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Summary

There have been phenomenal advances in the field of reproductive medicine and success
rates following in vitro fertilisation have improved dramatically in recent years.

The aim of this project was to improve our understanding of human preimplantation embryo
development by identifying potential markers of viability that may aid us in selecting the best
embryo for uterine transfer in the clinical embryology laboratory.

Investigations into the distribution of cytoskeletal F-actin in human embryos demonstrated
that a highly organised actin cortex is important for embryo cleavage and continued
development to the blastocyst stage. Whilst they are polarised in the mouse from the oocyte
to the blastocyst, the regulatory proteins leptin and STAT3 are co-localised only at the oocyte
stage in humans, and are distributed within different cytoplasmic domains in human cleavage
stage embryos and blastocysts. Whether polarity in humans is predetermined in the oocyte
remains elusive, but none of the evidence generated in this thesis supports this idea.

Leptin transiently activates STAT3 via the long form of the leptin receptor, and most
significantly in the ICM of human day 6 blastocysts. Morphological features of blastocysts
that can be visualised microscopically, such as a double ICM and cytoplasmic projections
connecting the ICM to the TE, provide clues to their viability and may help us to choose the
most suitable embryo from a cohort when deciding which to transfer. Nuclear volumes may
in future contribute to this selection.

Using time lapse technology to study cleavage patterns is now a routine occurrence in the
clinical embryology laboratory. The results in this thesis show that distinctive patterns of
divisions and the site at which blastocysts hatch can provide us with more information than a
snap-shot morphological evaluation.

Finally, contributing to the development of modelling software and predictive algorithms for
the study of human embryos, particularly in time lapse imaging, means that our

understanding of this fascinating area of medicine will continue to progress.
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Chapter One

General Introduction

1.1 Infertility

Infertility, defined as the inability to conceive after regular unprotected intercourse
for a period of twelve months or more (De Melo-Martin 2002; WHO), affects around
one in seven UK couples, a situation that has remained largely unchanged since the
first investigations began during the 19" century (Evers 2002). While the prevalence
of the condition has not significantly altered since statistics were first published
around 30 years ago (Hull et al 1985), the number of people seeking help for fertility
problems has increased (NICE 2013). Primary infertility describes a delay in
conception with no previous pregnancies, whilst secondary infertility means
successful conception has previously occurred, regardless of whether the pregnancy
resulted in a live birth (Taylor 2003). Primary and secondary infertility may relate to
individuals or to a couple. The aetiology of infertility varies greatly, with the
National Institute for Health and Care Excellence (NICE) estimating male factors at
30% combined female factors at 45%, and unexplained factors at 25% (NICE, 2014).
However, published research data estimates male factor infertility at 17%, female
factors at 49-72%, and unexplained infertility at 12-32% (Haxton and Black 1987;
Kuivasaari-Pirinen et al 2012). These discrepancies are likely to be due to the
specific patient populations included in clinical research, which are frequently
conducted at fertility centres and therefore may show population bias. The

underlying cause of infertility reportedly has no influence on first trimester
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pregnancy loss after intracytoplasmic sperm injection (ICSI) (Bahceci and Ulug
2005), although female factors specifically contribute to a higher risk of preterm
birth, and male factors to an increased chance of neonatal intensive care admission

(Kuivasaari-Pirinen et al 2012).

1.2 Assisted reproductive treatment

There have been marked improvements in success rates during recent years.
Reasons for this may include the introduction of ICSI into routine clinical practice
(Palermo et al 1992), and the current trend towards extended culture of embryos to
the blastocyst stage of development (5-6 days after fertilisation) in specially
formulated sequential media (Gardner and Lane 1998). In vitro fertilisation (IVF)
treatment has expanded at a phenomenal rate since the birth of Louise Brown in
1978 (Steptoe and Edwards 1978; Wang and Sauer 2006). However, human assisted
reproductive treatment (ART) is still relatively inefficient; with live birth rates
approximating 32% in women <35 years to 2% in women aged 245 years, according
to the most recently published data from the HFEA. The ultimate aim for clinical
embryologists is to identify the single most viable embryo from an available cohort,
with a view to achieving a healthy singleton pregnancy and live birth for every
patient (Montag et al 2013).

There are two predominant modalities of ART utilised in clinical embryology
laboratories, namely standard IVF and ICSI. IVF has been successfully used in
humans since the 1970s (De Kretzer et al 1973; Steptoe and Edwards 1976; Steptoe
and Edwards 1978), whilst ICSI, a treatment specifically aimed at treating male

infertility due to low sperm numbers or quality, was introduced into clinical practice
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in the early 1990s (Palermo et al 1992). In the UK, 224,196 babies were born as a
result of ART between 1991 and 2012, and in 2011 2.2% of all UK newborns were
conceived following ART (HFEA 2012). It is estimated that at least 5 million babies

have been born worldwide as a result of ART to date (Kamel 2013).

1.3 Oocyte maturity

In order for an oocyte to achieve the ability to become fertilised, it must first reach
maturity. The dormant oocyte, suspended at prophase of the first meiotic division
during foetal life, proceeds to metaphase | and completes anaphase and telophase,
entering metaphase Il just prior to ovulation (Cha and Chian 1998). The prophase |
oocyte is characterised by the presence of a large nucleus, the germinal vesicle
(GV), located eccentrically in the ooplasm, whilst the metaphase | stage oocyte is
identifiable by the lack of both a visible GV and a visible polar body (PB). Metaphase
Il oocytes have a visible PB in the perivitelline space (PVS), a result of extrusion of
half of the maternal genetic material at the first meiotic division. At this stage,
homologous chromosomes are paired (Mandelbaum 2000). This entire process is
initiated and controlled during clinical ART procedures by manipulating the
menstrual cycle and inducing oocyte maturation using hormonal medication, as
detailed in section 2.3 of this thesis. Oocyte maturity is normally assessed using light
microscopy following the removal of the surrounding cumulus cell complexes using
digestive enzymes prior to ICSI, as described in section 2.3, or after co-incubation
with spermatozoa, as described in section 2.4.

Whilst the aim of a controlled ovarian stimulation regime is to induce oocyte

maturation prior to follicular aspiration, in vitro oocyte maturation (IVM) is an
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alternative method, most commonly employed when a minimal stimulation ART
protocol is favoured, such as for oncology patients or women with pre-diagnosed
polycystic ovaries who are at increased risk of ovarian hyperstimulation syndrome
(OHSS) (Chang et al 2014). Since the first report of a live birth following IVM (Cha et
al 1991) there has been variable success with in vitro matured human oocytes
(Roesner et al 2012).

Previously published data identified a link between exposure of mouse oocytes to
high concentrations of Follicle-Stimulating Hormone (FSH) during IVM, and an
increase in chromosomal abnormalities (Roberts et al 2005). A comparison of the
developmental potential of in vitro versus in vivo matured mouse oocytes
determined that fertilisation rate, synchronous cleavage, and blastocyst
development were adversely affected by in vitro oocyte maturation, and that
abnormalities in cellular symmetry and nuclear morphology were also apparent
(Sanfins et al 2015). Furthermore, the developmental incompetence of human
oocytes matured in vitro is thought to relate to dysfunctional gene transcription or
modification of genes post-transcription, which may disrupt normal gene utilisation,
thus affecting the development of embryos derived from these oocytes (Jones et al
2008). This may also contribute to the low efficacy of human in vitro fertilisation,
since some oocytes aspirated from the ovary during clinical IVF cycles will undergo
final maturation spontaneously in vitro from Ml to Ml, in the time period between

collection and insemination.
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1.4 Human fertilisation and preimplantation embryo development

Standard IVF usually involves the co-incubation of oocytes and spermatozoa for a
period of 16-18 hours, although reduced gamete incubation times of ~2 hours may
improve the number of top quality embryos available, the clinical pregnancy rate,
and the implantation rate in women <30 years (Li et al 2016). Prior to ICSI, cumulus
cells surrounding the oocyte are enzymatically digested and mechanically removed
in order to ascertain the maturity of the oocyte. A single spermatozoon is
immobilised and injected into the ooplasm of mature oocytes in an area away from
the first extruded PB, to minimise the chance of damaging the meiotic spindle,
which is purported to reside in the same hemisphere as the first PB (Hardarson et a/
2000; Woodward et al 2008). Interestingly, despite injecting oocytes with the PB at
the 12 o’clock position, approximately 10% of metaphase spindles may contain
decondensed sperm heads (Flaherty et al 1998), suggesting that the position of the
spindle does not always correspond with the location of the first PB. Visualising the
meiotic spindle in oocytes using polarised light microscopy prior to injection
resulted in significantly higher normal fertilisation rates, percentage of early
cleaving embryos, and implantation rates when compared to oocytes that were
injected without prior spindle visualisation (Madaschi et a/ 2008).

Fertilisation is defined as the combining of male and female chromosomes following
penetration of the oocyte by the spermatozoa, resulting in the formation of a
zygote (Plachot 2000). Normal fertilisation is evidenced by the appearance of two

extruded PB in the PVS, and two centrally located abutting pronuclei (PN) in the
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ooplasm 16-18 hours post-insemination (Nagy et al 1994). Abnormal
multipronucleate (MPN) fertilisation occurs in approximately 7% of zygotes derived
from standard IVF (Englert et al 1986) and approximately 4% of zygotes resulting
from ICSI (Grossman et al 1998), and is characterised by the presence of three or
more PNs in the ooplasm of oocytes 16-18 hours post-insemination. MPN formation
following IVF is thought to occur most commonly due to polyspermy (diandric)
(Englert et al 1986) and following ICSI due to retention of the second PB (digynic)
(Grossman et al 1998). Stimulation regimes <10 days have been found to increase
the incidence of tripronucleate fertilisation after ICSI, and a higher rate of MPN
formation within a cohort of zygotes is a significant predictor of reduced
implantation following transfer of an embryo originating from a normally fertilised
zygote (Rosen et al 2006). The majority of triploid conceptuses spontaneously abort
early in pregnancy, and account for ~10% of all miscarriages (Hassold et a/ 1980),
however it is possible for triploid embryos to develop to term, giving rise to babies
with severe disabilities which are incompatible with life (Sherard et al 1986).

Examples of normally and abnormally fertilised zygotes are shown in figure 1.1.
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(a)

(b)

Figure 1.1: (a) normally fertilised oocytes with two pronuclei and two
extruded polar bodies (b) abnormally fertilised oocyte with three
pronuclei and one extruded polar body.
The extrusion of the second polar body is thought to occur by 8 hours post-
insemination for IVF oocytes and by 4 hours post-injection for ICSI oocytes (Nagy et
al 1998). The apposition of the male and female PNs in the centre of the ooplasm
precedes the assembly of the parent chromosomes on the mitotic spindle of the
zygote prior to the first cleavage division (Plachot 2000).
The morphology of the PN has been suggested as a predictor of embryo quality, and
successful pregnancies have been achieved following the transfer of day 1 zygotes

(Scott and Smith 1998). Likewise, superior morphology PN are reportedly
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significantly more likely to develop into good quality blastocysts (Scott et a/ 2000).
The fusion and disappearance of the pronuclei following breakdown of the nuclear
membranes approximately 6 hours after they first appear in the ooplasm is termed
syngamy (Papale et al 2012).

Cleavage of the zygote into two distinct blastomeres 25-27 hours post insemination
or injection is associated with a significantly higher proportion of good quality
embryos, significantly higher blastocyst development rate, and increased
pregnancy, implantation and live birth rates (Lundin et al 2001; Van Montfoort et al
2004). Indeed, this method of predicting which embryo has the highest
implantation potential is hailed as superior to pronuclear scoring (Brezinova et al
2009). Several studies have confirmed early cleavage as a predictor of embryo
viability leading to an improvement in pregnancy rates (Shoukir et al 1997; Sakkas
et al 1998; Sakkas et al 2001; Lundin et al 2001; Lee et al 2012), and early cleavage
assessments can be performed in the laboratory rapidly with a simple microscopic
evaluation causing minimal disruption to the embryo culture system. Therefore,
early cleavage checks are considered a highly valuable inclusion into routine embryo
morphology scoring procedures.

The expected timeline of human preimplantation embryo development following
fertilisation has been established over many years via observations in research and
clinical laboratories (Niakan et al 2012). Embryos may begin to divide into two cells
as early as 24 hours post-insemination (Van Montfoort et al 2004), with normally

developing embryos cleaving to four cells by the morning of day 2, and eight cells by
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the morning of day 3 (Alpha Scientists in Reproductive Medicine and ASHRE Special

Interest Group in Embryology 2011), as shown in figure 1.2.

(a)

(b)

(c)
Figure 1.2: Cleavage stage embryos (a) 2-cells (b) 4-cells (c) 8-cells

Evaluation of cleavage stage embryo quality takes into consideration the symmetry
of each blastomere and the degree of fragmentation within the confines of the zona
pellucida (ZP) (Hardarson et al 2001), as described in section 2.7. Poorer quality
cleavage stage embryos are associated with the subsequent development of a
significantly higher percentage of poor quality and chromosomally abnormal
blastocysts (Hardarson et al 2003). Compaction of distinct blastomeres into a
cohesive mass of cells, the so-called morula, is expected to begin on day 4 post-

insemination (Prados et al 2012), as shown in figure 1.3.
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Figure 1.3: Compacting embryo (morula)
The next phase of preimplantation embryo development, namely cavitation and
expansion of the blastocoel, should occur by day 5 post-insemination, as described
in section 2.7. The formation of a blastocyst, the final stage of preimplantation
embryo development and differentiation, will only occur following the activation of
the embryonic genome, itself a pre-requisite for implantation (Dey et al 2004).
Figure 1.4 shows examples of a cavitating embryo, an early blastocyst, and a fully

expanded hatching blastocyst.
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(a) (b)

(c)
Figure 1.4: (a) cavitating embryo (b) early blastocyst (c) fully expanded
hatching blastocyst
Blastocyst culture is used as an additional selection tool at a time when the uterus is
at its most receptive to implantation. The blastocyst stage is considered to be the
time at which the embryo and the endometrium are most physiologically
synchronised (Maheshwari et al 2016). Extended culture to the blastocyst stage
(day 5-6 post insemination) is becoming more commonplace clinically, and is
associated with an increase in pregnancy and implantation rates (Gardner et a/
1998), but only when laboratory culture conditions are optimised. It is thought that
the prolonged culture period allows the selection of the most developmentally
competent embryos for transfer (Schwarzler et al 2004) since many embryos will

not survive the transition to a blastocyst, and will therefore be removed from the
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pool available for transfer. Additionally, there is a window of implantation in
humans that opens six days after ovulation, and remains open for a maximum of
four days (Wilcox et al 1999).

Current blastocyst grading systems examine the morphological appearance of the
cells of the trophectoderm (TE) and inner cell mass (ICM), along with the extent of
expansion of the fluid-filled cavity known as a blastocoel (Gardner et al 2000).
Desirable features include a TE made up of many tightly-packed cells, a distinct
peripherally located ICM, and a fully expanded blastocoelic cavity (Van den Abbeel
et al 2013). There are many studies of blastocyst culture, with diverse outcomes;
however, meta-analysis of clinical trials indicates an advantage of blastocyst culture
in terms of pregnancy rate. For example, a study by Kalu et al observed that transfer
of a single day 5 blastocyst yielded pregnancy rates of 59.0% in women aged <37
years, whilst transfer of two blastocysts in the same group resulted in pregnancy
rates of 60.7%. The multiple birth rates in each group were 2.3% and 47.6%
respectively (Kalu et al 2008). In the same study, women between the ages of 38-43
years having a single blastocyst transferred achieved a live birth rate of 29.4%,
whilst those who had two blastocysts transferred had an overall live birth rate of
44.3% (Kalu et al 2008), indicating that while present selection methods are
certainly a valuable tool in identifying the most viable embryo for transfer, there is a
definite need for improvement if we are to reduce the incidence of multiple
pregnancies by moving towards single embryo transfer, without affecting the
success rates of IVF. This ideal may be realised with more informed morphological

evaluation of blastocysts with regard to ICM and TE appearance. The shape and size
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of the ICM in expanded day 5 blastocysts has been positively correlated with
implantation rates, with slightly oval larger ICMs being more likely to implant than
rounder and elongated smaller ICMs. Interestingly, blastocysts that fully expanded
on day 6 post-insemination generally had smaller, more elongated ICMs (Richter et
al 2001). Similarly, a blastocyst diameter of >190um on day 5 was associated with
an increase in clinical pregnancy rates, whilst smaller blastocysts and those
expanding on day 6 were predictors of reduced clinical pregnancy (Shapiro et al
2008). Additionally, higher cell numbers in the ICM and TE of frozen-thawed
blastocysts have been related to superior morphological quality (Matsuura et al
2010). In contrast to the findings of Richter et al (2001), the cell number of the TE
combined with the quality of the cells has been recently shown to be a significant
predictor of pregnancies that progress to live birth, however the shape and size of
the ICM was not found to be related to pregnancy and implantation rates (Ebner et
al 2016). Interestingly, whilst superior ICM and TE morphology have been confirmed
to be strongly indicative of viability, the expansion and hatching stage of blastocysts
has been previously identified as the most significant predictor of live birth (Van
den Abbeel et al 2013).

Complete hatching of the blastocyst from the ZP is a prerequisite for implantation
(Ren et al 2013). Since it is not feasible, from either a practical or ethical point of
view, to study the process of human preimplantation embryo hatching in vivo,
research is restricted to animal models and in vitro studies. In humans, progressive
expansion and an accumulation of fluid in the blastocoelic cavity leads to a 2- to 3-

fold increase in volume, an increase in internal hydrostatic pressure, and thinning of
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the ZP (Sathananthan et al 2003), following which the blastocyst herniates through
one or more breaks in the ZP. It is hypothesised that “zona breaker” cells, distinct
plump TE cells with secretory vesicles and micronuclei that gather around the
hatching site, may aid in this process by interacting with the ZP, suggesting that a
chemical element exists in the process of hatching in vitro (Sathananthan et a/
2003). Failure of the blastocyst to hatch may be due to hardening of the ZP or to
suboptimal culture conditions (Sathananthan et al 2003). Hardening of the ZP in
fertilised bovine oocytes in vitro is characterised by an increase in the stiffness of
the ZP, with a concomitant increase in resistance to digestion by proteolytic
enzymes (Papi et al 2010). Transfer of spontaneously hatched human blastocysts
resulted in significantly higher live birth rates when compared to non-hatched
blastocysts, with no increase in multiple gestation rates (Chimote et al 2013).
Assisted hatching (AH) involves artificially creating breaks in the ZP using
mechanical or chemical processes, to aid the escape of the blastocyst in preparation
for implantation, prior to uterine transfer (Sallam et a/ 2003). Laser-assisted
hatching of frozen-thawed human embryos resulted in significantly higher
implantation and clinical pregnancy rates when compared to non-hatched embryos;
however there was a simultaneous significant increase in multiple gestations
(Balaban et al 2006). This concurs with an earlier study, in which one of the risk
factors for a monozygotic pregnancy was AH (Abusheika et al 2000). The site at
which the artificial opening is made in relation to the position of the ICM reportedly
has no significant influence on clinical pregnancy, implantation, or live birth rate

(Ren et al 2013), although complete hatching of the blastocyst may be significantly
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more likely to occur when the ZP breach is nearer to the ICM (Miyata et al 2010).
Murine blastocysts are thought to initiate hatching in vitro at the mural TE under
the influence of proteolytic enzymes (Perona and Wassarman 1986). Studies of
hamster blastocysts have shown that blastocyst hatching in vivo involves the
uniform thinning and disappearance of the ZP, in contrast to those hatching in vitro,
where focal lysis of the ZP occurred, followed by escape of the blastocyst, with a
comparative time delay of 229 hours. The authors concluded that uterine
contributions are likely to be a factor in hamster blastocyst hatching in vivo, and
that the behaviour of in vitro cultured blastocysts was markedly different (Gonzales
and Bavister 1995), a finding similar to that in early bovine studies, which seemed to
suggest that factors controlling the digestion of the ZP in vivo differed from those in

vitro (Wright et al 1976).
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1.5 Implantation

The ultimate evidence of embryo competence is implantation and development. In
humans, implantation begins when the blastocyst assumes a fixed position, with the
inner cell mass orie