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Abstract: 

Because of demand for lower emissions and better crashworthiness, the use of hot stamped 

22MnB5 boron steel has greatly increased in manufacturing of automobile components. 

However, for many applications it is required that only certain regions in hot stamped parts are 

fully hardened whereas other regions need be more ductile. The innovative process of tailored 

hot stamping does this by controlling the localized microstructures through tailored cooling 

rates by dividing the tooling into heated and cooled zones. A barrier to optimal application of 

this technique is the lack of reliable phase distribution prediction model for the process. 

  

We present a novel Artificial Neural Network (ANN) based phase distribution prediction 

model for tailored hot stamping. The model was developed and validated using data generated 

from extensive thermo-mechanical physical simulation experiments and instrumented 

nanoindentation based phase quantification method. Advanced statistical techniques were used 

for preventing overfitting, for making the optimal use of available experimental data and for 

quantification of prediction uncertainty. The final predictions made by the ANN model during 

its independent validation have shown good agreement with the experimentally generated data 

and have a RMS prediction error of just 7.7%, which is a significant improvement over the 

existing models. 

 

Keywords: Artificial Neural Network; Tailored hot stamping; Microstructure; 

Nanoindentation; 22MnB5 boron steel; Modelling 

1. Introduction: 

Hot stamping is an innovative, non-isothermal forming process in which both forming and 

quenching occur simultaneously [1]. The microalloyed 22MnB5 boron steel is the most widely 

used material in the automotive industry for manufacturing of hot stamped parts [2, 3]. In recent 

years there has been a huge increase in the use of hot stamping in the automotive industry. The 

use of hot stamping offers several advantages including lower forming stresses, minimal 

springback, greater forming accuracy and high strengths. Also using automobile parts with high 

strength to weight ratios as produced by hot stamping, helps in meeting the automotive 

industry’s dual requirement of reduced emissions and increased passenger safety [1-4]. 
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The final microstructure produced in the boron steel after the conventional hot stamping 

consists mainly of martensite along with small amount of other phases. This high martensitic 

content in the final microstructure of the boron steel leads the formed parts to achieve tensile 

strengths well in excess of 1500 MPa [1-5]. On the other hand, the high tensile strength of the 

fully hot stamped parts leads to them having low ductility and poor energy absorption 

characteristics. Such hot stamped parts therefore are not fully optimized for crash performance 

and light weighting [6-8]. Researchers have come up with an innovative solution to this 

problem where local sheet metal cooling rates are varied by dividing the tooling into heated 

and cooled zones. Doing so introduces local regions within hot stamped parts which have a 

softer and more ductile microstructure as compared to the rest of the part [9-11]. This process 

is known as tailored hot stamping and it allows for tailoring of the local mechanical properties 

in the different regions of the hot stamped parts to fully optimize the energy absorption 

characteristic of the formed part for improved crash performance and light weighting.   

Most of the available scientific literature is focused on experimental investigations of the 

tailored hot stamping process. However a robust and reliable phase distribution model for 

tailored hot stamping process is required for the design and production of fully optimized 

automotive structural and safety components through computer aided engineering (CAE). The 

final phase distribution which results in the different regions of a tailor hot stamped part is 

dependent on both the thermal and mechanical history of that region. Several papers in the 

literature have investigated and reported the significant effect of the deformation on the final 

phase distribution during hot stamping [12-15]. The majority of early numerical models that 

have been developed for final phase distribution prediction during hot stamping have had 

limited success because of their inability to account for the effect of deformation [9, 16-19]. 

The predicted phase volume fractions by such models for a hot stamped part have been off by 

30-40% in the regions with deformation. In 2014, Tang et al [20] developed a fully coupled 

thermo-mechanical-metallurgical numerical model for tailored hot stamping process using the 

commercial FE code FORGETM which attempted to take into account the effect of deformation 

on phase transformation kinetics for making the final phase distribution prediction. This model 

performed better than the existing models in some conditions but its performance deteriorated 

for high deformation regions under high temperature heated tooling. For the highly deformed 

region in the side wall of a U-channel part formed under a heated die at 723K, the model ended 

up predicting a bainite content of 63% whereas the authors suggested that negligible bainite 

was observed in the microstructure from the region using metallography and microscopy. 

Also, all the phase distribution prediction models that have been developed so far for tailored 

hot stamping process have used metallography and microhardness measurements for phase 

quantification during model development and validation [9, 16-20]. The final microstructure 

produced in boron steel after tailored hot stamping is a complex mixture of martensite, bainite 

and ferrite phases depending on the thermal and mechanical processing conditions [1, 6- 9, 20]. 

Metallography and microhardness measurements are well suited for a qualitative assessment 

of such complex microstructures generated during tailored hot stamping but these techniques 

are not suitable for quantification of different phases present in the final microstructure. The 

phase quantification data generated using these techniques for such complex microstructures 

will be uncertain and subjective, which places a limitation on the reliability and performance 

capabilities of the existing models developed using such data.   
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2. Research Approach and Theory:  

In addition to the standard physical models for phase distribution predictions in steels, another 

approach based on Artificial Neural Networks (ANN) has also been explored in the last decade 

in the field of steel processing [21-24]. Promising results have been obtained from the models 

developed using ANN not only for phase distribution prediction but also for other classes of 

problems in the field of materials processing and manufacturing [25-28]. This approach is 

particularly suitable for developing models for prediction in cases where the qualitative effects 

of all the relevant input parameters on the output are known but those effects have not yet been 

completely quantified by the existing physical models. The knowledge of qualitative effects of 

input parameters on output is an empirically observed proof of the existence of a functional 

relationship and ANN based models can be used to learn that functional relationship from 

experimental data. Once the ANN based model has successfully learnt those functional 

relationships from experimental data during its training and development, then the ANN based 

model can be used for guiding engineering decisions. 

The power of ANN based modelling lies in its capability to learn any kind of functional 

relationship present in the experimental data within an arbitrary degree of accuracy and not be 

limited to a particular class or set of functional relationships. The basic mathematical principle 

behind an ANN model corresponds to learning from experience (past observations, data) and 

using the knowledge gained from that to make future predictions. However at the same time 

because of the powerful flexibility of the ANN model to learn any kind of functional 

relationship from the data, proper consideration needs to be given to prevent overfitting of the 

ANN model during its training and development. Also for the neural network model to be 

reliable, there needs to be a proper quantification of the uncertainties in the predictions made 

by the model [21, 25, 29, 30]. 

In this research a novel Artificial Neural Network (ANN) based phase distribution prediction 

model has been developed for tailor hot stamped 22MnB5 boron steel, which is able to 

successfully take into account both the thermal and mechanical history while making final 

phase distribution predictions. In order to develop this ANN based model, extensive thermo-

mechanical experiments were performed to physically simulate the thermal and mechanical 

conditions which the different regions of a tailor hot stamped component undergo during their 

processing [15, 20, 31-33]. The phase distributions in the final microstructures of different 

thermo-mechanical test samples were quantified using cutting edge scanned surface 

instrumented nanoindentation technique [34-37].  

Using scanned surface instrumented nanoindentation technique allowed for reliable, repeatable 

and objective quantification of the different phases present in the sample microstructures. The 

measurements done by nanoindentation were further backed by qualitative assessment of the 

microstructural images obtained from metallography and optical microscopy. Thus these two 

techniques used in conjunction provided good quality and robust phase quantification data 

which was used for the development of the final ANN model. Using such data for the ANN 

model development ensured that the model learnt from reliable and objective data during its 

training and development, which is a necessary pre-requisite for empirical modelling.    
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During the development of the ANN model, the limited availability of the experimental data 

had posed a challenge and so advanced statistical techniques were used for optimal utilization 

of the data [42-47]. This statistical approach for ANN model development, when faced with 

the constraint of limited available data, helped in developing an ANN model which was robust 

to the issue of overfitting. Along with that the statistical approach also helped in exploring the 

different neural network topologies and harnessing the distinctive advantages of different 

topologies for the final ANN based model. Finally this approach for model development helped 

in capturing the localized variations in the prediction confidence of the final ANN model in 

different regions of the experimental space, which allowed for generation of customized 

uncertainty bars for each prediction made by the final ANN model.     

After that once the final ANN based model had been developed, its prediction performance 

was rigorously measured and analyzed. The ANN model was validated by measuring its 

performance over completely new and independent data from additional thermo-mechanical 

physical simulation experiments. 

3. Experimental work for physical simulation of tailored hot stamping: 

The material used for the experiments was HQ1500 CR boron steel (22MnB5) sheet with a 

thickness of 1.5 mm. It is a commercial grade uncoated boron steel sheet developed by Tata 

Steel specifically for hot forming. The chemical composition of steel is presented in Table 1. 

Table 1: Average chemical composition of steel used in experimental work in wt % 

C Mn Cr Si Ti N B Ca 

0.22 1.228 0.288 0.165 0.023 0.0051 0.0032 0.0016 

 

A total of 50 Gleeble tests were performed using dog bone shaped coupons that physically 

simulated at laboratory scale the various thermal and mechanical conditions which occur in 

different regions of a formed part during industrial tailored hot stamping. During the Gleeble 

tests, all the samples were heated up to temperatures above 1173 K from room temperature at 

an average heating rate of 10K/s. The samples were kept above 1173K for a minimum of 5 

minutes to simulate furnace heating during tailored hot stamping. This ensured that all the 

Gleeble test samples had a fully austenitic microstructure without any significant grain 

coarsening before the cooling simulation commenced [33].  

For each sample initially after austenitization, until the deformation temperature was reached, 

the thermal paths simulated the air cooling which occurs while a blank is being transferred 

from furnace to press. Then at different preset temperatures of deformation (ranging from 

1133K-973K), different samples underwent varying amount of isothermal tensile 

deformations. These tensile deformations simulated the different strain amounts which occur 

in different regions of tailor hot stamped parts during forming. All the tensile deformations 

were performed at a fixed strain rate value of 1s-1. After the deformation all the samples 

continued on their individual thermal paths. The different thermal paths to be followed by the 

Gleeble samples after deformation were designed using the thermal history data for tailored 

hot stamping available from literature and simulated die temperatures ranging from room 

temperature to 823K [9, 20, 38]. The main objective behind designing these thermal paths was 



5 | P a g e  
 

to physically simulate the tailored hot stamping thermal conditions as closely as possible during 

Gleeble testing based thermos-mechanical simulation of the process. A detailed description of 

the Gleeble based thermo-mechanical experiments done for physical simulation of the tailored 

hot stamping process is present in the PhD thesis of Chokshi [41]. 

Following the Gleeble testing, each sample was cut at the point of the thermo-couple welding 

using a Buehler IsoMet 4000 linear precision saw. The cross-sectional area of the sample was 

utilized for phase quantification, as that was the location from where thermal history data had 

been collected by the thermocouple. All the samples were mounted in thermosetting resin using 

a Buehler SimpliMet hot mounting press, ground using abrasive paper and then finally polished 

to a mirror finish using a final stage 0.05 micron diamond suspension polishing medium. The 

final microstructure produced in the Gleeble samples was a complex mixture of martensite, 

bainite and ferrite phases. It is common knowledge that each of the microstructural phases in 

steels has got different hardness and this difference in the hardness levels of individual phases 

was used to characterize and quantify their relative distribution in the final microstructure with 

a high degree of reliability and repeatability using scanned surface instrumented 

nanoindentation technique [34, 37, 39].  

An 18 x 18 array of nanoindents was taken on the cross-sectional area of each Gleeble test 

sample with a spacing of 150µm in x-direction and spacing of 30µm in y-direction as shown in 

figure 1. The peak load used for nanoindentation testing was fixed at 0.8g and the dwell period 

at peak load was 20s [34, 37]. The spacing between the indents was chosen so that it allowed 

for covering a majority of the cross-sectional surface area while at the same time ensuring that 

there was significant distance between neighbouring indents. The dimensions of individual 

nanoindents were of the order of few microns as shown in figure 1 and ensured that on average 

a single nanoindent measured the hardness of a single phase. After the instrumented 

nanoindentation tests were finished for all the 50 samples, secondary testing was done for a 

selection of 8 randomly chosen samples for quantifying the uncertainty in phase fraction 

measurements obtained by nanoindentation. For all these 8 samples, a secondary test with 15 

x 15 nanoindentation array with a spacing of 100 µm in x-direction and a spacing of 30 µm in 

y-direction was performed with all the remaining parameters staying the same.  

                           

Figure 1: An array of nanoindents on the surface of a Gleeble test sample 
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For metallographic analysis, all the samples were etched using standard 2% Nital solution. The 

etched samples were observed under optical microscope at 50x magnification and for each 

sample three microstructural images at different locations along the cross-sectional surface 

were recorded. These microstructural images were used for secondary qualitative assessment 

of the different phases present in the final microstructure. 

4. Experimental data and development of the ANN dataset: 

The input parameters for the ANN model consisted of thermal history of the Gleeble samples, 

temperature of deformation and the amount of deformation that the sample underwent during 

Gleeble testing. The thermal history of the samples was recorded using thermocouples welded 

at the centre of all the samples. All the phase transformations of interest in the sample begin 

once the cooling starts from the austenitization temperature of 1173 K. Thus the time at 1173 

K, after which the cooling process starts, was assigned to be the start point (t=0s) and all the 

following temperature history data was parameterized by converting it into the  into the 

following input features: time to 1073 K (s), time to 973 K (s), time to 873 K (s), time to 773K 

(s), time to 673 K (s), time to 573 K(s), time to 473 K (s) and time to 373 K (s).  

 

Figure 2: Gleeble sample with non-uniform elongation after high temperature deformation 

The high temperature tensile deformation during Gleeble tests led to non-uniform elongation 

in the central region of the sample as shown in figure 2 because of the temperature gradient 

caused by electrical resistance heating. For each tensile deformed sample, the width and 

thickness at the location of thermocouple welding was measured manually and engineering 

strain at that location was calculated by applying the principle of volume constancy using the 

original known volume of the undeformed sample. To reflect the uncertainty in the amount of 

deformation present, each sample was classified into a strain range class of 5% based on these 

strain measurement calculations for parametrization of deformation amount. Thus for each 

sample the amount of deformation present was classified into engineering strain classes such 

as 0-5%, 5-10%, 10-15%, 15-20%, 20-25% and so on. 

The output part of the dataset consists of the different martensite, bainite and ferrite phase 

volume fractions present in each sample. For each Gleeble test sample, the cross-sectional area 

was scanned using an 18 x 18 grid of nanoindents and the hardness data obtained from the 

nanoindentation test was analyzed to get the phase distribution measurements of the sample. 

Hardness values less than 200HV were classified as corresponding to ferrite, those between 

200-400HV were classified as corresponding to bainite and those above 400HV as 
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corresponding to martensite [35-37]. The relative proportion of hardness values for each class, 

gives us the relative phase distribution of martensite, bainite and ferrite in the final 

microstructure. In order to measure the uncertainty in the phase distribution quantification 

obtained from nanoindentation testing, a secondary set of nanoindentation tests were done on 

a selection of 8 randomly chosen samples. The phase distribution values obtained from these 

secondary tests were compared with the original values to get an estimate of the variation 

observed in the phase fraction measurements obtained by nanoindentation testing.  

The absolute difference between the phase fraction values obtained from the primary and 

secondary tests were calculated for all the 8 samples on which secondary testing was done. The 

average value of absolute difference in the phase volume fraction measurements between the 

original tests and the secondary tests was found to be 4.7%. The standard deviation for the 

absolute difference measurements was found to have a value of 3.5%. Thus 3.5% was used as 

the value of standard deviation and using that an upper limit on uncertainty of 11.7% was 

calculated, as approximately 95% of observations always fall within 2 standard deviations from 

the mean (4.7% + 2 x 3.5% = 11.7%). Thus the absolute uncertainty in a phase fraction 

measurements obtained by instrumented nanoindentation testing was calculated to be 11.7%. 

Once all the data had been collected and analyzed it was used to create the final ANN dataset 

with 50 datapoints corresponding to the 50 Gleeble tests performed. Based on all the 

experimental data, a final ANN dataset was created which was used for development and 

validation of the final ANN model. All the input and output features of the ANN dataset along 

with their range of values are listed in table given below: 

 Table 2: Input and output features of the final ANN dataset 

Input 1 Input 

2 

Input 

3 

Input 

4 

Input 

5 

Input 

6 

Input 

7 

Input 

8 

Input 9 Input 10 Output 

Time to 

1073K 
(s) 

Time 

to 
973K

(s) 

Time 

to 
873K

(s) 

Time 

to 
773K 

(s) 

Time 

to 
673K 

(s) 

Time 

to 
573K

(s) 

Time 

to 
473K

(s) 

Time 

to 
373K

(s) 

Deformation 

Amount 
(strain class) 

Deformation 

Temperature 
(K) 

Martensite, 
Bainite and Ferrite 

phase fraction 

values (%) 

Cooling process should finish within 180s after starting at 1173K 
(within the range of industry standard) 

 0-5% to    55-
60% 

1133K-973K 0-100 

 

5. ANN Model Development: 

In this research, a multi-layered feed-forward Artificial Neural Network (ANN) based phase 

distribution model has been developed [29]. Network topology with one input layer, two hidden 

layers and one output layer was selected for the work as it has been shown theoretically that 

such a neural network can model any complex continuous non-linear multivariate functional 

relationship with a fixed degree of uncertainty [29, 40]. This result applies to neural networks 

which use sigmoidal units in the hidden layers and linear units in the output layer and hence 

the activation function for the neurons in the hidden layer was selected to be sigmoidal and for 

the neurons in the output layer was selected to be linear for the final ANN model [29, 40]. The 

input layer consisted of the 10 input nodes which just take on the values of input variables as 

defined in Table 2 and the output layer consisted of 3 output nodes corresponding to the each 
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of the three phase fractions (martensite, bainite and ferrite) that the final ANN model was 

supposed to predict.   

Each neuron in the hidden layer and output layer has a corresponding set of weights attached 

with it. For each neuron, all its inputs from the previous layer are multiplied with the 

corresponding set of weights attached with that neuron and then the linear summation of those 

products is taken as the input for the activation function of that neuron. Initially the set of 

weights for each neuron in hidden layer and output layer is randomly chosen and thus the output 

values predicted by the model do not match with the corresponding output values present in 

training dataset. The output generated by the model is used to calculate the error in the 

prediction and then weights are iteratively updated so as to reduce this error. This process of 

iteratively updating the weights of the individual neurons in the neural network to reduce its 

prediction error, so that it starts to approximate the complex multivariate functional relationship 

present between input and output parameters in the training dataset, is what constitutes the 

process of learning during ANN based modeling. 

For this research work, a classical backpropagation algorithm was used for learning during the 

training and development of the model [29]. The authors have done their own implementation 

of the classical backpropagation algorithm in MATLAB and had used that for the final ANN 

model development. The main reason behind developing the implementation of the 

backpropagation algorithm from the scratch was to achieve the flexibility in the model training 

and development process, which was required for the application of the advanced statistical 

techniques for the final ANN model development.  

5.1 Division of ANN dataset, K-fold Cross-Validation and no. of neurons: 

 

 Figure 3: Complete division of the available ANN dataset consisting of 50 datapoints 

The division of the available ANN dataset consisting of 50 datapoints, corresponding to the 50 

Gleeble tests, was performed randomly as shown in figure 3. Due to the limited availability of 

the experimental resources, the input dataset for training and development of the final ANN 
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model was limited to a total of 40 datapoints. When the input dataset is divided into a training 

dataset and a cross validation dataset, the knowledge of the functional relationships present in 

the cross validation dataset is lost as the datapoints in cross validation dataset are not used for 

training the ANN model. K fold cross validation is a variant of the cross-validation technique 

which is especially useful when working with such small datasets and provides a way around 

this significant limitation [29].  

In the K-fold cross validation method, the cross validation procedure is carried out K separate 

times; each time using a different and mutually exclusive cross validation set chosen randomly 

from the input data. Thus if there are a total of m training examples in the input dataset, then k 

different disjoint subsets of equal size m/k are randomly selected from the input dataset. Then 

every time one out of those k disjoint subset is used for cross validation, whereas all the 

remaining datasets are joined together to form the training dataset. Thus in this method each 

available datapoint is used for cross validation at least one time and then it is used for training 

the remaining k-1 times [29].  

For this research, a 4 fold cross validation was used on the available input dataset of 40 

datapoints to generate 4 distinct training and cross validation set combinations, so as to ensure 

the optimal use of limited available data and for preventing overfitting [41]. Thus for the 

training of every individual ANN model, there was a training dataset with 30 datapoints and a 

cross-validation dataset with 10 datapoints available. During the individual ANN model 

training, the error on training (training error) and cross-validation dataset (CV error) was 

measured and plotted after every iteration as shown in figure 4.  

 

Figure 4: RMS error for training and cross-validation (CV) datasets versus number of 

iterations for backpropagation algorithm for a given ANN model 

Initially the error fell for both training and cross-validation dataset as learning occurred but 

after a point the cross-validation error started increasing as the model started to overfit on the 

data in the training set. Thus the final weights for each ANN model were chosen at the point 

when the error on the cross-validation dataset was minimum to avoid overfitting for each 

individual model. The training for each ANN model was done for 100,000 training iterations 
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to find the minima in the cross-validation dataset. From the model experimentation on the 

available data it was discovered that 100,000 iterations were more than sufficient for the model 

to find its CV error minima [41].   

The learning rate used during the gradient descent in backpropagation algorithm determines 

the step size of the change while updating the weight values after each iteration. During the 

implementation of the backpropagation algorithm in this research work, the value for the 

learning rate α was not kept constant but instead was kept dynamic. The initial value for the 

learning rate was taken as 0.03. During the ANN training the learning rate was adaptively 

changed by a factor of 0.9, whenever the value of training error increased during an iteration 

inside the backpropagation algorithm [41].  

The number of neurons in each of the hidden layers of the ANN model can significantly affects 

its final performance. With a greater number of neurons in the hidden layer, the neural network 

can simulate more and more complicated functional relationships. On the other hand increasing 

the number of neurons in the hidden layer also leads to higher computational expense being 

required for the training of the model. More importantly, increasing the number of neurons 

leads to an increase in difficulty of finding an optimal error minima during the training of the 

model [41]. Increasing the number of neurons leads to an increase in the number of weights 

defining the model and this in turn leads to an increase in the dimensions of the hypothesis 

space in which we are searching for the error minima. Higher dimensional hypothesis space 

leads to a highly complicated error surface with many sub-optimal local minimas, which 

increases the difficulty of finding the optimal error minima during the training of the model. 

Also because of random initialization of the initial weight connections of neurons in ANN 

model before its training, it is not possible to empirically determine the optimal number of 

neurons for each hidden layer [41]. Those initial values of the weights of the neural network 

determine the starting point in the hypothesis space from which neural network starts it search 

for finding the error minima during its training. Different random initialization means that each 

time the neural network starts from a different point in the hypothesis space and follows a 

different path during its training. It means that after the training, neural networks initialized 

with different random weights might end up at a different points in the hypothesis space even 

though they were trained using the same data and had the same network topology. Thus, as the 

final performance of the ANN model is affected by both network topology and random 

initialization, it is not possible to isolate the effect of network topology on the final 

performance. Thus trying different network topologies and comparing their final performance 

cannot be conclusive as there is no way to know whether the final model performance was a 

result of the particular network topology or the random weight initialization. 

Thus the number of neurons in each of the two hidden layer was varied between 10, 15 and 20 

and corresponding to two hidden layers that gave rise to a total of 9 ANN models with 9 

different network topologies. Each of these nine neural network topologies were trained on all 

the 4 different combinations of training and cross-validation datasets generated using the 4 fold 

cross validation technique. Finally for each neural network topology and particular training and 

cross validation set combination, 5 different random initializations were performed to account 

for the effect of different starting points in the hypothesis space on the final model performance. 

In the end a total of 180 different ANN models were developed using the input dataset. 
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5.2 Development of prediction uncertainty bars: 

All the 180 models generated were assembled together in order to form the final committee of 

the models. This committee of the 180 models will be henceforth be referred to as ‘the final 

ANN model’. Any input data is fed into all the 180 members of the committee and the final 

output of the committee is the mean of the individual outputs of the members of the committee. 

The predictions made by the final ANN model are based on the limited knowledge that was 

present in the input dataset which was used for training and development of the model. Since 

the input dataset is a sample from the entire population of all possible points in the experimental 

space, it is not possible for the entire knowledge of the experimental space to be captured by 

the input dataset [41]. Thus for the predictions made by the final ANN model to be reliable, it 

is necessary to provide uncertainty bars for those predictions.  

Each member of the committee arrives at different error minimas in the hypothesis space 

corresponding to their network topology, while they are trying to learn the same functional 

relationships from the limited knowledge present in the given input dataset. Based on the error 

minimas where they have finished at the end of their training, each member of the committee 

makes predictions that moderately vary from the predictions made by other members. Thus a 

measurement of the standard deviation in the predictions made by different members of the 

final committee is representative of the uncertainty in the prediction which can be made based 

of the limited knowledge present in the input dataset [41]. The standard deviation in the 

predicted value of each phase for a given input value by the committee members was measured 

and then the uncertainty bar for that prediction was calculated using the formula below: 

                      𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝐵𝑎𝑟 =  ±2 x 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛                        (1) 

The factor of two for measured standard deviation was selected as approximately 95% of 

observations always fall within two standard deviations from the mean. Hence each individual 

prediction made by the final ANN model will be of the following form: 

                   𝑀𝑒𝑎𝑛 𝑃ℎ𝑎𝑠𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ± 2 x 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛                        (2) 

Using this approach for calculating the uncertainty bar allows the final ANN model to generate 

customized uncertainty bars for each individual phase fraction predictions. There isn’t any 

fixed rigid uncertainty bar for the final model. This approach allows the final model to generate 

customized uncertainty bars for each prediction based on how confident it is about that 

prediction. Since the final ANN model is making output predictions based on the knowledge 

that it has learnt from the input dataset, it will be able to make prediction with greater 

confidence if the new data is closer to the data which was used for its training in terms of 

Euclidean distance in the experimental space. But at the same time if the final ANN model 

faces new data which is far apart, then the uncertainty in its prediction will increase. Using this 

statistical approach for the uncertainty measurement allows us to capture the localized 

variations in the confidence of predictions made by the final ANN model [41]. 
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6. Model validation and performance analysis: 

After the final ANN model had been developed, the model’s prediction performance was 

rigorously analyzed and validated by measuring it against experimental data present in both 

the input dataset and test dataset.  

 
         (a) 

 
          (b) 

 
          (c) 

Figure 5: ANN model phase volume fraction predictions for input dataset (a) Ferrite, (b) 

Bainite and (c) Martensite (data from 40 Gleeble tests) 

Initially the models performance on the experimental data in the input dataset was measured. 

A good analogy for explaining the significance of measuring the ANN model’s performance 

on the input dataset would be the significance of measuring how well a line fits the datapoints 

in linear regression. Just as a good fit indicates that the predicted line successfully captures the 

linear nature of the relationship present in the data, so does the model’s good performance on 
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the input dataset indicate that it has successfully managed to capture the functional 

relationships present in the input data. But the performance of the ANN model over the input 

dataset does not offer any insight about the generalization capabilities of the model when faced 

with new data. Thus for the final ANN model validation, the model performance was evaluated 

by measuring its performance on the completely new and independent experimental data 

present in the test dataset. The final ANN model had never seen the experimental data in the 

test dataset before and this validation was akin to testing the predictions made by a theoretical 

model against independent experimental data. This validation gave an estimate about the 

robustness and reliability of the final ANN model when faced with completely new data. 

For measuring the final ANN model performance on the input dataset, the thermal and 

mechanical history data of all the Gleeble samples present in the input dataset was fed into the 

model and the model’s predictions were compared with the actual measured phase fraction 

values obtained from nanoindentation testing. This corresponds to 40 different samples present 

in input dataset and hence the final ANN model made a total of 120 phase volume fraction 

predictions. The comparison of all predicted phase volume fraction values against measured 

values for each ferrite, bainite and martensite phase for input dataset is presented in figures 5a, 

5b and 5c respectively with all the volume fraction values being converted to percentages. Also 

in figure 5, all the measured values have been arranged in the ascending order and all the 

predictions have been shown along with their calculated uncertainty bars. For the input dataset, 

the predictions made by the final ANN model are in excellent agreement with the observed 

experimental phase fraction values. The Root Mean Square (RMS) prediction error measured 

for the ANN model over the entire input dataset was calculated to be 5.4%. And for 91 out of 

the 120 phase volume fraction predictions made by the ANN model over the input dataset, the 

individual prediction error was found to be less than 5.4%.  

Now in order to measure the generalization capabilities of the model and its true robustness 

and reliability, a further validation of the model was done by measuring its performance on 

completely new independent data in test dataset. The final ANN model has never been exposed 

to the data in the test dataset before and this was completely unknown data for the model. In 

order to measure the ANN model’s performance on the test dataset, the thermal and mechanical 

history data from the samples in the test dataset was used as input for the ANN model. Based 

on that input, the ANN model predicted the final phase distribution in the microstructure for 

all those Gleeble test samples. This corresponds to 10 different samples present in test dataset 

and hence the final ANN model made a total of 30 phase volume fraction predictions. The 

comparison of all predicted values against measured values for each ferrite, bainite and 

martensite phase for test dataset is presented in figures 6a, 6b and 6c respectively with all the 

volume fraction values having been converted to corresponding percentages. Also in figure 6, 

all the measured values have been arranged in the ascending order and all the predictions have 

been shown along with their calculated uncertainty bars. 

The generalization Root Mean Square (RMS) prediction error for the ANN model over the 30 

phase volume fraction predictions for the test dataset was calculated to be 7.7%. And for 22 

out of the 30 phase volume fraction predictions made by the ANN model over the test dataset, 

the individual prediction error was found to be less than 7.7%.  The RMS performance of the 

ANN model slightly deteriorated on test set as compared to its performance on the input dataset. 
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This small deterioration in the model performance over test dataset was a result of the model 

having to make predictions on completely new and unknown data present in the test set. 

Occurrence of this only small amount of actual deterioration in model performance over 

completely new and independent data offered direct evidence of the robustness and reliability 

in the predictions made by the final ANN model.    

 
     (a) 

 
       (b) 

 
         (c) 

Figure 6: ANN model phase volume fraction predictions for test dataset (a) Ferrite, (b) 

Bainite and (c) Martensite (data from 10 Gleeble tests) 

For benchmarking purpose, a standard one hidden and one output layer feedforward neural 

network was trained using the GUI ‘nftool’ from Neural Network toolbox in Matlab without 
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using any of the advanced statistical techniques described in this work. In the hidden layer 20 

sigmoidal neurons were used, whereas the output layer consisted of 3 linear neurons 

corresponding to 3 phases. The available 50 datapoints in the ANN dataset were divided 

randomly into 30 datapoints for training, 10 datapoints for validation and 10 datapoints for test 

set. The 'trainlm' function in Matlab corresponding to Levenberg-Marquardt backpropagation 

algorithm with the default values for all parameters was used for training this benchmark model 

[50].The generalization RMS prediction error obtained by this benchmark model over the 

completely new and unknown data in the test set was 12.2%, which is significantly higher than 

the generalization RMS prediction error of 7.7% obtained by the final ANN model developed 

in this work. Also the biggest observed absolute difference between the predicted and target 

phase fraction value obtained by the benchmark model was 30% during its testing. 

 

                    

 

Figure 7: Microstructures of Gleeble samples in test set for which the prediction differs from 

measured phase volume fraction values by more than 10% 

Now from a total of 30 predictions made by the final ANN model for the test dataset, only 6 

Phases Measured Predicted 

Martensite 78 89 

Bainite 22 10 

Ferrite 0 1 

Phases Measured Predicted 

Martensite 86 69 

Bainite 12 29 

Ferrite 1 2 

Phases Measured Predicted 

Martensite 0 0 

Bainite 80 99 

Ferrite 21 4 

(c) 

(a) 

(b) 
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predictions differed from the measured values by more than 10% with the biggest observed 

difference being of 19% (Figure 6b - Prediction 8). Now for each Gleeble sample in the test set 

the final ANN model  had made three separate phase volume fraction predictions, one each for 

volume fraction of the ferrite, bainite and martensite phase present in that sample. Thus the 6 

predictions which differed from measured values by more than 10% in the test set correspond 

to 3 different Gleeble samples. The microstructural images corresponding to each of those 3 

Gleeble test samples obtained by using metallography and optical microscopy are presented in 

figure 7 along with their predicted and measured phase volume fraction values.  

As can be seen, the microstructures in figure 7a and 7b consist mostly of acicular martensitic 

structure along with small amounts of bainite present in it which support the high martensite 

phase fraction predictions made by the final ANN model for those samples. The microstructure 

in figure 7c is observed to consist mainly of fine non-lamellar bainite along with a very small 

fraction of granular ferrite, which also matches the high bainite content predicted by the final 

ANN model for that sample. Also the measured values for phase fractions obtained by 

nanoindentation testing have an inherent uncertainty of ~11.7% as calculated based on the 

secondary set of nanoindentation tests (section 4). When that measurement uncertainty is taken 

into account, it further supports the predictions made by the final ANN model and establishes 

the robustness and reliability of the model for making the final phase distribution prediction 

for tailored hot stamping process. 

The experimental data in the test dataset was completely randomly chosen from the original 

ANN dataset and had thermo-mechanical physical simulation data corresponding to both high 

die temperatures (highest 823K) and low die temperatures (Room temperature) for a variety of 

different deformation temperatures (highest 1133K and lowest 973K) and different 

deformation amounts (highest strain class 50-55% and lowest strain class 0-5%). Thus the final 

ANN model had been validated against wide range of different thermo-mechanical conditions 

that occur during tailored hot stamping. This excellent performance of the final ANN model 

with an RMS error of just 7.7% for phase fraction prediction over the test dataset establishes 

that the final ANN model has indeed robustly learned the functional relationship between the 

thermal history, deformation amount and deformation temperature and the final resulting phase 

distribution in the boron steel. Thermal history, deformation amount and deformation 

temperature are the factors which have the greatest influence on the final phase distribution 

during tailored hot stamping and hence were used for development of the current ANN model 

[8, 10, 12, 15, 35, 36, 48, 49]. There are other process parameters such as strain rate, 

austenitization temperature and austenitization time which also have limited influence on the 

final phase distribution during tailored hot stamping. All these process parameters can be 

investigated and added to the final ANN model for gaining further incremental improvements 

in model’s performance.   

7. Conclusion: 

For the first time, an ANN based model was developed for phase distribution prediction during 

tailored hot stamping. This ANN based model successfully takes into account the thermal 

history, deformation amount and deformation temperature as inputs for prediction of the final 

phase distribution for tailored hot stamping. The final developed ANN model gave an excellent 
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performance during its validation over new and independent experimental data and established 

the robustness and reliability of model’s generalization capabilities. This ANN based model 

used advanced statistical techniques for optimal utilization of the data, for preventing 

overfitting and for calculating customized uncertainty bars for predictions. Along with that this 

statistical approach also helped in exploring different neural network topologies and utilizing 

the unique benefits that each individual topology had to offer for the final ANN based model. 

The main research findings from this work are as presented below:  

1. Artificial Neural Network (ANN) based approach was well suited for solving this complex 

scientific and industrial challenge of final phase distribution prediction in automotive 

structural and safety components produced by tailored hot stamping process.  

2. The developed ANN based model for phase distribution prediction during tailored hot 

stamping was able to successfully account for the effect of thermal history, deformation 

amount and deformation temperature on the final microstructures. 

3. The Root Mean Square (RMS) error in phase volume fraction prediction performance of 

the ANN based model was found to be just 5.4% on the input dataset and 7.7% on the test 

dataset. . The reliability and robustness of the ANN model was demonstrated by validating 

its performance against the completely new and independent experimental data in test set.  

4. This prediction performance of the ANN model was a significant improvement over the 

currently available existing phase distribution prediction models which use only thermal 

history for making their phase distribution predictions. 

5. Different statistical techniques used during the training and development of the final ANN 

model helped in making it highly robust and reliable. Application of these statistical 

techniques is highly recommended, especially for the field of empirical modelling in 

material science, where usually the cost associated with generating experimental data is 

high and because of that mostly limited experimental data is available for modelling.     

Thus the developed final ANN model in this research addresses a critical scientific and 

industrial challenge faced by the automotive industry and is well suited for computer aided 

engineering (CAE) applications for tailored hot stamping process in the future.  
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