of the characteristic eddy at 16 equally separated phases
of one oscillation period for the OC case. The high- and low-speed streaks are
visualised by u′ = ±0.35, respectively.
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in figure 5.26. To make the comparison more straightforward, the λ2 structures are

also conditioned in the positive and negative Lorentz force regions only for the OC

case, and is shown in figure 5.28(a). The structure behaviours in the positive and

negative Lorentz force regions for the travelling wave cases resemble the OC case

significantly. The positive and negative structures reside at two very different wall

normal locations: the upper structures are at y+ ≈ 25, while the lower structures

are at y+ ≈ 14. In the positive force region, the negative λ2 structure is lower and

turns in clockwise direction; while the opposite situation happens for the positive

structure in the negative force region. When visualised with the same λ2 criteria,

differences in the structure strength, tilting angle can be observed among the FST,

SP and BST cases.

(a) (b) (c) (d)

Figure 5.28: Conditional averaged positive and negative λ2 structures in the positive
and negative Lorentz force regions for (a) OC case; (b) FST case, (c) SP case, and
(d) BST case. The structures are visualised by λ+2 = −0.01.

The tilting angle and the strength (evaluated using the minimum value of

the λ2 field) are measured and plotted in figure 5.29 against the drag reduction. The

tilting angles of both the upper and lower structures correlate well with DR, which

shows a slop of −0.67. This is reminiscent of the ensemble averaged λ2 structures

in spanwise oscillation cases with different frequencies, where the lowest frequency,

ω+ = 0.01 (T+ = 628) creates largest structure tilting angle, and drag increase

(figure D.1). Due to the fact that the lower structure is more strongly convected by

the Lorentz force, and its tilting angle can vary from a positive value to a negative

one, or vice versa (see figures 5.26), which results in the overall averaged titling

angle for the lower structure smaller than that for the upper one. This is suggested

in figure 5.29. When the strength is measured by the minimum of the λ2 field, the

upper structure is always weaker than the lower one, which is consistent with the

continuous structure dynamics in the OC case shown in figure 5.26. The strength
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variation of the upper structure is negligible among all the four control cases. A big

strength variation is observed for the lower structure, and this strength variation

shows a good correlation with DR value. This suggests the strong link between

the drag reduction and the asymmetry between the positive and the negative quasi-

streamwise vortices.
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Figure 5.29: Correlation between DR with the structure tilting angles (circles) and
structure strength (squares) for the upper and lower structures shown in figure 5.28.
Open symbols are for the upper structures, and closed symbols are for the lower
structures.

The near wall streaks are generated by the streamwise aligned positive and

negative quasi-streamwise vortices (Jeong et al., 1997). The tail of the positive

(negative) structure is overlaid with the head of the negative (positive) structure

(see figure 2.2). However, in the OC, FST, SP and BST cases, this symmetry is

broken-up. The positive and the negative structures do not stay at the same wall

distance and their large tilting angles make this connection more difficult. This

leads to the break up of the near wall high- and low-speed streaks, decreasing the

energy in the large streamwise length scales.

5.6 Conclusions

A systematic study of the streamwise, spanwise and oblique travelling waves by

spanwise Lorentz force was conducted, with a maximum of about 30% drag reduction

achieved at the explored Lorentz force strength Af = 0.5 and penetration depth

∆+ = 10. The simulation was designed to align the mean flow with an angle to x

direction, so that the effect of the travelling wave angle at a fixed wavelength could
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be studied. The most effective drag reduction waveform was found to be backward

streamwise travelling wave, θ = 180◦.

The interaction between the travelling wave (“ribbon” structure) and the

near wall streaks was found to be the same as in the spanwise oscillating Lorentz

force case. Detailed structure dynamics was presented by the ensemble averaged

λ2 structure and the characteristic eddy. It was shown that spanwise Lorentz force

created asymmetry between the positive and the negative near wall λ2 structures,

and this broke the λ2 structure train in the buffer layer, weakened the formation

of the long high- and low-speed streaks, resulting in drag reduction, which was

essentially the same as the transient drag reduction mechanism discussed for uni-

direction wall motion in section 4.1. The similarity between the travelling wave and

the spanwise oscillating Lorentz force was also revealed in the turbulence statistics

and spectra. A time scale T + = λ+/(U +
c cos(θ) − c+) was found to link the drag

reduction effectiveness of the travelling waves with the spanwise oscillating Lorentz

force well at low control wavenumber.

The presented results strongly suggests that the skin-friction drag reduction

control by spanwise wall oscillation can be replaced by spanwise body force with

the travelling wave form in any angle to the mean flow direction. This provides the

guide for the work in the next chapter.
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Chapter 6

Drag Reduction by DBD

Plasma Actuators

Following the previous chapter on drag reduction using Lorentz force actuators, this

chapter studies another type of actuator, i.e., DBD (dielectric barrier discharge)

plasma actuator (Roth, 2003). DBD plasma actuators mainly work for air, and they

do not require the fluid to be electro conductive. Moreover, plasma actuators are

light, easy to be implemented, and have high response frequency. These advantages

make them a perfect candidate for the flow control applications of aircrafts and land

transport vehicles. Currently, there is a large amount of flow control applications

using DBD plasma actuators (Wang et al., 2013), but only a very limited number of

works were done on skin-friction drag reduction control by DBD plasma actuators

(Choi et al., 2011; Elam, 2012). A typical skin-friction control set up by DBD plasma

actuators is shown in figure 6.1. The aim of this chapter is to explore the possible

DBD plasma actuator configurations for achieving skin-friction drag reduction, and

for understanding the effect of the control parameters. It provides some guidance on

how to design the DBD plasma actuator device for the skin-friction drag reduction

control.

6.1 Plasma actuator model and its validation

A DBD plasma actuator consists of two electrodes, with one exposed in air, and the

other one embedded in dielectric material. When a high AC (alternating current)

voltage is applied to the electrodes, the air in the vicinity of the electrodes is ionised,

and the ions and neutral gas particles strongly collide with each other to exchange

momentum and energy. Moreover, this process is not symmetric in the positive and
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Figure 6.1: Schematics of skin-friction control by plasma actuators. The plasma
actuators are represented by streamwise elongated strips on the wall. Coloured
actuators are activated, while the others are not.

the negative electric cycle, thus creating a net force, which is very useful for flow

control applications (Moreau, 2007). The discharge dynamics of the DBD plasma

actuators is governed by the following equations (Unfer, 2013),

∂Ne

∂t
+∇ · Γe =


∑

i

αi −
∑

j

ηj


NeNo −

∑

i

re,piNeNpi ,

∂Npi

∂t
+∇ · Γpi = αiNeNo − re,piNeNpi −

∑

j

rpi,njNpiNnj ,

∂Nnj

∂t
+∇ · Γnj = ηjNeNo −

∑

i

rpi,njNnjNpi ,

(6.1)

Γk = µkENk −Dk∇Nk + uNk, (k = e, pi, nj), (6.2)

∇ · (ǫE) = e


∑

i

Npi −
∑

j

Nnj −Ne


+ σδs, (6.3)

∂Neǫe
∂t

+∇ · ΓNeǫe = −eΓe · E− eNeΘ. (6.4)

Equation (6.1) is the continuity equations. Subscripts e, pi, nj and o indicate

electrons, positive ions for the ith species, negative ions for the jth species, and

neutral gas particles, respectively. For air, it can be approximated as the mixture

of two species, i.e., 77% N2 and 23% O2. N is the particles number density; α, η

and r are the ionization, attachment and recombination coefficients, respectively.

The flux Γ is given in equation (6.2), with µ, D being the species mobility and

diffusion coefficients, respectively. u is the neutral gas velocity. The electric field

generated by the plasma discharge can be obtained by solving the Poisson equation

(6.3), where σ is the surface charge density, and δs is the delta function (equal to
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one at the gas/dielectric interface and zero elsewhere). The energy balance is given

in equation (6.4), with ǫe being the mean electron energy, and Θ being the sum

of the electron energy loss in all elementary processes. The first heat sink terms

on the right hand side, −eΓe · E is due to Joule heating, which transfers energy

to the neutral gas. In the mean time, DBD plasma actuators generate an electric

hydrodynamics force, which is evaluated in equation (6.5). This is a momentum

source to the neutral gas, and also the most attractive feature for the present flow

control application.

f = e


∑

i

Npi −
∑

j

Nnj −Ne


E−∇


NekBTe +

∑

i

NpikBTpi +
∑

j

NnjkBTnj


 .

(6.5)

It is clear that the above equations are strongly coupled with the Navier-

Stokes equations in flow control applications: 1) plasma discharge provides momen-

tum and heat source into the Navier-Stokes equations, through f t and −eΓe · E,

respectively; 2) the bulk flow of the neutral gas enhances the drift of the electrons

and the ions through ∇·(unk), and affects the chemical reaction through the density

change No. The DBD plasma actuator used for the present flow control applications

is non-thermal, and majority of the electrical energy goes into the production of the

energetic electrons, instead of heating the surrounding gas (Moreau, 2007). The ex-

perimental work by Jukes et al. (2006a) showed that a same type of DBD actuator

only had a maximum temperature rise of 2± 0.1◦C. The modelling result by Unfer

and Boeuf (2010) showed that when the DBD plasma actuator was driven by a si-

nusoidal wave voltage, it acted as a momentum source; when driven by nanosecond

pulses, it acted as an aeroacoustic actuator generating micro shock waves and also

significant amount of heating. The DBD plasma actuators in the present flow con-

trol are operated at the radio frequency (Choi et al., 2011), thus the heating effect is

weak, and the compressibility due to the gas heating is negligible. Since the control

application is in the low Mach number regime, the incompressible Navier-Stokes

equations are used for the whole domain without solving the energy equation. This

approach was also used by Belson et al. (2012). Therefore, No is constant, and the

bulk flow can only affect the plasma through the term ∇ · (unk). When the charac-

teristic time scale of the fluid flow is much larger than that in the plasma dynamics,

such as the current application with DBD plasma actuators operated at the radio

frequency, ∇ · (unk) can be neglected (Abdollahzadeh et al., 2016). Therefore, the

system can be treated as one-way coupled, with the bulk fluid flow not affecting the
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plasma dynamics, but only the plasma contributing momentum source to the bulk

flow. Such a one-way coupling system for the flow control with plasma actuators

is widely used in the literature (Suzen et al., 2005; Orlov and Corke, 2006; Maden

et al., 2013).

The effect of the momentum contribution from the plasma actuators is illus-

trated in figure 6.2. There are different ways to obtain the electro hydrodynamics

force generated by DBD plasma actuators (Shyy et al., 2002; Suzen et al., 2005;

Orlov and Corke, 2006; Maden et al., 2013). One recently proposed plasma body

force estimation is based on the PIV (particle image velocimetry) data (Kotsonis

et al., 2011). Different assumptions were given by different authors to evaluate the

plasma body force, due to the unavailability of the pressure field, as summarised in

table 2.2. Once the plasma body force is evaluated, this force can be directly used

for the flow control simulations, or the body force can be parametrised first, as done

by Maden et al. (2013). Since the present study focuses on the plasma actuator

configuration for the skin-friction drag reduction, and a series of parameter studies

is going to be explored, the plasma body force model should be simple but also

with an acceptable accuracy. Thus the model proposed in this study is a balance

between the model by Shyy et al. (2002), where the plasma body force distribution

was assumed to be linear, and by Maden et al. (2013), where 9 parameters were

used for the least square fitting of the PIV based body force.

~
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y
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Figure 6.2: Schematics of a DBD plasma actuator viewed from a cross section,
showing the body force distribution, the jet profile and the starting vortex.

A long time-averaged high resolution PIV data for the DBD plasma actuator

which is similar to the DBD-VG1 studied by Jukes and Choi (2013), is used for the

model validation (see figure 6.4(a)). The width of the upper and lower electrodes are

Lu = 2.5 mm and Ll = 15 mm (figure 6.2). The plasma body force is reconstructed

using Wilke (2009) model and Albrecht et al. (2011) model, and shown in figures

6.3(a) and 6.3(b), respectively. The horizontal force distributions for fz from the

two models have a very similar pattern: the force concentrates at the left edge of the
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lower electrode, with a maximum of 5.2 kN/m2 at around z = 1 mm, and the force

sharply decreases to zero in the wall normal direction. This is consistent with the

plasma force distribution shown by Kotsonis et al. (2011), Maden et al. (2013) and

Dörr and Kloker (2015). From Wilke (2009) model, the vertical force component fy

is also shown, and clearly the vertical force component fy is much smaller than the

horizontal one fz.
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Figure 6.3: Plasma body force distribution of a single DBD plasma actuator for:
(a) fz and fy from Wilke (2009) model, (b) fz from Albrecht et al. (2011) model,
and (c) fz from equation (6.7). Solid lines are 10% iso-contour of the corresponding
field maximum.

Based on the observation from figure 6.3, we ignore the vertical force compo-

nent fy, and assume that the horizontal force component fz is Rayleigh distributed

in the horizontal direction and exponentially distributed in the wall normal direc-

tion, i.e.,




fz(y) = λe−λy, (y ≥ 0),

fz(z) = z
σ2 e

−z2/2σ2
, (z ≥ 0),

(6.6)

where λ and σ are the control parameters. The final form of the formulated plasma

body force fz distribution is,

fz(y, z) = Ifz(y)fz(z) = Af

√
ez

σ
e−z2/2σ2−λy, (y ≥ 0, z ≥ 0), (6.7)

where I is the total volume force, Af (= Iλ√
eσ
) is the maximum force located at

(σ, 0). Similar to the expression for Lorentz force (Du and Karniadakis, 2000), the

penetration depth is defined as ∆ = 1/λ.

The formulated body force with control parameters: Af = 9.4 kN/m3,

σ = 1.5 mm and λ = 2.8 mm−1 is shown in figure 6.3(c). Here λ and σ are
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chosen to match the shape of the force region in figures 6.3(a) and 6.3(b), and the

maximum force Af is tuned to match the averaged force strength. As can be seen,

the formulated plasma body force shows a good approximation of the plasma body

force distribution. This model gives a better description of the plasma body force

than the linear model proposed by Shyy et al. (2002), but less control parameters

than the one proposed by Maden et al. (2013), who used 9 parameters for a least

square fitting. In the present study, we are not trying to link the plasma body force

with the applied voltage and frequency (Abdollahzadeh et al., 2014). The unsteadi-

ness of the plasma body force in the positive and the negative going AC electric

cycle is not taken into consideration neither due to the computational cost (Benard

et al., 2013).

The simulated velocity field using the formulated plasma body force (figure

6.3(c)) is compared with the PIV data in figure 6.4, after the flow around the DBD

plasma actuator becomes steady. A similar flow pattern between the simulation

results with the present empirical model and the PIV measured data is observed,

except that the maximum velocity value is slightly underestimated in the simulation.

The jet profiles at four downstream locations, i.e., z/Ll = 0.27, 0.53, 0.8 and 1.07

are compared between the PIV data and the simulation results from the empirical

model, Wilke (2009) model and Albrecht et al. (2011) model. As can be seen, the

jet velocity profiles using the empirical model match the PIV data at all locations;

while the profiles of both Wilke (2009) and Albrecht et al. (2011) models deviate

from the PIV data dramatically for z/Ll ≤ 0.53 due to the effect of the negative

plasma body force tail (figures 6.3(a) and 6.3(b)). In the present skin-friction control

application, the most important effect of the plasma actuator is these induced jet

velocity profiles (Jukes and Choi, 2013).

The DBD plasma actuator also induces a primary starting vortex (figure 6.2)

travelling downstream and a secondary vortex close to the wall due to the no slip

boundary (Whalley and Choi, 2012). A plasma body force strength of Af = 0.26

kN/m3 is chosen to match the momentum changing rate in Case A of the experimen-

tal data by Whalley and Choi (2012). σ = 1.8 mm and λ = 1.6 mm−1 are chosen

as an approximation of the plasma body force region. A more detailed explanation

about the simulation parameter selection is given in appendix F. The vorticity con-

tour and velocity vector at t∗ = 1620, 2700 and 3780 (∗ indicates that the variables

are non-dimensionalised by the maximum jet velocity Wmax before reaching a steady

state, and ν/Wmax) are compared in figure 6.5 between the PIV measured result

(Whalley and Choi, 2012) and the simulation result. In the simulation, the strongest

circulation region is close to the origin where the body force is the strongest, while
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Figure 6.4: Horizontal velocity contour u between (a) PIV experimental result and
(b) simulation result using the present empirical model. The profiles at 4 different
vertical sections are shown in (c) for comparison between PIV result (circles), and
the simulation results using the empirical model (solid lines), Wilke (2009) model
(dash lines) and Albrecht et al. (2011) model (dash-dot lines).

this information is not available from the PIV data due to the limitation in the

measurement. There is a good agreement in the starting vortex size, but the sim-

ulated starting vortex tends to travel slower than the PIV data. This difference is

acceptable considering that no PIV derived body force can be used to fit the control

parameters in equation (6.7).

6.2 Multiple actuators

The starting vortices by the plasma actuators play an important role in the flow

evolution. Jukes and Choi (2013) studied how the three-dimensional starting vortex

induced by plasma actuators was folded in a laminar boundary layer and compared

it with the conventional vane-type vortex generator for the flow separation control

application. For the skin-friction control, besides the folding effect of the starting

vortices, another important factor is the interaction between two neighbour starting

vortices. These two effects are studied in a laminar channel flow at Re = 3150. Based

on the works on Lorentz force actuators in chapter 5, the geometry and strength of

the plasma actuators are fixed at Af = 1, σ = 0.07 (non-dimensionalised by h) and
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Figure 6.5: Vorticity field (contour) and velocity vectors for the starting vortex at
(a)(b) t∗ = 1620; (c)(d) t∗ = 2700; and (e)(f) t∗ = 3780. (a)(c)(e) are PIV data
taken from (Whalley and Choi, 2012) and (b)(d)(f) are simulation result. The same
contour levels are used everywhere.

λ = 45 (∆+ = 4.5). For the study in this section, the plasma actuators are aligned

in the streamwise direction, and only cover a range of [1/3Lx, 2/3Lx] (Lx = 32) in

the streamwise direction. The inflow of the channel is a parabolic velocity profile,

and the outlet is a convection boundary with the convection velocity equal to the

local mean velocity.

Figure 6.6(a) shows a close view of the starting vortex at the leading edge of

a single DBD plasma actuator. The vortex-formation mechanism in a shear layer

has been nicely explained by Jukes and Choi (2013), and this can be visualised

by the two streamlines released from y = 0.2 (blue) and y = 0.1 (red). When

the spanwise distance between two adjacent DBD plasma actuators is reduced to
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s = 0.5, as shown in figure 6.6(b), there is a strong interaction between the two

neighbour vortices. At the leading edge of the actuators, it forms complicated ‘W’

shaped vortices. The entrainment of the adjacent actuators inhabits the lift-up of

the single starting vortex in figure 6.6(a). The upward and downward velocity by

the starting vortices is much weaker, which can be observed from the streamwise

velocity contour lines.

(a) (b)

Figure 6.6: Starting vortices at the leading edge of the plasma actuators with dif-
ferent actuator gaps: (a) s = 3 and (b) s = 0.5. The vortex is shown by iso-surface
of λ2 = −0.001. Black contour lines show the streamwise velocity at several down-
stream locations. The blue and red lines show the streamlines starting from y = 0.2
and y = 0.1 respectively. Only one portion of the domain is shown.

The cores of the starting vortices are identified by the local minima of the λ2

field in each yz plane, and the trajectory of the core is plotted against the streamwise

location x in figure 6.7 to show the spatial evolution of the starting vortices. Jukes

and Choi (2013) showed that the starting vortices for their DBD-VG1 and DBD-VG2

had a similar scaling at the initial stage, i.e., y ∼ x2/3 and z ∼ x2/3. This is roughly

matched for the present starting vortex with s = 3, despite that the actuators are

within very different streamwise shear layer. However, the evolution of the vortex

core trajectory is significantly modified for s = 0.5. The starting vortex tends to

move faster in both wall normal and spanwise directions, when the effect from the

neighbour starting vortex becomes important. Especially when the starting vortex

moves to above the neighbour actuator at x = 3, it suddenly drops to a much lower

wall normal location due to the strong entrainment from the neighbour actuator,

which is clearly shown in figure 6.6(b).

The effect of the spanwise actuator gap s can be more clearly seen in figure

6.8 for the transition to turbulence in a periodic channel. Here, seven different gaps
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Figure 6.7: Spatial evolution of the starting vortex core in (a) wall normal direction
and (b) spanwise direction for spanwise actuator gap s = 3 (closed circles) and
s = 0.5 (closed squares). The open circles and open squares are the data for DBD-
VG1 and DBD-VG2 studied by Jukes and Choi (2013) in a laminar boundary layer,
and the given scaling y ∼ x2/3 and z ∼ x2/3 are shown by the solid line in each plot.

s = 0.5, 0.6, 0.75, 1, 1.5, 2, 3 are considered. For s ≥ 1, the flow ends at the

turbulent state; while for s ≤ 0.75 the flow stays at the laminar state. Interestingly,

an “increase-increase” stage and an “increase-decrease” stage for each Cf trajectory

curve are observed. The initial Cf increasing rate is inversely proportional to the

spanwise actuator gap s, because smaller s means more starting vortices are created

to generate stronger upward and downward fluid motion. If the interaction of the

neighbour starting vortices is weak (s ≥ 1), the flow transits to turbulence quickly

due to the strong disturbance growth from each individual vortex roller; while if

this interaction is strong (s ≤ 0.75), the behaviour of the single starting vortex can

be inhibited (figure 6.6(b)), resulting in the return of the flow to the laminar state.

Therefore, in order to reduce the skin-friction using DBD plasma actuators, the

spanwise actuator gap s should be kept as small as possible to weaken the starting

vortices. This will be confirmed in the following sections.

6.3 Travelling wave configurations

In this section, the aim is to generate transverse motion (Karniadakis and Choi,

2003) using plasma actuators, thus the plasma actuators strips are aligned in stream-

wise direction to generate spanwise body force. Choi et al. (2011) studied the span-

wise travelling wave and spanwise oscillation generated by DBD plasma actuators.

Their plasma actuators configuration and the control signal in time are shown in
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Figure 6.8: Time history of the skin-friction coefficient Cf for different spanwise
actuator gaps in a periodic channel. The arrow indicates the increasing direction of
the actuator gap, i.e., s = 0.5, 0.6, 0.75, 1, 1.5, 2, 3. The dash-dot line shows the
skin-friction level at corresponding turbulent state.

figure 6.9. For spanwise travelling wave (figure 6.9(a)), the DBD plasma actuators

are divided into four different groups, and each group is only activated for 1/4 of the

cycle. The actuated plasma actuators are always 1/4 period delayed than the pre-

vious one, so that the plasma actuators in different groups are not activated at the

same time. For the spanwise oscillation configuration (figure 6.9(b)), all the plasma

actuators are synchronised, with the plasma body force into the positive z dorection

in the first half oscillation period, and into the negative z direction in the second

half period. To increase the lifespan of the plasma actuators (heat accumulation),

in practice these DBD plasma actuators are operated with a duty cycle D < 1, as

sketched by figure 6.10(a) (Jukes et al., 2006b). Here, the duty cycle D is defined

as below,

D =
Ton

Ton + Toff
, (6.8)

where Ton and Toff are the time duration that the plasma actuator is on and off,

respectively.

The plasma body force is synchronised with the applied voltage variation.

Figure 6.10 shows the time signal for the voltage and the generated plasma body

force. Accurate modelling and experimental measurement for the DBD plasma ac-

tuators have shown the unsteadiness of the generated plasma body force (Likhanskii

et al., 2008; Debien et al., 2012). However, the variation of the body force is at the
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(a) (b)

Figure 6.9: DBD plasma actuators configurations for (a) spanwise travelling wave;
and (b) spanwise oscillation, taken from Choi et al. (2011).

time scale of 1/f , which is much smaller than the oscillation period T in the flow

control at low Reynolds numbers. For examples, the typical parameter used by Choi

et al. (2011) for a Reτ = 475 turbulent boundary layer control with plasma actua-

tors are: peak to peak voltage magnitude Vp−p = 6.8 kV, electric frequency f = 19

kHz (1/f ≈ 0.05 ms), oscillation period T+ = 40 (T ≈ 95 ms), thus one oscillation

period contains around 1800 electric cycles. For the present channel flow simulation

at Reτ = 200, the physical time for T+ = 40 would be doubled. Therefore, it is

reasonable to assume that the plasma body force is steady during one oscillation

period in a macro scale sense. It also has to be mentioned that the flow simulation

time step is ∆t+ = 0.2 (∆t ≈ 0.5 ms converted by the above experimental data),

which is one order of magnitude larger than the electric cycle period. Therefore,

the unsteadiness of the plasma body force can not be resolved in the present sim-

ulation due to the simulation cost. To resolve the unsteadiness, at least two-order

of magnitude smaller time step is needed. However, for the flight Reynolds number

simulation, T+ = 100 is ∼ 0.1 ms (see appendix A), thus resolving the unsteadiness

of the plasma body force in this situation becomes crucial. The plasma flow con-

trol simulations performed in this chapter are all below Reτ = 400, thus a steady

plasma body force approximation at the electric cycle time scale is used through out.

Though ideally the magnitude of the applied voltage can vary in some sinusoidal

fashion, so that it can give a plasma body force in the form of f = sin(ωt) (Elam,

2012). However, this is a non-standard way to operate DBD plasma actuators (Choi

et al., 2011), thus this waveform is not considered in this study.

To test the effect caused by the sudden change of the plasma body force,
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Figure 6.10: Time variation for: (a) voltage; and (b) plasma body force. f is the AC
frequency, Ton is the plasma-on duration time, and Toff is the plasma-off duration
time.

another two step functions are considered, i.e., a linear function, and a smooth

function as in equation (5.9). The window size for the plasma body force to change

from the maximum (minimum) to the minimum (maximum) is assumed to be around

5% of the oscillation period, and the test simulations are run for Jukes et al. (2006b)’s

spanwise oscillation case at Af = 1.0, s+ = 20 (or λ+p = 20 as in figure 6.9) and

ω+ = 0.06 (T+ = 105). A probe is placed at y+ ≈ 2 inside the plasma force region

to record the force strength and the spanwise velocity, and the results are shown

in figure 6.11(a). The step function employed does not affect the wave shape for

the induced spanwise velocity strongly. The effect on the steady level of the skin-

friction is also negligible, as shown in 6.11(b). Therefore, in the following study,

only a sudden change of the plasma body force is considered.

The effect of the duty cycle D on DR is studied for the spanwise oscilla-

tion case at Af = 1.0, s+ = 20 (or λ+p = 20) and ω+ = 0.06 (T+ = 105), shown

in figure 6.12. Together given are the experimental data at T+ = 16, 36, and 104

(T+
off = 2 for all three cases) from (Jukes et al., 2006b). The present simulation data

is not expected to quantitatively match the experimental data, because the plasma

strength is not tuned for this case, and the DR uncertainty in this type of experi-

mental measurement can be quite high. Therefore, only a qualitative comparison is

made here. The maximum drag reduction is achieved at D = 100%, and DR almost

monotonously decreases as the duty cycle D decreases, which is also suggested by

the three experimental points. Therefore, in the following part, the drag reduction

map is given for the maximum duty cycle D = 100% only, which corresponds to the

highest drag reduction achievable. It is interesting to mention that Cimarelli et al.
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Figure 6.11: Comparing simulation results with three different step functions: (a)
plasma body force and spanwise velocity variation at y+ ≈ 2; (b) time history of
the normalised skin-friction.

(2013) studied different temporal waveforms for spanwise wall oscillation, and their

square waveforms (b) and (c) were very similar to the plasma body force waveform

studied here: one with a duty cycle D = 100%. and the other one with D < 100%.

Square waveform with D = 100% gave the best DR performance among all the 5

waveforms reported, though DR performance for the square waveform (c) was not

given by the authors.
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Figure 6.12: Effect of duty cycle D for spanwise oscillation at Af = 0.5, s+ = 20,
ω+ = 0.06 (T+ = 105). Open circles are from (Jukes et al., 2006b) at constant
T+
off = 2.

As demonstrated in section 6.2 for the laminar channel, the plasma actuator

gap needs to be small to eliminate the effect from the starting vortices. Jukes et al.

(2006b) and Elam (2012) also showed that drag reduction could be only achieved
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for s+ ≤ 20. Therefore, for the travelling wave case at a fixed plasma actuator gap,

the maximum drag reduction appears if the plasma body force varies continuously

in the spanwise direction. In practice, this requires that the plasma actuators to be

arranged as close as possible to have a good wave approximation. Numerically, this

travelling wave configuration can be easily achieved using the following formula for

the time and space dependent plasma body force Fz(y, z),

Fz(y, z) =
n∑

k=1

H [g1(t)] fz(y, z
′) +

n∑

k=1

H [g2(t)] fz(y,−z′),

z′ = z − k − 1

n
Lz − C(t)t,

(6.9)

where n is the total number of actuators placed on the channel wall, fz is given in

equation (6.7), and H(t) is the Heaviside step function,

H(t) =




1, t ≥ 0,

0, t < 0.
(6.10)

C(t), g1(t) and g2(t) are time dependent control functions given in table 6.1 for each

configuration separately. Due to the continuity in the travelling wave speed, the

above plasma body force achieves the best drag reduction possible in experiment.

In the present study, six configurations are considered: two are spanwise travelling

wave cases (ST1, ST2) and four are spanwise oscillation cases (SO1, SO2, SO3, SO4).

The distribution of the plasma force is shown in z − t spatial-temporal space (table

6.1) to schematically show the wave forms. ST1 and SO3 are the spanwise travelling

wave and spanwise oscillation cases studied by Whalley and Choi (2014) and Jukes

et al. (2006b), respectively. ST2 is the case inspired by the spanwise travelling

wave of spanwise Lorentz force (Du and Karniadakis, 2000), where the mean force

in the spanwise direction is zero. However, compared to Lorentz force, the plasma

body force is discrete, and contains different harmonics frequencies. The Fourier

spectrum of the spanwise arranged DBD plasma actuator force with s+ = 100 is

shown in figure 6.13, together with the mean and first two most energetic Fourier

modes, i.e., k0, k1 and k2. As expected, the energy is distributed among the length

scale of λ+z = s+ and its harmonics. SO4 is a new configuration combining the

spanwise oscillation and the spanwise travelling wave, which is termed as a “local

travelling and global oscillation” configuration.
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Table 6.1: Configurations for spanwise travelling wave (ST) and spanwise oscillation
(SO) by DBD plasma actuators.

Waves Sketch C(t) g1(t) g2(t)

ST1 c0 1 −1

ST2 c0 1 1

SO1 c0 cos(ωt) 1 −1

SO2 c0 cos(ωt) 1 1

SO3 0 cos(ωt) − cos(ωt)

SO4 c0 cos(ωt) cos(ωt) − cos(ωt)

Figure 6.13: Spectrum and the first two most energetic Fourier modes for span-
wise arranged DBD plasma actuator force with actuator gap s+ = 100. Low level
contours are clipped to give a clearer view.

6.4 Drag reduction maps

With the parameters in the plasma body force distribution fixed at Af = 1, σ = 0.07

and λ = 45 (∆+ = 4.5), the effect of wave speed c+, oscillation frequency ω+ and

actuator gap s+ are explored. For each configuration, 25 simulations are performed,

with s+ ranging in [25, 50, 100, 200, 400], c+ ranging in [0, 1, 2, 4, 8] and ω+ ranging

in [0.01, 0.02, 0.03, 0.06, 0.12] (or T+ ranging in [628, 314, 209, 105, 52]). The DBD

plasma actuators are arranged on the top and bottom walls of the channel with

the same phase in movement and the same force direction. The baseline no control

case is CH200. The mass flow rate is kept constant by dynamically adjusting the
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streamwise mean pressure gradient for all the control cases. DR value is evaluated

using equation (3.31).

Figure 6.14 shows the drag reduction maps for ST1, SO1, ST2, SO2, SO3

and SO4 configurations. A negligible drag reduction is observed for the high speed

travelling wave of ST2, but no drag reduction is observed for SO2 in the whole

ω+ − s+ space. A significant amount of drag reduction is achieved for ST1, SO1,

SO3 and SO4, which are 19 ± 2%, 19 ± 2%, 34 ± 2% and 35 ± 2% at the optimal

point, respectively.
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Figure 6.14: Drag reduction maps for (a) ST1; (b) SO1; (c) ST2; (d) SO2; (e) SO3
and (f) SO4.
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Comparing ST1 and SO1, the two DR maps are rather similar, especially

in the region with small actuator gap s+. To be noticed, for SO1, the volume

averaged Cf has large oscillation in time, especially for large gap s+, resulting in

larger uncertainty in the DR values compared to ST1. At a fixed actuator gap s+,

ST1 and SO1 give the same DR value, and this value is equal to that at c+ = 0 (or

ω+ = 0). To explain this, simulations with the mean and the most energetic Fourier

modes of the plasma body force (shown in figure 6.13) are performed separately for

s+ = 100 and 50, and the time history of the skin-friction coefficient Cf is shown

in figure 6.15. As can be seen, for both cases with s+ = 100 and 50, the overall

skin-friction coefficient Cf follows that of the most energetic Fourier mode initially

after the actuators are switched on; then it drops to follow the Cf trajectory of the

mean mode. The long-term Cf level is dominated by the mean mode. Again, this

confirms that the important factor for the drag reduction by plasma actuators is

the mean force component, rather than the individual actuator force, as found in

section 6.2. Du et al. (2002) found that for the spanwise travelling wave by spanwise

Lorentz force, larger DR appeared at larger spanwise wavelength λ+z . This agrees

with the drag increase obtained for the most energetic Fourier mode (green lines

in figure 6.15), which has the spanwise wavelength much smaller than the spanwise

wavelength λ+z = 840 explored by Du et al. (2002). The mean force component

for ST2 and SO2 are both zero, and all the plasma forces are distributed among

the small spanwise wavelengths, thus only a drag increase is observed for these two

configurations.
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Figure 6.15: Time history of skin-friction coefficient Cf for ST1 at c+ = 0 with
s+ = 100 (solid lines) and s+ = 50 (dashed lines): (a) long time history; and (b)
initial stage response.

The DR maps for SO3 and SO4 at small spanwise plasma actuator gap s+

are similar, both have around 35 ± 2% drag reduction at ω+ = 0.06 (T+ = 105).
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However, the drag reduction deteriorates dramatically for SO3 as the actuator gap

increases. When s+ > 40, no drag reduction is observed for SO3; while around 5±2%

drag reduction is still achievable for SO4 up to s+ = 100. This is a big improvement

to SO3 by Jukes et al. (2006b) and Elam (2012). The quick DR deterioration for

SO3 is due to the starting vortices generated by the plasma actuators, which can

be viewed from the particle visualisation in the quiescent air (figure 6.16(a)) and

the streamwise mean vorticity component in a turbulent field (figure 6.16(b)). The

particles are released at y+ ≈ 10 in a quiescent air for two plasma actuator gaps,

i.e., s+ = 25 and 50 at four equally separated phases of one oscillation period. The

plasma actuators generated Stokes layer (PGSL) is very uniform in the spanwise

direction at s+ = 25. However, at s+ = 50, the non-uniformity dominates the

PGSL, and large size local starting vortices are generated, which is similar to the

smoke visualisation by Jukes et al. (2006b) (figure 2.5). These starting vortices by

the plasma actuators generate strong downward and upward fluid motions, corre-

sponding to strong streamwise mean vorticity in the controlled turbulent field (figure

6.16(b)), resulting in higher skin-friction. At s+ = 25 and 50, the DR value against

the oscillation frequency ω+ is shown in figure 6.17 for SO3 and SO4, with the com-

parison of the spanwise wall oscillation (figure 4.17(b)) and the spanwise oscillating

Lorentz force (figure 5.13(a)). Clearly, at s+ = 25, the DR curves between SO3 and

SO4 are undistinguishable; while at s+ = 50, all the DR values are negative for SO3,

and DR deteriorates by around 35% for SO4. The dramatic change of DR for SO3

was also shown by the experimental data, where negative DR appeared at s+ = 30

(Jukes et al., 2006b). All the spanwise oscillation cases (including wall motion and

Lorentz force) show the same feature, that the imposed spanwise mean strain by

wall motion or body force interacts with the flow most at an oscillation frequency of

ω+ ≈ 0.06 (or T+ ≈ 100). Jukes et al. (2006b) conjectured that the plasma actuator

induced streamwise vortices disrupted or cancelled the quasi-streamwise vortices in

a natural boundary layer, and this caused the drag reduction. However, DR only

appears at small plasma actuator gap (s+ < 30 according to their experimental

data), in which situation the plasma induced streamwise vortices are significantly

merged to form strong uniform spanwise motions as in the spanwise wall oscillation

and Lorentz force cases, thus the plasma induced streamwise vortices play a less

important role in the drag reduction.

For ST1, SO1 and SO4, the power spent Psp and the net energy saving Pnet

are computed using the same formula as in the Lorentz force case (see equation

(5.13)). The maps of Psp and Pnet are shown for ST1, SO1 and SO4 in figures 6.18

and 6.19, respectively. As expected, the case with a smaller plasma actuator gap
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Figure 6.16: Vortical structures in SO3 case at φ = 0, π/2, π, 3π/2 for different
actuator gaps: s+ = 25 and s+ = 50, visualised by (a) particles released at y+ ≈ 10
in quiescent air (particles are coloured by wall distance), and (b) streamwise mean
vorticity in an actuated turbulent field.
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Figure 6.17: Drag reduction DR against the oscillation frequency ω+ for SO3, SO4,
spanwise wall oscillation from figure 4.17(b), spanwise oscillating Lorentz force with
∆+ = 10 from figure 5.13(a). The two cross symbols are for s+ = 20 and s+ = 30
from Jukes et al. (2006b).

has higher energy spent. For ST1 and SO1, the energy spent is almost independent

from the travelling wave speed c+ and the oscillation frequency ω+, same as their

DR maps in figure 6.14. The control energy input is smaller for SO4, because the

overall induced spanwise flow is smaller (see figure 6.30).
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Figure 6.18: Power spent (Psp) maps for (a) ST1; (b) SO1; and (c) SO4.

As shown in figure 6.19, almost no net energy saving is observed for all

the three configurations, ST1, SO1 and SO4, within the parameter space explored.

The best performance cases are (c+ = 2, s+ = 400) with Pnet = 0.4 for ST1,

(ω+ = 0.12, s+ = 400) (or (T+ = 52, s+ = 400)) with Pnet = −2 for SO1, and

(ω+ = 0.06, s+ = 100) (or (T+ = 105, s+ = 100)) with Pnet = 0.5 for SO4. The

less than 1% Psp is within the uncertainty of the present simulations. However, a

large portion of the Psp maps is within Psp > −5, thus by carefully choosing the

control parameters, it is still likely to win a net energy saving (at least for Reτ = 200

explored.)

The original idea to use plasma actuators for the skin-friction control is to

implement spanwise wall oscillation in a more practical way. The discrete plasma

body force makes the DR control less effective than the uniform spanwise wall

oscillation or Lorentz force oscillation, as has been seen from figure 6.17. However,

the discrete body force also reduces the amount of energy consumption, and it may

be more favoured than uniform Lorentz force for a positive Psp. This can be seen in

figure 6.20, where the change of DR against Psp for SO4 at ω+ = 0.06 (T+ = 105)

is shown. At small s+, SO4 has a similar DR performance as the spanwise wall

oscillation and spanwise oscillating Lorentz force, but located in DR < Psp region.
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Figure 6.19: Net energy saving, Pnet maps for (a) ST1; (b) SO1; and (c) SO4.

As s+ increases, the Psp decrease overcomes DR deterioration, and the control point

approaches DR = Psp line quickly. Recently, Mishra and Skote (2015) used only

half of the spatial waves cycle to reduce the power consumption, and their PS2 and

PS3 achieved positive Psp at A
+
w ≈ 12. At this wall velocity amplitude, the spanwise

wall oscillation has Psp = −4 (Baron and Quadrio, 1996). Similarly, Cimarelli et al.

(2013) explored different temporal oscillation waves, and showed that the largest

Psp was achieved for a sharp pulse wave with a large fraction of the period quenched

(their wave (f)).

The power supply for a real plasma actuator comes from electricity, and this

power consumption can be calculated through,

Pelec =
1

T

∫ T

0
V I dt, (6.11)

where V and I are the instantaneous voltage and current from the main power

supply, T is the plasma force oscillation period. Jukes et al. (2006b) measured

Pelec = 100W in their experiment for a similar plasma control configuration with

s+ = 20, and the estimated efficiency η = EfLxLz/Pelec from the electric power

to the fluid power is η ∼ 10−3 (Moreau, 2007). Considering the plasma actuator
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Figure 6.20: DR against Psp at ω+ ≈ 0.06 (T+ ≈ 105) comparison among differ-
ent waveforms: SO4 (circles); spanwise wall oscillation from (Baron and Quadrio,
1996) (square); spanwise oscillating Lorentz force (diamond); half spatial waves from
(Mishra and Skote, 2015) (upper triangles, A+

w ≈ 12); arbitrary temporal waves from
(Cimarelli et al., 2013) (lower triangles, A+

w = 9).

loses part of its electric power in heating the dielectric material, its efficiency is even

lower than the Lorentz force actuators. Table 6.2 shows the estimated real power

consumption in the wind and water tunnels for different devices. With only the fluid

power consumption considered, all the devices, including spanwise wall oscillation,

rotating disks (Ricco and Hahn, 2013), Lorentz actuators and plasma actuators

are compatible. However, the efficiency for Lorentz force and plasma actuator are

several order of magnitude lower than the other two, which makes them not favoured

by the DR control at all.

6.5 Turbulence statistics

The turbulence statistics are analysed for two typical drag reduction control cases:

ST1 with c+ = 0 and SO4 with ω+ = 0.06 (T+ = 105). The steamwise mean

velocity profiles at two different spanwise locations between two adjacent actuators,

i.e., z/s = 0 and 0.5, are shown in figure 6.21 for ST1 with a large actuator gap

of s+ = 400. As can be seen, there is a large variation of the mean velocity profile

in the spanwise direction. Choi et al. (2011) reported that the streamwise mean

velocity profile was modified up to y+ = 100 for the travelling wave case due to the

starting vortex, with a mean velocity increase in the near wall region and a reduction

in the region of y+ = 25 ∼ 100 (shown in figure 6.21 by open circles). This feature
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Table 6.2: Energy budget estimation for control † in wind and water tunnels.

Wind tunnel Rem Reτ
h∗

(mm)
U∗
m

(m/s)
u∗τ

(m/s)
ρ

kg/m3
ν∗ × 106

(m2/s)
ν∗/u∗τ
(mm)

ν∗/u∗2τ
(ms)

2τ∗wU
∗
m

mW/m2

3150 200 40 1.18 0.075 1.3 15 0.2 2.7 17.6

A∗
w

m/s

A∗
f

mN/kg

T ∗

ms
S∗ ‡

mm
P ∗
saved

mW/m2
P ∗
spent

mw/m2 η

Wall oscillation 0.9 - 250 - 6 14 O(0.1)
Rotating disks 0.5 - 1000 150 3 1.5 O(0.1)

Plasma actuators - 35 250 5 4 4 O(10−3)

Water tunnel Rem Reτ
h∗

(mm)
U∗
m

(m/s)
u∗τ

(m/s)
ρ

kg/m3
ν∗ × 106

(m2/s)
ν∗/u∗τ
(mm)

ν∗/u∗2τ
(ms)

2τ∗wU
∗
m

mW/m2

3150 200 20 0.16 0.01 1.03 × 103 10 0.1 10 32.4

A∗
w

m/s

A∗
f

mN/kg

T ∗

ms
S∗ ‡

mm
P ∗
saved

mW/m2
P ∗
spent

mw/m2 η

Wall oscillation 0.12 - 1 - 12 25 O(0.1)
Rotating disks 0.07 - 4000 80 6 3 O(0.1)

Lorentz actuators - 620 1 3 9 18 O(10−3)

† - typical control cases are: A+
w = 12, T+ = 100 for spanwise wall oscillation; D+ = 820, W+ = 6.7, T+ = 386 for rotating disks

(Ricco and Hahn, 2013); Af = 0.5, T+ = 100 for Lorentz force actuators; and Af = 1.0, T+ = 100 for plasma actuators;
‡ - diameter for rotating disk; width for Lorentz actuator magnet and electrode; width for plasma actuator embedded electrode.
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is also observed for the present ST1 case with a large actuator gap, s+ = 400. Since

the downward velocity is the strongest just above the DBD plasma actuators, the

modification in the logarithmic region is the strongest at z/s = 0. However, as the

actuator gap is decreased to s+ = 50, the spanwise variation of the mean velocity

profiles is very small, and the modulation in the logarithmic region by the plasma

actuators is less obvious, which can be seen from the two-dimensional streamwise

velocity contour in figure 6.22 with three different actuator gaps, i.e., s+ = 400, 100

and 50.
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Figure 6.21: Streamwise mean velocity profiles comparison between present work
for ST1 with s+ = 400 and experimental data from Choi et al. (2011) for spanwise
travelling wave with s+ = 500.
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Figure 6.22: Two-dimensional streamwise velocity contour between two adjacent
plasma actuators for ST1 with (a) s+ = 400, (b) s+ = 100, and (c) s+ = 50. In-
plane vectors are for spanwise and wall normal velocities. Contour lines are for 10%
maximum level of the plasma body force distribution. Same contour levels are used
for all the plots.
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The following statistics focuses on ST1 and SO4 cases with a plasma actuator

gap of s+ = 50. The mean velocity profile change is shown in figure 6.23(a), together

with the spanwise wall oscillation case with A+
w = 12, ω+ = 0.06 (T+ = 105) (figure

4.14(a)). The overall averaged mean velocity profiles show a very similar modulation

to the spanwise wall oscillation. When non-dimensionalised in the no control wall

units, the velocity gradient is significantly reduced, while the logarithmic region

almost remains unchanged. The streamwise velocity fluctuation u+rms and turbulent

shear stress profiles −uv+ are shown in figure 6.23(b) for the comparison among no

control case, ST1, SO4 and spanwise wall oscillation cases. Both quantities show a

decrease of the peak values and an increase of the peak location. These are consistent

with the drag reduction observed.
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Figure 6.23: Comparison between no control and control cases for (a) streamwise
mean velocity profiles, and (b) streamwise velocity fluctuation u+rms and turbulent

shear stress −u′v′+. In (a), law of wall is shown by grey dash-dot lines with U+ =
1/0.4 ln y+ + 5.5.

The two-dimensional pre-multiplied co-spectra kxkzΦuv are shown in figure

6.24 for three wall normal locations, i.e., y+ = 5, 10 and 20. At all three locations,

the streamwise length scale λ+x becomes shorter for both ST1 and SO4. No big

change appears for the spanwise length scale λ+z for SO4, but the most energetic

λ+z becomes much larger for ST1, which can be clearly seen by the anti-clockwise

rotating of the contour plot. Since the plasma body force concentrates closer to the

wall, the modification on the co-spectra level is larger as the xz plane moves from

y+ = 20 to y+ = 5. This length scale change can be more clearly observed from

the one-dimensional co-spectra kxΦuv and kzΦuv in figure 6.25. Due to the discrete

nature of the plasma actuators (shown in figure 6.13), the spikes at λ+z = 50 for ST1

and SO4 are clear at y+ = 5 (much stronger for SO4 case). This partially causes the
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deterioration of DR using plasma body force compared to the continuous Lorentz

force (see figure 6.17).
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Figure 6.24: 2D pre-multiplied spectra kxkzΦuv for no control case, ST1 and SO4
at (a) y+ = 5; (b) y+ = 10 and (c) y+ = 20. For line code, see figure 6.23.
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Figure 6.25: Pre-multiplied 1D energy spectra (a) kxΦuv and (b) kzΦuv at y+ = 5,
10 and 20 (indicated by the arrow). For line code, see figure 6.23.

To further understand the structure modulation by the plasma body force,

the correlation structures Ruu, Rvv and Ruv are calculated. Here, the Ruu structure

can be interpolated as the near wall streaks; while the Rvv structure can be interpo-

lated as the quasi-streamwise vortices. In figure 6.26, the correlation structures for

ST1 are shown for y+ = 5, 10 and 20. Compared to the no control case, where these

structures are perfectly aligned in the streamwise direction, the correlation struc-

tures for ST1 are significantly tilted into one direction due to the spanwise plasma

body force. As can be seen, Ruv correlation structure is not symmetric in the flow,

and the asymmetry becomes more obvious at y+ = 5. The tilting angles of the top

half of the structures are identified, and it is found that Ruu, Rvv and Ruv correla-

tion structures have different preferential orientation angles. As expected, the Ruv
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structure always has a tilting angle between those of the Ruu and Rvv structures.

-100 0 100
-400

-200

0

200

400

z+

x
+

-100 0 100
-400

-200

0

200

400

z+
-100 0 100

-400

-200

0

200

400

z+
-100 0 100

-400

-200

0

200

400

z+

(a) (b) (c) (d)

Figure 6.26: Correlation Ruu (grey bold lines), Rvv (blue thin lines) and Ruv (black
thin lines) for (a) no control case at y+ = 20, and ST1 at (b) y+ = 5; (c) y+ = 10
and (d) y+ = 20. An arbitrary contour level is shown to outline the correlation
structures. The tilting angles are indicated by the lines at the bottom.

The Ruu, Rvv and Ruv correlation structures for SO4 in the first half period,

i.e., φ = 0, 3π/8, 5π/8 and 7π/8 are shown in figure 6.27. Due to the periodicity of

the flow, the second half period is the mirror image about z+ = 0 of the first half

(as the ensemble averaged λ2 structures in figure 4.19). Again, for SO4 the Ruu,

Rvv and Ruv correlation structures have different preferential tilting angles at each

phase. The tilting angle variation during the whole oscillation period is shown in

figure 6.28. The Ruv structure is always tiled in the middle of the other two. When

the three structures are in phase, it gives the highest skin-friction value during

the oscillation period, though a slight phase leading of Cf peak can still be seen.

This result is reminiscent of the ensemble averaged λ2 structure dynamics in figure

4.23 for the spanwise wall oscillation. The reason for not applying the ensemble

averaged λ2 structure analysis for SO4 case is that, the starting vortices generated

by the plasma actuators contaminate the near wall quasi-streamwise vortices field,

and the proposed coherent structure identification in section 3.2 can not distinguish

these two types of vortices clearly.

The above results about the correlation structure analysis support the model

proposed by Baron and Quadrio (1996) for the drag reduction in spanwise wall

oscillation case. In their model, the spanwise strain convects the Ruu structure
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Figure 6.27: Correlation Ruu, Rvv and Ruv for SO4 at y+ = 20 with phase (a) φ = 0,
(b) φ = 3π/8, (c) φ = 5π/8, and (d) φ = 7π/8.
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lower triangles), Ruv (line with circles) and skin-friction coefficient Cf (dash-dot
line) variation during one oscillation period for SO4.

(near wall streaks) and the Rvv structure (quasi-streamwise vortices) in the spanwise

direction with different speeds, resulting in the decorrelation of the Reynolds shear

stress u′v′.
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6.6 Effect of flow symmetry

The flow symmetry in the top half and the bottom half of the channel is an im-

portant factor for ST1. For the symmetry effect study of ST1, a steady Lorentz

force (equation (5.3)) is considered, which corresponds to a uniform plasma body

force distribution in the spanwise direction. The force strength is fixed at Af = 0.5,

and the force penetration depth ∆+ varies. Three situations are considered: (1) the

body forces on the top and bottom half channels are in the same direction; (2) the

body force is only applied to the bottom half channel; and (3) the body forces on

the top and bottom half channels are in the opposite directions. Figure 6.29 shows

the drag reduction dependency on the body force penetration depth ∆+ for all the

three situations. Unlike the uni-direction wall movement case (figure 4.8), which can

only have a drag increase no matter the top and bottom walls move in the same or

opposite directions, the body force surprisingly achieves a drag reduction at certain

body force penetration depth ∆+, with the optimal drag reduction appearing at

∆+ = 5, which is very close to the plasma body force penetration explored in this

chapter (∆+ = 4.5). The drag reduction values for the three situations are very

different at the same body force penetration depth, with situation (1) giving the

best performance, while situation (3) giving the worst performance, and situation

(2) in between. For instance, at ∆+ = 5, DR = 16± 2 is achieved for situation (1);

DR = 7± 2 for situation (2); and DR = −7± 2 for situation (3).

The force symmetry effect is almost negligible for the unsteady body force

cases. The spanwise mean velocity profiles for the steady force with different pene-

tration depths ∆+ are shown in figure 6.30, together with the profiles for SO4 with

s+ = 50. For SO4, the body force on one side of the wall can hardly affect the flow

on the other side, because the spanwise mean velocity is almost zero for y+ > 30.

However, for the steady body force cases, the channel centreline spanwise velocities

are significantly different when the top and bottom plasma actuators actuate in the

same or opposite directions. This further affects the spanwise mean velocity profile

in the near wall region.

The effect of the flow symmetry about the channel centre confirms the drag

reduction model by Baron and Quadrio (1996), i.e., only a certain spanwise mean

strain can effectively decorrelate the near wall streaks and the quasi-streamwise

vortices. However, what kind of spanwise mean velocity profile is most effective,

remains to be an open question. For ST1 in a turbulent boundary layer, it is

similar to situation (2) in a channel, where certain amount of drag reduction is still

achievable, but less effective than in the channel. In this sense, SO4 is the case most
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likely to achieve drag reduction for the turbulent boundary layer control.

6.7 The application

In real situation, the DBD plasma actuators can only actuate at certain fixed wall

locations. This is considered for SO4 case with ω+ = 0.06 (T+ = 105), s+ = 50.

Figure 6.31(a) shows the schematics of the operation mode. Two groups of DBD

plasma actuators are arranged on the wall, with the actuator gap between two

activated plasma actuators to be s+ = 50 (the gap between two adjacent plasma

actuators is s+/2). During one oscillation period T , the plasma actuators can have

four “ON” modes, as shown on the left of figure 6.31(a); while the “ON-OFF” time

signal sequence is shown on the right of figure 6.31(a). The burst ratio B of the

plasma actuators is defined as,

B = Ton/T,

where Ton is the time duration for each “on” operating mode. Similarly, Toff is

for “off” mode. For simplicity, Toff is set to be the same as Ton. Simulations with

different burst ratios B are run, and the time history for the skin-friction coefficient

Cf is shown in figure 6.31(b). As can be seen, when B < 2%, the Cf trajectory is

similar to SO4 case; while when B becomes larger, the Cf trajectory gets closer to
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Figure 6.30: The spanwise mean velocity profiles for steady body force cases with
different body force penetration depths ∆+ and SO4 with s+ = 50: (a) over the
whole channel; and (b) in the near wall region, y+ < 40.

SO3 case, which has a burst ratio of B = 50%. This suggests that a small burst

ratio operation mode can achieve a similar effect to the continuous travelling wave

speed in SO4 case. The advantage of SO4 is that it avoids the arc discharge between

two adjacent active plasma actuators by introducing a large actuator gap, but allows

a local travelling wave to inhibit the starting vortices.

Figure 6.32 shows a concept of implementing the plasma actuators device

onto a car body for the drag reduction using the SO4 configuration. The plasma

actuators are put on the car surfaces, aligning in the streamwise direction. The

actuators are divided into groups (3 groups in the demonstration) according to

the selected actuator gap s+. According to the DR map in figure 6.14(f), the

gap s+ should be as small as possible within the manufacturing and operating

restriction. The computer controls the electric bridge to create the local travelling

global oscillation sequence: 1) 1 − a, 2) 2 − b, 3) 3 − c, 4) 3 − a, 5) 2 − c and 6)

1− b; and keep each state for a time period of TB = T × B. Since the burst ratio
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Figure 6.31: (a) Schematics of operation mode with two groups of DBD plasma
actuators; (b) time history of skin-friction coefficient Cf for different burst ratio of
plasma actuators.

B needs to be small for a better performance (figure 6.31(b)), the switching process

should be fast.

Though the idea to implement DBD plasma actuators is practical, the net

energy saving is a big challenge. As has been shown in figure 6.19, there is no net

energy saving for all the plasma actuator configurations considered in this study.

With the consideration of the electricity efficiency of the plasma actuators, the total

power spent will be even larger, and the likelihood to get a net energy saving is

even smaller. From this point of view, the value of implementing plasma actuator

will be lost. However, two possible solutions can still be expected: 1) a better

plasma actuator configuration; 2) the pressure-drag reduction together with the

skin-friction drag reduction to achieve an overall net energy saving. For the second

point, it has been demonstrated that DBD plasma actuators can be used to replace

the conventional vortex generators (VGs) for the flow separation control (Jukes

et al., 2012), and to largely reduce the drag coefficient. The DBD-VGs are also

aligned in the flow direction as in SO4 case. Therefore, on a curved air-foil surface

with weak flow separation, the DBD plasma actuators used for the skin-friction
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Figure 6.32: A concept of implementing DBD plasma actuators on a car body for
skin-friction reduction purpose using SO4 configuration.

drag reduction may also be helpful to delay flow separation in the downstream.

And this can enhance the energy saving performance of the DBD plasma actuators,

and possibly gives a net energy saving.

6.8 Conclusion

Skin-friction drag reduction by DBD plasma actuators was studied in this chapter

using a simple empirical DBD plasma actuator model. The plasma body force

was assumed to be Rayleigh in the horizontal direction and exponential in the wall

normal direction. The jet velocity profiles and the starting vortex movement were

compared well with the experimental data. Even though the present empirical model

had a strong simplification, it captured the main characteristics of the DBD plasma

actuators well.

When the actuator gap was large, the starting vortices played the role of the

quasi-streamwise vortices in a natural turbulent boundary layer flow, and quickly

triggered the flow to become turbulent. However, when the actuator gap was small,

the entrainment from the neighbour actuator prohibited the lift up of the starting

vortices, and significantly weakened the individual streamwise rolling effect.

Six configurations were explored to generate the spanwise travelling wave

and the spanwise oscillation. For the spanwise travelling wave by DBD plasma
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actuators as explored by Whalley and Choi (2014), ST1 was successful in the drag

reduction. The drag reduction was determined by the mean force component, thus

DR was not sensitive to the travelling wave speed c+ for ST1 nor the oscillation

frequency ω+ for SO1. Moreover, due to the nature of the small wavelength and the

zero mean force associated with the plasma actuators, ST2 and SO2 did not achieve

any drag reduction. For the spanwise oscillation configuration (SO3) as explored by

Jukes et al. (2006b), drag reduction was only observed for a small plasma actuator

gap s+ ≤ 25. Instead, a local travelling, global oscillation configuration (SO4) was

found to be successful in reducing skin-friction for a much larger plasma actuator

gap (s+ = 150), and it gave a maximum of 35± 2% drag reduction at s+ = 25.

The turbulence statistics for SO4 was found to be very similar to the spanwise

wall oscillation case. The Reynolds shear stress structure u′v′ became shorter in

the streamwise direction due to the breaking up of the near wall streaks. The

correlation structures for Ruu, Rvv and Ruv had different preferential tilting angles,

which resulted in the decorrelation of the Reynolds shear stress u′v′
+
.

The present work demonstrated a practical way to implement the spanwise

wall oscillation for the turbulent skin-friction drag reduction using DBD plasma

actuators, but the net energy saving is a challenge to be solved in the future.
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Chapter 7

Influence of the VLSMs at High

Reynolds Numbers

We begin this chapter by extending the previously studied three spanwise motion

control strategies, i.e., spanwise wall oscillation, spanwise Lorentz force, and span-

wise plasma actuators, to higher Reynolds numbers. The normalised skin-friction at

the beginning of the control is shown in figure 7.1(a). Two features can be seen: 1)

spanwise wall oscillation is more efficient than spanwise Lorentz force, and spanwise

Lorentz force is more efficient than spanwise plasma force at the same Reynolds

number for drag reduction (at least for the tested control parameters); 2) for the

same type of control, the new equilibrium skin-friction level is higher at higher

Reynolds number, indicating the DR deterioration. The DR deterioration can be

better observed in figure 7.1(b). For all the three controls, the scaling is worse than

the commonly accepted one DR ∼ Re−0.2
τ (Touber and Leschziner, 2012) for the

Reynolds number range tested.

This is a phenomenon which has been observed for a long time since Berger

et al. (2000), Choi et al. (2002), Iwamoto et al. (2002) for a variety of near wall

flow controls. However, the reason for the DR deterioration remains unclear. The

purpose to study the Reynolds number effect is to answer whether skin-friction drag

reduction is still possible at the flight Reynolds number, Reτ ∼ O(104) (Ricco and

Hahn, 2013; Deck et al., 2014) (see also appendix A for the estimation). Choi et al.

(2002) gave a power law scaling, i.e., DR ∼ Re−α
τ , suggesting that DR at high

Reynolds numbers was negligible. However, the analysis results from the linearised

N-S equations (Duque-Daza et al., 2012; Belan and Quadrio, 2013) and the scaling

argument suggest an asymptotic DR value at high Reynolds numbers (Quadrio

and Gatti, 2015; Skote et al., 2015). In the present study and the study by Hurst
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Figure 7.1: DR deterioration at high Reynolds numbers for spanwise wall oscillation
(dash-dot lines, A+

w = 12, ω+ = 0.06 (T+ = 105)), spanwise oscillating Lorentz force
case (thin solid lines, Af = 0.5, ω+ = 0.06 (T+ = 105)), and plasma actuators SO4
(bold solid lines, Af = 1.0, ω+ = 0.06 (T+ = 105), s+ = 50) for: (a) normalised
skin-friction; and (b) Reynolds number scaling.

(2013), the large domain DNSs for the streamwise travelling wave of spanwise wall

velocity were performed at Reτ = 1600, which is still one order of magnitude lower

than the flight Reynolds number. However, recent findings suggest that the DR
deterioration is linked to the outer structures as the Reynolds number increases

(Touber and Leschziner, 2012; Deng et al., 2015), as sketched in figure 7.2. At the

present high Reynolds numbers, Reτ = 800 and Reτ = 1600, the near wall small

scales and the outer large scales are clearly separated, thus the influence of the

VLSMs can be explored in more details. Particularly, for the streamwise travelling

wave at Reτ = 800, a wide range of control parameters were studied, which can offer

a clearer view of the DR picture, though not a whole picture yet. This chapter will

focus on the streamwise travelling wave of spanwise wall velocity only, but similar

results should also be expected for the high Reynolds number skin-friction control

by Lorentz and plasma body forces.

7.1 Reynolds number effect

The streamwise travelling wave of spanwise wall velocity was extensively studied by

Hurst (2013). The wall motion in this control is described in the formula as below,

Ww = Aw sin(κxx− ωt), (7.1)
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Figure 7.2: Schematics of skin-friction control by streamwise travelling wave of
spanwise wall velocity at high Reynolds numbers.

where Ww is the spanwise wall velocity; Aw is the amplitude of the spanwise wall

velocity; κx is the streamwise wavenumber; and ω is the oscillation frequency. The

control parameters are fixed in wall units of the no control case, i.e., A+
w = 12,

κ+x = 0, 0.002, 0.004, 0.008, 0.012, 0.016 and ω+ = 0, 0.01, 0.02, 0.03, 0.06, 0.09,

0.12, 0.15, 0.18. For Reτ = 800, there are 54 cases in total; and for Reτ = 1600, three

control cases are considered, i.e., oscillation case (ω+ = 0.06, κ+x = 0), stationary

wave case (ω+ = 0, κ+x = 0.008) and streamwise travelling wave case (κ+x = 0.016,

ω+ = 0.04), which are the estimated optimal control cases for each type of the

spanwise wall velocity based on the data at lower Reynolds numbers.

The drag reduction map at Reτ = 800 is shown in figure 7.3. The other

two DR maps at lower Reynolds numbers, i.e., Reτ = 200 and 400 can be found in

(Hurst et al., 2014). On the horizontal axis, ω+ (or T+) is the oscillation frequency

(or period); on the vertical axis, κ+x (or λ+x ) is the streamwise wavenumber (or wave-

length). The cone region along the diagonal line in the DR map (bright contour)

is a drag increase region, which has a wave travelling speed of c+(≡ ω+/κ+x ) ≈ 10,

same as the convection velocity, U +
c of the near wall structures (Kim and Hus-

sain, 1993). Quadrio et al. (2009) offered an explanation about the drag increase

in the cone region: when the streamwise wave travels at the same velocity as the

near wall structures, the structures can extract energy from the wall motion and

be amplified. When the relative speed between the streamwise travelling wave and

the near wall structures (U +
c − c+) is large, the near wall structures can be at-

tenuated, which is indicated by the blue coloured region, with the maximum drag

reduction (DRmax = 40±2, indicated by a cross symbol in the DR map) appearing

at ω+ = 0.03, κ+x = 0.014 within c+ < 10 region.

The horizontal axis corresponds to κ+x = 0, which is for spanwise wall os-

cillation cases studied in chapter 4, and the vertical axis corresponds to ω+ = 0,
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Figure 7.3: Drag reduction map at Reτ = 800. Interval level is 5. The three
triangle symbols indicate the control cases at Reτ = 1600. The optimal DR point
at Reτ = 800 is indicated by a cross symbol.

which is for stationary wave cases. The drag reduction at four Reynolds numbers,

i.e., Reτ = 200, 400, 800 and 1600 are plotted for oscillation cases, stationary wave

cases, streamwise travelling wave cases passing through κ+x = 0.016 and streamwise

travelling wave cases passing through ω+ = 0.03 (for Reτ = 1600 case, ω+ = 0.04)

in figure 7.4. The drag reduction deterioration can be clearly seen for all the four

plots as the Reynolds number increases from Reτ = 200 to 1600. For instance, the

DR value drops from 37 ± 2 at Reτ = 200 to 22 ± 2 at Reτ = 1600 for oscillation

cases at ω+ = 0.06; from 46±2 at Reτ = 200 to 33±2 at Reτ = 1600 for stationary

wave cases at κ+x = 0.008; from 45±2 at Reτ = 200, ω+ = 0.03, κ+x = 0.016 to 37±2

at Reτ = 1600, ω+ = 0.04, κ+x = 0.016 for streamwise travelling wave cases. A phe-

nomenon observed by Hurst et al. (2014) was that the optimal control parameter is

not fixed in wall units, which is very obvious for the oscillation cases (figure 7.4(a))

and stationary wave cases (figure 7.4(b)). With the optimal oscillation frequency

ω+
opt indicated by arrows, ω+

opt shifts from 0.06 at Reτ = 200 to 0.07 at Reτ = 400

and to 0.08 at Reτ = 800. Similarly, the optimal wavenumber κ+x,opt shifts from

0.006 at Reτ = 200 to 0.008 at Reτ = 400 and to 0.01 at Reτ = 800, although the

peaks are broader. For the streamwise travelling wave cases, the optimal oscillation

frequency at a fixed wavenumber, or the optimal wavenumber at a fixed oscillation
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frequency is also shifting as shown in figures 7.4(c) and 7.4(d).

In summary, the main interests in this chapter are the two Reynolds number

effects as observed by Hurst et al. (2014): 1) the DR deteriorates as the Reynolds

number increases; 2) the optimal oscillation frequency (and wavenumber) shifts

towards a higher value for the spanwise wall oscillation (and stationary wave) as the

Reynolds number increases.
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Figure 7.4: Drag reduction at four Reynolds numbers for (a) wall oscillation cases,
(b) stationary wave cases, (c) streamwise travelling wave cases passing through
κ+x = 0.016, and (d) streamwise travelling wave cases passing through ω+ = 0.03 (for
Reτ = 1600 case, ω+ = 0.04). (a)(b)(c) are adapted from Hurst et al. (2014). The
arrows in (a)(b) indicate the optimal control parameters at corresponding Reynolds
numbers.

7.2 Some further observations from the literature

7.2.1 VLSMs definition and visualisation

The VLSMs are scaled in global units (del Álamo et al., 2006; Pujals et al., 2009),

thus a convenient way to define the VLSMs is in the Fourier space. The difficulty
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lies in the exact length scale to choose as a cut-off line. In the present study, the

VLSMs are defined as,

VLSMs: λx > 3, λz > 0.5. (7.2)

Due to the limitation of the highest Reynolds number achievable, the large scale

motions (LSMs) (Adrian et al., 2000) are not distinguished from the VLSMs. λx > 3

and λz > 0.5 are the common Fourier filter sizes used in the literature (Bernardini

and Pirozzoli, 2011; Wu et al., 2012). Both the length and the width of the VLSMs

are constrained in the present study, this can remove the high wavenumber noise

in the VLSMs, thus making the later study of the conditional sampling under the

positive and the negative VLSMs regions easier. The VLSMs extracted from the

Fourier filter in equation (7.2) is given in appendix G, with the comparison with the

Hilbert-Huang empirical decomposition employed by Agostini and Leschziner (2014)

for the VLSMs study. It shows that the present definition captures the VLSMs well.

Based one the VLSMs definition in equation (7.2), for any turbulent flow

property φ, the stochastic component φ′ after the triple decomposition (equation

(4.4)), can be used to decompose the flow into the small scales contribution, φ′S and

the large scales contribution, φ′L. The root mean square (r.m.s.) values of φ′, φ′L and

φ′S are defined as φrms =

√
φ′2, φL,rms =

√
φ′2L and φS,rms =

√
φ′2S . Analogously

to the definition of DR, a relative reduction for the flow property φ caused by the

streamwise travelling wave compared to the no control case, is defined as below,

R(φ) =
φ0 − φ

φ0
× 100(%), (7.3)

where φ0 is the flow property of the no control case.

Figure 7.5 shows the visualisation of the quasi-streamwise vortices in the

buffer layer and the VLSMs in the outer region. These two types of structure are

scaled in the inner and the outer units of the channel flow respectively, and are

associated with the inner and the outer peaks of the two-dimensional pre-multiplied

streamwise velocity spectra (figure 3.15) (Hoyas and Jiménez, 2006). The VLSMs

are correlated over the whole half channel height and have strong footprints in the

near wall region (Bernardini et al., 2014).

Figure 7.6 visualises the streaks pattern for CH800 no control case at 8

different wall normal locations, i.e., y+ = 5, 15, 30, 60, 150, 245, 400 and 560.

The small streaks can be clearly identified up to y+ = 30. As the xz cutting plane

moves away from the wall, the streaks become longer and wider. The small high-
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(a)

(b)

Figure 7.5: A 3D graphic view of (a) the near wall small scale structures (visu-
alised by λ+2 = −0.01) and (b) the outer region VLSMs (white colour, visualised by
streamwise velocity fluctuation u′ = 0.1) for CH800L.

and low-speed streaks are not clear enough to be identified, but the large scale high-

and low-speed streaks (super streaks) start to dominate the flow field. The VLSMs

are picked up by a low-pass filter (λx = 3, λz = 0.5) in the Fourier space, and are

indicated by the contour lines in figure 7.6. The VLSMs contain the largest energy

in the outer region, and leave strong footprints in the near wall region.

The two types of scales can be clearly separated using the characteristic eddy

defined by Moin and Moser (1989), which are shown in figure 7.7. The characteristic

eddy is the first wall normal POD mode of all the spanwise wavenumbers, kz. The

mathematical formulation was given in section 3.3. At Reτ = 800, the scale sepa-

ration between the outer VLSMs and the near wall small scale structures is clear.

The VLSMs are shown as super streaks in figure 7.7(a). At the upper bound of the

logarithmic region, y = 0.2, the separation between the positive and the negative
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Figure 7.6: Instantaneous streamwise velocity fluctuation contour at 8 different wall
normal locations, i.e., y+ = 5, 15, 30, 60, 150, 245, 400 and 560. Contour lines
indicate the zero level of the VLSMs. Flow goes from bottom to top. View size is
12× 4.

super streaks in the spanwise direction is λz ≈ 0.5, but λz clearly increases with the

wall distance, which supports the attached eddy model by Townsend (1961). The

classic near wall streaks in the red box is zoomed in and shown in figure 7.7(b). As

expected, the positive and negative streaks have a spanwise separation of λ+z ≈ 50

(Kim et al., 1987).
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Figure 7.7: The characteristic eddy in yz plane for (a) super streaks in the outer
region and (b) classic streaks in the near wall region (zoomed-in view of the box in
(a)). Negative contour lines are dashed.

The footprints of the VLSMs in the wall shear stress are shown in figure 7.8

for the no control, oscillation, stationary and streamwise travelling wave cases at

Reτ = 1600, where the two different scales in the wall shear stress are very clear.

The positive fluctuation is much stronger than the negative one as evidenced by

the highly skewed probability density distribution of the wall shear stress (Örlü and

Schlatter, 2011). The footprints of the VLSMs are more clearly presented for the
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three control cases due to the attenuation of the near wall streaks. The near wall

streaks are very non-uniformly distributed: in some patches of the VLSMs, the near

wall streaks remain strong; while in some other patches of the VLSMs, they are

completely attenuated. This effect will be further studied in the following sections.

(a) (b) (c) (d)

Figure 7.8: Wall shear stress fluctuation for (a) no control case, (b) oscillation case
(ω+ = 0.06), (c) stationary wave case (κ+x = 0.008), and (d) streamwise travelling
wave case (κ+x = 0.016, ω+ = 0.06) at Reτ = 1600. For all cases, flow goes from
bottom to top. Contour levels are [−0.05, 0.05].

7.2.2 Wavenumber and convection velocity modulation

It has been observed that the frequency of the small scales are modulated by the

large scales in experiments (Ganapathisubramani et al., 2012; Guala et al., 2011;

Baars et al., 2015). Due to the complexity of the convection velocity (del Álamo

and Jiménez, 2009), there is no direct evidence about the length scale modulation of

the small scales yet. To answer this question, a conditioning procedure is proposed

for the present DNS data, with the focus only on the wall shear stress:

1) Decompose the original wall shear stress fluctuation into the small (τ ′w,S) and the

large scales (τ ′w,L) based on equation (7.2).

2) Identify the positive and the negative VLSMs regions in the large scale fields as
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described using the criteria of τ ′w,L > 0 and τ ′w,L < 0.

3) Assign τ ′w,S to be 0 under the positive (negative) VLSMs regions. The instanta-

neous view of the conditioning window is shown in figure 7.9(a).

4) Calculate the 1D pre-multiplied spectrum, kxΦτ ′wτ ′w and the wavenumber-frequency

spectrum, Φτ ′wτ ′w(kx, ω) for the modified small scale field, τ ′w,S.

The conditioned 1D pre-multiplied spectrum, kxΦτ ′wτ ′w is shown in figure

7.9(b) for two Reynolds numbers, i.e., Reτ = 800 and 1600. No control wall units

are used for the non-dimensionalisation. To check the reliability of the condition-

ing procedure, the spectra under the positive and the negative VLSMs regions are

summarised and compared with the one without the conditioning. Only a small

difference is observed between the two curves, which suggests that the condition

procedure is reliable to quantify the modulation effect of the small scales from the

VLSMs. The amplitude and the wavenumber modulation effects are revealed in

figure 7.9(b). Along the whole wavelength, the fluctuation energy contained in the

small scales under the positive VLSMs regions are higher than that under the neg-

ative VLSMs regions. The dominant peak locations are different under the positive

VLSMs regions (λ+x ≈ 650) and the negative VLSMs regions (λ+x ≈ 750). This

suggests that the small scales under the positive VLSMs regions are stronger but

shorter than those under the negative VLSMs regions.
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Figure 7.9: (a) Instantaneous view of the small scales under positive (SSP ) and
negative (SSN ) VLSMs regions at Reτ = 800. (b) The 1D pre-multiplied spectra
for SSP and SSN VLSMs regions. Lines with (without) symbols are for Reτ = 1600
(800).

The above procedure is also applied to the convection velocity, Uc. The con-
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ditioned convection velocity is shown in figure 7.10 from the wavenumber-frequency

spectrum. The wavelength dependent convection velocity for the wall shear stress

fluctuation is calculated using the following relationship (Jeon et al., 1999),

Uc(kx) = −ωc

κx
,

∂Φ(kx, ω)

∂ω

∣∣∣∣
ω=ωc

= 0. (7.4)

The trajectories of ωc are plotted with lines in figure 7.10 for both Reτ = 800 and

1600. Over the whole range shown, i.e., 0 < kx < 30, the convection velocities for

the small scales under the positive VLSMs regions are all higher than those under

the negative VLSMs regions. At the dominant length scale, λ+x ≈ 1000 (kx ≈ 5 for

Reτ = 800, and kx ≈ 10 for Reτ = 1600), the convection velocities for the small

scales are U +
c = 10.2 for SSP and U +

c = 8.8 for SSN at Reτ = 800; and U +
c = 9.4

for SSP and U +
c = 8.4 for SSN at Reτ = 1600.
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Figure 7.10: Wavenumber-frequency spectra of the wall shear stress fluctuation, τ ′w
at (a) Reτ = 800 and (b) Reτ = 1600. The contour shows the spectra for no control
case; red, blue and white lines are the trajectories of ωc for SSP , SSN and SS,
respectively. Black dash line is U +

c = 10.

In summary, since ω = 2πUc/λx, combining the modulations in both the

wavelength λx and convection velocity Uc, this means a higher frequency under the

positive VLSMs regions and a lower frequency under the negative VLSMs regions.

This frequency modulation agrees with the experimental finding by Ganapathisub-

ramani et al. (2012). As illustrated by the schematics in figure 7.11, at higher

Reynolds number, the effect of VLSMs becomes more important. These VLSMs are

scaled in the outer units, and carry a significant amount of the streamwise Reynolds
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shear stress and contribute to the wall shear stress through their footprints. In the

mean time, the VLSMs define the local environment for the small scale structures

in the near wall region, and modulate their strength, length, frequency, convection

velocity and phase properties. Within the positive VLSMs region, the small scale

structures are stronger, shorter, convecting faster and bursting more frequently than

those small scale structures within the negative VLSMs regions.

Figure 7.11: Schematics of modulation effects from VLSMs on the near wall small
scale structures in a turbulent boundary layer. Contour lines represent VLSMs and
shaded contour regions represent the near wall small scale structures. Red colour
indicates positive fluctuation and blue colour indicates negative fluctuation.

7.2.3 Phase modulation in Stokes layer

Apart from the amplitude, frequency and wavenumber modulation effects from the

VLSMs, a phase modulation was also reported (Ganapathisubramani et al., 2012).

Here, an evidence of the phase modulation in the control case by spanwise wall

oscillation is documented. The phase variation of the wall shear stress, τw was

reported by Touber and Leschziner (2012) and Hurst et al. (2014) for spanwise

wall oscillation control. Here, the focus is put on the small scales, and their r.m.s.

variation in the positive and the negative VLSMs regions is shown in figure 7.12.

Larger variation is observed under the positive VLSMs regions. Another obvious

difference of the τw,rms,S variations under the positive and the negative VLSMs

regions is the phase leading in the positive VLSMs regions compared to the negative

VLSMs regions.

Since the variation of τw,rms,S is mainly the reflection of the near wall struc-

tures, the dynamics of the λ2 structures is further investigated using the coherent

structure identification method described in section 3.2. An instantaneous flow field

is shown in figure 7.13 for the spanwise wall oscillation case. The λ2 structures

are mainly located within the positive VLSMs regions, and this is consistent with

Marusic et al. (2010). Again, this confirms that the small scale structures under the

positive VLSMs regions is more difficult to be damped (see also figure 7.8).

For the spanwise wall oscillation case (ω+ = 0.06), the ensemble averaged λ2

170



0 0.2 0.4 0.6 0.8 1
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

t/T

τ w
,r
m
s,
S
/τ

w
,0

SS

SSP

SSN

Figure 7.12: Conditional averaged small scale wall shear stress fluctuation r.m.s.,
τw,rms,S under positive and negative VLSMs regions. Lines with (without) symbols
are for Reτ = 1600 (800).

Figure 7.13: Instantaneous near wall λ2 structures (λ+2 = −0.02) with the back-
ground of large scale wall shear stress fluctuation τ ′w,L at Reτ = 800. Light colour
represents positive value and dark colour represents negative value. Contour lines
are the interfaces between positive and negative VLSMs. Circle shows a zoomed-in
view. Flow goes from left to right. View size is 12× 4.

structures are conditioned for 16 equally separated phases, i.e., φ = 0 ∼ 15π/8 with

an interval ∆φ = π/8. The results for the first 8 phases are shown in figure 7.14(a) at

Reτ = 800. By a first glance, the structure dynamics is very similar to the spanwise

wall oscillation case at the lower Reynolds number, Reτ = 200, shown in figure 4.19.

The two types of λ2 structures are strongly affected by the Stokes layer: 1) the

structures gradually move away from the wall during the whole oscillation period;

2) the strength of the structures increases in one half of the period, and decreases

in the second half of the period; 3) the structures change the tilting angle in the xz
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plane. The generation of one new structure (between phase φ = 0 ∼ π/8 in figure

7.14(a)) corresponds to one peak of the wall shear stress variation (at t/T ≈ 0.05 in

figure 7.12).

(a)

(b)

(c)

Figure 7.14: Conditional averaged near wall quasi-streamwise vortices (λ+2 =
−0.005) for spanwise oscillation case (ω+ = 0.06) at Reτ = 800 during the first
half oscillation period under (a) all regions; (b) positive VLSMs regions and (c) neg-
ative VLSMs regions. Light and dark coloured are positive and negative structures,
respectively.

The two types of λ2 structures are further conditioned based on whether they

are fully within the positive or the negative VLSMs regions of the streamwise velocity

fluctuation, u′L. The conditional averaged structures are shown in figures 7.14(b)

and 7.14(c) for the positive and the negative VLSMs regions, respectively. The

ensemble averaged λ2 structures are smoothed, and no obvious strength difference

is captured between the same type of structures within the positive and the negative

VLSMs regions, when the same threshold, λ+2 = −0.005 is used for the visualisation.

However, a phase shift is clearly observed: the new structure starts to be generated

close to the wall between phase φ = 0 ∼ π/8 within the positive VLSMs regions

(figure 7.14(b)) and between phase φ = π/4 ∼ 3π/8 within the negative VLSMs

regions (figure 7.14(c)). These two phases roughly match the two peaks, t/T = 0.04

and 0.1 in figure 7.12, though the peak for τw,rms,S under the negative VLSMs region

is quite broad. Both results suggest that the response of the near wall small scale

structures under the negative VLSMs regions is phase lag of those under the positive

VLSMs regions.

The tilting angle change of the λ2 structures is essentially due to the Stokes

layer generated by the spanwise wall oscillation. This Stokes layer is conditioned in
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the positive and the negative VLSMs regions (same criteria as for the conditioned

λ2 structures used above) at three different wall normal locations: the structure

tail, y+ ≈ 5; the structure centre, y+ ≈ 25; and the structure head, y+ ≈ 55. The

conditioned result is shown in figure 7.15. At the tail of the structure, the Stokes

layers within the positive and the negative VLSMs regions have no difference (figure

7.15(a)), while the phase difference between the Stokes layers become obvious at the

structure centre and head (figure 7.15(b)(c)). The spanwise mean velocity within

the positive VLSMs regions is always phase leading of that within the negative

VLSMs regions, which agrees with the phase relation observed for the small scale wall

shear stress r.m.s., τw,rms,S variation (figure 7.12) and the conditioned λ2 structure

dynamics (figure 7.14).
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Figure 7.15: Conditioned spanwise mean velocity variation for spanwise wall oscilla-
tion (ω+ = 0.06) at Reτ = 800 within positive (P) and negative (N) VLSMs regions
at: (a) y+ ≈ 5; (b) y+ ≈ 25; and (c) y+ ≈ 55.

7.3 Change in the DR map

In this section, we focus on the wall shear stress, and perform conditional analysis for

the wall shear stress statistics and the relative reduction maps. The analysis is based

on 1080 instantaneous snapshots. Appendix H gives the uncertainty estimation due

to the sample length used.

7.3.1 Wall shear stress spectra

The wall shear stress, τw is directly linked to the drag reduction, thus the two-

dimensional pre-multiplied spectra are calculated to understand the contribution

to the wall shear stress from different scales. Figure 7.16(a) shows the 2D pre-

multiplied spectra for the wall shear stress fluctuation, τ ′w at Reτ = 800 and 1600

for the no control case. There is a strong energy peak at λ+x ≈ 650 and λ+z ≈ 100,

which is associated with the near wall streaks (λ+x ≈ 1000 and λ+z ≈ 100, see figure
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3.15). The spectra also show a long tail, which is more obvious at Reτ = 1600, and

this can potentially form an outer peak (Örlü and Schlatter, 2011). The definition

of the VLSMs in equation (7.2) is indicated by the vertical and the horizontal lines

in figure 7.16(a). With this definition, the VLSMs contain around 15% of the total

fluctuation τ ′2w for both Reτ = 800 and Reτ = 1600. The streamwise and the

spanwise spectra filter sizes tend to separate the inner peak from the outer scales

very well in figure 7.16(a).

The skin-friction can be split via Fukagata-Iwamoto-Kasagi identity (Fuka-

gata et al., 2002) (equation (4.3)). By applying the second term to the co-spectrum

of streamwise Reynolds shear stress, Φu′v′ , the mean wall shear stress from the

turbulent contribution, τw,t (non-dimensionalised by ρU2
m) can be decomposed into

wave components,

τw,t ≡
∫ ∞

0

∫ ∞

0
Φτwτw dkx dkz ≡

∫ ∞

0

∫ ∞

0

(
6

∫ 1

0
(y − 1)Φuv(kx, kz) dy

)
dkx dkz,

τw =
6

Re
+ τw,t.

(7.5)

The derivation of the above equation is given in appendix I. The contour plot

is shown in figure 7.16(b). The most energetic region deviates from the 2D pre-

multiplied spectra plot for τ ′w, and resides at much larger scales. The region grows

as a function of λx ∼ 3λz and finally tends to saturate at λz = 1. This suggests that

the large scale motions carry a significant amount of the Reynolds shear stress and

make a large contribution to the wall shear stress (Guala et al., 2006). A similar

result has also been observed by Deck et al. (2014). In the following section, it will

be shown how τw and τ ′2w are correlated.

7.3.2 DR deterioration rate

It is noticed that the DR deterioration is stronger when Reynolds number increases

from Reτ = 200 to Reτ = 400 than from Reτ = 800 to Reτ = 1600. To understand

this, the wall oscillation case at ω+ = 0.06, and the stationary wave case at κ+x =

0.008 for all four Reynolds numbers are chosen for analysis. Following the approach

by Hurst et al. (2014), the contribution to DR from the inner and outer regions are

quantified. Figure 7.17 shows the DR contribution from the wall oscillation and the

stationary wave cases. The two plots are very similar, with the contribution from

the outer structures remains almost constant when the Reynolds number increases
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Figure 7.16: 2D pre-multiplied spectra for (a) wall shear stress fluctuation,
kxkzΦτ ′wτ ′w and (b) wall shear stress mean component, kxkzΦτwτw . The vertical
and horizontal lines indicate λx = 3, λz = 0.5 in (a) and diagonal line indicates
λx = 3λz in (b). The shaded contour is for Reτ = 800, and the contour lines are for
Reτ = 1600, with only the 60% and 10% levels of the maximum value shown.

from Reτ = 200 to 1600. However, the DR deterioration is very strong for the inner

region. This is consistent with the finding by Iwamoto et al. (2002), who showed

that the DR deterioration was only strong for Reτ < 300 in their opposition control.

At Reτ = 400, though there is no clear scale separation, the outer structures

are still very energetic, which can be seen from the 2D pre-multiplied spectra in

figure 3.15. Figure 7.18 shows the contribution to the skin friction from the smallest

length scale to a cut off length scale λz, with the definition of C(λz) given as below,

C(λz) =
1

τw,t

∫ ∞

2π/λz

∫ ∞

0
Φτwτw(kx, kz) dkx dkz . (7.6)

Clearly, majority of the mean wall shear stress contribution comes from the length

scale between λ+z = 100 and λz = 1, as found by de Giovanetti et al.. This is the

case for the lowest Reynolds number Reτ = 200 as well.

The pre-multiplied spectra for the mean wall shear stress, kzΦτwτw(kz) are

plotted in figure 7.19(a) for both the control and the no control cases. Unlike the

inner scaling of the wall shear stress fluctuation spectra as shown in figure 7.9(b),

the mean wall shear spectra do not scale in wall units, and the dominant peak

location keeps increasing in wall units as the Reynolds number increases. Since the
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Figure 7.17: DR contribution from the inner and outer regions for: (a) wall oscilla-
tion at ω+ = 0.06; and (b) stationary wave at κ+x = 0.008.
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Figure 7.18: Mean wall shear stress contribution from spanwise length scales below
a cut off value in: (a) wall units, and (b) outer units, for four different Reynolds
numbers. Solid lines are no control cases; dashed lines are wall oscillation cases; and
dash-dotted lines are stationary wave case.

level of each curve represents the actual contribution to the mean wall shear stress,

the relative change of kzΦτwτw(kz) from the no control case to the control case gives

the DR values, which are plotted in figure 7.19(b) for both the wall oscillation case

and the stationary wave case. In this plot, scales with λ+z < 30 are not shown due

to the high noise level. The high fluctuation at the largest wavelength is due to the

less enough samples. It is clear to see that for all the cases in the region λ+z < 400,

DR decreases monotonically as λ+z increases. For the region λ+z > 400, though the

data is noisy, it suggests a constant DR level at Reτ = 400, 800 and 1600. The

increase of DR at the largest wavelength end for Reτ = 200 might be due to a low

Reynolds number effect. This suggests an expected result that larger scale structures

are less effectively controlled than the smaller one, since larger scale structures are
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further away from the wall (Flores and Jiménez, 2010; Hwang, 2013). A closer look

at the DR change with the Reynolds number for the wall oscillation case and the

stationary wave case, suggests a very similar result as in figure 7.17, namely the DR
deteriorates rate is faster in smaller scale structures, which are closer to the wall.

To study the reason for a power law (or log law) for the DR scaling of the Reynolds

number is an interesting question to explore in the future. In the present study, we

only focus on the two highest Reynolds numbers explored, i.e., Reτ = 800 and 1600,

which have less low Reynolds number effect.
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Figure 7.19: (a) Pre-multiplied spectra for mean wall shear stress τw; (b) DR con-
tribution from different spanwise length scales.

7.3.3 Influence of the superimposition effect

Figures 7.20 and 7.21 shows the 1D pre-multiplied spectra of τ ′w for all the control

cases at Reτ = 800 and 1600. Comparing to the no control case in the spanwise

spectra (figure 7.20), it is clear that majority of the spectrum change by the control

comes from the small scales (inner spectrum peak). For the large scales (outer

spectrum peak), there are two notable phenomena: 1) the outer peak amplitude is

affected by the control, even though the corresponding VLSMs are far away from

the wall; 2) the variation of the outer peak amplitude is not in phase with that

of the inner peak. For instance, at ω+ = 0.03, κ+x = 0, Reτ = 800, the inner

peak is significantly weakened, while the outer peak is strengthened instead. In the

streamwise spectra (figure 7.21), the length scales, λ+x associated with the inner peak

reduces significantly by the control, even for the drag increase cases, corresponding

to the breaking up of the near wall streaks (Choi et al., 1998).

A clearer view of the wall shear stress fluctuation reduction R(τ ′2w ) (see equa-

tion (7.3) for the definition) is shown in figure 7.22 in the same format as theDRmap
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Figure 7.20: 1D pre-multiplied spectra for wall shear stress fluctuation, τ ′w as a
function of spanwise wavelength λ+z at different oscillation frequencies: (a) ω+ = 0;
(b) ω+ = 0.01; (c) ω+ = 0.02; (d) ω+ = 0.03; (e) ω+ = 0.06; (f) ω+ = 0.09; (g)
ω+ = 0.12; (h) ω+ = 0.15 and (i) ω+ = 0.18. Solid lines are for Reτ = 800, and
dashed lines are for Reτ = 1600. The no control cases at the two Reynolds numbers
are indicated by bold black lines in all the plots.

(figure 7.3). The value of τ ′2w is the integration of each curve along the wavenumber

in figures 7.20 and 7.21. By comparing figure 7.22(a) and figure 7.3, a high cor-

relation between R(τ ′2w ) and DR value is observed, though the actual changes are

much larger for R(τ ′2w ). The high correlation between R(τ ′2w ) and DR value is not

surprising, because higher R(τ ′2w ) means that turbulent structures are more strongly

suppressed, thus corresponding to a higher drag reduction. Negative R(τ ′2w ) value is

located in the drag increase region with a travelling wave speed of c+ ≈ 10, and this

is also where the turbulent structures are most amplified. The reduction of τ ′2w in the

large scales, R(τ ′2w,L) and in the small scales, R(τ ′2w,S) are shown in figures 7.22(b)
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Figure 7.21: Same as in figure 7.20, but for streamwise wavelength, λ+x .

and 7.22(c), respectively. A clear difference in the structure amplified region (yellow

coloured) is observed. For the large scales, the most amplified region corresponds to

a streamwise travelling wave speed of c+ > 10, which also appears to be streamwise

wavelength dependent; while for the small scales, the amplified region corresponds

to a streamwise travelling wave speed of c+ ≈ 8. This suggests that both the small

and the large scales can be amplified by the streamwise travelling wave; similarly,

they can also be attenuated by the streamwise travelling wave. The large scales

resident much further away from the wall (figure 7.7(a)), but a significant amount

of them are attached to the wall, thus the control in the near wall region can still

affect those large scale structures (del Álamo et al., 2006). Since the VLSMs are

amplified in the regions c+ > 10, this may explain why the optimal drag reduction

case appears in the region of c+ < 10 rather than c+ > 10 as reported in figure

7.3 of the present study and also in figure 2 by Quadrio et al. (2009). Moreover,
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it also sheds light on why the drag reduction deteriorates stronger for the optimal

spanwise wall oscillation cases than the optimal stationary wave cases, as found by

Hurst et al. (2014).
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Figure 7.22: Maps for wall shear stress fluctuation reduction for: (a) all scales,
R(τ ′2w ); (b) large scales, R(τ ′2w,L); and (c) small scales, R(τ ′2w,S). Circles are the
streamwise wavelength dependent convection velocity from figure 7.23(b): λx < 3
for closed circles and λx > 3 for open circles.

The observation of two different streamwise travelling wave speeds for the

most amplified region in R(τ ′2w,L) and R(τ ′2w,S) maps, is actually not surprising, since

del Álamo and Jiménez (2009) has shown the convection velocity of the three velocity

components, i.e., u′, v′ and w′ are wavelength dependent. The formula proposed

by del Álamo and Jiménez (2009) for the wavelength dependent convection velocity

calculation as below,

Uc(kx, kz) = −Im〈φ̂∗∂tφ̂〉
kx〈|φ̂|2〉

, (7.7)

where ·̂ is the Fourier coefficient, ·∗ is the complex conjugate, 〈·〉 represents the

ensemble average and Im is the imaginary part. The same method is used to

calculate the convection velocity for τ ′w at Reτ = 800 and 1600 for the no control

cases. The wavelength dependent convection velocity of τ ′w is shown in figure 7.23 in

both 2D and 1D formats. In figure 7.23(a), the streamwise and spanwise wavelength

dependent convection velocity of τ ′w (shaded contour) at Reτ = 800 is compared with

that of the streamwise velocity fluctuation on the wall (contour lines) calculated from

the semi-empirical model by del Álamo and Jiménez (2009) at Reτ = 950. A good

agreement can be seen, especially in the large streamwise and spanwise wavelengths

region. By integrating the convection velocity in figure 7.23(a) along the spanwise

direction, a streamwise wavelength dependent convection velocity for τ ′w is shown in

figure 7.23(b) for both Reτ = 800 and 1600, together with the data from Jeon et al.
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(1999) at Reτ = 180. A streamwise wavelength dependent convection velocity of τ ′w
is also suggested by Jeon et al. (1999), where the wavenumber-frequency spectrum

was used to determine the convection velocity (equation (7.4)), thus the more noisy

of the data. When the convection velocities are scaled in wall units, it shows a

good collapse between the two Reynolds numbers studied, especially for the near

wall dominant structure range, i.e., λ+x ≈ 103. There is a plateau for the convection

velocity, which is around U +
c ≈ 8 for 102 < λ+x < 103, and this appears to agree

well with the most amplified region of τ ′w,S in figure 7.22(c). For the rest of the

wavelength, i.e., λ+x < 102 and λ+x > 103, the convection velocity shows a strong

wavelength dependency. This trend is also suggested by the most amplified region

of τ ′w,L shown in figure 7.22(b), where a single convection velocity can not be used

to describe the most amplified region of the VLSMs in the map.
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Figure 7.23: Wavelength dependent convection velocity of wall shear stress fluctu-
ation, τ ′w in (a) 2D format for Reτ = 800, and (b) 1D format for Reτ = 800 and
1600. The contour lines in (a) is from the semi-empirical model by del Álamo and
Jiménez (2009), and the vertical and horizontal dash lines correspond to λx = 3 and
λz = 0.5 respectively.

The correlation between DR and τ ′w,rms is plotted in figure 7.24 for the small

scales and the large scales. Despite the scattering of the data, the difference between

the large scales and the small scales can be clearly seen. As expected, majority of

the change of τ ′w comes from the small scales, τ ′w,S, which are closer to the wall and

easier to be modulated by the wall motion. The decreasing rate of τ ′w against DR
is much slower for the large scales τ ′w,L compared with the small scales τ ′w,S. The

trend of the data in small scales indicated by the straight dashed line suggests a

limit of the drag reduction by purely damping the small scales. The upper bound

of the drag reduction value is around 55%. The data also suggests an asymptotic

behaviour for the large scales in the high DR region, where weakening the large
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scales is as efficient as that for the small scales. Overall, the large scale structures

can be partially affected by the streamwise travelling wave, but the control on the

large scales is less effective than that on the small scales. This explanation for the

drag reduction deterioration is in line with the proposal by Touber and Leschziner

(2012) for the spanwise wall oscillation case at Reτ = 500, and later supported by

Deng et al. (2015) for the opposition control at Reτ = 1000. It has to be mentioned

that the analysis for both Touber and Leschziner (2012) and Deng et al. (2015) were

based on a single control case in the low DR region only.
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7.3.4 Influence of the modulation effect

VLSMs define the local environment for the small scale structures, and modulate

the behaviours of the small scale structures (Hutchins and Marusic, 2007a). In this

section, the modulation effect on the small scales of τ ′w is going to be quantified.

The positive and negative VLSMs regions are distinguished by the red and blue

islands in figure 7.25, which represent 30% of the extreme positive and the extreme

negative VLSMs in the probability density function of τ ′w,L. The total wall shear

stress τw and the small scale wall shear stress fluctuation τ ′2w,S are sampled within

the positive and the negative VLSMs regions for all the 54 cases, and the relative

182



reduction for any turbulent property φ under these two regions are defined as,

RP (φ) =
φ0,P − φP

φ0,P
× 100(%);

RN (φ) =
φ0,N − φN

φ0,N
× 100(%),

(7.8)

where subscript P (or N ) represents under the positive (or negative) VLSMs regions.
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Figure 7.25: The probability density function of the VLSMs and the extreme positive
(30%, red) and extreme negative (30%, blue) VLSMs regions in the instantaneous
wall shear stress fluctuation field (view size 12× 4).

The decomposed wall shear stress τw reduction maps under the positive

(RP (τw)) and the negative (RN (τw)) VLSMs regions are shown in figures 7.26(a)

and 7.26(b). These two maps still keep the main features of the original drag re-

duction map (figure 7.3). However, two differences between the two drag reduction

maps can be seen: 1) the drag increase region (yellow) for RP (τw) map is narrower

than that for the RN (τw) map; 2) the optimal drag reduction value (left top corner

in the map) is higher in RP (τw) map than in RN (τw) map: RP,max(τw) = 43 ± 2

and RN,max(τw) = 35 ± 2 at ω+ = 0.03, κ+x = 0.012. The DR value difference

between the conditioned DR maps is shown in figure 7.26(c). There is a remark-

able similarity between this map and the map shown in figure 7.22(b), thus the

RP (τw) − RN (τw) map shows the signature of the VLSMs. Generally, more DR
comes from the positive VLSMs regions, except the region where the VLSMs are

amplified. This positive RP (τw) − RN (τw) region also exists at Reτ = 1600 by

checking the decomposed drag reduction value for the three control cases (table

7.1): the oscillation case is within the VLSMs amplified region, while the stationary

and the streamwise travelling wave cases are outside.

Figures 7.26(d) and 7.26(e) show the conditioned reduction maps for the

small scale wall shear stress fluctuation τ ′2w,S under the positive (RP (τ
′2
w,S)) and

the negative (RN (τ ′2w,S)) VLSMs regions, respectively. And the difference map
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Table 7.1: Conditioned wall shear stress, τw and relative drag reduction, DR under
positive and negative VLSMs regions. Numbers outside (inside) brackets are for
Reτ = 800 (1600).

All regions Positive regions Negative regions

Cf × 10−3

No control 5.22 (4.35) 6.32 (5.28) 4.19 (3.52)
Oscillation 3.88 (3.38) 4.86 (4.27) 3.06 (2.40)

Stationary wave 3.21 (2.86) 3.71 (3.38) 2.78 (2.39)
Travelling wave 3.17 (2.73) 3.65 (3.10) 2.77 (2.31)

DR %
Oscillation 25 (24) ±2 23 (19)±2 27 (32)±2

Stationary wave 39 (34)±2 42 (36)±2 34 (32)±2
Travelling wave 39 (38)±2 42 (41)±2 34 (34)±2

RP (τ
′2
w,S)−RN (τ ′2w,S) is shown in figure 7.26(f). Here the discontinuity in the maps

is due to the resolution in the ω+−κ+x space, thus the focus is only put on the trend

suggested by figure 7.26(f). Clearly, the small scale wall shear stress fluctuation

τ ′2w,S under the negative VLSMs regions RN (τ ′2w,S) is modulated stronger than that

under the positive VLSMs regions RP (τ
′2
w,S), i.e., a stronger attenuation for the drag

reduction cases and a stronger amplification for the drag increase cases. This result

is indeed supported by figure 7.8, where for all the three drag reduction cases, the

small scale wall shear stress fluctuation remains strong under the positive VLSMs

regions, while the small scales under negative VLSMs regions is almost invisible. It

is not clear yet why the small scales under the positive VLSMs regions are more

stable, and more difficult to be damped. One possible explanation is that those

small scales within the positive VLSMs regions are under the down wash side of the

large scale motions, thus more energy is transferred from the outer scales into the

small scales. Deng et al. (2015) also reported the small scales under the positive

VLSMs regions are less suppressed than those under the negative VLSMs regions

for the opposition control. The authors also argued that the overall DR under the

negative VLSMs regions was higher than that under the positive VLSMs regions.

However, this is only true when the VLSMs are amplified; and the opposite trend

appears when the VLSMs are suppressed (figure 7.26(c)).

In general, majority of the drag reduction comes from the attenuation of

the small scales under the VLSMs regions. Since the small scale structures under

the positive and the negative VLSMs regions are very different, in terms of their

intrinsic strength, length, frequency and convection velocity (section 7.2.2), while
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Figure 7.26: Reduction rate maps for mean wall shear stress τw conditioned under
(a) positive VLSMs regions (RP (τw)), (b) negative VLSMs regions (RN (τw)) and
(c) the DR difference map (RP (τw)−RN (τw)); and for small scale wall shear stress
fluctuation τ ′2w,s under (d) positive VLSMs regions (RP (τ

′2
w,S)), (e) negative VLSMs

regions (RN (τ ′2w,S)), and (f) the difference map (RP (τ
′2
w,S)−RN (τ ′2w,S)).

the applied streamwise travelling wave is in a global sense, thus it needs to find a

balance between suppressing the small scales under the positive and the negative

VLSMs regions. To achieve the maximum drag reduction, the key is to attenuate the

small scales under the positive VLSMs regions, because those structures are more

stable than those under the negative VLSMs regions. Since the small scales under

positive VLSMs regions burst faster and convect faster, this leads to the control

parameters being shifted towards higher values for the spanwise wall oscillation and

the stationary wave, which is the second Reynolds number effect observed by Hurst

et al. (2014).
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7.4 Conclusions

The influence of the VLSMs on the turbulent skin-friction control by the streamwise

travelling wave of the spanwise wall velocity was quantified using a series of condi-

tional average analysis at moderate Reynolds numbers Reτ = 800 and 1600. The

drag reduction deterioration and the optimal control parameters shift were found to

be linked to the superimposition and the modulation effects of the VLSMs. Firstly,

the weakening of the VLSMs was less effective than that of the near wall small

scales. Secondly, the attenuation of the small scales under the positive VLSMs re-

gions was more difficult than that under the negative VLSMs regions. The strong

modulation effect on the wavenumber and frequency of the small scale structures

from the VLSMs resulted in the optimal control parameters unfixed in wall units.

To attenuate the small scale structures under the positive VLSMs regions most ef-

fectively, the control parameters shifted towards higher values to match the natural

frequency and wavenumber of those small scales. The VLSMs were amplified when

the wave travelling speed c+ > 10 (see figure 7.22(b)), and this caused the drag

reduction deterioration to be even worse in this region of the ω+ − κ+x space. For

example, figure 7.17 suggested a stronger DR deterioration for the wall oscillation

case at ω+ = 0.6 (within the VLSMs amplified region) than the stationary wave

case at κ+x = 0.008 (outside of the VLSMs amplified region). For the optimal drag

reduction at high Reynolds numbers, a strategy by controlling both the small scales

from the near wall region and the VLSMs from the outer region may be necessary.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

In the present study, the skin-friction drag reduction by the spanwise motion gen-

erated by the wall movement and the body forces was studied in a DNS channel.

The aim was to bring the skin-friction drag reduction control by spanwise wall os-

cillation into real engineering applications. Two main challenges were explored: 1)

creating the same drag reduction effect as the spanwise wall oscillation using newly

developed DBD plasma actuators; 2) understanding the effect of the VLSMs on the

drag reduction deterioration at high Reynolds numbers. The following main works

were done in the four result chapters:

In chapter 4, the drag reduction mechanism in a three-dimensional turbu-

lent boundary layer by the uni-direction and the oscillating spanwise wall motion

was studied. Extensive analysis on the λ2 structures and the near wall streaks

were performed to understand the structure dynamics modulation by spanwise wall

oscillation, which provided the guide to implement Lorentz and plasma body forces.

In chapter 5, the travelling wave forms were created by spanwise Lorentz

force. Thanks to the continuous variation of the Lorentz force, a whole picture of

the drag reduction by forward streamwise travelling wave, spanwise travelling wave,

backward streamwise travelling wave and any oblique travelling wave was given.

The results provided the confidence that the body force could create a similar drag

reduction effect to the wall velocity, thus paving the way for the plasma actuators

study.

In chapter 6, a series of configurations was designed for the drag reduction

control by the DBD plasma actuators. A new configuration to generate the spanwise

oscillation was proposed. It demonstrated the possibility to implement the plasma
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actuators to real engineering problems for the drag reduction purpose for at least

low Reynolds numbers.

In chapter 7, the effect of the VLSMs was studied based on the high Reynolds

number data for the streamwise travelling wave of the spanwise wall velocity gen-

erated by Hurst (2013). Due to the similarity between the spanwise wall oscillation

and the spanwise oscillating plasma body force, the results in this chapter also

shed light on the drag reduction scenario at high Reynolds numbers for the plasma

actuators.

The results in the present study leads to the following main conclusions:

• To achieve drag reduction, the oscillation frequency should be high enough to

prevent the near wall structures from recovering; but the oscillation frequency

also needs to be low enough to maintain a certain thickness of the Stokes layer

for the interaction with the near wall structures (Akhavan et al., 1991; Baron

and Quadrio, 1996; Quadrio and Ricco, 2004). This optimal frequency for the

spanwise wall oscillation is at ω+ = 0.06 (Quadrio and Ricco, 2004; Blesbois

et al., 2013), though it slightly varies in wall units with the Reynolds number.

• The λ2 structures and the associated high- and low-speed streaks are signif-

icantly modulated in the Stokes layer. Their tilting angles and the averaged

structure centres change with the wall movement (Ricco, 2004). The period

for the structures from growing-up to dying-out, is dominated by the oscilla-

tion frequency. The optimal oscillation frequency is around the same value of

the structure bursting frequency (Quadrio and Ricco, 2004). At this period,

the newly generated structure are quickly pushed away from the wall, and the

misalignment between the positive and the negative λ2 structures prohibits the

formation of the long low-speed streaks, thus it generates less skin-friction.

• Spanwise body force can achieve the same effect as the spanwise wall velocity,

though less effective. The structure dynamics in the Stokes layer generated

by the travelling wave form of the spanwise Lorentz force and by the spanwise

wall velocity are very similar.

• The interaction between the “ribbon structure” and the near wall streaks in

any oblique travelling wave of the spanwise Lorentz force is similar to the

scenario for the spatial homogeneous Lorentz force. There is no fundamental

difference in the drag reduction mechanism.

• A “local travelling wave global oscillation” configuration (SO4) was proposed

for the skin-friction control by the DBD plasma actuators, which resembles the
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drag reduction by the spanwise wall oscillation and the spanwise oscillating

Lorentz force most. Drag reduction is still achievable when the gap between

the two activated actuators is as large as s+ = 100.

• No net energy saving is obtained for the drag reduction control by plasma

actuators for all the configurations explored in this study, even when only

considering the fluid power as the power required.

• The VLSMs play an important role at high Reynolds numbers. These VLSMs

carry a significant amount of the Reynolds shear stress, but the general near

wall skin-friction controls can not damp these VLSMs very effectively. The

frequency modulation from these VLSMs on the near wall small scales shifts

the optimal control parameters in the wall units.

8.2 Future works

Though the works done in the present study helps improve the understanding of

the skin-friction drag reduction control by the spanwise motion to some extent,

significant efforts are still needed in the future. Some suggested future works are

listed as below:

• Investigating the exact coherent structure within the unsteady Stokes layer

(Hwang et al., 2016) is a great topic. The λ2 structures and the near wall

streaks are conditioned from the turbulent fields separately, thus the interac-

tion between those two is still weak in the present analysis. Understanding the

modulation on the exact coherent structure by the spanwise wall oscillation

can provide a direct view on how the regeneration cycle is weakened by the

spanwise motion.

• The ‘local travelling wave global oscillation’ configuration (SO4) for the DBD

plasma actuators is a successful drag reduction proposal. However, the plasma

actuator model used in the present study is still very simplified, and an ex-

periment validation of SO4 configuration is needed.

• Even though the drag reduction mechanisms for the skin-friction control are

similar between the spanwise velocity and the spanwise body force, the result

from figures 4.8 and 6.29 suggests that, a more detailed study of the link

between the spanwise mean strain and the skin-friction is required to bring

the understanding of the drag reduction mechanism to the ground. For this
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study, specific spanwise mean strain can be imposed numerically in the DNS,

or through simplified turbulent model, such as used by Barkley et al. (2015).

• At the flight Reynolds number, the contribution to skin-friction from the

VLSMs are very important, and it is an interesting topic to understand how

to control the VLSMs effectively from the outer region.
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Appendix A

Estimation of flight Reynolds

number

For a commercial aircraft under a cruising condition at an altitude of 10km above

the sea water, assuming the flight speed is U∞ = 225m/s, we estimate the flight

Reynolds number on the wing at x = 2m downstream of the stagnation point

(x = 0). The air properties at this height are: 1) density ρ = 4.12707× 10−1kg/m3;

2) dynamics viscosity µ = 1.46884 × 10−5Ns/m2; 3) kinetic viscosity ν = µ/ρ =

3.55904×10−5m2/s. For the boundary layer thickness δ, and skin-friction coefficient

Cf estimation, the same empirical formulas as in (Ricco and Hahn, 2013) are used:

δ = 0.37xRe−0.2
x ,

Cf = 0.37(logRex)
−2.584,

Rex =
xU

ν
.

(A.1)

At x = 2m, Rex ≈ 1.264×107, δ ≈ 0.028m, Cf ≈ 2.335×10−3, τw = Cf/(
1
2ρU∞) =

24.39Pa, and uτ =
√
τw/ρ = 7.69m/s. Therefore, we have the frictional Reynolds

number Reτ = uτδ/ν ≈ 6072, which is the order of O(104). The viscous length scale

is ν/uτ ≈ 4.6 × 10−6m, which is the order of O(1µm). The viscous time scale is

ν/u2τ = 6.1× 10−7s, which is the order of O(1µs).
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Appendix B

Density spectra

We begin with the forward and backward Fourier transform,

û(κ) = F (u(x)) =
1

4π2

∫ ∞

−∞
u(x)e−iκxdx,

u(x) = F
−1 (û(κ)) =

∫ ∞

−∞
û(κ)eiκxdκ,

(B.1)

where the two dimensional vectors are x = (x, z) and κ = (κx, κz); ·̂ indicates the

Fourier coefficient. There are two possible ways to get the spectra tensor φij(κ).

The first method is through the correlation tensor Rij(r), which is defined as below,

Ri,j(r) ≡ ui(x)uj(x′) = ui(x)uj(x+ r). (B.2)

where overline indicates average in time. Then the spectra tensor can be obtained

by taking the Fourier transform of the correlation tensor, i.e.,

φij(κ) = F (Rij(r)) . (B.3)

A less computational expensive way to calculate the spectra tensor is through the

following multiplication,

φij(κ) = ûi(κ)û∗j (κ), (B.4)

where the superscript ∗ indicates the complex conjugate. Then a one-side spectrum

Eij(kx, kz) can be defined in the wave space for kx ≥ 0 and kz ≥ 0. Considering
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φij(κ) is symmetric about κ = 0, Eij(kx, kz) can be written as below,

Eij(kx, kz) =ûi(kx, kz)û∗j (kx, kz) + ûi(−kx, kz)û∗j (−kx, kz)
+ ûi(−kx,−kz)û∗j(−kx,−kz) + ûi(kx,−kz)û∗j (kx,−kz)

=2
[
ûi(kx, kz)û

∗
j(kx, kz) + ûi(kx,−kz)û∗j (kx,−kz)

]
.

(B.5)

Given Eij(kx, kz), the two dimensional density spectrum is defined as,

Φij(kx, kz) =
∂2Eij(kx, kz)

∂kx∂kz
. (B.6)

With the pre-multiplied density spectrum in a log-log plot, the area underneath the

surface gives the total fluctuation energy, i.e.,

u′iu
′
j =

∫

kz

∫

kx

Φij(kx, kz)dkxdkz ≡
∫

kz

∫

kx

kxkzΦij(kx, kz)d log(kx)d log(kz). (B.7)

The one dimensional density spectra along kx and kz are given as below,

Φij(kx) =

∫

kz

Φij(kx, kz)dkz ,

Φij(kz) =

∫

kx

Φij(kx, kz)dkx.

(B.8)
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Appendix C

DR asymptotic at ω = 0 (T = ∞)

For the uni-direction wall motionWw = Aw, the xz plane averaged skin-friction Cf is

a function of the initial flow filed u0, the wall velocity Aw, and time t. Cf (Aw,u0, t)

trajectory depends on u0 only for the transient period (t0 < t < t1), but in the new

steady state t > t1, long time averaged Cf is independent from the initial flow field,

shown as below,

Cf (Aw) =

(
1

t2 − t1

∫ t2

t1

Cf (Aw,u0, t)dt

)∣∣∣∣
t2→∞

,

=

(
1

t2 − t1

∫ t2

t0

Cf (Aw,u0, t)dt

)∣∣∣∣
t2→∞

−
(

1

t2 − t1

∫ t1

t0

Cf (Aw,u0, t)dt

)∣∣∣∣
t2→∞

,

=

(
1

t2 − t0

∫ t2

t0

Cf (Aw,u0, t)dt

)∣∣∣∣
t2→∞

,

(C.1)

where Cf (Aw) is independent from u0. Therefore, the steady state Cf (Aw) can be

predicted using any initial flow field u0 subjected to t→ ∞.

For the spanwise wall oscillation case with Ww = Aw sin(ωt) (minus sign is

dropped from equation 4.2 for convenience), let us set φ = ωt, and consider a finite

change of the phase φ ∈ [φ1, φ2] (∆φ = φ2 − φ1, ∆Ww = Aw(sin(φ2) − sin(φ1)) =

cosφ1∆φ). As ∆φ → 0, ∆Ww → 0. At ω = 0, we have ∆t = ∆φ/ω = ∞.

Therefore, the wall oscillation problem at the phase interval [φ1, φ2] is equivalent

to a uni-direction wall motion problem, with an initial field u0|φ=φ1 , spanwise wall

velocity Ww = Aw sinφ1. As shown in equation C.1, the steady value Cf (φ = φ2) is

independent from u0|φ=φ1 , and it can be taken from figure 4.8, where a no control

flow field is used as the initial field. The corresponding drag reduction DR(φ) values

at different phases are tabulated in table C.1 for one quarter of the oscillation period
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at A+
w = 12. The DR(φ) values in the other three quarters are identical to the first

quarter, since DR(φ) is only a function of |Ww|. The overall DR in one oscillation

Table C.1: DR(φ) in the first 1/4 period at A+
w = 12.

W+
w 0 1 2 4 6 8 10 12

sin(φi) =Ww/Aw 0 0.083 0.167 0.333 0.5 0.667 0.833 1.0
φi 0 0.0834 0.167 0.340 0.524 0.730 0.985 1.571

DR(φi)
† 0 -0.8 -2.5 -5.9 -8.4 -10.2 -11.0 -11.6

DR(φi)
‡ 0 -0.4 -1.8 -6.3 -12.3 -18.7 -25.7 -31.7

† top and bottom walls are in phase; † top and bottom walls are out of phase.

period can be obtained through a time average (equation C.2). The integration is

approximated using a trapezoidal rule with the discretise DR(φ) values in table C.1.

The predicted asymptotic DR values are −8.6 when the top and bottom walls are

in phase, and −16.1 when they are out of phase.

DR =
1

T/4

∫ T/4

0
DR(t) dt =

2

π

∫ π/2

0
DR(φ) dφ,

≈ 2

π

∑

i

(DR(φi−1) +DR(φi))
φi − φi−1

2
.

(C.2)
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Appendix D

(a) (b) (c)

Figure D.1: Ensemble averaged λ2 structures at 8 equally separated phases during
one oscillation period with different oscillation frequencies: (a) ω+ = 0.01 (λ+2 =
−0.009); (b) ω+ = 0.03 (λ+2 = −0.009); and (c) ω+ = 0.12 (λ+2 = −0.003).
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(a)

(b)

(c)

Figure D.2: The characteristic eddies changes in the first half period for: (a) ω+ =
0.01 (T+ = 628), (b) ω+ = 0.06 (T+ = 105), and (c) ω+ = 0.12 (T+ = 52).
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Appendix E

Analytical solution for the

Laminar LGSL

For equation (5.16) (the superscript + has been dropped for simplicity), we look for

the solution with the following form,

W = W1e
iωt + W2e

−iωt, (E.1)

with the forcing term decomposed as,

Afe
−y/∆ sin(−ωt) = i

2
Afe

−y/∆
(
eiωt − e−iωt

)
, (E.2)

where W1 and W2 are complex functions of y. Substitute equations (E.1) and (E.2)

into equation (5.16), we have,

(
∂2W1

∂y2
− iωW1 +

i

2
Afe

−y/∆

)
eiωt +

(
∂2W2

∂y2
− iωW2 −

i

2
Afe

−y/∆

)
e−iωt = 0,

(E.3)

To make equation E.3 valid for any t, we have,

∂2W1

∂y2
− iωW1 +

i

2
Afe

−y/∆ = 0, (E.4)

∂2W2

∂y2
− iωW2 −

i

2
Afe

−y/∆ = 0, (E.5)
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with the boundary conditions,

W1|y=0 = 0, W1|y=∞ = 0; (E.6)

W2|y=0 = 0, W2|y=∞ = 0. (E.7)

We first solve equation (E.4) subjected to boundary equation (E.6). The

homogeneous part of equation (E.4) is as below,

∂2W1

∂y2
− iωW1 = 0. (E.8)

And the general solution is,

W1 = Ae(1+i)
√

ω
2
y +Be−(1+i)

√
ω
2
y, (E.9)

where A and B are constant to be determined later. We then look for a particular

solution of the form W1 = beay. Substitute it into equation (E.4), we have,

a2beay − iωbeay +
i

2
Afe

−y/∆ = 0. (E.10)

Comparing the coefficient of y, we have a = −1/∆ and b = Af/
(
2
(
ω + i

∆2

))
.

Therefore, the final solution for W1 is,

W1 = Ae(1+i)
√

ω
2
y +Be−(1+i)

√
ω
2
y + beay. (E.11)

With the boundary conditions in equation (E.6) we have,

A+B + b = 0,

A = 0.
(E.12)

Therefore, B = −b, and

W1 =
Af/2

ω + i/∆2

(
e−y/∆ − e−(1+i)

√
ω
2
y
)
. (E.13)

Similarly, solving equation (E.5) subjected to boundary equation (E.7), we

have

W2 =
Af/2

ω − i/∆2

(
e−y/∆ − e−(1−i)

√
ω
2
y
)
. (E.14)

199



Let

c ≡ 1

∆2
, Âf ≡ Af

c2 + ω2
, ŷ ≡ y

√
ω

2
, ỹ ≡ y

∆
, (E.15)

and plug equations (E.13) and (E.14) into equation (E.1), the final solution is arrived

as below,

W = W1e
iωt + W2e

−iωt,

= Âfe
−ỹ (ω cos(ωt) + c sin(ωt))− Âfe

−ŷ (ω cos(ωt− ŷ) + c sin(ωt− ŷ)) .

(E.16)
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Appendix F

Parameter selection for starting

vortex comparison

To make a comparison with the experimental study of the starting vortex by Whal-

ley and Choi (2012), the three parameters, i.e., σ, λ and Af in the plasma actuator

model need to be chosen first. For convenience, we dimensionalise all the param-

eters in our channel simulation at Reτ = 200 (Rem = 3150). The plasma force

distribution parameters are set to be σ = 1.8 mm and λ = 1.6 mm−1, and this gives

a plasma force region with a vertical height of 0.6 mm, and a horizontal extend of 4

mm (estimated from the accumulative density function of the Exponential and the

Rayleigh distributions, i.e., 1 − eλy = 0.9 and 1 − e−z2/2σ2
= 0.9), which roughly

matches the plasma actuator size used by Whalley and Choi (2012). Other σ and

λ values have also been tested, but the effect on the vortex dynamics was found to

be weak. The half channel height is set to be h = 40 mm, so that the actuator size

is the same in wall units as those used by Choi et al. (2011) at Reτ = 475. The

reference velocity in our channel simulation is Um = Remν/h = 1.184 m/s (provided

ν = 1.5 × 10−5 m2/s, and ρ = 1.322 kg/m3 for air). Since the present empirical

plasma actuator model does not have the direct link to the applied electric voltage

and frequency, the plasma body force parameter strength Af needs to be tuned.

For each case of Af , the maximum jet velocity Wmax and the vortex travelling dis-

tance in the horizontal direction L are recorded after the steady Wmax value is just

reached. Then Wmax and ν/Wmax are used as the correct reference velocity and

length scales for the non-dimensionalisation (indicated by a ∗) as used in the exper-

imental data. Since the plasma actuator acts as a momentum source, we tune Af to

give a good comparison with the experimental data in the total volume momentum

increase. The best comparison is given in figure F.1(a) with Af = 0.26 kN/m3. The

201



linear increase of the momentum Mz indicates a constant plasma body force, and

they are almost the same between the simulation result and the PIV data. However,

the simulation data is upward shifted, which might be due to an initial effect that

the PIV data has a negative momentum at the beginning. The steady Wmax value

is reached at t = 135 ms (t∗ = 1580), and Wmax = 0.42 m/s, L = 6.7 mm, which

are under predicted compared to the experiment (Wmax = 0.45 m/s, L = 8.3 mm).

The Reynolds number defined as Rej = WmaxL/ν are 250 and 190 for the experi-

ment and the simulation, respectively. The vortex centre coordinate (z∗c , y
∗
c ) is also

recorded and compared with the experimental data. Generally, the starting vortex

in our simulation moves slower in both the horizontal and the vertical directions,

but it does suggest a power law scaling of z∗c ∼ t∗0.71 and y∗c ∼ t∗0.71 as in the

experiment for large t∗.
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Figure F.1: Comparison of the starting vortex between the simulation and experi-
ment (Case A, (Whalley and Choi, 2012)) for (a) momentum and (b) vortex centre
movement.
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Appendix G

Validation of the VLSMs

definition

The streamwise velocity fluctuation, u′ at y+ = 15 for Reτ = 1600 is decomposed

into the large and the small scale components using both the spectra filter definition

in equation (7.2) and the Hilbert-Huang empirical decomposition used by Agostini

and Leschziner (2014), and the instantaneous snapshots are shown in figure G.1(a)

and G.1(b), respectively. The large scale component from the Fourier spectra filter is

very similar to the one obtained from the Hilbert-Huang empirical decomposition,

except that the latter is more noisy due to the surface fitting and the iteration

precess.

(a) (b)

Figure G.1: Streamwise velocity fluctuation, u′ contour at y+ = 15, Reτ = 1600
with the large scales (contour lines) identified by (a) Fourier spectra filter (equation
(7.2)), and (b) residual field of Hilbert-Huang empirical decomposition.

The decomposed streamwise velocity fluctuation profile, u′ over the whole

half channel height is calculated at Reτ = 800 and compared between the Fourier

spectra filter and the Hilbert-Huang empirical decomposition, shown in figure G.2.

A good match between the large scale component profiles is observed. The small

scale component decomposed from Hilbert-Huang empirical decomposition is higher
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than the one obtained from the spectra filter decomposition. This might be due to

the fact that Hilbert-Huang empirical decomposition does not perfectly guarantee

the orthogonal among the decomposed modes and also the slightly higher Reynolds

number data studied by Agostini and Leschziner (2014).

100 101 1020

2

4

6

8

y+

u
+
2
,U

+
2

L
,U

+
2

S
u+2

U+2

L

U+2

S

Figure G.2: Comparison of the decomposed streamwise velocity fluctuation profiles
between Fourier spectra filter at Reτ = 800 and Hilbert-Huang empirical decompo-
sition at Reτ = 1000 (Agostini and Leschziner, 2014).
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Appendix H

Uncertainty quantification for

VLSMs statistics
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ω+ = 0.09, κ+
x = 0.008

Figure H.1: Typical time history of Cf , with the wall shear stress sampling window
indicated by red segment lines.

The instantaneous top and bottom wall shear stress snapshots are saved

every 20 steps (∆t+ = 4) for 10800 time steps after t+ ≈ 10000. The sampling

window is indicated by red segment lines in figure H.1. 1080 snapshots are saved in

total for each case. The wall shear stress and its conditioned properties are tested

in table H.1 for four typical cases at Reτ = 800. The relative error is estimated by

comparing the results obtained from 540 samples and 1080 samples. This error is

generally around 1 ∼ 3%. For large scale component, the fluctuation is higher, and

the error occasionally reaches 10%, for example for τ ′2w,L. Since the study in chapter
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7 is mainly on the patterns in the DR maps, the maximum 10% relative error does

not affect the conclusion drew. In figure H.2, we reproduce figures 7.22(b), 7.26(a)

and 7.26(d) in chapter 7 with only 540 snapshots, and no obvious difference in the

map pattern can be seen. This is the case for all the other maps studied in chapter

7.

Table H.1: Wall shear stress statistics from different sample lengths.

Samples
τ ′2w

(×10−6)

τ ′2w,L

(×10−6)

τ ′2w,S

(×10−6)

τ ′2w,P

(×10−6)

τ ′2w,N

(×10−6)

τw
(×10−3)

τw,P

(×10−3)

τw,N

(×10−3)

NC†

540 1.148 0.184 0.973 1.406 0.622 2.628 3.176 2.095
1080 1.162 0.186 0.986 1.396 0.621 2.614 3.159 2.096

Error(%) 1.2 1.1 1.2 0.7 0.2 0.5 0.6 0.0

OC†

540 0.374 0.133 0.247 0.475 0.103 1.960 2.456 1.536
1080 0.357 0.122 0.242 0.471 0.101 1.944 2.430 1.530

Error(%) 4.6 9.0 2.3 0.9 2.4 0.8 1.1 0.4

SW†

540 0.126 0.031 0.099 0.194 0.041 1.585 1.831 1.379
1080 0.137 0.034 0.106 0.204 0.044 1.608 1.859 1.394

Error(%) 7.9 10.0 6.6 4.6 4.9 1.5 1.5 1.0

ST†

540 0.102 0.029 0.076 0.143 0.035 1.586 1.836 1.384
1080 0.098 0.026 0.074 0.139 0.035 1.585 1.827 1.388

Error(%) 4.2 10.1 2.0 2.7 1.5 0.1 0.5 0.3

†: NC - ω+ = 0.0, κ+x = 0.0; OC - ω+ = 0.06, κ+x = 0.0; SW - ω+ = 0.0,
κ+x = 0.008; ST - ω+ = 0.03, κ+x = 0.016.
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Figure H.2: Reproducing (a) figure 7.22(b); (b) figure 7.26(a) and (c) figure 7.26(d)
using 540 sampling snapshots.
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Appendix I

Derivation of FIK for each wave

component

The FIK identity for channel flow is as below (Fukagata et al., 2002),

Cf =
6

Re
+ 6

∫ 1

0
(1− y)(−u′v′)dy, (I.1)

where the overbar indicates time average. The Reynolds shear stress can be written

in terms of its density spectra tensor Φu′v′(kx, kz) in Fourier space as below,

−u′v′ = −
∫ ∞

0

∫ ∞

0
Φu′v′(kx, kz) dkx dkz. (I.2)

Plug equation I.2 into equation I.1, the skin-friction coefficient Cf can be expressed

in wave component form,

Cf =
6

Re
+ 6

∫ 1

0

∫ ∞

0

∫ ∞

0
(y − 1)Φu′v′(kx, kz) dkx dkz dy. (I.3)

Thus a new density spectra tensor Φτwτw can be defined for the mean wall shear

stress,

Φτwτw = 6

∫ 1

0
(y − 1)Φu′v′(kx, kz) dy. (I.4)

And the turbulent contribution to mean wall shear stress, τw,t can be written in

wave component form as below,

τw,t =

∫ ∞

0

∫ ∞

0
Φτwτw dkx dkz. (I.5)
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J. C. del Álamo and J. Jiménez. Estimation of turbulent convection velocities and

corrections to Taylor’s approximation. J. Fluid Mech., 640:5–26, 2009.
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R. Garćıa-Mayoral and J. Jiménez. Hydrodynamics stability and breakdown of the

viscous regime over riblets. J. Fluid Mech., 678:317–347, 2011a.
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