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Summary 
A large number of patients with epilepsy have drug-resistant seizures. 

Therefore, there is a need for the development of new therapies. The purine 

nucleoside adenosine is an endogenous anticonvulsant that acts to supress 

neuronal excitability via adenosine A1 receptors. The aim of this thesis was 

investigate whether manipulating ATP bioenergenetics and importantly 

adenosine levels had any effects on activity-dependent release of adenosine 

and seizure activity. ATP bioenergetics and adenosine levels were 

manipulated by pre-treating rat hippocampal slices with a combination of the 

sugar backbone of ATP (D-ribose) and the free purine base adenine (RibAde) 

and the phosphate buffer creatine. The role that the adenosine A2A receptor 

plays in relation to epileptiform activity was also investigated. Biosensors 

were used to measure the real-time release of adenosine. The K+ channel 

blocker 4-aminopyridine (4-AP; 50 µM) in Mg2+-free medium was the model 

used for inducing spontaneous bursting epileptiform activity. Additionally, 

homocysteine thiolactone (HTL) was used to “trap” intracellular adenosine to 

test if extracellular adenosine measured with biosensors, is released as 

adenosine per se and if this had any effects on seizure activity.  

I show that during bursting epileptiform activity, the amount of adenosine 

released is increased in RibAde slices compared to creatine and untreated 

(control) slices and increased the time between seizures compared to both 

creatine and control slices. No differences was found between creatine and 

control slices. My data also suggest that adenosine A2A receptors may partially 

contribute to seizure activity. HTL reduced adenosine release in a burst-

dependent manner and also increased the frequency of seizures. HTL 

influenced the intensity of bursts in control but not RibAde-treated slices. This 

thesis provides evidence for the beneficial role of the ATP precursors ribose 

and adenine on reducing seizure activity and will hopefully contribute to on-

going attempts to establish adenosine-based epilepsy therapies. 
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Phospholipase C- PLC 

Phosphatidylinositol 4,5-bisphosphate- PIP2 

Potassium- K+ 

Potassium chloride- KCl 

Pyrophosphate- PPi 

Responsive neural stimulation- RNS 

Ribonucleic acid- RNA 

Ribose-5-phosphate- Rib-5-P 

Ribose-1-phosphate- Rib-5-P 

Ribose and adenine- RibAde 

Ribulose 5-phosphate- Ru-5-P 

S-Adenosyl-L-homocysteine- SAH 

S-Adenosyl-L-homocysteine thiolactone- SAHTL 

S-Adenosyl-L- methionine- SAM 

SCH 58261- SCH 

Seizure-like events- SLEs 

Sodium- Na+ 

Sodium bicarbonate- NaHCO3 

Sodium chloride- NaCl 

Sodium Dihydrogen Phosphite/ Sodium Phosphite Dibasic- NaH2PO3 

Standard error of the mean- SEM 



 20 

Statistical Package for the Social Sciences- SPSS 

Status Epilepticus- SE 

Temporal lobe epilepsy- TLE 

Transient opening calcium- T-type Ca2+  

United Kingdom- UK 

Uridine 5’-triphosphate- UTP 

Vagus nerve stimulation- VNS 

Voltage-gated potassium channel- Kv 
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1.1. Epilepsy 
1.1.1. Prevalence, incidence and mortality 

Epilepsy is a debilitating chronic neurological disease that affects 1 in 103 people in 

the United Kingdom (UK) (Joint Epilepsy Council, 2011). The World Health 

Organisation (WHO) in 2005 reported that there are at least 50 million people 

worldwide with epilepsy (World Health Organisation, 2005). The WHO defined 

active epilepsy as an individual having at least one epileptic seizure within the 

previous five years. Active epilepsy accounts for 1% of the global burden of disease, 

and 80% of these incidences are in developing countries (World Health Organisation, 

2006). The prevalence of epilepsy is similar to that of breast cancer in women, lung 

cancer in men, Alzheimer’s disease, substance abuse, depression and other affective 

disorders. Not only do those with epilepsy have to contend with epileptic seizures, 

but they also have to cope with interacting medical, psychological, economic and 

social repercussions. These repercussions have a major impact on epilepsy patients 

and there is a growing need for novel treatments.  

In the UK the prevalence rate of people that have been diagnosed with epilepsy and 

take anti-epileptic drugs (AEDs) is approximately 600,000, this equates to 1 in 103 

people or 9.7 per 1,000 (0.97%) (Joint Epilepsy Council, 2011). These figures 

encompass a large range of population groups and includes children 4 years old and 

under and people 65 years old and over. The number of new cases in the UK is ever 

increasing due to in part the increase in the general population (Booth, 2010; Joint 

Epilepsy Council, 2011). The incidence of newly diagnosed cases of epilepsy in the 

UK is approximately 51 per 100,000 per year (Booth, 2010; Joint Epilepsy Council, 

2011). Epilepsy affects many aspects of life, both socially and physically. In some 
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instances, epilepsy can be fatal and studies showed that 1,150 individuals died from 

epilepsy-related causes in the UK in 2009, this is approximately 42% or 480 

avoidable deaths per year (Booth, 2010; Joint Epilepsy Council, 2011). These 

statistics highlight the fact that epilepsy adheres to no social, economic or age group 

although the recorded cases of epilepsy are lower in the under 5-age group. Each of 

these groups will not be responsive to all treatments nor is the same treatment 

appropriate for all. Therefore, it is important to develop new tailored novel 

treatments. 

 

1.1.2. Definition of epileptogenesis, epilepsy and seizure  

Epileptogenesis is the process during which molecular and structural changes occur 

following a brain insult that leads to the changes in the neuronal network leading to 

clinical epilepsy (Maguire, 2016; Sloviter and Bumanglag, 2013).  

Epilepsy is a group of chronic neurological disorders characterised by an individual 

having epileptic seizures or abnormal excessive synchronised neuronal discharges. 

Epilepsy is categorised as two or more unprovoked seizures occurring > 24 hour 

apart (Fisher, et al., 2014). Epileptic seizures are “transient occurrence of signs 

and/or symptoms due to abnormal excessive or synchronous neuronal activity in the 

brain” (Fisher, et al., 2014).  

The International League Against Epilepsy (ILAE) has recently revised their 

classifications of seizures types and now classify seizures as focal or generalized 

(Fisher, et al., 2016). Focal seizures can be further subdivided into seizures with 

motor and non-motor signs and symptoms. Likewise, generalized seizures can be 

subdivided into motor and absence seizures. Seizures can be accompanied by a loss 

of consciousness and control of the bowels or bladder function. Seizures can 
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manifest in different ways and can vary from very brief lapses of attention or muscle 

spasms, to severe and prolonged epileptic spasms. Epileptic seizures vary also in 

their frequency and are intractable in approximately 35% of patients with focal 

seizure with impaired awareness or complex partial seizures in the old terminology 

(Engelborghs, et al., 2000). Focal seizures with impaired awareness have been found 

to originate from abnormality in the temporal lobe and is associated with a loss of 

consciousness (Shin and McNamara, 1994). Temporary symptoms of epilepsy 

include, but are not limited to, a loss of awareness or consciousness, disturbances of 

movement, sensation, mood or mental function. People who experience seizures 

typically present with impairment in motor responses, increased incidences of other 

disease or psychological disorders such as depression.  

 

1.2. Epilepsy: a balance between excitation and 
inhibition 
Typically, epileptic seizures arise as a result of abnormal, excessive electrical 

discharges in the brain (Cavazo and Sanchez, 2004) and different areas of the brain 

can be the initiation site for these discharges which leads to a sudden imbalance 

between excitatory and inhibitory processes in the neural circuitry (Engelborghs, et 

al., 2000). This imbalance is in part due to the release of inhibitory and excitatory 

neurotransmitters that have opposing effects. In the CNS, there are two main 

neurotransmitter systems that maintain balance, glutamatergic and γ-aminobutyric 

acid (GABA)-ergic neurotransmission.  
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1.2.1. Glutamatergic neurotransmission 

The amino acid glutamate is the main excitatory neurotransmitter in the mammalian 

CNS and has been implicated in physiological and pathophysiological conditions 

such as epilepsy where it has been shown to be involved in the generation and spread 

of epileptic discharges (Chapman, 2000). Glutamate carries out its actions on cells by 

binding to its two main types of receptors (Gereau and Swanson, 2008):  

1. Ionotropic glutamate receptors (iGluRs) that include a diverse group of ion 

channels. There are three types of iGluRs historically characterised based on 

the actions of their synthetic agonists: N-methyl-D-aspartate receptors 

(NMDARs), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPARs) and kainate receptors.   

2. Metabotropic glutamate receptors (mGluRs) that belong to the class C G-

protein coupled receptor family (GPCR). There are three groups of mGluRs 

(Groups I, II and III), which exert their actions via coupling to G-proteins. 

 

1.2.1.1. NMDA receptors 

NMDARs are found in most neurones of the brain and in other cell types such as glia 

(Gereau and Swanson, 2008). They are heterotetramers made up of various 

complexes of the subunits GluN1 (8 isoforms), GluN2A-D and GluN3A-B (Cull-

Candy and Leszkiewicz, 2004; Paoletti, 2011; Paoletti, et al., 2013; Traynelis, et al., 

2010). NMDARs are functionally distinguished by their high calcium (Ca2+) 

permeability and the strong voltage-dependent block of their channel pore by 

extracellular magnesium (Mg2+) although incorporation of the GluN3 subunit has 

been shown to be associated with a decrease in Mg2+ blockade and Ca2+ permeability 
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(Henson, et al., 2010; Pachernegg, et al., 2012; Paoletti, et al., 2013). NMDARs are 

gated by glutamate and the co-agonist glycine or D-serine and also respond to 

changes in the membrane potential in the absence of Mg2+. These factors allow the 

NMDAR to act as a detector of pre- and postsynaptic activity in sensing both the 

binding of glutamate receptors at the presynaptic cell and depolarisation at the 

postsynaptic cell. Upon activation Ca2+ passes through the channel into the cell and 

can act as a second messenger to modulate synaptic strength and alter neuronal 

function. The removal of the Mg2+ block allows the flow of sodium (Na+) and 

potassium (K+) through the channel (Bourinet, et al., 2014; Lüscher and Malenka, 

2012; MacDermott, et al., 1986; Mayer, et al., 1984). The Mg2+ block of NMDARs 

is influenced by structural elements located at or near the channels narrow 

constriction site and is mainly attributed to the GluN2 subunit. Activation of 

NMDARs can also lead to the activation of protein kinases and phosphorylating 

enzymes (Bernard and Zhang, 2015; Gereau and Swanson, 2008; Liu, et al., 2015; 

Lucchesi, et al., 2011; Wang, et al., 2016).  

 

1.2.1.2. AMPA receptors 

AMPA receptors are heterotetramers made up of four subunits GluA1-3 in mammals 

(Gereau and Swanson, 2008; Henley and Wilkinson, 2016). AMPARs are expressed 

in all neuronal cell types and in glial cells and are responsible for the majority of the 

fast excitatory synaptic transmission in the mammalian brain. Due to its fast kinetics 

and small single- channel conductance it rapidly inactivates and desensitizes in the 

presence of its agonists glutamate or AMPA, allowing for precise detection of 

excitatory post synaptic potentials that is an important feature for information 

processing in cortical networks. AMPARs are expressed in neurones and glia and are 
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widely distributed in the adult brain. The GluA1 and GluA2 subunits are widely 

distributed in the adult brain whereas the distribution of the GluA3 and GluA4 

subunits is restricted. In brain regions such as hippocampus, forebrain and cerebral 

cortex the GluA1 and GluA2 subunits are predominantly expressed with low levels 

of expression of GluA3 and GluA4 (Gereau and Swanson, 2008; Lu and Roche, 

2012; Sampedro, et al., 2014; Traynelis, et al., 2010). In the forebrain the majority of 

fast glutamatergic synaptic transmission is driven by those receptors containing the 

GluA1 and GluA2 subunits (Geiger, et al., 1995). In general, glutamatergic 

neurotransmission begins with a fast response mediated by AMPARs, which results 

in membrane depolarisation that allows NMDAR channels to open and Ca2+ to pass 

through leading to downstream effects. The contributions of both the AMPA and 

NMDA receptors in epileptogenesis have long been recognised. In humans, changes 

in NMDA and AMPA receptor binding have been found in brain tissue from 

epileptic patients (Dingledine, et al., 1990; Isokawa and Levesque, 1991) and there 

are current anti-epileptic drugs that act as glutamate blockers targeting the AMPA 

and NMDA receptors (Brodie, et al., 2016; Connock, et al., 2006; Wilby, et al., 

2005).  

 

1.2.1.3. Kainate receptors 

 Kainate receptors are glutamate-gated cation channels with many similarities in 

function to AMPA receptors (Gereau and Swanson, 2008; Traynelis, et al., 2010). 

Kainate receptors are tetramers divided into 4 subtypes GluK1-5, which are 

permeable to Na+ and K+. Kainate receptors modulate excitatory and inhibitory 

transmission and are found both pre- and postsynaptically (Gereau and Swanson, 

2008; Traynelis, et al., 2010). Presynaptic kainate receptors through their ability to 
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both depress and facilitate synaptic transmission in different synapses at different 

stages of development kainate receptors have the ability to influence the strength of 

both excitatory and inhibitory neurotransmission (Chittajallu, et al., 1996; Jane, et 

al., 2009; Lerma, 2003; Traynelis, et al., 2010). In mossy fibre synapses postsynaptic 

kainate receptors have been shown to play a role in neuronal excitability through 

their influence on other ionotropic receptors such as GABA receptors (Lerma, 2003; 

Traynelis, et al., 2010). Kainate receptors are widely distributed in the brain and in 

the hippocampus where they are found on CA1 interneurones of the hippocampus 

and at the mossy fibre synapses, where they involved in synaptic plasticity 

(Chittajallu, et al., 1996; Jane, et al., 2009; Lerma, 2003; Traynelis, et al., 2010). 

The involvement of kainate receptors in epileptogenesis has been well documented 

and kainate has been routinely used a method of modelling human temporal lobe 

epilepsy (discussed later) in animal models is well established (Ben-Ari, 1985; Ben-

Ari, et al., 2008). 

 

1.2.1.4. Metabotropic glutamate receptors 

Metabotropic glutamate receptors are members of the C subclass of receptors within 

the GPCR superfamily. mGluRs modulate cell excitability and synaptic transmission 

in the nervous system where they are widely distributed in neurones and glial cells. 

Group I (mGluR1 and mGluR5) mGluRs couple to Gq and stimulate phospholipase C 

(PLC) and the release of intracellular Ca2+. mGluR1 receptors are predominantly 

located at postsynaptic synapses, where they play a role in the modulation of 

excitatory neurotransmission by influencing receptors such as the AMPA receptor. 

Activation of GI mGluRs can lead to a reduction in the expression of AMPA 
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receptors, which can lead to long-term depression (Lüscher and Huber, 2010; 

Sanderson, et al., 2016). 

Group II (mGluR2 and mGluR3) and group III (mGluR4, mGluR6, mGluR7 and 

mGluR8) couple to Gi/o signaling pathways and the inhibition of adenyl cyclase. 

These mGluRs are found predominantly at the presynaptic terminal where they are 

generally involved in decreased cell excitability by inhibiting glutamate release. In 

rats activation of presynaptic and postsynaptic group II mGluRs was associated with 

a reduction in neuronal excitability in the thalamus (Hermes and Renaud, 2011). In 

addition, studies have shown stimulation of both the group II and group III mGluRs 

have been shown to supress seizures in kindled rats and cell lines (Attwell, et al., 

1998a; Attwell, et al., 1998b; Gasparini, et al., 1999; Wong, et al., 2002). Although, 

preclinical investigations into the anti-epileptic effects following modulation of 

mGluRs have proved promising, to date there are no anti-epileptic drugs that target 

these receptors types (Connock, et al., 2006; Wilby, et al., 2005). 

 

1.2.2. GABA-ergic neurotransmission 

GABA is the main inhibitory neurotransmitter at synapses and binds to fast 

ionotropic GABAA receptors or the GPCR GABAB receptors. GABA acts at GABAA 

receptors to hyperpolarise neurones by increasing their membrane chloride ion (Cl-) 

conductance and stabilises the resting membrane potential close to the Cl- 

equilibrium potential. The action of GABA at pre-synaptic terminals at its GABAB 

receptors inhibits the release of glutamate (Bormann, 2000). The involvement of 

GABA in epilepsy is extensively researched (Avoli and de Curtis, 2011) and many 

anti-epileptic drugs target the enhancement of GABA-mediated inhibition (Connock, 

et al., 2006; Wilby, et al., 2005). Enhancement of the GABA system can be done by 
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binding directly to GABAA receptors, blocking presynaptic GABA uptake, inhibition 

of GABA transaminase that inhibits GABA metabolism resulting in increased 

accumulation of GABA at postsynaptic receptors, or by increasing GABA synthesis 

(Connock, et al., 2006; Wilby, et al., 2005). 

 

1.3. Aetiology of epileptic seizures  
There is no single mechanism underlying seizures, in fact there are many factors 

such as environmental, genetic, pathological and physiological factors that are 

involved in the development of seizures and epilepsy (Shorvon, 2011). The age of 

the patient and the type of seizure also influences aetiology. Factors contributing to 

the development of epilepsy include genetic predispositions, brain trauma, CNS 

infection, antenatal factors such as congenital defects and perinatal risk factors, 

cerebrovascular disorders, parasitic infections, exogenous chemicals (alcohol and 

drugs), degenerative disorders, febrile convulsions, hippocampal sclerosis, cerebral 

palsy, sedative drug withdrawal, stimulant drugs and in some cases stress.  

Epileptic seizures are typically categorised as focal or generalized seizures (Berg, et 

al., 2010; Fisher, et al., 2016; Fisher, et al., 2014). Focal and generalized seizures 

vary with age, where focal seizures are more common in younger and elderly 

patients. Focal seizures are seizures that are localised to a part of one hemisphere of 

the brain. Typically, generalized tonic-clonic seizures can occur at any period 

throughout the life-course and are seizures that affect both hemispheres of the brain. 

 

1.4. The hippocampus  
The hippocampus is an important part of the limbic system found deep within the 

mesial temporal lobe of the brain, where it is involved in learning and memory, in 
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particular long-term memory and is also important for the formation of new memory 

and in the detection of new surroundings, stimuli and occurrences. The hippocampus 

has been used to study many disorders and is attractive because of its unique and 

useful anatomical and neurobiological features. In addition, the basic layout of cells 

in the hippocampal formation and circuitry is conserved in mammals and birds. The 

hippocampal formation (Fig 1.1.) consists of the following: the dentate gyrus (DG), 

the hippocampus proper (cornu ammonis (CA) 1, 2 and 3), subiculum, pre- and para-

subiculum and the entorhinal cortex (EC). The circuitry of the hippocampal 

formation is predominantly unidirectional between the different cortical regions 

(Basu and Siegelbaum, 2015; Neves, et al., 2008). The EC receives much of the 

neocortical inputs into the hippocampal formation and can be viewed as the first step 

in the hippocampal circuit. Polymodal sensory information from neurons in layer II 

of the EC project along the performant pathway to the DG making excitatory 

synaptic contacts with the dendrites of the granule cells in the DG. The granule cells 

in the DG send axons called mossy fibres to the proximal apical dendrites of CA3 

pyramidal cells, which in turn send projections via the Schaffer collateral pathway to 

the CA1 region. The Schaffer collateral pathway forms the major input to the CA1 

region of the hippocampus. The CA1 region also receives input form the EC via the 

perforant pathway and likewise sends projections back to the EC. Axons in the CA1 

region also project onto the subiculum, which in turn sends axons to the EC. The 

projections from the CA1 region and the subiculum form a unidirectional closed loop 

circuit that begins and ends in the EC (Basu and Siegelbaum, 2015; Neves, et al., 

2008).  
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1.5. Types of epilepsy 
1.5.1. Mesial temporal lobe and the hippocampus 

The hippocampus has been implicated in the pathophysiology of epilepsy. Increased 

hippocampal excitability is commonly found in human mesial temporal lobe epilepsy 

(TLE) (Avoli, 2007; D'Antuono, et al., 2002). TLE is a type of focal epilepsy and the 

most common pathophysiology in patients with drug-resistant TLE is hippocampal 

sclerosis (HS) (Andersen, et al., 2007; Blümcke, et al., 2013). The international 

Figure 1.1. Simplified diagram of the hippocampus and tri-synaptic circuit. 
The hippocampus is divided into four regions: Cornus Ammonis 1-3  (CA1- CA3) 
regions and the dentate gyrus (DG). Input into the hippocampus from the 
entorhinal cortex (EC) via the perforant pathway synapse on the granule cells in 
the DG. This message is then passed along to the CA3 pyramidal cells via the 
axons of the granule cells called mossy fibres. Axons from the CA3 region synapse 
on CA1 pyramidal cells via the Schaffer collateral fibres. Finally, the axons of the 
CA1 pyramidal cells project to the subiculum and EC. 
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league against epilepsy (ILAE) has classified HS into three types (Blümcke, et al., 

2013) based on hippocampal cell loss: 

1) Type 1(most common form found in 60-80% of all TLE cases): Severe 

neuronal cell loss and gliosis in CA1 (> 80% cell loss), CA2 (30-50%), CA3 

(30-90%) regions and the DG (50-60%).  

2) Type 2 (affects 5-10% of all TLE surgical cases): Predominant neuronal cell 

loss and gliosis in CA1 region (80% of pyramidal cells), CA2 and CA3 (< 

20% of principal cells)  

3) Type 3 (rarest form and affects 4-7.4% of all TLE surgical cases): Cell loss 

and gliosis in DG (35%), CA3 (< 30%), CA2 (< 25%) and CA1 (< 20%). 

Factors influencing the development of HS include: seizure frequency, severity and 

genetic susceptibility. The degree of HS can be influenced by the age at epilepsy 

onset and epilepsy duration (During and Spencer, 1992). HS can be caused by 

cerebral injury within the first few years of a person’s life, typically in individuals 

with a genetic predisposition (Blümcke, et al., 2013). As a consequence, patients 

with TLE who also manifest with HS have been shown to develop pharmaco-

resistant focal seizures. This makes it very difficult to treat these individuals with 

drugs and other means of treatment such as surgery are explored. Studies have shown 

that following 2 years after surgical resection, seizures were absent in 60-80% of 

patients with drug-resistant TLE (Blümcke, et al., 2013). Evidence has shown that 

TLE also presents with other disorders and there is increased comorbidity between 

TLE, and depression and psychosis (Andersen, et al., 2007). An increase in mortality 

and neuropsychological deficits has also been associated with the location of the HS 

(Andersen, et al., 2007). The coexistence of epilepsy with other underlining 
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neurological disorders means that it is often difficult to treat with drugs without 

having drug interactions and adverse side effects.  

 

1.5.2. Rolandic epilepsy 

Rolandic epilepsy is genetically determined and is the most common and well-

known benign focal childhood epilepsy (Rugg-Gunn and Smalls, 2015). Rolandic 

epilepsy is found more commonly in males (1:5) and the age of onset ranges from 1-

14 years with onset starting between 7–10 years in 75% of children (Rugg-Gunn and 

Smalls, 2015; Smith, et al., 2015). The prevalence of rolandic epilepsy is 

approximately 15% in children aged 1–15 years with non-febrile seizures and the 

incidence rate is 10–20 in 100,000 children aged 0–15 years (Rugg-Gunn and 

Smalls, 2015). 

The most common features of rolandic epilepsy are brief focal seizures lasting for 1–

3 minutes. The focal seizures consist of unilateral facial sensory- motor symptoms in 

30% of patients, oropharyngolaryngeal symptoms 53% of patients, speech arrest 

40% of patients and hypersalivation 30% of patients (Rugg-Gunn and Smalls, 2015). 

Children may go on to develop usually mild and reversible linguistic, cognitive and 

behavioural abnormalities during the active phase of the disease, which might be 

worse in children where onset occurs before 8 years old (Rugg-Gunn and Smalls, 

2015; Smith, et al., 2015; Vannest, et al., 2015). Less than 1% of rolandic epilepsy 

patients may go to develop into to more severe syndromes with linguistic, 

behavioural and neuropsychological deficits, such as Landau-Kleffner syndrome 

(Rugg-Gunn and Smalls, 2015; Smith, et al., 2015; Vannest, et al., 2015). 
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1.5.3. Juvenile myoclonic epilepsy 

Juvenile myoclonic epilepsy is defined as myoclonic jerks or spasmodic jerky 

contraction of groups of muscles (mandatory criterion), without loss of 

consciousness predominantly occurring after awakening.  

The pathogenesis of juvenile myoclonic epilepsy is not fully elucidated but it is 

generally thought of as a disorder of the thalamo-cortical circuit, but new evidence 

suggests that it might be more a disorder of the cortex (Park, et al., 2017).  

The main symptoms of juvenile myoclonic epilepsy are: bilateral, arrhythmic, 

irregular myoclonic jerks that which occurs predominantly in the arms usually 

occurring after awakening (Yacubian, 2016). The age of onset is between 10 and 25 

years of age with equal prevalence in male and female (Rugg-Gunn and Smalls, 

2015; Yacubian, 2016).  

Juvenile myoclonic epilepsy accounts for 2.8-11.9% of all epilepsies and 26.7% of 

genetic generalized tonic-clonic seizures, a third of which have absence seizures 

(Rugg-Gunn and Smalls, 2015; Yacubian, 2016). Many go on to develop cognitive 

dysfunction that may have an impact on quality of life. Seizures can be successfully 

controlled with medication in 80% of patients with juvenile myoclonic epilepsy 

(Rugg-Gunn and Smalls, 2015; Yacubian, 2016).   

1.5.4. Post-traumatic epilepsy 

Traumatic brain injury carries an increased risk of developing epilepsy and this risk 

is correlated to the severity of the brain injury (Christensen, 2015; Rugg-Gunn and 

Smalls, 2015). Traumatic brain injury occurs more frequently in males than females 

and the risk of brain injury varies with age (greater in childhood, in the elderly, and 

in early adulthood) (Christensen, 2015; Rugg-Gunn and Smalls, 2015). The risk of 
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developing post-traumatic epilepsy after a traumatic brain injury is 30-50%, a 30 

time increased risk of epilepsy compared to the general population (Larkin, et al., 

2016). Following a brain injury a cascade of events occur that leads to the 

development of an imbalance between excitatory and inhibitory processes. This 

imbalance further increases the risk of spontaneous epileptic events that are 

associated with excessive excitatory stimulation (Larkin, et al., 2016). Post-traumatic 

epilepsy accounts for less than 10% of epilepsies (Christensen, 2015). Post-traumatic 

epilepsy is diagnosed when seizures occur late typically more than a week after the 

injury but the onset can take up to 10 years or longer to developing post-traumatic 

seizures (Christensen, 2015; Rugg-Gunn and Smalls, 2015). The risk of developing 

post-traumatic epilepsy is greatest in individuals older than 15 years old at the time 

of the brain injury and also higher if there is a familial history of epilepsy.  

Post-traumatic epilepsy is often difficult to treat but is preventable due to the long 

period of time (several years) between injury and the development of post-traumatic 

seizures (Christensen, 2015).  

 

1.6. Treatment of epilepsy 
Studies conducted in 2010 showed that whilst 52% of people with epilepsy in the UK 

are seizure-free (Moran, et al., 2004), approximately 35% of patients with focal 

seizures with impaired awareness are drug resistant (Engelborghs, et al., 2000). This 

leaves a treatment gap that is approximately 108,000 people with epilepsy who 

receive sub-optimal treatment but still have seizures. Given this treatment gap, there 

is a need for new, more effective treatments. The treatment of epilepsy is generally 

divided into four categories: anti-epileptic drugs (AEDs), neurostimulation, dietary 

interventions, and surgery.  
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1.6.1. Medication (AEDs)  

Commonly used AEDs are believed to act primarily by the following main 

mechanisms (Connock, et al., 2006; Wilby, et al., 2005): 

• The reduction in electrical excitability of the cell membrane, 

predominantly through inhibition of voltage-gated sodium channels 

• The enhancement of the inhibitory actions of the neurotransmitter GABA: 

by enhancing the postsynaptic actions of GABA, inhibition of GABA 

transaminase, which inhibits GABA metabolism or by using drugs with 

similar modes of action as GABA agonists 

• The inhibition of T-type calcium channels 

• Inhibition of glutamatergic neurotransmission 

The main drugs that are currently used for the treatment of epilepsy include: 

phenytoin, carbamazepine and valproate.  

The main action of phenytoin is the inhibition of voltage-gated Na+ channels and it 

can be used in the treatment of many types of epilepsy (Connock, et al., 2006; 

Wilby, et al., 2005).  

Carbamazepine is a tricyclic antidepressant derivative and has a similar profile to 

that of phenytoin but fewer negative side effects (Connock, et al., 2006; Wilby, et 

al., 2005).  

The mechanism of action of valproate is not clear but is believed to involve weak 

inhibition of GABA transaminase and an effect on voltage-gated Na+ channels. 

Valproate may also be used to reduce low-voltage-activated T-type Ca2+ currents 
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(Kwan, et al., 2001; Sills and Brodie, 2001), resulting in a reduction in the power of 

thalamocortical oscillations that are important in the generation of absence seizures 

(Connock, et al., 2006; Wilby, et al., 2005). Valporate is also used to treat seizures in 

juvenile myoclonic epileptic patients, with a high efficacy against generalized tonic-

clonic and myoclonic seizures (Rugg-Gunn and Smalls, 2015; Yacubian, 2016). 

All of the AEDs mentioned above have been used in the clinic in the treatment of 

tonic-clonic seizures and focal seizures and are normally the first line of treatment. 

Typically, it is preferable to give these drugs on their own as drug interactions occurs 

very commonly. Other AEDs include drugs that block the actions of glutamate 

receptors, such as felbamate and ketamine that block the actions of NMDARs 

(Connock, et al., 2006; Kwan, et al., 2001; Sills and Brodie, 2001; Sleigh, et al., 

2014; Wilby, et al., 2005). 

Newer drugs include vigabatrin, tiagabine and lamotrigine, and their modes of action 

are not well understood. Vigabatrin has been found to act by inhibiting GABA 

transaminase, which inhibits GABA metabolism and is useful because it can be used 

in patients who are unresponsive to traditional AEDs. Tiagabine is a GABA-uptake 

inhibitor where it acts to prevent the removal of GABA from the synaptic cleft. 

Lamotrigine has been found to inhibit voltage-gated Na+ channels and has a broad 

therapeutic profile so can be used to treat a number of epilepsies.  

The proportion of medically refractory patients remains at approximately 30% 

despite advances in the discovery of new drugs. It is clear that the need for non-drug 

treatment is justifiable and necessary. Although AEDs have been in use for many 

years there is still a need for new therapies for the treatment of drug-resistant 

seizures with improved efficacy or tolerability profiles. Also, there is a growing need 

for disease-modifying treatments that prevent or ameliorate the process of 
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epileptogenesis (Galanopoulou, et al., 2012). Where AEDs are ineffective, other 

treatments are necessary. These include brain surgery, neurostimulation and the 

ketogenic diet.  

 

1.6.2. Surgery 

Brain surgery is performed in a small number of patients where drugs have proved to 

be ineffective and the epilepsy is severe. Brain surgery is an effective way of 

reducing or eliminating seizures in people with medically intractable epilepsy. 

Surgery is appropriate where seizures are localised to one part of the brain and the 

brain region is small (accounts for 3% of those who develop epilepsy) (National 

Institute for Health and Clinical, 2009). Temporal lobe epilepsy can be treated with 

an anterior mesial temporal resection. Complications include infections, and 

secondary neurological deficits that occur in 6% of patients (World Health 

Organisation, 2005). The proportion of epilepsy patients who remain seizure-free 

following surgery is 70%, and in many, a reduction in seizure frequency is what is 

generally experienced. Although the success rate of surgery is high, unfortunately it 

still remains inappropriate for those individuals where removal of brain tissue may 

prove to be debilitating. 

 

1.6.3. Neurostimulation 

Where AEDs have failed to control seizures, and epilepsy surgery is not viable, 

neurostimulation is often considered. All neurostimulation treatment is palliative and 

it is usually advised that it is preceded by a thorough surgical evaluation. There are 

currently a number of techniques, such as vagus nerve stimulation (VNS) and 
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responsive neural stimulation (RNS). VNS involves the surgical placement of a 

transcutaneous programmable device that provides mild and irregular electrical 

stimulation to the left cervical vagus nerve. The aim of VNS is to reduce the irregular 

electrical brain activity that leads to seizures. VNS decreases seizures by 50% in the 

high stimulation group compared to 8% in the low stimulation group (Chambers and 

Bowen, 2013). Double-blind randomised controlled trials reported a reduction range 

of 24.5%-28% in mean seizure (Chambers and Bowen, 2013). Frequent adverse 

effects include sleep-related decreases in respiratory airflow, hoarseness, throat pain 

and coughing that are due to the activation of the recurrent laryngeal nerve branch of 

the cervical vagus (Chambers and Bowen, 2013). 

  

1.6.4. Ketogenic diet 

The ketogenic diet can be used to treat epileptic seizures in children and adults where 

it is often difficult to treat seizures with AEDs (Kovac, et al., 2013; Masino and 

Boison, 2012; Masino, et al., 2013; Masino, et al., 2009; Neal, et al., 2008; 

Thammongkol, et al., 2012). The ketogenic diet composed of a high-fat, low 

carbohydrate and protein diet, which requires working closely with a dietician. The 

ketogenic diet was originally designed to mimic the biochemical changes associated 

with fasting, which anecdotally has been shown to control seizure activity (reviewed 

in (Masino and Rho, 2012)). Under the ketogenic diet the body is not supplied with 

enough glucose for energy and stored fats can then be broken down for energy 

resulting in a build-up of acids called ketones within the body. The ketogenic diet 

produces ketone bodies, such as β-hydroxybutyrate, acetoacetate and acetone, which 

are products of fatty acid oxidation in the liver and reduced blood glucose levels. The 

ketone bodies can be used as an alternative substrate to glucose for energy utilisation. 
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When fatty acid levels are elevated as seen in the ketogenic diet and when the level 

of fatty acids exceed the metabolic capacity for the citric acid cycle, the citric acid 

cycle substrate acetyl-CoA is shunted to the production of ketone bodies. There is 

currently no primary mechanism of action for the ketone bodies in reducing seizure 

activity, although a number of mechanisms have been proposed (reviewed in 

(Masino and Rho, 2012)), but more supporting evidence is needed: 

• Membrane hyperpolarisation through the activation of K+ channels 

• Enhancement of GABAergic neurotransmission 

• A reduction in vesicular glutamate release  

• Reduction in brain glucose consumption 

In 2008 a randomised controlled trial of ketogenic diet (Neal, et al., 2008) showed 

that 38% of children on the diet had a reduction in seizure frequency compared to 

those not on the diet, where seizure frequency increased. Side effects include 

vomiting, diarrhoea and constipation. Despite the benefits of this method of 

treatment, the ketogenic diet is not suitable for everyone and often families and 

patients find it difficult to maintain.  

As outlined above the current treatments for the symptoms of epilepsy are failing a 

large cohort of epileptic patients. The mass majority of AED target the major 

inhibitory neurotransmitter GABA but none are currently used to target 

neuromodulators of synaptic transmission. Over the last few decades there has been 

growing interest in possible role of the neuromodulator adenosine. Adenosine is a 

purine nucleoside that has been implicated in the pathophysiology of epilepsy. 
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1.7. Models of seizures and epilepsy 
Many different activity patterns are termed epileptiform activity and there are a 

number of models used to investigate the differing epileptiform activity. In addition, 

in vitro methods allow for investigation into epilepsy at the slice level where 

mechanisms of the generation, spread and termination of seizures can be studied at a 

level of detail often difficult to achieve in in vivo animal models. Animal models of 

epilepsy are useful in elucidating the underlying mechanisms of epileptogenesis and 

aid in the development and screening of novel treatments. Rodents, such as rats and 

mice, have brain regions that are similar in structure and function to that of humans 

and thus are useful tools for studying epilepsy. Brain slices, cell culture and 

molecular assays are advantageous because they represent reduced biological 

systems that allow insight into epilepsy. 

 

1.7.1. Pharmacological in vivo animal models of status 

epilepticus 

Chemoconvulsants are typically used to induce status epilepticus (SE) in rodents and 

include: kainic acid and pilocarpine (for review see (Reddy and Kuruba, 2013)). 

Chemoconvulsants are generally used to characterise the pathophysiology of 

epilepsy and to evaluate potential therapeutic interventions. Chemoconvulsants carry 

out their effects by enhancing glutamatergic neurotransmission, by blocking 

GABAergic inhibition or by enhancing the cholinergic system to induce seizures or 

SE.  
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1.7.1.1. Kainic acid model 

The kainic acid model is the most widely used pharmacological model for inducing 

SE and have been administered in a number of rodent models. Kainic acid is a 

powerful neural excitant that acts as a high affinity agonist at kainate glutamate 

receptors. Typical experiments involve the implantation of two surface electrodes 

into brain regions such as the cortex and cerebellum, and one depth electrode into the 

hippocampus. In rats, administration of this potent convulsant subcutaneously/ 

intraperitoneally (8-12 mg/kg) leads to convulsions and progression of the 

development of SE (reviewed in (Levesque and Avoli, 2013; Reddy and Kuruba, 

2013)). The convulsant dose of kainic acid is variable and depending on the strain 

(20-40 mg/kg, intraperitoneally) (reviewed in (Levesque and Avoli, 2013; Reddy and 

Kuruba, 2013)). Furthermore, intrahippocampal kainate injection in awake rats (0.4 

µg) has also been successfully used to avoid the insult-modifying effects of 

anesthesia (Rattka, et al., 2013). In rats, acute seizures can also be induced by intra-

amygdaloid injections of kanic acid (0.4-2 µg) that produces symptoms that are 

similar to those observed following intrahippocampal injections (Ben-Ari, et al., 

1979; Gurbanova, et al., 2008). Multiple injections are required in order for 

development of consistent SE, lesions and spontaneous seizures. This model results 

in widespread damage to brain regions such as the hippocampus (damage to the 

CA1, CA3 and hilar cells of the DG) and the amygdala. The extensive damage 

observed in this model is similar to lesions observed in human epileptogenic tissue. 

A major disadvantage of this model is that there is variable sensitivity that is 

dependent of the strain, age, sex and weight of the rats used. Also, kainic acid 

produces direct neuronal damage that occurs as a consequence of seizure-induced 

neuronal damage.  
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 1.7.1.2. Pilocarpine model 

This model is used to study the generation and spread of convulsive activity in the 

hippocampus and amygdala, as it produces consistent seizures associated with 

neurodegeneration (reviewed in (Reddy and Kuruba, 2013)). Pilocarpine is a 

muscarinic cholinergic agonist that is used to induce limbic seizures. Pilocarpine can 

be administered directly into the amygdala or hippocampus, or systemically to rats 

(400 mg/kg). Seizures are elicited by the activation of the cholinergic system and SE 

is believed to be due to repeated activation of the cholinergic system. Typical 

experiments involve the implantation of two surface electrodes into the brain such as 

the cortex and cerebellum and one depth electrode into the hippocampus. Rats are 

pre-treated with a muscarinic antagonist to prevent peripheral effects of pilocarpine. 

30 minutes following administration of the muscarinic antagonist, pilocarpine is 

given and typically limbic seizures arise 30 minutes after the pilocarpine injection 

(reviewed in (Reddy and Kuruba, 2013)). The onset to seizures is dependent on the 

dose of pilocarpine. Similar to the kainic acid, pilocarpine produces widespread 

neuronal damage. A disadvantage of this model is that it induces greater neocortical 

damage than kainic acid.  

 

1.7.2. In vitro animal models 

There are different methods for studying epileptiform activity in vitro and I will 

briefly discuss the use of organotypic slice cultures and brain slices.  
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1.7.2.1. Organotypic slice cultures 

Organotypic slice cultures are an attractive model for the study of epileptogenic 

changes in neural circuits. Organotypic slice cultures are capable of maintaining 

some of the intrinsic properties of the intact tissue and are used to overcome some of 

the issues associated with the use of slices (Routbort, et al., 1999). This model allows 

for the study of epileptogenesis within individual cell types. One study used 

organotypic slice cultures from rat pups which experienced experimental febrile 

seizures to investigate the mechanisms underlying the emergence of ectopic granule 

cells (Koyama, 2013). An advantage that cell cultures have over slices is that they 

can be kept for weeks as opposed to days or hours. A disadvantage of using cell 

cultures is that they are typically taken from pups and are not representative of the 

adult brain (Heinemann, et al., 2005).  

 

1.7.2.2. Brain slices  

Acutely prepared brain slices are the most commonly used preparation for studying 

epileptiform activity as they preserve the neural circuitry needed for the generation 

of seizures. Slices of 200-600 µm thickness are typically used, primarily to study 

acutely provoked electrographic seizures as opposed to chronic epileptogenesis, as 

slices do not survive for long periods of time. Seizure activity can either be recorded 

extracellularly or intracellularly with the use of microelectrodes. Seizure models 

include lowering the extracellular Mg2+ concentration in tissue (Anderson, et al., 

1986; Dreier and Heinemann, 1991; Gloveli, et al., 1995; Hamon, et al., 1987; Jones 

and Heinemann, 1988; Mody, et al., 1987; Stanton, et al., 1987; Walther, et al., 

1986; Zhang, et al., 1995), increases in extracellular K+ concentrations, typically 

from 3 mM to 10-12 mM (Fisher, et al., 1976; Heinemann and Lux, 1977; Lothman 
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and Somjen, 1976; McNamara, 1994; Moody, et al., 1974; Yaari, et al., 1986), and 

decreases in extracellular calcium to 0.2 - 0.6 mM (Heinemann, et al., 1977; Yaari, et 

al., 1986). Low Mg2+ solutions have been shown to enhance NMDA receptor-

dependent glutamatergic excitation through the removal of the Mg2+ block. Low 

Mg2+ preparations, sometimes used in conjunction with changes in the concentration 

of other ions such as K+, can induce seizures in brain slices and are a widely adopted 

seizure model. In addition, pharmacological agents can also be used to induce seizure 

activity in acutely prepared brain slices (reviewed in (Avoli and Jefferys, 2016)) and 

ex vivo brain slices from chronically epileptic animals and human epileptic patients 

are also used to study epileptiform activity (Antonio, et al., 2016; Jones, et al., 

2016). 

 

1.8. K+ channels and epilepsy 
Epileptogenesis can also arise as a consequence of an imbalance in K+ levels in the 

brain (Fisher, et al., 1976; Moody, et al., 1974). K+ channels regulate neuronal 

excitability by regulating presynaptic neurotransmitter release (Johnston, et al., 

2010). K+ currents play an active role in membrane potential, repolarisation and 

hyperpolarisation, ultimately acting to limit neuronal excitability. 

K+ channels are not only involved in normal physiological responses, but have also 

been implicated in the pathophysiology of epilepsy and mutations encoding the K+ 

channels dysfunction has been linked to inherited epilepsy in humans and animal 

models (Cooper, 2012; Villa and Combi, 2016). Antagonism of K+ channels 

prolongs the action potential duration, which leads to enhance release of 

neurotransmitters. Voltage-gated presynaptic K+ (Kv) channels with subunits Kv1, 

Kv2, Kv3 and Kv4 can be blocked with 4-aminopyridine (4-AP; 2-10 mM) 
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(Johnston, et al., 2010), to facilitate the release of neurotransmitters such as 

serotonin, norepinephrine, acetylcholine dopamine, glutamate and GABA (Morris, et 

al., 1996). Kv channels are a group of diverse channels (Table 1.1.) that are involved 

in mediating outward K+ currents that play a role in normal and pathological 

processes in neurones (reviewed in (McNamara, 1994; Reddy and Kuruba, 2013; 

Shah and Aizenman, 2014)). The loss of Kv1 or Kv7 has been shown to promote 

neuronal hyperexcitability, which can then have a major effect in disorders such as 

epilepsy (reviewed in (Shah and Aizenman, 2014)). In a mouse model of TLE, 

seizures trigger an upregulation of Kv1.1 channels transcription in dentate gyrus 

granule cells, was associated with an increased response delay of the dentate gyrus 

cells, which suggests a Kv1 channels-mediated anticonvulsive and neuroprotective 

mechanism to scale DG output (Kirchheim, et al., 2013). Application of the 

Kv1antagonist dendrotoxin into rat hippocampus induces neuronal excitability, 

seizures and cell death (Bagetta, et al., 1992; Lalic, et al., 2011). Mutations in the 

Kv7 channel family have also been implicated in epilepsy, where mice expressing 

the dominant negative mutant Kv7.2 channel display spontaneous seizures and 

increased hippocampal neuronal excitability and cell death (Peters, et al., 2004). In 

humans, treatment with retigabine, a Kv7 channel activator, enhances channel 

activation by inducing a hyperpolarisation effect on voltage-gated channel activation, 

and has been found to be effective in reducing epileptic seizures (Tatulian, et al., 

2001; Wuttke, et al., 2005). These studies have demonstrated the importance of 

dysfunction of K+ channels and thus the action of K+ in epilepsy. 
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Table 1.1. Kv channel families. Gene names shown are those assigned by the 
IUPHAR and HGNC in addition to some other commonly used names. Taken 
form (Gutman, et al., 2005).  
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Introduction

Potassium-selective channels are the largest and most
diverse group of ion channels, represented by some 70
known loci in the mammalian genome. The first cloned
potassium channel gene was the Drosophila voltage-
gated shaker channel, and this was rapidly followed by
the identification of other voltage- and ligand-gated po-
tassium channel genes in flies, mammals, and many
other organisms. The voltage-gated Kv channels, in
turn, form the largest family of some 40 genes among the
group of human potassium channels, which also in-
cludes the Ca2!-activated (KCa), inward-rectifying (KIR),
and two-pore (K2P) families described in the following
articles of this compendium. Kv and KCa channels to-
gether constitute the six/seven-transmembrane group of
potassium-selective channels, made up of subunits con-
taining six or seven membrane-spanning domains, in-
cluding the positively charged S4 segment, which con-
fers on some of these channels their voltage sensitivity.

Table 1 lists the International Union of Pharmacology
(IUPHAR1) names assigned to the members of the Kv
family of channels, as well as the gene names established
by the HUGO Gene Nomenclature Committee (HGNC).
Two new sequences, Kv6.4 and Kv8.2, have been added to
this list since the earlier edition of this compendium. Fig-
ures 1 and 2 show two phylogenetic tree reconstructions,
one for the Kv1–9 families and the other for the Kv10–12
families, based on amino acid sequence alignments of the
entire hydrophobic core of the proteins.

Address correspondence to: Dr. George A. Gutman, Department of
Microbiology and Molecular Genetics, University of California, Ir-
vine, Irvine, CA. E-mail: gagutman@uci.edu
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1 Abbreviations: IUPHAR, International Union of Pharmacology;

HGNC, HUGO Gene Nomenclature Committee.

TABLE 1
Kv channel families

Gene names shown are those assigned by the IUPHAR (Catterall et al., 2002) and
HGNC (http://www.gene.ucl.ac.uk) in addition to some other commonly used
names.

IUPHAR HGNC Other

Kv1.1 KCNA1 Shaker-related family
Kv1.2 KCNA2
Kv1.3 KCNA3
Kv1.4 KCNA4
Kv1.5 KCNA5
Kv1.6 KCNA6
Kv1.7 KCNA7
Kv1.8 KCNA10
Kv2.1 KCNB1 Shab-related family
Kv2.2 KCNB2
Kv3.1 KCNC1 Shaw-related family
Kv3.2 KCNC2
Kv3.3 KCNC3
Kv3.4 KCNC4
Kv4.1 KCND1 Shal-related family
Kv4.2 KCND2
Kv4.3 KCND3

Kv5.1 KCNF1 Modifier
Kv6.1 KCNG1 Modifiers
Kv6.2 KCNG2
Kv6.3 KCNG3
Kv6.4 KCNG4
Kv7.1 KCNQ1 KVLQT
Kv7.2 KCNQ2 KQT2
Kv7.3 KCNQ3
Kv7.4 KCNQ4
Kv7.5 KCNQ5
Kv8.1 KCNV1 Modifiers
Kv8.2 KCNV2
Kv9.1 KCNS1 Modifiers
Kv9.2 KCNS2
Kv9.3 KCNS3
Kv10.1 KCNH1 eag1
Kv10.2 KCNH5 eag2

Kv11.1 KCNH2 erg1
Kv11.2 KCNH6 erg2
Kv11.3 KCNH7 erg3
Kv12.1 KCNH8 elk1, elk3
Kv12.2 KCNH3 elk2
Kv12.3 KCNH4 elk1
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Adenine Guanine 

Hypoxanthine Xanthine 

Figure 1.2. Structure of 
nitrogenous bases. Adenine 
and guanine are constituents of 
nucleotides occurring in 
nucleic acids. Hypoxanthine 
and xanthine are important 
intermediates in the synthesis 
and degradation of purine 
nucleotides. Taken from 
PubChem, URL: 
https://pubchem.ncbi.nlm.nih.
gov 

1.9. Purinergic signalling 
Purines are one of two families of nitrogen-containing molecules termed nitrogenous 

bases (Fig 1.2.). Nitrogenous bases are needed to make the genetic material in every 

living organism. Purines are double-ringed structures that consist of a six-membered 

ring fused to a 5 membered ring heterocyclclic molecule. 

 

 

Geoffrey Burnstock first postulated in the 1970’s the concept of purinergic 

neurotransmission (Burnstock, 1972; Burnstock, et al., 1972a; Burnstock, et al., 

1972b), where adenosine 5’-triphosphate (ATP) was shown to be a neurotransmitter 

at various nerve terminals. Today, it is now accepted that ATP can act as a 

neurotransmitter and or as a neuromodulator in many physiological processes. 

Purines also play a major role in many pathophysiological processes such as epilepsy 

and are important molecules for both intracellular and extracellular signalling 

(Burnstock, 2009; Burnstock, 2013; Dale and Frenguelli, 2009; Dunwiddie and 

Masino, 2001). Purines such as ATP and the purine nucleoside adenosine are 

important signalling molecules that activate their own receptors. ATP as well as its 

nucleotide adenosine 5’-diphosphate (ADP), ADP-sugars, or the pyrimidines uridine 

5’-diphosphate (UDP) and uridine 5’-triphosphate (UTP) can activate P2 receptors 
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 Fig 1.3. Structure of adenosine 
triphosphate (ATP). ATP is an adenine 
nucleotide containing three phosphate groups 
(purple box) esterified to the sugar moiety 
ribose (blue box) and the nucleobase adenine 
(red box). In addition to its crucial roles in 
metabolism adenosine triphosphate is a 
neurotransmitter. Modified from PubChem, 
URL: https://pubchem.ncbi.nlm.nih.gov 

whilst adenosine activates P1 receptors (Abbracchio, et al., 2009; Fredholm, et al., 

2011; Fredholm, et al., 1994; Fredholm, et al., 2001a; Ralevic and Burnstock, 1998). 

 

1.9.1. ATP 

ATP is used as an energy source for nearly all cellular activity. ATP is a nucleoside 

consisting of three phosphate groups esterified to the sugar moiety ribose and the 

purine base adenine (Fig 1.3). The breaking of ATP during hydrolysis releases 

energy to form its nucleotides ADP and adenosine 5’-monophosphate (AMP). AMP 

is quickly recycled into ADP and ATP by the enzyme adenylate kinase for energy 

use. Intracellular ATP and its nucleotides ADP and AMP are constantly 

interconverted, providing a constant supply of energy. 
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Fig 1.4. ATP synthesis pathways. ATP is synthesised in the mitochondria by 
oxidative phosphorylation. In the cytoplasm, ATP production can be done by 
the creatine kinase/phosphocreatine system and the adenylate kinase system. 
Glycolysis also produces ATP via anaerobic mechanisms in the cytoplasm. The 
glycolytic product pyruvate can further be used to generate more ATP via the 
recruitment of the tri-cyclic acid cycle and oxidative phosphorylation. Adapted 
from Dahout-Gonzalez et al., 2006.  

1.9.1.1. ATP synthesis 

ATP is a major source of energy use in the brain. Energy homeostasis requires that 

there is a balance between cellular ATP consumption and ATP production. The 

reductions in ATP and increases in ADP, AMP and phosphates occur when ATP is 

used during both glycolytic and oxidative reactions. In addition to the enzymes 

involved in mitochondrial synthesis and glycolytic ATP production, adenylate kinase 

and creatine kinase (Fig 1.4.) also play an important role in the maintenance of high 

cytosolic ATP levels (Ames, 2000; Dzeja and Terzic, 2003). Both adenylate kinase 

and creatine kinase reactions play an important role in the buffering of the ATP/ADP 

(Ames, 2000; Dzeja and Terzic, 2003). 
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1.9.1.2. ATP storage and release 

Studies have shown that ATP and other nucleotides are taken up and stored in 

secretory and synaptic vesicles where it can be co-stored and co-released with other 

neurotransmitters (Burnstock, et al., 2012). ATP is released from many cells as a 

result of physiological and pathophysiological response to stimuli such as 

mechanical stress, hypoxia and inflammation. Additionally, reduction in ATP levels 

have been shown in patients with temporal lobe epilepsy and may point to a role of 

reduced ATP concentration in brain tissue and the pathophysiology of epilepsy (Chu, 

et al., 1998; Williamson, et al., 2005). In the brain, ATP can function as an 

extracellular signalling molecule between neurones and glial cells. In glial cells, ATP 

acts as a widespread gliotransmitter, where the release of ATP from astrocytes 

whether by exocytosis or through membrane channels has been observed (reviewed 

in (Abbracchio, et al., 2009)). Astrocytic release of ATP may play an important role 

in triggering cellular responses to trauma and ischaemia. It does this by initiating and 

maintaining astrogliosis (Boison, et al., 2010). Astrogliosis can be defined as the 

pathological proliferation and hypertrophy of astrocytes, and this dysfunction in 

gliotransmission has been implicated in the pathophysiology of epilepsy (reviewed in 

(Boison, 2013; Boison, et al., 2010)).  

 

1.9.1.3. ATP receptors 

ATP P2 receptors have been characterised on the basis of their mechanism of action, 

pharmacology and molecular cloning (reviewed in (Burnstock, et al., 2012; Ralevic 

and Burnstock, 1998)). P2 receptors are divided into P2X ionotropic and P2Y 

metabotropic receptor subtype families.  There are seven P2X receptor subtypes 

(P2X1-7) and eight P2Y subtypes (P2Y1,2,4,6,11,12,13 and 14). In the CNS in situ 
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hybridisation of P2 receptor subtypes mRNA and immunohistochemistry of receptor 

subtype protein expression has shown that the P2 receptor subtypes are 

heterogenously expressed. 

 

1.9.1.3.1. P2X 

P2X receptors are ligand gated channels where upon ATP binding enables the flow 

of Na+ and K+ through their integral membrane channels . P2X receptors form 

trimers made up of individual subunits encoded by the seven distinct genes (P2X1-7). 

All P2X subunits are expressed in neural cells and are widely distributed in the brain 

such as in the hippocampus where all the P2X subtypes are expressed. P2X1 subtypes 

are also expressed in the cerebellum and the P2X3 has been shown to be distributed 

in the brain stem (reviewed in (Burnstock, 2006)). P2X receptors are expressed in a 

segregated manner on glial cells (e.g. P2X1/5 are found in the cortex but not in other 

brain regions).  

 

1.9.1.3.2. P2Y 

P2Y receptors can form homodimers or heterodimers with other P2Y receptors or 

other transmitter receptors. P2Y receptors are part of the GPCR family and are 

further divided into two subgroups 1) P2Y1,2,4,6 and 11 subgroup and 2) P2Y12,13, and 14 

subgroup. Subgroup 1 are coupled to Gq/11 to activate PLC and inositol triphosphate 

(IP3) endoplasmic reticulum Ca2+-release signalling pathways (reviewed in 

(Abbracchio, et al., 2009)). P2Y2 and P2Y4 may activate Gi, whilst P2Y11 has also 

been shown to couple to Gs. Subgroup 2 are coupled to Gi/o which inhibits adenylyl 

cyclase and modulates ion channels (reviewed in (Abbracchio, et al., 2009)).  P2Y 
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receptors are expressed on both neurones and glia, and in the hippocampus, P2Y1,2,4,6 

and 12 receptors are expressed. 

 

1.9.1.4. ATP and epilepsy 

Recent studies have highlighted a potential role of ATP in seizure activity in (Dale 

and Frenguelli, 2009; Kumaria, et al., 2008; Reid, et al., 2014). During seizures there 

is a shift towards an increase in the metabolic state of the brain that results in the 

consumption of great amounts of energy and a reduction in ATP levels. This altered 

state results in a temporary insufficient supply of energy in the brain, which induces 

status epilepticus and the dysregulation of brain function. Studies have shown that 

there is a reduction in ATP levels during intense neuronal activity that might 

contribute to epilepsy in both humans (Chu, et al., 1998) and in rats (Sanders, et al., 

1970). It has been proposed that anticonvulsive effect of the ketogenic diet might be 

mediated through its ability to enhance energy reserves and thus lead to the 

stabilisation of synaptic function, membrane potential and a reduction in seizure 

activity. One proposed mechanism of the ketogenic diet on the enhancement of 

energy reserves is the elevations in ATP levels in the brain that might enhance and or 

prolong the activity of the Na+/K+ ATPase pump. This is supported by evidence 

showing that adult rats fed a ketogenic diet for 3 weeks have higher brain 

concentrations of ATP (DeVivo, et al., 1978). 

Activation of ATP receptors may result in hyperactivity of neurons and thus, induce 

a positive feedback mechanism, progression of seizure activity and the prolongation 

of seizure duration (reviewed in (Puchałowicz, et al., 2014)). An increase in the 

expression of P2X7 receptors in hippocampal neurones (DG and CA1 cells), 

neocortex and microglia was found after epileptic seizures, as a result of activation of 
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microglial cells and as well as its increased sensitivity to ATP (reviewed in 

(Puchałowicz, et al., 2014)). In microglia, an increase in the expression of P2X4 

receptors was found after the occurrence of status epilepticus. In contrast, a decrease 

in the expression of the P2X2 receptors was found in mouse hippocampal neurones in 

a kainic acid model of epilepsy (reviewed in (Puchałowicz, et al., 2014)). There is 

evidence that gives support to the action of ATP at its P2 receptors in epilepsy 

although this is unclear. In particular, there is evidence for the role of the P2X7 

receptors in epileptogenesis in several animal models (reviewed in (Dale and 

Frenguelli, 2009; Kumaria, et al., 2008; Reid, et al., 2014)). However, one study 

showed a limited role of the ATP P2 receptors in modulating electrographic seizures 

induced by electrical stimulation (Lopatář, et al., 2011). Although this study saw a 

limited effect of ATP at the P2 receptors on seizure activity, the breakdown product 

of ATP adenosine was found to have pronounced inhibitory effects on seizure 

activity. 

 

1.9.2. Adenosine 

Adenosine is a signalling messenger molecule in the brain, where it is implicated in 

many normal and pathophysiological processes such as sleep and epilepsy (reviewed 

in (Masino, 2013)). Adenosine can act to either reduce the activity of excitable 

tissues or increase the delivery of metabolic substrates, thereby helping to couple the 

rate energy expenditure to the energy demand. Under normal conditions adenosine is 

continuously formed both intracellularly and extracellularly. Intracellularly 

production of adenosine can occur either as breakdown a product of ATP, or as a 

consequence of the hydrolysis of S-adenosylhomocysteine (SAH), which forms both 

homocysteine and adenosine. Extracellular adenosine can be formed from 
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ectonucleotidase-mediated hydrolysis of ATP and both neurones and glia can also 

directly release adenosine.  

 

1.9.2.1. Adenosine synthesis 

Adenosine is a neuromodulator that is involved in physiological and 

pathophysiological processes in the CNS and in peripheral organs such as the heart 

(reviewed in (Boison, 2006; Latini and Pedata, 2001; Masino, 2013)). The coupling 

of adenosine to its receptors activates various downstream signalling pathways, 

which is dependent on the receptor subtype activated which will be discussed in 

more detail in the sections below (reviewed in (Dunwiddie and Masino, 2001; 

Fredholm, et al., 2005; Masino and Boison, 2012; Masino, 2013)). Adenosine plays 

an important role in the fine-tuning of synaptic transmission. Adenosine influences 

synaptic transmission in a number of ways: presynaptic inhibition facilitated by the 

inhibitory adenosine A1 receptors or facilitation through its A2A receptors. Adenosine 

also acts postsynaptically to modulate the actions of neurotransmitters such as 

glutamate and GABA and it also directly influences the hyperpolarisation or 

depolarisation of neurones by modulating the actions of ion channels (reviewed in 

(Dunwiddie and Masino, 2001; Fredholm, et al., 2005; Masino and Boison, 2012; 

Masino, 2013)). 

As mentioned above, intracellular adenosine is formed in 2 ways: 1) 

dephosphorylation of AMP by 5’-nucleotidase or 2) hydrolysis of SAH by SAH 

hydrolase. 

1) In the cell, AMP is dephosphorylated by 5’-nucleotidase to make adenosine, 

which is the main route for making intracellular adenosine or deaminated to inosine 

monophosphate (IMP). Adenosine can either be further degraded to inosine by 
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adenosine deaminase or re-phosphorylated to AMP by adenosine kinase. Inosine 

cannot be re-phosphorylated to IMP, unlike adenosine due to the lack of a specific 

kinase (Mascia, et al., 2000). Therefore, inosine is either released or further broken 

down by purine nucleosidase phosphorylase to hypoxanthine and the sugar moiety 

ribose-1-phosphate (Rib-1-P). Hypoxanthine can be reconverted to IMP and 

subsequently to AMP via salvage pathway (to be discussed in more detail below). 

Hypoxanthine can be released or through the actions of xanthine oxidase can further 

degrade hypoxanthine and its breakdown product xanthine to uric acid and hydrogen 

peroxide. Xanthine and uric acid, unlike hypoxanthine cannot be reconverted to 

purine nucleotides and are therefore, lost from the purine nucleotide pool.  

2) In addition to the formation of adenosine from the catabolism of AMP, adenosine 

can be made as a product of the transmethylation pathway (Fig 1.5.). In the 

methyltransemethylation and transsulfuration pathways, S-adenosylmethionine 

(SAM) is converted to S-adenosylhomocysteine (SAH) by the actions of the 

methyltransferases (Cantoni, et al., 1989; Lloyd, et al., 1988; Lu, 2000; Mandaviya, 

et al., 2014; Mudd, et al., 2007). S-adenosylmethionine (SAM) acts as an important 

methly donor for many reactions. SAM is used by DNA methytransferase enzymes 

to transfer methyl groups to DNA and S-adenosylhomocysteine (SAH) is made as a 

by-product. SAH can be further hydrolysed to homocysteine and adenosine by SAH 

hydrolase. Homocysteine (HCY) can either be converted back to SAM where folate-

vitamin B12-independent (betaine-homocysteine methyltransferase) and folate-

vitamin B12-dependent (methionine synthase) first convert HCY to methionine 

(Mandaviya, et al., 2014). Methionine is then converted to SAM by the actions of 

methionine adenosyltransferase (MAT), which helps to fuse methionine and ATP to 

make SAM. HCY can also be used in the transsulfuration pathway to make 
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glutathione that is used to remove toxins from the body (Cantoni, et al., 1989; Lloyd, 

et al., 1988; Lu, 2000; Mandaviya, et al., 2014; Mudd, et al., 2007). 

 

 

 

 

 

 

1.9.2.1.1. The purine salvage pathway 

The purine salvage pathway (Fig 1.6.) is a pathway in which pre-formed purine bases 

can be returned to the nucleotide pool and is the predominant route in the brain 

(Allsop and Watts, 1980; Barsotti and Ipata, 2002; Gerlach, et al., 1971; Mascia, et 

Figure 1.5. Transmethylation and transsulfuration pathways in the brain. S-
adenosylmethionine: (SAM) is converted to S-adenosylhomocysteine (SAH) by 
the actions of methyltransferases. SAH is further broken down to adenosine and 
homocysteine through the actions of SAH hydrolase. Adenosine can be further 
recycled to make ATP in a multi-step process through the action of the enzymes 
adenosine kinase and adenylate kinase. Homocysteine can either be converted 
back to methionine by the actions of methionine synthase and betaine-
homocysteine methyltransferase. Methionine and adenosine triphosphate (ATP) 
is then further converted to SAM by the actions of methionine 
adenosyltransferase. Homocysteine can also be used to make glutathione via the 
transsulfuration pathway in a 2-step process, where by it is converted to 
cystathionine by cystathionine β-synthase, which is further converted to 
glutathione by the actions of glutathione S-transferase. Adapted from (Lu, 2000; 
Mandaviya, et al., 2014). 
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al., 2000) and heart (Pauly, et al., 2003; Zimmer, 1998) for the restoration and 

maintenance of adenine nucleotides.  

The enzymes hypoxanthine guanine phosphoribosytransferase (HGPRT, EC2.4.2.8) 

and adenine phosphoribosyltransferase (APRT, EC2.4.2.7) catalyzes the transfer of 

the ribose phosphate from PRPP (5-phosphoribosyl-1-pyrophosphate) to free purine 

bases. PRPP is formed through the actions of PRPP synthetase, which activates 

carbon 1 of ribose-5-phosphate (Rib-5-P) by transferring it to the pyrophate moiety 

of ATP and Rib-5-P is an intermediate of the pentose phosphate pathway. HGPRT is 

found in all tissues and is highly expressed in the brain (Allsop and Watts, 1980; 

Murray, 1971) where it catalyses the transfer of the Rib-5-P from PRPP to the purine 

guanine or hypoxanthine producing pyrophosphate (PPi), guanosine monophosphate 

(GMP) or IMP respectively (Murray, 1971). Similar to HGPRT, APRT is also 

expressed in the brain (Allsop and Watts, 1980), where it catalyses the PRPP-

dependent phosphoribosylation of the purine base adenine to AMP and PPi. 

 

 

 

 

 

 

 

Fig 1.6. Purine salvage pathways. PRPP (5-phosphoribosyl-1-pyrophosphate) is 
converted to a nucleotide (AMP and GMP) by the addition of a nucleobase 
(adenine, guanine and hypoxanthine (HX)) through the actions of the 
phosphoribosyl transferases hypoxanthine guanine phosphoribosytransferase 
(HGPRT, EC2.4.2.8) and adenine phosphoribosyltransferase (APRT, EC2.4.2.7). 
IMP- inosime monophosphate; AS- adenylosuccinate; XMP xanthylate. 
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1.9.2.1. Adenosine release 

The regulation of intracellular adenosine concentrations greatly influences the 

extracellular adenosine concentrations. Tight regulation between intracellular and 

extracellular concentrations of adenosine are maintained in two ways: i) the transport 

of adenosine in and out of the cell via equilibrative nucleoside transporters (ENTs), 

and ii) adenosine kinase which maintains adenosine concentrations in such a way as 

to drive extracellular adenosine inward. 

Extracellular adenosine concentration occurs as a result of direct transport out of the 

cell by transport proteins (Cunha, et al., 1996; Gu, et al., 1995; Jonzon and 

Fredholm, 1985; Lovatt, et al., 2012; Wall and Dale, 2013; White and MacDonald, 

1990) or as a result of ATP exocytosis (Klyuch, et al., 2012; Wall and Dale, 2013). 

Adenosine formed intracellularly is transported into the extracellular space mainly by 

specific bi-directional transporters through facilitated diffusion that maintains 

homeostatic control between intracellular and extracellular concentrations of 

adenosine (Cunha, et al., 1996; Gu, et al., 1995; Jonzon and Fredholm, 1985; Lovatt, 

et al., 2012; Wall and Dale, 2013; White and MacDonald, 1990). Nucleoside 

transporters are located on both neurones and astrocytes. These comprise 

equilibrative nucleoside transporters (ENTs; composed of 4 isoforms ENT1-4), as 

well as concentrative nucleoside transporters (CNTs; composed of 3 isoforms CNT1-

3) which are transport proteins capable of maintaining high adenosine concentrations 

against a concentration gradient. ENTs are Na+ independent diffusion-limited 

channels, whereas CNTs are Na+-dependent transporters (Isakovic, et al., 2008). The 

ENT1 is widely distributed in the brain where the expression of ENT1 mRNA 

expression correlates with the distribution of adenosine A1 receptors (Anderson, et 

al., 1999). 
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Extracellular adenosine can arise from rapid extracellular metabolism of ATP (Wall 

and Dale, 2013). Extracellular ATP and its nucleotides undergo rapid degradation by 

ectonucleotidases to provide a readily available pool of adenosine. Ectonucleotidases 

such as ectonucleoside triphosphate diphosphohydrolases (E-NTPDases), 

ectonucleotide pyrophosphatase and / or phosphodiesterase (E-NPPs) are expressed 

in the brain (Belcher, et al., 2006; Bjelobaba, et al., 2006; Bjelobaba, et al., 2007; 

Cognato, et al., 2008; Langer, et al., 2008; Shukla, et al., 2005; Stefan, et al., 2005). 

In the extracellular space E-NTPDases and E-NPPs hydrolyses ATP and ADP to 

AMP (Kukulski and Komoszyński, 2003). AMP is further hydrolysed to adenosine 

by ecto-5’-nucleotidase. Once formed in the extracellular space adenosine can exert 

its downstream effects by activating its receptors. When extracellular adenosine 

levels are high it can be transported into the cell by means of transporters. Once 

inside the cell it can be phosphorylated to AMP by adenosine kinase or degraded to 

inosine, thereby maintaining an inward gradient for adenosine (Boison, 2006). 

 

1.9.2.2. Adenosine receptors 

Adenosine receptors are highly conserved between species and all known four 

receptor subtypes have been cloned from rodents and humans (reviewed in 

(Fredholm, et al., 2001a)). The adenosine receptors belong to the G protein-coupled 

family of receptors (class A). Currently only four types of adenosine receptor have 

been characterised: adenosine A1 receptors (A1R), A3 receptors (A3R) A2A and A2B 

(A2AR and A2BR respectively). Inosine has been shown to be a partial agonist at A1 

and A3Rs (Fredholm, et al., 2011).  
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1.9.2.2.1. A1 

Adenosine A1Rs are highly expressed in brain regions such as the hippocampus and 

cortex where they couple to G-protein coupled Gαi1/2/3 and Gαo leading to a decrease 

in cyclic adenosine 5’-monophosphate (cAMP), increase in PLC, and arachidonate 

activity. Activation of presynaptic A1Rs prevents the release of glutamate via 

presynaptic inhibition of Ca2+ channels and direct interference with the vesicle 

release machinery. Postsynaptically, activation of these receptors leads to activation 

of K+ channels coupled with hyperpolarisation. The pre-and post-synaptic actions of 

adenosine at these receptors will act to reduce the effect of the excitatory glutamate 

receptor activity coupled with a reduction in Ca2+ influx and depolarisation (Cunha, 

2001; de Mendonça, et al., 1995; Ribeiro, et al., 2003; Ribeiro, et al., 2002), which 

would further help to reduce the excitotoxic damage caused by Ca2+ influx and the 

energy demand of cells, thereby helping to preserve ATP levels (Dunwiddie and 

Masino, 2001). Overall, activation of the adenosine A1R is associated with the 

inhibition of the release of many neurotransmitters where the most prominent 

inhibitory actions are generally on excitatory glutamatergic systems and adenosine 

A1R-mediated inhibition of the glutamatergic system has been associated with 

anticonvulsant effects (Dunwiddie and Masino, 2001; Masino and Boison, 2012; 

Masino, et al., 2009; Masino, 2013). Studies have shown that A1R agonist have 

potent anticonvulsant effects (De Sarro, et al., 1999; Gouder, et al., 2003) where 

activation of these receptor subtypes lead to a suppression in seizure activity in a 

mouse model of drug-resistant epilepsy (Gouder, et al., 2003). 
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1.9.2.2.2. A2A and A2B 

The A2A differs to the A2B receptors in that it has a larger COOH end terminal 

domain. A2ARs are expressed in high levels in GABAergic neurones and the 

olfactory bulb but have low level of expression in other brain regions. A2ARs couple 

to G-protein coupled Gαo and Gαs. Activation of these receptor subtypes and the 

coupling to its GPCR results in an increase in the production of cyclic AMP (cAMP), 

which is synthesised from ATP by adenylyl cyclase (Dunwiddie and Masino, 2013; 

Fredholm, et al., 2001b; Masino and Boison, 2012; Schulte and Fredholm, 2000). In 

addition A2ARs also couple to Gαolf and Gα15/16, which is associated with increased 

IP3. Activation of these receptor subtypes and the coupling to its GPCR results in the 

enhancement of PLC activity, which in turns catalyses phosphatidylinositol 4,5-

bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). 

DAG and IP3 further directly influences phosphokinase C (PKC) and intracellular 

Ca2+ levels respectively (Dunwiddie and Masino, 2013; Fredholm, et al., 2001b; 

Masino and Boison, 2012; Schulte and Fredholm, 2000). The A2BRs are highly 

distributed in the large intestine and bladder, with low levels of expression in the 

brain where they couple to Gαs and (increased cAMP) and Gαq/11(increased PLC). 

The activation of the A2 receptors in particular the A2ARs, is generally associated 

with an enhanced release of several neurotransmitters such as glutamate and 

acetylcholine, in contrast GABA release can either be enhanced or inhibited by A2AR 

activation (Sebastião and Ribeiro, 1996). A2ARs modulate many excitatory effects. 

The activation of these receptor subtypes by its agonist CGS 21680 can also lead to 

the enhancement of synaptic transmission in the CA1 region of the hippocampus 

(Sebastião and Ribeiro, 1992). The effects of the A2AR on epilepsy are controversial 

where both anticonvulsant (De Sarro, et al., 1999; Zhang, et al., 1994) and 
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proconvulsant (Morgan and Durcan, 1990) effects have been reported. In addition 

the A2AR antagonist ZM 241385 was found to shorten the duration of epileptiform 

activity in rat hippocampal slices (Etherington and Frenguelli, 2004). This evidence 

suggests that the A2AR effects on seizure activity might be region specific.  

 

1.9.2.2.3. A3R 

A3Rs are mainly expressed in the cerebellum and hippocampus, with low levels of 

expression in most other brain regions. A3Rs couple to G-protein G αi2,3 where it 

leads to decreased cAMP levels, and couples to the Gαq/11 where it leads to increased 

PLC. Because A3Rs and A1Rs both couple to Gαi G-proteins, they are believed to 

mediate similar responses such as a reduction in transmitter release by blocking 

transient Ca2+ channels, hyperpolarise neurones by increasing K+ conductance and 

lower cAMP levels (Fredholm, 2011a). 

 

1.9.2.3. Adenosine and epilepsy 

Adenosine was initially observed as a naturally occurring anticonvulsant in 1984 

(Barraco, et al., 1984), in which it was found that the anticonvulsant properties were 

mediated by the adenosine A1Rs. The A1Rs function by inhibiting excessive neuronal 

activity in the epileptic brain. The importance of these receptors types is also 

supported with genetic mouse models where A1Rs knockout (A1Rs KO) mice 

showed an increased susceptibility to developing seizures and developed lethal status 

epilepticus (SE) after experimentally-induced brain injury (Kochanek, et al., 2006). 

These data provide strong evidence for the adenosine A1Rs as potential therapeutic 

targets for the treatment of epilepsy. 
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In addition to the anticonvulsant properties of adenosine, dysfunction in the 

regulation of adenosine has been implicated in the pathophysiological processes of 

epilepsy (Dale and Frenguelli, 2009; Dunwiddie, 1999; Świąder, et al., 2014). Any 

type of injury or stress leads to an acute surge of micromolar levels of adenosine that 

is beyond normal levels (Adén, et al., 2004; During and Spencer, 1992; Lopatář, et 

al., 2011). This acute surge in adenosine is a consequence of increased ATP 

degradation and decreased adenosine clearance (Gouder, 2004; Pignataro, et al., 

2008). These high levels of adenosine can then lead to several downstream effects 

that lead to epileptogenesis such as astrogliosis (Boison, 2010). An increase in A2AR 

expression and a decrease in A1R expression on astrocytes influences astrocyte 

proliferation and may contribute to the development of astrogliosis (Brambilla, et al., 

2003; Hindley, et al., 1994; Rathbone, et al., 1991). In animal models of epilepsy the 

presence of astrogliosis was associated with increased levels of adenosine kinase and 

the presence of spontaneous seizures (reviewed in (Boison, 2013)).  

Astrocytes play an important role in the regulation of extracellular adenosine and 

ATP. ATP and adenosine is involved in the regulation and coordination of synaptic 

strength and synaptic networks and any dysfunction in this pathway can have major 

impact on the system. Astrogliosis also has been linked to adenosine kinase (ADK) 

levels and ADKs regulation of extracellular adenosine concentrations (Aronica, et 

al., 2011; Boison, 2010; Boison, 2013; Boison, et al., 2010; Li, et al., 2008). Because 

of the major role astrocytes and adenosine kinase play in not only the removal of 

adenosine from extracellular space but also the modulation of the levels of ATP and 

its nucleotides they may serve as possible targets in the treatment of epilepsy. 

Indeed, research has shown that in rat hippocampal slices a reduction of basal 

adenosine tone by overexpressing ADK leads to the development of seizures 
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(reviewed in (Boison, 2013)). In the CA1 region of the hippocampus ADK was 

found not to limit the activity-dependent release of adenosine (Etherington, et al., 

2009). In addition studies with genetic mice shows that in the hippocampus ADK is 

an important upstream regulator of adenosine-based homeostatic function of the 

brain where it exerts control of both the strength and dynamic range of synapses 

(Diógenes, et al., 2014).  

Given that ATP is the primary source of both intracellular and extracellular 

adenosine, it can be postulated that any change in the ATP pool is likely to influence 

adenosine production and release. In support of this, experiments have shown that 

not only can adenosine be released under conditions where ATP levels are preserved 

by pre-treating slices with creatine (Doolette, 1997), incubating slices with 

compounds that help to boost ATP levels also result in greater adenosine release (zur 

Nedden, et al., 2014; zur Nedden, et al., 2011).  

 

1.10. Creatine 
Creatine, also known as N-aminoiminomethyl-N-methylglycine, is a guanidine 

compound first extracted from meat by Michel Eugene Chevreul in 1832 (reviewed 

by (Salomons and Wyss, 2007)). In humans, the creatine pool is maintained by 

nutritional intake and endogenous synthesis. Foods such as fresh red meat and fish 

are high in creatine, at concentrations ranging from 3-10g per kg wet weight 

(reviewed in (Salomons and Wyss, 2007)). Creatine is absorbed from the small 

intestines where it enters the portal circulation and gets transported to the liver. The 

ingested creatine and the creatine made in the liver, is then transported into the 

systemic circulation and distributed around the body, by crossing the cell membrane 

via a specific creatine transport system against a large concentration gradient 
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(Wallimann, et al., 2007; Wallimann, et al., 2011). The creatine transporter is a 

member of the Na+-dependent neurotransmitter family comprising of 12 membrane-

spanning domains and cDNA clone from human brain places it at ≈ 70.5 kDa in size 

(Sora, et al., 1994). Creatine is transported with at least 2 Na+ and 1 Cl-. Creatine 

transport is driven by the Na+ gradient established by the Na+/K+-ATPase (Dai, et al., 

1999) and can be enhanced by hormones such as insulin that activate the Na+/K+-

ATPase, which increases the driving force for creatine uptake. An inverse 

relationship exists between intracellular creatine concentrations and creatine uptake 

(Dodd, et al., 1999) and an elevation in the extracellular concentration results in an 

initial increase intracellularly followed by a down regulation. The regulation of 

creatine transport across the membrane can occur acutely or chronically (reviewed in 

(Brosnan and Brosnan, 2007)). Acute transport is regulated by changes in creatine 

concentration, in the Na+ gradient or changes in the insertion of the transporter into 

the plasma membrane. Chronic transport is regulated by changes in the level of gene 

expression, translation or post-translational modifications. On such example is the 

effect of increased intracellular concentration of creatine on the expression of AMP-

activated protein kinase, which would initiate a signalling pathway leading to 

changes in gene expression (reviewed in (Brosnan and Brosnan, 2007)).  

Specific creatine transporters are required for the uptake of creatine into muscle and 

brain (Fitch, et al., 1968; Rebaudo, et al., 2000). Oral supplementation of creatine to 

healthy patients showed a dose-dependent increase in blood plasma levels (Harris, et 

al., 1992). In the brain, it is believed that creatine supply from the circulating blood 

is limited due to the presence of the blood-brain barrier (BBB), since continuous oral 

administration of creatine for weeks is needed to raise brain creatine levels (Dechent, 

et al., 1999; Lyoo, et al., 2003). One study suggests that brain creatine transporters 
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play a dual role of 1) uptake of circulating creatine across the BBB and 2) the 

neuronal uptake of creatine that is synthesized in glia (Lunardi, et al., 2006). In 

contrast, one study suggests that there is little evidence of mRNA for creatine 

transporters in astrocytes, which are associated with the BBB, and further suggests 

that the brain receives the bulk of its creatine via endogenous synthesis found in 

every cell in the CNS that is capable of creatine synthesis (Braissant, et al., 2001). 

In mammals creatine can be synthesized in tissues such as skeletal and cardiac 

muscle, spermatozoa, brain, and retina from amino acids arginine, glycine and 

methionine (Andres, et al., 2008). There are two steps in the biosynthesis of creatine 

in mammals (Figue 1.7): 1) the formation of guanidinoacetate (GAA) from arginine 

and glycine catalysed by L-arginine- glycine aminotransferase (AGAT; EC2.1.4.1); 

2) methylation of the GAA to form creatine by the enzymatic action of 

guanidinoacetate-methyltransferase (GAMT; EC2.1.1.2). 

 

 

Both AGAT and GAMT are found in neuronal subpopulations, astrocytes and 

oligodendrocytes (Rae and Bröer, 2015). Following absorption, creatine can be 

excreted as creatinine in the urine. Creatinine is mainly excreted in urine and its daily 

excretion is directly proportional to total body creatine where it is estimated in 

muscle mass it is (20–25 mg/kg/24 h) in children and adults and found in lower mass 

in infants younger than 2 years (Fernandes, 2006). 

Figure 1.7. Biosynthesis of creatine. L-arginine-glycine aminotransferase 
(AGAT; EC2.1.4.1 catalyses the amidino group transfer from L-arginine to 
glycine to form guanidinoacetate and ornithine. Methyl group transfer from S-
adenosyly-L-methionine (SAM) to guanidinoacetate to form creatine and S-
adenosyl-L-homocysteine (SAH). 
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Creatine can be released in an action potential-dependent manner whereby 

electrically evoked release of labelled creatine and unlabelled creatine was abolished 

when Ca2+ was omitted from the medium in the presence of inhibition of the Na+ 

channel. Similarly, inhibition of the K+ channel with 4-AP enhanced electrically 

evoked release of labelled and unlabelled creatine (Almeida, et al., 2006). The 

authors also suggest that this may possibly modulate the function of postsynaptic 

receptors for neurotransmitters such as GABA.  

1.10.1. Creatine kinase (CK) 

CK catalyzes the reversible transfer of the N-phosphoryl group from phosphocreatine 

(PCr) to ADP to generate ATP and stabilizes cellular ATP at approximately 3-6 mM 

depending on the cell type (Saks and Venturaclapier, 1994; Saks, et al., 1996). In 

hippocampal slices, incubation with creatine has been found to increase creatine 

levels without increasing ATP (Lipton and Whittingham, 1982; Okada and Yoneda, 

1983; zur Nedden, et al., 2014). Alternatively CK can capture immediately available 

cellular energy by creating an ATP pool, whereby ATP levels are maintained at the 

expense of PCr (Doolette, 1997). As a result of this during periods of high energy 

demand such as those seen during ischemia, pre-treatment of brain tissue with 

creatine acts to delay the degradation of ATP to its metabolites (Balestrino, et al., 

2002; Balestrino M, 1999; zur Nedden, et al., 2014). 

In mammals and birds there are three isoforms (isoenzymes) of CK expressed in 

species-specific, developmental stage-specific and tissue-specific manners. These 

consist of: (1) CK-M the skeletal muscle isoform (most of PCr is found here); (2) 

CK-B the brain isoform; and (3) CK-MB the cardiac muscle isoform (reviewed in 

(Andres, et al., 2008; Wallimann, et al., 2011; Wyss and Kaddurah-Daouk, 2000). 

CK is expressed in all brain cells but is highly expressed and localised in Bergman 
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glia and Purkinje cells in the cerebellum, neuronal cells in the hippocampus and 

epithelial cells in the choroid plexus (Kaldis, et al., 1996; Wallimann and Hemmer, 

1994; Wallimann, et al., 2011).  

The interplay between cytosolic and mitochondrial CK isoenzymes accomplishes 

multiple roles in cellular energy homeostasis. Both isoenzymes contribute to the 

build-up of a large intracellular pool of PCr that represents an efficient temporal 

energy buffer and prevents a rapid fall in global ATP concentrations upon cell 

activation or sudden stress conditions (Andres, et al., 2008; Wallimann, et al., 2011). 

1.10.2. The CK/PCr system for temporal and spatial energy 

buffering 

The Cr/PCr shuttle provides an attractive means of buffering the ATP/ADP ratio. 

Creatine is taken up into the cell via creatine transporters and transformed into PCr 

by either mitochondrial CK coupled to oxidative phosphorylation or by cytosolic CK 

coupled to glycolysis (Andres, et al., 2008; Wallimann, et al., 2011). The cytosolic 

CK transphosphorylates glycolytically generated ATP into PCr that is susequently 

fed into the PCr pool, after which PCr is used to buffer cytosolic ATP/ADP ratios for 

local ATP consumption. During high workload such as that seen during epileptic 

seizures, high-phosphocreatine is shuttled from the mitochondria to sites of energy 

consumption associated with ATP-consuming processes (Andres, et al., 2008; 

Wallimann, et al., 2011). Creatine is then used by ATPases to regenerate ATP 

locally in situ to fuel these ATP-requiring processes and to keep local ATP/ADP 

ratios very high. Creatine would then diffuse back into the mitochondria to be 

recharged again by mitochondrial CK. Mitochondrial CK is located in the 

intermembrane space of mitochondria and transphosphorylates mitochondrially 
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generated ATP into PCr, which then leaves the mitochondria via a mitochondrial 

creatine transporter. 

1.10.3. Creatine-associated diseases 

New creatine-deficiency syndromes have been recently discovered in humans that 

affect either endogenous creatine synthesis or creatine transport. Patients with these 

syndromes have been shown to have an almost complete lack of creatine in the brain 

and present with severe neurological symptoms such as developmental delay, 

epileptic seizures, autism and severe mental retardation (Stockler, et al., 2008). 

Creatine depletion in brain is associated with disruption of neuronal functions and 

changes in mitochondrial structure (Andres, et al., 2008; Wallimann, et al., 2011). 

In vitro studies using rat hippocampal slices showed that there was an increase in the 

creatine levels in cells as a consequence of the long-term effects of pilocarpine-

induced seizures after repeatedly induced seizures (Dulinska, et al., 2012; 

Kutorasinska, et al., 2013). These data provide evidence for an increase in creatine to 

meet energy demands by replenishing ATP from PCr during seizure activity. In 

addition it should be noted that these studies do not rule out that the increase in 

creatine deposits could be a consequence of seizure-induced change in CK enzymatic 

activity. Thus, the increase in creatine deposits may also reflect the role of creatine in 

the pathological process of epilepsy. 

Given creatine’s ability to buffer ATP levels and delay its degradation to its 

metabolites, in this thesis experiments with creatine will be used for comparative 

purposes with the main focus being on D-ribose and adenine supplementation. 
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1.11. Ribose/Adenine and the salvage pathway 
1.11.1. Ribose 

Ribose is the pentose sugar backbone of ATP. Ribose is able to bypass rate-limiting 

steps of the oxidative pentose phosphate pathway that generates ATP (Zimmer and 

Gerlach, 1978). The pentose phosphate pathway has both oxidative and non-

oxidative branches. The oxidative pentose pathway branch, glucose 6- phosphate (G-

6-P) derived from either glycolysis or gluconeogenesis is converted to ribulose 5-

phosphate (Ru-5-P) in 3 reactions. G-6-P conversion to Ru-5-P is catalysed by G-6-P 

dehydrogenase the first and rate limiting enzyme, producing 2 molecules of NADPH. 

NADPH is used for the synthesis of free fatty acids and for the conversion of 

oxidised to reduced glutathione. 

  

Ribose is transformed into one of its phosphorylated derivatives such as ribose-5-P 

(Rib-5-P) part of the pentose phosphate pathway in order to be incorporated into 

purine nucleotides without cleavage of its ribofuranosidic ring (Fig 1.8.). Ribose 

phosphate synthesis occurs through two main pathways 1) through the oxidative 

branch of the pentose phosphate pathway, 2) through the phosphorylitic cleavage of 

the N-glycosidic bond of ribonucleosides. Rib-5-P and ribose-1-phosphate (Rib-1-P) 

are the two major pentose phosphates that can be readily interconverted by 

phosphopentomutase (Camici, et al., 2006; Zimmer, 1996). Pentose phosphates can 

be used as energy source in their own right in both bacteria and eukaryotes. Rib-5-P 

is the core structure of ribonuceotides and is mainly synthesised from either glucose-

6-phosphate in the oxidative branch of the pentose phosphate pathway or via 

ribokinase-mediated phosphorylation of free ribose. When used as a source of 

energy, Rib-5-P through the non-oxidative branch of the pentose phosphate pathway 
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can be converted to glycolytic intermediates to be used in the glycolytic pathway. 

Purine nucleoside phosphorylase and uridine phosphorylase are examples of 

nucleoside phosphorylases that are involved in the synthesis of Rib-1-P. Rib-1-P can 

be further recycled for nucleoside interconversion via its conversion to Rib-5-P and 

the pentose phosphate pathway (Camici, et al., 2006; Zimmer, 1996).  

 

In the brain adenine salvage via ribose is a PRPP synthase dependent process 

(Mascia, et al., 2000). This process starts by the phosphorylation of ribose by 

ribokinase to produce the ribose phosphate Rib-5-P via the recruitment of deoxy 

ATP, in a reversible reaction phosphorylation of ATP by PRPP synthase leads to 

production of PRPP. PRPP plays an integral part in both de novo and salvage 

synthesis of nucleotides (Camici, et al., 2006). An increase in PRPP is believed to be 

involved in ribose-enhanced synthesis of ATP (Barsotti and Ipata, 2002) and this 

balance between PRPP and ATP is what is believed to play a major part in 

modulating adenine salvage in the rat brain (Barsotti and Ipata, 2002). 
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Figure 1.8. Schematic representation of the pentose phosphate pathway and 
its connection to glycolysis and purine synthesis. Glucose-6-phosphate is 
converted to ribulose-5-phosphate by glucose-6-phosphate dehydrogenase, 
gluconolactone and 6-phosphogluconate dehydrogenase in the oxidative branch 
producing NADPH. In the non-oxidative branch ribulose-5-phosphate is 
converted to ribose-5-phosphate and xylulose-5-phosphate by ribulose-5-
phospahte isomerase and ribuloase-5-phopshate epimerase, respectively. These 
two pentose sugars are further reconverted to the glycolytic intermediates 
fructose-6-phosphate and glycerinaldehyde-3-phosphate via two reactions 
catalyses by transketolase and transaldolase Ribose-5-phosphate can also be 
synthesised by phosphorylation of ribose by ribokinase. It is then anabolized to 
PRPP (5-phosphoribosyl-1-pyrophosphate) by PRPP synthase, or interconverted 
with Rib-1-phosphate by phosphopentomutase. PRPP is subsequently used for 
purine salvage as an activated sugar donor. Adapted from (Camici, et al., 2006; 
Zimmer, 1996; Zimmer, 1998)  
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1.11.2. Adenine 

The nucleobase adenine is an important core component of ATP and is derived from 

the cleavage of methylthioadenosine a byproduct of polyamine synthesis by 

methylthioadenosine phosphorylase, to adenine and methylthioribose-1-phosphate 

(Della Ragione, et al., 1986; Ipata, et al., 2011). De novo synthesis of adenine occurs 

as a by-product of intracellular polyamide synthesis (Kamatani and Carson, 1981). In 

order to exert its actions at its receptors, adenine must be transported from the 

cytosol to the extracelluar space (reviewed in (Thimm, et al., 2015)). Plasma 

concentrations of adenine found in humans range in the nano molar range (31-700 

nM) (Marlewski, et al., 2000; Slominska, et al., 2002). Adenine is mainly 

metabolised by cytosolic APRT to generate nucleotides via the purine salvage 

pathway (section 1.8.2.1.1.) (Kamatani and Carson, 1981; Murray, 1971). Adenine is 

more extensively retained in body tissues than orally administered guanine, 

hypoxanthine and xanthine. When adenine concentrations are high adenine can be 

partly excreted from the kidneys without being metabolised (Bartlett, 1977). If 

metabolised, adenine can be metabolised to 2,8-dihydroxyadenine (DHA) by 

xanthine oxidase, which can precipitate in the kidney and cause damage (reviewed in 

(Claramunt, et al., 2015)).  

Adenine receptors (AdeRs) were originally identified in rat (Bender, et al., 2002), 

since then two adenine receptors have been characterised in mice mAde1R and 

mAde2R and one receptor in the Chinese hamster cAdeR (Thimm, et al., 2013; von 

Kügelgen, et al., 2008). Although only two AdeR have been characterised, 

pharmacological data indicate that other receptor types might exist in humans and 

pigs (Borrmann, et al., 2009; Wengert, et al., 2007). Adenine receptors have been 

classified as P0 receptors and are part of the GPCR super family (class A), and all 
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known adenine receptors have been found to be Gi coupled (reviewed in (Thimm, et 

al., 2015). Adenine receptors are highly expressed in the nervous system and in the 

rat moderate to high expression has been found in the heart testes, kidney and spleen 

(Bender, et al., 2002; von Kügelgen, et al., 2008; Watanabe, et al., 2005). 

AdeRs have been shown to be involved in the normal physiological and 

pathophysiological function of the kidney where they have been shown to inhibit 

Na+/K+-ATPase activity in functional experiments using isolated pig proximal tubule 

(Wengert, et al., 2007).  

 

1.11.3. Ribose/Adenine as a possible therapeutic treatment 

of epilepsy 

Therapeutic use of ribose has been studied extensively in the cardiac system 

(Brookman and St Cyr, 2010; Omran, et al., 2003; Pauly, et al., 2003; Pauly and 

Pepine, 2000; Perkowski, et al., 2011; Pliml, et al., 1992). Ribose has also been used 

as a metabolic supplement where administration of oral D-ribose in patients with 

severe coronary artery disease improved tolerance to temporary ischaemia induced 

by exercise tests (Pliml, et al., 1992). Additionally, studies have shown that ATP 

repletion during recovery from reversible ischaemia is enhanced if nucleobases such 

as adenine are co-administered with ribose (Zimmer, 1996; Zimmer, 1998). In 

human adenylosuccinase deficiency, an autosomal recessive disorder is associated 

with psychomotor retardation, epilepsy and in some cases autistic features (Stone, et 

al., 1992; Verginelli, et al., 1998). Administration of ribose led to a reduction in 

seizure frequency (Salerno, et al., 1999). However, the effect of ribose as a treatment 

of epilepsy was not supported by studies conducted by (Jurecka, et al., 2008) where 
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ribose treatment was not found to be effective in the treatment of epilepsy. Given the 

conflicting results further work is needed to clarify the effects of ribose as a 

treatment for epilepsy. 

Adenine has also been administered in humans. However, because adenine can be 

metabolised by xanthine oxidase (Bendich, et al., 1950), and the by-product DHA 

can then lead to the development of kidney stones (Van Acker, et al., 1977), adenine 

is given with the xanthine oxidase inhibitor allopurinol (Edvardsson, et al., 1993; 

Greenwood, et al., 1982; Simmonds, 1986) to prevent the formation of kidney 

stones. Adenine and allopurinol have been given for the treatment of metabolic 

disorders (Balasubramaniam, et al., 2014; Jinnah, et al., 2013). Although adenine has 

yet to be found to provide any beneficial effects in the treatment of metabolic 

disorders, other than a noted acceleration in growth in a patient with 

adenylosuccinate lyase deficiency, no adverse effects are yet to be reported. The use 

of ribose/adenine as a treatment for epilepsy needs to further investigated and will be 

the main focus of this thesis.  

Previous studies from our laboratory have shown that a loss of ATP precursors is 

responsible for the decreased ATP content of brain slices. By supplementing the 

artificial cerebrospinal fluid (aCSF) with a combination of (1 mM) D-ribose and (50 

µM) adenine (RibAde), the recovery of tissue ATP levels can be improved. This 

improvement of ATP levels also resulted in an increased activity-dependent release 

of adenosine and, via activation of adenosine A1Rs, the threshold for the induction of 

long-term potentiation was raised (zur Nedden, et al., 2011). We have also shown 

that it is possible to modulate the decline and recovery of the intracellular ATP 

associated with metabolic stress by increasing the pre-oxygen glucose deprivation 

(pre-OGD) tissue ATP levels with RibAde or by buffering ATP metabolism with 
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creatine. Creatine treatment was found to delay the degradation of ATP, sustained 

energy charge during OGD, maintained post-OGD ATP levels and resulted in a 

nearly complete recovery of synaptic transmission after OGD, which might be 

associated to the reduction in adenosine release found in creatine-treated slices (zur 

Nedden, et al., 2014). We also showed that in contrast, RibAde treatment resulted in 

increased tissue ATP levels under basal conditions and after OGD, increased 

adenosine release and improved cell viability even when administered in the post-

OGD period (zur Nedden, et al., 2014).  

Ribose/Adenine salvage (Fig 1.9.) may be an effective strategy for the improvement 

of cell survival and function and may have therapeutic implication in the treatment of 

epilepsy. 
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Fig 1.9. Schematic representation of ribose and adenine salvage for the 
synthesis of purine nucleotides and its connection to the ATP degradation 
pathway. Exogenously applied ribose and adenine (RibAde) helps to restore the 
ATP pool in the brain. The purine-salvage pathway re-uses hypoxanthine and 
adenine to restore purine nucleotides. Exogenous application of creatine helps to 
delay the breakdown of ATP via the actions of creatine kinase. ATP- adenosine 
triphosphate; ADP- adenosine diphosphate; AMP- adenosine monophosphate; 
IMP- inosine monophosphate; PRPP- 5-phosphoribosyl-1-pyrophosphate; HPRT- 
Hypoxanthine-guanine phosphoribosyltransferase; APRT- Adenine 
phosphoribosyltransferasess. 
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1.11. Aims 

In this thesis I test the influence of modulation of intracellular ATP on adenosine 

release during seizure activity 

Firstly, I test the hypothesis that pre-incubating rat hippocampal slices with RibAde 

and creatine influences intracellular adenosine levels and thus the activity-dependent 

release of adenosine. Additionally, I investigate the effect of these compounds on 

seizure activity.  I also measure the release of adenosine during seizure activity using 

enzyme-based microelectrode biosensors and test if this release of adenosine acts via 

the A1Rs to modulate seizure activity. 

Two models of seizure activity were utilised: 1) Mg2+-free aCSF with increased K+ 

concentrations (6 mM and 9 mM); and 2) Mg2+-free aCSF with 4-aminopyridine (50 

µM; 4-AP). 

 

 
 

 

 

 

 

 

 

 

 

 



2. Materials and Methods 
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2.1. Drugs and Chemicals 
Creatine, D-ribose, adenine, 8-cyclopentyltheophylline (CPT), 4-aminopyridine (4-

AP), hydroxytryptamine hydrochloride (5-HT), 

7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-

c]pyrimidine (SCH 58261)  and L-homocysteine thiolactone hydrochloride (HTL) 

were purchased from Sigma Aldrich. CPT was dissolved in 0.1 M NaOH. All salts 

for the aCSF for hippocampal slice experiments were purchased from Fisher 

Scientific. 

2.2. Preparation of hippocampal slices 
17-23 day old male Sprague-Dawley rats were used and killed by cervical 

dislocation and then decapitated in accordance with Schedule 1 the UK 

Government Animals (Scientific Procedures) Act 1986 and with local Ethical 

Review procedures. The brain was quickly removed and placed in ice-cold aCSF 

containing (mM): NaCl (124); KCl (3), CaCl2 (2), NaHCO3 (26), NaH2PO3 

(1.23), D-glucose (10), and MgSO4.7H2O (1) with an additional MgCl2 (10); pH 

7.4. Parasagittal hippocampal brain slices (400 µm) were cut on a vibratome 

(Microm HM 650 V microtome) (zur Nedden, et al., 2011) and kept at 34 °C 

gassed with 95% O2/ 5% CO2 for at least 3 hours before use in an incubation 

chamber (100 or 250 ml) (Edwards, et al., 1989). Slices were incubated in either 

standard 1 mM Mg2+-containing aCSF or in a standard aCSF containing either 

1mM Creatine aCSF or 50 µM adenine + 1mM D-ribose (RibAde). 

2.3. Electrophysiology recordings and drug 
application 
Post recovery (at least 3 hrs), individual slices were placed on a submerged mesh 

in a recording chamber, secured with a platinum harp with nylon threads and 
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were perfused with oxygenated aCSF at a rate of ~ 6.0 mL/min and maintained at 

32.3 ± 0.5 °C. Slices underwent a period of electrical stimulation of the Schaffer 

collateral-commissural pathway in hippocampal area CA1 prior to experiments to 

ensure viability of the slice, stability of the recording and to measure the effects 

of drugs on basal synaptic transmission. All pharmacological agents were applied 

at the desired concentration via the aCSF. A twisted bipolar Teflon-coated 

tungsten wire (50 µm diameter) electrode (100 µm overall diameter) was placed 

in the stratum radiatum of the CA1 region of the hippocampus. Extracellular field 

excitatory postsynaptic potentials (fEPSP) were evoked using square-wave pulses 

(0.1 ms in duration) at 10 s intervals. A glass microelectrode filled with aCSF 

described previously (Frenguelli, et al., 2007; zur Nedden, et al., 2011) was used 

to record fEPSPs (both evoked and spontanueous) and was also placed in the 

stratum radiatum of the CA1 region of the hippocampus. Constant current 

stimulation was given over the range of (50-300 µA) and the current eliciting a 

fEPSP of approximately half the maximal slope was used for the remainder of the 

experiment. Stimulus parameters and acquisition and analysis of fEPSPs were 

under control of LTP software (Anderson and Collingridge, 2001). Once stability 

and tissue viability was established a baseline of 10 minutes was recorded, after 

which 0 mM Mg2+ aCSF was applied. All drugs were added to the 0 mM Mg2+ 

aCSF. Once in 0 mM Mg2+ aCSF increases in fEPSP slope were allowed to 

asymptote (typically 15 min). Electrical stimulation either persisted throughout 

the experiment or was switched off to allow spontaneous seizures to be observed. 

Recordings lasted between 2-3.5 hours.  
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2.4. 6 mM and 9 mM K+ recordings 
Many previous studies have shown that an increase in extracellular potassium ion 

(K+) concentration is sufficient for inducing seizures. In these experiments 

increases in K+ in the aCSF was used to induce seizures. To investigate the effect 

of increases in K+ concentration on seizure activity, K+ concentration was 

increased to 6 mM and 9 mM K+. Experiments were carried to investigate 

whether these concentrations of K were capable of producing seizures and to 

characterise the different seizures produced at these concentrations.  

2.5. 4-aminopyridine recordings 
4-aminopyridine a voltage-gated potassium channel blocker, was used in these 

experiments to induce spontaneous seizures in hippocampal slices. 50 µM 4-AP 

was applied after washout of Mg2+ from slices. In some experiments to assess the 

role of the adenosine A1 and A2A receptors on seizure activity the receptor 

antagonists CPT (A1 receptors) and SCH 58261 (A2A receptors) were applied first 

in 0 mM Mg2+ after which CPT (1 µM) + 4-AP or SCH 58261 (50 nM) + 4-AP 

was applied and seizure activity was measured. 

2.6. Homocysteine thiolactone recordings 
Homocysteine thiolactone (HTL) was used in these experiments as a method for 

trapping intracellularly formed adenosine as S-adenosylhomocysteine thiolactone 

(SAHTL). 100 µM HTL was added to both standard aCSF and 0 mM Mg2+ aCSF 

then bath applied according to the same protocol used for 50 µM 4-AP/ 0 mM 

Mg2+ seizure model.  
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2.7. Continuous RibAde recordings 
Continuous application of RibAde to bath solutions was used in these experiments to 

test whether continually perfusing slices with RibAde produced any changes in the 

release of adenosine. RibAde prepared as indicated above was added to both 

standard aCSF and 0 mM Mg2+ aCSF then bath applied according to the same 

protocol used for 50 µM 4-AP/ 0 mM Mg2+ seizure model. Continuous application of 

RibAde aCSF to the adenosine biosensor produced a response that is due to purine 

nucleoside phosphorylase metabolism of adenine, which gives rise to the production 

of inosine that is then detected by the adenosine biosensors. This finding is in line 

with what has been previously shown where purine nucleoside phosphorylase shows 

intrinsic activity to adenine in the presence ribose (Zimmerman, et al., 1971). In this 

thesis the effect of continuous application of RibAde on adenosine biosensor 

response was measured. New microelectrode biosensors were used and calibrated 

with 10 µM and 100 µM adenosine in standard aCSF (Fig 2.1 A). After which, the 

application of RibAde aCSF was found to produce a rapid increase in current on the 

adenosine biosensor (Fig 2.1 B) that decreased over time on both the adenosine and 

null biosensors. This response to RibAde aCSF was greater than that recorded for the 

10 µM adenosine calibration but less than that for the 100 µM adenosine calibration 

in standard aCSF. Following 4 hours in RibAde aCSF, calibrations with 10 and 100 

µM adenosine were made in RibAde solutions (Fig 2.1 C). In comparison to the 

calibration made at the start in standard aCSF, the response with 10 µM adenosine 

was slightly smaller than the minimum threshold value of 1 nA used for previous 

experiments, therefore the mimimum threshold value was relaxed to 0.9 nA. Overall, 

these data suggest that prolonged exposure of the adenosine biosensor to RibAde-
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containing bathing solutions was capable of producing a response that did not mask 

the effect of additional adenosine release. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Real-time measurements of RibAde bathing solution on 
microelectrode biosensors. Calibrations with new biosensors (n = 1) were made in 
normal bathing solutions in 10 and 100 µM adenosine (A). Once a stable baseline 
was established (B) bathing solutions containing 1 mM ribose and 50 µM adenosine 
(RibAde) was washed on for 4 hours (n = 2). RibAde bathing solution produced a 
rapid increase in current measured on the adenosine biosensor Note the decrease in 
current over time on both the adenosine and null biosensors. Calibrations were made 
after 4 hours in RibAde bathing solution (C) with 10 and 100 µM adenosine (n = 1). 
A response to 10 and 100 µM adenosine was not masked by the presence of the 
RibAde solution. 
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2.8. Biosensor recordings 
Microelectrode biosensors have been routinely used in vivo and in vitro to 

accurately measure the release of various analytes including adenosine (Dale 

and Frenguelli, 2012; Dale, et al., 2002; Dale, et al., 2000; Etherington, et al., 

2009; Frenguelli, et al., 2003; Frenguelli and Wall, 2016; Frenguelli, et al., 

2007; Gourine, et al., 2007; Gourine, et al., 2002; Lindquist and 

Shuttleworth, 2014; Llaudet, et al., 2003; Lopatář, et al., 2011; Wall, et al., 

2010; zur Nedden, et al., 2011). The benefits of using microelectrode 

biosensors over more traditional microdialysis probes is that biosensors give 

real-time measurements that are sensitive and stable in both in vivo and in 

vitro preparations and respond to adenosine concentrations from 100 nM to 

20 µM (Dale and Frenguelli, 2012; Dale, et al., 2002; Dale, et al., 2000; 

Etherington, et al., 2009; Frenguelli, et al., 2003; Frenguelli and Wall, 2016; 

Frenguelli, et al., 2007; Gourine, et al., 2007; Gourine, et al., 2002; Lindquist 

and Shuttleworth, 2014; Llaudet, et al., 2003; Lopatář, et al., 2011; Wall, et 

al., 2010; zur Nedden, et al., 2011). 

Adenosine and null biosensors were used in these experiments to measure real-

time release of purines. Adenosine and null biosensors (Pt/Ir wire of 50 µm in 

diameter and 500 µm in length) were purchased from Sarissa Biomedical Ltd 

(Coventry, UK) and were inserted into the slice in area CA1. The biosensors 

contain specific enzymatic cascades able to break down adenosine to produce 

hydrogen peroxide. The enzymes (xanthine oxidase, purine nucleoside 

phosphorylase and adenosine deaminase) are deposited on the screening layer 

where they are entrapped in a polymer matrix as described in (Frenguelli and 

Wall, 2016; Llaudet, et al., 2003). Due to the nature of the enzymatic cascade 
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present in the adenosine biosensors they are also capable of detecting not only 

adenosine but also its metabolites inosine and hypoxanthine. Therefore, the 

values provided here not only reflect adenosine but also its metabolites. The 

hydrogen peroxide is oxidised on the surface of the polarised Pt/Ir wire to give a 

rise to a current linearly related to the concentration of the measured analyte.  

Null sensors contain no enzymes and measure only non-specific electroactive 

signals. After each experiment, sensors were withdrawn from slices and 

calibrated with 10 µM adenosine. The values from adenosine biosensors are 

given as micromolar prime (µM´) to reflect that the adenosine signal is a 

composite signal of adenosine and its metabolites. The release of adenosine was 

measured over a given time period of 15 minutes in zero Mg2+, after the 

appearance of 3 bursts or 10 minutes in 4-AP and 10 minutes in CPT, to account 

for this the integral measurements are given as µM´s. A 10 µM serotonin solution 

was also used to assess the patency of the electro-active interferent screening 

layer of the sensors. Biosensor measurements were only accepted and further 

processed if serotonin response did not exceed 150 pA. The current response of 

the simultaneously recorded null sensors was subtracted from adenosine signal to 

reveal net purine signal. Biosensor reading was taken once the release had 

stabilized. 

2.9. Data analyses 
Traces of extracellular recordings were rectified, the number of bursts was 

counted and inter burst interval (IBI) was calculated. Within a burst the inter 

spike interval (ISI) was calculated and duration of the burst showing tonic (ISI < 

0.09) and clonic (ISI > 0.1). Bursting seizure activity was defined as synchronous 

bursting seizures with periods of quiescence (IBI). The IBI is defined as the time 



 89 

between seizures. The end of seizure is taken when the Inter Spike Interval ISI is 

less than 1.5 second apart. The ISI is the time between spikes. Basal synaptic 

transmission measurements were made, which included the measurement of slope 

for paired pulses given 50 ms apart, fibre-volley amplitude and slope 

measurements during input/output curves at 50 µA increments from 50-300 µA. 

A paired-pulse interval of 50 ms was chosen because it produced maximal paired-

pulse facilitation in slices treated with the same concentrations of ribose and 

adenine used in this thesis (zur Nedden, et al., 2011). The maximum percentage 

change in fEPSP slope from baseline time during washout of Mg2+ from slices 

was measured. The area under the curve was measured for the biosensor data for 

a given measurement and the values expressed as µM´ s.  

2.10. Statistical analysis 
Values are expressed as mean ± SEM. N values represent number of slices per 

condition, which is equivalent to the number of animals per condition.  If more 

than two groups were to be assessed, a one-way ANOVA was used. Where 

interactions were found, post hoc Bonferroni Tests were made. For comparison of 

fEPSP slope during input/output curves repeated measures ANOVA was applied. 

A Kolmogorov-Smirnov test was used to investigate differences in the 

distribution of ISI between treatments. For comparison of ISI before and after 

application of different drugs a paired t-test was applied. Graphs were drawn and 

statistical analyses were performed in OriginPro 8.5 software. Statistical 

significance was taken as p < 0.05.  
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3.1. Introduction 
Animal models of epilepsy are useful in elucidating the underlying mechanisms of 

epileptogenesis and aid in the development and screening of novel treatments. 

Many different activity patterns are termed epileptiform and this makes it difficult to 

make comparisons between different epilepsy models. In vitro models of epilepsy 

play an important role in allowing investigators to validate approaches and compare 

similarity between in vitro epileptiform activity and in vivo findings. Most models of 

epileptic seizures rely on activity similar to seizures observed in vivo. Such 

equivalents or seizure-like events (SLEs) are characteristic changes in electrical 

activity and basal ionic net flow, measured either extracellularly or intracellularly. 

Acute brain slices, typically 200-600 µmeter thick are the most commonly used in 

vitro preparation for studying epileptic seizures (Coppola and Moshé, 2012; 

Galanopoulou, 2011; Pitkänen, et al., 2005). One historical seizure model involves 

lowering the magnesium (Mg2+) concentration (Dreier and Heinemann, 1991; 

Gloveli, et al., 1995; Heinemann and Lux, 1977) to induce recurrent short electrical 

discharges (Anderson, et al., 1986). Other seizure models, such as increasing the 

extracellular potassium (K+) concentration, can be administered independently or 

combined with lowering the Mg2+ concentration (Balestrino, et al., 1986; McNamara, 

1994; Poolos and Kocsis, 1990; Poolos, et al., 1987). Low Mg2+ solutions act by 

lowering neuronal firing threshold by modifying the actions of ion channels such as 

the NMDA receptor, K+ channels and voltage gated calcium channels (Coan and 

Collingridge, 1985; Herron, et al., 1985a; Mody, et al., 1987; Nowak, et al., 1984; 

Stanton, et al., 1987; Traub, et al., 1994). Low Mg2+ solutions also act to reduce the 

surface charge screening of the membrane which would facilitate the activation of 

voltage-gated channels such as voltage gated calcium channels (Heinemann, et al., 
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2005). The reduced surface charge screening at these channels could then go on to 

facilitate membrane depolarization and the generation of an action potential (Hartzell 

and White, 1989; Mody, et al., 1987). In addition, by eliminating extracellular Mg2+, 

the Mg2+ block of the NMDA receptor is effectively removed. Removal of the Mg2+ 

block allows for the activation of the NMDA receptor at resting membrane 

potentials, which would typically return to their resting state after activation, 

however, when Mg2+ is removed, this allows for repetitive depolarization of the 

membrane potential. Repetitive depolarization of membrane potential is sufficient to 

initiate and sustain seizure activity (Akiyama, et al., 1992); indeed studies have 

implicated NMDA receptors in an increase in seizure susceptibility (Dingledine, et 

al., 1986; Herron, et al., 1985b; King and Dingledine, 1986; Nowak, et al., 1984).  

Nominally Mg2+-free solutions have been shown to enhance glutamatergic 

excitation, whereas high K+ solutions act to increase intrinsic excitability. Using 

solutions where   Mg2+ concentrations are lowered and K+ concentration is increased 

should therefore act together to promote neuronal excitation. Studies have shown that 

stimulated and spontaneous epileptiform activity can be induced in the presence of 

low Mg2+ by the simultaneous application of elevated K+ (3.3 – 7 mM) (Anderson, et 

al., 1986; Balestrino, et al., 1986; Dreier and Heinemann, 1991; Jones and 

Heinemann, 1988; Lopatář, et al., 2011; Mody, et al., 1987; Poolos and Kocsis, 

1990; Poolos, et al., 1987; Reddy and Kuruba, 2013; Stanton, et al., 1987; Walther, 

et al., 1986; Zhang, et al., 1995). These studies give support for the use of 6 mM K+ 

as a viable method for inducing spontaneous epileptiform activity, as a further 

comparison 9 mM K+ was used as a means of producing a more robust epileptiform 

activity in this thesis. Subsequent research shows that the use of a low Mg2+ solution 

produces seizure activity that are similar to electrographic seizures observed in 
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humans and pharmacologically induced in vivo seizures in rat hippocampus slice. 

The role of adenosine in epilepsy has been extensively researched and studies have 

shown that incubation with high concentrations of K+ such as 6 mM increases the 

spontaneous release of adenosine in slices (Lopatář, et al., 2011; Shimizu, et al., 

1970). 

The experiments carried out in the present study used the nominally Mg2+ free model 

in combination with either increasing the extracellular K+ concentration or using the 

K+ channel blocker 4-aminopyridine (4-AP). 

3.2. Results 
3.2.1. Nominally Mg2+ free model: test of model efficacy and 

parameters 

3.2.1.1. 6 mM and 9 mM K+/ 0 mM Mg2+-induced seizures 

Increasing K+ concentration through bath application in slices has been routinely 

used to model human TLE (Pitkänen, et al., 2005). Here, we found that increasing 

the K+ concentration to 6 mM or 9 mM, failed to produce consistent reproducible 

spontaneous bursting seizures (Fig 3.1 middle panels; Table 3.1), this was associated 

with a low sample size for analysis of seizure parameters (Appendix 1). Percentages 

of observed seizure activity in slices treated with 6 mM / 9 mM K+ are summarised 

in Table 3.1. All slices showed some form of activity. However, a large percentage 

of slices showed non-bursting seizure activity (bursting activity is defined in chapter 

2.9). Seizure activity observed with the increased K+ model also included slices 

showing inter-ictal activity (Fig 3.1; top panels) and status epilepticus (bottom 

panels).   
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A chi-square test of independence was carried out on the data (raw numbers) in 

Table 3.1. For the 6 mM K+ data chi-square was found to be 13.098 and p-value = 

0.011. This indicates that there is a relationship between treatment and the type of 

epileptiform activity observed.  

For the 9 mM K+ data set chi-square was found to be 1.629 and p-value = 0.804, 

suggesting that there is no relationship between treatment and the type of 

epileptiform activity observed.   

Due to the inconsistencies in recorded seizures in both 6 mM and 9 mM K+/0 mM 

Mg2+ seizure model for all the three treatment groups, a new approach was explored 

that would increase the reproducibility of seizures. 

Table 3.1. Summary of seizure activity observed in 6- and 9mM K+. 

[K+] Treatment Inter Ictal 
(%) 

Bursting 
(%) 

Status 
Epilepticus 

(%) 

Total 
number 
of slices 

6 

Creatine 0 
 

35 
(n = 6) 

65 
(n = 11) 17 

Control 6 
(n = 1) 

76 
(n = 13) 

18 
(n = 3) 17 

RibAde 33 
(n = 6) 

28 
(n = 5) 

39 
(n = 7) 18 

9 

Creatine 0 
 

76 
(n = 13) 

24 
(n = 4) 17 

Control 16 
(n = 3) 

58 
(n = 11) 

26 
(n = 5) 19 

RibAde 8 
(n = 1) 

69 
(n = 9) 

23 
(n = 3) 13 
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  Fig 3.1. Representative seizure activity in 6 mM and 9mM K+/zero 
magnesium model. Representative traces of seizures activity in control slices 
following challenge with 6 m and 9 mM K+. Top panels show observed inter ictal 
seizure activity, defined as spiking frequency with intervals greater than 1.5 s. 
Middle panels show bursting seizure activity, defined as sequential seizure bursts 
with periods of quiescence between each burst. Zoom in shows burst 2 
epileptiform activity. Bottom panels show status epilepticus (SE) activity, defined 
as prolonged intense spiking that lacks periods of quiescence. 
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3.2.1.2. 50 µM 4-aminopyridine/zero Mg2+-induced seizures 

The other model we use in the present study employs a K+ channel blocker, 4-

aminopyridine (4-AP). The blockade of voltage-gated presynaptic K+ channels with 

4-AP acts to lengthen action potential duration leading to further increases in the 

influx of extracellular calcium through voltage-sensitive calcium channels into the 

pre-synaptic terminal (Rudy, 1988; Thesleff, 1980). It is this increase in pre-synaptic 

calcium concentration that results in an enhanced release of neurotransmitters such 

as glutamate from the presynaptic terminal (Schechter, 1997; Somjen, 2002; 

Thompson, et al., 2008). 

In order to have a robust model to test the effects of creatine and RibAde on 

epileptiform activity, it was important to be able to record consistent reproducible 

epileptiform activity in brain slices. In the present study 4-AP at a concentration of 

50 µM produced consistent reproducible epileptiform activity (Table 3.2; Fig 3.2). 

Initial experiments showed that the 4-AP model produced more consistent bursting 

seizure activity where all treatments showed 84-100% bursting activity (Table 3.2) 

compared to 28-76% with the high K+ model. Chi-square test of independence on 

data from Table 3.2 showed that chi-square = 0.320 and p-value = 0.988, suggesting 

that there is no relationship between treatment and the type of epileptiform activity 

observed.  

It should also be noted that the 4-AP model resulted in bursting seizures that were of 

longer durations than that in the high K+ model.  
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Table 3.2. Summary of seizure activity observed in 50 µM 4-aminopyridine. 

Type of 
seizure 

Treatment Inter Ictal 
(%) 

Bursting 
(%) 

Status 
Epilepticus 

(%) 

Total 
number of 

slices 

Spontaneous 

Creatine 0 
 

100 
(n = 10) 

0 
 10 

Control 8 
(n = 1) 

84 
(n = 10) 

8 
(n = 1) 12 

RibAde 8 
(n = 1) 

84 
(n = 10) 

8 
(n = 1) 12 
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Fig 3.2. Representative bursting seizure activity in 50 µM 4-
aminopyridine/zero magnesium model. Representative trace of spontaneous 
synchronous bursting seizure activity in a control slice following challenge with 
4-aminopyridine (4-AP). Lower panel shows a zoom in of burst 2 epileptiform 
activity. 
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3.3. Discussion 
In the present chapter I have shown that the 50 µM 4-AP/0 zero Mg2+ model was 

more effective at producing reproducible bursting seizures than the 6 mM and 9 mM 

K+/zero Mg2+ models.  

3.3.1. 6 mM and 9 mM K+/zero Mg2+-induced seizures  

Extracellular K+ concentrations were increased to 6 mM and 9 mM in zero Mg2+ 

aCSF. Chi-square test of independence indicated that there is a relationship between 

treatment and observed epileptiform activity when slices were challenged with 6 mM 

but not 9 mM K+. This results suggests that challenging slices with 6 mM K+ 

concentration produced a shift towards an increase in a more convulsive epileptiform 

activity (status epilepticus) in creatine treated slices (11/17) compared to those 

observed for control slices which had a lower tendency towards status epilepticus 

(3/17). Likewise in RibAde-treated slices compared to creatine slices there was a 

reduced tendency towards status epilepticus, whereby the distribution of observed 

epileptiform activity was evenly distributed between the three groups. When the K+ 

concentration was further increased to 9 mM the frequency of observed epileptiform 

activity was independent of treatment, suggesting that there were no tendency 

towards either bursting or non-bursting epileptiform activity between the different 

treatments. At this concentration there was a higher number of bursting epileptiform 

activity in both creatine (from 35% to 76%) and RibAde-treated slices (from 28% to 

69%) compared to that observed with a K+ concentrations of 6 mM. However, in 

control slices a K+ concentration of 9 mM decreased the frequency of bursting from 

76% to 58% in 6 mM.  Although increasing the K+ concentrations to 6 mM and 9 

mM did produce seizure activity similar to those reported in previous studies 

(Anderson, et al., 1986; Lopatář, et al., 2011; Mody, et al., 1987), in this report 
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concentrations of 6 mM and 9 mM failed to reliably produce spontaneous bursting 

seizures (28-76%). Where previous studies using higher K+ concentrations from 

standard bathing solutions to induce seizures were not focused on a single type of 

seizure activity, for the purposes of the present study it was important that the K+ 

concentrations used consistently produced similar seizure activity. My data suggests 

that an increase in K+ concentration beyond that used in the standard aCSF in 

conjunction with washout of Mg2+ from slices produces unreliable responses in 

synaptic and network excitability that make it an ineffective model to use to study 

the effects of RibAde and creatine on seizure activity. 

3.3.2. 50 µM 4-aminopyridine/zero Mg2+-induced seizures  

Due to the inconsistencies in the seizures generated with the high K+ models, another 

model was used as means of overcoming the difficulties found. For this we explored 

using the potassium channel blocker 4-AP. Initial investigative experiments showed 

that the 4-AP model produced more robust, stable and consistent seizure activity 

compared to the previous model. These findings are similar to epileptic spontaneous 

seizures recorded with a concentration of 50 µM 4-AP in rat hippocampal slices 

(Avoli, et al., 1996; Easter, et al., 2007; Yonekawa, et al., 2003). Chi-square test of 

independence indicated that there was no relationship between treatment and 

observed epileptiform activity. Therefore, there was no preference within a treatment 

for bursting epileptiform activity vs. non-bursting epileptiform activity within the 

three treatments groups. Given this result the 4-AP model does result in a higher 

proportion of bursting epileptiform activity compared to the K+ model. Therefore, 

given promising results from using the 4-AP model, the decision was taken to 

continue to use the 50 µM 4-aminopyridine/zero Mg2+ model.  
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In summary, this chapter deals with establishment of zero Mg2+ models of acute in 

vitro seizure-like events. All the models explored here are based in part on 

facilitating the excitability of tissue by omitting Mg2+ ions from the bathing solution. 

The resulting SLEs induced chemically with the additional application of 4-AP were 

reproducible, and therefore this model was chosen to test effects of purinergic 

modulation on seizure activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Modulation of 
intracellular ATP in in 
vitro models of seizure 
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4.1. Introduction 
The findings of the previous chapter provide support for the use of 0 mM Mg2+ 

aCSF/50 µM 4-aminopyridine as a reproducible seizure model. In the present 

chapter, this seizure model will be employed to investigate the effect of modulation 

of intracellular ATP on adenosine release.  

ATP is the major energy source in the CNS. Following a brain insult ATP levels are 

depleted and the energy requirements (ATP stores or production) exceed the brain’s 

ability to synthesise ATP. Due to this, the amount of ATP and its nucleotides such as 

ADP are reduced, but the breakdown product adenosine is increased.  

During epilepsy, a surge in the ATP breakdown product adenosine occurs following 

the onset of seizure activity (Adén, et al., 2004; During and Spencer, 1992; Lopatář, 

et al., 2011). In addition to the anticonvulsant properties of adenosine, dysfunction in 

its regulation has been implicated in the pathophysiological processes of epilepsy 

(Boison, 2010; Dunwiddie, 1999; Świąder, et al., 2014).  

Given that ATP is the primary source of adenosine, it can be postulated that any 

change in the ATP pool is likely to influence adenosine production and release. In 

support of this, experiments have shown that incubating slices with creatine (1 mM) 

buffers ATP metabolism and results in a reduction in adenosine release in response 

to oxygen glucose deprivation (zur Nedden, et al., 2014). In the same study, 

combination of ribose (1 mM) and adenine (50 µM) was shown to boost ATP levels 

and also result in greater adenosine release (zur Nedden, et al., 2014; zur Nedden, et 

al., 2011). 

Given the importance of ATP as a source of adenosine and evidence which suggest a 

pro-convulsive role of P2 receptors as well as the involvement of adenosine in the 
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pathophysiology of epilepsy, the main focus of this chapter was to test whether 

modulation of intracellular ATP by (a) enhancing the purine salvage pathway or (b) 

delaying the degradation of ATP to its metabolites affects activity-dependent release 

of adenosine. This was achieved by pre-treating slices with either (a) a combination 

of 1 mM D-ribose and 50 µM adenine (RibAde) or (b) 1 mM creatine.  

To date, little is know about the effect on RibAde on epileptic seizures. Due to the 

greater ATP pool in RibAde-treated slices (zur Nedden, et al., 2014; zur Nedden, et 

al., 2011) it would be expected that there might be a greater activity-dependent 

release of adenosine that might reduce seizure activity. 

In comparison to RibAde, 1 mM of creatine would be expected to delay the 

degradation of ATP to adenosine through phosphocreatine’s donation of a phosphate 

group to ADP, reactions (Chapter 1.9.) catalysed by creatine kinase. Therefore, it 

would be expected that pre-treating slices with creatine would result in a reduction in 

the release of adenosine and might result in an increase in seizure excitability. 

In this chapter I will show that it is possible to modulate the amount and pattern of 

adenosine release during seizure activity as well as the frequency and intensity of 

seizures by modulation of intracellular ATP levels with substances that are well 

tolerated in humans. 

 

4.2. Results 
4.2.1. Real-time measurement of activity-dependent release 

of adenosine from rat hippocampal brain slices 

In these studies, adenosine microelectrode biosensors were used to make real-time 

measurements of adenosine release in rat hippocampal slices.  
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4.2.1.1. Real-time recording of adenosine release 

Figure 4.1 shows an example of an individual recording taken from a control slices. 

Real-time recordings are shown in the top panel and the associated changes on the 

extracellular recording electrode are shown on the lower panel following challenge 

with washout of magnesium from slices (0 mM Mg2+ aCSF), after 3 bursts during 

bursting seizures in 4-aminopyridine, a potassium channel blocker or after 10 

minutes (50 µM 4-AP), and during challenge with the adenosine A1 receptor 

antagonist 8-cyclopentyltheophylline (1 µM CPT). 

The average release of adenosine is illustrated in figure 4.2 for creatine, control and 

RibAde-treated slices (creatine, n = 8; control, n = 11; RibAde, n = 13 slices).  
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 Figure 4.1. Representative example of epileptiform activity and associated 
activity-dependent release of adenosine in control slices. Micro-electrode 
recording of activity-dependent adenosine release are shown in the top panel and the 
associated changes on the extracellular recording electrode are shown on the lower 
panel following challenge with washout of magnesium from slices (0 mM Mg2+ 
aCSF), after 3 bursts during bursting seizures in 4-aminopyridine, a potassium 
channel blocker or after 10 minutes (50 µM 4-AP), and during challenge with the 
adenosine A1 receptor antagonist 8-cyclopentyltheophylline (1 µM CPT). 
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 Figure 4.2. Real-time measurement of activity-dependent release using micro-
electrode biosensors. Average biosensor traces show the activity-dependent 
release of adenosine during washout of Mg2+ from slices (0 mM Mg2+ aCSF), 50 
µM 4-aminopyridine-induced seizures (50 µM 4-AP) and challenge with the 
adenosine A1 receptor antagonist 8-cyclopentyltheophylline (CPT). Dotted line 
represents baseline prior to washout of Mg2+ from slices. CPT was added after the 
presentation of three bursts or after 10 minutes in 4-AP as shown by a break in the 
traces. Adenosine release in RibAde-treated slices (—, n = 13 slices) was greater 
than control (—, n = 11 slices) and creatine-treated slices (—, n = 8 slices). Data 
shown is mean ± SEM.  
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To further quantify the differences in adenosine release between treatments the 

integral of the area under the curve measurements were made (Figure 4.3 A-D). 

Adenosine release under the conditions listed above is summarised in Table 4.1. 

One-way ANOVA analysis reported a difference in the release of adenosine in Mg2+-

free aCSF (Fig 4.3 A). However, the post-hoc test did not reveal any significant 

differences (One-way ANOVA: p = 0.04; F (2,28) = 3.52; Post-hoc Bonferroni: 

creatine vs. RibAde, p = 0.07). 

During seizure activity in 4-AP, total adenosine release was increased (Fig 4.3 B) in 

RibAde slices compared to control and creatine slices (One-way ANOVA: p = 0.001; 

F (2,28) = 8.47; Post-hoc Bonferroni: creatine vs. RibAde, p = 0.003; control vs. 

RibAde, p = 0.009).  

In these experiments CPT increased the amount of adenosine released from slices 

directly following 4-AP induced seizures, but this release was not significantly 

different (Fig 4.3 C) between treatments (One-way ANOVA: p = 0.846; F (2,25) = 

0.168). 

Total combined release (Fig 4.2 D) per slice was significantly increased (One-way 

ANOVA: p = 0.006; F (2,29) = 6.186) in RibAde-treated slices compared to creatine-

treated slices (Post-hoc Bonferroni, p = 0.025) and control slices (Post-hoc 

Bonferroni, p = 0.013). 

These data suggest that modulating intracellular ATP levels by pre-treating slices 

with RibAde results in a significant increase in the activity-dependent release of 

adenosine. In comparison, pre-treating with creatine resulted in the least amount of 

activity-dependent release of adenosine, similar to observations made previously by 

zur Nedden et al., (2014) during oxygen-glucose deprivation in hippocampal slices. 
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Table 4.1. Integrated measurements of activity-dependent release of 
adenosine. Measurements were made in creatine, control and RibAde-treated 
slices. One –way ANOVA: *p < 0.05, **p < 0.01 compared to RibAde-treated 
slices, n = 8-13 slices. Data is shown as mean ± SEM  

 Creatine (µM´ s) Control (µM´ s) RibAde (µM´ s) 

0 mM Mg2+ 
aCSF 

0.13 ± 0.02 
(n = 8) 

0.20 ± 0.03 
(n = 11) 

0.44 ± 0.12 
(n = 13) 

50 µM 4-AP 0.95 ± 0.18** 

(n = 8) 
1.31 ± 0.23** 

(n = 11) 
3.15 ± 0.53 

(n = 13) 

1 µM CPT 1.76 ± 0.23 
(n = 8) 

1.56 ± 0.21 
(n = 8) 

1.77 ± 0.31 
(n = 12) 

Total release 2.84 ± 0.26* 

(n = 8) 
2.85 ± 0.33* 

(n = 11) 
5.22 ± 0.75 

(n = 13) 
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 Figure 4.3. Integrated measurements of activity-dependent release of 
adenosine. The integral of the area under the curve measurements of adenosine 
release following 15 minutes in magnesium (Mg2+)-free solution (A) and during a 
maximum of three 50 µM 4-aminopyridine (4-AP) induced seizures (B) was 
increased in RibAde-treated slices (n = 13) compared to control (n = 11) and 
creatine-treated slices (n = 8). During seizure activity, the levels of adenosine 
release from slices was increased compared to that measured before. No differences 
(C) were found during application of the adenosine A1 receptor antagonist 8-
cyclopentyltheophylline (CPT; 1 µM). Total adenosine release was greatly increased 
in RibAde-treated slices (D). Individual symbols represent slices; mean is shown as 
the central line, box as ± SD and whiskers 5-95% confidence limits. Significances 
indicated by *p < 0.05 and **p < 0.01.  
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4.2.1.2. Assessment of burst-dependent release of adenosine 

The release of adenosine associated with each burst (Fig 4.4) was calculated during 

4-AP-induced seizures. The increased release of adenosine in RibAde-treated slices 

observed in Fig. 4.3 B was in large part due to adenosine release during burst 1 (Fig 

4.5; Table 4.2; One-way ANOVA: p = 0.001; F (2,29) = 8.527; creatine, n = 8; control, 

n = 11; RibAde, n = 13 slices). The burst 1-associated increase in adenosine release 

in RibAde-treated slices was greater than creatine-treated (Post-hoc Bonferroni: p = 

0.005) and control slices (Post-hoc Bonferroni: p = 0.005). No difference in the 

burst-dependent release of adenosine was found for burst 2 (One-way ANOVA: p = 

0.206; F (2,26) = 1.682; creatine, n = 6; control, n = 10; RibAde, n = 12 slices) and 

burst 3 (One-way ANOVA: p = 0.601; F (2,19) = 0.524; creatine, n = 4; control, n = 9; 

RibAde, n = 9 slices).  

The data shows that, in RibAde-treated slices, the greatest release of adenosine was 

associated with the initial seizure. In addition, unlike control and creatine, RibAde 

showed a change in the adenosine release profile between bursts whereby adenosine 

release is decreased in each subsequent burst. This suggests that the higher levels of 

burst-1 associated adenosine release in RibAde may be sufficient to dampen down 

subsequent seizure activity which may then affect its associated adenosine release. 

 

Table 4.2. Summary of burst-dependent release of adenosine. Measurements 
were made in creatine, control and RibAde-treated slices. One-way ANOVA: **p 
< 0.01 compared to RibAde-treated slices, n = 8-13 slices.  Data shown as mean ± 
SEM 

Burst number Creatine (µM´ s) Control (µM´ s) RibAde (µM´ s) 

1 0.48 ± 0.11** 

(n = 8) 
0.66 ± 0.18** 

(n = 11) 
2.43 ± 0.51 

(n = 13) 

2 0.72 ± 0.14 
(n = 6) 

0.79 ± 0.21 
(n = 10) 

1.12 ± 0.22 
(n = 13) 

3 0.43 ± 0.18 
(n = 4) 

0.56 ± 0.13 
(n = 9) 

0.40 ± 0.10 
(n = 9) 
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Figure 4.4. Representative example of 4-aminopyridine-induced bursting 
epileptiform activity and associated activity-dependent release of adenosine in 
control slices. Representative 4-AP-induced bursting epileptiform activity and the 
associated differential raw current recordings of representative adenosine release 
made with microelectrode biosensors in a control slice.  
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 Figure 4.5. Adenosine release in slices pre-treated with RibAde but not creatine 
is burst-dependent. Burst 1 adenosine release was increased in slices pre-treated 
with RibAde (n = 13) compared to control (n = 11) and creatine slices (n = 8). No 
difference in the release of adenosine between the three groups was found for bursts 
2 and 3. Individual symbols represent slices; mean is shown as the central line, box 
as ± SD and whiskers 5-95% confidence limits.. Significances indicated by **p < 
0.01. 
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4.2.1.3. Assessment of continuous application of RibAde on 

adenosine release 

The burst-dependent release of adenosine data suggests that there may be adenosine 

depletion after burst 1. In order to test whether activity-dependent release of 

adenosine could be increased in RibAde-treated slices, continuous application of 

RibAde (Continuous RibAde) to the bathing solution was used. 

 

4.2.1.3.1. Effect of Continuous RibAde on activity-dependent release of 

adenosine 

Figure 4.6 shows the average release of adenosine for control, RibAde-treated and 

Continuous RibAde-treated slices (control, n = 11; RibAde, n = 13; Continuous 

RibAde, n = 8 slices).  

Measurement of the integral of the area under the curve (Table 4.3) showed that the 

release of adenosine in Continuous RibAde-treated slices was increased compared to 

control and RibAde-treated slices during washout of Mg2+from slices (Fig 4.7 A; 

One-way ANOVA: p < 0.0001; F (2,28) = 24.115; Post-hoc Bonferroni: p < 0.0001). 

During 4-AP-induced seizures adenosine release in Continuous RibAde-treated slices 

were increased compared to control slices (Fig 4.7 B; One-way ANOVA: p = 0.028; 

F (2,28) = 4.064; Post-hoc Bonferroni: p = 0.034). No difference during CPT was 

found (Fig 4.7 C; One-way ANOVA: p = 0.290; F (2,25) = 1.302). Total adenosine 

release was increased in Continuous RibAde slices compared to control (Fig 4.7 D; 

One-way ANOVA: p < 0.001; F (2,29) = 11.539; Post-hoc Bonferroni: p < 0.001) and 

RibAde-treated slices (Post-hoc Bonferroni: p = 0.026). 
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Table 4.3. Summary of the integrated measurements of activity-
dependent release of adenosine with Continuous RibAde slices. 
Measurements were made in control, RibAde- and Continuous RibAde-
treated slices. One –way ANOVA: *p < 0.05, ***p < 0.01, ****p < 0.0001 
compared to Continuous RibAde-treated slices, n = 6-13 slices. Data shown 
as mean ± SEM. 

 Control (µM´ s) RibAde (µM´ s) Continuous 
RibAde (µM´ s) 

0 mM Mg2+ 
aCSF 

0.20 ± 0.03**** 

(n = 11) 
0.44± 0.12**** 

(n = 13) 
2.12 ± 0.40 

(n = 8) 

50 µM 4-AP 1.31 ± 0.23* 

(n = 11) 
3.15 ± 0.53 

(n = 13) 
3.96 ± 1.12 

(n = 8) 

1 µM CPT 1.56 ± 0.21 
(n = 8) 

1.77 ± 0.31 
(n = 12) 

2.25 ± 0.28 
(n = 8) 

Total release 2.85 ± 0.33*** 

(n = 11) 
5.22 ± 0.75* 

(n = 13) 
8.33 ± 1.17 

(n = 8) 
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 Figure 4.6. Average recordings of activity-dependent release of adenosine in 
control, RibAde and Continuous RibAde slices. Average biosensor traces for 
control (—, n = 11 slices), RibAde-treated slices (—, n = 13 slices) and 
Continuous RibAde-treated slices (—, n = 8 slices) show the activity-dependent 
release of adenosine during washout of Mg2+ from slices (0 mM Mg2+ aCSF), 50 
µM 4-aminopyridine-induced seizures (50 µM 4-AP) and challenge with the 
adenosine A1 receptor antagonist 8-cyclopentyltheophylline (CPT). Dotted line 
represents baseline prior to washout of Mg2+ from slices. CPT was added after the 
presentation of three bursts or after 10 minutes in 4-AP as shown by a break in the 
traces. Data shown is mean ± SEM.  
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Figure 4.7. Integrated measurements of activity-dependent release of 
adenosine with Continuous RibAde slices. The integral of the area under the 
curve measurements of adenosine release following 15 minutes in magnesium 
(Mg2+)-free solution (A) and during a maximum of three 50 µM 4-aminopyridine 
(4-AP) induced seizures (B) was increased in Continuous RibAde slices (n = 8) 
compared to control (n = 11). The release of adenosine was only different between 
Continuous RibAde and RibAde slices during washout of Mg2+ from slices, but not 
during seizure activity. No differences (C) were found during application of the 
adenosine A1 receptor antagonist 8-cyclopentyltheophylline (CPT; 1 µM). Total 
adenosine release was greatly increased in Continuous RibAde slices (D) 
compared to control and RibAde-treated slices. Individual symbols represent 
slices; mean is shown as the central line, box as ± SD and whiskers 5-95% 
confidence limits. Significances indicated by *p < 0.05 and ****p < 0.001.  
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4.2.1.3.2. Effect of continuous application of RibAde on burst-

dependent adenosine release 

The burst 1 associated release of adenosine was greater in Continuous RibAde-

treated slices compared to control (Fig 4.8; One-way ANOVA: p = 0.013; F (2,29) 

= 5.105; Post-hoc Bonferroni: p = 0.025).  

No difference in adenosine release was found for the release of adenosine during 

burst 2 (One-way ANOVA: p = 0.443; F (2,25) = 0.842; control = 10; RibAde, n = 

12; Continuous RibAde = 6) and burst 3 (One-way ANOVA: p = 0.335; F (2,19) = 

1.160; control = 9; RibAde, n = 9; Continuous RibAde = 4). 

These biosensor data indicate that overall, the amount of activity-dependent 

release of adenosine was greater in Continuous RibAde treated slices. However, 

during seizure activity, the amount of adenosine released in Continuous RibAde 

slices was not different to that in RibAde-treated slices. 

 

Table 4.4. Summary of burst-dependent release of adenosine with Continuous 
RibAde slices. Measurements were made in control, RibAde-and Continuous 
RibAde-treated slices. One-way ANOVA: **p < 0.01 compared to Continuous 
RibAde-treated slices, n = 6-13 slices. Data shown as mean ± SEM 

Burst number Control  
(µM´ s) 

RibAde  
(µM´ s) 

Continuous 
RibAde (µM´ s) 

1 0.66 ± 0.18* 

(n = 11) 
2.43 ± 0.51 

(n = 13) 
2.54 ± 0.65 

(n = 8) 

2 0.79 ± 0.21 
(n = 10) 

1.12 ± 0.22 
(n = 12) 

1.19 ± 0.22 
(n = 6) 

3 0.56 ± 0.13  
(n = 9) 

0.40 ± 0.10  
(n = 9) 

0.69 ± 0.16 
 (n = 4) 
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Figure 4.8. Burst-dependent release of adenosine in RibAde and Continuous 
RibAde slices. Burst 1 adenosine release was increased in slices pre-treated with 
RibAde (n = 13) and Continuous RibAde (n = 8) compared to control (n = 11). No 
difference in the release of adenosine was found for bursts 2 and 3. Individual 
symbols represent slices; mean is shown as the central line, box as ± SD and 
whiskers 5-95% confidence limits. Significances indicated by *p < 0.05. 
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4.3. Discussion 
In summary these data show that pre-treating slices with RibAde and creatine has a 

measurable consequence on the activity-dependent release of adenosine. 

 

4.3.1. Effect of RibAde and creatine on adenosine release  

Previous research (Etherington, et al., 2009; Frenguelli and Wall, 2016; Lopatář, et 

al., 2011; Lopatář, et al., 2015; Wall and Richardson, 2015) and my own results 

show that it is possible to measure real-time release of adenosine during brief 

seizures in hippocampal slices. My data suggests that adenosine release in RibAde-

treated slices occurs in an NMDA-dependent manner where there was a trend for an 

increase in the release of adenosine during washout of Mg2+ from RibAde-treated 

slices compared to creatine-treated slices. This response was also observed during 4-

AP-induced seizures where the release of adenosine during seizure activity was 

significantly increased in RibAde-treated slices compared to creatine-slices. 

Additionally, the release of adenosine in RibAde-treated slices was also increased 

compared to control slices. Surprisingly, no difference was found during challenge 

with CPT, suggesting that the role of the adenosine A1 receptor in the different 

treatments was similar. Overall, these results show that the activity-dependent release 

of adenosine was greater in RibAde-treated slices compared to control slices and 

those pre-treated with creatine, which released a reduced amount of adenosine. These 

findings are similar to the activity-dependent release associated with brief 

oxygen/glucose deprivation (5 min), where the greatest release of adenosine occurred 

in RibAde-treated slices and pre-treatment with creatine resulted in the least amount 

of adenosine release (zur Nedden et al., 2014).  
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4.3.2. Effect of Continuous RibAde on adenosine release  

To test whether it was possible to prevent depletion of adenosine after burst 1 

adenosine release in RibAde-treated slices, continuous application of RibAde was 

used. Continuous application of RibAde only resulted in a larger release of adenosine 

compared to pre-incubation alone during washout of Mg2+
 from slices compared to 

RibAde-treated slices. This had a profound effect on total adenosine release, where 

Continuous RibAde-treated slices had a greater total release compared to pre-

incubated RibAde slices. No effect of Continuous RibAde was found on the release 

of adenosine during 4-AP-induced seizures compared to RibAde-treated slices. No 

difference in the release of adenosine between treatments during challenge with CPT 

was found. Additionally, there was no effect on burst-dependent adenosine release in 

Continuous RibAde-treated slices compared to RibAde-treated slices. This is likely 

due to the inability of these slices to make more ATP quickly enough during the 

preceding intermediate periods, i.e. during the Inter Burst Interval. Although the 

release of adenosine was not different to RibAde-treated slices during 4-AP induced 

seizures, the release of adenosine in Continuous RibAde slices was greater than that 

of control slices during seizure activity and washout of Mg2+ from slices.   

These data suggest that continuous application of RibAde does not prevent the 

depletion of adenosine after burst 1 in RibAde-treated slices. Additionally, the 

release of adenosine during seizure activity during continuous application of RibAde 

was not different to that with pre-incubation only. This suggests that pre-incubation 

of slices for 3 hours with RibAde is sufficient to produce robust changes to the 

activity-dependent release of adenosine.  
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In summary, these data suggest that pre-incubating slices for 3 hours with RibAde 

followed by washout out of RibAde from slices in normal aCSF was sufficient to 

influence extracellular release of adenosine.  

These experiments show that pre-treating slices with RibAde and creatine had 

differential effects on the activity-dependent release of adenosine. In the next chapter 

I will further investigate whether the activity-dependent release of adenosine 

measured in RibAde- and creatine-treated slices influenced seizure activity itself. 
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5.1. Introduction 
The findings from chapter 4 show that pre-treating slices with RibAde resulted in the 

greater activity-dependent release of adenosine. The present chapter will investigate 

the effects of RibAde and creatine on basal synaptic transmission and seizure 

parameters.  

Adenosine was initially observed as a naturally occurring anticonvulsant in 1984 

(Barraco, et al., 1984), in which it was found that the anticonvulsant properties were 

mediated by the adenosine A1Rs. The A1Rs function by inhibiting excessive neuronal 

activity in the epileptic brain. The importance of these receptors types is also 

supported with genetic mouse models where A1Rs knock (A1Rs KO) out mice 

showed an increased susceptibility to developing seizures and developed lethal status 

epilepticus (SE) after experimentally induced brain injury (Kochanek, et al., 2006). 

These data provide strong evidence for the adenosine A1Rs as potential therapeutic 

targets for the treatment of epilepsy. 

Adenosine plays an important role in the regulation and coordination of synaptic 

strength and synaptic networks and any dysfunction in the adenosinergic pathway 

can have a major impact on the synaptic and network activity. In the present chapter 

I will investigate the effects of pre-treating slices with creatine or RibAde on basal 

synaptic transmission by measuring their effects on a number of parameters 

(discussed below). One of the parameters measure is paired-pulse facilitation. Paired-

pulse facilitation is the ability of synapses to increase neurotransmitter release on the 

second of two closely spaced afferent stimulations (50 ms in these experiments). 

Paired-pulse facilitation can be viewed as a pre-synaptic form of short-term 

plasticity, as it depends on the residual Ca2+ concentrations in the pre-synaptic 

terminal. If a pulse is given for example 50 ms after an initial stimulation, this does 
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not allow for the clearance of residual Ca2+ from the pre-synaptic. The second 

stimulation leads to an increase in pre-synaptic Ca2+ concentrations, which is then 

associated with a greater release of neurotransmitters and a larger second pulse. If the 

second pulse slope is larger than the first then the paired-pulse ratio will be high. The 

paired-pulse ratio is inversely related to paired-pulse facilitation whereby a high ratio 

would indicate reduced paired-pulse facilitation. 

In addition to measures of basal synaptic transmission, I will also investigate the 

effects of creatine on seizure activity by measuring the inter spike interval, inter burst 

interval and burst duration. 

  

5.2. Results 
The results from the microelectrode biosensors indicate that slices pre-treated with 

RibAde release a greater amount of seizure-dependent adenosine from slices 

compared to creatine-treated and control slices. To determine whether this 

modulation of adenosine release had a bearing on basal neuronal activity and on 

seizure parameters, input-output curves, paired-pulse facilitation, burst duration, inter 

spike interval and inter burst interval were measured. 

Two separate experiments were performed: 1) where microelectrode biosensors were 

inserted into the slices to measure the release of adenosine and 2) those without 

biosensors. Kolmogorov-Smirnov tests were performed to determine if the 

populations of both groups of experiments were different for each seizure parameter 

and measurement of basal neuronal activity. No overall differences were found for 

the seizure parameters and the decision was made to combine the data. 
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5.2.1. Assessment of the effects of RibAde and creatine pre-

treatment on basal neuronal transmission 

No difference in field excitatory postsynaptic potential (fEPSP) slope during the 

input/output curve (Fig 5.1A) was found (One-way ANOVA repeated measures: p = 

0.110; F (2,14) = 8.477; creatine, n = 29; control, n = 53; RibAde, n = 47 slices).  

Assessment of the fibre-volley amplitude at a stimulus intensity of 300 µA was also 

not different (Fig 5.1 B) between treatment groups (One-way ANOVA: p = 0.400; F 

(2,33) = 0.942; creatine, n = 9; control, n = 17; RibAde, n = 10).  Similarly, paired-

pulse ratios were found not to be different (Fig 5.1 C; One-way ANOVA: p = 

0.0878; F (2,107) = 2.4903; creatine, n = 22; control, n = 47; RibAde, n = 41).  

No difference in the maximum percentage change in fEPSP slope from baseline 

during washout of Mg2+ from the slices (15 minutes; Fig 5.1 D) was found (One-way 

ANOVA: p = 0.927; F (2,99) = 0.76; creatine, n = 19; control, n = 50; RibAde, n = 32). 

These data suggest that pre-treating slices with RibAde or creatine did not influence 

basal synaptic transmission. 
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Figure 5.1. Basal neuronal activity was unaffected by manipulations of 
intracellular ATP. Stepwise stimulation current increases were applied to slices to 
generate an input/output curve (A; top panel shows example potentials generated 
during the input/output curve) to test for basal synaptic transmission. No difference 
in input/out curves was found between the three treatments (creatine, n = 28; 
control, n = 53; RibAde, n = 47). Similarly, the peak amplitude of the fibre volley at 
300 µA (B; (ô) in top panel) was not different (creatine, n = 9; control, n = 17; 
RibAde, n = 10). The probability of release where paired-pulses were given 50 
milliseconds apart (C; example fEPSPs are shown in the top panel) at stimulus 
intensities between 50-60% of the maximum intensity used during the input/output 
curve was also not different (creatine, n = 22; control, n = 47; RibAde, n = 41). 
Slices were left to equilibrate and a baseline of 10 minutes was recorded, after which 
nominally magnesium-free artificial cerebrospinal fluid (zero Mg2+free aCSF; black 
bar in inset graph) was used as a means of increasing the excitability of the tissue 
(15 mins). The maximum field excitatory postsynaptic potential (fEPSP) slope 
during Mg2+-free aCSF (D; arrow head in inset graph) was also not different 
(creatine, n = 19; control, n = 50; RibAde, n = 32). A) Data shown as mean ± SEM; 
B-D) Individual symbols represent slices; mean is shown as the central line, box as 
± SD and whiskers 5-95% confidence limits. 
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5.2.2. RibAde and creatine pre-treatment does not influence 

burst duration 

 The duration of 0 mM Mg2+/50 µM 4-aminopyridine-induced bursts (defined as a 

seizure followed a period of quiescence; see chapter 2.9) was not different between 

the three treatments. Burst durations (Burst 1 - 3) were not different (Fig 5.2) 

between control, creatine- and RibAde-treated slices  (Table 5.1; Burst 1: One-way 

ANOVA, p = 0.848; F (2,83) = 0.166; creatine, n = 24; control, n = 32; RibAde, n = 30 

slices); (Burst 2: One-way ANOVA, p = 0.150; F (2,65) = 1.954; creatine, n = 19; 

control, n = 22; RibAde, n = 27 slices); (Burst 3: One-way ANOVA, p = 0.883; F 

(2,51) = 0.124; creatine, n = 15; control, n = 17; RibAde, n = 22 slices).  

Combined with the adenosine release data in chapter 4, the data burst duration data 

suggests that there may not be a relationship between burst-dependent release of 

adenosine and the length of a seizure. It may be possible that an increase in the 

release of adenosine observed during burst 1 might change the other seizure 

parameters such as the intensity and/or the frequency of seizures.  

 

 

 

 

Table 5.1. Summary of burst 1-3 durations. Measurements made in creatine, 
control and RibAde-treated slices. Data shown as mean ± SEM; n = 15-32 slices. 

Burst number Burst duration 
Creatine (s) Control (s) RibAde (s) 

1 45.8 ± 5.5 
(n = 24) 

45.1 ± 5.5 
(n = 32) 

49.0 ± 4.5 
(n = 30) 

2 29.0 ± 3.6 
(n = 19) 

30.8 ± 3.8 
(n = 22) 

38.6 ± 3.8 
(n = 27) 

3 20.6 ± 3.4 
(n = 15) 

23.0 ± 3.9 
(n =17) 

49.0 ± 2.8 
(n = 22) 
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 Figure 5.2. Modulation of intracellular ATP does not influence burst duration. 
The length of bursting activity induced with 50 µM 4-aminopyridine was not 
different across groups. Note the burst-dependent decreases in the length of seizures, 
which is common amongst all treatments. Individual symbols represent slices; mean 
is shown as the central line, box as ± SD and whiskers 5-95% confidence limits. 
Burst 1: creatine, n = 24; control, n = 32, RibAde, n = 30. Burst 2: creatine, n = 19; 
control, n = 22; RibAde, n = 27. Burst 3: creatine, n = 15; control, n = 17; RibAde, n 
= 22.  
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5.2.3. RibAde pre-treatment reduced seizure spiking 

intensity 

To test whether there is a relationship between adenosine release and seizure 

intensity the inter spike interval (ISI) was measured. Although the durations of the 

seizure bursts were not different between treatments (Fig 5.2), seizure spiking 

intensity was significantly reduced (increased ISI) in RibAde-treated slices (Fig 5.3; 

Table 5.2) compared to creatine slices during burst 1 (Fig 5.3 A-B; Kolmogorov-

Smirnov test: Burst 1: p < 0.0001; D = 0.53; Z = 1.95; creatine, n = 24; RibAde, n = 

30 slices) and burst 2; (Fig 5.3 C-D; Kolmogorov- Smirnov test: Burst 2: p = 0.003; 

D = 0.52; Z = 1.72; creatine, n = 19; RibAde, n = 27 slices). The Inter Spike Interval 

of control slices was broadly intermediate to the ISI of creatine- and RibAde-treated 

slices and was not significantly different compared to creatine- and RibAde-treated 

slices during burst 1 (Kolmogorov-Smirnov test: creatine vs. control, p = 0.36; D = 

0.24; Z = 0.89; RibAde vs. control, p = 0.11; D = 0.29; Z = 1.16; control, n = 32 

slices) and burst 2 (Kolmogorov-Smirnov test: (creatine vs. control, p = 0.16; D = 

0.33; Z = 1.07; RibAde vs. control, p = 0.16; D = 0.31; Z = 1.07; control, n = 22 

slices).  

In addition, no difference in Inter Spike Interval was observed during burst 3 

(creatine, n = 15; control, n = 7; RibAde, n = 22 slices) between treatments (Fig 5.3 

E-F; Kolmogorov-Smirnov test: creatine vs. control, p = 0.82; D = 0.20; Z = 0.58; 

RibAde vs. control, p = 0.86; D = 0.18; Z = 0.55; creatine vs. RibAde, p = 0.45; D = 

0.27; Z = 0.80). 

These data suggest that the differences in the release of adenosine found in RibAde- 

and creatine-treated slices produce differential effects on the intensity of seizures. In 

contrast to RibAde-treated slices, when adenosine levels are reduced as measured in 
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creatine slices, there is less inhibition of neuronal excitability resulting in an increase 

in spiking intensity. 

 

Table 5.2. Summary of Kolmogorov-Smirnov test for the inter spike interval of 
burst 1-3. **p < 0.01; ***p < 0.001 compared to RibAde; n = 9-32. 
Kolmogorov-
Smirnov test Burst number 

1 2 3 

Creatine vs. 
Control 

p = 0.36 
D = 0.24 
Z = 0.89 

p = 0.16 
D = 0.33 
Z = 1.07 

p = 0.82 
D = 0.20 
Z = 0.58 

Creatine vs. 
RibAde 

p < 0.0001*** 
D = 0.53 
Z = 1.95 

p = 0.003** 
D = 0.52 
Z = 1.72 

p = 0.45 
D = 0.27 
Z = 0.80 

RibAde vs. 
Control 

p = 0.11 
D = 0.29 
Z = 1.16 

p = 0.16 
D = 0.31 
Z = 1.07 

p = 0.86 
D = 0.18 
Z = 0.55 
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Figure 5.3. Modulation of adenosine release influences seizure intensity. Burst 1 
(A-B) cumulative probability (A) and histogram of the frequency counts (B) of the 
Inter Spike Interval was reduced (increased spiking frequency) in slices pre-treated 
with RibAde compared to creatine-treated slices (increased spiking frequency). 
Similarly, during burst 2 (C-D), slices treated with creatine showed increased 
spiking frequency compared to RibAde-treated slices. No difference in the Inter 
Spike Interval during burst 3 (E-F) was found. Control slices were not found to be 
significantly different in spiking frequency to creatine or RibAde-treated slices. For 
cumulative probability plots, individual symbols represent a slice. Burst 1: creatine, 
n = 24; control, n = 32, RibAde, n = 30. Burst 2: creatine, n = 19; control, n = 22; 
RibAde, n = 27. Burst 3: creatine, n = 15; control, n = 17; RibAde, n = 22.  Data 
shown as the mean ± SEM. Significances indicated by ***p < 0.001 and **p < 0.01.  
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5.2.4. Influence of adenosine A1 receptor antagonism on 

spiking intensity 

The adenosine A1 receptor antagonist CPT (1 µM) was added to slices after 3 bursts, 

which disrupted synchronous bursting and produced continuous spiking activity at a 

slower rate (Fig 4.3A). Here, analysis of ISI was restricted to slices showing 3 bursts 

and the effect of CPT on ISI was measured over durations identical to that of the 

preceding Burst 3. Challenge with CPT reduced (Fig 5.4) spiking intensity in control 

slices (0.19 ± 0.02 sec in burst 3 and 0.98 ± 0.22 sec in CPT; paired t-test: p = 0.001; 

t (22) = -3.63; Burst 3 = 12 slices; CPT = 12 slices) and RibAde-treated slices (0.23 ± 

0.03 sec in burst 3 and 1.64 ± 0.52 sec in CPT for RibAde slices; paired t-test: p = 

0.013; t (20) = -2.71; Burst 3 = 11; CPT = 11 slices).  

Surprisingly, application of CPT in creatine slices (Fig 5.4 top panel) did not result in 

any significant change in ISI compared to burst 3 (0.21 ± 0.02 sec in burst 3 and 1.21 

± 0.53 in CPT; t-test: p = 0.080; t (12) = -1.91; Burst 3 = 7; CPT = 7 slices). 
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Figure 5.4. Effect of antagonism of the adenosine A1 receptor on inter spike 
interval. During continuous spiking activity induced by 1 µM 8-
cyclopentyltheophylline (CPT) the Inter Spike Interval in control (middle panel) and 
RibAde-treated slices (bottom panel) was increased. Only slices showing 3 bursts 
were used for these comparisons and the duration of activity in CPT over which 
measurements of ISI were made was identical to that of the preceding burst 3. The 
Inter Spike Interval in CPT was not different in creatine-treated slices (top panel). 
Burst 3: creatine, n = 7; control, n = 12; RibAde, n = 11. CPT: creatine, n = 7; 
control, n = 12; RibAde, n = 11. Individual symbols represent slices; mean is shown 
as the central line, box as ± SD and whiskers 5-95% confidence limits. Significances 
indicated by **p < 0.01 and *p < 0.05. 

Creatine 

Control 

RibAde 
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5.2.5. Assessment of the effect RibAde and creatine pre-

treatment on seizure frequency 

To further test whether creatine and RibAde had an effect on the rate at which 

bursting occurred, the Inter Burst Interval was measured (Fig 5.5). The time of 

occurrence of burst 2 (Inter Burst Interval 1) in RibAde slices was delayed (107.8 ± 

9.3 sec) compared to creatine-treated (61.19 ± 7.38 sec; Post-hoc Bonferroni: p < 

0.0001) and control slices (76.5 ± 5.8 sec; Post-hoc Bonferroni: p = 0.018; creatine, n 

= 19; control, n = 22; RibAde, n = 27 slices; One-way ANOVA: p < 0.0001; F (2,65) = 

8.983)  

Similarly, the time to burst 3 (Inter Burst Interval 2) was increased (One-way 

ANOVA: p = 0.008; F (2,50) = 5.398; creatine, n = 15; control, n = 17; RibAde, n = 22 

slices) in RibAde slices (93.2 ± 8.4 s) compared to creatine (63.88 ± 7.59 sec; Post-

hoc Bonferroni: p = 0.031) and control slices (63.5 ± 5.8 sec; Post-hoc Bonferroni: p 

= 0.019). These data are consistent with the idea that there is a role for adenosine in 

regulating the timing of seizure activity. 
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 Figure 5.5. Modulation of intracellular ATP and adenosine release influences 
the onset of seizure activity. The time to burst 2 (Burst Interval 1) was greatly 
reduced in creatine-treated (n = 19) and control (n = 22) slices compared to RibAde-
treated slices (n = 27). Similarly, the time to burst 3 (Burst Interval 2) was reduced 
in creatine-treated (n = 14) and control (n = 17) slices compared to RibAde-treated 
slices (n = 22). Individual symbols represent slices; mean is shown as the central 
line, box as ± SD and whiskers 5-95% confidence limits. Significances indicated by 
****p < 0.001 and *p < 0.05.  
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5.2.3. Assessment of the role of the adenosine A2A receptor 

in regulating seizure parameters 

In RibAde-treated slices during initial washout of Mg2+ from slices an increase in the 

number of spontaneous seizures (25%) compared to (19%) in creatine and (6%) in 

control slices. It is possible that these observations are due to the activation of the 

adenosine A2A receptors, as studies have shown that these receptor subtypes show 

mild pro-convulsive behaviour in nominally Mg2+-free aCSF when seizure activity 

was induced electrically (Etherington and Frenguelli, 2004). To further investigate if 

this increase in excitation was due to an adenosine A2A receptor component the 

selective antagonist 50 nM SCH 58261 (SCH) was used. SCH is a potent and 

selective non-xanthine A2A adenosine receptor antagonist (Ki = 1.3 nM) in in vitro 

slice preparations and a concentration at 50 nM has been shown to effectively block 

the A2AR in a number of preparations (Marcoli, et al., 2003; Melani, et al., 2003; 

Stone, 2002; Zocchi, et al., 1996). RibAde-treated and control slices were pre-

incubated for 10 minutes in 50 nM SCH. After 10 minutes, 50 µM 4-AP + SCH was 

perfused to induce seizures. 

 

5.2.3.1. Assessment of the role adenosine A2A receptors play in the 

regulation of seizure length and frequency 

Pre-incubation of slices with 50 nM SCH (Table 5.3), had no effect on burst duration 

(Fig 5.6A; One-way ANOVA: p = 0.387; F (3,83) = 1.021; control, n = 32; control + 

50 nM SCH, n = 14; RibAde, n = 30; RibAde + 50 nM SCH, n = 11 slices); (Burst 2: 

One-way ANOVA:  p = 0.378; F (3,64) = 1.047; control, n = 22; control + 50 nM 

SCH, n = 11; RibAde, n = 27; RibAde + 50 nM SCH, n = 8 slices); (Burst 3: One-
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way ANOVA p = 0.611; F (3,46) = 0.612; control, n = 17; control + 50 nM SCH, n = 

6; RibAde, n = 22; RibAde + 50 nM SCH, n = 5 slices). 

 

Antagonism of slices with 50 nM SCH did not affect the timing of bursting seizure 

activity (Fig 5.6 B; Table 5.4). The time to Burst Interval 1 was longer in RibAde-

treated slices (Post-hoc Bonferroni, p = 0.043) compared to control slices (One-way 

ANOVA: p = 0.021; F (3,64) = 3.489; control, n = 22; control + 50 nM SCH, n = 11; 

RibAde, n = 27; RibAde + 50 nM SCH, n = 8 slices). 

Burst Interval 2 was not significantly different (One-way ANOVA: p = 0.051; F (3,46) 

= 2.794; control, n = 17; control + 50 nM SCH, n = 11; RibAde, n = 22; RibAde + 50 

nM SCH, n = 8 slices) although a trend for a increase in the time to burst 3 was 

observed for RibAde-treated slices compared to control slices (Post-hoc Bonferroni: 

p = 0.053). 

 

 

 

Table 5.3. Summary of the effect of SCH 58261 on burst duration. 
Measurements made in control and RibAde-treated slices; n = 11-32 slices; Data 
shown as mean ± SEM. 

Burst 
duration 

Control  
(s) 

Control +  
SCH (s) 

RibAde  
(s) 

RibAde + 
SCH (s) 

1 45.12 ± 5.53 
(n = 32) 

39.08 ± 6.75 
(n = 14) 

49.01 ± 4.49 
(n = 30) 

34.21 ± 5.18 
(n = 11) 

2 30.79 ± 3.75 
(n = 22) 

28.84 ± 5.30 
(n = 11) 

38.64 ± 3.77 
(n = 27) 

26.56 ± 6.19 
(n = 8) 

3 23.05 ± 3.86 
(n = 17) 

26.56 ± 6.19 
(n = 6) 

22.42 ± 2.80 
(n = 22) 

15.19 ± 4.908 
(n = 5) 
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Table 5.4. Summary of the effects of SCH 58261 on inter burst interval. 
Measurements made in control and RibAde-treated slices. One-way ANOVA: *p 
< 0.05 compared to RibAde-treated slices; n = 8-27 slices. Data shown as mean ± 
SEM. 

Burst 
Interval Control (s) Control + 

SCH (s) RibAde (s) RibAde + SCH 
(s) 

1 76.53 ± 5.84* 

(n = 22) 
86.14 ± 11.2 

(n = 11) 
107.79 ± 9.32 

(n = 27) 
115.25 ± 11.67 

(n = 8) 

2 63.50 ± 5.85 
(n = 17) 

82.15 ± 16.40 
(n = 6) 

93.23 ± 8.36 
(n = 22) 

65.42 ± 11.39 
(n = 5) 
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 Figure 5.6. Assessment of the effects of the adenosine A2A receptor on burst 
duration and frequency. Pre-incubating slices with the adenosine A2A receptor 
antagonist SCH 58261 (SCH; 50 nM) did not influence the length of bursts (A) 
(Burst 1: control, n = 32, control + SCH, n = 14; RibAde, n = 30; RibAde + SCH, n 
= 11. Burst 2: control, n = 22; control + SCH, n = 11; RibAde, n = 27, RibAde + 
SCH, n = 8. Burst 3: control, n = 17; control + SCH, n = 6; RibAde, n = 22; RibAde 
+ SCH, n = 5). Burst 2 frequency (B) in control slices (n = 22) was higher compared 
to RibAde-treated (n = 27) slices. Control + SCH (n= 11) was not different in the 
frequency of seizures compared to control slices. Similarly, frequency of seizures in 
RibAde + SCH  (n = 8) slices was not different to RibAde-treated slices. Individual 
symbols represent slices; mean is shown as the central line, box as ± SD and 
whiskers 5-95% confidence limits. Significances indicted by *p < 0.05. 
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5.2.3.2. Assessment of the role adenosine A2A receptors play in the 

regulation of seizure intensity 

The Inter Spike Interval of control + SCH slices during burst 1 was found to be 

increased (Fig 5.7 A-B; Table 5.5) compared to control slices (Kolmogorov-Smirnov 

test: p = 0.039; D = 0.43; Z = 1.34; control, n = 32; control + 50 nM SCH, n = 14 

slices). RibAde + SCH slices were not different to RibAde slices (Kolmogorov-

Smirnov test: p = 0.424; D = 0.29; Z = 0.82; RibAde, n = 30; RibAde + 50 nM SCH, 

n = 11 slices). Similarly, Control + SCH vs. RibAde + SCH was not different 

(Kolmogorov-Smirnov test: p = 0.579; D = 0.23; Z = 0.72; control + 50 nM SCH, n 

= 14; RibAde + 50 nM SCH, n = 11 slices). No differences were found during burst 

2 (Fig 5.7 C-D; Kolmogorov-Smirnov test: control vs. control + SCH, p = 0.271; D = 

0.36; Z = 0.99; RibAde vs. RibAde + SCH, p = 0.575; D = 0.29; Z = 0.73; control + 

SCH vs. RibAde + SCH, p = 0.87; D = 0.25; Z = 0.54; control, n = 22; control + 50 

nM SCH, n = 11; RibAde, n = 27; RibAde + 50 nM SCH, n = 8 slices) or burst 3 

(Fig 5.7 E-F; Kolmogorov-Smirnov test: control vs. control + SCH, p = 0.126; D = 

0.53; Z = 1.15; RibAde vs. RibAde + SCH, p = 0.500; D = 0.37; Z = 0.75; control + 

SCH vs. RibAde + SCH, p = 0.591; D = 0.43; Z = 0.72; control, n = 17; control + 50 

nM SCH, n = 6; RibAde, n = 22; RibAde + 50 nM SCH, n = 5 slices).  

In summary, the SCH data shows that pre-incubating slices with the adenosine A2A 

receptor antagonist SCH 28561 for 10 minutes did not influence seizure activity in 

RibAde-treated slices. However, in control slices SCH was found to reduce spiking 

intensity in a time-dependent manner, whereby only the first burst was influenced by 

A2A antagonism. These data suggest that under normal conditions, the adenosine A2A 

receptors may play an excitatory role in the sense of promoting increased spiking 

intensity. 
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Table 5.5. Summary of Kolmogorov-Smirnov test for the inter spike interval 
of burst 1-3 with SCH 58261. *p < 0.05 compared to control; n = 5-32. 

Kolmogorov-
Smirnov test Burst number 

1 2 3 

Control + SCH 
vs. Control 

p = 0.04* 
D = 0.43 
Z = 1.34 

p = 0.27 
D = 0.36 
Z = 0.99 

p = 0.13 
D = 0.53 
Z = 1.15 

RibAde + SCH 
vs. RibAde 

p = 0.42 
D = 0.29 
Z = 0.82 

p = 0.58 
D = 0.29 
Z = 0.73 

p = 0.5 
D = 0.37 
Z = 0.75 

Control + SCH 
vs. RibAde + 

SCH 

p = 0.58 
D = 0.23 
Z = 0.72 

p = 0.87  
D = 0.25 
Z = 0.54 

p = 0.59 
D = 0.43 
Z = 0.72 
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 Figure 5.7. Assessment of the effects of partial inhibition of the adenosine A2A 
receptor on seizure intensity. Pre-incubating slices with 50 nM SCH 59261 (SCH), 
an adenosine A2A receptor antagonist, reduced (A-B) the inter-spike-interval in 
control+ SCH (grey line and symbols) compared to control slices (black lines and 
symbols) during burst 1 cumulative probability (A) and histogram of the frequency 
counts (B) of the Inter Spike Interval. In contrast, during burst 2 (C-D) and burst 3 
(E-F) no difference was found. (Burst 1: control, n = 32, control + SCH, n = 14; 
RibAde, n = 30; RibAde + SCH, n = 11. Burst 2: control, n = 22; control + SCH, n = 
11; RibAde, n = 27, RibAde + SCH, n = 8. Burst 3: control, n = 17; control + SCH, 
n = 6; RibAde, n = 22; RibAde + SCH, n = 5). Data shown as mean ± SEM and 
significances indicted by *p < 0.05. 
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5.3. Discussion 
In summary these data show that pre-treating slices with RibAde and creatine has a 

measurable consequence on seizure frequency and intensity. 

 

5.3.1. Effect of RibAde and creatine on basal synaptic 

transmission 

In support of what has been shown (zur Nedden, et al., 2014; zur Nedden, et al., 

2011) RibAde and creatine pre-treatment does not affect basal neuronal transmission. 

These data suggest that under conditions where intracellular ATP are recovered close 

to in vivo levels with RibAde or where the degradation of ATP is buffered with 

creatine, there is no increase in basal adenosine tone, and low-frequency stimulation 

of afferent fibres does not result in the release of adenosine into the extracellular 

space. This would be expected to cause activation of presynaptic adenosine A1Rs, 

inhibition of glutamate release and hence result in a decrease in the probability of 

release and an increase in paired-pulse facilitation. Similarly, in slices incubated for 

2 hours with RibAde although adenosine release was increased during theta burst 

stimulation no difference in long-term potentiation was found (zur Nedden, et al., 

2011). It may also be possible that other non-neuronal regulatory stimuli such as 

astrocytic adenosine kinase (ADK) may play a role in modulating adenosine release 

and synaptic transmission. Studies have shown that mutant ADK mice showed larger 

facilitation when ADK was under expressed compared to wildtype mice and mutant 

ADK with an over expression of ADK (Diógenes, et al., 2014). These researchers 

also showed that mice under expressing ADK showed greater adenosine release 

using biosensors and longer post- theta burst stimulation depression of synaptic 



 145 

transmission and weaker potentiation of the fEPSP compared to wildtype mice. In 

contrast, mice over expressing ADK showed brief transient depression of the fEPSP 

and lower levels of adenosine release. This research provides evidence for the role of 

ADK to regulate the degree of tonic adenosine- dependent synaptic inhibition. 

 

5.3.2. Pre-treatment of slices with RibAde reduces the 

intensity and frequency of seizures 

Pre-treating slices with RibAde, as opposed to creatine, resulted in the reduction in 

the intensity and frequency of seizures. In contrast, creatine pre-treatment increased 

the frequency and intensity of seizures. Similar to what has been previously shown 

my data suggest that adenosine may play a role in the temporal regulation of seizures 

(Lopatář, et al., 2015).  

 

In the literature, creatine has been shown to have both anticonvulsant and pro-

convulsant properties. Although creatine administration has been shown to be well 

tolerated in both humans (Gualano, et al., 2011c) and rodents (Rebaudo, et al., 2000; 

Zhu, 2004) continuous dosing for prolonged periods of time (weeks) is needed 

(Dechent, et al., 1999; Lyoo, et al., 2003). This is because, uptake of creatine occurs 

against a large concentration gradient across the blood-brain barrier where an inverse 

relationship exists between intracellular creatine concentration and creatine uptake 

(Dodd, et al., 1999). Following administration of creatine, extracellular 

concentrations increases, this leads to an initial intracellular rise followed by a down 

regulation in creatine concentration. In order to main high levels of intracellular 



 146 

pools of creatine continuous administration of creatine is needed to raise brain 

creatine levels.  

Acute application and creatine supplementation has been shown to be protective 

against pentylenetetrazol-induced (Rambo, et al., 2013; Rambo, et al., 2009) and L-

methylmalonic acid- induced seizures (Royes, et al., 2003). In comparison, creatine 

supplementation failed to protect against seizure susceptibility after traumatic brain 

injury (Saraiva, et al., 2012) and seizure activity was blocked in creatine kinase 

knockout mice (CK-/-) suggesting that creatine may play a convulsive role (Streijger, 

et al., 2010). The authors in the Streijger (2010) study suggest that creatine causes 

seizures. However, given my results I believe that it is the reduced availability of 

adenosine in the (CK-/-) mice that is at fault in creatine causing seizures.  

In contrast to the evidence, which supports the use of creatine as an anticonvulsant 

my experiments shows that creatine has convulsant tendencies. Of the three 

treatments the tendency towards convulsant activity during 4-AP-induced 

epileptiform activity is creatine > control > RibAde. This is likely due to the reduced 

release of adenosine observed in creatine slices, which would result in less activation 

and resultant inhibitory effects mediated by the adenosine A1Rs. The differences 

reported here and in experiments where creatine was found to be protective might be 

due to the length of pre-treatment tested in this thesis (3 hours) and those that report 

anticonvulsive effects after acute challenge with creatine (30 and 45 minutes) and 

creatine supplementation (45 minutes, 5 times a week for 5 weeks). With regards to 

the acute in vivo studies it might be possible that during 30-45 minutes there is a rise 

in intracellular creatine concentration capable of producing the short-term effects 

reported (Rambo, et al., 2013; Royes, et al., 2003). It can be argued that after 3 hours 

incubation in creatine the intracellular creatine concentrations may have returned to 
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baseline. Similarly, the continuous oral administration used in (Rambo, et al., 2009) 

is similar to dosage regime used in humans (Gualano, et al., 2011a; Gualano, et al., 

2011b; Gualano, et al., 2011c) that is successfully raises creatine concentration high 

enough to see appreciable effects.  

 

5.3.3. Influence of A1 and A2A receptors on seizure activity 

The activation of the adenosine A1Rs is associated with the inhibition of the release 

of many neurotransmitters where the most prominent inhibitory actions are generally 

on excitatory glutamatergic systems. In regards to epilepsy, increases in the levels of 

glutamate in both humans and rodents has been found been reported (During and 

Spencer, 1993; Ronne-Engström, et al., 1992; Wilson, et al., 1996), therefore 

inhibition of the glutamatergic systems may be a useful tool in the treatment of 

epilepsy. 

Antagonism of the A1Rs receptors would result in a loss of the inhibitory effects of 

the A1Rs. Here we found that application of the adenosine A1R antagonist 8-CPT (1 

µM) disrupted the synchronous bursting seizure activity observed in 4-AP, 

suggesting that the adenosine A1Rs maybe involved in the timing of seizure activity, 

possibly through its presynaptic inhibition of excitatory neurotransmitter release.  

Bursting, and the energy use associated with this neuronal spiking activity, results in 

breakdown of ATP and release of adenosine into the extracellular space. Adenosine 

can reach the extracellular space either through exocytosis of ATP, and extracellular 

breakdown of ATP by ectonucleotidases to adenosine, or directly, along its 

concentration gradient via ENTs. Under standard conditions extracellular adenosine 

binds the A1R and exerts negative feedback on network activity by hyperpolarising 

cells, and reducing release probability pre-synaptically, as described above. 
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However, extracellular adenosine concentrations are tightly regulated; importantly, 

the extracellular enzyme ecto-adenosine deaminase rapidly metabolises adenosine to 

inosine, and adenosine also diffuses through ENTs back into the intracellular space. 

Following clearance of extracellular adenosine, the network can return to the 

bursting state and thus the feedback loop continues. However, following application 

of the A1R antagonist CPT, this adenosine negative feedback loop is disrupted, and 

adenosine only influences network activity when extracellular adenosine 

concentrations are sufficient to out-compete this competitive antagonist, which 

contributes to the continuous spiking observed in CPT. 

To further assess the difference in the intensity of seizures in CPT and 4-AP the ISI 

during burst 3 and CPT (duration adjusted to burst 3) were calculated. The results 

showed that the ISI during CPT in control and RibAde was increased (reduced 

intensity) whereas no difference in ISI was found for creatine. These results are in 

contrast to what is expected for the actions of CPT on seizure intensity. It would be 

expected that an inhibition of the adenosine A1R with CPT should result in an 

increase in the intensity of seizures as measured by a reduction in ISI measurements 

as well as a reduction in the number of spikes per unit time as reported in (Lopatář, et 

al., 2015). Here surprisingly, the opposite was found where the intensity of seizures 

as measured by the ISI was reduced in CPT, similar to the actions of CPT on seizures 

induced by the Group I metabotropic glutamate receptor agonist DHPG (Lopatář, et 

al., 2015). CPT produced continuous spiking activity, which might be expected to be 

associated with additional load on neurons and glial cell. CPT also resulted in an 

increase in the release of adenosine compared to that measured directly before (Table 

4.1 and 4.2). Given that the amounts of adenosine present in slices during CPT was 

greater than 1 µM´ s this might be sufficient to compete with the actions of 1 µM 
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CPT, given that CPT has a greater affinity for the A1R, and thereby reduce the 

antagonism effects of CPT on ISI. In creatine treated slices where adenosine release 

was reduced this provided less completion with CPT, which did not result in any 

difference in CPT, related ISI. 

In the hippocampus the A1Rs are the most abundant subtypes and adenosine acts with 

high affinity at these receptor (Burnstock, 2013; Fredholm, 2011b; Masino and 

Boison, 2013; Sebastião and Ribeiro, 2009). The A2 and the A3Rs are also found in 

the hippocampus but are sparsely distributed. A2Rs are expressed in GABAergic 

neurons and activation of these in particular the A2ARs, is generally associated with 

the increase in excitatory effects (Burnstock, 2013; Fredholm, 2011b; Masino and 

Boison, 2013; Sebastião and Ribeiro, 2009). An increase in spontaneous seizures 

during initial washout of Mg2+ from RibAde-treated slices was observed. To 

investigate whether this response was due to an excitatory A2AR response slices were 

pre-treated for 10 minutes with the competitive A2A antagonist SCH 58261. In my 

data adenosine A2ARs do not appear to play a significant role in the regulation of 

seizure activity in RibAde-treated slices. It may be possible that the adenosine effects 

in these slices were predominantly on A1Rs and that minor effects on the A2ARs 

could have been obscured. In control slices however, the adenosine A2ARs appear to 

play a role in the regulation of the intensity of seizures (Fig 4.12) suggesting that the 

adenosine A2ARs may play an excitatory role in the sense of promoting increased 

spiking intensity under normal conditions. These data are similar to studies where the 

A2ARs were found to be midly pro-convulsive in electrically evoked seizure activity 

in Mg2+-free aCSF (Etherington and Frenguelli, 2004).  
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In summary, these data suggest that pre-incubating slices for 3 hours with RibAde 

followed by washout out of RibAde from slices in normal aCSF was sufficient to 

influence extracellular release of adenosine and thus influence brief seizure activity 

(20-50s). The appearance of even brief seizures is enough to deplete intracellular 

energy stores needed to generate seizures and contributes to the release of adenosine. 

The release of adenosine greatly influenced seizure activity, whereby an increase in 

adenosine as seen in RibAde-treated slices resulted in a reduction in both seizure 

intensity and frequency. In comparison, pre-treating slices with creatine resulted in a 

reduction in adenosine release, which contributed to an increase in seizure intensity 

and frequency.  

These experiments make the assumption that in RibAde-treated slices intracellular 

ATP is broken down intracellularly to form adenosine, which is then released into 

the extracellular space where adenosine carries out its inhibitory effects. Therefore, 

in the next chapter I will further investigate whether the activity-dependent release of 

adenosine measured in RibAde-treated slices arises from intracellular pools of 

adenosine. 
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6.1. Introduction 

In chapter 4 I showed that it is possible to increase the activity-dependent release of 

adenosine and reduce seizure intensity and frequency by pre-treating slices with 

RibAde. In the present chapter, I will further investigate whether extracellular 

adenosine, as measured with biosensors, is released as adenosine per se. 

Additionally, I will test whether ‘trapping’ intracellular adenosine reverses the effect 

of RibAde on seizure intensity, frequency and duration. This will be achieved by 

using homocysteine thiolactone (HTL; 100 µM) to ‘trap’ intracellular adenosine in 

the form of S-adenosylhomocysteine thiolactone (SAHTL).  

Adenosine is not only a breakdown product of ATP, but can also be made via the 

transmethylation pathway (chapter 1.8.2.). In this pathway the methyl donor S-

adenosylmethio nine (SAM) is synthesized from methionine and ATP by methionine 

adenosyltransferase (MAT). SAM is further converted to S-adenosylhomocysteine 

(SAH) by the actions of themethyltransferases. SAH can be further hydrolysed to 

adenosine and homocysteine by the cytosolic enzyme SAH hydrolase (Cantoni, et 

al., 1989; Lloyd, et al., 1988; Lloyd, et al., 1993; Mandaviya, et al., 2014; McIlwain 

and Poll, 1985; McIlwain and Poll, 1986; Schatz, et al., 1983). When adenosine and 

homocysteine levels are high this reaction is reversed, promoting SAH synthesis. 

Perfusing slices with HTL increases intracellular HTL levels, which drives the SAH 

hydrolase reaction towards the production of SAHTL. This means that intracellularly 

formed adenosine is synthesised to SAHTL and ‘trapped’ within the cell, effectively 

reducing intracellular levels of adenosine (Lloyd, et al., 1993; McIlwain and Poll, 

1986). L-HTL (0.1- 1.0 mM) was found to significantly (75-80%) reduce both basal 

and electrically evoked release of adenosine in rat hippocampal slices (Lloyd, et al., 

1993; McIlwain and Poll, 1985), as well as reducing the release of adenosine during 



 153 

ischemia (Frenguelli, et al., 2007). HTL (0.3 mM) not only diminishes tissue content 

of adenosine but also its breakdown products inosine and hypoxanthine (McIlwain 

and Poll, 1986). 

The application of HTL can have pro-convulsive activity in cortical tissue 

(Folbergrová, 1974; Folbergrová, 1981). HTL has been used in vivo to induce 

differing types of seizures in rat models (Stanojlović, et al., 2008). The increase in 

convulsive behaviour is not well understood but it is believed that it may be due to a 

number of reasons including: (i) changes in adenosine concentration that is 

diminished through the formation of SAH (McIlwain and Poll, 1986), (ii) activation 

of NMDA receptor activity (Rašić-Marković, et al., 2011), or (iii) inhibition of 

Na+/K+-ATPase activity (Rašić-Marković, et al., 2009).  

In this chapter I will show that ‘trapping’ intracellular adenosine with HTL does not 

result in significant changes in activity-dependent release of adenosine. Additionally, 

although adenosine release was not different, HTL did influence the intensity and 

frequency of seizures. 
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6.2. Results 

6.2.1.1. Effect of homocysteine thiolactone on activity-

dependent release of adenosine 

In this chapter I will test whether application of HTL will reduce the release of 

adenosine in RibAde-treated and control slices. Figure 6.1 shows the mean adenosine 

release during initial washout of Mg2+ from the slice (0 mM Mg2+ aCSF; control, n = 

11; control/HTL, n = 6; RibAde, n = 13; RibAde/HTL, n = 9 slices), during bursting 

seizures in 50 µM 4-aminopyridine (4-AP; control, n = 11; control/HTL, n = 6; 

RibAde, n = 13; RibAde/HTL, n = 9 slices) and during challenge with the adenosine 

A1 receptor antagonist CPT (1 µM; control, n = 8; control/HTL, n = 6; RibAde, n = 

12; RibAde/HTL, n = 9 slices). CPT was added after the presentation of three bursts 

or after 10 minutes in 4-AP, in Fig 5.2 a break in the traces is used to represent this.  

HTL treatment was found to be pro-convulsive in these experiments. Here, 

spontaneous seizures in 0 mM Mg2+ aCSF occurred in 50% of control/HTL (n = 20), 

24% in RibAde/HTL (n = 32), 6% in control slices (n = 33) and 25% (n = 29) in 

RibAde-treated slices. 
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 Figure 6.1. Effect of homocysteine thiolactone activity-dependent release of 
adenosine in rat hippocampal slices. Adenosine release in 0 mM magnesium 
(Mg2+) artificial cerebrospinal fluid (aCSF), during 50 µM 4-aminopyridine (4-AP) 
induced seizures and challenge with 1 µM 8-cylopentyltheophylline (CPT), the 
adenosine A1 receptor antagonist. Note the non-significant increase adenosine 
release in control/HTL (-) during Mg2+-free aCSF, which was associated with 
spontaneous seizures (visible on the sensor trace). This increase in spontaneous 
seizures was absent in RibAde/HTL (-) slices. Dotted line represents baseline prior 
to washout of Mg2+ from slices. Control, n = 11; control/HTL, n = 6; RibAde, n = 
13; RibAde/HTL, n = 9 slices. Data shown is average of recordings made from these 
6-13 slices shown as mean ± SEM. 
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6.2.1.2. Assessment of the influence of homocysteine thiolactone on 

activity-dependent release of adenosine 

Area under the curve measurements showed no significant differences (Fig 6.2A; 

Table 6.1) in adenosine release were found in Mg2+-free aCSF (One-way ANOVA, p 

= 0.154; F (3,34) = 1.863; control, n = 11; control/HTL, n = 6; RibAde, n = 13; 

RibAde/HTL, n = 9 slices). 

No significant difference during 4-AP-induced seizures was found (Fig 5.3B) (One-

way ANOVA, p = 0.060; F (3,34) = 2.717; control, n = 11; control/HTL, n = 6; 

RibAde, n = 13; RibAde/HTL, n = 9 slices).  

In addition, no difference (Fig 5.3C) was also found in CPT (One-way ANOVA, p = 

0.586; F (3,31) = 0.654; control, n = 8; control/HTL, n = 6; RibAde, n = 12; 

RibAde/HTL, n = 9 slices) and for total release (One-way ANOVA, p = 0.071; F (3,35) 

= 2.556; control, n = 11; control/HTL, n = 6; RibAde, n = 13; RibAde/HTL, n = 9 

slices). 

 
 

 

Table 6.1. Integrated measurements of adenosine release for control, RibAde 
and HTL-treated slices. n = 6-13 slices. Data shown as mean ± SEM 

 Control  
(µM´ s) 

Control/HTL 
(µM´ s) 

RibAde  
(µM´ s) 

RibAde/HTL 
(µM´ s) 

0 mM 
Mg2+ 
aCSF 

0.20 ± 0.03 
(n = 11) 

0.54 ± 0.19 
(n = 6) 

0.44± 0.12 
(n = 13) 

0.29 ±0.05 
(n = 9) 

50 µM 4-
AP 

1.31 ± 0.30 
(n = 11) 

2.50 ± 0.64 
(n = 6) 

3.15 ± 0.53 
(n = 13) 

2.17 ± 0.53 
(n = 9) 

1 µM CPT 1.56 ± 0.21 
(n = 8) 

1.30 ± 0.19 
(n = 6) 

1.77 ± 0.31 
(n = 12) 

1.99 ± 0.44 
(n = 9) 

Total 
release 

2.85 ± 0.33 
(n =11 ) 

4.34 ± 0.77 
(n = 6) 

5.22 ± 0.75 
(n = 13) 

4.45 ± 0.74 
(n = 13) 
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 Figure 6.2. Integrated measurements of activity-dependent release of adenosine 
with homocysteine thiolactone. The integral of the area under the curve 
measurements of adenosine release in 15 minutes in magnesium (Mg2+)-free 
solutions (A), during a maximum of three 50 µM 4-aminopyridine (4-AP) induced 
seizures (B), application of the adenosine A1 receptor antagonist (C) 8-
cyclopentyltheophylline (CPT; 1 µM) and total adenosine release (D). There was no 
significant difference in the release of adenosine between control (n = 11), 
control/HTL (n = 6), RibAde-treated slices (n = 13) and RibAde/HTL (n = 9) slices. 
Individual symbols represent slices; mean is shown as the central line, box as ± SD 
and whiskers 5-95% confidence limits. 
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6.2.1.3. Assessment of the effects of homocysteine thiolactone on 

burst-dependent release of adenosine 

In these experiments, during burst 1 the release of adenosine was increased in 

RibAde-treated slices (Fig 6.3; Table 6.2; One-way ANOVA, p = 0.0005; F (3,35) = 

7.497) compared to control (Post-hoc Bonferroni, p = 0.004) and RibAde/HTL-

treated slices (Post-hoc Bonferroni, p = 0.001; control, n = 11; control/HTL, n = 6; 

RibAde, n = 13; RibAde/HTL, n = 9 slices). A trend for an increase in the amount of 

adenosine released during burst 1 in RibAde-treated slices was also observed 

compared to control/HTL-treated slices (Post-hoc Bonferroni, p = 0.051). 

No differences in adenosine release during burst 2 (One-way ANOVA, p = 0.106; F 

(3,30) = 2.222; control, n = 10; control/HTL, n = 5; RibAde, n = 12; RibAde/HTL, n = 

7) and burst 3 (One-way ANOVA, p = 0.167; F (3,21) = 1.861; control, n = 9; 

control/HTL, n = 3; RibAde, n = 9; RibAde/HTL, n = 4) were found. 

The biosensor data indicate that application of HTL to RibAde-treated slices does 

reduce burst 1-dependent release of adenosine close to levels measured in control 

slices. 

 

 

 

Table 6.2. Burst-dependent release of adenosine for control, RibAde and 
HTL-treated slices. One-way ANOVA: **p < 0.01 compared to RibAde-treated 

slices; n = 6-13 slices. Data shown as mean ± SEM 
Burst 

number 
Control  
(µM´ s) 

Control/HTL 
(µM´ s) 

RibAde 
(µM´ s) 

RibAde/HTL 
(µM´ s) 

1 0.66 ± 0.18** 
(n = 11) 

0.83 ± 0.32 
(n = 6) 

2.43 ± 0.51 
(n = 13) 

1.10 ± 0.24** 
(n = 9) 

2 0.79 ± 0.21 
(n = 10) 

1.00 ± 0.34 
(n = 5) 

1.12 ± 0.22 
(n = 12) 

1.04 ± 0.27 
(n = 7) 

3 0.56 ± 0.13 
(n = 9) 

0.54 ± 0.05 
(n = 3) 

0.40 ± 0.10 
(n = 9) 

0.49 ± 0.12 
(n = 4) 
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 Figure 6.3. Burst-dependent release of adenosine in rat hippocampal slices 
treated with homocysteine thiolactone. Release of adenosine was greatest during 
burst 1 in RibAde-treated slices (-) compared to control (-) and RibAde/HTL-treated 
slices (-). No significant differences were found between RibAde and control/HTL-
treated slices (-). Individual symbols represent slices; mean is shown as the central 
line, box as ± SD and whiskers 5-95% confidence limits. Significances indicated by 
**p < 0.01. 
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6.2.2. Effect of homocysteine thiolactone on basic neuronal 

excitability  

6.2.2.1 Influence of homocysteine thiolactone on basal synaptic 

transmission  

In the above section the ‘trapping’ of intracellular adenosine with HTL was 

investigated. In this section, I will describe the effect of HTL on basal synaptic 

transmission.  

One-way repeated measures analysis was performed on input/output curves (Fig 

6.4A) and a trend was observed (Multivariate test: p = 0.62; F (3,23) = 7.363; control, 

n = 56; control/HTL, n = 26; RibAde, n = 47; RibAde/HTL, n = 26). Pairwise 

comparison Bonferroni tests showed that at stimulus intensities of 250 and 300 µA 

the fEPSP slope of RibAde/HTL was increased (-1.50 ± 0.19 and -1.61 ± 0.21 

mV/ms; p < 0.05) compared to RibAde (-0.82 ± 0.07 and -0.89 ± 0.08 mV/ms).  

There was no difference in the peak amplitude of the fibre-volley at 300 µA (Fig 

6.4B; One-way ANOVA: p = 0.684; F (3,54) = 0.500; control, n = 17; control/HTL, n 

= 17; RibAde, n = 10; RibAde/HTL, n = 14).  

To test whether HTL had any effect on presynaptic probability of release I compared 

paired-pulse ratios of slices treated with HTL (control/HTL and RibAde/HTL) and 

with control and RibAde-treated slices. Surprisingly, paired-pulse facilitation was 

increased as measure by a reduction in the probability of release in RibAde/HTL 

slices (Fig 6.4C) compared to control (Post-hoc Bonferroni, p = 0.002) and RibAde-

treated slices (Post-hoc Bonferroni, p = 0.004).  

To further test the effect of HTL on synaptic transmission, the maximum fEPSP 

slope during washout of Mg2+ from slices was calculated and no difference was 
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found between the four treatments (Fig 6.4D; One-way ANOVA: p = 0.431; F (3,116) 

= 0.926; control, n = 50; control/HTL, n = 17; RibAde, n = 32; RibAde/HTL, n = 

20). 

Overall, treating slices with HTL has ambiguous effects on basal synaptic 

transmission. These data suggest that at lower stimulation intensities, the release at 

presynaptic terminals in RibAde/HTL is reduced. However, at higher stimulation 

intensities, an increase in outputs from afferent fibres was observed. 
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Figure 6.4. Basal synaptic transmission in slices treated with homocysteine 
thiolactone. Stepwise stimulation current increases were applied to slices to 
generate an input/output curve (A; top panel shows example potentials generated 
during the input/output curve). At intensities of 250 and 300 µA the field excitatory 
postsynaptic potential (fEPSP) was increased in RibAde/HTL (p < 0.05; n = 26) 
compared to RibAde-treated slices (n = 47). The peak amplitude of the fibre volley 
at 300 µA (B; (ô) in top panel) was not different (control, n = 17; control/HTL, n = 
17; RibAde, n = 10; RibAde/HTL, n = 14). The probability of release, where paired-
pulses were given 50 milliseconds apart (C; example fEPSPs are shown in the top 
panel) at stimulus intensities between 50-60% of the maximum intensity used during 
the input/output curve, was increased in RibAde/HTL slices compared to control 
and RibAde-treated slices (control, n = 47; control/HTL, n = 25; RibAde, n = 41; 
RibAde/HTL, n = 34). Slices were left to equilibrate and a baseline of 10 minutes 
was recorded, after which nominally magnesium-free artificial cerebrospinal fluid 
(zero Mg2+free aCSF; black bar in inset graph), was used as a means of increasing 
the excitability of the tissue (15 mins). The maximum field excitatory postsynaptic 
potential (fEPSP) slope during Mg2+-free aCSF (D; arrow head in inset graph) was 
also not different (control, n = 50; control/HTL, n = 17; RibAde, n = 32; 
RibAde/HTL, n = 20). A) Data shown as mean ± SEM; B-D) Individual symbols 
represent slices; mean is shown as the central line, box as ± SD and whiskers 5-95% 
confidence limits. Significances indicated by **p < 0.01 and ***p < 0.001. 
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6.2.3. Effect of homocysteine thiolactone on seizure 

parameters  

6.2.3.1 Assessment of the effects of homocysteine thiolactone on 

burst duration 

The ‘trapping’ of intracellular adenosine in the form of SAH with HTL did not affect 

burst 1 duration  (Fig 6.5; Table 6.3; One-way ANOVA: p = 0.919; F(3,94) = 0.178; 

control, n = 32; control/HTL, n = 16; RibAde, n = 30; RibAde/HTL, n = 20 slices).  

In addition, the length of seizures during burst 2 was also not different between the 

four treatments (One-way ANOVA: p = 0.087; F (3,74) = 2.275; control, n = 22; 

control/HTL, n = 13; RibAde, n = 27; RibAde/HTL, n = 16 slices).  

Similarly, no significance difference in the length of seizures was found during burst 

3 (One-way ANOVA: p = 0.065; F (3,56) = 2.547; control, n = 17; control/HTL, n = 9; 

RibAde, n = 22; RibAde/HTL, n = 12 slices). 

Table 6.3. Burst duration of control, RibAde and HTL-treated slices. n = 20-
32 slices. Data shown as mean ± SEM 
Burst 
number 

Control  
(s) 

Control/HTL 
(s) 

RibAde  
(s) 

RibAde/HTL 
(s) 

1 45.12 ± 5.53 
(n = 32) 

50.56 ± 10.10 
(n = 16) 

49.01 ± 4.49 
(n = 30) 

45.16 ± 6.38 
(n = 20) 

2 30.80 ± 3.75 
(n = 22) 

26.96 ± 5.45 
(n = 13) 

38.64 ± 3.77 
(n = 27) 

25.27 ± 3.81 
(n = 16) 

3 23.05 ± 3.86 
(n = 17) 

11.01 ± 1.74 
(n = 9) 

22.42 ± 2.80 
(n = 22) 

15.28 ± 3.22 
(n = 12) 

 

 

 

 

 



 164 

 Figure 6.5. ‘Trapping’ intracellular adenosine with homocysteine thiolactone 
does not influence burst duration. The length of bursting seizure activity induced 
with 50 µM 4-aminopyridine was not different across groups. Individual symbols 
represent slices; mean is shown as the central line, box as ± SD and whiskers 5-95% 
confidence limits. Burst 1: control, n = 32; control/HTL, n = 16; RibAde, n = 30; 
RibAde/HTL, n = 20; Burst 2: control, n = 22; control/HTL, n = 13; RibAde, n = 27; 
RibAde/HTL, n = 16; Burst 3: control, n = 17; control/HTL, n = 9; RibAde, n = 22; 
RibAde/HTL, n = 12. 
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6.2.3.2. ‘Trapping’ intracellular adenosine with homocysteine 

thiolactone influences spiking intensity 

The effect of HTL on seizure intensity was measured by comparing the inter spike 

interval (ISI) of HTL-treated slices and those of control and RibAde-treated slices.  

No significant difference in ISI was observed between treatments during burst 1 (Fig 

6.6A-B; Table 6.4; control, n = 32; control/HTL, n = 16; RibAde, n = 30; 

RibAde/HTL, n = 20 slices). 

During burst 2 control/HTL (n = 13) spiking intensity was increased (Fig 6.6C-D; 

Table 6.4) compared to RibAde/HTL (n = 16 slices) and also compared to RibAde-

treated (n = 27 slices). No other difference in ISI was found during burst 2 (Fig 6.6E-

F; control, n = 22 slices).  

No significant difference in ISI was found during burst 3 (control, n = 17; 

control/HTL, n = 9; RibAde, n = 22; RibAde/HTL, n = 12 slices). 

These data indicate that HTL alone was sufficient to increase the spiking intensity 

only during burst 2. In addition, the presence of ATP precursors RibAde was enough 

to reduce the increased spiking intensity induced by HTL. 
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Table 6.4. Summary of Kolmogorov-Smirnov test for the inter spike interval 
of burst 1-3. *p < 0.05 compared to RibAde and RibAde/HTL; n = 9-32. 
Kolmogorov-
Smirnov test Burst number 

1 2 3 

Control/HTL vs. 
Control 

p = 0.95 
D = 0.16 
Z = 0.51 

p = 0.53 
D = 0.26 
Z = 0.75 

p = 0.54 
D = 0.31 
Z = 0.75 

RibAde/HTL vs. 
Control 

p = 0.31 
D = 0.26 
Z = 0.92 

p = 0.21 
D = 0.33 
Z = 1.00 

p = 0.53 
D = 0.28 
Z = 0.74 

Control/HTL vs. 
RibAde 

p = 0.06 
D = 0.39 
Z = 1.25 

p = 0.03 * 
D = 0.47 
Z = 1.38 

p = 0.42 
D = 0.32 
Z = 0.82 

RibAde/HTL vs. 
RibAde 

p = 0.32 
D = 0.27 
Z = 0.92 

p = 0.46 
D = 0.25 
Z = 0.80 

p = 0.82 
D = 0.21 
Z = 0.57 

Control/HTL vs. 
RibAde/HTL 

p = 0.25 
D = 0.33 
Z = 0.97 

p = 0.04 * 
D = 0.49 
Z = 1.31 

p = 0.73 
D = 0.28 
Z = 0.63 
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 Figure 6.6. Influence of homocysteine thiolactone on seizure intensity. Burst 1 
(A-B) cumulative probability (A) and histogram of the frequency counts (B) of the 
Inter Spike Interval was not different between treatments. During burst 2 (C-D), the 
spiking frequency was reduced (increased spiking frequency) in slices pre-treated 
with RibAde and RibAde/HTL-treated slices compared to control/HTL slices 
(increased spiking frequency). No difference in the Inter Spike Interval during burst 
3 (E-F) was found. For cumulative probability plots, individual symbols represent a 
slice. Burst 1: control, n = 32; control/HTL, n = 16; RibAde, n = 30; RibAde/HTL, n 
= 20; Burst 2: control, n = 22; control/HTL, n = 13; RibAde, n = 27; RibAde/HTL, n 
= 16; Burst 3: control, n = 17; control/HTL, n = 9; RibAde, n = 22; RibAde/HTL, n 
= 12. Data shown as mean ± SEM. Significances indicated by *p < 0.05.  
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6.2.3.3. Assessment of the effects of homocysteine thiolactone on 

seizure frequency 

To further test the effect of HTL on the rate at which bursting occurred the Inter 

Burst Interval (IBI) was calculated (Fig 6.7). The time to burst 2 (Burst Interval 1) 

was reduced in slices treated with HTL (control/HTL and RibAde/HTL; Post-hoc 

Bonferroni, p < 0.0001 and p = 0.0004 respectively) compared to RibAde-treated 

slices (One-way ANOVA: p < 0.001; F (3,74) = 12.179; control, n = 22; control/HTL, 

n = 13; RibAde, n = 27; RibAde/HTL, n = 16 slices).  

Interestingly, in control/HTL slices the time to burst 2 was also reduced compared to 

control slices (Post-hoc Bonferroni, p = 0.039). The time to burst 2 was increased in 

RibAde-treated slices (Post-hoc Bonferroni, p = 0.019) compared to control slices. 

A similar increase in frequency of seizures for HTL-treated slices was observed for 

the time to burst 3 (Burst Interval 2- One-way ANOVA: p = 0.0006; F (3,56) = 6.597; 

control, n = 17; control/HTL, n = 9; RibAde, n = 22; RibAde/HTL, n = 12 slices). In 

control/HTL (Post-hoc Bonferroni, p = 0.012) and RibAde/HTL-treated slices (Post-

hoc Bonferroni, p = 0.002) the time to burst 3 was shorter than that of RibAde-

treated slices.  

These data suggest that treatment with HTL increases the frequency of bursting 

seizures. 
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 Figure 6.7. Homocysteine thiolactone influences the onset to seizure activity. 
The time to burst 2 (Burst Interval 1) was greatly reduced in control (n = 22), 
control/HTL,(n = 13) and RibAde/HTL (n = 16) slices compared to RibAde-treated 
slices (n = 27). Similarly, the time to burst 3 (Burst Interval 2) was reduced in 
control/HTL (n = 9) and RibAde/HTL (n = 12) slices compared to RibAde-treated 
slices (n = 22). Individual symbols represent slices; mean is shown as the central 
line, box as ± SD and whiskers 5-95% confidence limits. Significances indicated by 
****p < 0.001, **p < 0.01 and *p < 0.05.  
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6.3. Discussion 

In the present chapter I have shown that unexpectedly, HTL did reduce the burst 1-

dependent release of adenosine but had inconsistent effects on basal synaptic 

transmission. HTL was also found to increase the intensity of seizures, which was 

reversed with RibAde and increased the frequency of seizures.  

 

6.3.1. Adenosine release in homocysteine thiolactone 

influenced adenosine release in burst-dependent manner 

In this thesis I have shown that the application of HTL to RibAde-treated slices 

significantly reduced burst 1-dependent release but not subsequent bursts compared 

to RibAde-treated slices. The release of adenosine in RibAde/HTL slices during 

burst 1 was reduced close to that of control slices, suggesting that HTL treatment 

may be reducing the intracellular release of adenosine into the extracellular space. 

Although, HTL did influence adenosine release in a burst-dependent manner, it was 

found not to significantly affect total adenosine release and combined release in 4-

AP. The possibility cannot be eliminated that HTL experiments were underpowered 

(p = 0.071 and p = 0.060 respectively, RibAde/HTL, n = 9 and control/HTL, n = 6) 

and an increase in sample size may have revealed a difference.  

 

My results show that using HTL as a means of reducing intracellular adenosine and 

thus reducing the release of adenosine into the extracellular space was successful in 

slices with an increase in adenosine tone and was restricted to burst 1. These data 

similar to what has been shown where L-homocysteine thiolactone reduced both 

basal and evoked release of adenosine in brain slices (Lloyd, et al., 1993; McIlwain 
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and Poll, 1985) as well as adenosine release during ischemia (Frenguelli, et al., 

2007). HTL was also found to reduce the tissue content of adenosine, inosine and 

hypoxanthine (McIlwain and Poll, 1986). In the work conducted by Lloyd, et al., 

1993, where HTL was found to reduce adenosine release to electrical pulses given 

for 5 or 15 minutes and biosensors were used to measure adenosine release are 

similar to the studies conducted in this work in regards to the use of biosensors to 

measure real-time adenosine release during increased neuronal excitability.  

 

Surprisingly, on its own HTL failed to reduce the release of adenosine. HTL itself 

was found to result in the release of adenosine following spontaneous seizures 

(control/HTL slices were more excitable in Mg2+ free aCSF) and this complicates the 

interpretation of its potential role for inhibiting intracellular adenosine release into 

the extracellular space. This suggests that HTL might have off target effects on the 

purinergic system and may also be influencing basal tone in some way. Therefore, 

any interpretation needs to take this into account. 

The increase in tissue excitability in control/HTL slices maybe due to the 

combination of HTL with the washout of Mg2+ from the slice where it might be 

possible that this additional increase in tissue excitability from the removal of Mg2+ 

block may exaggerate the pro-convulsive actions of HTL. Thus, my results can be 

interpreted in a number of ways (1) HTL may not be a suitable method for detecting 

adenosine release that arises from intracellular sources due to its proconvulsive 

effects or (2) the activity-dependent release measured in my seizure model may 

partially arise from extracellular pools of adenosine.  

Studies conducted by (Wall and Dale, 2013) showed that at least 40% of stimulated-

adenosine release was carried out via neuronal equilibrative nucleoside transporters 
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(ENTs) and that there is a separate component of adenosine release, which arises 

from the extracellular metabolism of ATP released from astrocytes. Given these data 

it would be important to address whether the release of adenosine during seizures 

arise from extracellular breakdown of ATP and also whether the measured adenosine 

release arises either from neurons or astrocytes, as discussed below. 

One way of addressing whether the adenosine measured in these studies arises from 

extracellular sources of ATP is to use an ectonucleotidase inhibitor. Extracellular 

ATP and its nucleotides undergo rapid degradation by ectonucleotidases to provide a 

readily available pool for the production of adenosine. Ecto-5’-nucleotidase 

inhibitors such as α, β-Methylene-ADP derivatives and analogues have been 

characterised (Bhattarai, et al., 2015), which are effective at inhibiting the 

breakdown of extracellular AMP to adenosine.  

Adenosine is not only regulated and released from neurons, but astrocytes also play 

an important role in the regulation of adenosine levels in the brain (Aronica, et al., 

2011; Boison, 2010; Boison, et al., 2010; Boison, et al., 2013; Li, et al., 2008). 

Therefore, in order to gain a better understanding of the site of cell specific release of 

adenosine a number of approaches could be made. To accomplish this neuronal 

and/or astrocytic specific release or regulation of adenosine could be further 

investigated by use of genetic mouse models such as the use of dn-SNARE mice, 

which lack the ability to release transmitters by exocytosis in glial cells (Pascual, et 

al., 2005). Additionally, pharmacological methods such as the gliotoxin 

fluoroacetate, which would block glial specific release of adenosine, could also be 

employed.  
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6.3.2. Effect of ‘trapping’ intracellular adenosine with 

homocysteine thiolactone on basal synaptic transmission 

and seizure parameters 

6.3.2.1 Basal synaptic transmission 

HTL application to slices had inconsistent effects on basal synaptic transmission 

measures. The effects observed for HTL during the input/output curves were found 

at higher stimulations where there is a greater recruitment of fibres compared to the 

stimulus intensities used during paired-pulse stimulations. Although a greater 

recruitment in the number of synapses at higher stimulations is not expected to 

influence the paired-pulse ratio if the population of synapses are homogenous, to 

investigate the differences in basal synaptic transmission observed paired-pulse 

stimulations should be repeated at 250-300 µA. Additionally, to account for 

variability in baseline response and stimulus intensity used, it is important to repeat 

these experiments whilst using a stimulus intensity that would generate a fixed peak 

fEPSP amplitude. 

 

6.3.2.2. Increased seizure intensity with HTL is reversed with 

RibAde  

In the previous chapter I showed that RibAde, as opposed to creatine, reduced the 

intensity and frequency of seizures. In the present chapter I tested the effect of HTL 

on seizure intensity and whether RibAde would help to mitigate its effect. 

My data shows that HTL treatment increased the intensity of bursting seizures in 

control/HTL slices but had no effect on seizure intensity in RibAde-treated slices 
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only during burst 2. The effects of increased spiking intensity observed during burst 

2 could be related to the burst 1 associated release where release in control/HTL was 

lower than that of both RibAde and RibAde/HTL-treated slices. This lowered 

adenosine release could exert a reduced inhibitory effect of spiking intensity that 

may account for the differences reported in this thesis. Other off target effects of 

HTL can also be responsible for the effects highlighted here. What these data do 

importantly indicate is that the pre-treatment of slices with RibAde helps to reduce 

reverse the HTL-induced hyperexcitability.  

 

6.3.2.3 HTL increased seizure frequency 

Although the combination of RibAde and HTL was effective at reversing the HTL-

induced increases in seizure intensity, the frequency of seizures associated with this 

treatment was not dissimilar to that in Control/HTL slices. However, the time to the 

occurrence of burst 2 was reduced in control/HTL slices compared to control, 

suggesting that on its own HTL does increase the likelihood of seizures. This is also 

supported from the observation that in Mg2+-free aCSF there was an increase in the 

occurrence of spontaneous seizures in control/HTL-treated slices that was not present 

in the RibAde/HTL slices.  

My data on the effect of HTL on seizure parameters consistently shows that on its 

own HTL increased both the intensity and frequency of seizures compared to 

RibAde-treated slices. However, in comparison to control slices, HTL only increased 

the frequency, but not the intensity of seizures. The combination of both HTL and 

RibAde produced inconsistent effects in relation to reversing the pro-convulsive 

effect of HTL on seizure parameters.  
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In summary, these data do not support the idea of using HTL to ‘trap’ intracellular 

adenosine in the form of SAH, and HTL was not successful in reducing the release of 

intracellularly formed adenosine. These studies may indicate that the adenosine 

measured by the microelectrode biosensors may arise from sources other than 

intracellular breakdown of ATP such as the extracellular breakdown of ATP to 

adenosine or the release of adenosine from astrocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. General Discussion 
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7.1. Summary of findings 
It has previously been shown that the decreased ATP content in brain slices 

compared to the situation in vivo is due to a loss of ATP precursors, since treating 

slices with a combination of D-ribose (1 mM) and adenine (50 µM; RibAde) is 

sufficient to recover tissue ATP levels to in vivo values (zur Nedden, et al., 2011). 

This improvement of ATP levels is also associated with greater activity-dependent 

release of adenosine and, via activation of adenosine A1Rs, the threshold for the 

induction of long-term potentiation is raised (zur Nedden, et al., 2011). It has also 

been shown that RibAde and the phosphate buffer creatine are capable of modulating 

the decline and recovery of the intracellular ATP associated with metabolic stress, 

with corresponding effects on the depression and recovery of synaptic transmission 

(zur Nedden, et al., 2014). These studies provide evidence for the use of RibAde and 

creatine as a means of modulating the availability of both intracellular ATP, and, 

importantly, its breakdown product adenosine during various physiological or 

pathophysiological conditions in which ATP and adenosine play a major role. In the 

current thesis I utilised these strategies for manipulating ATP and adenosine levels 

during epileptiform seizure activity in hippocampal slices. 

  

The aim of my thesis was to investigate how the modulation of intracellular ATP 

with creatine or RibAde pre-treatment influenced seizure activity via the activity-

dependent release of adenosine. I used a model of chemically-induced bursting 

seizure activity to address the following questions: 

1. Do creatine or RibAde influence the activity-dependent release of adenosine 

during seizure activity? 

2. If so, can I measure the release of adenosine under these conditions? 
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3.  Does the modulation of adenosine release influence seizure activity? 

4. Does this adenosine originate from intracellular sources? 

 

With regard to these questions, our model was indeed sensitive to changes in the 

release of adenosine (Chapter 3). RibAde influenced activity-dependent release of 

adenosine and this was measurable in real-time with enzyme-based biosensors and 

had an appreciable effect on seizure activity. I also measured activity-dependent 

adenosine release in creatine-treated slices (Chapter 4). I found that high micromolar 

concentrations of adenosine were released per burst, which is consistent with 

previous work in electrically-evoked and spontaneous seizures (Etherington, et al., 

2009; Lopatář, et al., 2011; Lopatář, et al., 2015) and in humans with complex partial 

seizures (During and Spencer, 1992). This increased release of adenosine in RibAde-

treated slices was associated with a reduction in seizure frequency and intensity 

compared to creatine-treated slices (chapter 5).  

 

In addition, I have demonstrated that pre-treating slices with creatine results in an 

increase in seizure intensity and frequency compared to pre-treatment with RibAde 

in a chemically-induced, model of bursting seizures (Chapter 5). My results are in 

contrast to previous studies where creatine was found to be anticonvulsive (Rambo, 

et al., 2013; Rambo, et al., 2009). However the viability of creatine as an 

anticonvulsant remains doubtful as, similar to the present results, creatine has also 

been shown to promote seizure-like activity (Streijger, et al., 2010) and creatine was 

not found to be protective against seizure susceptibility after traumatic brain injury 

(Saraiva, et al., 2012). 
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During cellular metabolism the enzyme adenylate kinase breaks down ATP to ADP 

and ADP to AMP. AMP is then further broken down to adenosine by the action of 

5’-nucleotidase. In slices treated with creatine, CK catalyzes the reversible transfer 

of the N-phosphoryl group from PCr to ADP to generate ATP and stabilizes cellular 

ATP. Due to the ability of CK to help manufacture more ADP and ultimately ATP, 

ATP metabolism to adenosine is reduced. In comparison, under RibAde conditions, 

the brain uses the purine salvage pathway a means of making adenine nucleotides 

and this leads to an increase in the concentration of AMP, which can be made to 

make further ADP, ATP and adenosine.   

In summary of the data presented on the effects of creatine and RibAde on adenosine 

concentration and epileptiform activity, the following model of rhythmic 

epileptiform bursting is proposed (Fig 7.1). A rhythm generator controls internal 

cellular mechanisms that includes but is not limited to the levels of adenosine in the 

slice that determines a rhythm for epileptiform bursting activity. The rhythm 

determines the duration, interval and intensity of a burst. In turn the duration, 

intensity and interval of epileptiform bursting activity then go on to influence the 

release of adenosine in the slice. This release of adenosine further impacts the 

rhythm generator and bursts. When creatine is added to the system this result in a 

reduction in adenosine, which acts to reduce the inhibitory effects of adenosine on 

bursts and the rhythm generator. Under RibAde conditions, an increase adenosine 

levels result in an increase in the inhibitory effects of adenosine bursts and the 

rhythm generator. The effects of creatine and RibAde on adenosine and adenosine 

subsequent modulation of the rhythm generator and burst account for the difference 

in reported in this thesis for these treatments on adenosine release and epileptiform 

activity.  
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My results also show that antagonism of the adenosine A1 receptor led to an 

aggravation of seizure duration, which is in line with previous studies using 

pharmacological tools in in vitro models of seizure activity (Dragunow and 

Robertson, 1987; Dunwiddie, 1980; Eldridge, et al., 1989; Etherington and 

Frenguelli, 2004; Lopatář, et al., 2011), in vivo seizure models (Ault, et al., 1987; 

Gouder, et al., 2003; Weiss, et al., 1985), and using A1 knockout mice (Kochanek, et 

al., 2006). Additionally, adenosine A2ARs were found to play a role in promoting 

Figure 7.1. Model of rhythmic epileptiform bursting. A rhythm generator 
determines a rhythm for epileptiform bursting activity. The rhythm determines 
the duration, interval and intensity of a burst. In turn the duration, intensity and 
interval of epileptiform bursting activity then go on to influence the release of 
adenosine in the slice. This release of adenosine further impacts the rhythm 
generator and bursts. Creatine reduces the release of adenosine, which acts to 
reduce the inhibitory effects of adenosine on bursts and the rhythm generator. 
Under RibAde conditions, an increase adenosine levels result in an increase in 
the inhibitory effects of adenosine bursts and the rhythm generator. 
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increased spiking intensity under normal conditions, which is similar to previously 

reported findings where A2ARs were found to be mildly pro-convulsive in electrically 

evoked seizure activity in Mg2+-free aCSF (De Sarro, et al., 1999; Etherington and 

Frenguelli, 2004; O'Kane and Stone, 1998). 

 

 

Extracellular sources of adenosine can arise from two main routes: (1) the release of 

intracellular adenosine into the extracellular space via nucleoside transporters; or (2) 

the extracellular breakdown of ATP to adenosine. Given this, I set out to investigate 

whether the measured adenosine originates from intracellular adenosine pools, by 

treating slices with homocysteine thiolactone. My results show that burst 1- 

associated adenosine release may originate from intracellular sources (Chapter 6) 

since HTL reduced burst-1 adenosine release in RibAde-treated slices. HTL was also 

found to increase the intensity and frequency of seizures, and the effect on intensity 

was reversed with RibAde. These data are similar to observations where L-

homocysteine thiolactone reduced both basal and evoked release of adenosine in 

brain slices (Lloyd, et al., 1993; McIlwain and Poll, 1985), as well as adenosine 

release during oxygen/glucose deprivation (Frenguelli, et al., 2007). The results from 

chapter 6 also suggests that HTL might have off target effects on the purinergic 

system and may be influencing basal adenosine tone as is suggested by the increase 

in excitability in control/HTL slices and associated increased release of adenosine as 

well as the ambiguous effects of HTL on electrophysiological responses to evoked 

stimulation observed in RibAde/HTL-treated slices. Further elucidation of these off 

target effects is necessary to get a better understanding of the effects of HTL on 

intracellular adenosine release. 
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In summary, the work in this thesis provides evidence to support the idea of 

modulation of the adenosinergic system as a potential therapeutic target for the 

treatment of epilepsy (Boison, 2009).  

7.2. Possible therapeutic use of RibAde for the 
treatment of epilepsy 
This thesis provides evidence for the use of RibAde as a means of reducing the 

occurrence of seizure activity and seizure intensity via enhanced release of the 

anticonvulsant adenosine.  

Brain slices are a useful model system for the study of novel epileptic seizure 

treatments and to establish their mechanism of action. However, in order to study 

their effects on the system as a whole brain slices are not suited since they are 

reduced biological systems and are not representative of the whole brain. Although 

epileptic seizures can originate from site-specific regions, they often spread and 

involve the whole brain. It is therefore important to investigate possible treatments of 

epilepsy in in vivo models. Ribose and adenine have been shown to be well tolerated 

in humans and have been used previously to treat different disorders as discussed in 

Chapters 1 and 4. Given the promising effects of RibAde on adenosine-dependent 

decreases in seizure parameters it is possible that RibAde treatment could be adapted 

in the clinic. This thesis provides evidence for the use of RibAde in in vivo studies as 

well as early small scale, low risk pre-clinical trials in people with epilepsy. Due to 

the greater ATP pool in RibAde-treated slices (zur Nedden, et al., 2014; zur Nedden, 

et al., 2011) it would be expected that there might be a greater activity-dependent 

release of adenosine that might raise the threshold for, or reduce seizure activity. 
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As discussed in Chapter 4 ribose and adenine are able to pass easily through cell 

membranes (Cornford, et al., 1982; Cornford and Oldendorf, 1975; McCall, et al., 

1982; Prather and Wright, 1970; Sacerdote and Szostak, 2005). Ribose is well 

tolerated in rodents (Griffiths, et al., 2007b; Griffiths, et al., 2007a). In addition, both 

compounds are well tolerated in humans. Oral-administration of ribose has been 

successfully trialled in clinical studies for the treatment of a variety of disorders of 

the heart (Brookman and St Cyr, 2010; MacCarter, et al., 2009; Omran, et al., 2003; 

Pauly and Pepine, 2000; Perkowski, et al., 2011; Pliml, et al., 1992). Ribose can also 

be administered safely via the intravenous route (Goodman and Goetz, 1970; Gross, 

et al., 1989; Gross and Zöllner, 1991; Gunning, et al., 1996) where intravenous 

ribose is often given as part of an imaging procedure used to measure the extent of 

damaged heart muscle in patients with coronary heart disease (Hegewald, et al., 

1991; Perlmutter, et al., 1991; Wilson, et al., 1991). Adenine has also been 

administered in humans. However, because adenine can be metabolised by xanthine 

oxidase (Bendich, et al., 1950), and the by-product  2,8-dihydroxy-adenine can then 

lead to the development of kidney stones (Van Acker, et al., 1977), adenine is given 

with the xanthine oxidase inhibitor allopurinol (Edvardsson, et al., 1993; 

Greenwood, et al., 1982; Simmonds, 1986) to prevent the formation of kidney 

stones. Adenine and allopurinol have been given for the treatment of metabolic 

disorders (Balasubramaniam, et al., 2014; Jinnah, et al., 2013). Adenine, when given 

in combination with clozapine as a treatment for schizophrenia, was found to reduce 

the frequency of treatment discontinuation due to clozapine-induced neutropenia 

(Takeuchi, et al., 2015). Adenine has also been used to treat metabolic disorders such 

as adenylosuccinate lyase deficiency disorder and Lesch-Nyhan disease. No adverse 

effects of adenine other than kidney damage mentioned above has been reported, 
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however no beneficial effects in the treatment of metabolic disorders has yet been 

found (Jaeken, et al., 1988; Jinnah, et al., 2013; Jurecka, et al., 2014). To date, there 

are no reported studies that have used RibAde as a treatment for epilepsy. Given that 

the heart and the brain show similarities in the use of the salvage pathway as a means 

of regulating energy homeostasis, and the beneficial effects of ribose/adenine on 

ischemic stress response (Schneider, et al., 2008), post-ischemic ATP recovery and 

cell viability (Watanabe, et al., 2003; zur Nedden, et al., 2012; zur Nedden, et al., 

2014), it is reasonable to assume that the epileptic brain might benefit from Rib/Ade 

or RibAde/allopurinol given the disruption in energy homeostasis found in the 

epileptic brain (Fredholm, 2007; Masino, et al., 2009). There is little cost associated 

with the production of RibAde/allopurinol as ribose is commercially available and is 

widely used a nutritional supplement and allopurinol is used as a treatment for gout 

whereby it reduces the build up of uric acid crystals which leads to inflammatory 

arthritis. In addition, adenine is a common constituent of blood products to support 

red blood cell metabolism during storage used since the 1960s (Akerblom, et al., 

1967; Akerblom and Kreuger, 1975; Cancelas, et al., 2015; Deverdier, et al., 1964a; 

Deverdier, et al., 1964b; Dumont, et al., 2015; Kreuger, et al., 1975) and has been 

successfully used in humans at doses ranging from 10 mg/kg/24 hr to 75 mg/kg/24 hr 

(Benke, et al., 1973; Schulman, et al., 1971). 

 

In vivo studies in either humans or rodent models would be useful for the 

clarification as to whether orally administered RibAde/allopurinol is neuroprotective 

with regard to reducing the abnormal excessive synchronised neuronal discharges 

associated with an epileptic seizure and improving behavioural outcomes, and may 

provide additional support for the initiation of clinical epilepsy trials.  
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7.3. RibAde as a potential therapy vs. 
anaplerotic reactions 
In the brain the purine salvage pathway is a major pathway for making adenine 

nucleotides. Adenine and hypoxanthine are combined with the sugar donor 5-

phosphoribosyl-1-pyrophosphate (PRPP) to form AMP and inosine monophosphate 

(IMP) in a reaction catalysed by the enzymes adenine phosphoribosyltransferase 

(APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT), 

respectively (Barsotti, et al., 2002; Mascia, et al., 2000). 

 

Another method of modulating cellular ATP levels is via the use of citric acid cycle 

substrates (Fig 7.2.). Mitochondria are a main source of ATP in the cell, and ATP 

levels are maintained by the potential gradient across the mitochondrial membrane 

(Kovac, et al., 2012). The glycolysis product pyruvate is transported across the 

mitochondrial membrane into the matrix where it undergoes further oxidation to 

produce the citric acid substrate acetyl-CoA by pyruvate dehydrogenase complex. 

The citric acid cycle produces carriers such as NADH/H+ equivalents, which helps to 

maintain the potential gradient. NADH is then fed into the transmembrane electron 

transport pathway to make hydrogen ions. Hydrogen ions then move across the inner 

membrane through the large ATP synthase protein complex helping to synthesis 

ATP from ADP and free phosphate ions.  

Anaplerosis is the process of replenishment of depleted metabolic cycle or pathway 

intermediates of the citric acid cycle. Substrates such as pyruvate and succinate have 

been shown to have good potential for suppressing seizure activity, as reviewed in 

(Kovac, et al., 2013). In vitro preparations with pyruvate (5 mM) found that it helped 
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to reduce cell death in rat hippocampal cell cultures (Kovac, et al., 2012). Both 

compounds have been used in vivo to study their effects on seizure activity. Oral 

administration of pyruvate (0.5 g/kg/day) was found to improve seizure control in a 

patient with epileptic encephalopathy (Koga, et al., 2012) whilst, succinate (0.5 

microl of 1.5 mM intrastriatal injection) in rats was found to reduce both the number 

of seizures and seizure duration (Royes, et al., 2003).  

 

 

Figure 7.2. Schematic representation of mitochondrial ATP synthesis. 
Pyruvate is transported across the mitochondrial membrane via specific 
tranporters into the matrix where it undergoes further oxidation to produce the 
citric acid substrate acetyl-CoA by pyruvate dehydrogenase complex. The citric 
acid cycle produces carriers such as NADH/H+ equivalents. NADH is then fed 
into the transmembrane electron transport pathway to make hydrogen ions. 
Hydrogen ions then move across the inner membrane through the large ATP 
synthase protein complex. The ATP synthase protein complex helps to 
synthesise ATP from ADP and free phosphate ions. ATP is then transported to 
sites of energy consumption. Taken from (Dahout-Gonzalez, et al., 2006). 
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However, there are some disadvantages associated with pyruvate or succinate as a 

potential therapeutic supplementation for the treatment of epilepsy such as their poor 

permeability at cell membranes and the blood brain barrier (Cremer, et al., 1979; 

Kovac, et al., 2013; Pardridge and Oldendorf, 1977). In addition, although both 

compounds have been shown to have anticonvulsant properties, undesirably, 

proconvulsive properties have also been shown (Gonzalez, et al., 2005; Roehrs, et 

al., 2004). A rapid intravenous injection of 9 mmoles/kg pyruvate to mice in vivo 

was enough to lead to the development of seizures (Gonzalez, et al., 2005) whereas, 

injections of succinate (0.8, 2.5 and 7.5 micromoles/microllitres, intra-cerebro-

ventricular) caused dose-dependent convulsive behaviour in mice (Roehrs, et al., 

2004). In comparison to supplementation of citric acid cycle substrates, 

supplementation with metabolites of the purine salvage pathway, such as 

ribose/adenine, co-administered with the xanthine oxidase inhibitor allopurinol to 

prevent the development of kidney stones caused by the degradation of adenine by 

xanthine oxidase to an insoluble metabolite 2,8-dihydroxy-adenine (Greenwood, et 

al., 1982). Given this RibAde/allopurinol given together are safe to use, and has been 

shown to be well tolerated in humans. I therefore believe that the use of RibAde 

supplementation as opposed to citric acid cycle substrates, such as pyruvate or 

succinate, may be a more promising approach for the treatment of epilepsy.  

Unlike AEDs, the use of RibAde/allopurinol does not target a specific receptor or 

pathway but instead it addresses the energy state of tissues such as those seen during 

epileptic seizures. Therefore, RibAde/allopurinol may be given either shortly after an 

insult in order to aid in the restoration of physiological function or potentially given 

to those with established epilepsy. Patients with traumatic brain injury may also 

develop epileptic seizures. Traumatic brain injury patients have impaired 



 188 

mitochondria function and associated decrease in ATP production that might add to 

the development of epileptogenesis (Giza and Hovda, 2001; Verweij, et al., 2000). It 

is plausible to suggest that treating patients with traumatic brain with 

RibAde/allopurinol as a preventative measure for the stabilisation of metabolic 

function in order to prevent the occurrence of recurrent epileptic seizures may be a 

potential option for those patients with infrequent seizures or those with less severe 

epileptic seizures. Also, it might be useful to also investigate the therapeutic effect of 

RibAde/allopurinol in those patients with severe epilepsy used in combination with 

low doses of AEDs. Other patients for which the use of RibAde/allopurinol might be 

of benefit are those with drug-resistant seizures and those where surgery or 

alternative therapies such as deep brain stimulation is not an option and in children. I 

believe that RibAde/allopurinol supplementation might prove beneficial for the 

treatment of different types of epilepsy. 
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8. Appendix 1 
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8.1. Seizure parameters for 6 and 9 mM K+ 

Analysis was carried on those slices showing bursting epileptiform activity when 

challenged with either 6 mM or 9 mM K+. One-way ANOVA was calculated for 

seizure parameters burst duration and inter burst interval and Kolmogorov-Smirnov 

test for the inter spike interval. The results from these analysis is summarised in the 

tables below.  

Summary of One-way ANOVA test for the inter burst interval 1 to 2 for slices 
treated with 6 mM K+. 

 Treatment N Mean SD SE of 
mean 

P value 

IBI 1 Creatine 6 184.25888 52.24511 21.32898 0.80812 
Control 11 172.59004 51.15371 15.42342 
RibAde 4 189.77408 42.15488 21.07744 

IBI 2 Creatine 4 160.4078 50.31396 25.15698 0.21367 
Control 8 116.3801 42.33742 14.96854 
RibAde 3 165.76783 60.57875 34.97516 

 

Summary of One-way ANOVA test for the inter burst interval 1 to 2 for slices 
treated with 9 mM K+. 

 Treatment N Mean SD SE of 
mean 

P value 

IBI 1 Creatine 7 100.33286 39.57068 14.95631 0.99273 
Control 4 98.465 23.31502 11.65751 
RibAde 7 98.43286 27.86224 10.53094 

IBI 2 Creatine 6 86.38333 26.50858 10.82208 0.51942 
Control 4 76.645 16.3154 8.1577 
RibAde 5 95.62 25.70986 11.4978 

 

Summary of One-way ANOVA test for the burst durations 1 to 3 for slices 
treated with 6 mM K+. 

Burst 
number 

Treatment N Mean SD SE of 
mean 

P value 

1 Creatine 6 36.57333 13.52944 5.52337 0.67406 
Control 13 36.81077 20.6161 5.71788 
RibAde 5 28.562 14.99312 6.70513 

2 Creatine 6 30.46167 10.94021 4.46632 0.92658 
Control 11 32.38545 20.05968 6.04822 
RibAde 4 28.695 13.13755 6.56877 

3 Creatine 4 35.1075 5.86649 2.93324 0.46089 
Control 8 34.6625 14.82897 5.24283 
RibAde 3 24.05667 13.70268 7.91124 
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Summary of One-way ANOVA test for the burst durations 1 to 3 for slices 
treated with 9 mM K+. 

Burst 
number 

Treatment N Mean SD SE of 
mean 

P value 

1 Creatine 12 58.29833 57.73376 16.6663 0.37166 
Control 12 44.66167 21.91577 6.32654 
RibAde 8 32.82076 22.09077 7.81027 

2 Creatine 7 49.64286 34.2014 12.92691 0.24874 
Control 4 64.0725 18.78102 9.39051 
RibAde 7 34.72248 22.58033 8.53456 

3 Creatine 6 49.915 32.43494 13.24151 0.10863 
Control 4 65.505 20.65476 10.32738 
RibAde 6 31.2274 11.09339 4.52886 
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8.2. Kolmogorov-Smirnov test of seizure 
parameters for 6 and 9 mM K+ 
Summary of Kolmogorov-Smirnov test for the inter spike interval of 
burst 1-3 for slices treated with 6 mM K+. 

Burst number 

Kolmogorov-Smirnov test 

 Control RibAde 

1 

Creatine  
(n = 6)  

vs. 

n = 13 
p = 0.07091 
D = 0.60256 
Z = 1.22088 

n = 5 
p = 0.33333 
D = 0.81818 
Z = 0.55048 

 

Control  
(n = 13)  

vs. ___ 

n = 5 
p = 0.17647 
D = 0.53846 
Z = 1.02323 

2 

Creatine  
(n = 6)  

vs. 

n = 11 
p = 0.15562 
D = 0.54545 
Z = 1.07475 

n = 4 
p = 0.69524 
D = 0.41667 
Z = 0.6455 

 

Control  
(n = 13)  

vs. ___ 

n = 4 
p = 0.66374 
D = 0.38636 
Z = 0.66172 

3 

Creatine  
(n = 4)  

vs. 

n = 8 
p = 0.08485 

D = 0.75 
Z = 1.22474 

n = 3 
p = 0.65714 

D = 0.5 
Z = 0.65465 

 

Control  
(n = 8)  

vs. ___ 

n = 3 
p = 0.01212 

D = 1 
Z = 1.4771 
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Summary of Kolmogorov-Smirnov test for the inter spike interval of 
burst 1-3 for slices treated with 9 mM K+. 

Burst number 

Kolmogorov-Smirnov test 

 Control RibAde 

1 

Creatine  
(n = 12)  

vs. 

n = 12 
p = 0.0015 
D = 0.75 

Z = 1.83712 

n = 8 
p = 0.33333 
D = 0.81818 
Z = 0.55048 

 

Control  
(n = 12)  

vs. ___ 

n = 8 
p = 0.32405 
D = 0.41667 
Z = 0.91287 

2 

Creatine  
(n = 7)  

vs. 

n = 4 
p = 0.98788 

D = 0.25 
Z = 0.39886 

n = 7 
p = 0.57517 
D = 0.42857 
Z = 0.80178 

 

Control  
(n = 4)  

vs. ___ 

n = 7 
p = 0.89091 
D = 0.32143 
Z = 0.51282 

3 

Creatine  
(n = 6)  

vs. 

n = 4 
p = 0.92381 
D = 0.33333 
Z = 0.5164 

n = 5 
p = 0.59091 
D = 0.43333 
Z = 0.71563 

 

Control  
(n = 4)  

vs. ___ 

n = 5 
p = 0.87302 

D = 0.35 
Z = 0.52175 
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