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Abstract

During the past decade, there has been a great interest in creating mathematical
models to describe the properties of connectivity in the human brain. One of the estab-
lished tools to describe these interactions among regions of the brain is graph theory. How-
ever, graph theoretical methods were mainly designed for the analysis of single network
which is problematic for neuroscientists wishing to study groups of subjects. Specifically,
studies using the Rich Club (RC) graph measure require cumbersome methods to make
statistical inferences. In the first part of this work, we propose a framework to analyse
the inter-subject variability in Rich Club organisation. The proposed framework is used to
identify the changes in RC coefficient and RC organisation in patients with schizophrenia
relative to healthy control. We follow this work by proposing a novel method, named Rich
Block (RB), which is a combination of the tradition Rich Club and Stochastic Block Models
(SBM). We show that using RBs can not only facilitate a inter-subject statistical inference,
it can also account for differences in profile of connectivity, and control for subject-level
covariates. We validate the Rich Block approach by simulating networks of different size
and structure. We find that RB accurately estimates RC coefficients and RC organisations,
specifically, in network with large number of nodes and blocks. With real data we use RB
to identify changes in coefficient and organisation of highly connected sub-graphs of hub
blocks in schizophrenia. In the final portion of this work, we examine the methods used
to define each edge in networks formed from resting-state functional magnetic resonance
imaging (rs-fMRI). The standard approach in rs-fMRI is to divide the brain into regions,
extract time series, and compute the temporal correlation between each region. These cor-
relations are assumed to follow standard results, when in fact serial autocorrelation in the
time series can corrupt these results. While some authors have proposed corrections to ac-
count for autocorrelation, they are poorly documented and always assume homogeneity of
autocorrelation over brain regions. Thus we propose a method to account for bias in inter-
region correlation estimates due to autocorrelation. We develop an exact method and an
approximate, more computationally efficient method that adjusts for the sampling variabil-
ity in the correlation coefficient. We use inter-subject scrambled real-data to validate the
proposed methods under a null setting, and intact real-data to examine the impact of our
method on graph theoretical measures. We find that the standard methods fail to practically
correct the sensitivity and specificity level due to over-simplifying the temporal structure of
BOLD time series, while even our approximate method is substantially more accurate.
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Chapter 1

Introduction

When observing advances in biology, one could argue that modern neuroscience was ignited

by a series of investigations conducted by Santiago Ramon y Cajal in the late 19th Century.

Upon analysing thousands of microscopic samples gathered from bird cerebellum and adult

vertebrate nervous system, Cajal found that neurons tend to interact with each other via

a contiguous process (Swanson and Lichtman, 2016). At the time, this contradicted the

conventional way of treating brain circuitry as a continuous collection of neurons.

Interestingly, long before Cajal’s findings, there were reports that suggested the

presence of interaction between distinct brain cortex areas and functions. Such relation-

ships were confirmed several years later after a revolution in neuroimaging technologies.

Functional localisation of brain activities unveiled that hundreds of thousands of neurons in

a spatially constrained area are involved in a task (e.g. motor process) and can be seen as

the inception of the notion of segregation in the brain (Edelman, 1987). However, further

examination of brain functions, such as attentional mechanisms, showed that carrying out a

single task involves several spatially distributed brain areas, which facilitate the functional

task through a mediation between them (Edelman, 1993). The aforementioned findings sug-

gest that function of the human brain is built upon a simultaneous coexistence of anatomical

segregation and functional integration.

Emergence of new interdisciplinary fields, such as complex system sciences, has

motivated neuroscientists to establish a computational framework combining Cajal’s doc-

trine and the segregated/integrated nature of the human brain. Proposing ‘Neural Com-

plexity’ was one of the earliest attempts to formulate the coexisting anatomical dependence

(segregation) and functional independence (integration) (Tononi et al., 1994). Neural Com-

plexity uses Information Theoretical techniques to quantify the presence of the complexity

in the vertebrate brain, by capturing the interplay between segregation and integration of

function and structure. It concludes that the human brain is a complex system due to pres-
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ence of a balance between these two tendencies. Neural Complexity, later, was elaborated

to a more sophisticated quantification tool, called Integrated Information Theory, which at-

tempts to explain the mind-body problem and eventually the hard problem of consciousness

(Harnad, 1994).

Despite graph theory being a relatively old branch of mathematics, it is not until

long ago that it was recognised as a powerful tool for modelling system complexities. It

represents agents of a system as nodes and interaction between them as edges. Despite its

apparent simplicity, graph theory showed that it is able to model extremely complex systems

such as, human social behaviour (Fararo and Sunshine, 1964; Klovdahl et al., 1994; New-

man, 2001). Mammalian brains are also not an exception as being one of the most complex

yet unknown natural systems. Application of graph theoretical methods has demonstrated

strong evidence in modeling the segregation, integration and eventually complexity of the

brain networks. Presence of segregation has been confirmed by network clustering tech-

niques, which suggest that the brain networks follow a modular and hierarchical topological

structure (Meunier et al., 2010). Also, the presence of relatively short fiber tracts, which

mediates the brain regions, confirms the integrative nature of the human brain (Sporns et al.,

2004). Modular structures, which are connected via short paths, confirm the constant bat-

tle between segregation and integration and, analogous to Neural Complexity, suggest the

presence of the ‘small-world’ phenomenon within the human brain (Bassett and Bullmore,

2006).

Throughout the last decade, advancements in field of graph theory have gone far

beyond deterministic measures of segregation, integration and complexity. Today, examina-

tion of the latent structures within a network, by using stochastic graph theoretical methods,

can unveil extensive amounts of information about current network states, as well as future

(generative) network behaviour (Karrer and Newman, 2011). Therefore, it is important to

maintain a sturdy bridge between the fields of graph theory and neuroscience, aiming to

maximise discoveries that can be delivered by computational brain modelling.

1.1 Thesis Objectives and Organisation

The primary aim of this thesis is to contribute to bridging the two disciplines by firstly,

showing that graph theory is able to deliver valuable information about the structure and

function of the human brain and therefore can be used as a plausible bio-marker to detect

the alteration in the brains of patients with neuro-psychiatric disorders. Secondly, demon-

strating that newly-proposed stochastic block modelling methods can be used to gain a

better insight into the topological features of the human brain. Thirdly, translating the

well-established deterministic graph theoretical metrics into the stochastic block modelling
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domain aiming to empower the application of graph theory for understanding complex phe-

nomena. Fourthly, tackling the current challenges in constructing brain networks by elimi-

nating the nuisance variances by estimating the effect of correlated noises that exist in time

series of brain functional activities.

In chapter 2, we begin by giving a brief description of brain imaging methods,

specifically, Functional Magnetic Resonance Imaging. This is followed by a short history

and summary of network sciences. Eventually, we give a summary about combination of

these two disciplines which is known as ’connectome’. Graph theoretical methods that are

mentioned in this chapter are cross-referenced to a deeper theoretical discussion throughout

the thesis.

In chapter 3, we demonstrate how the fundamental understanding of the human

brain can be examined by graph theoretical measures. Additionally, we investigate how

more sophisticated metrics can help us to gaine a better understanding of human brain

function. Ultimately, we illustrate how graph theory can be considered as a bio-marker to

detect the alterations in the brain networks of patients with schizophrenia.

In chapter 4, a newly proposed Stochastic Block Model is used to investigate how

this graph theoretical method can be used to describe topological properties of brain func-

tional connectivity. Additionally, we introduce a novel method, Rich Block, to detect highly

connected network cores. This method is an interpretation of the traditional Rich Club with

the use of Stochastic Block Models. We also introduce a framework to conduct multi-

subject statistical inference between patient and healthy control groups. Further to Rich

Block, we also propose Degree Exceptionality which can be used to detect the hubs as well

as their alterations during the disease. These methods are applied to the functional con-

nectivity of Schizophrenic patients to demonstrate how they can be used as bio-markers to

track alterations during the disease.

In chapter 5, we investigate how correlated noise can affect the functional connec-

tivity maps and, consequently, topological description of the human brain. We focus on

addressing the dependencies between BOLD signal data-points, due to the presence of au-

tocorrelation effects in BOLD signals. We show that the effect of this specific category

of noise on the human cortex is rather heterogeneous. To mitigate this effect we propose

a novel technique to estimate the nuisance variance of correlation coefficients, called the

Heterogeneous Bivariate Correction Factor (HetBiv-correction). We demonstrate how this

technique out-performs existing methods in correcting for the effects of autocorrelation.

In addition, we show how HetBiv-correction can be helpful in revealing the topological

features of functional connectivity maps.

In conclusion, in chapter 6, we summarise the findings of this work and argue that

network neuroscience is, not the only, but one of the more credible methods of describing
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the function of the human brain. However, as a young interdisciplinary field, it is sub-

jected to several challenges and limitations and employing it requires careful and rigorous

analysis.

1.2 Main Contributions

In this work, we make a number of contribution to the field of network neuroscience:

• Incentivised by lack of statistical techniques to conduct group inference between the

Rich Club configuration of functional connectome across subjects, we proposed a

statistical framework, which accounts for within group variability in the analysis of

traditional Rich Club configuration. This novel approach differentiates between Rich

Club coefficients and Rich Club organisation to maximise the detection power be-

tween two groups. We used a previously published data set with a new brain par-

cellation scheme to demonstrate how this technique can be used to fill in the gaps of

between-group inference in the detection of changes in patients with schizophrenia.

The methods proposed help the network neuroscientists to conduct group inference

between the RC organisation and coefficients of the healthy and patient groups.

• As the Rich Club techniques are known to be highly sensitive to the degree of nodes,

we combined a traditional Rich Club detection technique with SBMs. This combina-

tion, named Rich Block, can be seen as a complimentary method to SBMs as long as

they assume that the probability that a node makes a connection follows a Bernoulli

distribution. In addition to accounting for high degree centrality in the formation of

‘clubs’, Rich Block also differentiates between nodes of a club which has the same

degree centrality but different profile of connectivity.

• In addition to accounting for the profile of connectivity, by using a newly proposed

Multi-Subject Stochastic Block Models, Rich Block can also be used to account for

within group variability in both coefficients and the organisation of Rich Blocks and

therefore facilitates the group inference between groups. Using multi-subject SBM

also provides a unique opportunity to account for the effect of nuisance covariates

in between group comparisons. Accounting for the covariates helps researcher in

the community to conduct more reliable hypothesis tests. We apply Rich Blocks to

a group of healthy and schizophrenic subjects and show how the changes in their

network cores can be detected by Rich Block.

• Rich Block organisations should be tested against an appropriate null model to ensure

that they are not merely due to chance. Motivated by the lack of null models in
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the context of SBM, we proposed Tensor Null Models (TNM) which represent a

structure-free expected connectivity rate between estimated blocks. This null model

is independent of empirical network, and therefore, facilitates the statistical inference

between the null RB organisation and the estimated RB organisation.

• Topological properties of the functional connectivity can be drastically influenced by

inevitable temporal confounds, such as correlated noise, which can easily jeopardise

the independency between observations and inflate the sampling variance. Moti-

vated by the lack of methods for mitigating the effect these temporal confounds, we

propose a novel method, named HetBiv-correction, to estimate the sampling vari-

ance of correlation coefficients. By employing the Kolmogrov-Smirnof statistics and

false-positive rates, we validated the proposed method using inter-subject scrambling

method. The results of validation suggest that the HetBiv outperforms, in regards to

both shape of the distribution and tails, the existing methods by estimating a more ac-

curate sampling variance. For instance, in the HCP cohort, the KS statistic was found

to be 0.003 and the false-positive rate of the proposed methods completely overlaps

with both 0.01 and 0.05 α-levels.

• In addition to inflated sampling variance, our investigations suggest that the effect of

temporal confounds is not spatially homogeneous across the brain, and existing ho-

mogeneous approaches may sacrifice the sensitivity and specificity level for a simpler

temporal model. On the contrary, HetBiv-correction estimates this variance for every

connections and therefore accounts for the effect of spatial heterogeneity of temporal

confounds in functional connectivity of the human brain.
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Chapter 2

Background:
From Cajal to Connectome

In this chapter, we briefly discuss the advancement in human brain imaging techniques and

how they can help to gain a better insight about functional and structural configuration of

the human brain. We follow with a brief introduction to graph theory and examples of

how it can be used as a mathematical model to describe natural phenomena. Eventually,

we discuss the emerging field of network neuroscience, which is centered on employing

graph theoretical methods and advancing imaging techniques to deliver a comprehensive

description of the human brain.

2.1 Human Brain Neuroimaging

Non-invasive recording of brain neuronal activities is, undoubtedly, one of the most re-

markable milestones in neuroscience, aiming to understand the function and structure of

the human brain mechanisms. It is now a few decades since the Electroencephalogram

(EEG), as the first non-invasive method of recording brain electrophysiology and function,

helped neuroscientists to monitor human brain activities. Despite the fine-scale temporal

resolution that this recording method provides for investigating the superficial areas of the

brain such as motor or visual systems, it was shown that the majority of human brain activi-

ties happen in deeper parts of the brain, where it is impractical for EEG techniques to reach

them or at least deliver reliable information about them. These limitations encouraged re-

searchers to seek more sophisticated methods of brain structural and functional mapping of

the human brain, through biomedical imaging.

In the late 1980’s and early 1990’s a chain of advancements in non-invasive brain

imaging techniques sparked a revolution in the field of neuroscience. These imaging tech-
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niques ranged from radiation-based imaging techniques, such as Computer Tomography

(CT) and Positron Emission Tomography (PET) scanning, to more advanced imaging meth-

ods, such as Magnetic Resonance Imaging (MRI), which can provide high spatial resolution

images of the function and structure of the brain (Penny et al., 2011).

Functional Magnetic Resonance Imaging (fMRI), which is the main interest of this

thesis, has gained enormous attention since its introduction, in the 1990’s. This biomedi-

cal imaging method works by monitoring the changes in demand for oxygenated blood of

the brain regions. Activation of different brain regions is measured by blood-oxygenation-

level-dependent (BOLD) contrasts. BOLD fMRI signals are typically acquired using an

echo-planar imaging technique (Westbrook and Roth, 2011) which is formed by applying a

Radio Frequency (RF) pulse in the presence of a static magnetic field to selectively excite

and encode magnetisation vectors (Lauterbur, 1973). After a fraction of a second, the exci-

tation is turned off and the reaction of water molecules is recorded in a k-space during their

relaxation phase. Inverse Fourier transformation then translates the acquired information

from the frequency domain to the time domain (Westbrook and Roth, 2011). This proce-

dure is repeated over a specific period of time to record the dynamics of the brain activities.

This procedure results in a BOLD signal representing functional activation of a small iso-

morphic cubical (normally 23mm) volume of the brain called a voxel. It is worth noting that

BOLD signals are not direct measures of the brain functional activities but, rather, a repre-

sentation of its neurovascular coupling into hemodynamic changes (Roche and Commins,

2009).

Although until the early 1990s, fMRI was mainly used as a tool to measure task-

dependent activations of the brain, an extraordinary finding reshaped the research on the

function of the brain. In 1995, Biswal et al. (1995) discovered that task-free brain scans

also demonstrate a level of activation in certain frequency bands which is called resting-

state brain (Raichle and Snyder, 2007). They argued that the majority of the brain regions

are constantly active in a frequency band of 0.01− 0.1HZ, which later led to the realisation

that the brain energy level increase by only ≈ 5% (Raichle and Snyder, 2007) during a task.

The introduction of resting-state brain imaging facilitated the discovery of a range of brain

functional networks (RSNs) such as the Saliency Network (Fox et al., 2005) and most im-

portantly the Default Mode Network (DMN) (Sheline et al., 2009), which is known to be

active when a subject is awake, but not performing any specific task. The groundbreaking

realisation about RSNs roots, down to the fact that the anatomical regions, which are in-

volved in RSNs, are spatially spread around the brain whilst consistently acting together.

To date, neuroscientists have discovered more than 7 well-established RSNs, as well as 17

sub-networks from a Visual and Somatomor network to a Frontoparietal and Limbic net-

work (Yeo et al., 2011). It is also worth noting that despite the reproducible and meaningful

7



evidence of a resting-state brain, the physiological meaning of a resting-state brain is still

the subject of an ongoing debate since there are studies, which show that resting-state os-

cillations may have been caused by cardiac (Birn et al., 2006) and respiratory oscillations

(Chang and Glover, 2009).

Acquired BOLD signals, in the time of scanning, are far from being ready to be

considered as a reliable description of brain activities and require undertaking a number of

pre-processing steps to remove the variances that may have been merely caused by noise

and which confound during the scan. The pre-processing steps can be summarised in five

stages.

Slice timing correction: fMRI scans are a collection of 3D snap-shots of the brain

for each time-point over the scanning session. Each of the 3D images is reconstructed from

a number of 2D slices, however, the timing between these slices may differ between subjects

and scan sessions. Slice timing correction aims to temporally align these slices between all

subjects (Henson et al., 1999).

Motion Correction: Acquiring each 3D image may take up to a couple of seconds;

during this time even a smallest head movement can cause propagative disturbance in the

analysis of functional MR images (Van Dijk et al., 2012). Regardless of how a subject

can manage to stay still inside the scanner, physiological functions, such as cardiac and

respiratory processes, can cause movements between slices, which makes it vital to cor-

rect the spatial mis-alignment between the slices. This effect is typically eliminated by a

method called Rigid Body Realignment (RBR) (Ashburner et al., 2003). Further to the tra-

ditional method of correcting the head movement, there are several complimentary methods

for motion correction such as motion scrubbing (Power et al., 2014) FMRIB’s ICA-based

Xnoiseifier (FIX) 1 (Salimi-Khorshidi et al., 2014) and spike wavelet analysis (Patel et al.,

2014).

Registration: After spatial alignment, each subject’s scan remains in its own scanner

coordinate space, however, it is important to transform all the scans into the same, standard,

coordinate space. Therefore, registration is performed to transform all images to a standard

space (Penny et al., 2011). Further to global alignment, it also helps to remove the anatom-

ical difference between subjects such as differences in size and surface of the brain. One of

the widely-established examples of standard spaces, which we use throughout this thesis,

is formed by averaging anatomical scans of 152 subjects. This standard template is called

MNI-152 (which stands for Montreal Neurological Institute) (Collins et al., 1995).

Spatial and Temporal Smoothing: These two classes of smoothing are used to im-

prove the signal-to-noise ratio (SNR) and, therefore, the sensitivity in later statistical in-

ference. Spatial smoothing is performed by applying a 3D Gaussian kernel to the images

1The term FMRIB is short for Centre for Functional Magnetic Resonance Imaging of The Brain

8



(Penny et al., 2011). However, the choice of bandwidth of this kernel is crucial as the

choice of large bandwidths can blur the image whereas small bandwidths may not be effec-

tive Wang et al. (2005). Further to spatial smoothing, temporal smoothing was also shown

to improve the data quality. Although it is recommended to only apply high-pass filter-

ing and avoid low-pass filtering as there is evidence that information relies on the lower

frequencies (Van Essen et al., 2012).

For extended
discussion
about effect
of GSR; see
chapter 5

Global Signal Regression (GSR): GSR is, undoubtedly, one of the most contro-

versial topics in fMRI pre-processing. In 2009, GSR seemed to be an intuitive way of

removing the effect of natural processes such as cardiac and respiratory functions as well as

nuisances caused by white matter and CSF in the BOLD signal (Fox et al., 2009). However,

not long after the initial proposal, it was shown that regressing the global signal might re-

move physiologically meaningful information (Murphy et al., 2009). As GSR is currently

a subject of ongoing debate, it is normally advised to report the results for both cases with

and without GSR. Moreover, recently, several other methods have been proposed to remove

nuisance variances without removing the meaningful physiological information (Carbonell

et al., 2011; Behzadi et al., 2007).

Although this work is centred on fMRI, MRI capabilities are far beyond merely

functional imaging. One of the well-known methods for structural imaging of the hu-

man brain is diffusion-weighted MRI (DWI), which produces contrast in MR images based

on random motion of the water molecules, or as conventionally named Brownian Motion

(Westbrook and Roth, 2011). This technique facilitates the monitoring of the diffusion of

water molecules and consequently detecting the anatomical features of the brain tissues.

Today, a special form of DWI, Diffusion Tensor Imaging (DTI), is widely used to detect the

axonal fibre tracts within the white matter of the human brain. Other techniques for struc-

tural imaging such as conventional (T1 and T2 weighted) images of the human brain also

revealed useful information about brain lesions, as well as more sophisticated information

on grey matter structure such as cortical thickness. For a detailed discussion about DTI

techniques see (Hagmann et al., 2006).

2.2 Complex Networks

In its simplest form, a network is a collection of dots and lines joined together to model

a phenomenon. In mathematics, a collection of these joined dots and lines is also called

graph and the area of studying the interaction between these entities is a comprehensive

branch of mathematics called graph theory. In graph theory terminology, each of the dots

is commonly called a node or a vertex, and each of the lines representing the interaction

between nodes is called an edge (Newman, 2002).
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The term ’graph’ was first coined by Sylvester in a paper published in the Ameri-

can Journal of Mathematics in 1878 titled On an application of the new atomic theory to

the graphical representation of the invariants and covariants of binary quantics (Sylvester,

1878). However, the notion of representing the entities of a system with nodes and edges

travels back to a century before Sylvester’s paper, in 1736, where Leonhard Euler, a Swiss

mathematician, was trying to solve the then famous Königsberg bridge problem. The prob-

lem was about how one can cross all seven bridges in Königsberg without crossing a bridge

more than once. Euler formulated the problem as a collection of nodes (shores) and bridges

(edges) and found that such a path is impossible (Euler, 1741). His finding was formulated

later as the first theorem in graph theory, which was named after himself. An Euler path

crosses all the nodes without visiting any edges twice.

Since Euler’s time, graph theory has been well established in the modelling of em-

pirical data in different branches of science and technology. One of the many example of

this exploitation is power grid networks, which are networks of high-voltage transmission

lines that provide long-distance transport of electrical power within and between countries

(Dobson et al., 2007). In a power grid network, generating stations and electrical dispatches

are analogues to nodes, while transmission lines are represented by edges. Although, ab-

stracting the large-scale power grid to a collection of nodes and edges may seem to be over-

simplifying a system with such a scale of complexity, this model can carry extraordinarily

complicated information such as the flow of electricity in each submission line in addition

to the capacity of each generating/dispatch post which varies across regions. One common

incident that can be examined by a power grid network is cascade failure of transmission

lines, which happens when a failing power line en-routes its electricity flow to other power

posts and cause them to overflow and, consequently, fail too. This effect can be propagated

in the system and cause major failure in power transmission system. Beside monitoring

the network resilience in power grid networks, it also aid the authorities to have a better

insight of the network topology which is the configuration of nodes and edges regardless of

geography.

A more sophisticated example of applying graph theory to empirical networks is

social networks, where graph theory attempts to deliver a comprehensible representation

of highly complicated human behaviours. Among different disciplines, social sciences, un-

doubtedly, had the largest contribution to the field of network sciences. This contribution

ignited in 1933 with Jacob Moreno, a Romanian social scientist, presented a network of re-

lationships between individuals attending a conference taking place in New York (Moreno,

1934). His work was featured in the New York Times (see Figure 2.1) shortly after his

presentation and drew the attention of other researchers to regard graph theory as a viable

tool to model individual-to-individual interactions. In social networks, nodes are people,
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or occasionally groups of people, and edges represent relationships between them (Bernard

et al., 1991). However, the definition of a ‘relationship’ between individuals may range

from merely being in the same school to being friends, which can be determined by mea-

suring amount of time two people spend together over a short period of time.

A B

Figure 2.1: A. Headline of the NYT report regarding the Moreno’s presentation (Courtesy of The
New York Times). B. Network of blog-to-blog interaction in 2004 US election. Red nodes represent
pro-democrat blogs and blue nodes represent pro-republican blogs. Reproduced from Adamic and
Glance (2005)

Thirty years after Moreno’s presentation, in 1963, Stanley Milgram, an experimen-

tal psychologist, made an extraordinary contribution to the field by introducing a concept

called six degree of separation2 (Milgram, 1967). He was interested in measuring how

many steps (later coined as geodesic distance) it takes someone to reach another randomly

selected, unknown individual. He posted packages to 96 randomly chosen individuals in

Omaha, Nebraska. Packages contained a fake Harvard passport, his home institution, and a

note asking the recipient to re-send the package to the target individual. The target individ-

ual was one of the Milgram’s friends based in Boston. The recipients were informed with

full name and postal address of Milgram’s friend however, they weren’t allowed to directly

post the package to him, but to post the package to one of their close friends. The next

recipients were asked to record the sender and receiver in the package and repeat the pro-

cess until the package reach Milgram’s friend in Boston. One sixth of the packages finally

found their way to Milgram’s friend; which, by considering the distance and the randomly

selected candidates, was a remarkably high number. Milgram then examined the path that

each of the packages travelled to get to his friend and concluded that a distance between

2This term was not used by Milgram in his original paper. It was coined after a play at Broadway titled ‘six
degree of sepration’ inspired by Milgram’s experiment.
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two randomly chosen people is approximately six people. Another striking observation

about Milgram’s experiment is that although the recipients belonged to tight communities

in remote areas of Omaha, they nonetheless found their way to the Milgram’s friend in

Boston. Six degree of separation was later formulated mathematically as the small-word

phenomenon (Watts and Strogatz, 1998) in networks, where each node belongs to a segre-

gated community (Omaha vs. Boston), but there are still some shortcuts which guarantee a

relatively short geodesic distance between each pair of nodes. Although his conclusion is

based on a small number of people and there are controversies about his candidates’ selec-

tion criteria, it still motivated other researchers, as well as himself, to continue his work on

finding the average shortest path length between nodes of a extraordinarily large network

(Bernard et al., 1988; Kleinberg, 2000).

For technical
discussion of
measuring
level of
segregation
see section
3.1.4

For technical
discussion of
measuring
level of
integration
see section
3.1.3

Although the study of social networks initially started by Moreno, it was not lim-

ited to Milgram’s experiment or the small-world phenomenon. Today, thanks to the Internet,

social networks can be studied over extraordinarily large scales with fewer prefixed assump-

tions. Nowadays, graph theoretical methods are not only practical tools to investigate one

of the most complicated within-species interactions, they are also a plausible mathematical

model to tackle challenges such as organised crimes (Krebs, 2002) and human trafficking

(Milward and Raab, 2002).

Since 1736, there have been enormous advancements in the field of graph the-

ory. These advancements go beyond the application of conventional methods to empirical

networks to modelling the behaviour of latent structures hidden in a network by random

graphs. The first random graph that aimed to model real-life phenomena was introduced

by Erdös and Rényi (1959) and independently by Solomonoff and Rapoport (1951). Later,

this model was named after these two Hungarian mathematicians. The Erdős-Rényi ran-

dom graph model (ER) works under the assumption that all nodes of a network have equal

probabilities to be connected. This assumption leads to an approximation of a Poisson de-

gree distribution3. This model has been the most widely studied network model since its

introduction. However, recent findings demonstrate that it fails to completely replicate the

structure of the real-life networks. For example, ER models fail to model the structures

which are present in natural systems and, therefore, it can not capture the effect of hubs

within a network (Albert and Barabási, 2002).

For technical
description of
Small-World
phenomenon;
see section
3.1.6

Decades after the ER model was introduced, in 1998, Watts and Strogratz intro-

duced a model for ‘small-world’ networks (SW) based on Milgram’s six degree of separa-

tion model (Watts and Strogatz, 1998). SW models capture the reconciliation of simultane-

ous segregation and integration of connectivity profiles within a network, which was shown

to be the case in several natural phenomena such as affinity groups, seismic networks etc.

3For detailed description of this degree distribution please see section 4.1.1
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The degree distribution of SW models sits between a Dirac Delta function (a perfect lattice

or regular network) and a Poisson distribution (ER model). Networks with SW structures

are more likely to exhibit a collection of highly connected nodes, which facilitate the inte-

gration between segregated sub-networks. In some special cases, these hubs tend to exhibit

significant connectivities to each other. Such tightly connected sub-networks of hubs have

conventionally been referred to as a Rich Club (Colizza et al., 2006a). Figure 2.3 illustrates

a modular structure and Rich Club organisations on synthetic networks.

For technical
description of
Rich Club
organisation;
see section
3.1.9

The SW model

was introduced with the aim of modelling the evolution of rewiring between nodes within

a network with a fixed number of nodes, and it cannot be considered as a generative model.

Moreover, the degree distribution of the SW model is not as homogeneous as the ER model,

it still fails to model networks with highly connected nodes (e.g. the Internet, an aviation

network).

A year after the Watts-Strogats model, Barabasi and Albert introduced a generative

model for networks (BA) (Barabási et al., 2009). Degree distribution of BA networks fol-

lows a power-law, where a large majority of the nodes have a small number of connections,

but very few of the remaining nodes enjoy an extremely large number of connections. The

BA model also predicts that the new attachments of preferential nodes are more likely to

happen to those highly connected nodes rather than nodes with a lower rate of connectivity.

In graph theory terminology, this effect is commonly referred to as ‘richer gets richer’ or a

‘cumulative advantage’. However, the BA model fails to account for segregation that exists

in real-life networks such as a group of friends in a social network. Figure 2.2 shows the

topological features of these models by synthetic networks.

The aforementioned drawbacks that are common in representing networks using

conventional graph theory models motivated network scientists to investigate a more gener-

alised form of random graphs. The ER model emerged from a simple model that considers

all nodes to have an equal probability of forming connection, to a sophisticated stochastic

model which divides the network into several subsets and allow each subset to have a dif-

ferent rate of connection, however, it still assumes that each of these subsets still follows a

certain distribution (Fienberg and Wasserman, 1981). This class of modelling with random

graphs, which is known as the Stochastic Block Models (SBM), uses mixture models and an

unknown latent variable to estimate the degree distribution of empirical networks. SBMs

were shown to be a prominent set of tools for modelling network behaviour, however, they

are not free of limitations. One of the fundamental issues in SBMs is the need to find an

optimal number of subsets that a network can be divided into.

For a
technical
description of
Stochastic
Block
Models; see
section 4.1.1

Although, Daudin et al.

(2004) introduced an autonomous method to obtain the optimal number of blocks for a cer-

tain type of SBMs, it still remains an open question for more general applications. SBMs

also suffer from computational inefficiency since finding the best fit to a degree distribution
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requires testing the all permutations of the random network. Bayesian (Bernardo et al.,

2003) and frequentist (Jaakkola, 2001) variational methods, as well as other methods based

on heuristic search (Olhede and Wolfe, 2014), were shown to be useful in order to rectify

the computational burden, but they are still far behind the simpler modelling methods, in

terms of computational feasibility.

A B C

D

Figure 2.2: A. a lattice network with Dirac Delta degree distribution B. a smallworld network (SW
model). C. a random network with Poisson degree distribution (ER model) D. a Scale-Free network
with power-law degree distribution (BA model). Reproduced from Watts and Strogatz (1998) and
Barabási et al. (2009).

Applications of Graph theory are not merely limited to modelling real-life phenom-

ena. For instance, it was recently shown that graph theory can also be useful when inte-

grating different types and, consequently, facilitate the statistical inference between them.

One of the well-known examples is multilayer networks (Kivelä et al., 2014). Multilayer

networks are not a new concept in the field of network science, as they were introduced

in late 90’s. For example, Carven and Wellman (Craven and Wellman, 1973) introduced

’networks of networks’ and few years later, in 1987, David Krackhardt (Krackhardt, 1987)

demonstrated their application in social networks. However, it is only recently that they

have been drawing an enormous amount of attention and have been used to integrate in-

formation in several fields of research, such as the modelling of air traffic (Monechi et al.,

2015), rather than social sciences. Multilayer networks can be interpreted within a variety
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of contexts. For example, in a temporal context, each layer can be a representation of a

snap-shot of an event, where the nodes of layer are repetitive across layers, whereas edge

dynamics tend to be different from one layer to another. In a spatial context, multilayer

networks can represent different versions of interaction between nodes regardless of their

chronological orders. Nevertheless, such networks are not free of flaws since the depen-

dencies and coupling between the layers, which are vital for determining model structure,

are still unknown. However, recent efforts have been made to combine Multilayer Net-

works and Stochastic Block Models for investigating the dynamics of network structures

(Valles-Catala et al., 2016; Pavlovic et al., 2015).

Figure 2.3: Cartoon presentation of a small-world network, with modular structure and a strongly
connected core which mediates the modules. Reproduced from Bullmore and Sporns (2012a)

2.3 Network Neuroscience

Within the past two decades, studying the coupling between the function and structure of

complex systems has been the focus of several mathematical and engineering disciplines.

Examples of such a complex systems can range from human socio-behaviour systems to

patterns of spreading rumors and disease. The brain is, also, one such complex system

which, despite the enormous advancements in field of neuroscience, has not been fully un-

derstood in terms of its structural and functional coupling. Since graph theory was shown

to be useful in formulating this relationship, neuroscientists have employed this branch of

mathematics to model the connections within the human brain. A wide range of imaging

techniques that aim to capture the function and structure of the brain also help neuroscien-

tists gain a better insight regarding temporal and spatial characteristics of the human brain.

The first attempts at using network sciences as a theoretical tool to examine the connec-

tivity of the human brain date back to the 90s by (Watts and Strogatz, 1998; Young et al.,

1992; Felleman and Van Essen, 1991; Bressler and Ding, 1999). However, describing hu-

man brain connectivity as a collection of nodes and edges was coined as connectomics in

15



a paper by Sporns, Tononi and Kotter titled The Human Connectome: A Structural De-

scription of the Human Brain (Sporns et al., 2005). Sporns et al argue that describing brain

connectivity can be done in three hierarchical spatial levels: micro, meso and macro scales.

Sporns et al 2005 published NIH awarded$30m toHuman
Connectome Project
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Figure 2.4: Google Trends representing the interest in the topic ’connectome’ over a period of 12
years (Jan 2004 - Aug 2016). Spikes (shocks) in the search trend are marked with a brief description.

2.3.1 Microscale Connectome: Axon Terminals and Dendrites

In the context of this thesis, microscale is the study of human brain structure in its most

finest scale: at the neuron level, by employing electron or light microscopy techniques.

Sporns et. al. argue that this level of description is technically impossible for a human brain

with a high number of neurons and synapses and may also be physiologically unnecessary

as there is evidence that the functional description of human brain activities cannot be boiled

down to a single neuron but to activities of a population of neurons (Stepanyants et al.,

2002). The only attempts to map a brain at such a fine scale is the brain of the Canorhabditis

elegans worm, which was first published in 1988 (Kenyon, 1988) and it was later improved

in 2010 (Félix and Braendle, 2010). The worm’s brain was sliced into several ultrathin

layers and then electron microscopy techniques were used to identify 6,393 tracks between

302 neurons of the worm’s brain. There are several studies about properties of network

architectures of the C.elegans that confirm that the worm’s brain is a complex system, as

it shows a balance between network integration and segregation (Latora and Marchiori,

2001). In addition, it was also shown that the worm’s brain has highly connected nodes and

is consequently a rich club organisation (Towlson et al., 2013).

2.3.2 Mesoscale Connectome: Neurons and Minicolumns

Mesoscale is a higher spatial level of studying the human brain that involves the tracing

of axonal projections with different methods of neuroanatomical marking and the micro-

analysing of cells and tissues of the brain slices. Axonal tracing methods of mescoscale

investigations reveal a subset of a cortical structure called ‘mini-columns’. It was shown

that, in the human brain, the mini-columns normally contain between 80 to 100 neurons
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(Buxhoeveden and Casanova, 2002). Mapping mini-columns is technically infeasible for

the human brain, therefore, studying the mesocale brain is confined to merely mapping scat-

ter regions of the human brain in a very limited number of individuals. However, in 2006,

the Allen Institute for Brain Sciences (ABI) released a unique, publicly available mesoscale

atlas of the mouse brain (Lein et al., 2007). They used a viral strategy to identify the

pathways between different regions of the mouse brain. Each part of the mouse brain was

injected with viruses which express green fluorescent protein when a low magnitude current

passes through them. The viral injection and current passing through the pathways reveals

the minicolumns between different regions (Lein et al., 2007). The mesoscale connectivity

map of the mouse brain is extraordinarily valuable as it is known that the mouse and the

human brain fundamentally share the same cortical structures, particularly in sensory, mo-

tor, emotion and learning/memory system (Lein et al., 2007). ABI also accompanied the

mesoscale connectivity map with a gene co-expression map of the corresponding regions

which helps researchers link the genomic characterisation of the brain with a close-to-reality

map of a brain. Recently published studies about the ABI mouse brain show that it has sim-

ilar topological properties as the C.elegans microscale connectivity map. It has a modular

hierarchical structure where modules are tightly connected to each other via a small number

of nodes that form a Rich Club organisation (Rubinov et al., 2015). Furthermore, another

study suggests that there is a strong link between the pattern of connectivity between ’elite’

nodes of the mouse brain and its corresponding gene co-expression pattern of connectivity

(Fulcher and Fornito, 2016).

2.3.3 Macroscale Connectome: Regions of Interest and Pathways

A Macroscale description of the brain is the highest level of examination of a brain connec-

tivity map. In a macroscale connectome, the brain is divided to several Regions of Interest

(ROIs). Although Sporns and colleagues argue that the connectome is the study of the

structure of the brain, which he believes to be a derivation of function, the term ‘connec-

tome’ widens its wing over all other forms of connectivity maps. Today, the functional

connectome is as popular as structural connectome as it has shown promising evidence of

how the human brain functions. The choice of ROI heavily depends on the modality chosen

to record brain activities. For a brief
discussion
about of
parcellation
schemes; see
section 5.2.3

For example, the natural resolution of macroscale connectome

maps tends to be as large as the number of voxels (≈ 100k nodes), however, it can be dec-

imated to dozens (or hundrands) of nodes according to parcellation schemes. Figure 2.5

illustrates the state of the human brain in macroscale description.
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A

B

Figure 2.5: A. Common procedure for constructing the functional connectome. B. Topological de-
scription of the human brain, suggesting the human connectome is located between three topological
extremes (random, lattice and scale-free). Reproduced from Stam (2014)

These schemes can be derived from prior knowledge of the brain anatomy (anatom-

ical atlas) (Tzourio-Mazoyer et al., 2002) or data-drive techniques (functional atlas) (Yeo

et al., 2011). On the other hand, the choice of ROIs in Electromagnetic imagining meth-

ods (EEG,MEG) is limited by the number of superficial channels (or electrodes) that were

used to record the brain activities (Stam and Reijneveld, 2007). It is also worth noting

that, contrary to other connectome scales which are confined to merely a single brain, the

macroscale connectome provides researchers with a unique opportunity to study brain con-

nectivity maps across different subjects to examine the effect of different covariates on intra-
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subject variabilities.

Analysis of the macroscale functional connectomics of the human brain is one of

the connectome areas which draws the most attention. The formation of edges between each

pair of regions (or channels) is determined by the measure of temporal dependencies, such

as the family of correlation or information theory measures (Smith et al., 2011a). Besides

the temporal dependencies for forming an edge between two nodes, more sophisticated

methods, mostly inspired from economics, help neuroscientists measure the causation be-

tween nodes which results in an directed functional connectome. (Roebroeck et al., 2005)

However, due to computational impracticalities producing directed graphs of the brain is

limited to dozens of nodes at best (Costa et al., 2015).

One of the very first attempts to use graph theory to describe macroscale functional

connecivity maps was done by Stam (2004), who used MEG recordings of five healthy

subjects to examine whether the network of functional connectivity follows a small-world

model. In his network, nodes were defined as 126 MEG channels and edges were defined as

the synchronisation likelihood between all pair-wise combinations of channels. He argued

that in all five MEG frequency bands the connectivity networks demonstrate a small-world

behaviour. The intensity of the phenomenon, however, varies from one bandwidth to an-

other.

Soon after Stam’s paper, several other studies showed consistency across different

modalities such as EEG (Micheloyannis et al., 2006) and fMRI (Ferrarini et al., 2009). To

date, there has been a lot of effort to unveil other graph theoretical features of the func-

tional connectomics. For example, it is well established that the functional connectome has

a hierarchical modular structure (Meunier et al., 2010), which demonstrates a segregated

nature of the human brain, but in the meantime, a small number of hubs, which are also

highly connected to each other, forms a Rich Club (RC) organisation (Van Den Heuvel

and Sporns, 2011). It was shown that the RC organisation acts as a backbone to the func-

tional connectome (van den Heuvel et al., 2012a) and facilitates integration in the brain

(Xu et al., 2010).

For technical
description of
cost-
efficiency;
see section
3.1.7

Furthermore, an extraordinary finding from functional connectomics

shows that the functional connectome is a cost-efficient topology (Vértes et al., 2011; Bas-

sett et al., 2009; Achard and Bullmore, 2007). In other words, it is constrained by a trade-off

between minimisation of wiring cost and topology. Surprisingly, the findings about the hu-

man brain’s macroscale functional connectome are consistent with topological structures

that were reported from other species, over different spatial scales. For example, almost

every connectome study, regardless of the modality or scale, reports a level of complexity

which was raised from a constant battle of integration and segregation tendencies. Addi-

tionally, the realisation that the human brain is cost-efficient in its rewiring strategies is

consistent with Cajal’s paradigm of contiguity (Bullmore and Sporns, 2012a). Recently,
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it was also suggested that the topological features of the human functional connectome,

including cost-efficiency, are heritable (Fornito et al., 2011; Sinclair et al., 2015) .

Figure 2.6: Hagmann et al 2008 description of structural connectome: A. Adjacency matrix of the
structural connectome of healthy brains. B. Topological presentation of nodes configured based on
Kamada-Kawai force-spring layout C. Spatial reconfiguration of figure B with brain region coordi-
nates. Reproduced from Hagmann et al. (2008)

Another branch of studying the macroscale connectome is focusing on a structural

connectivity map the human brain. Analysis of a structural connectome is based on trac-

tography analysis of the brain using diffusion MRI data (Hagmann et al., 2008), see Figure

2.6 for more details. Besides tractography, other methods such as structural co-variance

which is centered on local anatomical features of the human brain, mostly on cortical thick-

ness, were also shown to reveal physiologically important features of the brain topological

configuration (Alexander-Bloch et al., 2013). In structural imaging, a parcellation scheme

determines the nodes of brain networks, whereas, white matter fibres (in the case of tractog-

raphy) or similarity between anatomical features across subjects (in the case of structural

co-variance) determines the edges. In 2008, Patric Hagmann and colleagues (Hagmann

et al., 2008) published the first analysis of the structural connectome in the human brain.

They showed that the structural connectomics of the human brain also demonstrate the fea-

tures consistent across all three spatial levels (micro,meso and macro) of the connectome.

Their careful examination of topological and spatial features of the brain structural network

led them to conclude that the structure-function integration in the human brain is facilitated

through a central core within the human cortex.
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2.3.4 Reproducibility and the dead Salmon

In 2008, a poster presented at the annual meeting of the Human Brain Mapping Organisa-

tion showed that functional images of a dead Salmon fish suggested a level of activations

(Bennett et al., 2009). Although the activation maps of the Salmon’s brain were not cor-

rected for multiple comparison error, an established technique to avoid false positives, but it

highlights how malpractices in statistical analysis of the brain imaging can result in mean-

ingless results.

Despite the ground breaking findings in network neuroscience it is not yet immune

to false findings since it heavily relies on sensitive statistical inferences. There are also

several remarkable controversies about the analysis of the human connectome, which make

it even more vital to note that network neuroscience is still a young interdisciplinary field

which requires exceptional scrutiny in both analysis and interpretation of its results.

The connectome is known to be highly sensitive to pre-processing steps, which are

used from the early stages of acquiring the data from the modalities to form the connectivity

maps. For example different strategies for regressing out the effects of low-frequency phys-

iological confounds, such as cardiac and respiration processes, can introduce large amounts

of negative correlations, however, to date there is no explicit interpretation for the meaning

of anti-correlations between regions of the brain. More importantly, other confounds dur-

ing scanning sessions, such as head movement, can inflate the significant effect in inference

between a healthy and a patient group. For example, it was shown that the differences in

structural connectome of Autistic patients are due to the uncorrected head movement in the

brain, which shows how essential it is to take essential precautionary actions, such as recent

motion correction methods (Power et al., 2014) to address this issue.

For deeper
discussion
about
estimating
the degree of
freedom; see
chapter 5

Recently, it was also shown that the effect of auto-correlated noise in the data re-

markably affects the quality of hypothesis tests due to inflation in degree of freedom caused

by dependencies between the acquired data-points. Recent studies suggest that using het-

erogeneous methods to correct the similarity measures (e.g. correlation coefficients) in

functional connectome. These issues show how vital it is to carefully inspect the results for

different data-sets and under different circumstances. Careful inspection of results ensures

that the findings about the human connectome and its alterations under different neruo-

psychiatric disorders are reproducible enough to be translated to clinical practice in the

future. Reproducibility can only be ensured through repeating the experiments on a large

number of subjects from different acquisition sites which seems to be economically im-

practical. Recent extraordinary efforts under ‘data-sharing’ schemes (Poline et al., 2012)

provide a unique opportunity for researchers to examine the reliability of their findings to

avoid any over-interpretation.
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2.3.5 Summary

In this chapter, we gave a brief background regarding the topics, that will be covered in

more details, throughout this thesis.

• The history of the imaging techniques have been discussed, as well as the different

modalities and the steps required to process the brain activities.

• A brief background regarding the recent advances in network sciences, as a powerful

mathematical tool, has been presented

• Connectome, a new field of describing the human brain by using network sciences,

has been discussed. A brief description of each scale of connectome was presented.

• Finally, challenges in the field were discussed and the possible solution to mitigate

these challenges were mentioned.
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Chapter 3

Topological Changes in a Network of
the Functional Connectivity of the

Human Brain in Schizophrenia

As discussed in 2.2, graph theory has a long-standing history of describing the natural

phenomena including the functional and structural connectivity of the human brain. It was

also shown to be useful in identifying bio-markers aiming to gain a better understanding of

neuro-psychiatric disorders.

One of the most prominent examples of applying network neuroscience methods

to identify changes due to neuro-psychitric disorders is Schizophrenia. Prognosis obtained

from the investigation of functional and structure connectomes of the patients diagnosed

with the disorder suggest a high level of ’dys-connectivity’ across the brain, as well as the

less prominent role of hubs (Wang et al., 2010; Lynall et al., 2010; Bassett et al., 2010).

The term ’dys’ in the beginning of the the word connectivity refers to abnormalities (either

decrease or increase) in connectivity between brain regions (Stephan et al., 2006; van den

Heuvel and Fornito, 2014).

Previous examination of the structural connectome of patients with Schizophrenia

reveals an increase in the level of segregation (Zalesky et al., 2011; van den Heuvel et al.,

2013a) while showing a decrease in level of integration and global efficiency (Ottet et al.,

2013; Van Den Heuvel and Pol, 2010; Zhang et al., 2012; Zalesky et al., 2011). While, the

structural connectome of the disorder shows a consistency between different modalities and

pre-processing strategies, analysis of the functional connectome suffers from contradictory

results across studies and previous findings from the structural connectome. For example,

the functional connectome in Schizophrenic brain networks shows a reduction in the level

of segregation, but an increase in integration (Alexander-Bloch et al., 2010; Liu et al., 2008;
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Becerril et al., 2011; Lynall et al., 2010). However, there are several other studies which

suggest the opposite (Yu et al., 2013a; Micheloyannis et al., 2006).

In this chapter, we show how graph theoretical methods, such as measures of inte-

gration and segregation, can be used to describe functional relationships between different

regions of the human brain. Furthermore, hoping to gain a better understanding about the

nature of the human brain, we also show how these mathematical methods can be used to

gain a better insight in understanding the effects of Schizophrenia on the functional connec-

tome of the brain. Specifically, motivated by inconsistencies in investigations of the func-

tion connectivity in schizophrenia we use a published schizophrenic cohort (Lynall et al.,

2010) and use a different parcellation scheme to examine how the results are changed. Even-

tually, we propose a novel framework for conducting statistical inference between a Rich

Club organisation for two groups. This framework is useful for studying intra-subject vari-

ability of a Rich Club structure which is commonly ignored by group-averaged networks

due to technical difficulties.

3.1 Methods

In this section, we start with describing the approach used to construct the functional con-

nectome of the healthy and schizophrenic subjects. In addition, we discuss the empiri-

cal graph theoretical measures that help us interpret topological properties of the subjects’

functional connectomes. Throughout this thesis, we frequently use the methods that were

described in this section with appropriate cross-reference.

3.1.1 Constructing Network of Functional Connectivity

To construct the functional connectivity networks, brain scans of each subject were par-

cellated using the AFNI325 atlas into 325 non-overlapping Regions of Interest (ROIs). 28

regions were later discarded due to missing data in some individuals. BOLD timeseries

within each ROI were extracted and averaged. This result in only 297 timeseries per sub-

ject. We then followed the approach proposed by Achard et al. (2006) to form the functional

connectivity using wavelet transformations. Time series were decomposed into wavelets of

four specific frequency intervals: scale 1, 0.125-0.250 Hz; scale 2, 0.060-0.125 Hz; scale 3,

0.030-0.060 Hz; and scale 4, 0.015-0.030 Hz as suggested in Lynall et al. (2010). We then

choose scale 2 which was shown to represent much of the brain functional characteristics

(Lynall et al., 2010). Eventually, correlations were applied between wavelet coefficients of

all possible pairs (Percival and Walden, 2006) which results in a 297×297 adjacency matrix

per subject.
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We use Density Thresholding (DT) to construct functional networks. A network for

each subject is thresholded over a range of densities which starts at 5% and ends at 50%

with increments of 5%. The range of density was selected as below 5% the individuals may

have isolated nodes and above 50% the individual connectomes may demonstrate random-

graph behaviour. In each density step, we only preserve supra-threshold coefficients and

set the rest of the edges to zero. For this chapter, we provide a short description about the

thresholding method as, later in section 5.1.10, we thoroughly discuss different thresholding

methods and their consequences on examining the human connectome.

3.1.2 Network-based statistics

Before starting the investigation of the topological features of the functional networks, it

is essential to examine the changes in the correlation coefficients of edges between healthy

and schizophrenic subjects. Investigating the correlation coefficients between each pair of

nodes helps to avoid an abstract interpretation of the human brain organisation. We use

non-parametric hypothesis testing to identify significant changes in correlation coefficients

of the functional connectome due to schizophrenia. However, conducting an edge-based

mass-univariate testing can be computationally cumbersome and under-powered, since a

network with n nodes requires n(n−1)
2 hypotheses tests. A large number of hypothesis tests

increases the probability of false-positive rates, an effect that is conventionally called Mul-

tiple Comparison Error (MCE) (Nichols and Hayasaka, 2003).

To address these issues, we use Network-Based Statistics (NBS) (Zalesky et al.,

2010) which is a topological analogue to the cluster-based thresholding of statistical para-

metric maps in neuroimaging (Hayasaka and Nichols, 2004; Bullmore et al., 1999). This

method calculates the t-statistics of each pair-wise connection and then transforms the con-

nectivity maps to a set of components constructed by removing edges with a t-statistic below

a given threshold. Each component is constructed using a breadth first search through all

possible links. Contrary to the FDR which independently correct the p-values of every sin-

gle edge, the NBS accounts for false-positive rates of components, instead of edges, and

therefore offers a greater power in mass-univariate testings (Zalesky et al., 2010). Even-

tually, the p-value is calculated by permuting the subjects for five thousand times and re-

calculating the statistics to form a null distribution. The choice of threshold determines how

the method differs from conventional FDR. As recommended in the literature, we examine

the NBS technique over a range of thresholds to ensure that the findings are independent of

test sensitivity. It is worth noting that, the NBS is not an alternative to FDR. It is rather a

complimentary method to boost the execution time as well as the power of the hypothesis

testing (Fornito et al., 2013).

The NBS detect significant changes in edge weights between healthy and Schizophrenic
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group. We later, investigate how the changes in strength of the edges can lead to further

topological changes between the two groups.

3.1.3 Integration Measures

As discussed in section 2.1, anatomical examination of brain regions suggests that the brain

regions are known to be highly integrated (Sporns, 2011a). This integration can be mathe-

matically quantified by investigating the paths between two nodes in a topological descrip-

tion of the connectome. In graph theory terminology, a Path is a collection of nodes and

edges which represent the shortest topological distance between two specific nodes (Bout-

tier et al., 2003). The average shortest Path between all nodes of a network is called the

characteristic path length (L) (Watts and Strogatz, 1998). A smaller characteristic path

length, suggests a higher level of integration within a network. Throughout this work we

use Path Length for Characteristic Path Length, unless otherwise stated. The characteristic

path length can be quantified as:

L =
1
n

∑
i∈N

∑
j∈N, j,i

∑
aln∈gi↔ j auv

n − 1
(3.1)

where N is number of nodes, auv is the weight of the edge between node u and v. According

to Eq. 3.1 if a node happens to be isolated, its shortest path turns out to be infinity which

leads Eq. 3.1 to be infinity too. To address this issue, Latora and Marchiori (2001) proposed

a similar method, called global efficiency, which is an average of the inverse shortest path,

therefore, the shortest path of isolated nodes is zero.

3.1.4 Segregation Measures

The human brain is also known to be, functionally and structurally, a segregated network

which leads the group of nodes to be highly intra-connected rather than inter-connected

(Sporns, 2011b). This group of intra-connected nodes leads to the formation of cliques and

modules within the network. In this section, we use the metrics of the clustering coefficient

and modularity as two commonly used tools for measuring the level of segregation in the

human connectome.

Clustering Coefficient and Local Efficiency

Clustering coefficient measures, the prevalence of neighbours of two connected nodes ni

and n j also happens to be connected with each other (Watts and Strogatz, 1998; Newman,

2003a). In other words, the clustering coefficient is a ratio of the number of complete
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triangles around a node over the number of all triangles that can be formed around a node.

the number of triangles around node i in a binary network can be obtained as:

ti =
1
2

∑
j,h∈N

ai jaiha jh (3.2)

where h and j are node i’s neighbours. Therefore, the clustering coefficient for node i can

be mathematically quantified as:

Ci =
1
n

∑
i∈N

2ti
ki(ki − 1)

(3.3)

where ki is number of connections to node i. The mean clustering coefficient is the average

of clustering coefficient across all available nodes within a network which represents the

level of segregation in a network. However, the mean clustering coefficient can be influ-

enced by isolated nodes or leaves in a network (Kaiser, 2008). Although the likelihood

of leave and isolated nodes is quite low in a human connectome, to ensure that the mean

clustering coefficient is not underestimated, we discard the leave or isolated nodes in mean

clustering coefficients.

Similar to the clustering coefficient, Latora and Marchiori (2001) proposed a mea-

sure of local segregation, called local efficiency, which can be formulated as (Rubinov and

Sporns, 2010):

Ei =
1
n

∑
i∈N

∑
i,h∈N, j,i ai jaih(d jh(Ni))−1

ki(ki − 1)
(3.4)

where d jh(Ni) is number of edges of the shortest path between nodes j and h that are only

one edge away from node i. It is important to note that although the clustering coefficient

and local efficiency are similar, they are not identical as the former measures the probability

of formation of a triangle around node i, while the latter measures the topological distance

between two neighbours of node i.

Modularity

Another sign of the presence of segregation in a network is modular structures. Group of

nodes, which are tightly intra-connected with each other but, at the same time, relatively less

inter-connected to the rest of the network are considered as a ‘module’ (Newman, 2010).

Detecting these modular structures in real-life networks is almost impossible without algo-

rithmic methods. Recently, a large number of studies proposed a wider range of techniques

to detect the modular structures in a network. These techniques mostly use heuristic meth-

ods to find a combination of nodes where the group of nodes has greater intra-connected
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edges than inter-connected edges (Fortunato, 2010). In this section, we discuss one of

the most well-known methods for detecting non-overlapping modularity detection methods

called multi-scale Modularity Maximisation method (Newman, 2006). This method mea-

sures the level of segregation in a network by two factors. First, module assignments that

indicate which module each of the nodes belongs to. Second, the modularity index which,

ranging from -1 to 1, indicates to what extent a network is modular. Larger the absolute

modularity index, closer the network is to the perfect modular network. The modularity

index can be defined as:

Q =
∑

i j

Bijδ(σi, σ j) (3.5)

where Bij is known as the ‘modular matrix’ and δ(σi, σ j) is a delta function which is one

whenever module assignment of nodes i and j is the same, and zero otherwise. The most

optimal combination of the δ functions is obtained by Louvain method which performs a

greedy search through the possibilities to find the one which maximises Q (Blondel et al.,

2008). The modularity matrix, Bij, is defined as

Bij = fij −
[ kik j∑

i ki

]
γ, (3.6)

where fi j is one if an edge connects node i to j (worth mentioning that fi j is binarised

form of the ai j), and zero otherwise. The last part of Eq. 3.6 is the probability of an

edge existing in an equivalent randomised network which preserves the degree of nodes but

dilutes the modular structures. Eventually, a tunable scaler, γ, scales this probability which

is called the resolution parameter. When the ‘resolution parameter’ is set to a value smaller

than one, it is likely that ai j exceeds its probability which produce larger communities.

Conversely, when the resolution parameters is set to a value larger than one, it is less likely

that ai j exceeds the probability and this consequently results in a greater number of smaller

modules (Betzel et al., 2013).

However, it was shown that maximised modularity is not always scalable by large

resolutions as above a certain value the algorithm subdivides the network into singleton

modules (Lancichinetti and Fortunato, 2011; Fortunato and Barthelemy, 2007). To find

the optimal resolution parameters, we apply modularity detection technique with different

resolution parameters which range from − log10 10−1.5 to − log10 100.5 by increments of

− log10 10−1.3 (Betzel et al., 2013). For each increment, we obtain the modularity index for

the empirical network as well as a 1k random network. Eventually, we choose the resolution

parameter which maximises the difference between the modular structure of the empirical

and a random networks.
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3.1.5 Network null models

It is important to ensure that the effects which graph theoretical techniques suggest are

genuine and are not merely due to randomness. Topological properties of a network are

also tightly associated with each other, consequently, a change in one of these features

can be reflected in other measures. Therefore, a careful comparison between the empirical

results and their null models is essential in order to detect the genuine effects. Null models

are randomised graphs which preserve a collection of topological features, while allowing

the feature under study to behave randomly (Newman, 2010).

One of the very early null models that are commonly used in the field is the Erdős-

Rényi random graph, which preserves the number of nodes and density of the network

under study (Newman, 2003b). However, the ER null model assumes that each node has

an equal probability of forming a connection with the rest of the network. It has long been

suggested that using the ER null model, may inflate the size of any effect as the natural

phenomena are far more complicated than what the ER suggests1 (Hosseini and Kesler,

2013). Alternatively, in this work, we use the Maslov & Sneppen null model (Maslov and

Sneppen, 2002). This algorithm randomly picks four different nodes that are connected

to each other and swaps the edges in a way that a sub-graph of those selected nodes still

has the same degree but none of the new edges already exist in the network. It is worth

noting, that by preserving each node’s degree, the average degree, and consequently, the

overall degree distribution of each null network is identical to the empirical network (for

a graphical representation of switching procedure, see Fig 3.1). The switching procedure

should be repeated several times, ensuring that the existing structure are completely diluted,

however, Maslov & Sneppen suggest that repeating this procedure more than N × 4 time

would barely improve the null model (Maslov and Sneppen, 2002).

Figure 3.1: Maslov & Sneppen edge swap procedure on four nodes.

1For a technical discussion about history and pitfalls of ER models see section 2.2
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3.1.6 Small-worldness

Following Milgram’s experiment, discussed in section 2.2, the small-world phenomenon

appears when nodes of a segregated network are still able to communicate with the rest

of the network through short path lengths (Watts and Strogatz, 1998). The reciprocation

between segregation and integration in a network commonly suggest the presence of com-

plexity in a network. The structure of complex networks sits between two extremes of

lattice and random networks (Watts, 1999). Lattice networks are known to have maximum

segregation level, with minimum integration level. Conversely, random networks are known

to have a high level of integration, but poor segregation (Newman, 2010).

We measure the level of complexity by comparing the segregation and integration of

a network against its null model. Therefore, a small-world network is defined as a network

which has an integration level as high as a random graph, but a segregation level remarkably

larger than a random graph. To quantify small-worldness, we use a single statistic, σ,

which summarise the distance of segregation and integration of the empirical network to the

corresponding values in a null model (Humphries and Gurney, 2008), and can be obtained

by

σ =
Ω

Λ
=

∑N
j=1 LEmpirical

j /
∑N

j=1 LNull
j∑N

j=1 CEmpirical
j /

∑N
j=1 CNull

j

, (3.7)

where Ω is the normalised mean clustering coefficient and Λ is the normalised mean path

length. Each of these normalised values is obtained by dividing the empirical clustering

coefficient and Path Length by the mean of the corresponding values in one thousand surro-

gate networks. For σ values remarkably larger than one but Λ values still close to one, the

network is known to be a small-world network.

3.1.7 Cost-Efficiency

It was shown that, as the density of a network grows monotonically, the level of integration

will also increase as, by assuming that new connections are distributed homogeneously, the

new edges facilitate shorter Path lengths between nodes. However, in a specific class of

networks, such as financial networks (Vértes et al., 2011) and the human brain (Bullmore

and Sporns, 2012a), the association between the increase in the level of integration and

density is not linear, and consequently, for a certain density the network demonstrates a

high level of integration while its density is still relatively low. This effect is conventionally

called ‘cost-efficiency’ and the respective density is known as the cost-efficient density.

Cost-efficiency appears to be a crucial concept as previous anatomical evidence

suggest that brain networks are expensive as the brain has spatial constraints, therefore, a

new edge should increase the brain’s efficiency in the relatively lowest writing cost (density)
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(Rivera-Alba et al., 2011). Another theoretical implication of wiring-cost is that when the

density grows, the network complexity will reduce as the balance between integration and

segregation vanishes and the network configuration approaches a fully connected lattice.

To determine the cost-efficiency, the level of integration in each density is determined by

global efficiency and the wiring cost is measured by the ratio of the number of edges over

the total possible number of edges. Therefore, the cost-efficiency can be defined as the

difference between the density and the global efficiency and the cost-efficient density is a

density where the effect cost-efficiency is maximised (Achard and Bullmore, 2007). Studies

suggest that the cost-efficient densities within the brain are most likely to appear in the range

of 5% to 30% (Bullmore and Sporns, 2012a).

3.1.8 Centrality Measures

Degree Centrality

One of the simplest measures to investigate the topological features at a local level is degree

centrality (DC). This measure calculates the number of edges that are connected to a node.

In spite of its simplicity, degree centrality was shown to be a crucial measure in studying

the role of each node in the topology of a network (Newman, 2010). This role appears to

be crucial, specifically, in small-world networks where degree hubs play a crucial role in

connecting a segregated module and cliques to the rest of the network (van den Heuvel and

Sporns, 2013). The degree centrality node i can be defined as:

ki =
∑
j∈N

fi j. (3.8)

Betweenness Centrality

Betweenness Centrality (BC) is another tool to quantify the influence of a node in a network.

It is defined as the number of shortest paths between two nodes of a network that passes

through a certain node (Newman, 2005), as follows:

bi =
1

(n − 1)(n − 2)

∑
h, j∈N

ρi
h j

ρh j
(3.9)

where ρh j is total number of shortest paths between node h and j and ρi
h j is the fraction of

shortest paths that passes through node i. Betweenness centrality can be seen as a compli-

mentary measure of centrality, since the nodes with high DC are more likely to have higher

BC only if they are mediating between a large number of nodes. More simply, nodes with
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a high degree and betweenness centrality are those which facilitate the balance between

integration and segregation.

3.1.9 Rich Club

Although we discussed the importance of degree hubs in networks earlier, it was shown that

the configuration between these hubs can also fundamentally influence the efficiency of the

network (Xu et al., 2010). One method of investigating the configuration between degree

hubs is Rich Clubs (RC). The RC measures how densely nodes of degree k are connected to

other nodes with degree k or higher (Colizza et al., 2006b). In other words, the Rich Club

investigates how elite nodes, degree hubs, interact with each other. Rich Club coefficients

(Φ) in a network with N nodes and E edges can be quantified by the following equation:

Φk =
2E≥k

N≥k × (N≥k − 1)
. (3.10)

The Rich Club coefficient of degree k, Φk, can be obtained by calculating the density

of nodes which have a degree of k or larger. However, the coefficient Φk is a biased measure

for the Rich Club phenomenon since nodes with a higher degree are more likely to be

connected to each other merely based on pure chance. Thus, RC coefficients for sorted

degrees are likely to monotonically increase (Colizza et al., 2006b). To eliminate this bias,

the Rich Club coefficient should be normalised by a relative Rich Club coefficient of their

null models (McAuley et al., 2007).

During the generation of null models, the degree centrality of each node should be

preserved to ensure that the null networks have the degree ‘clubs’ intact during the randomi-

sation process and merely have their structures diluted. Specifically, the degree distribution

of the null model should be identical to the original network. Then, the Normalised Rich

Club coefficient, ΦNorm, measures the density of club of nodes with degree k or larger di-

vided by the average density of the respective clubs across null networks, given by:

ΦNorm
k =

Φ
Empirical
k

ΦNull
k

. (3.11)

The nodes corresponding to Rich Club coefficients with ΦNorm > 1, are considered as a

Rich Club (McAuley et al., 2007; Colizza et al., 2006b). We also test each Rich Club coef-

ficient, Φk, against its RC coefficients in null networks, ΦNull
k , to ensure that the difference

between empirical and the null RC coefficient is significant. In detail, we test whether a RC

coefficient is larger than the 95% percentile of the mean null distribution. Any Φk with a

significantly larger coefficient is considered as part of a RC organisation. Given that the RC

curve of observed and null RC will be converged to each other as k decreases and finally
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become identical for the lower degree since the degree distribution of the observed and null

networks are identical, we avoid the MCE correction as the MCE correction may even make

the inference more conservative.

It is worth mentioning that Rich Club analysis provides us with two statistics. One

is the RC coefficients, which indicate the level of intra-connection across hubs and the other

is RC organisation which indicates which nodes contribute to the setting of significant RC

effect. In the next section, we discuss how these two statistics can help us to examine the

changes in Rich Clubs of two groups.

Nodal Rich Club Coefficients and Nodal Rich Club Identity

Rich Club analysis is commonly conducted on group-averaged networks, since Rich Club

organisation of each subject might be different from other subjects and conducting a between-

group statistical inference appears to be impossible and consequently, leads to analysis

of RC effect merely on group-averaged networks (Ball et al., 2014; van den Heuvel and

Sporns, 2011). Here, we propose two techniques for conducting statistical group inference

of both RC organisations and coefficients.

For Rich Club coefficients, we propose the Nodal Rich Club Coefficient (NRCC),

which is defined as a matrix of size S ×N where N is number of nodes, S is number of sub-

jects and each element of the matrix is RC coefficient of the club that a node belongs to. For

example, if node n has degree of k, the NRCC(s, n) = ΦNorm
k . Forming the NRCC for both

healthy and schizophrenia facilitates node-wise statistical inference between individuals’

RC coefficients.

Furthermore, we propose the Rich Club Identity (NRCI), which is a binary matrix

of the same size and indicate the club membership of nodes. Each element of this matrix

is set according to whether node n in subject s has been identified as part of a Rich Club

organisation. NRCI can be summarised as below:

NRCI(s, n) =

1 if P(Φk , ΦNull
k ) < 5%

0 otherwise. (3.12)

By calculating the proportion of times a node contributes to a Rich Club organisation across

subjects we can form a contingency table and then use the Fisher Exact test to detect the

difference between each node across groups. It is worth noting that alternatively, a Chi-

squared test can be used for a larger number subjects (Ludbrook, 2008).
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Feeder and Local Connections

Besides analysis of the relationships among degree hubs of the human connectome, it is

also crucial to examine the interactions between nodes of RC organisation and the rest of

the network. These interactions can be classed into two major categories of nodes. First,

Feeder nodes which are the nodes that are not directly involved in a RC organisation but

facilitate the connection between RC organisation and the rest of the network. Second,

Local nodes which are the nodes that are neither identified as part of the RC organisation

nor connected to any nodes within RC organisations.

3.1.10 Disruption Plots

For investigating the local changes across groups, we adopt the Hub Disruption measure,

introduced by Achard et al. (2012), by combining it with Bland-Altman plot (Bland and

Altman, 1986) to study how local measures of nodes is changed between healthy and

schizophrenic subjects. A Bland-Altman plot is a scatter plot, where the x-axis is aver-

age degree centrality of each node in control and schizophrenia, and the y-axis is difference

between degree centrality of two groups. By fitting a linear line to these point, as Achard

et al proposed, we can determine the level of association between changes and the mag-

nitude of graph theoretical measure, this measure is called Disruption Index. It is worth

mentioning that nodes that appear on the positive area of the y-axis, are the ones that gained

connectivity in patient and, in contrast, the ones within the negative area of the y-axis are

identified as nodes that experience a decrease during schizophrenia.

We use disruption plots for a wide range of local graph measures. However, in

the case of degree analysis, it is worth noting that as we use a fixed subject-independent

threshold for all adjacency networks, the fitted line should always intercept the y-axis in

the positive non-zero area. Furthermore, as part of a network experiences increase in con-

nectivity the remaining parts are penalised to hold the balance in density. Therefore, the

average changes in disruption plot of degree centrality should always remain zero.

3.2 Data

3.2.1 Sample

To investigate the application of a Rich Block on a human brain network, we used resting-

state fMRI data already obtained and analysed using empirical graph theory in Lynall et al.

(2010). In this study, 15 healthy subjects (age=33.3 years ± 9.2 years, male=14) and 12

subjects (age=32.8 ± 9.2, male=10) with chronic schizophrenia were recruited. The pa-

tients were diagnosed according to standard operational criteria in the fourth edition of
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Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) (Spitzer and Williams,

1980) and were clinically stable during their involvement (exhibiting low symptom ratings

and undergoing no change of medication in the preceding four weeks). All were receiving

antipsychotic drugs, and four were receiving additional psychotropic medication, but were

not treated with their usual medication on the days of scanning to avoid effects on the re-

sultant fMRI data. Healthy volunteers were selected to match the patient group in terms of

age, gender, premorbid IQ, years of education and handedness, and screened for major psy-

chiatric disorders using the Mini International Neuropsychiatric Interview (Sheehan et al.,

1998). All subjects provided informed consent in writing and the protocol was approved by

the Addenbrookes NHS Trust Local Research Ethics Committee.

3.2.2 Resting-State fMRI Acquisition and Preprocessing

To record the brain activities during resting-state, subjects were asked to stay still in the

scanner with eyes closed. They were asked to daydream, but not fall into sleep. For

resting-state data acquisition, a GE SIGNA system MRI machine operating at 1.5T . For

each subject the scan session lasted for 17mins and 12s with TR=2s, TE=40 ms, Flip

Angle=70o, voxel size=3 × 3 × 7mm, section skip=0.7mm, matrix size=64 × 64, Field

of View (FOV)=240 × 240 × 123mm. The first four slices of each scan were discarded to

ensure that the scanner reached equilibrium (resulting in 512 slices per scan). Each dataset

was corrected for head movement by realignment and regression and subsequently regis-

tered to MNI stereotactic standard space by a 12 parameter affine transform maximizing

normalized correlation with a customized EPI template image (within-modality). Regis-

tered images were spatially smoothed with a Gaussian kernel (6 mm at full width half-

maximum), and the time series were high-pass filtered (cut-off frequency: 1/120 ≈ 0.008

Hz). For more discussion about the pre-processing see section 2.1.

3.3 Results

In this section, we present the results of the methods described earlier on the human brain.

For better understanding of the human anatomy and its connection to the results, please use

the human brain anatomy presented in Figure A.1.

3.3.1 Changes in Edge Weights During Schizophrenia

In this section, we use NBS to identify changes between unthresholded networks of healthy

and schizophrenic functional networks. As discussed in section 3.1.2, the NBS is sensitive

to a threshold that is used in t-statistics. Therefore, we repeat the analysis on three different
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levels of threshold including 3, 3.5 and 4. Thresholds lower than 3 result in almost all edges

to be significantly different and thresholds beyond 4 result in a zero number of edges to be

identified as statistically significant.

NBS Threshold: 3.0

NBS Threshold: 3.5

NBS Threshold: 4.0

A

B

C

Figure 3.2: Projections of edges that were found to be significantly decreased during schizophrenia
by NBS. Results the NBS over different thresholds were shown in each panel.

Although the results of all three levels are shown in Figure 3.2, we only focus on

the most conservative test results which are shown in Figure 3.2.C. These results suggest

that several edges within the Parietal lobe are significantly decreased during Schizophrenia.

Among 41 affected nodes which are shown in Figure 3.2.C, in order, Righ Insula, Left

Insula, Left Precentral, Left Paracentral, Right Precuneus and Superior Frontal regions are

nodes which experience remarkable decreases in their node strength. The most affected

nodes that are also connected to these six nodes are mostly within Parietal lobe including

the Right Postcentral Left and Right Cueneus, as well as Medial and Middle Frontal Gyrus

from Frontal Lobe.
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3.3.2 Cost-Efficiency

We start by showing the cost-efficiency across the healthy and schizophrenic subjects. Fig-

ure 3.3 shows the global efficiency of each subject, in blue, and confirms that in brain

networks the global efficiency grows as the density (wiring cost) increases. In both groups,

it is also notable that the association between cost-efficiency and density is not linear as the

slope of the growth in global efficiency is greater between 5% to 20%, however, as the figure

suggests after ≈ 20%, global efficiency demonstrates a monotonic increase with density.
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Figure 3.3: Cost efficiency of brain networks in Healthy (Left) and Schizophrenic (Right). Global
efficiency of each subject is shown in blue and cost-efficiency is shown in red. The mean cost-
efficient density for each group is shown with a vertical black line.

Figure 3.3 also shows the cost-efficiency curve of the brain networks over density.

Cost-efficiency, as discussed in section 3.1.7, is a measure of the difference between global

efficiency and density. As expected, the cost-efficiency peaks on densities close to 15% and

as the slope of the global-efficiency slows down after this density, the cost-efficiency also

decreases until the density is ≈ 50% where it reaches its lowest level. It is worth noting

that the cost-efficiency of subjects between two groups fail to reject the hypothesis test, and

therefore, there the mean cost efficiency between groups is not different.
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3.3.3 Global Measures: Integration, Segregation and Complexity

In this section, we start by examining the Path Length as a measure of integration in brain

networks and its difference across groups of healthy and schizophrenic patients. Figure 3.4

suggests that Path Lengths are relatively larger for lower densities since in sparse networks,

it is more likely that the shortest path between two nodes to be relatively large. Conversly,

in highly connected networks (larger densities) it is more likely that two nodes are directly

connected via a lower number of nodes and edges. In such networks, the level of integration

is higher as the path lengths are relatively low. Complimentary to path length, we also

measure the distance between the path length of each subject and its corresponding value

in a randomised network. Therefore, values close to one suggest higher similarity between

the empirical and randomised Path Lengths. The first row of Figure 3.4 suggests that the

both non-normalised and normalised Path Lengths are identical across groups.

The results in the second row of Figure 3.4, suggest that in lower densities, the

clustering coefficient is relatively low. A lower level of clustering coefficient means that

networks exhibit a lower level of segregation. However, as the density grows, the clustering

coefficient also increases. In higher densities, the networks are highly connected and it is

more likely that three nodes form a triangle around each other. In addition to the clustering

coefficient, we also show that the normalised clustering coefficient, Ω, which is analogous

to the distance between the mean clustering coefficient of an empirical network and mean

Clustering coefficients of the randomised networks. Normalised clustering coefficients,

suggest a higher value in sparse networks as the randomised networks have greater free-

dom in each realisation to dilute the segregated structures of the networks. As the density

grows, the normalised clustering coefficient approaches one which suggests that the level of

segregation in empirical networks is similar to randomised networks for higher densities.

For non-normlised clustering coefficients, the changes between the clustering coef-

ficient of healthy and schizophrenic brain networks is not consistent over density. For low

densities (5% to 20%) there is no significant difference between the two groups, however,

above 20%, the Clustering coefficients in healthy brain networks suggest a higher value.

Conversely, the normalised clustering coefficients suggest higher values in Schizophrenic

brain networks which is statistically significantly across the majority of densities.

Another measure of the segregation which we discuss here is the modularity index

Q. We suffice to give a brief discussion of the modularity index, as a global measure of seg-

regation, in this section, however, an in depth discussion regarding the difference between

modular structures of two group is presented in section 3.3.6. The Modularity index, similar

to other segregation measures, shows a high value on sparse densities, however, as the den-

sity grows the modularity index is decreased. For highly, or fully, connected networks the

modularity index is expected to be approximately zero as it seems to be impossible to find a
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modular structure in a fully connected lattice. It is notable that statistical inferences failed to

provide any significant differences between modular structure of healthy and schizophrenic

brain networks.

Eventually, we investigate the small-worldness as a measure of complexity. Results

of small-worldness across groups suggest that the measure has larger values on sparse net-

works. However, as the density grows the small-worldness is decreased until it settles to one

where the segregation and integration of the empirical network is equal to the randomised

network. It is worth noting, that one important condition for a network to be small-world

is that its normalised path length stays close to one which is not the case for very sparse

densities. For instance, for a 5% density, the normalised path length is ≈ 1.4. Therefore,

it is unlikely that the network with such a sparse density truly exhibits small-world be-

haviour. However, the slope of decrease in the normalised path length is greater close to the

cost-efficient density, the normalised path length across both groups reaches ≈ 1.15.
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Figure 3.4: Global measures of segregation, integration and complexity. Panel A. shows the global
measures for the level of integration: path length (Left) and normalised path length (Right). Panel
B. shows global measures for segregation: clustering coefficient (Left) and normalised clustering
coefficient (Right) and maximised modularity index (Bottom) Panel C. shows the small-world index
as a measure of complexity

Results of the small-worldness curve suggest that brain networks of Schizophrenic

patients are more likely to exhibit small-world behaviour since for the majority of densi-

ties, including the cost-efficient density, the small-world statistics are significantly larger in

healthy subjects. These differences between the small-world index may have been caused

by the difference, previously discussed, in the normalised clustering coefficients of healthy

and Schizophrenia subjects which later were reflected in the results of the small-worldness.
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3.3.4 Centrality Measures in Healthy and Schizophrenia

In this section we investigate the centrality measures in brain networks of both healthy and

schizophrenic subjects. To begin with we calculated degree centrality of each node across

healthy subjects and then averaged the scores across subjects of each group. Figure 3.5

shows the top 10% of highly connected nodes in healthy subjects. Averaged degree cen-

trality of healthy subjects suggests that the bilateral Precunues and Cingulates dominantly

exhibit a high level of connectivity. These areas are followed by slightly less connected

nodes such as the bilateral Superior Temporal and Middle Temporal regions.

By preserving the orders similar to degree centrality, we also show the betweenness

centrality of each of the degree hubs. It is notable that very highly connected such as

the Right Precuneus and Left Cingulate are still among the nodes with high betweenness

centrality. However, Right Declive is also shown to be one of the nodes with highest BC

value. These two regions are followed by other parts of the Right Precuneus, Right Inferior

Frontol, Cerebellum and Left Middle Temporal regions.

We used a similar analysis to investigate the centrality measures in brain networks

of Schizophrenic patients. Figure 3.6, top panel, shows the top 10% of highly connected

nodes in diseased brain networks. The results suggest that the Left Declive and Right

Precunues jointly are the most connected nodes. These two regions are followed by other

parts of the Parietal lobe such as the bilateral Precuneus and Cingulate. It is also notable

that some parts of the Cerebellum such as the bilateral Declive and Culmen also appears to

be highly connected in schizophrenic brain networks.

Analysis of betweenness centrality in schizophrenic brain networks also suggests

that among the degree hubs in schizophrenia, the Right Superior Temporal regions as well

as the Left Declive and Right Precuneus have the highest BC values. These regions are

followed by bilateral Fusifroms and other parts of the Percuneus regions.

Eventually, we examined the proportion of the degree hubs that are similar across

two groups. The results suggest that 65% of nodes that were identified as degree hubs in

healthy subjects were found to be degree hubs in Schizophrenic patients too. The remaining

35% of nodes that experienced changes are among regions from Partietal lobe including the

Cuneus, parts of the Precunues and other regions such as the Thalamus. These regions were

substituted by regions from the Frontal lobe such as the Midial Frontal and Inferior Frontal

regions as well as the Right Culmen, Left Caudate and Cerebellar Tonsil.

41



0

2
0

4
0

6
0

8
0

1
0

0

Degree Centrality in Healthy

Right Precuneus 
Right Paracentral Lobule 

Left Cingulate Gyrus 
Left Postcentral Gyrus 

Left Cingulate Gyrus 
Left Paracentral Lobule 

Left Cingulate Gyrus 
Right Precuneus 

Left Precuneus 
Right Precuneus 

Left Precuneus 
Right Precuneus 
Right Precuneus 

Right Posterior Cingulate 
Left Cuneus 

Right Superior Temporal Gyrus 
Right Insula 

Left Precentral Gyrus 
Right Medial Frontal Gyrus 

Left Precentral Gyrus 
Right Cingulate Gyrus 

Left Declive 
Left Precuneus 

Left Superior Temporal Gyrus 
Left Cuneus 

Right Declive 
Left Insula 

Right Posterior Cingulate 
Left Precentral Gyrus 

Left Postcentral Gyrus 
Left Postcentral Gyrus 

Left Middle Occipital Gyrus 
Right Postcentral Gyrus 

Right Culmen 
Left Cingulate Gyrus 

Right Cuneus 
Right Cingulate Gyrus 

Left Superior Temporal Gyrus 
Left Fusiform Gyrus 

Left Superior Temporal Gyrus 
Right Postcentral Gyrus 

Left Cuneus 
Left Inferior Parietal Lobule 

Right Precentral Gyrus 
Left Postcentral Gyrus 

Left Superior Temporal Gyrus 
Left Lingual Gyrus 

Right Superior Frontal Gyrus 
Right Middle Temporal Gyrus 

Left Middle Temporal Gyrus 
Left Cingulate Gyrus 

Left Cuneus 
Left Middle Occipital Gyrus 

Right Cingulate Gyrus 
Right Precentral Gyrus 

Left Posterior Cingulate 
Right Postcentral Gyrus 

Right Lingual Gyrus 
Left Postcentral Gyrus 
Right Precentral Gyrus 

Right Precuneus 
Left Precentral Gyrus 

Right Posterior Cingulate 
Left Cuneus 

Right Parahippocampal Gyrus 
Left Lingual Gyrus 

Right Postcentral Gyrus 
Left Inferior Parietal Lobule 

Left Insula 
Right Cingulate Gyrus 

Right Inferior Frontal Gyrus 
Left Precuneus 

Left Medial Frontal Gyrus 
Left Middle Temporal Gyrus 

0

5
0

0

1
0

0
0

1
5

0
0

Betweenness Centrality in Healthy

Figure 3.5: Degree (top) and betweenness (bottom) centrality for averaged across healthy subjects.
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Figure 3.6: Degree (top) and betweenness (bottom) centrality for averaged across Schiz subjects.
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3.3.5 Disruption plots of local centrality measures

In this section we discuss the changes in local measures between healthy and schizophrenia

subjects. These local measures include local segregation, centrality measures and Nodal

Rich Club coefficients. We use disruption plots discussed in section 3.1.10 to track the

changes between two groups.

We start with degree centrality which, broadly speaking, suggests a pattern in changes

of degree centrality during Schizophrenia since the fitted line to changes shows a slope of

≈ −0.27 which indicates an association between the degree centrality of each node and the

amount of change during schizophrenia. In other words, the results of the disruption plots

of degree centrality suggest that more prominent degree hubs are more likely to be affected

by Schizophrenia. Although this decrease in degree centrality is later compensated by an

increase in periphery nodes. The detection of this trade-off between hubs and periphery

nodes during schizophrenia is facilitated by the same-density thresholding method which

means that the mean changes between healthy and schizophrenia subjects should always

remain zero.

We follow by investigating the changes in degree centrality by examining the alter-

ation in by the DC of hub and peripheral nodes. The disruption plot of degree centrality

in Figure 3.7 suggests that the most affected degree hubs are the Right Precuneus, Right

Paracentral and Left Cingulate regions. On the other hand, the loss in degree centrality of

these regions was later compensated by a significant increase in peripheral nodes such as

parts of the Cerebellum including Culmen, Pyramis, Tuber and Ivula regions. Also parts of

the Frontal lobe including Superior Frontal, Middle Frontal and Parietal Lobes are among

the regions which experience a significant increase in their degree centrality.

[Schizophrenia+Healthy]/2 [Schizophrenia+Healthy]/2 [Schizophrenia+Healthy]/2

Figure 3.7: Disruption plots of Degree centrality (Left), Betweenness centrality (Middle) and Local
Efficiency (Right)

Betweenness centrality is another measure of centrality that we examine here in

local level. The slope of the fitted line to the changes, ≈ −0.29, suggest that there is
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an association between the magnitude of betweenness centrality and their changes during

Schizophrenia. The average of the significant changes is almost equal to zero suggesting

that loss of betweenness centrality in nodes is later compensated by an increase in BC val-

ues of another nodes. At the nodal level, the Left Precuneus, Right Insula, Left Postcentral

and left Thalamus are among the nodes which exhibit a high level of Betweenness Central-

ity in Healthy subjects but later experienced a decrease during Schizophrenia. Moreover,

nodes that can be identified as nodes with relatively low BC values that experience a sig-

nificant increase during Schizophrenia includes the Right Superior Parietal, Right Anterior

Cingulate and bilateral Superior Frontal regions.

Besides centrality measures, we also examine the effect of schizophrenia on local

segregation of brain networks measured by local efficiency. The disruption plot of Local

efficiency in Figure 3.7 suggest sthat there is a strong association, ≈ −0.63, between the

changes in local efficiency and the original local efficiency of the nodes. In other words, if a

node has a large local efficiency it is more likely to experience a decrease due to schizophre-

nia. The nodes with high local efficiency that experience a significant decrease includes the

Right Postcentral, Left Middle Frontal, Right Cuneus and Right Postcentral. On the other

hand, a node that experiences a remarkable increase in its local efficiency is the Cerebellar

Tonsil.

3.3.6 Changes in Modular Structure during Schizophrenia

In this section, we show how the modular structure of the human brain is changed dur-

ing schizophrenia. The results that we discuss in this section were obtained from group-

averaged brain networks. For each group, the group-averaged network then thresholded on

the cost-efficient density, 15%, which was obtained by analysis of individual cost-efficiency.

As Figure 3.8 shows, the difference between the modularity index of empirical and

randomised networks maximises at ≈ 0.93 for both the healthy and schizophrenia group.

Therefore, it suffice to examine the brain networks on this scale. Previously it was shown

that the average modularity index of healthy and schizophrenia subjects is fairly close (see

Figure 3.4), but the group-averaged results of modularity, Figure 3.8, suggest that modular-

ity indexes are 0.36, 0.41 for healthy and schizophrenia subjects, respectively. In addition

to the modularity index, the group-averaged brain network in schizophrenia suggest six

modules, whereas, the group-average network of the healthy group suggest four modules.

It is notable that the number of nodes within each of the modules in the healthy network

is almost equally distributed, whereas, the modular structures in schizophrenia suggest that

the size of each module can range from 10 nodes (module 1) to more than 96 nodes (module

2).
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Figure 3.8: A. Modularity index across different scales for both empirical and randomised net-
works in healthy (Left). Module configurations on re-arranged group-averaged network of healthy
(Right). B. Modularity index across different scales for both empirical and randomised networks in
schizophrenia (Left). Module configurations on re-arranged group-averaged network of schizophre-
nia (Right).

Visual inspection of the module in Figure 3.9 suggests that, although, the modularity

algorithm was used on BOLD signals of the brain, the modules are spatially consistent. For

example, the majority of nodes that were already known to be part of the Cerebrum were

clustered as one module (see module 4; cyan). This effect is even more obvious in the

Frontal (module 1; red), Temporal (module 2; green) and Occipital/Cerebellum (module

3) cortices. On the other hand, in schizophrenia, two extra modules, in the Frontal and
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Temporal, dilute the spatial consistency across modules.

In terms of module assignments in the healthy brain network, the majority of nodes

that formed Module 1 are from the anterior regions such as the Paracentral, Middle Tempo-

ral, Superior Parital, bilateral Insula, Postcentral and Inferior Frontal. Module 2 is mainly

formed by a combination of regions from the Cerebellum and Temporal lobe including:

Tuber, Thalamus, Culmen, Uvula, Fusiform, Parahipocampal, Middle Temporal, Inferior

Temporal and Superior Temporal. Module 3 is mainly formed from the Occipital lobe,

Cerebellum and Parietal Lobe which includes Lingual gyrus, Declive, Middle Occipital, In-

ferior Occipital and Pyramis. Eventually, Module 4 is formed from regions mostly from the

Frontal (middle, inferior, superior) and Parietal lobe which includes the Precuneus, angular

gyrus, Thalamus, Caudate and Cingulate gyrus.

Module 1 Module 2 Module 3 Module 4

Module A Module B Module C Module D

Module E Module F

A

B

Figure 3.9: Projection of individual nodes and their module assignments on a transparent surface of
the human brain.
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Figure 3.10: A river-plot shows the overlap between modular structure of healthy and schizophrenia
subjects.

Examining the modular structure of the functional connectome in schizophrenia

suggests that module A, which is the smallest module with only 10 nodes, is mainly formed

by regions representing the Anterior Cingulate and bilateral Caudate. Module B is mainly

formed by nodes in module 3 and module 2 of the healthy networks including parts of the

Occipital lobe, Temporal lobe and a small fraction of superior Parietal lobe including Mid-

dle Occipital, Inferior Occipital, Culmen, Nodule and a small portion of Precuneus. Module

C is formed by small fraction of module 2 in healthy networks which is mostly located in the

Temporal Lobe including the Parahipocampal gyrus, Thalamus and Insula. Module D has a

large overlap with module 4 of the healthy network as it is mainly formed by the Superior,

Medial and Inferior Temporal Lobe as well as anterior parts of Cingulate gyrus. Module E

mostly overlaps with module 1 of the healthy networks. It mainly represents regions from

the Frontal and Parietal lobes such as Precuneus, Precentral and Postcentral lobes. Eventu-

ally, module F which overlaps with three modules, (1,2,4) of the healthy networks, covers

the Parietal and Temporal Lobe and includes regions such as the Insula, Middle Temporal

and Frontal, Inferior Parietal and Lentiform nucleus.

Using Normalised Mutual Information, we approximated the level of association

between module assignments of healthy and schizophrenic brain networks and the results

suggest that there is more than 59% of the nodes that overlap despite the difference in the

modularity index and the block counts.
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Figure 3.11: Similarity between node assignments of modularity algorithm across subjects of
healthy (Left) and schizophrenia (Right)

Using the same technique, we also calculated the level of within group similarity

between module assignments of each group. Figure 3.11 shows the NMI score between

each pair of the subjects. Hypothesis testing suggests that the mean NMI scores are not

significantly different between healthy and schizophrenia subjects.

3.3.7 Changes in Rich Club Organization in Schizophrenia

In this section, we firstly show the Rich Club organisations within the human connectome.

We follow the analysis by investigating the difference in the Rich Club coefficients and or-

ganisations during schizophrenia. We calculate the Rich Club coefficient for each subject

and by using the hypothesis testing we identify the nodes that contribute to the Rich Club

organisation of each subject. From a preliminary investigation of the results across subjects,

we merely consider nodes which were identified as the Rich Club nodes in more than 50%

of the subjects of a group as the Rich Club nodes. However, a thorough framework for con-

ducting statistical inference between the Rich Club coefficients and organisation between

groups will be shown later in this section.

Figure 3.12 shows surface projection of the Rich Club nodes of healthy (green),

schizophrenia (blue) and those mutually shared between two groups (cyan). Broadly speak-

ing, the Rich Club nodes across both groups are distributed across modules. For example,

Table 3.1 suggests that to what extent the Rich Club nodes in healthy subjects has con-

tributed to the modular structures. However, module 1 and Module 3, which represent

major parts of the Parietal and Occipital lobes, enjoy a larger proportion of RC nodes in

comparison to the remaining modules which contain nodes of the Temporal, Frontal and

Temporal lobes.
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Module 1 Module 2 Module 3 Module 4

RC Contribution (%) 56 1.5 44 9

Table 3.1: Porportion of nodes in each module that contributes to the RC organisation of healthy
subjects

In schizophrenia, the RC contribution to modules is not as consistent as healthy

subjects since only four modules out of six modules show a level of contribution from RC

nodes. As Table 3.2 suggests, Module B and Module E suggest that the highest level of

RC contribution by 40% and 32% respectively. These two modules are mainly related the

Occipital, Cerebellum and Parietal lobes of the human brain. On the other hand, Module A

and Module C suggest a zero RC contributions. These two modules are mainly formed by

a fraction of nodes from module 2 of healthy subjects and mostly cover the Inferior Frontal

and Temporal lobes.

Module A Module B Module C Module D Module E Module F

RC Contribution (%) 0 40 0 11 32 7

Table 3.2: Porportion of nodes in each module that contributes to the RC organisation of
Schizophrenic subjects

Bearing in mind that the Rich Club organisations are formed by a collection of

highly connected degree hubs and the realisation that they are spatially distributed over the

brain, it is essential to examine local measures of RC nodes as well as their association to

other parts of the network. For this purpose, we examine the local centrality and efficiency

measures of the RC, Feeder and local connections.

Only in Healthy Only in Schiz Overlap

Figure 3.12: Projection of Rich Club organisation in healthy (green), schizophrenia (blue) and
overlaps between two groups (cyan)

Figure 3.13.A shows that, in Healthy and Schizophrenia subjects, the density of
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connections between RC nodes is significantly higher in comparison to the density of the

feeder and local nodes. However, it is notable that the density of each of these three classes

of nodes is not significantly different across groups. Figure 3.13.B shows the analysis of

local efficiency of the RC and non-RC nodes. Results suggest that the RC nodes have rel-

atively higher local efficiency than the non-RC nodes in Healthy subjects, however, this

effect is no longer the case in Schizophrenic brain networks. The between group analysis

of local efficiency of the RC and non-RC nodes also suggests that the RC nodes of healthy

subjects have higher local efficiency compared to schizophrenic brain networks. Whereas,

analysis of the non-RC nodes suggest that these nodes exhibit higher local efficiency in

Schizophrenia. Eventually, Figure 3.13.C shows that Betweenness centrality of RC nodes

is significantly higher than the non-RC nodes across both groups. However, inter-group

comparison of Betweenness centrality between the RC and non-RC nodes suggests no dif-

ference between two classes of nodes.

In addition, we also compare the NRCC and NRCI of healthy and schizophrenic

aiming to identify the changes in coefficients and organisation of the Rich Club during the

disease. Figure 3.14 shows the NRCC of healthy (top) and schizophrenic (bottom) brain

networks. The results suggest that RC coefficients of nodes of the Parietal lobe including

parts of the Inferior Parietal, Postcentral, Cingulate, Precunues and Anterior Cingulate re-

gions as well as parts of the Insular region experienced a decrease during schizophrenia.

Whereas, regions mainly from the Cerebellum including Pyramis, Declive, Culmen, Uvula

experience an increase during schizophrenia.

Although we showed how schizophrenia can affect the RC coefficient, it is essential

to investigate the changes in configuration of RC organisation during schizophrenia. Figure

3.15 shows the Rich Club organisations of healthy (top) and schizophrenic (bottom) brain

networks.
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Figure 3.13: Interaction between RC organisation and rest of the network via feeder and local
connections. A. Analysis of density between feeder, local and RC nodes as well as between healthy
and schizophrenia subjects. B. Analysis of Local efficiency of local, feeder and RC nodes as well
as between two groups. C.Analysis of Betweenness Centrality of feeder, local and RC nodes. Red
asterisks indicate significant differences.
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Figure 3.14: NRCC of healthy (Top) and schizophrenia (Bottom), as decribed in section 3.1.9.
Nodes that were identified as significantly different were marked with a red asterisk
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Figure 3.15: NRCI of healthy (Top) and schizophrenia (Bottom), as decribed in section 3.1.9. Nodes
which were identified as significantly different were marked with a red asterisk
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Results of the Fisher Exact test suggest that parts of the Precuneus, Insula, Cingulate

and Precentral regions are no longer part of the RC organisation in schizophrenia, whereas,

new regions mainly from the Cerebellum including the Declive, Culmen, Uvula, Tuber

as well as a small portion of the Parietal lobe, such as parts of Inferior Parietal lobe and

Angular gyrus, appear to be new members of schizophrenic RC organisation.

Additionally, we also examine how this RC organisation is consistent across the

subject of each group. We use NMI (Danon et al., 2005) to measure the level of similarity

between the RC organisation of each pair of subjects within each group.

Figure 3.16: Similarity between Rich Club Identity matrices across individuals across healthy (Left)
and schizophrenia (Right)

The results, in figure 3.16, suggest a relatively low consistency across subjects

as the mean MNI is 0.08 and 0.05 for health and schizophrenia, respectively. However

healthy subjects demonstrate a significantly higher level of consistency in comparison to

schizophrenic subjects.

3.4 Discussion

In this study, we start by summarising the main findings about the topology of the func-

tional connectome of the human brain. Furthermore, to investigate the healthy brain, we

also discuss how these topological features can be used as bio-markers to identify changes

during Schizophrenia.

By applying a clustering coefficient and local efficiency we showed that the human

brain is more segregated than an equivalent random graph, which suggests that brain re-

gions are in tight intra-connection with each other. In addition to the segregation measure,

we also used path length and its normalised version to investigate the level of integration

within the human brain. The results of characteristic path length and global efficiency sug-

gest that the functional connectome of the human brain exhibits a level of integration as
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high as its corresponding random network. This leads us to conclude that the human brain

enjoys a constant balance between segregation and integration. This balance is one of the

fundamental evidences for considering the human brain connectome as a complex system.

The level of complexity within the human brain is measured by small-worldness which was

proven to be a useful tool to summarise the topological features of a network. The global

features that we discussed in this study strongly align with previous findings in the network

neuroscience literature (Bullmore and Bassett, 2011; Sporns, 2011b; Sporns and Honey,

2006).

Besides the clustering coefficient and local efficiency, one additional important mea-

sure of segregation that we discuss in this study is modularity. By applying a modularity

detection algorithm, we showed that the functional connectome of the human brain has a

modular structure meaning that the human brain is formed by a combination of modules

which are tightly intra-connected and sparsely inter-connected with each other. More im-

portantly, results of the modularity algorithm on functional data suggest that without any

prior knowledge of brain structure, the modules are spatially consistent. Our findings about

the modular structure of the human brain and close association between its function and

structure are widely similar to other studies in the field (Meunier et al., 2010, 2014).

Further examination of the functional connectome in this study reveal that the key

to emergence of complexity in the functional connectome is the collection of degree hubs

which facilitates the integration among the modules. Throughout this study, we use de-

gree centrality and betweenness centrality to detect these ’elite’ nodes. Nodes among the

traditional the Default Mode Network such as the majority of regions from the bilateral

Precuneus, Cingulate and bilateral Inferior Parietal Lobes. These findings widely overlap

with other studies of hubs in the functional connectome (Crossley et al., 2014; Sporns et al.,

2007). In addition to identifying the degree hubs, we also examine the interactions between

these influential nodes. We use the Rich Club to measure the level of intra-connection

between degree hubs. By investigating the Rich Club organisation across the functional

connectome we conclude that the Rich Club organisation plays a vital role in efficiency of

the human brain. It is likely that this important role is due to the spatial configuration of the

RC nodes. We showed that the RC nodes are geographically spread over the brain. These

findings are consistent with other studies which suggest that the RC organisation plays role

of a backbone to the human brain (van den Heuvel et al., 2012b; Grayson et al., 2014).

Although we showed how graph theoretical measures can be used to describe macro-

scale human functional connectome, it is also essential to explore how these measures can

be used as bio-markers for detecting changes during Schizophrenia. Prior to investigating

the changes in topological features, we examined how the edge weights of un-thresholded

networks change during the disease. Understanding the changes in edge weights can be
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helpful to interpret the changes which are later identified in topological features. The re-

sults suggest that connections in the Parietal, Insular and Frontal lobes experience a de-

crease during schizophrenia. Decrease in the strength of connections in these regions were

already reported in studies with different cohorts and pre-processing steps (Zalesky et al.,

2010, 2012b). A decrease in connectivity strength may result in the connection to be able

to survive the density thresholding and therefore cause a reduction in the degree of relevant

regions.

We continue examining the changes during schizophrenia by comparing the integra-

tion levels. Results of integration measures suggest that there are no differences between

healthy and schizophrenic brain networks. Further to the integration level, we also in-

vestigated the changes in segregation level between healthy and schizophrenic functional

connectome. Examining the Clustering coefficient and Local Efficiency suggests a decrease

in the level of segregation during schizophrenia. The decrease in the level of segregation

aligns with other studies in the field (Liu et al., 2008; Alexander-Bloch et al., 2010). How-

ever, it is notable that the normalised clustering coefficient, Ω, suggests the opposite. This

contradiction may suggest that schizophrenic brain networks are more distant from their

random networks which make the schizophrenic brains close to a lattice network. Eventu-

ally, we summarise the normalised integration and segregations measures by the measure of

small-wordlness. Our findings suggest that the small-worldness is higher in the functional

connectome of schizophrenic brains.

Comparing the modular structures between group-averaged healthy and schizophrenic

brain networks also suggests a larger number of clusters in schizophrenia, however, the in-

dividual modularity indexes suggest no differences between the two groups. The majority

of nodes which were found to be members of the Occipital and Frontal lobes, module 3 and

module 4, are represented in module B and module D, respectively. It is notable that mod-

ule B in schizophrenia also accommodates other nodes of Temporal lobes. The majority of

nodes in the remaining modules of healthy subjects, module 1 and module 2, share their

nodes with every other module in schizophrenia.

Besides investigating the changes in global architectural features of the functional

connectome during schizophrenia, we also used disruption plots to examine how the central-

ity measures as well as measure of local segregation changes during schizophrenia. Results

of the degree centrality suggest that degree hubs lose their prominent role. These regions

are mainly parts of the conjunction of the Default Mode Network and Parietal lobe includ-

ing the Precuneus and parts of the Cingulate cortex. These results may routes back to the

reduction in edge weights that explained earlier. In contrast, regions of the Cerebellum

which were considered as peripheral nodes in healthy subjects gained more degrees during

schizophrenia. Our findings of abnormalities in the role of the degree hubs is consistent
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with other studies across modalities (Rubinov and Bullmore, 2013; Collin et al., 2013; Ly-

nall et al., 2010). This pattern of changes can also be seen in local segregation measures

where the Cuneus and Postcentral lose their local efficiency and the Cereberal Tonsil ex-

periences an increase in its Local Efficiency. Finally, the last local measure of centrality,

betweenness, suggests that nodes from the Default Mode and Saliency functional networks,

such as Insular and Precuneus and Thalamus, are subject to a decrease in their Betweenness

centrality, while, The Anterior Cingulate, bilateral Superior Frontal regions experience an

increase.

Eventually, we propose a method to conduct multi-subject group inference between

the Rich Club organisation and the coefficients of two groups. In terms of the Rich Club

coefficients, the nodes that mostly experienced changes during schizophrenia are among

nodes of the Parietal lobe, Frontal lobe and Cerebellum. The Rich Club coefficients in the

first two lobes, Parietal and Frontal, experienced a significant decrease and the latter cortex,

the Cerebellum, experienced a significant increase in its Rich Club coefficients. Similarly,

the examining the Rich Club organisation also reveals that the nodes which mainly overlap

with the Default Model Network, including the nodes of the Frontal and Parietal lobes, are

no longer members of the Rich Club organisation in schizophrenia, instead, member of the

Cerebellum cortex joins the Rich Club organisation in schizophrenic brain networks.

As it is essential to investigate the role of the Rich Club nodes in integration and

centrality of brain networks, we also found that the Rich Club nodes have higher density in

comparison to local and feeder regions of the networks. Betweenness centrality of the Rich

Club nodes is also significantly larger across both groups. Notably, local efficiency of the

Rich Club nodes in healthy subjects is significantly higher than the corresponding nodes

in schizophrenia. These results suggest that the Rich Club organisations in schizophrenia

play a relatively lower role in efficiency of the human brain during schizophrenia. It is no-

table that similar results regarding alteration of RC organisation, but in regards to structural

connectivity, were reported by (van den Heuvel et al., 2013a; Collin et al., 2014a).

3.4.1 Summary

In this chapter, we discussed empirical graph theoretical measures which can be used to

describe the macroscale connectome of the human brain in healthy and diseased conditions.

• We used total of 25 subjects, 13 healthy subjects and 12 schizophrenic subjects. A

range of graph theoretical metrics were applied on the both subject and group-average

levels.

• The Parietal lobe were identified as the lobe which experienced the highest level of

disruption, in terms of connection strength, during schizophrenia.
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• In terms of the global topological features, schizophrenic brains demonstrate a higher

level of segregation which results in a higher level of small-worldness (1.43 and 1.6

in healthy and schizophrenic subjects, respectively).

• Results for another measure of segregation, modularity, suggests that the level of

modularity remains the same between the two group, however the module arrange-

ments changes due to the disorder (For instance, healthy subjects demonstrate four

modules, whereas, the schizophrenic group demonstrates six modules.).

• Results for the local measures, in particular degree centrality, suggest that during

schizophrenia the degree hubs lose their prominent roles and, instead, local nodes

experience a rise in number of their connections (For instance, on subject level, the

disruption index is -0.27).

• Two statistical frameworks were proposed to investigate the changes in organisation

and coefficient, NRCI and NRCC respectively, during the disorder.

• Using the proposed frameworks, the results show that the regions, mainly related

to the Parietal lobe and the DMN, experience a decrease in their RC coefficients,

whereas, some regions of the Cerebellum gain some strength in their RC coefficients.

59



Chapter 4

Understanding a Rich Club with a
Stochastic Block Model:
A Connectome Study of

Resting-State Schizophrenia

Previously, in section 3.1.5, we discussed a modularity algorithm which attempts to group

the nodes that are more intra-connected than inter-connected. However, it is naive to as-

sume that networks are formed merely by modular structures. Networks were shown to

have more complicated patterns of connectivity which require more sophisticated cluster-

ing methods in order to be discovered. A Stochastic Block Model (SBM) is one of the

clustering methods which subdivides network into smaller groups of nodes that exhibit ho-

mogeneous behaviour. Therefore, modular structures, can be seen as one special case of

network structure which can be detected by SBMs. Since the hidden structures within a

network are normally unknown, SBM can also be considered as a unsupervised learning

technique.

Broadly speaking 1, SBM techniques aim to model networks by either a single

graph or collection of additive random graphs. Early attempts at using random graphs to

model networks date back to Erdős-Rényi model (Erdös and Rényi, 1959), which assumes

that nodes have an equal and independent probability of forming edges with other nodes.

Degree distribution of this model can be described by a Binomial distribution and, there-

fore, can be approximated by a Poisson distribution in a network of large size but sparse

connections. Although the ER model is still the most studied form of random graph, it was

1We discussed the course of evolution of random graphs in section 2.2, however, we believe it is crucial to
reiterate through a brief background of random graphs in context of SBM in the beginning of this chapter.
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shown that real-life networks are of a far more complex structure to be merely modelled via

a single Poisson distribution (Newman, 2010). Alternatively, scale-free networks (Barabási

et al., 2009) assume that majority of nodes within a network have a low number of connec-

tions while a few nodes demonstrate a large number of connections. Respectively, in the

BA growth model, new nodes tend to be connected to hubs rather than peripheral nodes.

Despite promising results of BA models to describe natural phenomenons, this model is still

far from ideal in modelling real-life complex systems (Daudin et al., 2007; Stumpf et al.,

2005). For instance, degree distribution of the human brain was shown to follow a semi

scale-free (Humphries et al., 2006; Bullmore and Sporns, 2012b; Sporns and Zwi, 2004),

therefore, they can neither be modelled by an ER model, since ER model fails to account

for the structures, nor can they be perfectly be fitted to a scale-free model since number of

hubs and their intensity are not as many as to be fitted to a power-law distribution since,

as discussed in section 2.2, networks that follow power-law distribution demonstrate a very

few number of highly connected nodes and many other nodes with a few connections. This

motivates the need to use a newly proposed class of SBMs that subdivides a network to a

collection of blocks.2 In the context of SBMs, degree distribution of each block follows

a Poisson distribution where the Poisson parameter varies depending on intra- and inter-

connection rate of each block. This class of SBMs, conventionally known as mixture mod-

els (McLachlan and Peel, 2004), provide a unique opportunity for the modelling of a wide

range of network behaviours due to its flexibility in estimating the empirical degree distri-

bution (Mariadassou et al., 2010). For instance, it was shown that SBMs are able to deliver

promising results in modelling the degree distribution of C.Elegans 3 (Pavlovic et al., 2014).

In the context of SBMs, the degree centrality of each node has a close association

with their pattern of connectivity. For instance, two nodes with a high rate of connectivity

are more likely to be connected to similar nodes. Therefore, it is more likely that nodes with

high degree centrality are grouped together. This realisation was the primary motivation for

the author of this thesis to propose the Rich Block (RB), which is a combination of SBMs

with a conventional graph theoretical measure, Rich Club4. Similar to the Rich Club, the

Rich Block aims to detect the presence of highly intra-connected network cores, which have

not occurred simply due to chance.

In this study, among several forms of SBMs, we use a newly proposed compli-

mentary extension to the traditional Erdős-Rényi Mixture Model which was designed to

summarise multi-subject variability between block settings of subjects in a group. The abil-

ity to account for within-group variability provides Rich Block with a unique opportunity

2Throughout this chapter we use blocks for subdivision of a network. The term ’block’ was chosen to
differentiate between module which were discussed in section 3.1.4.

3See section 2.3.1 for more details about topological features of the C.Elegans micro-scale connectome.
4To see a detailed discussion about Rich Clubs see section 3.1.9
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to be seen as the first tool to tackle a long-standing challenge of multi-subject inference

between rich cores of a network. Additionally, we also show how SBMs can be exploited to

deliver a deeper insight into an understanding of degree hubs within a network by proposing

a method, called Degree Exceptionality (DE). The analysis in this chapter are carried out on

both subject level, however, for sake of the visualisation we also present some group-level

analysis.

4.1 Methods

In this section, we first review the basic components of the SBM model along with the

estimation of its parameters and the estimation of a total number of blocks. We then briefly

review some properties of the SBM model which allows us to estimate the observed network

degree distribution. The approximation of the observed degree distribution is based on the

cluster structure and parameters obtained from the model and in a broader sense it can be

viewed as an additional goodness of fit tool to validate of the fitted clusters. Next, we

briefly describe a multi-subject extension of this model, the Heterogeneous SBM (Het-

SBM), which allows one to account for heterogeneous covariate effects on the subject-

specific networks. Additionally, after a brief description about a Rich Block, we show

how Rich Block coefficients and organisations can be found using a Het-SBM. Finally, we

describe how Degree Exceptionality can be used to detect the degree hubs of a network.

4.1.1 Stochastic Block Model (SBM)

In the Stochastic Block Model (SBM) a single undirected edge between the nodes Vi and

V j is denoted by a random variable Xi j and, thus, an undirected network with n nodes is

denoted by an n×n random and symmetric matrix X = ((Xi j))1≤i, j≤n. In such a network, the

set of nodes V1, . . . ,Vn is divided into Q non-overlapping blocks and this block assignment

is specified by a binary random variable Ziq which takes the value 1 if the node Vi is in

the block q and 0 otherwise. For all of the nodes and Q the number of blocks, the n × Q

random matrix Z is assumed to contain independently distributed random variables Zi each

of which follows a Categorical distribution with Q possible outcomes.

Zi ∼ Categorical(Q,α), (4.1)

where α is a 1 × Q vector of success probabilities such that
∑Q

q=1 αq = 1. Conditional on

the nodes’ block assignments, the edges are assumed to follow a Bernoulli distribution

Xi j|Ziq = 1,Z jl = 1 ∼ Bernoulli(πql) (4.2)
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where a single parameter πql gives probability of an edge between blocks q and l. Thus,

the connectivity rates for all the blocks in a network are given by a Q × Q matrix π =

((πql))1≤q,l≤Q. It is interesting to point out that since block edges are homogeneously dis-

tributed within that block, the clustered network can be also seen as
(

Q+1
2

)
number of classic

Erdős-Rényi models. This is why in the literature this classical SBM model is denoted by

the Erdős-Rényi Mixture Model (ERMM) (Zanghi et al., 2008). To summarise, it is crucial

to reiterate that the model is constructed from α and Π and estimating these parameters

are dependent on another latent parameter, Z. In the following section, we explain how to

estimate the latent parameter Z and, consequently, the model parameters α and Π.

Estimation and model selection

In the SBM, the likelihood of the complete data (i.e. (X, Z)) can be stated as

log f (x, z;π,α) = log f (x|z;π) + log f (z;α), (4.3)

and because z also needs to be estimated, the optimisation is carried out on the marginal

likelihood of the complete likelihood (log f (x;π,α)). However, as the computation of

the marginal likelihood involves a search over all possible realisations of Z this quickly

becomes computationally challenging which is why a variational approximation is used

instead (Nowicki and Snijders, 2007; Daudin et al., 2004). In the variational approach

(Jordan et al., 1999), the model parameter estimates are found from the variational bound

J( f ∗(z; τ);π,α) defined as

J( f ∗(z; τ);π,α) = E f ∗[log f (x, Z;π,α] − E f ∗[log f ∗(Z; τ)], (4.4)

where the density f ∗(z; τ) depends on the variational parameter τ and it minimises the

Kullback-Leibler distance to f (z|x;π,α) (see Appendix B.1). The natural choice for f ∗(z; τ)

is a Categorical distribution with independent block success probabilities for each node,

such that

f ∗(z; τ) =

n∏
i=1

Q∏
q=1

τ
ziq
iq , (4.5)

where
∑Q

q=1 τiq = 1 and E f ∗(Ziq) = τiq and E f ∗(ZiqZ jl) = τiqτ jl. Although the computation

of the variational boundJ( f ∗(z; τ);π,α) (see Eq. 4.4) involves expectations with respect to

Z, these quantities are generally straightforward to obtain as the Z’s are mutually indepen-

dent. Maximising Eq. (4.4) with respect to τ, α and π yields the following point estimate
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on equations:

τ̂iq ∝ α̂q

n∏
j,i

Q∏
l=1

[π̂xi j

ql (1 − π̂ql)1−xi j]τ̂ jl , (4.6)

α̂q =
1
n

n∑
i=1

τ̂iq, (4.7)

π̂ql =

∑n
i, j τ̂iqτ̂ jlxi j∑n

i, j τ̂iqτ̂ jl
. (4.8)

In this model, the optimal number of blocks Q is estimated via the Integrated Clas-

sification Criterion (ICL) (Biernacki et al., 2000), which is applied to the completed data

likelihood (see Eq. 4.3) (Daudin et al., 2004, 2007). In particular, the estimate of Q is ob-

tained by comparing the ICL scores between the models with a different / the same number

of blocks and different parameter estimates. For a modelMQ with Q number of blocks, the

ICL criterion is given as

ICL(MQ) = arg max
(α,π)

log f (x, ẑ|MQ, α̂, π̂)︸                               ︷︷                               ︸− 1
2

Q(Q − 1)
2

log
[n(n − 1)

2
] −

Q − 1
2

log[n]︸                                                 ︷︷                                                 ︸,
(4.9)

where the first under-braced term is the complete data log likelihood evaluated at the vari-

ational estimates of α̂ and π̂, where the latent z is replaced by its estimate, ẑ. The second

under-braced term balances the trade-off between the goodness of fit and the complexity of

the model. In particular for large values of Q, this term becomes large and consequently it

penalises the complete data log likelihood more severely. In this way, the parsimony of the

selected model is preserved.

Degree Distribution

The degree ρ(Vi) of a node Vi is defined as the total number of edges which terminate at Vi.

Formally, this can be written as ρ(Vi) =
∑n

j,i Xi j. In particular, ρ(Vi) is a random variable

while ρi is its realisation. Given the block assignment Z and given that the vertex Vi is a

member of block q, the conditional distribution of the degree of node Vi can be written as:

ρ(Vi)|Ziq = 1 ∼ Binomial(n − 1, π̄q) ≈ Poisson(λq), (4.10)

π̄q =

Q∑
`=1

α̂`π̂q` λq = (n − 1)π̄q, (4.11)

where π̄q is a weighted sum of connection rates between block q and the rest of the network

and λq is the expected degree of block q (see Appendix B.2 for more details). This implies
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that the probability of a particular degree value ρi of a node Vi can be expressed as a mixture

of Poisson (or Binomial) densities depending on our choice of P(ρi|Ziq = 1) (see Eq. 4.11),

since:

f (ρi) =

Q∑
l=1

P(ρi|Ziq = 1)P(Ziq = 1),

=

Q∑
l=1

α̂qP(ρi|Ziq = 1). (4.12)

Density of the Fitted ERMM

The SBM parameters allow us to obtain the expected edge count between different blocks.

Given a block assignment Z and by defining the number of edges between block q and l as

Eql = 1
2
∑n

i=1
∑

j,i ZiqZ jlXi j, we can state its expectation as:

E(Eql) =
n(n − 1)α̂qα̂lπ̂ql

2
, (4.13)

(see Appendix B.2 for more details). Similarly, noting that

f (xi j) ∝
Q∑

q=1

Q∑
l=1

α̂qα̂lP(Xi j = xi j|Ziq = ẑiq,Z jl = ẑ jl), (4.14)

we can obtain the expectation of the density E(Xi j) as

E(Xi j) =

n∑
i=1

n∑
j<i

xi j

Q∑
q=1

Q∑
l=1

α̂qα̂lP(Xi j = xi j|Ziq = 1,Z jl = 1)

=

Q∑
q=1

Q∑
l=1

α̂qα̂l

n∑
i=1

n∑
j<i

xi jP(Xi j = xi j|Ziq = 1,Z jl = 1)

=

Q∑
q=1

Q∑
l=1

α̂qα̂lπ̂ql. (4.15)

4.1.2 Generalised Linear Stochastic Block Model (GL-SBM)

The ERMM was shown to be promising in the study of single subject analysis (Daudin et al.,

2004). However, in the analysis of multi-subject networks, the traditional ERMM estimates

a different block assignment for each subject. Varying block assignment across subjects

makes the inference between subjects impossible. Three extensions to the ERMM, which

can be useful in multi-subject studies of block models, have recently been proposed by

Pavlovic et al. (2015). These extensions are from a family of Generalised Linear Stochastic
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Block Models (GL-SBM), which aim to estimate the most common block assignments be-

tween all subjects. The first and most straightforward of these three models is the Binomial

Stochastic Block Model (Bin-SBM) which assumes that there is no subject-specific vari-

ability between subjects. The second method, the Homogeneous Stochastic Block Model

(Hom-SBM), assumes that variabilities between subjects have a global effect on each sub-

ject, and therefore, affects overall density of the network by either increasing or decreasing

homogeneously. The last and the most sophisticated method is the Heterogeneous Stochas-

tic Block Model (Het-SBM) which assumes that variabilities between subjects affect re-

gions (inter-block and intra-block connectivities) of the connectivity matrix differently. As

we are interested in using a subject-independent threshold and, in the meantime, we are

also interested in the effect of variabilities between subjects, we only use a Het-SBM in this

work.

In the Het-SBM, there is a total of K subjects and each subject is associated with a

single network. Thus, for the k-th subject the edge between the nodes Vi and V j is defined

as Xi jk. Conditional on the node assignments, the edges follow a Bernoulli distribution such

that each subject’s block parameters πqlk depend on a logistic regression model as:

Xi jk|Ziq = 1,Z jl = 1 ∼ Bernoulli(πqlk) (4.16)

log
( πqlk

1 − πqlk

)
= dT

k βql (4.17)

where dT
k is a 1 × P dimensional vector of covariates related to the k-th subject and βql is a

vector of size 1 × P of regression parameters. For a fixed Q, the variational bound can be

written as

J( f ∗(z; τ);α,β) =
1
2

K∑
k=1

n∑
i=1

n∑
j,i

Q∑
q≤l

γi jql log[ f (xi jk|ziq, z jl;βql)]

+

n∑
i=1

Q∑
q

τiq log[αq] −
n∑

i=1

Q∑
q

τiq log[τiq] (4.18)

where γi jql, is defined as

γi jql =

τiqτ jq if q = l

τiqτ jl + τilτ jq if q < l.
(4.19)

We note the equivalence between
∑n

i=1
∑n

j,i
∑Q

q,l τiqτ jl and
∑n

i=1
∑n

j,i
∑Q

q≤l γi jql. An optimi-
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sation of this bound leads to the following point estimating equations:

τ̂iq ∝ α̂q

K∏
k=1

n∏
j,1

Q∏
l=1

[ exi j dT
k β̂ql

1 + edT
k β̂ql

]τ̂ jl

(4.20)

α̂q =
1
n

n∑
i=1

τ̂iq. (4.21)

To account for the effect of small samples we use Firth type estimates (Firth, 1993), which

are based on the regularised variational bound

J∗( f ∗(z; τ);α,β) = J( f ∗(z; τ);α,β) +
1
2

Q∑
q≤l

log[Det(I ql(βql)], (4.22)

where Iql(βql) is a Fisher information matrix for block (q, l) obtained from Eq. 4.18. The

estimates of βql are found by the Newton-Raphson method so that for the m-th iteration it

can be defined as:

β(m)
ql = β(m−1)

ql + I−1
ql (β(m−1)

ql )U∗ql(β
(m−1)
ql ), (4.23)

where U∗ql is a score function associated with the block (q, l) obtained from Eq. 4.22.

Eventually, to select the best model, we use the ICL criterion described in Section

4.1.1. The ICL for this model can be stated as

ICL(MQ) = arg max
(α,β)

log f (x, z|MQ, α̂, β̂) −
1
2

(
Q(Q + 1)

2
P) log(

n(n − 1)
2

K) −
Q − 1

2
log[n].

(4.24)

4.1.3 Rich Block

A Rich Block aims to describe the interaction between highly connected blocks of a net-

work. As shown in Eq. 4.11, within the context of a SBM, the expected degree of a block

is determined by a mixture of inter- and intra- connectivity rates of the block and its size.

A Rich Block organisation of expected degree k is formed by the connection among col-

lection of mini-blocks5 with expected degree k or larger; therefore, the connection matrix

of this configuration is defined as ΠRB
P×P, where P is cardinality of set of mini-blocks of

blocks with expected degree of k or larger. In this setting, the number of RB organisation is

equal to number blocks which were found by SBMs. It is worth noting the first RB coeffi-

cient is intra-connection rate of the block with the highest expected degree and the last RB

5Each block is formed of collection of mini-block which determines the rate of connectivity between the
block and other blocks. Inter-mini-blocks sits at the intersection between the block and the diagonal of the
connectivity matrix which represent the connectivity rate of nodes within that block. Intra-mini blocks are off

diagonal blocks representing the connectivity between two septate blocks.
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coefficient is the expected density of the network.

As discussed in section 3.1.9, Rich Clubs were shown to be sensitive to variations

in the degree centrality of nodes of a subject, and therefore, it is rarely the case that the

Rich Club organisation is consistent across subjects. Consequently, this makes group infer-

ence between RC of subjects impossible, as the changes in degree centrality of nodes across

subjects can change the club membership of nodes. However, by using the parameter Z, ob-

tained from Het-BMM, as the Rich Block assignment we can rectify this problem since the

Het-SBM estimates a common block assignment across subjects therefore the difficulties

in group inference between network cores merely boils down to comparing the connection

rates of the Rich Blocks.

It is notable that blocks with higher rate of inter-connectivity are more likely to form

additional connections, purely based on chance, with other highly inter-connected blocks,

which makes it troublesome to examine genuine RB effects. Therefore, the RB coefficients

should be compared by an appropriate null model. This leads us to divide the analysis of

the Rich Block effect into two main components:

1. Rich Block Detection which compares the mixture degree distribution of mini-blocks

involved in a Rich Block organisation against mixture degree distribution of corre-

sponding blocks in a null model. On each λ level if the mixture degree distribution is

significantly different, then the relative RB setting is identified as a RB organisation.

2. Rich Block Coefficients are only concerned with estimating the rate of connectivity

between blocks with expected degree, λ, or larger regardless of whether the connec-

tivity rate is sourced in chance or the genuine RB effect.

In the following, we start by introducing an appropriate null model for Rich Block

detection and then we discuss how Rich Block Organisation and Rich Block Coefficients

can be identified. Fig 4.3 also illustrates the process which should be taken to estimate the

organistaions and coefficients.

Null Model for Rich Blocks

In context of SBMs, a null model is defined as a connectivity rate matrix, ΠNull, which

lacks any form of structure but where each block has an identical size and expected degree

as in an estimated connectivity rate matrix, Π. It is worth noting that the null model that

was defined here is quite similar to what was discussed in section 3.1.5. One intuitive

way of forming null models, is to generate a large number of randomised networks using

the method described in section 3.1.5 and fit SBM techniques to each randomised network.

Execution time for the process explained is more than 1.20 hours (given each of SBM fitting
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takes 1.1s) per a subject of 300 nodes6. However, this technique is not only computationally

inefficient, but also the estimated block assignments between each randomised network may

turn out to be different. Different block assignments in randomised networks make further

statistical inferences practically impossible.

Inspired by the null model proposed by Newman (2013) to detect the modular struc-

tures in empirical networks, we propose a method, called a Tensor Null Model (TNM), to

generate a randomised connectivity matrix, ΠNull. In a TNM, the expected degree of each

block is preserved while the structure within the connectivity rate matrix is eliminated by

tensor multiplication of expected degrees. Assuming equal αs, null probability connectivity

rate matrix is defined as:

ΠNull =
S ⊗ S>∑

S
(4.25)

where S is a column vector representing the block strength of connectivity matrix, Π. In

the case of models with unequal block sizes, we use a weighted sum of block strengths to

obtain the vector S. It is worth mentioning that the TNM execution time is 0.019s which is

63k times faster than the conventional randomisation process.

Rich Block Detection

To examine whether a Rich Block organisation suggests a significantly larger rate of con-

nectivity compared to its null model, we compare the degree distribution of Rich Block

organisation with its corresponding degree distribution in the null model. Although the

comparison should be conducted between the ’density’ of each organisation in the esti-

mated and null connectivity matrix, we only use degree distributions as, according to the

handshaking lemma (Euler, 1741), the average degree of a network is double the number of

edges.

To form the degree distribution of a Rich Block organisation, we use a finite mixture

of Binomial distributions of mini-blocks that contribute to a Rich Block. Given the Ziq and

λq from section 4.1.1 we can extract the Rich Block organisation of blocks with degree

equal or larger than λq out of the connectivity matrix Π̂. The Rich Block organisation of

degree k, has a known block assignment ξk
ip which indicated whether node Vi is a member

of a block p while block p is a member of the Rich Block organisation. Therefore, we can

estimate the probability that a node drops in block p as:

α′p =
1
n′

n′∑
p=1

ξip =
α̂p∑n′

p=1 α̂q
(4.26)

6The execution times were calculated on a OS X El Capitan with 2.5GHz process and 16G memory.
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where, n′, is number of nodes in a Rich Block organisation. Therefore, the weighted sum

of connections between block p and the rest of the blocks within ΠRB can be defined as:

π̄p
′ =

P∑
`=1

α′pπp`. (4.27)

Inspired by Eq. 4.12, we can approximate the degree distribution of RB organisation

of λ as a finite mixture model of Binomials. Therefore, the probability of a node, Ei, from

a Rich Block organisation having degree ρ(Ei) can be defined as:

f k(ρi) =

P∑
`=1

P(ρ`|ξk
`p = 1)P(ξk

`p = 1),

=

P∑
p=1

α′pBinomial(n′ − 1, π̄′p)

(4.28)

Statistical Testing For testing whether a Rich Block organisation genuinely exhibits a

Rich Block effect, we approximate the degree distribution of the organisation in the esti-

mated connectivity rate matrix, Π̂ and the randomised connectivity rate matrix, Π̂Null. We

then obtain the Cumulative Density Function (CDF) of each of these two degree distribu-

tions aiming to generate synthetic degrees. Then, after generating one million, where the

results reach stability, synthetic degrees out of the CDF of f k(ρi) and f k
Null(ρi), we obtain

the p-value of null hypothesis that the degree distributions are not different. The null hy-

pothesis is rejected when less than 5% of the degrees generated in f k(ρi) are larger than the

degrees generated in f k
Null(ρi) and consequently the Rich Block organisation of degree k is

significant. A visual example of this process can be found in Fig 4.1 where the null and

estimated degree distributions for RB organisation 1 and 11 were shown.
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-log10(p-value)=1.6

-log10(p-value)=0.33

Null Model

Null ModelConnectivity Matrix

Connectivity Matrix

Mixture Densities

Rich Block 
Null Rich Block

A

B

Figure 4.1: Rich Block detection procedure on a toy connectivity rate matrix, Π̂, and its null model,
ΠNull, were shown, representing a network of 300 nodes and Q = 15. Binomial Mixture densities
used to generate degree distributions of two arbitrary RB organisation of 4 (A) and 11 (B) illus-
trated. The results of RB detection suggest that H0 : f k(ρi) > f k

Null(ρi) is significant, while similar
hypothesis fails to be rejected on the 11th RB organisation.

Rich Block Coefficients

In section 4.1.1, we showed how the global density of a network can be obtained by SBM

parameters. Here, we show how, by using Eq. 4.15, we can estimate the density of each

Rich Block organisation. Given the connection rate matrix, Π̂, and the prior probability, α,
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we can obtain the density of each Rich Block organisation as:

Υk =

P∑
q=1

P∑
`=1

α′qα
′
`πql. (4.29)

Similar to a RC, RB coefficients should also be normalised by their respective null RB

coefficients, Υk
Null, to eliminate the bias caused due to chance. Normalised Rich Block

coefficient is defined as:

Υk
Norm =

Υk

Υk
Null

=

∑P
q=1

∑P
l=1 α

′
qα
′
lπql∑P

q=1
∑P

l=1 α
′
qα
′
lπ

Null
ql

. (4.30)

For visual example of how RB coefficients are estimated, and their comparison with RC

cofficients, see Fig 4.2. From now on, the term RB coefficient is referred to a normliased

RB coefficients unless, it is stated otherwise.

C

Figure 4.2: A. Connectivity probability matrix of a toy network with 15 (equal-sized) blocks B.
Simulated network. C. shows the RB coefficients, for this network. It is notable how the RB coeffi-
cients could differentiate between the blocks with the same expected degree but different patterns of
connectivity.

Feeder and Local Connections

Detecting significant RB organisation allows us to examine the interactions between the

RB organisations and the rest of the network. Similar to section 3.1.9, these interactions are

facilitated by a collection of mini-blocks which are classed into two main categories. The

first category is Feeder, which represents the blocks that connect the RB organisations to
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the rest of the network. In the context of RB, feeders are a collection of off-diagonal mini-

blocks which participate in the expected degree of hub blocks, but they are not detected as

part of a RB organisation. The second category is Locals, which refer to a collection of

inter- or intra- block interactions that merely form between non-RB blocks. More simply,

they are neither participating in the degree of a significant RB nor identified as one. We use

Eq. 4.29 to calculate the connection rates in each category of interactions.

Figure 4.3: Flowchart of calculation Rich Block and group inference between two groups. Rect-
angles indicate process, parallelogram shows data. Blue indicate processes that should be under
taken on control and red for patient. Also note that colourful sections should be repeated for each
individual, however, we only depicted this process for one Π per group.

Group Inference for Multi-subject Rich Block Coefficients and Organisation

Aiming to conduct statistical inference between RB coefficients and organisations between

two groups, we propose two techniques which heavily rely on the notions of NRCC and

NRCI explained in section 3.1.9:

Block-wise Rich Block Coefficient(BRBC) is a matrix of size K × Q. Each element

of this matrix is set with RB coefficients corresponding to the degree of the Rich Block

organisations. For example, if block q in subject k has an expected degree of λg, then

element (k,q) of BRBC matrix is set to Υ
g
Norm. For each group under study, we then produce

two separate matrices of BRBCcontrol and BRBCpatient. Finally, hypothesis testing can be

applied between each column of these two matrices.

Rich Block identity (RBI) is a binary matrix of size S × Q. Each element of this

matrix indicates whether the corresponding block has been detected as a member of a sig-
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nificant RB organisation. Therefore:

RBI(s, q) =

1, if P( f k(ρi) , f k(ρi)Null) < 5%

0, Otherwise.

Eventually by forming separate RBI matrices corresponding to each group, RBIcontrol and

RBIpatient, a hypothesis test can be applied to each column of these two matrices to identify

the significant differences between the RB organisation of two groups. For this study, we

use the Fisher Exact test from a class of small-sample categorical tests.

4.1.4 Degree Analysis

Although measures of centrality, such as Degree Centrality, are among some of the most

widely used graph theoretical methods, finding hubs within a network is still a subject of

ongoing debate due to the popular challenge of deciding on a threshold after which a node

or a block is considered to be a hub. In this section, we introduce a SBM-based measure

called Degree Expceptionality (DE) which aims to detect the hub blocks of a network. In

the context of DE, a block is a degree hub when its expected degree, λ, is significantly

larger than the expected degree of rest of the network. For testing whether block ` is a hub

block, Monte-Carlo simulations were used to generate one million synthetic degrees out of

the degree distribution of each block. We then tested each under the null hypothesis that the

expected degree of the block λ` is significantly larger than the expected degree of a mixture

of all other blocks:

H0 : P
(∑

q∈B
αqPoisson(λq)>α`Poisson(λ`)

)
(4.31)

where B contains all blocks except block `. Blocks with p-value lower than 5% are con-

sidered as hub blocks. Therefore, by considering Eq. 4.11, we can conclude that a block

with a small number of nodes but relatively higher rate of connectivity is more likely to be

detected as a DE.

For further analysis of the hub blocks, we also adopt the notion of Hub Disruption

that was discussed in section 3.1.10 by substituting the former degree centrality of the nodes

with expected degree of blocks. Therefore, in the context of SBM, the y-axis of the dis-

ruption plot shows the difference between the expected degree of blocks between the two

groups of healthy and the patient and the x-axis shows the average of the expected values

in the two groups. Thereby, when a point, corresponding to changes in a block’s expected

degree during a disease, appears in a negative side of the y-axis, it indicates that the rate of

inter- and intra- connections experience a decrease during the disease and vice versa.
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4.2 Simulation Methods

Aiming to validate the methods proposed so far, we use a synthetic connection rate matrix,

Π, and a synthetic prior probability, α, to simulate networks with a different number of

nodes and blocks. Given these two parameters, we generate surrogate networks according

to Eq. 4.11.

For simulating the Rich Block effect within a network, regardless of network size,

25% of each connectivity rate matrix, Π, was assigned with higher intra-connection proba-

bilities, whereas, the rest of the network is assigned with relatively lower connection rates.

As it is known that the human brain network has a modular structure, diagonal blocks have

a relatively larger connection rate. Since variation in the network density can drastically

bias the Rich Block/Club analysis, we ensure that the generated networks have the same

global density by using Eq. 4.15. In terms of the network size, every simulated network

has three classes of 60, 120 and 300 nodes. Each of these classes has a sub-class with a

different block number of 6, 15, 30 and 60. However, due to the low node
block ratio (≥ 4), we

later discard three of these classes (60 nodes, 30 blocks; 60 nodes, 60 block; 120 nodes, 60

block).

We also examined how successfully Degree Exceptionality can find hub blocks of

networks of different nodes and block sizes. We used synthetic connection rate matrices of

10, 20 and 30 blocks. Using each of these matrices, we produced networks of size 120, 240

and 360. To simulate the effect of hubs we only set 10 % of blocks to a remarkably higher

connection rate (≈ 98%). Therefore, each category has 1,2 and 3 hub blocks, respectively.

Finally, we use a 15 equal-sized connection rate matrix to examine the performance

of the Tensor Null Model. The connection rate matrix setting has hub blocks as well as

several same-degree blocks with different pattern of connectivity.

4.2.1 Validation Methods

In this section, we describe how each of the proposed methods can be validated by simula-

tion methods described in previous section. It is worth noting that for validation, we only

use a single subject ERMM, discussed in section 4.1.1, as setting a ground-truth for the

Rich Block resulting from multi-subject Het-SBM appears to be cumbersome.

Tensor Null Model

To produce a ground-truth for validating the TNM, we first use the synthetic connectiv-

ity rate matrix described in section 4.2 to generate 1k simulated networks, then using the

Maslov & Sneppen (M&S) method, discussed in section 3.1.5, we randomise each of these
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one thousand networks. Eventually, we use block assignments of the synthetic network to

obtain a connection rate matrix for each of the randomised networks using Eq. 4.8.

Using the Kullback-Leibler divergence (Kullback and Leibler, 1951), DKL, we mea-

sure the distance between the averaged degree distribution of the M&S randomisation al-

gorithm, f k
Null−MS (ρi), and the corresponding degree distribution of the RB organisation of

degree k, f k(ρi). We separately repeat this measurement between the degree distribution of

the TNM, f k
Null−T NM(ρi) and the degree distribution for each RB organisation, using:

Dk
KL( f k

Null−MS (ρi)|| f k(ρi)) =
∑

i

f k
Null−MS (i) ln(

f k
Null−MS (i)

f k(i)
)

Dk
KL( f k

Null−T NM(ρi)|| f k(ρi)) =
∑

i

f k
Null−T NM(i) ln(

f k
Null−T NM(i)

f k(i)
).

(4.32)

By comparing the distances between each of these randomisation algorithms, we

can examine how TNM performance differs from the MS algorithm for each of the RB

organisations.

Nodal Richness Coefficients

To investigate how similar Rich Block coefficients can estimate Rich Club coefficients, we

generate one thousand simulated networks for each of the categories described in section

4.2. To examine the similarity between RB and RC coefficients, we construct Nodal Rich-

ness Coefficients(NRC) vectors of size 1 × N for Rich Club coefficients (NRCRC) and Rich

Block coefficient (NRCRB), separately. Each element of these two vectors has a RB/RC

coefficient of the block/club that the nodes belongs to. Thereby, if node ni belongs to a

block with expected degree of k, we put the corresponding Rich Block Coefficient of this

club in NRCRB(ni), in the same way, if node ni belongs to club of degree k, NRCRC(ni) will

be set to the respective Rich Club coefficient. Eventually, to measure similarity between the

coefficients, we use coefficient of determination, (r2).

Richness Identity

In addition to coefficients, it is also crucial to examine the similarity between significantly

detected RB and RC organisations. For each simulated network, we use the RB detection

method, discussed in section 4.1.3, and RC detection methods, discussed in section 3.1.9.

For each network, we produce two separate Richness Identity (RI) vectors, one for the RB

organisation, RIRB, and another for the RC organisation, RIRC. A RI vector is a binary

vector of size 1 × N, where each element indicates whether node n is part of a significantly
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detected either RB or RC organisation. Hence, if node n belongs to a significant RC organ-

isation, its corresponding element in RI is set to one, otherwise it is set to zero.. Similarly,

if node n is a member of a block which has been detected as a significant RB organisation,

then RIRB(1, ni) = 1, otherwise RIRB(1, ni) = 0. To measure the similarity between RIRB

and RIRC we use the Adjusted Rand Index (ARI). The ARI forms a 2× 2 contingency table

for comparing identity RIRC and RIRB. It can be written as:

ARI(RIRB,RIRC) =

(
n
2

)
(a + b) − [(a + b)(a + c) + (c + d)(b + d)](

n
2

)2
− [(a + b)(a + c) + (c + d)(b + d)]

, (4.33)

where a is number of objects in a pair that are placed in the same group in RIRC and in the

same group in RIRB; b is the number of objects that are placed in the same group in RIRC

but in different groups in RIRB, c is number of pairs that are placed in different group in

RIRC but the same group in RIRB, d is number of pairs that are both differently grouped in

RIRC and RIRB. Any overlap between RIRC and RIRB is determined by a value in between

0 and 1.

4.3 Data

Aiming to show how a Rich Block can be used to find a highly connected network core

and how it can be useful in identifying the changes in topological features of the functional

connectome during a disease, we use Resting-state scans of 13 healthy subjects (age=33.3

± 9.2 years, male=14) and 12 schizophrenic subjects (age=32.8 ± 9.2 years, male=10). For

further details about the pre-processing and network construction procedures, please see

section 3.2.

4.4 Results

4.4.1 Simulations

In this section we demonstrate the results of the simulations and validations that were dis-

cussed in section 4.2.1. First, we show the validation of the Tensor null model and compare

it with Maslov & Sneppen null model. Second, we validate the Rich Block by showing how

RB coefficients and organisation can estimate the RC coefficients and organisations. Fi-

nally, we validate the Degree Exceptionality by showing how likely it is that the DE detects

simulated block hubs.

77



Tensor Null Model Validation

Figure 4.4: Shows probability density functions of how the proposed Tensor Null Model behaves
in Rich Block organisation.

In Figure 4.4 we show the behaviour of the probability density function of the original Rich

Block f k(ρi, Tensor Null Model f k
Null−T NM(ρi) and the Maslov & Sneppen f k

Null−MS (ρi)

during formation of RB organisations of degree k. Since the network under study was con-

structed from 15 equal-sized blocks the number of Rich Blocks ranged from 1 to 15. It is

important to note that the first sub-figure, RB1, shows the degree distributions of the diag-

onal mini block of the block with the highest connection rates. The last sub-figure, RB15,

shows the degree distributions of the overall network. After the second RB organisation,

RB2, the distance between the null models and the network decrease until RB15 where they

are identical. The distances between the TNM and the estimated network are slightly lower

than the corresponding distances between the MS and the estimated network, however, in

RB15 the results suggest that these distances are almost zero. Also, applying the coefficient

of determination between ΠNull(M&S ) and ΠNull(T NM) suggests 98% similarity between the

two connection matrices.
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Rich Block Detection and Rich Block Coefficient Validation

In Figure 4.5, each sub-figure illustrates the coefficient of determination between the Nodal

Richness Coefficients and the Adjusted Random Index between Richness Identities. The

results suggest the estimations, specifically in terms of Richness Identity, tend to improve

upon increasing the number of nodes and blocks. For example, in a network with 300 nodes

and 30 blocks is significantly better than the results suggest for a network of 60 nodes and

6 blocks. It is worth mentioning that in both cases, there are exactly 10 nodes within each

block. Overall, Figure 4.5 shows that, as the number of nodes and blocks grows, the RB

coefficients and organisation become more similar to the RC coefficients and organisations.

Figure 4.5: Shows results of RB estimation for both coefficient and organisation. Each column
represent networks with different size and each row represent networks with different block numbers.
In each subplot, the left-hand bar respresent the coefficient of deterministic (r2) between the RC and
RB coefficients and right-hand bar represent the Adjusted Rand Index between the RC and RB
organisations.
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Degree Exceptionality validation

Figure 4.6 illustrates the behaviour of the Degree Exceptionality for different sets of net-

works sizes and block numbers. Each of these simulation scenarios was repeated for 1k

times and the success rate was obtained as the ratio of the number of times that the DE suc-

cessfully detected a hub block over total number of iterations. For networks with only one

hub block, the first row of Figure 4.6, the DE could successfully detect the hub block across

all iterations. However, in networks with two hub blocks, the second row of Figure 4.6, this

rate reduces to ≈93%. Eventually for networks with three hub blocks, the DE algorithm

could only find hub blocks across ≈86% of the iterations.

Figure 4.6: Shows results of the Degree Exceptionality on simulated networks. Each column repre-
sents networks of different sizes and each row represents networks of different block numbers. The
number of hubs in each network was defined as 10% of the number of blocks.

4.4.2 Het-SBM on rs-fMRI of Healthy and Schizophrenic Subjects

Figure 4.7 shows the rearranged empirical functional connectivity of healthy and schizophrenic

subjects according to the optimal block assignment obtained from Het-SBM. The results
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suggest that optimal number of blocks for both groups is Q = 31. For a more comprehen-

sive evaluation of results we divide the blocks into two types: coherent blocks and combi-

natory blocks. A block is called coherent when more than 75% of the regions inside it come

from the same anatomical part of the brain. Whereas, combinatory blocks are referred to

as blocks which are spatially spread across the brain and have been formed by regions of

different anatomical areas. For assigning each block as either coherent or combinatory, we

assume that the brain has been divided into nine separate anatomical regions: five lobes

from the Cerebral cortex (Frontal lobe, Temporal lobe, Parietal lobe, Occipital lobe, Limbic

lobe, Insular lobe), Thalamus, Cerebellum and Basal Ganglia.

The results suggest that 12 out of 31 blocks were identified as coherent and the 19

remaining blocks were identified as combinatory. Block 1 and Block 4 are consistently

formed by regions from the middle Temporal regions. Also, block 16 was formed by re-

gions from superior Temporal lobe. Blocks 21, 23, 26, 27 and 19 were constructed from

regions mainly from the Frontal lobe and blocks 8, 17 and 20 were formed by regions from

the Parietal lobe. Regions in block 6 are completely from the occipital lobe while blocks 2

and 19 were formed by regions of the cerebellum and limbic lobe respectively. Table B.1

shows the share of each anatomical region in combinatory blocks. By projecting the block

assignments on a brain surface (see Figure B.1) we also realise that although the functional

connectome lacks any form of anatomical information, the Het-SBM could capture the spa-

tial information reasonably well, which suggests that the pattern of the forming connections

in anatomical regions are consistent with their function.
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Figure 4.7: Connection probability matrix of control A and Schizophrenic patients B. C and D are
sorted connection probability matrices based on the decreasing expected degree of each block.

4.4.3 A Rich Block for rs-fMRI Schizophrenia

Rich Block Organisations

Figure 4.9 shows the RBI of each group of healthy (top panel) and schizophrenia (bottom

panel) subjects. Each RBI shows blocks that were identified as a significant Rich Block

organisation. The results of within group analysis suggest that blocks 13, 14, 17, 31 were
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identified as significant RB organisations, while, in schizophrenia only blocks 17 and 24

were identified as RB organisations. Hypothesis testing between RBIControl and RBIPatient

reveals that Blocks 13, 14, 31 are no longer part of the detected Rich Block organisations in

schizophrenic functional connectivity, however, a new block, 24, joins the RB organisation

during schizophrenia. Therefore, the only block that remains unchanged during the disease

is block 17. By referring to Table B.1, we identify blocks 13, 14, 24 and 31 as combinatory

blocks. These blocks were spread across the Parietal, Limbic and Frontal lobe. Block 24

which is also combinatory is formed by regions from the Occipital Lobe and the Cerebel-

lum. Finally, block 17 is the only block which has appeared to be among coherent blocks

and it only has regions from the Parietal Lobe.

For further visual examinations, if a block was identified as a significant RB organ-

isation in more than 25% of the individuals within a group then we consider that block as

part of the overall RB organisation of a group. Figure 4.8 shows the configuration between

blocks of the RB organisation and the rest of the network in both healthy and schizophrenia

subjects.

Figure 4.8: illustrates a circular layout of the group-averaged probability connection matrix, Π, of
the controls A and patients B. Detected RBs are located in the middle of the layout. For the sake of
visualisation, we only drew the top 30% of the strongest connections.
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Figure 4.9: Shows the Rich Block Identity (RBI) of controls (top) and patients (bottom). The yellow
cells indicate that block q for subject s is a significant Rich Block. Red asterisk indicates statistical
differences between two RBIs.

Rich Block Coefficient

Figure 4.10 A and C shows BRBC of the controls and patients regardless of whether

they were detected as significant RBs. In the same figure, sub-figures B and D show re-

sults of statistical inference between the mean of each block (column) of BRBCcontrol and

BRBCpatient: Blocks 1, 2, 4, 6, 7, 8, 9, 17, 21, 23, 24, 26 and 29 have relatively larger

normalised RB coefficients in schizophrenic subjects, whereas, blocks 5, 18, 19 in the con-

trol have larger normalised RB coefficients in healthy subjects. 69% of the blocks which

were identified as larger in schizophrenia are among the coherent blocks, while, 66% of the

blocks with higher normliased RBs in healthy subjects are among the combinatory blocks.
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C

B

D

Figure 4.10: A and C shows Block-wise Rich Block Coefficient (BRBC) in control and patient
respectively. B and D shows mean of each column in A and B. Red asterisk shows statistical signif-
icance between mean of RB values of two groups.

In terms of anatomical characteristics of the blocks which are significantly higher

in schizophrenia, blocks 2, 7, 9, 24 which were found to have a larger RB coefficients, are

among the combinatory blocks which highly overlap with the Cerebellum. Blocks 21, 23,

26 and 29 are among the blocks which highly overlap with the Frontal Lobe and, finally,

block 8 and 7 are among the coherent blocks of the Parietal Lobe. On the other hand,

among the blocks which experience an increase in their RB coefficients, blocks 5 and 18

have combinatory blocks which are larger overlaps with Frontal, Parietal and Limbic lobes,

whereas, block 19 is a coherent block of the Limbic system.

Local and Feeder Blocks

Figure 4.11 shows the density of each class of connection (i.e. RB, Feeder and Local).

Figure 4.11.B suggests that the connection rate among blocks of the RB organisation of the

functional connectome reduces during schizophrenia. Figure 4.11.C suggests that the den-

sities of feeder connections are also reduced during the disease. However, Figure 4.11.D

suggests that the schizophrenic functional connectome enjoys a larger density of local con-

nections in comparison to the controls, while, the density of the local connections in healthy

individuals as a large variance. Considering that we used the same overall threshold across

the subjects, the results suggest that during schizophrenia the rate of connection is shifted
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from the RB organisation to local connections.

A B

C D

Figure 4.11: A. illustrates the organisation of the local and feeder connections along with RB in a
synthetic adjacency matrix. B. Illustrates the difference in density of the RB connection individuals
in healthy and schizophrenia. C. Shows the feeder density of individuals in healthy and schizophre-
nia subject groups. D. Shows the local density between individuals of healthy and schizophrenia.
The red asterisk indicates the statistical difference.

4.4.4 Degree Analysis on rsfMRI Schizophrenia

Figure 4.12 A and C show binary matrices representing the DE blocks in individuals across

the healthy and schizophrenic groups, respectively. In the healthy group, block 13 (λ13 =

74.2) was detected as the DE unanimously over all individuals, whereas, in the schizophre-

nia blocks 17 and 24 was identified as a hub block. It is notable that block 17 (λ17 = 55.43)

and 24 (λ24 = 59.80) are not consistent across individuals as in only one subject both of

these blocks were identified as hub blocks. Figure 4.12 B and D show the expected degree,λ,

of each block across subjects of the healthy and schizophrenic groups.
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Figure 4.12: A and B are binary matrices of the DE effect in healthy and schizophrenia groups. B
and D are the expected degree of each block for the individuals in the control and patient group. Red
asterisk indicates the statistical difference and red rectangles indicate the degree exceptional blocks.

Figures 4.12.B and 4.12.D show the expected degree of blocks in healthy and

schizophrenia subjects, respectively. Statistical testing between the two groups suggests

that only block 24 is among the hub blocks that experience a decrease during the disease.

Further investigation of the results suggests that blocks 3, 5, 11, 13, 14, 16, 19, 30, 31 are

significantly larger for the healthy subjects. It is notable that blocks 5 and 19 were also

identified to have significantly larger RB coefficients. On the other hand, blocks 1, 2,4,

7, 8, 9, 10, 18, 21, 23, 24, 26, 29 enjoy higher expected degree in schizophrenia. Apart

from blocks 10 and 18, the remaining blocks were also identified to have higher RB coef-

ficients. In terms of the anatomical characteristics of the blocks, 77% of those blocks that

were identified to be larger in schizophrenia are among the coherent blocks, whereas, 78%

of the blocks that were shown to be larger in the healthy group are among the combinatory

blocks.

We also examined the degree exceptionality on group-level connection rate matrices

directly obtained from Het-SBM. The results suggest that block 13 (λ13 = 72.44) in healthy

subjects and blocks 17 (λ17 = 54.38) and 24 (λ24 = 58.30) in schizophrenia are hub blocks.
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For full analysis of the DE on the group-level connection rate matrices see Appendix B.6.

Figure 4.13: Illustrates a Bland-Altman plot to investigate hub distribution between healthy and
schizophrenic patients. The black dotted line shows the mean of the differences. The grey dotted
lines indicate the 1 SD distance from the mean.

Figure 4.13 illustrates the Bland-Altman (Hub Disruption) between the expected

degree of blocks in the healthy and schizophrenia groups. The slope of the fitted line to

changes is −0.35 which suggests that the blocks with a higher rate of connection have a less

prominent role during Schizoprenia.7 The block that has mostly experienced this disruption

is block 13 which is a combinatory block of the Frontal lobe and the Parietal lobe. This

block was identified as the degree exceptional and the member of the RB organisation in

the healthy group. Block 14 which is comnibatory block of the Parietal lobe, Occipital

lobe and Limbic lobe is also among the healthy RB organisation which experiences a sharp

decrease during Schizophrenia. Block 19 which is a coherent block of the limbic lobe

and block 5 which is combinatory block of the Frontal lobe, Temporal lobe and Parietal

lobe are also among the highly connected blocks which experienced a disruption during the

disease. On the other hand, blocks that gained connectivity during schizophrenia are blocks

7 and 24 which are combinatory blocks of the Occipital lobe and the Cerebellum. Both of

these blocks were identified as the DE and member of RB organisation in the schizophrenia

7In this section we only report changes in degree of blocks whom locate above or below 1σ of the all
changes.
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group. Block 2 which is a coherent block of the Cerebellum, blocks 26 and 21 which are

coherent blocks of Frontal lobe and block 8 which is a coherent block of the Parietal lobe are

also among the less connected blocks which experienced an increase during schizophrenia.

It is notable that block 17 is a member of RB organisation in both healthy and schizophrenia

groups, suggesting almost zero changes in its expected degree during schizophrenia, despite

the fact, it was identified as a hub block by the DE.

4.5 Discussion

In this chapter, we proposed a novel graph theoretical measure called the Rich Block. the

Rich Block is an improvement over the conventional Rich Club in the sense that it facilitates

the group inference between subjects, in contrast to the Rich Club which was shown to

be limited in group analysis of neuroscientific datasets. Further to the group inference,

the Rich Club forms the so called ’clubs’ that are merely based on the degree of nodes,

whereas, the Rich Block forms the Rich Block organisations (former clubs) based on block

assignments estimated by a Stochastic Block Model. This results in having nodes grouped

not only based on their degree, but also based on how the nodes interacting with rest of

the network. For example, if a stack of nodes has exactly the same degree, but different

inter- and intra- connectivity pattern, they will be grouped as two separated blocks. It is

also worth noting that with the proposed Tensor Null Model, the process of detecting the

Rich Block phenomenon becomes remarkably fast.

Our findings suggest that the Rich Block organisation in functional connectivity of

schizophrenia is impaired especially in the Frontal and Parietal lobes. In healthy subjects,

the Rich Block organisation is formed by four blocks which all are involved in the DMN of

the human brain. Three of these blocks are combinatory blocks which are mainly formed

by a collection of nodes from the Parietal, Frontal and Limbic systems and one remaining

block is a coherent block of the Parietal Lobe. These blocks include regions from the

Posterior Cingulate, Precuneus and Paracentral Lobule. However, our findings suggest that

in the schizophrenic functional connectome, two combinatory blocks of the DMN no longer

become members of the RB organisation, Instead, a combinatory block of the Occipital and

Cerebellum joins the RB organisation. It is worth stressing that RB coefficients of the RB

organisations are not different apart from block 17 that suggests an increase during the

disease. Interestingly, the expected degree of this block is quite similar across groups. This

result suggests that although block 17 retained its RB organisation membership, as well

as its expected degree during schizophrenia, it was affected by changes in the topological

features of the other members of the RB organisation.

The majority of blocks (70%) that were found to have higher RB coefficients in
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healthy subjects are among the combinatory blocks. These combinatory blocks are formed

by spatially distinct brain regions, including the Precentral Gyrus of the Frontal Lobe, the

Postcentral Gyrus of the Parietal Lobe, the Cingulate Gyrus of the limbic system and Insular

Lobe. On the other hand, the same proportion of blocks which were found to have higher

RB coefficients during schizophrenia are among coherent blocks including the Cerebellum,

the Occipital lobe, medial and superior gyrus of the Frontal lobe and middle gyrus of the

Temporal lobe. The realisation that a large proportion of the RB organisation in healthy

subjects is formed by combinatory blocks may emphasise the role of the RB organisation

as a backbone to the functional connetome as it was previously shown that the RC organ-

isations play a similar role within the human connectome (de Reus and van den Heuvel,

2014). However, this role is later diluted during the disease as only one combinatory block,

24, remains as part of the schizophrenic RB organisation.

We also examined three higher level connections: connections within the RB organ-

isation (RB connections), connections between the RB organisation and the rest of the net-

work (feeder connections) and connections between the non-RB parts of the network (local

connection) across the healthy and schizophrenic subjects. The results indicate that the den-

sity of connections within the RB organisation reduced during schizophrenia. The reduction

in the RB connection of the schizophrenic connectome had been previously reported in the

functional (Yu et al., 2013b) and the structural (van den Heuvel et al., 2013b) connectome.

Additionally, the results suggest a reduction in feeder connections of schizophrenic pa-

tients, whereas, density of local connections increase during the disease. Bearing in mind

that density of all subjects was fixed via defining a global density, these results suggest

that the density of connections demonstrates a shift from the RB organisation to a local

level. The shift in density of the connections from the RC organisation to the local connec-

tion level was previously reported in the structural connectivity of schizophrenic patients

(van den Heuvel et al., 2013b; Collin et al., 2014b).

We also proposed a method that aims to identify the hub blocks, called the Degree

Exceptionality. Although hubs have a fairly straightforward definition, identifying them is

rather an arbitrary decision since it is unknown that above what threshold a node (or block)

can be considered as a ‘hub’. The Degree Exceptionality simplifies the process of finding

hubs by detecting the block that has a remarkably high inter- and intra- connection rate.

The likelihood of a block to be identified as a hub block is heavily associated with the size

of the block and its connection rate. Our findings in the healthy human brain suggest that a

combinatory block of the DMN which includes the Cingulate Gyrus, Paracentral Lobule is

a hub block of the healthy human brain. The same approach identifies two blocks as a hub

in the schizophrenic brain network; one is a coherent block of Parietal lobe which includes

the Precuneus of the DMN and the other is a combinatory block of the Cerebellum and
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the Occipital lobes. Although it is notable that the hub block found in the healthy subjects

suggests a remarkably higher rate of connection compared to two hub blocks found in the

schizophrenia. This findings suggest that the schizophrenic functional connectivity not only

demonstrates a reduction in the strength of hubs, but also suggest a shift from DMN-centred

hubs to not-Parietal, not-Frontal hubs such as the Ooccipital and the Cerebellum. It is also

worth noting from DE results in healthy subjects, that the hub block is a combinatory block

of the DMN consistently over all subjects, whereas, in the schizophrenia the hub blocks

include a combinatory blocks of the Occipital and the Cerebellum and coherent block of

the Parietal lobe, however, only one schizophrenic patient (subject 6) demonstrate the both

hub blocks, simultaneously. It is worth mentioning that less prominent role of hubs (Lynall

et al., 2010; Drakesmith et al., 2015) as well as emergence of the non-Parietal hubs (Bassett

et al., 2008; van den Heuvel et al., 2013b; Collin et al., 2014b) has already been reported.

The changes in the expected degree of blocks was also summarised using a Bland-

Altman plot as an adopted version of the Hub Disruption notion which was initially pro-

posed by Achard et al. (2012). This plot suggests that blocks which represent the DMN

(such as Blocks 13 and 14) which are combinartory blocks of the Frontal (Paracentral Lob-

ule), the Parietal (Precuneus) and the Limbic (Cingulate Gyrus) lobe along with other com-

binatory of block of insular and coherent block of limbic lobe demonstrated the largest

disruption during schizophrenia, whereas, other parts of the Parietal lobe along with the

Cerebellum and the Occipital lobes gained connection during schizophrenia.

Finally, it is important to note that the findings presented in this chapter regarding

the changes in functional connectivity in schizophrenia using a Rich Block have a strong

correlation with the findings from the same data-set using a Rich Club which were reported

in section 3. First, in chapter 3, the results suggest that during schizophrenia, the hub nodes

lose their prominent role by experiencing a reduction in their connection rate. The hub

nodes which have drastically experienced this reduction are among the DMN members of

the Parietal Lobe such as the Precuneus, the Cingulate cortex and the Paracentral regions.

On the other hand, the non-Parietal/non-Frontal regions such as the Cerebellum and the Oc-

cipital regions demonstrate an increase in their connection rate. Similar results have been

found by using the DE algorithm and a Disruption Plot as in this chapter. Second, inves-

tigating the changes in the RC organisations in schizophrenia, discussed in section 3.3.7,

suggests that several nodes of the the Parietal and the Frontal lobes no longer contribute to

the RC organisation. Similarly, in this chapter, the results suggest that the RB organisation

in healthy individuals is formed by blocks 13, 14, 17 and 31 which are mainly parts of

the Frontal and Parietal lobes however, in schizophrenic patients the RB organisation was

merely detected in blocks 17 and 24. Block 24 is formed by parts of the Cerebellum and

the Occipital lobes.
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4.6 Summary

In this chapter we presented a series of stochastic measures which help the network neuro-

scientists to gain a better understanding regarding the cores of the human functional con-

nectome.

• Previously proposed Het-SBM method was applied to the same data-set as Chap-

ter 3, schizophrenic data-sets, and showed how the common block assignments can

facilitates the group inference.

• A novel stochastic method was proposed, called the Rich Block, which outperforms

the Rich Club in terms of three main factors: Firstly, the RB facilitates the group

inference as it employs Het-SBM in estimation of the block assignments. Secondly,

the Rich Block takes into account the effect of covariates, and therefore, can deliver a

much robust statistical inference. Thirdly, the Rich Block is a complimentary method

to the stochastic block modelling, which considers the pattern of connectivity as well

as the degree of nodes in identifying the connectome cores.

• Similar to the RC, the RB also requires a randomisation method (or a null model)

aiming to ensure that the effect identified as core is a genuine effect. A randomisation

method, called the Tensor Null Model, was proposed which is novel in stochastic

domain and speeds up the the conventional, time-consuming, randomisation process

by 63k times.

• A novel stochastic method was proposed, called the Degree Exceptionality. The DE

facilitates the process of finding hub blocks. In previous literature, hubs are conven-

tionally selected by arbitrary measure, however, the DE can detect the nodes which

enjoy high number of connection and the same pattern of connectivity.

• An improved version of the Bland-Altman plot, or conventionally called the disrup-

tion plot, also presented in this chapter which can be used in summarising the changes

during a disorder. We used the disruption plots in Chapter 3 to summarise the changes

in degree, whereas, in this chapter they are used to summarise the change in expected

degree of blocks.

• Finally, we use simulations as well as real data to validate the proposed methods.

We also demonstrated how they can help the researchers to detect the anomalies in

functional connectome due to psychiatric disorders.
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Chapter 5

Impact of Autocorrelation on
Topological Features of Functional

Connectivity of the Human Brain

Functional brain imaging methods allow the examination of interactions between the brain

regions through temporal similarity measurement. Pearson’s correlation, as a well-known

temporal similarity measure, determines the interaction between two brain regions as a

degree of the linear relationship between two BOLD signals (Smith et al., 2011b). How-

ever, the temporal similarity between two brain regions can be produced by nuisance ef-

fects rather than physiologically meaningful dependencies. Correlated (non-white) noise,

can result in a single region’s BOLD signal being correlated with lagged versions of itself

(Weisskoff et al., 1993). Correlated noises in BOLD signals have several sources including

cardiac and respiration processes, instrument instability and even fMRI pre-processing steps

such as registration (Lund et al., 2006). Signals that exhibit this property are conventionally

called autocorrelated signals. The presence of temporal autocorrelation may bias the esti-

mated correlation coefficient between a pair of regions. Further, the estimated uncertainty

in the correlation estimate can be biased, as reflected in the actual degrees of freedom (DF)

being lower if the noise was white. Furthermore, there is also evidence that the sampling

variability in Pearson’s correlation can, by itself, induce non-trivial topological effects such

as non-biological modularity and small-worldness (Zalesky et al., 2012a). Whether biasing

the correlation estimate itself or disturbing the DF, temporal autocorrelation can result in

inflated false positive rates.

While the various network statistics reviewed in Chapter 3 can be defined for weighted

graphs, they are most commonly applied to binary graphs. There are two general ap-

proaches to thresholding continuous correlations into binary edges: [1] Statistical Thresh-
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olding (ST), which keeps any edge that rejects the null hypothesis of zero correlation at a

given critical threshold α (Bassett et al., 2011; Fornito et al., 2016); [2] Density Threshold-

ing (DT), which uses the threshold necessary to obtain a desired edge density. However,

as the exact choice of density is arbitrary, the graph metrics are normally examined over a

range of different density thresholds. Crucially, in multi-subject studies of functional con-

nectivity, all subjects have the same density (Bullmore and Bassett, 2011; Fornito et al.,

2016).

These two methods of thresholding, ST and DT, can be largely affected by the pres-

ence of the aforementioned autocorrelation in each time series. As in ST, inflated degree-of-

freedom due to the presence of autocorrelated time series can lead the statistical inferences

being liberal and produce excess false-positives. False positives can have a particular im-

pact on descriptors of the topology of the human brain network (Zalesky et al., 2016), thus

motivating ST with stringent control of Type I error risk. While, in DT, there can still be a

problem because the variation in temporal autocorrelation over nodes will result in the cor-

relation coefficient having different sampling distributions for different pairs of nodes. The

end result is that, while a fixed threshold is used to obtain a given degree, the actual meaning

of that threshold varies over edges. There are also two recent studies which examined the ef-

fect of inflated degree of freedom in the thresholding of functional connectivity. One study

proposes an unbiased estimator of sample correlation variance for an excessively oversim-

plified first-order autoregressive model of BOLD signals (Arbabshirani et al., 2014), while

the others propose a wavelet-based method using a whitening property of wavelets to es-

timate the effective degree of freedom in rarely-popular wavelet transformed correlation

coefficients(Patel and Bullmore, 2015).

The term degrees of freedom can have different meanings depending on context, and

so we pause for some definitions. In linear models, ”degrees of freedom” typically refers

to the error DF, and is the number of observations (N) minus the number of predictors. It is

perhaps best known for its role in estimation of the error variance. The naive estimate of the

error variance, the residual mean squared1, is a biased estimate for the true error variance,

being off by a factor of DF/N. Thus the RMS needs to be scaled by a correction factor

of N/DF or, equivalently, an unbiased estimator is found as the residual sum of squares

divided by DF. This unbiased variance estimate is crucial for all linear model inference, in

particular assuring that T-tests and F-tests will follow their nominal distributions.

In functional connectivity, Fisher’s transformation is applied to the correlation coef-

ficient, giving a measure with approximate normality and constant variance (details in Sec-

tion 5.1.1 below). Under the usual assumptions of independence, this variance is 1/(N − 3),

but autocorrelation can invalidate this result. Typically, temporal autocorrelation reduces

1Residual mean squared (RMS) is the sum of squared residuals divided by N

94



the information content in the time series, and leads to more variable estimates of correla-

tion between two variables. That is, if a Fisher-transformed correlation was naively scaled

by
√

N − 3, the resulting Z statistic would have variance greater than unity and lead to an

inflated false positive risk.

The focus of this chapter is an adjustments to Pearson’s correlation such that the

transformed statistic has nominal variance. As detailed below (Section 5.1.2), we seek a

correction factor (CF) such that scaling an estimate of correlation (before or after Fisher’s

transformation) by a value of
√

N/CF produces a measure with unit variance. CF will be

approximately 1 for independent data, but will increase with the severity of the temporal

autocorrelation. The effective degrees of freedom can be regarded as N/CF.

While a relatively recent concern in the analysis of the functional connectivity, the

problem of inflated error degrees of freedom in the analysis of first-level GLM of fMRI

data has a long history. In the late 1990’s the fMRI analysis strategy advocated by Karl

Friston and colleagues was to smooth BOLD time series data using a high-pass filter. While

this is not statistically optimal (it is ”colouring” instead of the optimal ”whitening”), it

precluded the need to model the intrinsic temporal autocorrelation, and allowed for precise

estimates of the degrees of freedom (Friston et al., 1995). Subsequently Friston’s group

dropped temporal smoothing, and adopted a whitening approach where the autocorrelation

is estimated globally over the brain (Friston et al., 2000); others proposed estimation of

autocorrelation individually at each voxel (Bullmore et al., 2001) or voxel-wise with spatial

regularisation (Woolrich et al., 2001).

Long before functional neuroimaging existed this issue was taken up in economics

(Hurwicz, 1944; Bartlett, 1946, 1935). In his seminal 1935 paper, Bartlett introduced a for-

mulation for estimating the sample variance of the correlation coefficient using a first-order

autoregressive (AR(1)) time series model. A decade later, he produced a more general re-

sult for AR models of any order. Several neuroimaging studies have used both AR(1) and

more general versions of the Bartlett’s DF correction however, extensive reading of the neu-

roimaging literature finds that applications of Bartlett’s corrections are inconsistent, and at

best are poorly described. For example, for a DF correction, many papers reference Fox

et al. (2005) that opaquely cites a Bartlett correction in a lengthy textbook. The exact form

of this is described only in prose in Van Dijk et al. (2010) which ignores the impracticality

of estimating the true (unobserved) autocorrelations. In addition, the method for correcting

DF used throughout the literature is mainly global and consequently fails to address the het-

erogeneity of the effect of autocorrelation (Golestani and Goodyear, 2011; Johnston et al.,

2008; Goparaju et al., 2014; Hale et al., 2016).

In this study we introduce a bivariate form of Bartlett’s correction, accounting for

the possibly different temporal autocorrelation in each of the two time series considered.
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Re-formulating Bartlett’s correction factor for correlation coefficients of bivariate time se-

ries allows us to calculate the autocorrelation effect heterogeneously. In other words, in-

stead of considering the Bartlett Correction Factor (BCF) as a global adjustment for each

subject or each study, we rather calculate this correction factor for every edge without as-

suming identical autocorrelation at each node. Such a bivariate, heterogeneous correction

factor should make both traditional statistical and density thresholding methods more ro-

bust against false-positives, and in particular ensure that the false positive risk is the same

for all edges. We validate the proposed method with real-data and compare it with existing

methods. We also examine how the choice of pre-processing steps can affect this estimation

and, essentially, how these corrections can affect the quantification of topological properties

of functional connectivity. To investigate the effect of this correction in graph theoretical

methods, we examine the statistics on three fundamental features of the functional con-

nectome: Integration, segregation and complexity. In addition, we validate the proposed

method by four separate cohorts from different acquisition sites to ensure that the results

are reproducible.

5.1 Methods

5.1.1 Functional Connectivity as a Correlation Matrix

To form a functional connectivity of each subject, we use Pearson’s correlation to measure

the temporal similarity between each pair of the time series, x and y, representing a brain re-

gion. Therefore, each ROI is considered as a node and the correlation coefficient between x

and y is considered as the weight to the edge formed between the two nodes. The population

(’true’) correlation coefficient, ρxy, between two random variables X and Y is

ρxy =
cov(X,Y)
√

var(X)var(Y)
. (5.1)

For samples of X, x1, x2, ..., xN , and of Y , y1, y2, ..., yN , the Pearson’s correlation coefficient

is an estimate of ρxy,

rxy =

∑N
i=1 (xi − x̄) (yi − ȳ)√∑N

i=1 (xi − x̄)2
√∑N

i=1 (yi − ȳ)2
, (5.2)

where N, exceptionally to this chapter, is the number of observations and x̄ and ȳ are the

sample means of X and Y , respectively. This estimate is only approximately unbiased

E(rxy) ≈ ρxy −
ρxy(1 − ρ2

xy)

2N
, (5.3)
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and has variance that varies with the true correlation

var(rxy) ≈
(1 − ρ2

xy)2

N

1 +
11ρ2

xy

2N

 . (5.4)

In addition to the variance being dependent on the true ρxy, the sampling distribution

can be highly non-normal. To address this, Fisher’s transformation is typically applied as

following

ẑxy = arctanh(rxy) =
1
2

ln
[
1 + rxy

1 − rxy

]
. (5.5)

When the original data comprise independent, identical draws from a bivariate normal

distribution, Fisher’s ˆzxy has an approximate normal distribution with mean acrtanh(ρxy)

and variance 1/(N − 3). Thus a standardised statistic, a Z-score, can be computed as

z = ẑ
√

N − 3.

5.1.2 Correction Factor

When the independence assumption (over the N observations) does not hold, the variance

of ẑxy will typically be inflated above 1/(N−3). The usual assumption of the independence,

as described, refers to a realisation that a n-lagged version of a time series has a zero cor-

relation with the 0-lag version of the time series. We define the correction factor β that

defines the effective degrees of freedom (EDF) N̂ = βN, such that

var(ẑxy) =
1
N̂
. (5.6)

The correction factor gives the EDF such that z = ẑ
√

N̂ has unit variance, and thus can be

interpreted as a z-score.

The correction factors that we investigate in this section can be grouped into two

major categories. Global correction factors, that estimate a common EDF for the entire

brain. Local corrections factors, in contrast, estimate an EDF for each pair of ROIs (or

voxels) and thus account for the spatially heterogeneous effect of autocorrelation. Further,

we will consider different types of local corrections, one that is bivariate, and allows auto-

correlation to vary between the two nodes considered, or non-bivariate, which assumes the

autocorrelation is the same at both nodes.

5.1.3 Naive Correction

As noted above, when the standard assumptions hold, the EDF = N − 3 (Fisher, 1915),

Throughout this chapter, we call this method the Naive Correction as this work was moti-
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vated by inflated false-positive rates found when using this approach in typical connectome

analyses.

5.1.4 Autoregression and Autocorrelation

To account for the dependence seen in the time series measurements used in fMRI, we

consider Autoregressive (AR) Models (Jenkins and Reinsel, 1976). A first-order Autore-

gressive model (AR(1)) of the time series x can be defined as

Xi+1 = Φ1Xi + εi+1 (5.7)

for i = 1, . . . ,N − 1, where Φ1 is the AR(1) coefficient, and the εi are independent and

identically distributed normal random variables. Using least squares, Φ1 can be estimated

as

Φ̂x
1 =

∑N−1
i=1 xixi+1∑N−1

i=1 x2
i

. (5.8)

The Autocorrelation Function (ACF), λs, of a stationary timeseries x is the correlation be-

tween measurements separated by s observations (Jenkins and Reinsel, 1976). The auto-

correlation coefficient at lag s is

λX
s =

cov(Xi, Xi+1)
var(Xi, Xi+1)

(5.9)

which is estimated as

λ̂x
s =

∑N−s
i=1 (xi − x̄)(xi+s − x̄)∑N

i=1(xi − x̄)2
. (5.10)

It is worth mentioning that by following Eq. 5.8 and Eq. 5.10 we conclude that the first-

order autoregressive coefficients are equal to the first-lag autocorrelation coefficients.

5.1.5 Bartlett’s Correction - Markov Process

The earliest work on this problem comes from 1935, where Bartlett considered a number

of issues related to inference on individual or pairs of AR(1) models (Bartlett, 1935). He

considered the pairwise correlation, rxy, between AR(1)-correlated time series models X

and Y , with AR(1) coefficients ΦX
1 and ΦY

1 , respectively. For the case when the two series

are not correlated, ρxy = 0, Bartlett derived the variance of rxy as

var(rxy) ≈
1
N

1 + Φ̂x
1Φ̂

y
1

1 − Φ̂x
1Φ̂

y
1

. (5.11)
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As per Eq. 5.6 the EDF, N̂xy, is the reciprocal of the variance,

N̂xy
HetBiv−AR(1) ≈ N ×

1 − Φ̂x
1Φ̂

y
1

1 + Φ̂x
1Φ̂

y
1

, (5.12)

and the correction factor is comprised of the second term in this expression.

This result is necessarily an approximation and may have degraded accuracy if ρxy

is large in absolute value. Hence, Arbabshirani et al. (2014) suggested modifying the sam-

pling variance, replacing the 1/N term with the analogous leading term from Eq. 5.4:

var(rxy) ≈
(1 − ρ2

xy)2

N

(1 + Φ̂x
1Φ̂

y
1)

(1 − Φ̂x
1Φ̂

y
1)
. (5.13)

Again, the EDF for this pair of nodes is then the reciprocal of the variance:

N̂xy
HetBiv−AR(1)BC ≈

N(1 − Φ̂x
1Φ̂

y
1)

(1 − ρ2
xy)(1 + Φ̂x

1Φ̂
y
1)
. (5.14)

5.1.6 Bartlett’s Correction - General Process

All of the results in the preceding section are based on the assumption that each of the

two time series follows an AR(1) process. However, BOLD time series, are of a far more

complex temporal structure. A decade after his first work on this topic, Bartlett (1946)

introduced results for a General Process, specified by its ACF λk. Unfortunately, in that

work he does not consider the sampling distribution of a correlation between two time

series. He does, however, introduce the notion of effective degrees of freedom. The variance

of the sample ACF at lag s, λ̂s, is given as

var(λ̂s) =
1
N

∞∑
s′=−∞

λ2
s′ , (5.15)

under the assumption that the true autocorrelations are ‘negligible’ for s′ > s, where s′ is

a lag larger than s. As the previous literature had regarded this variance to be just 1/N, he

stressed that ‘the effective number of degrees of freedom has been reduced’ by the factor

β =
1∑
λ2

s′
. (5.16)

Narrowly, then, the EDF was defined only for the sample variance of the ACF when subse-

quent lags of the true ACF are small. However, this expression has apparently been taken

as the inspiration for a general definition of EDF for time series. To evaluate this EDF
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the infinite sum must of course be truncated (Anderson, 1983). As the ACF is symmetric

about zero, has λ0 = 1, and cannot be estimated for any value s > (N − 1), the most direct

expression would be

β =

1 + 2
N−1∑
s=1

λ2
s


−1

. (5.17)

where τ =
∑N−1

s=1 (λs)2 is the ‘correlation length’ (Straatsma et al., 1986). However, it may

be undesirable to evaluate this summation all the way to N − 1. Firstly, the larger the lag s,

the less data are available to estimate λs: while λ̂1 is based on the average of N − 1 terms,

a lag of s = N − 1 is based on the single product x1xN . Also, if one truly believes the

ACF falls to zero above some lag, the summation should reflect that. We revisit these issues

below in section 5.1.7. For a single time series X, the EDF is obtained as

N̂x ≈
N

1 + 2
∑N−1

s=1 λ̂
2
s
. (5.18)

We now return to the matter at hand, which is estimating the variability of Pearson’s cor-

relation coefficient between two time series X and Y . While we do not have a theoretical

justification, the conventional usage in neuroimaging suggests naive use of this EDF, as-

suming a common ACF for X and Y . In practice, this correction factor β could be estimated

for each and then averaged, or N̂x and N̂y could be computed and averaged; or, when con-

sidering the ROIs over the brain, a N̂Global could be defined as the median of N̂.

5.1.7 Family of Heterogeneous Bivariate Corrections (HetBiv)

As best as we can judge from the neuroimaging literature, the typical approach is to use a

global EDF based on Eq. 5.18 to estimate the variance of the correlation coefficients (Fox

et al., 2005; Van Dijk et al., 2010). This of course then fails to account for the spatial

heterogeneity in autocorrelation between different nodes. Here, we propose a method of

estimating an unbiased correlation coefficient of a pair of time series which allows us to ac-

count for the heterogeneity in effect of autocorrelation. Unlike the AR(1) models described

in section 5.1.5, the proposed method also considers more complex patterns of autocorrela-

tion in BOLD time series.

We first consider the case when X and Y are mean zero and variance one, such that

a correlation can be estimated

r01
xy = X′Y/N, (5.19)

where we are treating X and Y as column vectors of length N. We allow arbitrary de-

pendence, initially, such that the N × N variance-covariance matrices are var(X) = Σx,
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var(Y) = Σy and cov(X,Y) = Σxy. In this setting, we use basic results2 for random vectors

(Brown and Rutemiller, 1977) to find the mean

E(r01
xy ) = Tr(Σxy)/N, (5.20)

and, if we further assume multivariate normality,

var(r01
xy ) =

1
N2

(
Tr(ΣxΣy) + Tr(Σ2

xy)
)
. (5.21)

Finally, we consider real world time series that are not mean zero or variance one. As

long as we confine ourselves to the case of constant variance (i.e. constant diagonals in

ΣxandΣy), we can then argue that these results for r01
xy are applicable to rxy (as is typically

done in the time series literature, e.g. Bartlett (1946)). We are essentially assuming that, for

sufficiently large N, the sampling variability in the sample means and standard deviations

of X and Y are negligible relative to those of the numerator of the correlation coefficient.

Therefore, the effective degree of freedom can be obtained as

N̂xy
HetBiv−unbiased = N ×

(
Tr(ΣxΣy)/N + Tr(Σ2

xy)/N
)−1

, (5.22)

where we have arranged the expression to show the correction factor to be the inverse of a

sum of two terms, each of which is the average of the diagonal of a matrix.

There are two special cases to consider. When X and Y are independent, Σxy is the

zero matrix and we have

var(rxy) =
1

N2 Tr(ΣxΣy). (5.23)

Consequently, the effective degree of freedom can be determined as:

N̂xy
HetBiv−Uncorrelated = N ×

(
Tr(ΣxΣy)/N

)−1
. (5.24)

Second, when X and Y are dependent but this dependence is only present in their zero-lag

covariance. In this case, Σxy = ρxy, and then

var(rxy) =
1

N2

(
Tr(ΣxΣy) + ρxy

)
. (5.25)

Eventually, the degree of freedom can be obtained as:

N̂xy
HetBiv−0lag = N ×

(
Tr(ΣxΣy)/N + ρxy/N

)−1
. (5.26)

2For a thorough derivation of moments of two random variables, see Appendix C.1
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Calculating the methods that we propose in Eq. 5.22, Eq. 5.24 and Eq. 5.26 can be

challenging. Firstly, we specify Σx and Σy as Toeplitz matrices defined by ACF’s; thus, the

first row of Σx is (1, λx
1, . . . , λ

x
N−1), the second row is (λx

1, 1, λ
x
1, . . . , λ

x
N−2). But even exploit-

ing the Toeplitz structure, for long BOLD time series and a large number of parcellations,

will be time-consuming, since the complexity of calculating HetBiv-corrections for one pair

of BOLD time series for one subject is O(2n3). However, inspection of the product ΣxΣy

reveals that the diagonal (needed for the trace) takes the form of inner products between a

corresponding row and column of the two matrices. For the first element this summation is

1 +
∑N−1

s=1 λ
x
sλ

y
s; for the middle row (N + 1)/2 (assuming N odd), this is 1 + 2

∑(N−1)/2
s=1 λx

sλ
y
s,

etc. Therefore, inspired by Bartlett’s estimation method for ts, we take Eq. 5.23 and replace

Tr(ΣxΣy) with N times an approximation of one element of the diagonal, leading to a sample

variance estimation of the bivariate correlation coefficient as:

var(rxy) ≈
1
N

(1 + 2
N−1∑
s=1

λ̂x
s λ̂

y
s). (5.27)

The effective degree of freedom can be estimated by using Eq. 5.27 to correct the number

of observations as:

N̂xy
HetBiv =

N

(1 + 2
∑N−1

s=1 λ̂
x
s λ̂

y
s)
. (5.28)

We note that we have neglected the term dependent on the true cross correlations (compare

Eq. 5.22 and Eq. 5.28). To ensure the impact would not bias the analysis, we conducted an

empirical evaluation and found it made little impact in estimation of variance of correlation

coefficients (details in Appendix C.2).

As discussed earlier, in section 5.1.6, using Eq. 5.28 in practice is not free of pitfalls.

One of the problems is choosing an optimal number of lags to be involved in the estimation,

as we would likely believe that after some lag the autocorrelations are truly zero and that

involving all N−1 lags may make the estimation less-accurate due to a biased approximation

of distant lags (Anderson, 1983). Therefore, the number of lags that is required to calculate

the correction factor must be chosen carefully. The optimal number of lags was suggested

as N/4 (Anderson, 1983), although we employed two separate techniques to examine how

choosing the number of lags may influence the estimations.

Curbing. Instead of using all lags of the autocorrelation function, we only use an

initial fraction of the lags to calculate the HetBiv correction factor. We examine a range

of curbing coefficients which start from 10% to 80 % with increments of 10%, i.e. for the

curbing coefficient of 10% we only consider the first 0.1×N ACF lags, and all the remaining

lags are set to zero.

Shrinking. At each lag, we calculate the geometric mean of un-signed autocorre-
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lation coefficients,
√
|λx

i ||λ
y
i |, and if it exceeds a threshold we preserve the lag’s autocorre-

lation coefficients, otherwise we set it to zero. The threshold is set relative to the nominal

standard deviation of the sample autocorrelation coefficient, i.e. 1/
√

N. We examine the

thresholds for a range of multipliers from 0.25 to 3 with increment 0.25. The range was

chosen as the conventional standard deviation multiplier for such studies are set to 3.

5.1.8 Monte-Carlo Correction

Beside theoretical approaches to account for the effect of the autocorrelation bias, Monte-

Carlo methods were also shown to be useful (Kalos and Whitlock, 2008). FSLnets 3 is one

of the most widely-used toolboxes which estimates the standard error of sample correlation

coefficients by employing a Monte-Carlo simulation method. For each node, the AR(1)

coefficient of the BOLD time series is computed by Eq. 5.8 and then the median of all

of these Φ1 values is used to simulate data from an AR(1) process, XMC , using Eq. 5.7.

The Pearson’s correlation coefficients between each pair of surrogate timeseries, rMC , is

calculated and then transformed to Fisher’s ẑMC . For a large sample of ẐMC , the variance is

computed and used to derive a global correction for all of the time series for that subject. It

is also worth noting that FSLnets only generate as many surrogate time series as the number

of original time series, and thus may give a poor estimate of the standard deviation if a small

number of nodes is considered.

5.1.9 Method Comparison

The conventional approach of evaluating EDF is to use the simulation of a simple model

(normally first order) autoregressive function, but it is known that BOLD signals are of

a more complicated temporal structure (Logothetis and Wandell, 2004), which makes it

essential to avoid using simplistic temporal models for such an evaluation. Therefore, in

this study we use BOLD signals to evaluate the proposed methods instead of simulating

synthetic time series aiming to ensure that our methods are tested under close-to-reality

complications of a time series structure.

Due to the non-reproducible nature of BOLD signals, the correlation coefficient be-

tween a time series from subject k and a time series from subject q is supposed to be zero

(Smith et al., 2011b). Following this realisation, by repeating the process of correlating ran-

domly selected nodes from one subject to a randomly selected node from another subject

we expect to form a mean-zero univariate normal distribution unless a non-random sys-

tematic confound, such as autocorrelation, inflates correlation coefficients. The correlation

coefficient between two time series with systematic non-white noise results in a non-zero

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets; visited on 18 September 2015
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correlation coefficient due to non-physiological grounds which were mentioned in the in-

troduction of this chapter.

To examine, the difference between the shape of distributions, we use two-sided

unequal Kolmogorov-Smirnov statistics (Daniel et al., 1990), K which is defined as the

maximum of the absolute difference between the Cumulative Distribution Function (CDF)

of the surrogate data, Ψ, and a mean-zero univariate normal distribution, N , and can be

formulated as below:

K = max
x

(|Ψ(x) − N(x)|). (5.29)

Hence, a value of K close to zero indicates the shorter the distance from a normal distribu-

tion.

In addition to examining the shape, it is also crucial to ensure that the distribution

tails do not corrupt the statistical tests. Therefore, we examine how well each of these meth-

ods can transform the distribution tails. We approximate the probability of inter-subject

inter-node correlation coefficients being bigger than a z-score critical value of 1.96 for a

two-sided p-value of 2.5%, and 2.57 for two-sided p-value of 0.5%. Methods with higher

probability of producing values larger than 1.96 and 2.57 are considered to be ‘conserva-

tive’ methods and those with lower probability of producing values lower than 1.96 and

2.57 are considered as ‘liberal’ methods.

5.1.10 Network Thresholding

Statistical Thresholding

In statistical thresholding (ST) we test each correlation coefficient against the null hypothe-

sis that the observed correlation coefficient is equal to zero. We use Fisher’s transformation

ẑ to ensure normality in the correlation coefficient. To perform the test, we use standard

scores, z̄, which are obtained from multiplying ẑ by the standard error obtained from an ap-

propriate effective degree of freedom N̂. P-values of each edge, representing the probability

of the correlation coefficient to be zero, are obtained by checking the standard score against

a univariate normal distribution, N . To correct for false positives due to Multiple Com-

parison Error (MCE), P-values of edges with non-zero correlation coefficients (≤ K(K−1)
2 )

undergo False Discovery Rate (FDR) correction. FDR is a correction method which dy-

namically adapts the rejection threshold according to the p-values. Finally, to form binary

networks, any correlation coefficients that survives the hypothesis test and the MCE correc-

tion, is set to one and any of them that fail to reject the hypothesis are set to zero.
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Density Thresholding

Density thresholding (DT) is a widely used method for thresholding adjacency matrices

over a range of densities. In DT, edge weights of an adjacency matrix are thresholded by a

certain value, therefore, supra-threshold edges are preserved while the rest are set to zero.

In this setting, only strongly connected edges are preserved. Since the true density of the

functional connectome of the human brain is unknown, we study the graph phenotypes over

a range of thresholds. The density range starts from a large threshold which only preserves

a set of highly connected edges and proceeds to a modest thresholds which preserve a larger

number of supra-threshold edges. It is worth noting that one should be careful when select-

ing the boundaries as a very small lower-boundary results in a large number of disconnected

components or isolated nodes, while a liberal upper-boundaries leads the graph to become

a lattice. We use eight consecutive density steps starting from a density of 5% to 45% with

an incremental step of 5%, the reason behind the choice of density choice was discussed in

details in Chapter 3. In each density, the correlation coefficients are transformed to Fisher

values and then standardised by an appropriate degree of freedom.

5.1.11 Graph Theoretical Measures

To investigate how inflated degree of freedom, due to non-white noise, can affect the de-

scription of the functional human connectome, we utilise a range of traditional graph theo-

retical matrices, which are commonly used to describe topological properties of the human

brain. In this chapter, we use clustering coefficients and normalised clustering coefficients

as measures of segregation (see section 3.1.4), characteristic path length and normalised

characteristic path length as measures of integration (see section 3.1.3) and small-worldness

as a measure of complexity (see section 3.1.6).

5.2 Data

In this section, we briefly describe the properties of each cohort that we used throughout this

study including the acquisition procedures and the sample demographics for each subject.

5.2.1 Human Connectome Project

Resting-state fMRI scans of 318 subjects (mean age=29, ± 7 years; female=132) were ob-

tained through the Human Connectome Project consortium. The cohort has 78 monozygotic

twins and 69 dizygotic twin pairs. Participants were asked to remain awake in a MRI ma-

chine with their eyes open. Each subject was asked to fixate on a projected bright cross-hair

on a dark background. Gradient-echo EPI (TE=33.1ms, flip angle=52 °, FOV=208x180mm)
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was used to acquire a 15min scan of each subject with TR=720ms, which result in time

series of 1200 data-points for each subject. Each brain volume was parcellated using iso-

morphic voxels of 2mm3.

We used an extended pre-processed version of the data available via the HCP repos-

itory. Each scan has undergone a thorough pre-processing procedure as explained in Glasser

et al. (2013) 4. Further to the traditional pre-processing steps, high-pass filtered data were

denoised by the non-aggressive FIX algorithm (Salimi-Khorshidi et al., 2014) to ensure that

any ’bad’ components, such as movement, physiological noises of a heart beat and respi-

ration, have been regressed out of each individual scan. Since there is an ongoing debate

about the effect of global signal regression (GSR), we also repeated the analysis with and

without global signal regression.

5.2.2 Autism Brain Imaging Data Exchange

For replicating the analysis we used the resting-state fMRI of healthy subjects, publicly

available, through Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al.,

2014). It is important to note that despite the name of the cohort (Autism) we only use

the healthy subjects. Also, the cohorts were chosen in a way that the cover a different range

of sample size and scan length as it is crucial to examine robustness of our methods under

different circumstances. The data are from three separate cohorts:

• New York University Lagone Medical Centre (NYU): 86 healthy subjects (mean

age=15± 4.5 years; female=32) were asked to remain awake with their eyes open.

Resting-state fMRI data were acquired for length of 6.40 min, with TE=25ms and

TR=2s, Flip Angle: 60 °, voxel size=3.4 × 3.4 × 4mm and Anterior to Posterior k-

space phase encoding. Therefore, the BOLD signal of each voxel was represented by

a time series of 175 data-points (Chabernaud et al., 2012).

• Utah School of Medicine (USM): 23 healthy subjects (mean age=21± 12 years; fe-

male=9) were asked to remain awake with their eyes open. Resting-state fMRI data

were acquired for length of 6 minutes, with TE=15ms and TR=2s, Flip Angle: 90

°, voxel size=3 × 3 × 4mm and Right to Left k-space phase encoding. Therefore,

the BOLD signal of each voxel was represented by a time series of 235 data-points

(Anderson et al., 2010).

• Yale School of Medicine (Yale): 25 healthy subjects (mean age=13 ± 5 years; fe-

male=10) were asked to remain awake with their eyes open. Resting-state fMRI data

were acquired for length of 8.06 minutes, with TE=28ms and TR=2s, Flip Angle: 90

4For general description of pre-processing stages required in analysis of fMRI data see section 2.1
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°, voxel size=3.4 × 3.4 × 4mm and Right to Left k-space phase encoding. Therefore,

the BOLD signal of each voxel was represented by a time series of 195 data-points

(Di Martino et al., 2014).

We used the pre-processed version of each cohort which is publicly available through the

Pre-processed Connectome Project (PCP) 5. Pre-processing was done by the Connectome

Computation System (CCS) pipeline (Xu et al., 2015). The first four volumes were dis-

carded as the machine is reaching the equilibrium. Slice timing correction and motion

realignment were preformed as basic processing measures. In addition, 24 motion parame-

ters, mean White Matter and Cerebrospinal Fluid (CSF) were regressed out. Eventually, a

band-pass filter (0.01 − 0.1Hz) was used to remove the high and low power noise.

5.2.3 Brain Parcellation Schemes

In order to investigate the relationships between different parts of the brain, we use four

different parcellation schemes to decimate a voxel-wise volume of the brain into a collec-

tion of Regions of Interest (ROI). Parcellation schemes which were used in this study are

from two major categories of parcellation schemes, data-driven and anatomical. Anatomi-

cal atlases subdivide the brain according to previously known features of the human brain

anatomy (Desikan et al., 2006; Eickhoff et al., 2007), whereas, data-driven atlases parcel-

lated the brain based on the similarity in pattern of the functional activities among the voxels

(Craddock et al., 2013). In the following we discussed each parcellation scheme briefly:

• Yeo17 is a data-driven atlas which was formed out of similar patterns of functional

connectivity of voxels across two resting-state scans of 500-subject cohorts of healthy

brains. Networks of functionally coupled regions were identified by employing a

machine-learning clustering method (Yeo et al., 2011). Resultant ROIs are dropped

into 7 Resting-state networks (RSN): Default Mode Network, Dorsal Attention Net-

work, Saliency Ventral Attention Network, Control Network, Limbic regions, Visual

and Somatomotor Networks. However, these 7 RSNs, are also subdivided into 17

networks. These 17 sub-networks were found across a surface-based realignment of

all subjects which merely allows investigation of the cortical regions of the human

brain. This parcellation scheme delivers clear evidence of a segregation/integration

nature of the human brain function as well as hierarchical structures of the connec-

tivity profiles.

• ICA100 is a data-driven atlas which was formed by applying Independent Compo-

nent Analysis (ICA) on resting-state functional scans of the human brain. ICA is a

5http://preprocessed-connectomes-project.org/ ; visited on 28 July 2016
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mathematical method of distinguishing between the latent number of additive com-

ponents of a multivariate signal (Beckmann et al., 2009). Applying ICA on the brain

fMRI results in spatially segregated regions of the brain which are involved in a spe-

cific function. This leads the components to be subjects to a level of modularity in

advance. Since the true number of components is unknown, choosing the number

of components allows a trade-off between size and the number of ROIs. For this

study, we used time series which were already extracted and are publicly available

through HCP consortium. For extracting this time series, between a Group-PCA of

820 subjects was generated by MELODIC’s incremental Group-PCA and then fed

into a group-ICA using FSL’s MELODIC tool for a dimensionality of 100 (Smith

et al., 2013). It is worth noting that not all ICA components are necessarily phys-

iologically meaningful, some of them may have been caused by head movement or

cardiac processes, but considering that the ’bad’ components were already extracted

from the data by FIX-ICA (Salimi-Khorshidi et al., 2014), all the 100 components

are expected to be carrying a large range of physiological information. ICA-100 cov-

ers the cortical, sub cortical and cerebellum regions of the human brain. As the RSN

assignment of nodes is unknown, we discard local examination of changes for this

specific parcellation scheme.

• Power2011 is a data-driven atlas which is formed by same-sized spheres around the

putative functional coordinates (Power et al., 2011). These putative coordinates are

a combination of task-related and resting-state regions of the human brain. Through

meta-analysis of more than 72 studies, 152 functional putative coordinates related to

task fMRI were found. Furthermore, 193 coordinates were also found by analysing a

healthy resting-state cohort of 1000 subjects. By removing the overlaps between the

coordinates found by these two methods, 264 coordinates remain as representatives of

the functional activities within the cortical, sub cortical and cerebellum of the human

brain. This brain parcellation has relatively small and same-sized regions of interest

which helps avoid the possible overlaps between signals of different regions. Regions

of interest in Power2011 are divided into 12 RSN networks including the Sensory,

Cingulo-opercular task control, Auditor, Default Mode Network, Ventral Attention

Network, Visual, Fronto-parietal task control, Salience network, subcortical network,

Cerebellar network and Dorsal Attention Network.

• AAL is an anatomical parcellation scheme which is based on a high-resolution T1-

weighted MRI scan of a single-subject. In the initial version of the AAL, each hemi-

sphere was divided into 45 ROIs. Each of these ROIs, is the result of manual 2D

drawing of boundaries between the main sulci (Tzourio-Mazoyer et al., 2002). The
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2D boundaries of each slice then formed a 3D volumetric ROI. However, since its

inception, it has undergone two major improvements: [1] 26 new ROIs were added to

the original 90-ROI atlas (Tzourio-Mazoyer et al., 2002); [2] 4 additional new ROIs

were added in the Fronto-Parietal lobe (Rolls et al., 2015). Here, we use the latest

version, conventionally called AA2, with 120 ROIs. This parcellation scheme covers

the cortical, subcortical and cerebellum of the human brain. Although the AAL2 is an

anatomical atlas, the RSN assignments of each node are available via cross-matching

of the ROIs with other data-driven parcellation schemes. The AAL2 resting-state

networks include 8 RSNs: The Default Mode Network, Visual and Visual Lateral,

Fronto-parietal, Auditory, Sensorimotor, Executive Control and Cerebellum.

• CC200 is a data-driven atlas which is formed by 200 ROIs of similar sizes. Using

forty-one healthy subjects, individual functional connectivity was formed for each

subject by measuring the temporal similarity between each pair of voxels. Supra-

threshold edges were preserved while the rest of the connectivity map was set to

zero. Normalised cut spectral clustering was used to parcellate each subject’s con-

nectivity map. Then for each subject, a co-occurrence matrix was formed indicating

which nodes are partitioned together. Finally, a parcellation scheme were formed by

partitioning the group-averaged co-occurrence matrices into 200 modules (Craddock

et al., 2012). In this work, we use CC200 only to examine the correlation lengths and

validation processes.
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5.3 Results

5.3.1 Effect of Autocorrelation on Brain Cortical and Sub-cortical Regions

To examine the effect of autocorrelation on the cortical and subcortical regions of the brain

we calculate the correlation length of subjects from the HCP cohort. Figure 5.1 shows the

average correlation length across the subjects. It suggests that the effect of autocorrelation

is not homogeneously distributed over the brain. For example, the effect of autocorrelation

in the Parietal and the Occipital lobes is relatively larger than the Frontal lobe. This effect

is almost negligible in the Temporal lobe and the Cerebellum and Limbic areas.

A B

D
C

Figure 5.1: A,B,D Group-averaged correlation length for Yeo17, AAL2 and Power2011, respec-
tively. C. Volume of the ROIs across the parcellation schemes.

Further to measuring the correlation length of each parcellation scheme, we also

examined to what extent they are associated with the size of each ROI. For each parcellation

scheme, we calculated the correlation length of each ROI across subjects and correlated it

with the ROI sizes. Figure 5.2 shows the level of association between the ROI sizes and the

effect of autocorrelation. Results suggest that a high positive correlation between the size

of the ROIs and correlation length in the parcellation schemes with relatively large ROIs

(please note the results for Yeo17, AAL and AAL2). However, this association fades for

parcellation schemes with a higher number of ROIs and a smaller volume of ROIs (please
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Figure 5.2: Association between correlation length and four different parcellation schemes (e.g.
Yeo17, AAL2, AAL, CC200) of three different scanning sites (e.g. Yale, NYU, USM and HCP)
with and without GSR. 111



note the results for CC200).

5.3.2 Results of the Correction Methods Validation

In this section, we show how different methods of estimating the degree of freedom per-

forms on real-data validations. We separately compare methods for their distribution shape

and false-positive rate (tail analysis).

Figure 5.3: KS statistics of a family of HetBiv corrections as well as existing methods for each
acquisition site and parcellation scheme. The grey lines represent the reference line.

Figure 5.3 shows the KS statistics between the estimated distribution and the nor-

mal distribution for each method. In the HCP site, with a long time series, the class of

HetBiv corrections outperforms existing local and global methods. Among the HetBiv

methods, HetBiv-Curbed (25%) and HetBiv-Shrunk (1σ) show similar results to HetBiv

methods without curbing and shrinking. In the HCP cohort, the family of HetBiv correc-

tions shows similar results across parcellation schemes, whereas, for the other methods of
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correction, each parcellation scheme has a different KS statistics. For instance, Power2011

has a relatively lower KS statistic, whereas, Yeo17 has relatively a higher KS statistic for

the non-HetBiv correction methods.

In the NYU, USM and Yale cohorts, with shorter time series, the HetBiv corrections

still appears to be the best method of estimating the effective degree of freedom. It is notable

that, contrary to the HCP cohorts, parcellation schemes in the three cohorts demonstrate a

relatively similar KS statistics.

We also examined the effect of different curbing coefficients (Appendix C.3) and

shrinking factors (Appendix C.4) across a wide range of values. The results suggest that

although curbing and shirking can, in some cases, improve the performance of the HetBiv,

it is not consistent across parcellation schemes and cohorts.

In addition to examining the distribution shape, we also investigated the tails of the

distributions aiming to ensure that the correction methods have properly corrected the tails

as it is crucial in further statistical inferences required in statistical thresholding. Figure

5.4 shows how each correction method performs in correcting the distribution tails. The red

and blue lines represent α-levels of 0.05 and 0.01, respectively. Any method that exhibits an

α-level beyond these lines is considered ’conservative’ since it will lead the test to produce

a level of false-negative and any method with an α-level lower than the blue and the red

lines is considered to be ’liberal’ as it will lead to a level of false-positive.

For the HCP site, the naive correction method results in the highest level of false-

positive. It is followed by the global AR(1), HetBiv AR(1) and HetBive AR(1)-BC. Con-

trary to these methods, the Global HetBiv is the most conservative method which may cause

false-negatives in the analysis. Three remaining methods, HetBiv-all lags, HetBiv shrunk

and HetBiv curbed are located on the border lines which implies that these three methods

produce the results with the highest level of sensitivity and specificity. For the three remain-

ing sites, NYU USM and Yale, the naive correction is most likely to produce false-positives.

Two other global methods, Global HetBiv and Global AR(1) as well as local methods, are

most likely to produce false-negative results due to the conservatism. The remaining Het-

Biv methods, are most likely to have the closest-to-truth sensitivity and specificity. It is

also worth noting that the naive method for shorter time series (scans from NYU,USM and

Yale) are more likely to result in false positives. The parcellation schemes that enjoy a large

number of the ROIs and higher volume similarity across ROIs have a relatively lower rate

of false positive (see results of CC200 and Power2011 in Figure 5.4).
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Figure 5.4: False-positive rate of family of HetBiv corrections as well as existing methods for each
acquisition site and parcellation scheme. The acquisition site has been identified by the titles.

5.3.3 Effect of Autocorrelation Correction on Statistical-Thresholding

To examine the effect of correcting the degree of freedom on statistical thresholding, we

only use the Resting-state fMRI scans from the HCP cohort to investigate how the correc-

tion can affect the correlation coefficients between nodes. Figure 5.5 shows ẑ values of four

parcellation schemes with Naive correction and HetBiv-correction. The figure also shows

the effect of GSR across the parcellation schemes. Results suggest that, firstly, the GSR can

drastically transform the ẑ values. Before regressing out the mean value, the ẑ scores are

mostly distributed on the positive side of the histogram, however, after GSR, the distribu-

tions are centred around zero which results in the larger number of anti-correlations. It is

notable that the histograms of ẑ scores for ICA100 suggest no differences with and without

GSR. Figure 5.5 also suggests that the HetBiv-correction can also affect the ẑ values, con-

sistently for all parcellations, as it eliminates the weak correlation coefficients and enlarges

the ẑ values of the larger correlation coefficients.
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Figure 5.5: Histogram of the Fisher-transformed correlation coefficients after density thresholding
with Naive and HetBiv correction for the degree of freedom.

Correcting the degree of freedom can have an immediate effect in the global density

of networks after statistical thresholding. A smaller degree of freedom results in a more

conservative test which can lead the network to have a lower number of supra-threshold

edges. To examine the effect of the correcting of DoF on the network density, we also cal-

culated the density of each resultant network for Naive-correction and HetBiv-correction.

Additionally, we also examined how GSR can affect the network density. The result of the

network density is shown in Figure 5.6. The HetBiv-correction results in a more conserva-

tive test and, consequently, a lower density in statistical thresholding. It is notable that the

GSR not only decreases the networks density, it also reduces the variation between subjects.

5.3.4 Effect of Autocorrelation Correction on Graph Theoretical Measures of
Statistical-Thresholding

In this section, we examine the effect of Naive and HetBiv techniques to estimate the effec-

tive degree of freedom in networks with and without global signal regression. We examine

this effect on global metrics (i.e. segregation, integration and complexity) along with local

115



Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1
D
en
si
ty

ICA100-GSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1 ICA100-NoGSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1 AAL2-GSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1 AAL2-NoGSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1

D
en
si
ty

Yeo17-GSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1 Yeo17-NoGSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1Power2011-GSR-fdr

Na
ive

He
tBi
v

0

0.2

0.4

0.6

0.8

1Power2011-NoGSR-fdr

Figure 5.6: Network density of networks with Naive and HetBiv corrections. Each subplot shows
the results for the choice of GSR and parcellation scheme. The red asterisk shows statistically
significant results.

metrics (i.e. centrality measures and Rich Club coefficients).

Global Graph Theoretical Measures

The network segregation level is shown in Figure 5.8 by the mean clustering coefficient

(denoted by MC in Figure 5.8), normalised mean clustering coefficient (denoted by letter

O in Figure 5.8) and the modularity index (denoted by MI in Figure 5.8). The results sug-

gest a significant decrease in the average clustering coefficient after the HetBiv correction.

However, the normalised clustering coefficients show a significant increase due to HetBiv-

correction. Another measure of segregation, the modularity index, is also increased due to

the HetBiv correction. It is also notable that global signal regression increases the level of

segregation in networks for both cases of Naive and HetBiv corrections.
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Figure 5.7: Global graph theoretical measures of networks with Naive and HetBiv corrections.
Each subplot shows the results for choice of GSR and parcellation scheme. Red asterisk shows
statistically significant results.

The level of network integration is measured by the characteristic path length (P)

and it is a normalised version (Λ; L). Figure 5.8 shows that the non-normalised charac-

teristic path length is significantly increased due to the HetBiv-correction, however this

difference is reduced later in normalised values. The results suggest that, despite the small

differences, traversing in a functional network will be more costly with HetBiv-correction.

The figure also suggests that global signal regression may deflect the level of network inte-

gration by increasing the normalised characteristic path length.

The complexity level, which is measured by a small-world index (SW), shown in

Figure 5.8, suggests that the level of complexity in a network increases after using the

HetBiv-correction. The increase in SW has been led by a drastic increase in the level of

segregation while the level of integration approximately stays as high as a random graph.

It is also notable that the global signal regression increases the level of complexity in a

network across all four parcellation schemes.
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Local Graph Theoretical Measures

For quantifying the effect the HetBiv-correction on a local level, we use centrality and

coreness measures such as Degree Centrality (DC), Betweeness Centrality (BC) and non-

normalised/normalised Rich Club coefficients (RC and NRC). We use Disruption Plots to

summarise the local changes due to Naive and HetBiv corrections 6. We discard ICA100

from further local analysis as the RSN assignment of nodes in this parcellation scheme is

unknown. The disruption indices are summarised in Table 5.1 and Table 5.2 for the case

of the GSR and NoGSR, respectively. Each disruption index corresponds to a RSN of a

relative parcellation scheme which is later identified by different colours in Figure 5.8.

GSR - Statistical Thresholding 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Degree 
Centrality 

Betweenness 
Centrality 

Rich Club 
Coefficients 

Normalised 
Rich Club 

Coefficients 
Power2011 

Uncertain -0.32 0.15 -0.12 0.46 
Sensory/Somato -0.31 0.13 -0.16 0.23 
Cingulo Control -0.25 0.17 -0.05 0.21 
Auditory -0.25 0.1 -0.1 0.24 
Default Mode -0.22 0.09 -0.05 0.36 
Ventral Attention -0.31 0.12 -0.15 -0.14 
Visual -0.25 0.2 -0.07 0.25 
Fronto-parietal -0.23 0.1 -0.09 0.26 
Salience -0.28 0.14 -0.1 0.32 
Subcortical -0.27 0.3 -0.03 0 
Cerebellar -0.23 0.18 0 0.02 
Dorsal Attention -0.29 0.03 -0.15 0 

AAL2 
Sensorimotor -0.18 0.24 -0.03 0 
Executive Control -0.22 0.08 -0.01 0.07 
Fronto-parietal -0.26 0.12 -0.11 0 
Auditory -0.21 0.18 -0.03 0.15 
Default Mode -0.29 0.04 -0.17 0.25 
Visual 0.22 0.04 -0.21 -0.04 
Visual Lateral -0.21 0.66 -0.19 0 
Cerebellum -0.2 0.14 -0.02 0.18 

Yeo17 
Visual 0.15 -0.02 -0.06 0 
Sensory -0.27 -0.25 -0.09 0 
Dorsal Attention -0.14 0.19 0 0 
Ventral Attention -0.13 0.1 -0.03 0.09 
Limbic -0.31 0.47 -0.24 0 
Control -0.23 0.14 -0.11 0 
Default Mode -0.14 0.18 -0.06 0.32 

Table 5.1: Disruption indices, as discussed in section 3.1.10, of RSNs of three atlases (Power2011,
AAL2 and Yeo17) for the NoGSR case of local measures in Statistical Thresholding.

6For more information about Disruption Plots, see section 3.1.10
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NoGSR - Statistical Thresholding 
 Degree 

Centrality 
Betweenness 

Centrality 
Rich Club 

Coefficients 
Normalised 
Rich Club 

Coefficients 
Power2011 

Uncertain -0.16 0.14 -0.03 0.27 
Sensory/Somato -0.15 0.28 0 0.32 
Cingulo Control -0.11 0.15 0.05 0.31 
Auditory -0.11 0.15 0.1 0.34 
Default Mode -0.16 0.14 0 0.25 
Ventral Attention -0.1 0.11 0.12 0.46 
Visual -0.12 0.13 0.13 0.36 
Fronto-parietal -0.1 0.11 0.09 0.35 
Salience -0.13 0.16 -0.02 0.39 
Subcortical -0.02 0.27 0.13 0.37 
Cerebellar -0.19 0.16 0.09 0.02 
Dorsal Attention -0.17 0.07 0.04 0.35 

AAL2 
Sensorimotor 0.25 0.43 0.59 0.35 
Executive Control -0.01 0.12 0.12 0.43 
Fronto-parietal 0.1 0.41 0.24 0.42 
Auditory 0.04 0.27 0.24 0.2 
Default Mode 0.02 0.13 0.23 0.56 
Visual 0.26 0.2 0.68 0.03 
Visual Lateral 0.34 -0.95 0 0.41 
Cerebellum 0.09 0.27 0.13 0.37 

Yeo17 
Visual 0.37 0 0.82 0.76 
Sensory 0.37 0.12 0.09 0.93 
Dorsal Attention -0.05 0.18 0.24 0.59 
Ventral Attention 0.06 0.31 0.25 0.67 
Limbic -0.02 0.52 0.24 0.57 
Control 0.03 0.28 0.2 0.99 
Default Mode -0.01 0.38 0.24 0.61 

 

 

 

Table 5.2: Disruption indices, as discussed in section 3.1.10, of RSNs of three atlases (Power2011,
AAL2 and Yeo17) for the NoGSR case of local measures in Statistical Thresholding.

Degree Centrality

In the analysis of Degree Centrality, the slope of the fitted line to the result in Figure 5.8

suggests that the effect of correcting for degree of freedom is associated with the rate of

connectivity of the nodes. As highly connected nodes, degree hubs, experience the largest

disruption and nodes with relatively lower rate of connectivity experience a smaller effect.

It is also worth noting that almost all of the nodes have experienced a significant decrease.

• Power2011, in case of GSR, all of the RSNs experienced a decrease. However, the

rate of change is not consistent across RSNs. For instance, the Cerebral and Subcor-

tical nodes are among those with the lowest level of decrease, whereas, the Fronto-

parietal, Salience, DMN, Dorsal attention and Visual networks have experienced the

largest decrease. The association between the rate of connectivity and the decrease
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due to HetBiv-correction is around ≈ 0.30. Similarly, in the case of NoGSR, the re-

sults suggest a unanimous decrease across RSNs. However, nodes of the Cerebral and

Subcortical networks experienced the least decrease, whereas, the Fronto-parietal,

Salience, DMN, Dorsal attention and Visual networks experienced the largest de-

crease. It is notable that the Visual, DMN, Salience and Sensory networks contain

the degree hubs. The association between the rate of connectivity and the decrease

due to HetBiv-correction, in the case of NoGSR, is ≈ 0.15.

• Yeo17, in the case of GSR, the results suggest a decrease in all DC values of all RSNs.

However, the rate of decrease is not consistent as the Saliency Ventral Attention,

Dorsal Attention, DMN and Control networks suggest the highest decrease, whereas,

the Limbic system experienced the lowest decrease. The hub degrees are among the

DMN, Saliency and Dorsal attention networks. In the case of NoGSR, similar to the

GSR case, all of the RSNs show a decrease in their DC values, however, this decrease

is suggested to be lower in Limbic system and higher in the Dorsal Attention, Somato-

sensory, DMN networks.

• AAL2, in the case of GSR, the DC values of the nodes within all of the RSNs ex-

perience a decrease. However, the Cerebellum and Executive Control are among the

least affected, while, the Fronto-parietal, Sensoriotor and Visual Lateral are among

the most affected RSNs. The association between the DC values and the effect of

HetBiv-correction is ≈ 0.20. Similarly, in the case of NoGSR, the DC values of all

of the nodes experience a decrease. The Cerebellum, Visual Lateral and Auditory

networks are among the RSNs which have the least effect, whereas, the Visual and

Sensorimotor networks are among the most affected RSNs. In the case of NoGSR,

the RSNs demonstrate a negligible level of association between the DC values and

changes due to HetBiv-correction.

Betweenness Centrality

The second row of Figure 5.8 shows the changes in Betweenness Centrality of Naive-

corrected networks and HetBiv-corrected networks. It suggests that the HetBiv-correction

introduces a positive association between the BC values of nodes and the magnitude of the

changes due to the use of HetBiv-correction. In the case of GSR, 70%, 82%, 71% of nodes

in Power2011, Yeo17 and AAL2 are showing a significant difference, respectively. The

percentages in the case of NoGSR are 48%, 92%, 56% respectively.

• Power2011, in the case of the GSR, apart from the Memory Retrieval and Sensori-

motor networks which suggest a combined increase and decrease in the BC value of
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the nodes within them, the rest of the RSNs suggest a unanimous increase in their

BC values. The Ventral Attention, Dorsal Attention and Fronto-parietal and Salience

networks are among the networks with highest increase, whereas, the Cerebral and

Subcortical regions are among the RSNs with least increase. It is also worth not-

ing that all RSNs suggest a positive association between BC values and the effect of

HetBiv-correction, however, this effect is often negligible. In the case of the NoGSR,

similar to the GSR, in addition to the Memory Retrieval and Sensorimotor, Visual

network also suggest a combined increase and decrease in BC values. The remaining

RSNs, consistently, suggest a increase in BC values. For instance, Ventral attention

shows the highest change in BC values, whereas, the Cerebral and Subcortical regions

suggest a relatively lower increase in their BC values.

• Yeo17, in the case of GSR, the Somatosensory network as well as the Visual network

fail to present a consistent changes in their nodes as some of the nodes suggest an

increase in BC and the remaining suggest otherwise. However, the remaining RSNs

suggest an increase in BC values. It is worth noting that the direction of association is

not consistent across the RSNs as, for instance, the Somatosensory network suggests

a negative association, while, Limbic system suggest a strong positive association. In

the case of the NoGSR, apart from the Somatosensory network which demonstrates

a combined increase and decrease in BC, the remaining RSNs suggest an increase in

their BC values. The largest increase in BC value of an RSN belongs to the Limbic

system.

• AAL2, in the case of GSR, there are only two RSNs (Sensorimotor and Visual net-

works) which suggest a mixture of increase and decrease in their BC values. The

remaining RSNs suggest an increase in the BC. In the case of NoGSR, it is only the

Visual network which demonstrates a combined increase and decrease in BC. Other-

wise, the remaining RSNs suggest a increase in their BC values.

Normalised and Non-normalised Nodal Rich Club Coefficients

The last two rows of figure 5.8 show changes in nodal RC and nodal normalised RC values

across the RSNs. The majority of nodes experience a significant change in their nodal RC

values as the percentage of significantly different nodes in the case of GSR are 97%, 89%,

and 100% for Power2011, Yeo17 and AAL, respectively. In the case of NoGSR, these

percentages are 88%, 95% and 87%, respectively. Nodal NRC values are subject to the

lower proportion of significant differences since in the GSR case these percentages are as

low as 40%, 15% and 13%, whereas, in the NoGSR case, these percentages are 72%, 93%

and 88%, respectively.
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• Power2011, in both cases of GSR and NoGSR, the nodal RC values experience a de-

crease due to the HetBiv-correction. However, after normalisation, the NRC values,

unanimously suggest an increase in nodal NRC values.

• Yeo17, in both cases of GSR and NoGSR, the nodal RC values suggest a decrease

across all RSNs. After normalisation, in the case of GSR, there are only the Control,

Default Modes and Saliency Ventral Attention that demonstrate significant increase

in some of their nodes. The majority of other nodes across the remaining RSNs fail

to show a significant increase. In case of NoGSR, all RSNs suggest an increase in

their nodal normalised RCs.

• AAL2, in the case of GSR, all RSNs suggest a decrease in the nodal RC of their

nodes. After normalisation, the nodal normalised RC values suggest a mixture of

increase and decrease across nodes. Two RSNs, the Auditory and Sensorimotor, fail

to demonstrate any significant changes in NRC values of any of their nodes. In the

case of NoGSR, all nodes suggest a significant decrease in their nodal RC values.

However, after normalisation, all nodes suggest a significant increase in their nodal

normalised RC values.

5.3.5 Effect of Autocorrelation Correction on Graph Theoretical Measures of
Density-Thresholding

Global Graph Theoretical Measures

We begin with the analysis of global measures (i.e. integration, segregation and complex-

ity) over a range of densities. We examine the effect of correction methods by investigating

the changes they may have caused in each of the aforementioned global measures at ev-

ery density step. The changes are determined as a ratio of a specific graph theoretical

value obtained from HetBiv-corrected networks over its corresponding value in a Naive-

corrected network. Therefore, if the ratio is above one it suggests that the measure in

HetBiv-corrected networks is higher compared to Naive-corrected networks. For each den-

sity step, the actual values of these two correction methods were tested for both cases of the

GSR and Non-GSR aiming to ensure the changes are statistically significant.

Measures of integration (characteristic path length and its normalised version) are

shown in first two rows of Figure 5.9. They suggest a decrease in level of integration of

HetBiv-corrected networks across all four parcellation schemes and the choice of GSR. In

the case of GSR, ICA100, Yeo17 and AAL2 the rates of change in characteristic path length

for GSR networks are fairly similar (≈ 1.15), while, in Power2011, the rate of change is rel-

atively lower (≈ 1.07). For the Non-GSR case, the growth in the rate of change is significant
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Figure 5.8: Disruption plots of the changes in the local measures (Degree Centrality, Betweenness
Centrality and Rich Clubs) of the networks with statistical thresholding due to HetBiv correction. All
of the x-axises represent the average of the measure across groups and all of the y-axises represents
the differences in the values between the two groups. 123



across Yeo17, AAL2 and Power2011, however, the rate of change is no longer significant

ICA100 beyond the cost-efficient densities. This implies that the effect of correction is more

likely to be detected in sparser densities including the cost-efficient zone.

Measures of segregation (clustering coefficients, normalised clustering coefficient

and modularity index) are shown on the third and fourth rows of Figure 5.9. In the case of

GSR, contrary to characteristic path length, changes in the clustering coefficient is not con-

sistent across densities. Broadly speaking, networks with GSR suggest a decrease in rate

of change of clustering coefficients, although, this decrease is not always significant. On

the other hand, in networks without GSR, the results suggest an increase in rate of change

for Yeo17 and AAL2. Contrary to non-normalised clustering coefficient, the normalised

version of clustering coefficient, Ω, demonstrates an increase in rate of change across the

choice of GSR. The increase is consistent across densities. Similar to Path Length, as the

density grows the rate of change approaches one which suggests that the difference between

the HetBiv-correction and the Naive-correction becomes smaller. Another measure of seg-

regation, the modularity index, also shows an increase in HetBiv-corrected networks for

GSR networks. These changes are mainly significant in the sparse densities. In contrast, in

the case of NoGSR, the modularity index fails to suggest a consistent change over densities.

Eventually, an increase in level of integration and segregation is reflected in the

level of small-worldness. The small-worldness also shows an increase across the densities.

Similar to the previous measure, in both cases of GSR and NoGSR, the changes are more

significant in sparse densities and they become relatively smaller as the density grows until

after a certain density, they are no longer significantly different.

Local Graph Theoretical Measures

In this section, we investigate the changes in local graph measures due to HetBiv-correction.

For simplicity, we only investigate the changes on a common density between parcellation

schemes and the choice of GSR. This common density is obtained by averaging across

the cost-efficient density of each parcellation scheme with or without GSR. The common

density is determined to be 15%. We discard ICA100 from further local analysis as the

RSN assignment of each node is unknown. The disruption indices are summarised in Table

5.3 and Table 5.4 for the case of the GSR and NoGSR, respectively. Each disruption index

corresponds to a RSN of a relative parcellation scheme which is later identified by different

colours in Figure 5.10.
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ICA100 Yeo17 AAL2 Power2011

Figure 5.9: Change rates between global measure of network with Naive correction and HetBiv cor-
rection. Each column is a parcellation scheme and each row is global graph theoretical measure. Red
circle indicates the statistical significance between the two correction in case of NoGSR. Black cross
indicates the statistical significance between the two correction in case of GSR. Vertical lines show
cost-efficient densities over different choices of GSR and correction methods. HetBiv-corrected,
GSR (dashed blue); HetBiv-corrected, NoGSR (dashed green); Naive-corrected, GSR (solid black);
Naive-corrected, NoGSR (solid red). All of the x-axis shows the density, and all the y-axis shows
the Change Rate. 125



GSR - Density Thresholding 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Degree 
Centrality 

Betweenness 
Centrality 

Rich Club 
Coefficients 

Normalised 
Rich Club 

Coefficients 
Power2011 

Uncertain -0.28 -0.29 -0.39 -0.27 
Sensory/Somato -031 -0.41 0 0.27 
Cingulo Control -0.11 0.05 0 0.41 
Auditory -0.16 -0.31 0 0.17 
Default Mode -0.22 -0.39 -0.11 0.32 
Ventral Attention -0.29 -0.37 0 0.22 
Visual -0.25 -0.45 -0.12 0.37 
Fronto-parietal -0.18 -0.37 -0.06 0.24 
Salience -0.26 -0.34 -0.22 0.24 
Subcortical 0.04 0.17 -0.26 -0.94 
Cerebellar -0.01 0.27 0 -0.45 
Dorsal Attention -0.01 -0.43 0 0.26 

AAL2 
Sensorimotor -0.26 0.16 -0.22 -0.2 
Executive Control -0.18 0.18 -0.29 0.62 
Fronto-parietal -0.32 -0.23 -0.19 -0.18 
Auditory -0.29 0.15 0.02 0.15 
Default Mode -0.4 0.22 -0.48 -0.24 
Visual -0.02 0.61 -0.1 0 
Visual Lateral -0.04 0.31 -0.04 0.04 
Cerebellum -0.07 0.14 -0.13 -0.44 

Yeo17 
Visual -0.15 -0.44 -0.12 0.27 
Sensory -0.18 -0.9 -0.31 -0.22 
Dorsal Attention -0.47 -0.33 -3.28 0.13 
Ventral Attention -0.13 -0.35 0.06 -0.06 
Limbic -0.06 0.9 -0.48 -0.97 
Control -0.22 -0.33 -0.19 -0.06 
Default Mode -0.27 0.02 -0.15 -0.23 

Table 5.3: Disruption indices, as discussed in section 3.1.10, of RSNs of three atlases (Power2011,
AAL2 and Yeo17) for the GSR case of local measures in Density Thresholding.
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NoGSR- Density Thresholding 
 Degree 

Centrality 
Betweenness 

Centrality 
Rich Club 

Coefficients 
Normalised 
Rich Club 

Coefficients 
Power2011 

Uncertain -0.26 0.34 -0.32 -0.29 
Sensory/Somato -0.56 0.14 -0.51 -0.42 
Cingulo Control -0.05 0.2 -0.07 -0.42 
Auditory -0.24 0.23 -0.24 -0.54 
Default Mode -0.35 -0.07 -0.34 -0.37 
Ventral Attention -0.34 0.07 -0.26 -0.33 
Visual -0.39 -0.18 -0.2 -0.08 
Fronto-parietal -0.11 0.11 -0.05 -0.25 
Salience -0.36 -0.02 -0.39 -0.39 
Subcortical 0.56 0.92 0.2 -0.25 
Cerebellar 0.06 0.90 -0.14 -0.58 
Dorsal Attention 0.09 -0.08 0.07 -0.22 

AAL2 
Sensorimotor -0.37 0.59 -0.52 -0.91 
Executive Control -0.21 0.25 -0.26 -0.11 
Fronto-parietal -0.35 0.17 -0.34 -0.65 
Auditory -0.47 0.1 -0.38 -0.53 
Default Mode -0.27 0.08 -0.27 -0.36 
Visual -0.19 0.53 0.39 0.64 
Visual Lateral -0.09 0.03 -0.11 -0.27 
Cerebellum 0.21 0.87 -0.09 -0.21 

Yeo17 
Visual -0.9 0.21 -0.06 0.17 
Sensory -0.25 0.43 -0.27 -0.17 
Dorsal Attention -0.34 -0.17 -0.35 -0.28 
Ventral Attention -0.07 -0.14 -0.04 -0.09 
Limbic 0.8 0.95 0.42 0.12 
Control -0.35 -0.02 -0.35 -0.13 
Default Mode -0.35 0.16 -0.35 -0.59 

 

 

 

 

 

 

 

 

 

Table 5.4: Disruption indices, as discussed in section 3.1.10, of RSNs of three atlases (Power2011,
AAL2 and Yeo17) for the NoGSR case of local measures in Density Thresholding.

Degree Centrality

Changes in degree centrality show a negative change across all four parcellation schemes

and GSR choices. The slope of the fitted line to these changes is close across choices of

the GSRs. Also a remarkable proportion of the nodes experience a significant change due

to the HetBiv correction. For networks in the case of GSR, these proportions are as 53%

78% 89% for Power2011, Yeo17 and AAL2, respectively. For NoGSR networks, these

proportions are 53% 81% 85%, respectively.

• Power2011, in the case of GSR, suggests that the majority of RSNs demonstrate

a significant mixture of an increase and decrease in the DC values. However, the

Cingulo-opercular task control, Subcortical and Cerebral networks are the RSNs for

which all of their nodes experienced an increase after HetBiv-correction. On the other
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hand, all nodes of the Dorsal attention and Fronto-parital task control experience a

decrease due to HetBiv-correction. It is worth noting that nodes of the Somatosensory

system and the Fronto-parietal task control experience the highest negative associa-

tion between their DC values and the changes due to HetBiv-correction. Salience and

Fronto-parietal task control are among the RSNs, with several degree hubs, experi-

enced the largest decrease. Degree centrality of networks without GSR, also, suggest

that the nodes of the majority of RSNs experience both a decrease and increase in

their DC values. Although, similar to GSR case, all significantly different nodes

of Cingulo-opercular task control, Cerebral and Subcortical networks suggest an in-

crease, whereas, the Fronto-parietal task control and the Dorsal Attention experience

a decrease in their DC values.

• Yeo17, in the case of GSR, suggests that apart from Limbic system, all other RSNs

experience a significant decrease in their DC values. Nodes of the Limbic system,

unanimously, demonstrate an increase in their DC values due to HetBiv-correction.

It is also worth noting that the Dorsal Attention network exhibits the largest posi-

tive association between the DC values and rates of change. In the case of NoGSR,

similar to the case of GSR, the Limbic system is the sole network that suggests a con-

sistent change across its nodes as they gained DC due to HetBiv-correction. Nodes

of other RSNs shows a mixture of both an increase and decrease in their DC values,

however, the association varies between them as the Dorsal Attention and Visual net-

work shows the highest negative association, whereas, the Salience Ventral Attention

network demonstrate the lowest association.

• AAL2, in the case of GSR, suggests that six out of eight RSNs exhibit a mixture of

decrease and increase in their DC values, while, the two remaining networks, Visual

and Visual lateral, show a consistent decrease in their DC values. It is also worth

noting that more than 91% of the nodes in the Cerebellum show an increase. The

Sensorimotor and Fronto-praietal network, which contain the degree hubs, experience

the largest decrease. In the case of NoGSR, similar to the case of GSR, nodes of the

Visual and Visual Lateral networks show an unanimous decrease in DC values of

their nodes. Conversely, the nodes of the Cerebellum network show an increase in

their DC values. The changes in other RSNs suggest a combination of increase and

decrease. It is notable that the largest negative association can be seen in the Fronto-

parietal and Auditory networks. Fronto-parietal network, which contains degree hub

nodes, exhibits the largest decrease in its DC values.
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Betweenness Centrality

Changes in Betweenness Centrality, are shown in the second row of Figure 5.10. In the case

of GSR, 55%, 62% and 69% of the nodes in Power2011, Yeo17 and AAL2, respectively, are

significantly affected by the HetBiv-correction. In the case of NoGSR, these proportions

rise to 67%, 70% and 83%, respectively. The overall association between those changes

and the BC values are not consistent across either the choice of parcellation scheme or the

case of GSR. As for Power2011-GSR and Yeo17-GSR this association is positive, while,

for remaining conditions the results suggest a close-to-zero or negative association.

• Power2011, in the case of GSR, suggests that all nodes of the Cingulo-opercular

task control, Cerebellum and Subcortical networks experience a significant increase

in their BC values. The rest of the RSNs, experience both an increase and decrease

across their nodes. It is also worth mentioning that the Auditory, Default Mode and

Fronto-parietal networks are among the RSNs for which the BC hubs experienced

the largest decrease due to HetBiv-Correction. In the case of NoGSR, the Subcor-

tical, Cerebral and Cingulo-opercular task control, Dorsal Attention, Fronto-parietal

task control, Auditory and Ventral Attention networks are among the networks which

unanimously experience an increase. The remaining networks such as the Default

Mode and Salience networks fail to suggest a consistent change, neither an increase

nor decrease, in their BC values.

• Yeo17, in the case of GSR, suggests that nodes of the majority of RSNs experience

both an increase and decrease. However, the Limbic system exhibits a consistent in-

crease in its node BC values. It also suggest the largest positive association, while,

the largest negative association is suggested by the Visual networks. Salience Ventral

Attention network, which contain the BC hubs, experienced the largest decrease. In

the case of NoGSR, the majority of networks such as the Limbic, Visual, Somatosen-

sory, Visual and Default Mode networks suggest a unanimous increase in their BC

values, while, the remaining networks suggest a mixture of increase and decrease

across their nodes. Similar to the case of GSR, the Limbic system suggests the high-

est positive association. The majority of the BC hubs which belong to the Default

Mode network suggest an increase in their BC values due to HetBiv-correction.

• AAL2, in the case of GSR, suggests that all of the RSNs demonstrate a consistent

increase in their BC values, however, the small portion of nodes within the Fronto-

parietal network suggest a mixture of increase and decrease in their BC values. The

Visual network has the largest positive association among the RSNs. It is also worth

noting that the effect of HetBiv-correction is not consistent across the RNS as BC
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hubs in the Cerebellum experience a relatively large increase in their BC value, while

the BC hubs of the Fronto-parietal networks suggest the opposite. In the case of the

NoGSR, all RSNs show a consistent increase in their BC values across the nodes.

The Cerebellum demonstrates a remarkable positive association.

Normalised and non-normalised nodal Rich Club coefficients

Normalised and non-normalised versions of the Nodal Rich Club coefficients are the last

graph measure that we use to investigate the changes due to HetBiv-correction. These

changes are summarised in last two rows of Figure 5.10. In the Nodal Rich Club measures,

in the case of GSR, the percentage of nodes that were found to be significantly affected

are 15%, 50% and 70% for Power2011, Yeo17 and AAL2, respectively. However, these

percentages rise to 54%, 78% and 90% in the case of NoGSR. These percentages even

become larger in the case of normalised Rich Club for both GSR (98% 91% 65%) and

NoGSR cases (95% 89% 94%).

• Power2011, in the case of GSR, suggests only a small number of nodes (mostly from

the Default Mode, Visual and Fronto-parietal networks) exhibit a significant decrease

in their nodal RC coefficients. Conversely, the result of changes in the normalised

RC Coefficients suggest that all of the nodes across the 12 RSNs show a level of

significant increase in their nodal normalised RC coefficients. The Dorsal attention,

Default Mode and Subcortical networks are among the RSNs which show the highest

level of increase. However, it is notable that the majority of the nodes of the Subcor-

tical network were not contributing to the RC organisation since their RC coefficients

were not identified to be significantly different. In the case of NoGSR, changes in

the nodal RC coefficients of nodes across RSNs are not consistent although, the num-

ber of nodes which experienced significant changes in their nodal RC coefficients is

remarkably larger. The Subcortical, Cerebral, Auditory and Cingulo-opercular task

control networks demonstrate a unanimous increase in their nodal RC coefficients,

whereas, the changes across remaining networks are a combination of increase and

decrease. After normalisation, all RSNs demonstrate an increase in their nodal RC

coefficients. However, all of the nodes in the Cerebral and Subcortical networks fail

to be considered as a part of a RC organisation. The nodes which significantly ex-

perienced an increase due to HetBiv-correction are mostly in the Fronto-parietal task

control, Dorsal Attention and Default Mode networks.

• Yeo17, in the case of GSR, suggests that the Limbic system, with all its nodes in-

creased, and the Visual network, with all its nodes decreased, are two extremes of

130



HetBiv-correction effects. The remaining RSNs experience a combination of in-

crease and decrease in their nodal RC coefficients. On the other hand, the nodal

normalised RC coefficients of nodes across all RSNs consistently experience an in-

crease. The Salience and Default Mode networks are among the RSNs with the high-

est nodal normalised RC coefficient values which also suggest an increase due to

HetBiv-correction. Despite the Limbic system suggesting a relatively large associ-

ation between its normalised RC coefficient, it fails to contribute to the RC organ-

isation. In the case of NoGSR, Limbic system is the only network which shows a

unanimous increase in nodal RC coefficients, while, the effect of HetBiv-correction

on nodal RC coefficients of nodes across other RSNs are shown to be mixture of in-

crease and decrease. Contrary to the results of the RC coefficients, the normalised

RC coefficients across all RSNs, consistently, suggest an increase in their normalised

RC coefficients. It is worth noting that the largest negative association between nodal

RC coefficients and the changes due to HetBiv-correction is suggested by the Default

Mode network.

• AAL2, in the case of GSR, suggests that the RC coefficients of nodes within the Vi-

sual, Visual Lateral and Auditory networks experience a consistent decrease, while,

nodes of the remaining RSNs experience a combined increase and decrease in their

RC values. However, after normalisation all RSNs, unanimously, demonstrate an

increase in their nodal normalised RC coefficients. Contrary to rest of the RSNs,

the Executive Control and Cerebellum networks suggest a strong negative associa-

tion between their nodal normalised RC coefficients and the changes due to HetBiv-

correction. In the case of NoGSR, the Visual and Visual lateral networks still suggest

a unanimous decrease, however, the remaining networks demonstrate an inconsis-

tency in changes to their RC coefficients. However, after the normalisation, similar

to the GSR case, all the RSNs suggest a significant increase for nodes across all

RSNs. Despite a unanimous increase across the RSNs the Auditory network sug-

gests a strong negative association between its nodal normalised RC coefficients and

changes due to HetBiv-correction. This association in the Visual network suggests

the opposite. Finally, as one may notice, the results in Figure ??, the Power2011

shows more systematic changes compared to other atlases. This association is fu-

elled by, firstly, the same-size ROIs in Power2011 and, secondly, the heterogeneous

effect of the autocorrelations.
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Figure 5.10: Disruption plots of changes in local measures (Degree Centrality, Betweenness Cen-
trality and Rich Clubs) of network with density thresholding due to HetBiv correction. All of the
x-axises represent the average of the measure across groups and all of the y-axises represents the
differences in the values between the two groups. 132

132



5.4 Discussion

Autocorrelated BOLD signals, are one of the many issues that accompanies the analysis of

the functional connectome of the human brain. The autocorrelated BOLD signals can, often

severely, inflate the degree of freedom due to independency between observations. This

violates the presumption of the majority of statistical testing methods which are centred

on the data-points being completely independent. In this chapter, we discuss the effect

of autocorrelated BOLD signals on topological properties of the functional connectome.

In more detail, we show that autocorrelation does not affect all of the three main parts

of the brain, White Matter, Grey Matter and CSF, equally. Grey matter is shown to be

more affected by the non-white noises. Furthermore, we also showed that the distribution

of correlation lengths suggests that the effect of the autocorrelation is not uniform across

grey matter itself, but rather, it suggests a level of heterogeneity across different parts of

the brain. Therefore, it is crucial to investigate the effect of autocorrelation on parcellation

schemes which are commonly used to decimate the raw functional connectome to a smaller

number of either anatomically or functionally meaningful regions. Our findings suggest that

there is a strong association between the volume of ROIs and correlation length since the

parcellation schemes with larger ROIs are more vulnerable to the effect of autocorrelation.

The existing methods for mitigating the effect of autocorrelation in functional con-

nectivity analysis consider the BOLD signals as a first-order autoregressive process. How-

ever, it is widely known that the BOLD signals are constructed of far more complicated

temporal processes. In this work, we propose a novel method of correcting the degree of

freedom for Pearson’s correlation coefficients which is based on estimating the variance

of the correlation coefficients. The proposed methods examine the temporal structure of

BOLD signals beyond the first-order autoregressive process by employing Bartlett’s ’gen-

eral process’. This technique considers the autocorrelation function of the all temporal lags

available for a time series. In addition to considering several temporal lags of an ACF, the

method considers a more complicated autocorrelation structure constructed by combining

the ACF of both time series involved in the correlation. The bivariate nature of the method

helps us to account for the spatial heterogeneity of the autocorrelation effect present in the

cortical and sub-cortical regions of the brain. The bias due to the inner product of the ACFs

is also corrected by extra steps which was discussed in section 5.1.7. However, by vali-

dating the methods on real-data, the results suggest that the biased version still has fairly

close results to the unbiased version, which motivates the case of computational efficiency.

In traditional applications of the BCF general-process, it is suggested that accounting for

the ACF of all temporal lags may result in meaningless estimation of very distant lags (or

larger lags, see Eq. 5.9) where the autocorrelation is likely to be zero. To mitigate this
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biased estimation, it is commonly advised to curb/shrink the autocorrelation function so

that only a few early lags remain in the estimation. The proposed method demonstrates

that it is unnecessary to use any form of arbitrary curbing or shrinking strategies as, for

long time series, the probability of the occurrence of negative autocorrelation is as large as

positive autocorrelation, and therefore, apart from early autocorrelation lags, the remaining

lags cancel out each other.

To compare the HetBiv method with other existing methods, we use a real-data

technique to avoid oversimplifying the BOLD signals. In traditional simulation studies, it

is often common to generate time series with only one or very few orders of the autoregres-

sive function. Instead, we exploit the realisation that the BOLD signals are irreproducible,

and therefore, the correlation coefficient between one randomly-picked time series of a sub-

ject and another randomly-picked time series of another subject is expected be zero. After

iterating the inter-subject correlation of randomly-picked nodes for a large number of real-

isations, the obtained distribution of correlation coefficients is expected to be a univariate

mean-zero normal distribution. Any distribution with a different mean or variance suggests

a systematic confound due to autocorrelation that exists in the BOLD signals. By comparing

the shape and tail of each distribution obtained from each method against the ground truth,

we found that the methods of the HetBiv family outperform the other methods discussed

in this chapter. It is worth mentioning, that the FSLnet implementation for estimating the

variance of the correlation coefficients is expected to out-perform the other AR(1)-based

methods if the number of simulations goes beyond the number of nodes. However, it is

worth noting that the running of thousands of synthetic time series for each pair of the

nodes still seems to be computationally cumbersome.

Using the HetBiv method to estimate the effective degree of freedom, can not only

drastically affect the hypothesis testing required for statistical thresholding, but it can also

affect the density thresholding in the sense that the previous correlation coefficients are

heterogeneously changed during the standardisation process. In this study, we investigate

the effect of HetBiv-correction on both thresholding methods with and without global signal

regression.

In Statistical Thresholding, global signal regression reduces the variability between

global densities of the functional connectome of subjects, while the HetBiv-correction re-

duces their values. Bearing in mind that larger variation between the density of networks

may introduce a bias in analysis of graph theoritical measures due to differences in the av-

erage degree of nodes, global signal regression is shown to be a more reliable option for

Statistical Thresholding in graph analysis since it minimises the inter-subject variation in

global densities. A reduction in the density of each subject implies that there will be a

decrease in the Degree Centrality of the nodes, however, it was shown that this reduction
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does not homogeneously affect all nodes. Analysis of Degree Centrality suggests a de-

crease in almost all of the resting-state functional networks, however, the magnitude of this

reduction is not similar across the RSNs. Broadly speaking, the Default Mode network,

and the RSNs related to the Fronto-parietal area of the brain (Fronto-parital task control in

Power2011, Fronto-parietal in AAL2 and SalVenAtt and parts of the Control network in

Yeo17) are the networks which are shown to be largely affected by the HetBiv-correction,

whereas, the Subcortical regions (Subcortical in Power2011, Limbic in Yeo17) along with

Cerebellar networks (Cerebral in Power2011, Cerebellum in AAL2) are among the least

affected RSNs. Despite the reduction in the Degree Centrality, all of the RSNs experience

an increase in their Betweenness Centrality, consistently, across all parcellation schemes.

Surprisingly, nodes from the Default Mode and Fronto-parietal networks are among the BC

hubs which experienced the largest increase in their BC values, in spite of the reduction

in their the DC values. Analysis of changes in DC and BC values of the Cerebellum and

Subcortical networks also suggest a small, but still significant, increase in the values. The

changes in Rich Club coefficients before and after normalisation are not consistent as in

non-normalised version of the RC coefficients, there is a unanimous decrease across all

RSNs, however, after normalisation, the results suggest an increase in the nodal normalised

RC coefficients. The initial reduction of the non-normalised RC coefficients is likely to be

the result of the decrease in the average degree of nodes due to the HetBiv-correction in sta-

tistical thresholding, although the normalised versions suggest that the initial increase may

help reveal the more tightly connected RC organisations among the degree hubs. Further

to the effect of the HetBiv-correction on the local measures, we also investigate the effect

of this correcting of the degree of freedom on global measures. Analysis of the Cluster-

ing coefficient suggests a decrease due to HetBiv correction. However, after normalisation,

normalised clustering coefficients, Ω, indicate an increase in the level of segregation. This

increase is also notable in the modularity indexes. The characteristic path length and its

normalised version, Λ, indicates an increase after the HetBiv-correction. However, nor-

malised characteristic path length is fairly close to one, indicating the level of integration

in the networks are still as high as a random graph. Changes in the level of segregation and

integration results in an increase in the level of small-worldness in the networks.

Contrary to Statistical Thresholding, in the Density Thresholding, the density of

networks is fixed between the HetBiv and Naive corrections. Therefore, tracking the het-

erogeneity in changes, specifically in the Degree Centrality, is more straightforward as the

bias due to the difference in network densities does not longer exist. The Subcortical and

Cerebral regions are among the networks which experience an increase in their DC values,

however, this increase is compensated by a reduction in DC values of the Visual, Fronto-

parietal and Dorsal Attention networks. Other networks such as the Default Mode and
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Auditory networks suggest a balance between increase and decrease. The Betweenness

Centrality of nodes within the Cerebral and Subcortical networks suggest a slight increase.

The changes in Betweenness Centrality of other networks are not consistent across either

parcellation schemes or choice of GSR. For example, The BC of all networks shows an

increase in AAL2 while, in other parcellation schemes the changes in BC values is a mix-

ture of increase and decrease. Similarly, the Rich Club coefficients of the Subcortical and

Cerebral network show an increase while the RC coefficients across the remaining RSNs

fail to demonstrate consistent changes across the parcellation schemes. Although the nodal

RC coefficients fail to exhibit a consistent change across the RSNs of different parcellation

schemes, the normalised nodal RC coefficients of all parcellation schemes suggest a consis-

tent increase. We also investigated the effect of HetBiv-correction on the global measures.

Changes in the Clustering coefficient over the densities fails to demonstrate a consistent

significant difference in the level of segregation. However, almost all parcellation schemes

suggest a significant increase around the cost-efficient densities. It is also worth noting

that over the majority of density steps the Clustering Coefficient shows a decrease due to

HetBiv-correction. However, the difference approaches zero as the density grows until the

Clustering coefficients in the Naive and HetBiv-correction become identical. Normalised

Clustering coefficients, Ω, show a consistent increase across the densities due to HetBiv-

correction for both GSR and Non-GSR choices. Similarly, Modularity index also suggests

a significant increase due to HetBiv-correction for GSR and NoGSR cases. Eventually,

these changes suggest an increase in the level of segregation for networks for which their

degree of freedom were corrected by HetBiv method. The Characteristic Path Length and

its normalised version, Λ, also suggest an increase due to HetBiv correction, however, the

magnitude of the difference is greater for NoGSR cases. A statistically significant increase

in Λ suggests a decrease in the level of integration. Eventually, these increases in the level

of integration and segregation are reflected later in the measure of small-worldness and

suggest an increase in level of complexity of the networks due to HetBiv-correction. It is

important to note that despite the increases in the normalised characteristic path length, the

values are still fairly close to one, which suggest that the HetBiv corrected networks still

maintain an integration level as large as a random network.

The results from Density and Statistical thresholding confirm that the HetBiv cor-

rection affects the Fronto-parietal regions, Subcortical, Cerebral, Visual networks in various

ways. The increase in the Subcortical, Cerebral and Visual networks may be relevant to rela-

tively smaller effects of autocorrelation in these regions, which leads the HetBiv-correction

to have a smaller effect, and consequently, leads to the detection of more edges in the

aforementioned areas. Also the decrease in the Fronto-parietal, Default Mode and Dorsal

Attention networks suggest that it is more likely that the inflated degree of freedom in these
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areas due to large effect of autocorrelation may lead the edges in these areas to falsely show

a strength in Naive-corrected networks. Regardless of the choice of parcellation scheme or

GSR, the results suggest that HetBiv-correction reveals a higher level of segregation and a

lower rate of integration. As a rate of growth in segregation is higher than the integration,

and integration level is still fairly similar to that for random networks, the complexity level

of the networks is suggested to be increased due to HetBiv-correction.

Among the parcellation schemes, the Power2011, exhibits relatively robust results

against the autocorrelation since the analysis of the shape and tails of the null distribution,

obtained from the comparison techniques, suggest a higher similarity between its inter-

subject correlation coefficients and the ground-truth. Further, analysis of the results from the

Density Thresholding suggest that the Power2011 was relatively less affected by the HetBiv

correction in both the segregation and integration measures. In terms of GSR, Power2011,

Yeo17 and AAL2 show changes in their graph theoretical measures after and before the

GSR, whereas, the results of ICA100 do not demonstrate a significant change due to GSR.

5.5 Summary

In this chapter we focused on the impact of non-white noises in the analysis of functional

connectome of the human brain. We also proposed a series of methods which can help

mitigating this effect.

• Through ROI-based analysis of correlation length, we demonstrated that the auto-

correlation (non-white noises) are rather distributed heterogeneously across the brain

surface. This findings contradicts with the previous assumptions of the dependencies

across the BOLD signal time-points.

• By investigating the correlation lengths of wide range of parcellation schemes, we

also showed that the impact of autocorrelation is strongly related to the size of the

ROIs in a parcellation scheme. As schemes with fixed size of ROIs (such as CC200

and Power) shows lower level of autocorrelation compared to other schemes (such as

AAL, AAL2 and Yeo17).

• To mitigate this effect, we proposed a three bivariate heterogeneous methods, called

the Het-Biv. These methods, contrary to other existing methods, accounts for spatial

heterogeneity as well as complicated temporal structure of the BOLD signals.

• We used inter-subject scrambling method, assuming the in the ideal case the correla-

tion between two BOLD signals of two different subjects should follows univariate

normal distribution. We used Kolmogrov-Smirnof to quantify the performance of the
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proposed methods. The results suggest the HetBiv methods demonstrate the small-

est KS statistics (≈ 0.003 for the HCP cohort), and therefore, is more successful in

accounting for the effect of autocorrelation. As the KS statistics are not sensitive

to the tails of a distribution, we separately investigated the tails using false-positive

rates. The results suggest that the HetBiv methods outperforms the existing methods

in controlling the tail of the distribution of correlation coefficients which are crucial

in further statistical inferences.

• Finally, we investigated the effect of this correction for both cases of statistical and

density thresholding. The results suggest significant changes in topological descrip-

tion of the functional connectome.
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Chapter 6

Conclusions and Future Work

Aiming to deliver the four objectives discussed in section 1.1, we developed a series of

approaches and methods for mutli-subject inference of graph theoretical methods. We also

investigated the effects of noise on the topological description of functional connectivity by

proposing a novel method aiming to mitigate the effect of non-white noise.

In chapter 3, we presented a general overview about how existing graph theoretical

methods can be used to confirm the previous findings about the topological features of the

functional connectivity of the human brain. We proceeded this chapter by showing how

these methods can be used as bio-markers to detect the changes in the functional connec-

tome in patients with schizophrenia. Aligned with the objectives, a statistical approach was

proposed (see section 3.1.9) to facilitate between-group statistical inference on RC coeffi-

cients and RC organisation between two groups of healthy control and patient. Previously,

RC analysis were performed on group-averaged networks which result in loss of the within-

group variabilities, however the proposed method integrates the changes in RC coefficients

and RC organisations across subjects and therefore makes hypothesis testing easier.

In chapter 4, we elaborated the notion of a Rich Club by proposing a novel method

for detecting highly connected nodes of a network, named the Rich Block. This method

can be seen as a complimentary approach to SBM in the sense that it utilises the SBM es-

timated parameters to facilitate a group summarisation of highly connected network cores.

Specifically, by using the Het-SBM, the RB can be helpful in between-group inference of

these cores since the nodes’ block assignments remain identical for each subject. Further

to group inference, the RB also accounts for the profile of connectivity as well as subject-

level covariates (see section 4.1.3). For detection of RB organisations, we developed an

approach to produce randomised networks, called a Tensor Null Model (see section 4.1.3).

The TNM not only enables detection of a RB organisation, it is also remarkably faster (63k

times) than traditional randomisation techniques as each of the one thousand networks takes
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≈ 0.5s, while, the TNM only requires a execution time as long as a vector multiplication.

Finally, we showed that how the series of RB methods can be used to detect changes in the

topological properties of patients with schizophrenia.

In chapter 5, we discussed how the topological properties, discussed in the two

aforementioned chapters, can be affected by correlated noise in BOLD timeseries. We

investigated the overall effect of this noise across different parcellation schemes and con-

cluded that the effect is not spatially homogeneous. We proposed a method, named HetBiv,

to estimate the inflation in sampling variance due to this class of noise. Additionally, con-

trary to traditional methods which consider the effect to be spatially homogeneous across

the brain, HetBiv estimates the sampling variance for every connection which accounts for

spatial heterogeneity in the effect of correlated noise. By validating the HetBiv-correction

by a scrambled inter-subject BOLD time series (see section 5.1.9), we concluded that the

method outperforms existing methods by more accurate estimation of sampling variance. In

addition, we compared the effect of the correction of graph theoretical measures and demon-

strated that ignoring the effect of correlated noise may introduce a bias in the topological

description of the functional connectivity.

The description of brain connectivity presented in this work was merely centred on

describing the functional activities. However, recent findings suggest that brain function is

rather derived from the structure of the human brain (Sporns, 2013). Therefore, combining

the different imaging modalities in the analysis of the brain connectomics appears to be es-

sential in gaining a wider insight into the function-structure coupling of the brain. Several

new brain imaging repositories such as the Human Connectome Project (HCP) bring high

quality functional and structural images (Van Essen et al., 2012). In addition, newly pro-

posed statistical models such as Het-SBM, discussed in section 4.1.2, Multilayer stochastic

and deterministic clustering methods can facilitate integration between functional and struc-

tural connectivity (Kivelä et al., 2014; Valles-Catala et al., 2016; Mucha et al., 2010).

The work presented in this thesis relied upon the presumption that brain activities

are stationary during the period of a scan. However, it is crucial to highlight that the re-

cent investigations of fMRI and EEG data show that the brain states can be altered during

the period of a scan (Hutchison et al., 2013). Therefore, studying the brain functional

connectivity as a dynamic network appears to be essential. Dynamic connectivity of the

human brain was also shown promising evidence that graph theoretical measures, such as

modularity, can be helpful bio-makers in order to gain a better understanding of the learn-

ing process in the human brain (Bassett et al., 2011). Summarising the majority of graph

theoretical measures in a dynamic setting were proven to be cumbersome. However, by

considering former ‘subjects’ as new ‘time-points’ in the analysis of Het-SBM and a Rich

Block we can estimate a common block assignment among the time-points, and therefore,
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examine the changes in network cores over a period of time using Rich Block coefficients

and organisation.

Finally, motivated by emerging large-scale, publicly available, datasets which offer

high quality human phenotypes (Collins, 2012), the graph theoretical measures presented in

this work can be used as tools to form a linkage between behaviours, demographics and life-

styles and topological properties of the human brain (Mišić and Sporns, 2016). In addition,

these phenotypes can also be used in investigations of disease progression and the effects

of exposures in populations (Smith et al., 2015; Dubois and Adolphs, 2016).
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Anatomy of the Human Brain

Figure A.1: illustrates the anatomy of the human brain including the lobes and the areas within each
lobe.
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Appendix B

Rich Block

B.1 Derivation of the Variational Bound

In this section, we derive a lower bound for the incomplete data, represented by the marginal

density f (x;π,α). Setting a sample space of Z as S, we can derive the following inequality

log f (x;π,α) = log
[∑

z∈S

f (x, z;π,α)
]

= log
[∑

z∈S

f (x, z;π,α)
f ∗(z; τ)
f ∗(z; τ)

]
= log

[
E f ∗

( f (x, Z;π,α)
f ∗(Z; τ)

)]
≥ E f ∗

(
log

[ f (x, Z;π,α)
f ∗(Z; τ)

])
(by Jensen’s inequality)

= E f ∗

(
log[ f (x, Z;π,α)]

)
− E f ∗

(
log[ f ∗(Z; τ)]

)
. (B.1)

In particular, the lower bound in Eq. (B.1) is closely related to the Kullback-Leibler (KL)

divergence of f ∗(z; τ) to f (z|x;π,α), as

KL
[

f ∗(z; τ)
∣∣∣∣∣∣∣∣∣∣ f (z|x;π,α)

]
= log f (x;π,α)

−

[
E f ∗

(
log[ f (x, Z;π,α)]

)
− E f ∗

(
log[ f ∗(Z; τ)]

)]
. (B.2)

Rearranging the last equation, we write the lower bound Eq. (B.1) instead as

log f (x;π,α) − KL
[

f ∗(z; τ)
∣∣∣∣∣∣∣∣∣∣ f (z|x;π,α)

]
. (B.3)
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This shows that the lower bound in Eq. (B.1) is precisely attained when the KL divergence

is zero, that is, when f ∗(z; τ) coincides with f (z|x;π,α). As we cannot explicitly calculate

log f (x;π,α) due to the intractability of f (z|x;π,α), we find a family of densities with

variational parameter τ to approximate log f (x;π,α) by its lower bound,

log f (x;π,α) − KL
[

f ∗(z; τ)
∣∣∣∣∣∣∣∣∣∣ f (z|x;π,α)

]
≥

E f ∗

(
log[ f (x, Z;π,α)]

)
− E f ∗

(
log[ f ∗(Z; τ)]

)
. (B.4)

To indicate the role of τ, the lower bound is formally denoted as

J( f ∗(z; τ);π,α) =E f ∗

(
log[ f (x, Z;π,α)]

)
− E f ∗

(
log[ f ∗(Z; τ)]

)
. (B.5)

In particular, the natural option for f ∗(z; τ) is a categorical distribution with block-specific

probabilities, independent for each node:

f ∗(z; τ) =

n∏
i=1

Q∏
q=1

τ
ziq
iq , (B.6)

where
∑Q

q=1 τiq = 1. Note, that this gives the probability of node Vi belonging to block q

and as E f ∗(Ziq) = τiq and that E f ∗(ZiqZ jl) = τiqτ jl the expected terms in Eq. B.5 are simple

to compute.

B.2 Stochastic Blockmodel

Given the block assignment Z and given that the vertex Vi is a member of block q, the

conditional distribution of the degree of node Vi can be written as

ρ(Vi)|Ziq = 1 ∼ Binomial(n − 1, π̄q) ≈ Poisson(λq),

π̄q =

Q∑
`=1

α̂`π̂q` λq = (n − 1)π̄q,

where π̄q is a weighted sum of connection rates between block q and the rest of the network

and λq is the expected degree of block q. To show that this, we first need to consider
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probability of updating a degree of a node ρ(Vi), that is

P(Xi j = 1|Ziq = 1) =
P(Xi j = 1,Zi j = 1)

P(Ziq = 1)

=

∑Q
l=1 P(Xi j = 1,Ziq = 1,Z jl = 1)

P(Ziq = 1)

=

∑Q
l=1 P(Xi j = 1|Ziq = 1,Z jl = 1)P(Ziq = 1,Z jl = 1)

P(Ziq = 1)

=

∑Q
l=1 P(Xi j = 1|Ziq = 1,Z jl = 1)P(Ziq = 1)P(Z jl = 1)

P(Ziq = 1)

=

Q∑
l=1

P(Xi j = 1|Ziq = 1,Z jl = 1)P(Z jl = 1)

=

Q∑
q=1

α̂lπ̂ql = π̄q.

Finally, as the edges in the SBM are assumed to be conditionally independent given their

cluster labels, we can see that the n − 1 independent Bernoulli random variables (i.e. the

maximal degree of any node is n − 1 as a node cannot be contacted to itself) can be ap-

proximated by the Binomial density with parameter π̄ = (π̄1 . . . π̄Q). By applying Pois-

son approximation to the Binomial distribution and a suitable adjustment of its parameter

(n − 1)π̄ = λ.

The expected connection rate between classes q and l is given as

E(Eql) =
n(n − 1)α̂qα̂lπ̂ql

2

The connectivity between block q and l is the number of edges that connect a node from

block q to l. Thus, we can formulate a random variable Eql =
∑n

i=1
∑n

j<i ZiqZ jlXi j whose

density f (xi j, ziq = 1, z jl = 1) is given as

f (xi j, ziq = 1, z jl = 1) = P(Ziq = 1)P(Z jl = 1)P(Xi j = xi j|Ziq = 1,Z jl = 1).

Next, the expected value of Eql can be computed as

E(Eql) =

n∑
i=1

n∑
j<i

ziqP(Ziq = 1)z jlP(Z jl = 1)xi j f (xi j|ziq = 1, z jl = 1)

=

n∑
i=1

n∑
j<i

αqαlxi jπ
xi j

ql (1 − πql)1−xi j
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= αqαl

n∑
i=1

n∑
j<i

xi jπ
xi j

ql (1 − πql)1−xi j

= αqαln(n − 1)/2πql.

B.3 Coherent and Combinatory Blocks

Table B.1 shows the share of each anatomical regions in each blocks. Blocks which have

100% of their nodes from a specific anatomical regions are considered as Coherent. These

blocks are marked by an asterisk. Blocks for which their nodes are from different anatomi-

cal regions are called Combinatory.

Table B.1: List of blocks and the percentage that each anatomical region participated in them.
Coherent blocks are marked by a black asterisk.
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B.4 Projection of Estimated Het-SBM Block Assignments on the
Brain Surface

Using Het-SBM on 13 healthy and 12 schizophrenic brain networks result in a 31-block

model. As discussed in section 4.4.2, although blocks are obtained from functional activi-

ties of the subject without any prior knowledge of anatomy, spatial consistency can be seen

across the brain as the regions known to be involved in specific functional tasks are grouped

together. For instance, block 11 which represents the motor area of the brain.

Block 1 Block 2 Block 3
Block 4 Block 5

Block 6 Block 7 Block 8
Block 9 Block 10

Block 16 Block 17 Block 18
Block 19 Block 20

Block 11 Block 12 Block 13
Block 14 Block 15

Block 21 Block 22 Block 23
Block 24 Block 25

Block 26 Block 27 Block 28
Block 29 Block 30 Block 30

Figure B.1: Visualisation of block on MNI surface of the human brain. For the sake of visualisation,
we show only 5 or 6 blocks per each brain surface.
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B.5 Rich Block of C.Elegans Micro-sclae Connectome

Further to validation of the RB coefficients presented in section 4.4.1, we use the micro-

scale connectome of the C.Elegans to show how closely RB coefficients can estimate RC

coefficients.

For this purpose we use a 282-node connectivity matrix of the C.Elegans described

in Varshney et al. (2011). We discarded 3 isolated nodes to ensure that the network is con-

nected (Towlson et al., 2013). Following methods described in section 3.1.9, we determine

the RC coefficients of the empirical network. In addition, we also estimate the block as-

signments using ERMM described in section 4.1.1. The optimal block assignments were

found to have 9 blocks after 1k realisations. However, we do not merely suffice to the

optimal model and explore the estimated block assignments for range of different block

numbers R={9, 20, 40, 70, 100}. For each member of set R, we calculate non-normalised

RB coefficients, Υk
r , and plot the RB coefficients against their corresponding expected de-

gree calculated using Eq 4.11.

Figure B.2 shows RB coefficients of different block numbers as well as empirical

RC coefficients. The results suggest that as the number of blocks grows the RB coefficients

show more similar results to the empirical RC coefficients. However, one should be careful

when forcing the number of blocks beyond the optimal level as it may cause over-fitting.
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Figure B.2: Non-normalised RC (solid grey) and RB with optimal Q (marked blue) and fixed Qs
(marked red,green,magenta and black)

B.6 Degree Exceptionality on Group-Level Het-SBM Parame-
ters

Further to the discussion regarding detection of the hub blocks on individual level estima-

tion of connectivity rate matrices of two groups, in section 4.4.4 and 4.1.4, we also show

how the DE can be used to detect the hub blocks of the group-level.
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Figure B.3: Illustrates estimated PDF of the group-averaged connection probability matrix for con-
trols (left) and patients (right). The red asterisk at the top of each Poisson component indicates
degree exceptionality. Also the expected degree of each component involved in estimation of the
degree distribution of each group is listed respective to their colour.

As discussed in section 4.4.2, we use Het-SBM to estimate the SBM parameters

common between the two groups. The results of the Het-SBM suggest that the optimal

number of blocks is 31. Using Eq 4.31, we detect blocks that are significantly different in

terms of their expected degree compared to the rest of the blocks within each group. Figure

B.3 shows the Poisson distribution of individual blocks for each group (Left: healthy, Right:

schizophrenic) and the overall estimated degree distribution for each group. Results of

DE suggest that the group-level blocks of healthy subjects merely suggest one hub block,

whereas, in the schizophrenic group two blocks were suggested to be hub blocks. Using

4.11 we estimate the expected degree of hub blocks. Results suggest that the hub block in

the healthy group has a degree of λ13 = 72.44, whereas, the hub blocks of schizophrenic

subjects have λ17 = 54.38 and λ24 = 58.30. These results confirm the findings regarding

the less connected blocks in schizophrenia at the individual level (see section 4.4.4).
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Appendix C

Heterogeneous Bivariate Estimation
of Sample Correlation Variance

C.1 Mean and Variance of Inner Product of Two Random Vari-
ables

Supposing that x and y are two random variable represented in the form of vectors, and x̃

and ỹ are deviations of each sample from their expection, the mean and variance of the inner

product between these two variables can be obtained as follows:

< x, y > = x′y

= (x̃ + µx)(ỹ + µy)

= x̃′ỹ + 2x̃′µy + 2ỹ′µx + µ′xµy

(C.1)

Noting that E(x̃) = E(ỹ) = 0, the expected value of the inner product can be obtained as:

E < x, y > = E(x̃′ỹ) + µ′xµy

= Tr(Σxy) + µ′xµy
(C.2)

And the variance as:

var < x, y > = E < x, y > −[< x, y >]2

= E(x̃y)2 − (µ′xµy)2 − 2µ′xµyTr(Σxy) − (TrΣxy)2
(C.3)
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Where E(x̃y) can be obatined as:

E(x̃y) = E[(x̃ + µx)′(ỹ + µy)]2

= E[x̃′ỹỹ′ x̃ + µ′xỹỹ′µx + µ′y x̃x̃′µy+

(µ′xµy)2 + 2µ′xỹỹ′ x̃ + 2µ′y x̃x̃′ỹ+

2µ′xµy x̃ỹ + 2µ′yỹx̃µy + 2µ′y x̃µ′xµy + 2µ′xỹµ′xµy]

(C.4)

By remembering that E(ỹỹ′) = Σyy, E(x̃′ x̃) = Σxx, E(x̃′ỹ) = Tr(Σxy) and E(x̃) = E(ỹ) = 0,

we can rewrite Eq C.4 as:

E(xy)2 =E(x̃′ỹỹ′ x̃) + µ′xΣyyµx + µ′yΣ
′
xxµy+

2µ′xΣxyµy + (µ′xµy)2 + 2µ′xE(ỹỹ′ x̃)+

2µ′yE(x̃x̃′ỹ) + 2µ′xµyTr(Σxy)
(C.5)

We note that

µ′ΣTµ =µ′xΣyyµx + µ′yΣ
′
xxµy + 2µ′xΣxyµy (C.6)

Hence,

var < x, y >= µ′ΣTµ + 2µ′xE(ỹỹ′ x̃) + 2µ′yE(x̃x̃′ỹ) + E(x̃′ỹỹ′ x̃) − Tr(Σxy)2 (C.7)

C.2 Unibased-HetBiv vs Bartlett’s HetBiv

In this section, we aim to show the differences between versions of the HetBiv-corrections

by comparing their distribution shapes (via Kolmogrov Smirnov Statistics) and their false-

positive rate (via tail analysis). The results which were presented later were obtained from

inter-subject correlation for validating the methods, discussed in section 5.1.9. It is worth

mentioning that due to computational infeasibilities, we drastically reduce the number of

reaslisations which may introduce a difference in the KS statstics of the results presented in

Figure C.1 and figure 5.3 for HetBiv.
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Figure C.1: KS Statistics of HetBiv methods. Each subplot represents a cohort: HCP (Top Left),
NYU (Top Right), USM (Bottom Left) and Yale (Bottom Right).

Figure C.1 shows the KS statistics of the inter-subject correlations. The results

suggest that different versions of the HetBiv-correction perform similarly, however, the

Unbiased Short HetBiv slightly outperforms the other methods. It is worth noting that the

KS results for individual parcellation schemes demonstrate a consistency across correction

methods.

Figure C.2 shows analysis of tails, as discussed in section 5.1.9, across different

versions of the HetBiv-correction. All versions of the HetBiv-correction could successfully

adjust the tail of the distribution to avoid any false-positives in the statistical thresholding.
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Figure C.2: False-positive rates of the HetBiv methods. Blue vertical lines represent the 5% α-level
and red vertical lines represent 2.5% α-level.
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C.3 Effect of Curbing in HetBiv Corrections

Figure C.3: KS statistics of each curbing coefficient across different acquisition sites and parcella-
tion schemes.

In this section, we investigate the effect of choosing different curbing strategies for the

length of the autocorrelation functions suggested in section 5.1.6. The curbing range starts

from 10% and ends at 100% by 10% increments. The percentages represent the proportion

of the original temporal lags that were involved in the calculation of the HetBiv-correction

(Eq 5.28). In other words, the 100% curbing means that the correction method has used

all available temporal lags which is equivalent to what is discussed in Eq 5.28. Further to

conventional atlases that we discussed in section 5.2, we examined the curbing factors on a

shortened versions of the HCP time series. For the shortened versions, we first divided each

156



HCP BOLD signal into six segments (each segments has 200 data-points), and used the

second segment to ensure that the machine has reached the equilibrium state. The results

presented here were obtained from the inter-subject validation technique.

Figure C.3 shows that the effect of curbing the temporal lags of an autocorrelation

function is not consistent across sites. However, for each site, the results demonstrate a

consistent change across parcellation schemes. This suggests that the curbing is sensitive

to acquisition and pre-processing choices. For example, in the HCP cohort, harsh curbings,

such as 10%-60%, improve the KS statistics, while, in the remaining conditions the same

boundary shows a deterioration in the quality of correction.

Figure C.4: False-positive rate analysis of each curbing coefficient across different acquisition sites
and parcellation schemes.
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C.4 Effect of Shrinking in HetBiv Corrections

Figure C.5: KS statistics of each shrinking coefficient across different acquisition sites and parcel-
lation schemes.

In this section, we show how the shrinking strategy effects the result of HetBiv correction.

Shrinking is a coefficient of the number of standard deviations that are used to determine

the boundaries. This begins from 0 and approaches 3 with steps of 0.25. The shrinking co-

efficient of 0 is equivalent to the original HetBiv correction described in Eq 5.28. Similar to

section C.3, further to conventional atlases that were discussed in section 5.2, we examined
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the curbing factors on shortened version of the HCP time series. The shortened versions, we

first divided each HCP BOLD signal into six segments (each segment has 200 data-points),

and used the second segment to ensure that the machine has reached the equilibrium state.

The results presented here were obtained from inter-subject validation technique. The re-

sults presented here were obtained from the inter-subject correlation discussed in section

5.1.9.

Figure C.5 shows the difference between the distribution shapes which suggests

a consistent change across sites and parcellation schemes over the shrinking coefficients,

however, the results suggest that the shrinking coefficients do not introduce any improve-

ment in KS statsitics. However, for certain coefficients the result of the HetBiv corrections

start to get worse as the KS statistic grows.

Figure C.6: False-positive rate of each shrinking coefficient across different acquisition sites and
parcellation schemes.

Figure C.6 shows false-positive rates for each method across different cohorts and

parcellation schemes. The results suggest that in long time series (such as the HCP cohort),
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the shrinking coefficient neither improves nor worsens the results. However, for shorter time

series from the NYU, Yale and USM cohorts, the growth in the coefficient is associated with

the growth in the false-positive rate. Conversely, for curbed-time series of the HCP cohort,

the result suggests that the false-positives are best controlled in coefficient 2.
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Appendix D

List of Publications

D.1 Chapter 3

Abstracts:

• Afyouni S, Hale JR, Mayhew SD, Bagshaw AP, Arvanitis TN. Inter-network and

Intra-network analysis of resting-state human brain. Poster presented at: Organisa-

tion for Human Brain Mapping: 20th Annual Meeting. 2014 June 8-12; Hamburg,

Germany.

• Afyouni S, Hale JR, Mayhew SD, Bagshaw AP, and Arvanitis TN. Hub identification

in dynamic resting-state functional connectivity of the default mode network. Poster

presented at: Joint Annual Meeting ISMRM-ESMRMB 2014: SMRT 23rd Annual

Meeting. 2014 May 10-16; Milan, Italy.

Journal paper under review and re-submission:

• Wilson R.S., Mayhew S.D., Hale J.R., Rollings D.T., Afyouni S., Goldstone A.,

Khalsa S., Arvanitis T.N., Bagshaw A.P. The sleeping brains intrinsic network con-

nectivity is changed by sleep deprivation, Neuroimage, (September 2015)

D.2 Chapter 4

Abstracts:

• Afyouni S, Pavlovic, D. M., Towlson, E. K., Petra, E. V. Nichols T. Bullmore E.,

Understanding Rich Club with a Stochastic Block Model: A Connectome Study of

Schizophrenia. Poster presented at: Complex Networks: from Theory to Interdisci-

plinary Applications. 2016 July 10-13; Marseilles, France.

161



• Afyouni S., Pavlovic D.M., Towlson E.K., Petra E.V., Arvanitis T.N., Bullmore E.T.,

Nichols T.E., Understanding Rich Club with a Stochastic Block Model: A Connec-

tome Study of Resting-State Schizophrenia

• Afyouni S, Pavlovic, D. M., Towlson, E. K., Petra, E. V. Nichols T. Bullmore E., Rich

Block: Stochastic Understanding of Rich Club. Poster presented at: Organisation for

Human Brain Mapping: 21th Annual Meeting. 2015 June 16-21; Hawaii, US.

• Pavlovic, D. M., Towlson, E. K., Petra, E. V.Afyouni S. Nichols T. Bullmore E.,

Stochastic Blockmodelling and Inference in Multi-Subject Networks, Poster pre-

sented at: Organisation for Human Brain Mapping: 21th Annual Meeting. 2015

June 16-21; Hawaii, US.

Journal paper under review and re-submission:

• Afyouni S., Pavlovic D.M., Towlson E.K., Petra E.V., Arvanitis T.N., Bullmore E.T.,

Nichols T.E., Understanding Rich Club with a Stochastic Block Model: A Connec-

tome Study of Resting-State Schizophrenia.

• Pavlovic, D.M., Towlson E.K., Petra E.V.Afyouni S., Nichols T.E., Bullmore E.T.,

Stochastic Blockmodelling and Inference in Multi-Subject Networks, Computational

Statistics and Data Analysis, (February 2015).

D.3 Chapter 5

Abstracts:

• Afyouni S and Nichols T E, Heritability of Global Architectural Features of the Func-

tional Connectome of the Human Brain, Poster presented at: Organisation for Human

Brain Mapping: 22nd Annual Meeting. 2016 June 25-30; Geneva, Switzerland.

Journal paper under prepration:

• Afyouni S. & Nichols T.E., Impact of Autocorrelation in Functional Human Connec-

tomics .
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Appendix E

Codes

The codes for this thesis are available in a separet DVD. The address to directories for each

chapter is as follow:

• Chapter 3: ∼ /S A f youni/S chiz

• Chapter 4: ∼ /S A f youni/S chiz/S tochasticRB

• Chpater 5: ∼ /S A f youni/HCP − S cripts/NetMats/S cripts/

The codes are also available for publicly through GetHub repositories as follow:

• Chapter 4: https://github.com/asoroosh/HetBiv

• Chpater 5: https://github.com/asoroosh/RB

By the time of submitting this thesis, the papers for chapter 4 and 5 are still in the re-

view process, so the GitHub repositories are private. However, by requesting access to

s.afyouni@warwick.ac.uk access can be granted.
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S. J., Shaw, K., O’Connor, J., Nertney, D., et al. (2011). Genetic influences on cost-

efficient organization of human cortical functional networks. The Journal of Neuro-

science, 31(9), 3261–3270.

170



Fornito, A., Zalesky, A., and Breakspear, M. (2013). Graph analysis of the human connec-

tome: promise, progress, and pitfalls. Neuroimage, 80, 426–444.

Fornito, A., Zalesky, A., and Bullmore, E. (2016). Fundamentals of Brain Network Analy-

sis. Academic Press.

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3), 75–174.

Fortunato, S. and Barthelemy, M. (2007). Resolution limit in community detection. Pro-

ceedings of the National Academy of Sciences, 104(1), 36–41.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and Raichle,

M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated

functional networks. Proceedings of the National Academy of Sciences of the United

States of America, 102(27), 9673–9678.

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. (2009). The global signal and

observed anticorrelated resting state brain networks. Journal of neurophysiology, 101(6),

3270–3283.

Friston, K., Josephs, O., Zarahn, E., Holmes, A., Rouquette, S., and Poline, J.-B. (2000). To

smooth or not to smooth?: Bias and efficiency in fmri time-series analysis. NeuroImage,

12(2), 196–208.

Friston, K. J., Holmes, A. P., Poline, J., Grasby, P., Williams, S., Frackowiak, R. S., and

Turner, R. (1995). Analysis of fmri time-series revisited. Neuroimage, 2(1), 45–53.

Fulcher, B. D. and Fornito, A. (2016). A transcriptional signature of hub connectivity in the

mouse connectome. Proceedings of the National Academy of Sciences, 113(5), 1435–

1440.

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson,

J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., et al. (2013). The minimal prepro-

cessing pipelines for the human connectome project. Neuroimage, 80, 105–124.

Golestani, A.-M. and Goodyear, B. G. (2011). Regions of interest for resting-state fmri

analysis determined by inter-voxel cross-correlation. Neuroimage, 56(1), 246–251.

Goparaju, B., Rana, K. D., Calabro, F. J., and Vaina, L. M. (2014). A computational study

of whole-brain connectivity in resting state and task fmri. Medical science monitor:

international medical journal of experimental and clinical research, 20, 1024.

171



Grayson, D. S., Ray, S., Carpenter, S., Iyer, S., Dias, T. G. C., Stevens, C., Nigg, J. T.,

and Fair, D. A. (2014). Structural and functional rich club organization of the brain in

children and adults. PloS one, 9(2), e88297.

Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.-P., Wedeen, V. J., and Meuli, R. (2006).

Understanding diffusion mr imaging techniques: from scalar diffusion-weighted imaging

to diffusion tensor imaging and beyond 1. Radiographics, 26(suppl 1), S205–S223.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., and

Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol,

6(7), e159.

Hale, J. R., White, T. P., Mayhew, S. D., Wilson, R. S., Rollings, D. T., Khalsa, S., Arvanitis,

T. N., and Bagshaw, A. P. (2016). Altered thalamocortical and intra-thalamic functional

connectivity during light sleep compared with wake. NeuroImage, 125, 657–667.

Harnad, S. (1994). Why and how we are not zombies. Journal of Consciousness Studies,

1(2), 164–167.

Hayasaka, S. and Nichols, T. E. (2004). Combining voxel intensity and cluster extent with

permutation test framework. Neuroimage, 23(1), 54–63.

Henson, R., Buechel, C., Josephs, O., and Friston, K. (1999). The slice-timing problem in

event-related fmri. NeuroImage, 9, 125.

Hosseini, S. H. and Kesler, S. R. (2013). Influence of choice of null network on small-world

parameters of structural correlation networks. PloS one, 8(6), e67354.

Humphries, M. D. and Gurney, K. (2008). Network small-world-ness: a quantitative method

for determining canonical network equivalence. PloS one, 3(4), e0002051.

Humphries, M. D., Gurney, K., and Prescott, T. J. (2006). The brainstem reticular formation

is a small-world, not scale-free, network. Proceedings of the Royal Society of London B:

Biological Sciences, 273(1585), 503–511.

Hurwicz, L. (1944). Stochastic models of economic fluctuations. Econometrica: Journal

of the Econometric Society, pages 114–124.

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta,

M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., et al. (2013).

Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage, 80,

360–378.

172



Jaakkola, T. S. (2001). 10 tutorial on variational approximation methods. Advanced mean

field methods: theory and practice, page 129.

Jenkins, G. and Reinsel, G. (1976). Time series analysis: forecasting and control.

Johnston, J. M., Vaishnavi, S. N., Smyth, M. D., Zhang, D., He, B. J., Zempel, J. M.,

Shimony, J. S., Snyder, A. Z., and Raichle, M. E. (2008). Loss of resting interhemispheric

functional connectivity after complete section of the corpus callosum. The Journal of

neuroscience, 28(25), 6453–6458.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). Introduction to

variational methods for graphical models. Machine Learning, 37(2), 183–233.

Kaiser, M. (2008). Mean clustering coefficients: the role of isolated nodes and leafs on

clustering measures for small-world networks. New Journal of Physics, 10(8), 083042.

Kalos, M. H. and Whitlock, P. A. (2008). Monte carlo methods. John Wiley & Sons.

Karrer, B. and Newman, M. E. (2011). Stochastic blockmodels and community structure in

networks. Physical Review E, 83(1), 016107.

Kenyon, C. (1988). The nematode caenorhabditis elegans. Science, 240(4858), 1448.
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J., and Bullmore, E. T. (2014). A wavelet method for modeling and despiking motion

artifacts from resting-state fmri time series. Neuroimage, 95, 287–304.
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