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Abstract

Stochastic thermodynamics provides a clear definition of entropy production

and the framework of fluctuation theorems has allowed many general results to be

obtained for nonequilibrium systems. Notably, relationships for work and free energy

in nonequilibrium systems as well as second law-like inequalities have been obtained.

A recent extension to this framework has been the addition of feedback and the

generalisation of the previously obtained inequalities to incorporate information

quantities related to control and feedback.

In this thesis we contribute to this framework by first providing a close anal-

ysis of the nature of ‘time-reversal’ for feedback systems. Time reversal is a key

ingredient in the formulation of the fluctuation relationships from which one ob-

tains the nonequilibrium work functions and so we consider how to meaningfully

construct a time-reverse conjugate process for a system with feedback and provide a

justification for the Sagawa-Ueda fluctuation relation. We then introduce a simple

model of a feedback engine and use it to analyse the fluctuation properties of the

information flow between the controlled system and the feedback controller.

Finally, we focus on the possibilities for feedback and consider a model

whereby feedback is enacted symmetrically between two coupled systems and find

that such a system has entropy-reducing dynamics. Since the dynamics appear to

violate the second law of thermodynamics, we comment on their validity and argue

that mutual feedback may be unphysical.
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“The only laws of matter are those which

our minds must fabricate, and the only

laws of mind are fabricated for it by mat-

ter.”

James Clerk Maxwell, Analogies in

Nature

1
Introduction

1.1 The second law

In its simplest form, the second law of thermodynamics dictates that the entropy

of an isolated system will increase. Entropy is an easily misunderstood quantity,

but can be thought of as a measure of disorder of a system. The more disordered

a system becomes, the harder it is to extract useful work from that system. This

law is thought to be one of the most important empirical laws in all of physics; not

only does it place fundamental limits on the abilities of thermodynamic processes,

it is also intimately connected to the notion of directionality in time Halliwell et al.

[1996]; Mackey [2003]; Carroll [2010] and allows speculation about the ultimate fate

of the universe Kelvin [1862a,b]; Lebowitz [1993].

The origins of the second law are found in the work of the 19th century

French scientist Sadi Carnot Carnot et al. [1890]; Prigogine and Kondepudi [1998].

While studying the principles of heat flow in the 1820s1 Carnot developed the notion

of a reversible process. Concluding that reversible processes did not exist in nature,

Carnot laid the groundwork for the second law of thermodynamics. Perhaps the

best concrete statement was given by Rudolf Clausius Clausius [1850] later that

century: “Heat can never pass from a colder to a warmer body without some other

1Which was relevant at the time for the understanding of steam engines.
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change, connected therewith, occurring at the same time”. The second law can be

very loosely interpreted as the statement that many common phenomena are in fact

irreversible. The consequence of this is that one cannot extract work from a system

without dissipating energy into the environment, and once energy dissipates into the

environment it is lost, which is exactly Kelvin’s statement of the second law Kelvin

et al. [1851]. Similar statements to the same effect have been made by Planck [1921]

and Uhlenbeck et al. [1963].

Since its discovery, the second law has been one of the most empirically

verified postulates in all of physics; every event that occurs at the macroscopic level

appears to be in agreement with the second law. Eddington even went as far as

to say the he believed the second law held a ‘supreme position among the laws of

nature’, going on to say:

“If someone points out to you that your pet theory of the universe is

in disagreement with Maxwell’s equations, then so much the worse for

Maxwell’s equations. If it is found to be contradicted by observation,

well, these experimentalists do bungle things sometimes. But if your

theory is found to be against the second law of thermodynamics I can

give you no hope; there is nothing for it but to collapse in deepest hu-

miliation.” Eddington [2012]

1.2 Maxwell’s dæmon

One might be forgiven for drawing a line underneath the second law and accepting

it prima facie. However, there have been many challenges to its validity and debates

over its interpretation. The most significant of these was put forward in 1867 by the

Scottish physicist James Clerk Maxwell. In a letter to Kelvin, Maxwell proposed

a thought experiment that considered the microscopic events occurring in a ther-

modynamic system Kelvin [1879]. The experiment considers a box with adiabatic

walls2 containing a gas. A barrier is inserted into the box that divides the gas in

two. Initially the two sides of the partition are at the same temperature. Located

near the barrier is a sentient agent or ‘dæmon’3 who is able to open and close a small

hole in the barrier. If fast (slow) particles approach from the left (right) box, he

lets them through into the right (left) which will cause a increase (decrease) in the

temperature of the right (left) box. By monitoring the motion of the gas particles

2No heat enters or leaves the system through the walls.
3Throughout, we will use the spelling d æmon as it refers to an agent who works in the back-

ground. However, it is more common to see the spelling demon. Indeed, Kelvin himself used it,
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and reacting appropriately, the dæmon is able to transfer heat from one side to the

other. This results in a situation whereby heat is being transferred from the colder

right side into the hotter left side. This result appears to be in direct contradiction

of Clausius’ and Kelvin’s statements.

The most succinct way of expressing the second law would be to write

〈∆St〉 ≥ 0, (1.1)

where the angle brackets denote the ensemble average over many realisations. Maxwell’s

thought experiment points out that on the microscopic scale, events do occur that

decrease the entropy. This is reflected by (1.1) which can be read as stating that

while the ensemble average of ∆St should be greater than zero, individual reali-

sations of ∆St can be negative. The thought experiment was not so much a con-

tradiction as a clarification; pointing out the existence of microscopic fluctuations

and their potential relevance in special cases. Whilst decreases in entropy are thus

theoretically possible, actually achieving a decrease in entropy on average4 would

require the intervention of a sentient agent capable of witnessing and reacting to

microscopic events. At the time of the thought experiment in the late 19th century

such a ‘neat-fingered being’ was an implausibility, and the thought experiment (now

dubbed ‘Maxwell’s dæmon’) was not believed to be a contradiction of the 2nd law.

However, while first conceived to elucidate the statistical subtleties of the second law

of thermodynamics, the experiment has since sparked many debates Szilard [1929];

Brillouin [1951]; Landauer [1961]; Bennett [1982]; Leff and Rex [2010] on how the

second law could be systematically violated. That is, violations that manifest in

the ensemble average rather than the temporary violations occurring on the level of

individual trajectories or events Gallavotti and Cohen [1995a]; Evans et al. [1993];

Evans and Searles [1994].

Much thought has been put into the realisability of real ‘Maxwell’s dæmons’

and their compatibility with the second law that had been the theoretical foundation

of much innovation during the industrialisation of Europe. To further clarify the

implications of the dæmon, in 1929, the Hungarian physicist Léo Szilárd developed

a new concrete model of a ‘Maxwell’s dæmon’ that described exactly the ingredient

that permitted the violation Szilard [1929]. In Szilárd’s model, we again consider a

box with adiabatic walls, however this time the box contains only a single molecule

of gas. The system is allowed to reach thermal equilibrium and then a barrier is

inserted. An observer then determines which side of the box the molecule is found

despite referring to a hidden agent rather than a malevolent entity.
4As opposed to on an individual trajectory.
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on, and allows that side of the box to expand adiabatically until it is the same volume

as the original box, whereupon the system is once again allowed to equilibrate. By

the expansion of the gas, useful work is extracted from the system. However, the

system has begun and ended in the same state. Since the change was adiabatic, the

free energy change is zero. Through this procedure, the ‘Szilárd engine’ provides

an even more direct confrontation to the second law. Unlike the original Maxwell

dæmon, the ability to witness and react to microscopic thermodynamic fluctuations

as they occur is not required.

Although Szilárd’s model at first seems more shocking, it was in fact proposed

to make clear a fact that Szilárd claimed had been ignored. In this model, it is far

clearer to see the point at which the action of the dæmon influences the system

and thus attempt to understand its effect. Noticing that the dæmon’s measurement

causes the process to branch (depending on which side of the box the particle is found

on), Szilárd reasoned that the measurement process plays an important role. Szilárd

first noted that the dæmon must have some method of measuring the system state

in order to determine how to act. This act of measurement must produce entropy

such that the second law was still valid for the whole system. Szilárd essentially

argued that one should consider the gas and the dæmon as a whole system since

they are interacting with one another, and that the second law would hold for the

system as a whole.

In 1960, German American physicist Rolf Landauer further refined this un-

derstanding by pointing out that the process of information erasure was logically

irreversible Landauer [1961], and that it was thus the erasure of information that

produces entropy. Landauer suggested that having made a measurement of the sys-

tem state, the dæmon must now reset his memory device in order to be prepared for

the next measurement, and to achieve that, the dæmon must erase information and

thus produce entropy. Since then, it has been further shown Bennett [1982] that

even if the dæmon never erases any information from his memory, he will eventually

run out of storage space and must either discontinue his activities or erase infor-

mation he had previously gathered. While both Szilárd and Landauer concluded

that the dæmon was not a violation of the second law for different reasons, both

acknowledged the importance of information and the processing of information in

thermodynamics. Building on the understandings of Maxwell and Boltzmann, the

importance of the concept of ‘information’ to thermodynamics was made clear.
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1.3 Information thermodynamics

In the words of Landauer [1996]; “information is physical”. Information plays an

important role in physics, and this insight has led to the development of novel ther-

modynamic models such as the ‘information heat engine’ and ‘information refrig-

erator’. ‘Information heat engines’ are a class of thermodynamic systems that use

information processing to do thermodynamic work without the need for a change in

free energy Toyabe et al. [2010]; Park et al. [2013]. Methods such as feedback control

allow the engine to use information gained about a physical system to decrease the

system entropy and hence extract useful work from the system Lloyd [1997]. This

does not constitute a violation of the 2nd law as it is understood that the operation

of the feedback device entails an amount of entropy production at least equal and

opposite to that change in the system Piechocinska [2000]; Landauer [1961]. The

Szilárd engine is a very good example of an information heat engine. By using the

information gained from the measurement, the dæmon is able to control the system

and extract work. The information resource can be treated thought of as being

similar to a ‘heat reservoir’ from traditional thermodynamics.

Operations involving information and its processing, generation, erasure, en-

coding, transmission and interpretation, are all processes that play a part in the

thermodynamic behaviour of a system5. This understanding has allowed informa-

tion to be included into thermodynamics and led to the development of a new

framework of ‘information thermodynamics’. The information theoretic description

of Maxwell’s dæmon thus includes the amount of information obtained by the dæ-

mon. By considering the dæmon as operating some control protocol based on the

outcomes of his measurement, the dæmon is studied as an instance of closed-loop

feedback control. In keeping with Maxwell’s original conception, it is not necessary

for the dæmon to expend any energy in operating his feedback control; it is only

necessary that he possesses information about the state of the system. There is

much research discussing the place of Maxwell’s dæmon in physics, both in a mod-

elling context and in experimental systems Jayannavar [1996]; Lloyd [1997]; Mandal

and Jarzynski [2012]; Mandal et al. [2013]; Barato and Seifert [2013]; Strasberg et al.

[2013]; Deffner [2013]; Ford [2016]. Despite his age (and despite numerous attempted

‘exorcisms’), Maxwell’s dæmon still plays an important role in understanding ther-

modynamics.

For Maxwell and his contemporaries, it was impossible to observe or control

a system on the level of thermodynamic fluctuations. However, due to recent tech-

5That is, these processes can influence how heat flows in a system as well as its equilibrium
state(s).
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nological developments, the thermodynamics of feedback control are increasingly

relevant. Modern experiments are capable of probing regimes heavily influenced

by thermal fluctuations. In the pursuit of ever faster and ever smaller devices, the

understanding of thermodynamic fluctuations is very important. Even more impor-

tant though, is that information thermodynamics allows us the exciting possibility

of exploiting those very fluctuations to our own ends through the construction of

real ‘Maxwell dæmons’.

In addition to simulating the effect of feedback control on thermal systems;

recent experiments have managed to realise the effect of reducing the entropy of a

physical system. Using a high-speed camera and phase shifting electric fields con-

trolled by a computer, the Maxwell dæmon effect has been observed operating on

a Brownian particle Toyabe et al. [2010]. The role of information and informa-

tion processing in control of thermodynamic systems has been confirmed in several

other experiments for example Lopez et al. [2008]; Koski et al. [2014b,a]; Camati

et al. [2016]. Recent theoretical studies have also shown that systems driven by

an information engine can outperform chemically driven systems in terms of effi-

ciency Horowitz et al. [2013]. In all of these models, the information thermodynam-

ical framework has given insights into how to construct the control protocols Abreu

and Seifert [2011]; Granger and Kantz [2011]; Sagawa and Ueda [2012] and how best

to approach the maximum efficiency of these systems. As the realm of technology

tends towards very small length and time scales, the possibility of utilising the nat-

ural thermodynamic fluctuations in the operation of these devices allows for a wide

range of applications in many cutting edge technological and scientific scenarios.

A quantitative relationship between entropy and information is provided by

the information thermodynamic framework Barato and Seifert [2014a], which gives

the universal upper bound on the mean negative entropy production that can be

obtained by feedback control Sagawa and Ueda [2008]. To be precise, the ‘2nd

law of information thermodynamics’ states that the entropy production ∆St, of a

system up to time t is related to the information, ∆It, gained by the dæmon via

the inequality Touchette and Lloyd [2000]

〈∆St〉 ≥ −〈∆It〉, (1.2)

In fact, this turns out to be a simple corollary of the generalised integral fluctuation

theorem Sagawa and Ueda [2010] (itself a generalisation of the Jarzynski equal-

ity Jarzynski [1997b]),

〈e−∆St−∆It〉 = 1. (1.3)
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This implies that for ∆It 6= 0,

〈e−∆St〉 6= 1, (1.4)

that is, the standard integral fluctuation theorem does not hold in the presence of

feedback Sagawa and Ueda [2012]. These results have been experimentally verified

in small systems, where thermal fluctuations have a strong influence Toyabe et al.

[2010]; Bérut et al. [2012]; Koski et al. [2014b]. In previous theoretical studies, the

quantity ∆It and its relation to ∆St has been discussed in the context of Langevin

equations and continuous-time Markov chains Hartich et al. [2014]; Horowitz and

Esposito [2014], and the mutual information between the feedback controller and

the stochastic system has been considered for systems with discrete events Horowitz

et al. [2013].

There is still much interest in probing and potentially overcoming the second

law. Over the last century and a half the ‘law’ has been repeatedly challenged

and revised, to the point where the once immutable and non-negotiable law and its

implications are now “more what you’d call ‘guidelines’ than actual rules” Verbinski

[2003]. It is not yet known whether the law can be finally and definitively broken or

if further generalisations will continue to rescue and ultimately refine it. Whatever

the case, the words of James Gleick seem appropriate;

“’It sometimes seems as if curbing entropy is our quixotic purpose in the

universe.” Gleick [2011]

1.4 The current work

In this thesis we will discuss recent developments in the physics of feedback. Specif-

ically, we discuss the modifications necessary to the existing stochastic thermo-

dynamics framework in order to accommodate measurement-based feedback. In

particular we analyse the notion of a ‘reverse process’ in the presence of feedback

and present a justification for the choice of ‘reverse process’ used to obtain the

Sagawa-Ueda fluctuation relation (1.3). We also test the information thermody-

namic framework in two specific models that include feedback. In particular, we use

these models to study aspects of feedback that have previously not been considered.

Firstly, we study fluctuations of information gained by a measurement device in a

feedback system by presenting an analytically solvable model of such a system. We

then explore the possible consequences when feedback between system components

is cleverly organised.

The thesis is structured as follows. Chapter Ch. 2 is largely an introduction
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to notation and framework as well as a review of important concepts and results

in the field of stochastic thermodynamics. In this chapter we describe the frame-

work of Markov chains and stochastic thermodynamics. We then detail the notion

of ‘time-reversal’ and what this means for stochastic processes. Having detailed

time-reversal we provide an introduction to trajectory functionals and how they are

connected to standard thermodynamic quantities such as entropy and work. The

most important of these quantities is the ‘entropy production’ which is a nonequi-

librium analogue of entropy and is the primary quantity of interest in nonequilib-

rium stochastic thermodynamics. Finally we re-derive some standard results from

stochastic thermodynamics using our framework and notation. In this chapter we

also discuss large deviations and how the theory of large deviations can be used to

characterise the fluctuation properties of a system.

Ch. 3 extends the framework from Ch. 2 to include the concepts of ‘control’

and ‘feedback’. We first discuss how systems can be controlled, and how this is

included in our earlier notation, before describing closed-loop or ‘feedback’ control.

To do this we use some terminology and ideas from control theory. Since feedback

control involves information about a system state being used to manipulate the

system evolution, we provide a brief primer on information theory. We describe

some information theoretic quantities relevant for discussing measurement-based

feedback. We then go on to discuss several possible time-reverse processes that

could be used to obtain meaningful trajectory functionals related to the functionals

from the previous chapter.

In Ch. 4 we present and study our concrete model of an ‘information engine’,

a system that exploits an information resource to do work using feedback control.

This work in this chapter is based on Maitland et al. [2015]. We study the fluctuation

properties of the flow of information between the system and the feedback controller

by obtaining the large deviation rate function. We obtain an exact expression for the

rate function for a two site system. For larger systems we provide an approximate

analysis based on numerical data.

In Ch. 5 we study another model of a feedback device that employs feedback

control symmetrically between two sub-systems. Systems that use feedback control

in this way are speculated to be able to violate the second law and we confirm this

with numerical simulation. We comment on the nature of this contradiction and

provide a rationalisation of the result. A rigorous treatment of a Langevin model

of a ‘double dæmon’ with similar results to those found here can be found in Ford

and Maitland [2016].

Finally in Ch. 6 we summarise and provide an outlook on future research.
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We conclude by discussing the relevance of Maxwell’s dæmon to thermodynamics

and speculating on the future of the second law within physics.
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“In this house, we obey the laws of ther-

modynamics!!”

Homer Simpson, The Simpsons, episode

124

2
Key concepts

In this chapter, we will detail the main concepts necessary for the formulation of

the stochastic thermodynamic framework before providing an overview of previous

results obtained as a form of literature review. We begin by describing the basic

framework of Markov chains and introducing our notation in Sec. 2.2. In Sec. 2.3,

we discuss the functionals over trajectories that will lead us to obtaining the key

fluctuation relations that later chapters will be based on. We then briefly make

an aside in Sec. 2.4 to discuss the relationship of these trajectory functionals to

classical physical concepts such as entropy and dissipated heat. Sec. 2.5 introduces

the fundamental fluctuation relationships by examining the generating functions of

the previously defined functionals. Sec. 2.6 details the basics of the theory of large

deviations which will be relevant in later sections discussing fluctuation symmetries

and the fluctuation behaviour of stochastic systems. Finally, in Sec. 2.7 we describe

particular fluctuation theorems in detail and show how they are related to the funda-

mental fluctuation relationship. Throughout this chapter, in discussing previously

obtained results we draw on reviews by Harris and Schütz [2007] and Seifert [2012].
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2.1 Stochastic thermodynamics

The primary goal of statistical mechanics is to derive macroscopic and empirically

observable laws from microscopic principles. In this thesis, we do not quite start

at the microscopic level, but instead satisfy ourself with a mesoscopic description.

Specifically, we use a Markovian description of the systems under consideration that

abstracts the large number of deterministic microscopic equations into probabilities.

This probabilistic description renders all of the processes as stochastic, yet still

allows us to define, obtain and use familiar thermodynamic quantities and relations.

Before we detail this Markovian approach and the abstract stochastic dynamics, it

is important to understand what exactly is being abstracted.

E

ESEP

Figure 2.1: A cyclic chemical reaction. State E represents a single unbound Enzyme.
States ES and EP represent bound states to substrate and product. In completing
a cycle clockwise (blue arrows), a substrate is taken from the environment, binds
with the enzyme and is converted into a product and then released. The same
process can occur backwards, with a product being taken from the environment,
binding to the enzyme and converted back to substrate before being released.

As a concrete example, consider the cyclic Michaelis-Menten Michaelis and

Menten [1913] chemical reaction with a reversible product generation, shown in

Fig. 2.1

E + S −⇀↽− ES −⇀↽− EP −⇀↽− E + P, (2.1)

where E is an enzyme, S is a substrate molecule and P is a product molecule.
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ES and EP are complexes. We could consider a single Enzyme in solution with

many substrate and product molecules. It is then typical to partition this situation

into a ‘system’ and ‘environment’. The ‘environment’ is the solution containing the

substrate and product molecules and has a temperature T . The ‘system’ is the

Enzyme itself as it forms the ES and EP complexes. The ‘system’ and environment

are in thermal contact. In this example, the system and environment can exchange

particles since a substrate (product) can be taken from the environment, converted

into a product (substrate) and then released.

In general, the generation of a product or substrate involves numerous events

that each involve many physical processes. For a single product to be generated,

the substrate must come into contact with the enzyme, the two must bind together,

changes in the shape of the substrate occur whilst they are bound and finally the

changed substrate is released as a product. Rather than considering each of these

microscopic processes, we can instead use the following description: The process

completes a forward cycle – and converts a single substrate into a product molecule

– with rate k+ and completes a backward cycle with rate k−. These rates fulfil a

generalised detailed balance condition

k+

k−
= e−[µP−µS ]/kBT , (2.2)

where µi is the chemical potential of i and kB is Boltzmann’s constant. If we assume

that the chemical concentrations of S and P are large, such that the chemical

potentials are essentially unchanging on the timescale of observing the process, then

the cycle will be driven by the chemical potential difference between the two species.

If µS > µP , then the process will on average convert substrate molecules to product

molecules. This is to say that these rates provide a dimensionless measure of how

likely the reaction is to proceed forward as it is backward. The transition rates k+

and k− abstract the underlying process yet are still related to physical quantities

such as the temperature of the environment and the chemical potential driving the

process.

2.2 Notation and framework

Here we outline the basic mathematical framework and notation we shall be using

throughout. We consider discrete-time Markov chains on a discrete state space, and

use a version of the quantum hamiltonian formalism. While the name alludes to a

framework from physics, in reality, this is a somewhat fancy name for computing the
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evolution of the distribution of a stochastic process via a series of linear difference

equations (differential equations in continuous-time systems) and writing these as a

matrix operation on vectors in a cleverly chosen basis. We further use the bra/ket

notation for notational simplicity, and will attempt to clarify in cases where the

notation may be overly condensed. For further reading on the uses of this framework

and its connections to field theory, see Mattis and Glasser [1998]; Schütz [2001].

2.2.1 Markov chains

Firstly, we detail the notation for Markov chains and the stochastic dynamics and

the types of Markov chains that we are interested in. A Markov chain is a stochastic

process that transitions between states in its state space in a ‘memoryless’ fashion,

meaning that the probability to transition to any state depends on on the current

state and not any previous states.

State space

We are concerned with dicrete-time Markov processes occurring in some state space

χ. In general, the state of the system could refer to the position of a single particle;

the configuration of a set of particles or more abstractly, a set of values taken by

a set of variables. The system state at time s is xs ∈ χ. The probability to find

the system in a state x at time s is written πs(x). A particular trajectory of length

t is given by xt = {xs}ts=0, a chronologically ordered list of the system states.

This trajectory xt can be thought of as a realisation of the random variable Xt.

The random variable Xt can be referred to as the stochastic process as it is the

family of indexed random variables with a shared state space. The total number

of states/configurations visited on a given trajectory is t + 1. The probability of

observing a trajectory xt is written P [Xt = xt] where P is the path space measure.

We use a subscript notation to denote the initial condition of the chain e.g. if the

starting state of the chain is chosen from some distribution π we use Pπ.

A concrete example of this would be a 1D discrete-time random walk (1DDTRW)

on a lattice with L sites. The state space is the position of the walker on the lattice,

i.e. χ = {1, . . . , L}, and a trajectory would be a list of these sites in the order they

are visited.
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Stochastic dynamics

The probability of a transition between states x and x′ is ω(x→ x′), which forms a

transition matrix

Ωx′,x∈χ = ω(x→ x′). (2.3)

For a process with time-dependent transition probabilities, we write

Ωs∈N,x′,x∈χ = ωs(x→ x′). (2.4)

At each time step, the probability of transitioning to a new state (or staying in the

current state) sums to one owing to conservation of probability, expressed as∑
x′∈χ

ωs(x→ x′) = 1. (2.5)

In general, the values of these probabilities are determined by some external

parameter we call the ‘control’ parameter. The evolution of the control parameter

itself is then called the ‘protocol’. For now it is sufficient to consider that the

transition probabilities depend only on time and refer to this time-dependence of

the transition probabilities as the protocol. We will revisit the notion of ‘control’

parameters later in Sec. 3.1.

In all of the following unless explicitly stated, we consider processes that

satisfy a weak reversibility condition known as microscopic reversibility (originally

proposed by G.N. Lewis as The law of entire equilibrium Lewis [1925]; Tolman

[1938]). In our notation this condition is written,

if ωs(x→ x′) > 0 then ωs(x
′ → x) > 0 ∀x, x′ ∈ χ, ∀s′ 6= s. (2.6)

The microscopic reversibility condition states that if a transition can occur from

x to x′ under the dynamics at time s, then same transition must also be possible

backwards – it must be possible to transition from x′ to x at time s. This is a

‘weak’ reversibility as it only implies that the reverse transitions and trajectories

are possible, i.e. they have non-zero probability of occurring1. Note that in (2.6) we

also consider that if a transition is allowed at some time, then it is allowed at all

times. If transitions could become impossible at some specific time, then it would

be possible to create processes that do not satisfy (2.17) which is required for a

meaningful ‘time-reversal’ which is covered below in Sec. 2.2.2. Later in Ch. 3, we

1In fact, many physicists are happy to refer to (2.6) as ‘reversibility’. Mathematicians use the
term to refer to the far stronger condition of (2.14).
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will relax (2.6) but still take care to preserve the possibility of some meaningful

‘reversibility’. The requirements we must fulfil are described below in Sec. 2.2.1 and

given by (2.16) and (2.17).

Master equation

The master equation for a Markov process describes the time-evolution of the sys-

tem by quantifying the probability πs(x). The master equation for a discrete-time

Markov chain is written as

πs+1(x) =
∑
x′∈χ

πs(x
′)ωs(x

′ → x). (2.7)

Note that this equation captures the memoryless nature of the stochastic dynamics

of a Markov chain. The state at time s+ 1 is determined only by the state at time

s and the stochastic dynamics in the form of the transition probabilities.

We use the quantum Hamiltonian formalism to write out the master equation.

The quantum Hamiltonian formalism as an approach to stochastic dynamics has a

history at least as far back as Glauber [1963]. A comprehensive review of this

approach is found in Schütz [2001]. Essentially, this allows us to write the master

equation in matrix form by using the bra/ket notation and a suitable choice of basis.

Each state of the system x is assigned a vector |x〉 together with a transposed vector

〈x|. The probability distribution can then also be written as a vector

|πs〉 =
∑
x∈χ

πs(x) |x〉 . (2.8)

Here it should be noted that |x〉 is a column vector2. With a scalar product 〈x | x′〉 =

δx,x′ , the probability can be obtained by the scalar product πs(x) = 〈x | πs〉.
The master equation is linear, and can be written as

|πt〉 = Ωt−1 |πt−1〉

=

(
t−1∏
s=0

Ωs

)
|π0〉 . (2.9)

In the case of time-independent transition probabilities, Eq. (2.9) reduces to

|πt〉 = Ωt |π0〉 . (2.10)

2Once again, a difference between Physics and Mathematicians appears. The typical approach
in Physics is to use column vectors for the state vector and transition matrices with normalised
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To compute expectation values, we introduce a summation vector

〈1| =
∑
x∈χ
〈x| , (2.11)

and so by construction we have 〈1 | πs〉=1, which sums probability over every state,

and 〈1|Ω = 〈1|, which expresses conservation of probability in a discrete-time

Markov system as stated above.

Stationarity

For a time-independent transition matrix Ω, the right eigenvector associated with

the principal eigenvalue is a probability vector |µ〉. This probability vector is known

as the stationary distribution and satisfies

|µ〉 = Ω |µ〉 , (2.12)

which can be written out explicitly for each state x as

µ(x) =
∑
x′∈χ

ω(x→ x′)µ(x′), (2.13)

A Markov chain on a finite state space has at least one stationary distribution. This

is proven by noting that since 〈1|Ω = 〈1|, then 〈1| is an eigenvector with eigenvalue

1. Since this is a left eigenvector there will be a corresponding right eigenvector

with non-negative entries also associated to this eigenvalue, which is a result of the

Perron-Frobenius theorem since the matrix Ω has only positive entries. This right

eigenvector is exactly the stationary distribution of the Markov chain.

For time-dependent transition rates, we can think of the subscript s as an

index over different transition matrices Ωs. As each of these different transition

matrices still refer to finite-state Markov chains, there will exist a distribution µs(x)

that satisfies Ωs |µs〉 = |µs〉. In the same way that the s subscript can be thought of

as indexing different matrices, in µs the subscript s indexes the different stationary

distributions associated to the transition matrices Ωs rather than describing a single

distribution that changes in time.

An irreducible3, aperiodic Markov chain with finite state space is ergodic.

That is, it has a unique stationary distribution µ and πt → µ as t→∞ and so the

columns. Mathematicians use row vectors and matrices with normalised rows respectively.
3Stated in words, the condition of irreducibility is that every state x′ ∈ χ should be ‘accessible’

from any state x ∈ χ. For a state to be ‘accessible’, it is simply required that there is a non-zero
probability that the system will transition from one state to the other within a finite time or finite
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stationary distribution is the limiting distribution of the Markov chain. Irreducibil-

ity also tells us that this stationary distribution is unique and satisfies µ(x) > 0 for

all x. It should be noted that in general, a system only ever approaches station-

arity and reaches stationarity only in the infinite-time limit. For time-dependent

transition probabilities, the system distribution could be evolving towards a differ-

ent stationary distribution as each time step and so there is no guarantee that the

system will ever relax into any one of those stationary distributions.

Reversibility

Aside from the weak reversibility condition (2.6), we also consider the strong re-

versibility condition known as detailed balance Maxwell [1867a]; Van Kampen [1992]

which is a condition on the distribution µ and the dynamics

µ(x)ω(x→ x′) = µ(x′)ω(x′ → x). (2.14)

The detailed balance condition is stronger than the microscopic reversibility condi-

tion (2.6) and implies the latter for finite-state irreducible Markov chains because

µ(x) > 0 for all x. Detailed balance implies the existence of a stationary distribu-

tion, whereas the existence of a stationary distribution does not necessarily imply

detailed-balance.

In the case of time-dependent transition probabilities, we use the term ‘time-

dependent detailed balance’ to refer to systems that satisfy

µs(x)ωs(x→ x′) = µs(x
′)ωs(x

′ → x) ∀s ∈ N0 (2.15)

It is important to note here that even if a time dependent system satisfies (2.15)

the distribution of the system will not necessarily be the stationary distribution

i.e. in general πs 6= µs. All of that is to say that the term ‘detailed balance’ and

the related conditions, (2.14) and (2.15), refer to conditions that the transition

probabilities must satisfy, not the trajectory or the system.

Ergodic consistency

In order for the fluctuation relations we will obtain in Sec. 2.7 to be well defined, we

require that the systems we consider satisfy a necessary4 condition known as ‘ergodic

consistency’ Ehrenfest and Ehrenfest [2002]. The condition of ergodic consistency

number of time steps. That is, there must exist a path between any two pairs of states. Absorbing
states or partitions of the state space that cannot be transitioned across clearly violate this condition

4Necessary but not sufficient by itself.
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is written

πt(x) > 0 =⇒ π0(x) > 0 ∀x ∈ χ ∀t > 0, (2.16)

that is, all time-evolved final states at time t are present in the initial distribution

with non-zero probability. We also require that

π0(x) > 0 =⇒ πt(x) > 0 ∀x ∈ χ ∀t > 0. (2.17)

For continuous time random walks, (2.17) is satisfied automatically (there is always

a probability to not make any jump within any amount of time and hence remain

in the starting state). However, for the discrete-time finite-state Markov chains

that we will consider, (2.17) is an additional condition on the dynamics we can

consider. Consider the 1DDTRW with zero probability to remain in the same state,

i.e. ω(x → x) = 0. In this case, only on even numbered time steps is it possible to

find the particle in the same state it started in. The condition is satisfied in the case

of a ‘lazy’ random walk, where there is a probability for the system to remain in the

same state at each time step. Conditions (2.17) and (2.16) are not just conditions

on the dynamics, it is also a condition on the initial distribution of the system.

As another example, consider a lazy (i.e. ω(x → x) > 0 ∀x) 1DDTRW

random walk with a fixed initial condition π0(x0) = 1. In this case, πt(x0) > 0 as

the particle may remain in the same state of any length of time t, but the system

may be able to transition to a state x such that πt(x) > 0 and π0(x) = 0 contrary

to (2.16). Alternatively, if ω(x → x0) = 0 ∀x, then (2.17) could be violated since

the system has zero probability to end in the state it started in. To avoid these

cases, we always consider systems for which π0(x) > 0 for all x ∈ χ and choose our

dynamics such that πs(x) > 0 for all x ∈ χ and s ∈ N0.

2.2.2 Time reversal

Fluctuation relations are obtained by comparing a trajectory of some system to

some conjugate trajectory that may nor may not be generated by a corresponding

conjugate process. While in general one can consider any conjugate process for a

fluctuation relation, meaningful physical interpretations usually follow by choosing

a process or trajectory that can be considered a time reversal of the process or

trajectory under consideration. Here we describe what this notion of time reversal

refers to in several concrete senses before continuing.

It is necessary to distinguish between time-reversed trajectories, reversal of

the protocol that determines the transition probabilities and time-reversal of the

stochastic dynamics (the adjoint dynamics).
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Reverse protocol

In the case of time-dependent transition probabilities, we call the specific evolution

of the rates with time the ‘protocol’. It is possible that we can reverse this protocol to

generate a ‘backward’ protocol (so-called in order to distinguish it from the adjoint

process), so that if the transition probabilities in the forward protocol at time s

are ωFs (x → x′), then the transition probabilities at time s in the corresponding

backward protocol are given by ωBs (x → x′) = ωFt−s−1(x → x′) which defines a

Markov process with path space distribution PB. The −1 in the subscript of the

backward protocol transition rate is to ensure that the ‘first’ jump in the backward

process (counting backward from the finishing time t) occurs at the same time as

the ’last’ jump (counting forward from initial time 0) in the forward protocol. In

the forward process there are t transitions occurring at times {0, . . . , t − 1} and in

the backward process there are t transitions occurring at {t− 1, . . . , 0}.

Time reversal of a trajectory

For time reversal of trajectories, we simply mean a trajectory with the start and

endpoint switched, i.e. if the trajectory is xt = {xs}ts=0, then the reversed trajectory

is x̃t = {x̃s}ts=0 = {xt−s}ts=0, so that if the state at time s is xs in the forward

trajectory, the state at time s in the reverse trajectory is x̃s = xt−s.

A corollary of (2.6) and (2.16) is the statement

Pπ0 [Xt = xt] > 0 =⇒ Pπ0 [Xt = x̃t] > 0, (2.18)

which tells us that if a trajectory is realisable, the time-reversed trajectory is also

realisable under the same dynamics. We can use the distribution of the time-reversed

trajectory to define a new distribution P̃π0 [Xt = xt] = Pπ0 [Xt = x̃t]. If the chain

is stationary (begins in the stationary distribution µ), then Pµ describes a Markov

chain. Further, if the stationary distribution is reversible (satisfies detailed balance)

then Pµ = P̃µ.

Adjoint process

For time-independent transition probabilities, the adjoint dynamics are given by

Ω† = µ̄Ωtrµ̄−1, (2.19)
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where µ̄ is a diagonal matrix with µ(x) as its diagonal entries. The transition

probabilities of the adjoint dynamics are[
Ω†
]
x′,x

= ω†(x→ x′) =
µ(x′)

µ(x)
ω(x′ → x). (2.20)

The adjoint transition rates are normalised which can be checked by summing (2.20)

over x′. The adjoint dynamics have the same allowed transitions as the original

process and also the same stationary distribution. The adjoint transition proba-

bilities can only be computed if the stationary distribution is known. The adjoint

dynamics can be generalised for time-dependent transition probabilities, defining

time-dependent adjoint dynamics with time-dependent transition transition proba-

bilities.

In general, one could define any adjoint process by modifying the rates with

distributions on the state space, but only using the stationary measure as in (2.20)

produces a normalised set of transition probabilities that describes time-reversal of

a process (that process being the stationary process). The adjoint dynamics defined

in this way describe a time-reversal of the stationary microscopic dynamics of the

system, with a distribution P†. The process described by the adjoint dynamics is

a Markov chain, and is stationary with P†µ = P̃µ. In the case where the system

satisfies detailed balance, P† = P.

2.3 Trajectory functionals

The fluctuation relations we will obtain later in Secs. 2.7 are concerned with proba-

bility distributions of trajectory-dependent functionals. In this section, we introduce

the type of functionals we are interested in. We then proceed to detail how to ob-

tain several key results in the field of nonequilibrium thermodynamics from these

functionals. Our description of these functionals and their connection to fluctuation

theorems follows the framework in Harris and Schütz [2007] and uses several key

results from Seifert [2012], however we work only in discrete time and convert the

expressions found there to our own notation.

2.3.1 Definition of a functional

A functional of a trajectory depends on the complete history of the process, i.e. on

each specific state visited. Throughout, whenever considering a trajectory depen-

dent quantity, we will use ‘script-style’ characters5. We consider functionals which

5i.e. rather than A, B and C, we use A, B and C.
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have explicit dependence only on the initial and final states of the system (x0 and xt)

and on terms depending on pairs of states transitioned between along the trajectory.

Specifically, we are interested in functionals of the form

RF (xt, f, g) =

t−1∑
s=0

rs(xs → xs+1) + ln [f(x0)]− ln [g(xt)]. (2.21)

where the functions f and g are arbitrary positive functions acting on χ. The rs are

a collection of functions that map pairs of states on to R. The whole functional can

be thought of as a kind of counting process, where an amount rs(x→ x′) is counted

if the system transitions from state x to x′ at time s. This could be any quantity

(mass, energy, charge etc) that changes when the system transitions between the

two states. The boundary terms ln f and − ln g may also be related to observable

physical quantities. If f and g refer to the same physical quantity then they can

be regarded as weights on the initial and final states of the counting process. The

above functional is known as the ‘forward’ functional. A corresponding ‘backward’

functional is then given as

RB(xt, g, f) =

t−1∑
s=0

rt−s−1(xt−s → xt−s−1) + ln [g(x0)]− ln [f(xt)],

=

t−1∑
s=0

rs(x̃s → x̃s+1) + ln [g(x̃t)]− ln [f(x̃0)], (2.22)

where x̃s = xt−s. This backward functional essentially evaluates the same counting

process along the trajectory in the opposite direction in time. We may often suppress

the argument notation of these functionals for brevity.

These functionals can be split into two components (taking the forward func-

tional as an example)

RF (xt, f, g) = B(f, g) + Jt(xt), (2.23)

where B and Jt are referred to as the ‘boundary’ and ‘current’ terms. The boundary

term is a log ratio of weights attached to the initial and final states of the trajectory,

whereas the current term is associated with the dynamics/evolution of the process.

In the case of antisymmetric increments, rs(x→ x′) = −rs(x′ → x), then the current

term literally counts some integrated current across whatever spatio-temporal bond

that links state x to x′. The subscript t on the current term is included as a reminder

that this quantity is extensive in time.

21



In the case where r is not only antisymmetric but also time independent,

then the current term can be written

Jt(xt) =
∑
x,x′

r(x→ x′)Jt(x→ x′), (2.24)

where Jt(x→ x′) is the integrated net number of transitions from state x to x′, i.e.

Jt(x→ x′) = Nt(x→ x′)−Nt(x
′ → x), (2.25)

with Nt(x → x′) being the total number of times a transition occurs from x to x′

within time t.

For suitably chosen f , g and r, functionals of this form can yield several

relationships of interest. We will see later that choosing r to be the logarithm of

ratios of transition probabilities is especially useful as it yields functionals that are

related to probability measures on trajectory space. If r is the logarithm of the ratio

of transition probabilities from the same process (Sec. 2.3.2) or a related process

(Sec. 2.3.3 and Sec. 2.3.4) then the functional can take on meaning as a measure of

reversibility. We will see later in Sec. 2.4 that using these types of functionals as a

measure of reversibility allows us to make a connection to the concept of entropy

and entropy production from physics.

2.3.2 Reversal of protocol

Consider that we time-reverse the protocol such that if the rates under the forward

protocol are written as ωFs (x→ x′), then the rates in the backward protocol are given

by ωBs (x→ x′) = ωFt−s−1(x→ x′). We count using the antisymmetric increments

rs(x→ x′) = ln

[
ωs(x→ x′)

ωs(x′ → x)

]
, (2.26)

for a transition from x to x′ at time s. The forward functional then becomes

RF = ln

[
f(x0)

g(xt)

]
+

t−1∑
s=0

ln

[
ωFs (xs → xs+1)

ωFs (xs+1 → xs)

]
, (2.27)

where the first and second terms are the boundary and current terms respectively.

The backward functional is written

RB = ln

[
g(x0)

f(xt)

]
+

t−1∑
s=0

ln

[
ωBs (xs → xs+1)

ωBs (xs+1 → xs)

]
. (2.28)
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We note that the forward functional can be written

RF = ln

[
f(x0)

g(xt)

]
+

t−1∑
s=0

ln

[
ωFs (xs → xs+1)

ωBt−s−1(xs+1 → xs)

]
. (2.29)

If we choose f and g such that they are the initial distribution π0 then we obtain

eRF =
π0(x0)

π0(xt)

t−1∏
s=0

ωFs (xs → xs+1)

ωBt−s−1(xs+1 → xs)
=

Pπ0(xt)

PBπ0
(x̃t)

, (2.30)

which will only be well-defined for all trajectories if we have satisfied ergodic con-

sistency (2.16). We can interpret eRF as the ratio between the probability of the

forward trajectory xt under the forward protocol, and the probability of the reversed

trajectory x̃t under the backward protocol starting from the same initial condition.

If the rates are time-independent and obey detailed balance then the current term of

(2.21) reduces to a product of ratios of stationary probabilities. Further, if detailed

balance is satisfied and the f and g are chosen to be the stationary distribution, then

all the boundary terms and stationary probabilities cancel and RF = RB = 0 for all

trajectories. This means that any trajectory is exactly as likely as its time-reversed

analogue, which exactly the expectation for a system that is in equilibrium.

2.3.3 Adjoint dynamics

Instead, consider the increments

rs(x→ x′) = ln

[
ωs(x→ x′)

ω†s(x→ x′)

]
,

= ln

[
ωs(x→ x′)µs(x)

ωs(x′ → x)µs(x′)

]
, (2.31)

where ω†s(x → x′) = (µs(x
′)/µs(x))ωs(x

′ → x). This adjoint process with ini-

tial condition π0 is described by the path space measure P†π0 defined previously in

Sec. 2.2.2. We note that for time-independent transition probabilities where π0 = µ

then Pµ(xt) ≡ P†µ(x̃t).

The functional counting these increments is

K =

t−1∑
s=0

ln

[
ωs(xs → xs+1)

ω†s(xs → xs+1)

]
=

t−1∑
s=0

ln

[
ωs(xs → xs+1)µs(xs)

ωs(xs+1 → xs)µs(xs+1)

]
, (2.32)

which is the log probability ratio of a trajectory xt to the same trajectory under the
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adjoint dynamics. That is, we can write

Pπ0 [xt]

P†π0 [xt]
= eK. (2.33)

Note that neither (2.32) nor (2.33) have any terms relating to initial conditions.

Since the trajectories are the same and we assume that both systems would be

initialised in the same manner (as there would be no reason to weight the initial

state differently in one process over the other), the terms for initial distributions

cancel in (2.32). We write π0 as a subscript on both P and P† in (2.33) just to

remind that the initial condition should be the same for both sets of dynamics. For

a system that satisfies detailed balance (i.e. satisfies Eq. (2.14)), we obtain K = 0.

As an aside, we also note here that the transition probabilities in both (2.32)

and later in (2.35) are those of the forward process from (2.21), but could also be

defined using the transition probabilities from the backward process used in (2.22).

We will assume that the forward process and hence forward protocol is the default

choice of transition probabilities and that unless otherwise stated, ωs(x → x′) =

ωFs (x→ x′).

2.3.4 Adjoint dynamics with reversal of protocol

We can also combine the notion of time-reversal of the protocol and dynamics by

considering the antisymmetric increments

rs(x→ x′) = ln

[
ωs(x→ x′)

ω†s(x′ → x)

]
,

= ln

[
µs(x

′)

µs(x)

]
, (2.34)

where again where ω†s(x → x′) = (µs(x
′)/µs(x))ωs(x

′ → x). This leads to the

functional

T =

t−1∑
s=0

ln

[
µs(xs+1)

µs(xs)

]
+ ln

f(x0)

g(xt)
, (2.35)

which is now the ratio between the probability of a trajectory xt in the forward

process with a forward protocol and the probability of the same trajectory in a

process with time-reversed dynamics and with a reversed protocol.

It is important to stress, that although both (2.32) and (2.35) feature the

stationary probability, the distribution of the system itself will not necessarily be

stationary, i.e. πs 6= µs.
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2.3.5 Relationship between functionals

It is interesting to note that the functionals given by (2.27), (2.32) and (2.35) are

all related via

RF = K + T . (2.36)

This is only mentioned as an aside for now but will become useful in Sec. 2.4.2 when

we apply a physical interpretation to RF .

2.4 Relation to entropy and heat

In this section we discuss how thermodynamic concepts such as entropy and heat

can be defined for athermal stochastic systems. This ultimately follows from the

suggestion by Sekimoto [1997, 1998] to use thermodynamic concepts such as the first

and second law in order to study stochastic dynamics. For an incremental change

in a physical system, the first law reads

W = ∆U + ∆Q (2.37)

where ∆W is the work done on the system, ∆U is the change in the internal energy

and ∆Q is the heat dissipated to the environment6. It is easily seen that the first

law is essentially a statement of the conservation of energy. If the internal energy of

the system decreases, then the system can either be doing work (i.e. energy is being

extracted from the system), dissipating heat into the environment, or both. If the

internal energy of the system does not change, then it is possible to simply equate

the work done on the system to the heat dissipated

W = ∆Q. (2.38)

That is to say, for the system to be able to do work, heat must be taken up by the

environment. When heat is dissipated into the environment, there is an associated

change in the entropy of the environment ∆Senv. For a system at temperature T ,

the dissipated heat is given by

∆Q = T∆Senv. (2.39)

6Having adopted here the convention that work applied to the system and the heat dissipated
to the environment are both positive.
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The second law (1.1) was the statement that on average, the total entropy ∆Stot =

∆Ssys +∆Senv
7 will tend to increase. We can see then that to extract work from the

system requires ∆Q be negative. Together, (1.1) and (2.39) suggest that to be able

to extract work on average requires that we increase the system entropy ∆Ssys whilst

decreasing the environmental entropy ∆Senv. We can extract work from a system as

long as it is in a low entropy state. Through the operation of this work-extracting

process, we expect to eventually reach an equilibrium whereby the system entropy

can no longer be increased on average and thus can no longer withdraw heat from

the environment in order to facilitate the performance of work.

In the following subsections, we describe the standard definitions of entropy,

heat and work on the level of individual trajectories in the framework of stochastic

thermodynamics. We then show later in Sec. 2.7 how these definitions allow us to

obtain the second law (and other nonequilibrium quantities) for stochastic systems.

2.4.1 Entropy

Stochastic entropy production is essentially a statement of the ‘reversibility’ of a

system trajectory and hence can be related to the trajectory functionals discussed

above. Since it is a trajectory dependent quantity, it can be defined and computed

both in equilibrium and nonequilibrium settings, making it a powerful concept.

Following the standard definition in stochastic thermodynamics Maes and Netočnỳ

[2003]; Seifert [2005, 2012], the total entropy production of a given trajectory is

defined (in our notation) as

∆Stot(xt) := ∆Senv(xt) + ∆Ssys(x0, xt), (2.40)

where ∆Ssys(x0, xt) is the change in system entropy and only depends on the initial

and final states of the system evolution. ∆Senv(xt) is the entropy change in the

environment as the system evolves and is a functional of the system trajectory. The

environmental entropy change is made up of contributions from each transition along

the trajectory of the system, specifically it is the sum of the entropy production of

each transition

∆Senv(xt) :=
t−1∑
s=0

∆Ss(xs, xs+1), (2.41)

with the instantaneous changes in entropy being defined as

∆Ss = ln
ωs(xs → xs+1)

ωs(xs+1 → xs)
. (2.42)

7Note that since ∆Ssys is not trajectory dependent, we do not use a script-style character.
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As an aside, we note that this expression of entropy production also applies to

Markov chains with control (Crooks [1999]) by substituting the transition probabili-

ties for their control-dependent counterparts which we will encounter later in Ch. 3.

If we choose r(x → x′) equal to (2.42), we associate the current term Jt of (2.23)

with the environmental entropy change.

For the boundary term, we begin by assigning an ‘entropy’ to the system of

the form of the usual Gibbs entropy

〈Ssys(s)〉 = −
∑
x∈χ

πs(x) lnπs(x), (2.43)

where the angle brackets denote the ensemble average. We then make the conceptual

leap that at a specific time s, an individual realisation of the system has an entropy

contribution quantified by the summand in (2.43)Seifert [2005], i.e.

Ssys(s) = − lnπs(x). (2.44)

If the we choose the weights f and g in the boundary term to be the distributions

π0 and πt, then we can write

B = ln

[
π0(x0)

πt(xt)

]
= − (lnπt(xt)− ln f(π0))) = ∆Ssys, (2.45)

and hence associate the boundary term with the change in system entropy.

The splitting of entropy into system and environment contributions in (2.40)

follows from the typical approach used in physics. In physical systems, one often

wishes to differentiate between the change in the entropy of the system studied,

which is simply the difference between the entropy of its final and initial distribution,

and the change in the entropy of the surrounding environment or heat-bath that

supplies the energy for the transitions, which will be trajectory dependent8.

Combining these choices (setting f = π0 and g = πt and choosing transition

weights rs(x→ x′) = ln [ωs(x→ x′)/ωs(x
′ → x)]) sets (2.21) to be exactly the total

change in entropy. In this case, we can identify the boundary term of (2.23) to be

the change in system entropy and the current term to be the change in environment

entropy.

8For example, ∆Ssys could depend on the number of transitions that occur.
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2.4.2 Heat

Given (2.39) and that we have identified the current term in (2.21) with ∆Senv,

we can think of that current-term as the dissipated heat divided by a system tem-

perature T . That is, in direct analogy with thermodynamics, some authors like to

write

∆Senv =
∆Q
T
. (2.46)

For an abstract mathematical system, direct measurement of ∆Q or T is not pos-

sible, not do the terms have any clear meaning by themselves. However, their ratio

still represents a meaningful quantity.

For functionals of the form (2.32) and (2.35) that include the notion of some

conjugate process, we argue along the lines of Oono and Paniconi [1998]; Hatano

and Sasa [2001] that the functionals can be identified with components of the heat

dissipated (expressed here as entropies)

∆Senv = ∆Shk + ∆Sex, (2.47)

where ∆Shk is the ‘housekeeping’ entropy associated with maintaining a nonequi-

librium steady-state and ∆Sex is the ‘excess’ entropy which results from the time-

dependent variation of the transition probabilities. By noting that R = K + T ,

we can associate each of the functionals with components of the dissipated heat

from (2.47),

K = ∆Shk, (2.48)

T = ∆Sex + ln
f(x0)

g(xt)
. (2.49)

K is associated to the housekeeping heat, since for an equilibrium system, the house-

keeping heat is zero, and K = 0 for systems that satisfy detailed balance. T is then

the excess heat that measures the heat dissipated by changing transition probabili-

ties and corresponds to a generalised entropy within the framework of steady state

thermodynamics Sasa and Tasaki [2006].

From (2.38) it follows that as long as the internal energy of the system is not

changing, we can consider ∆Senv/T to also quantify the work done on the system.

That is, if ∆Senv, then we could say that the system has had work applied to it,

whereas a negative ∆Senv is analogous to the system having performed some work.

Again, for abstract mathematical systems, the notion of work is not necessarily

meaningful, but where a mathematical model is related to a physical system it may

be possible to connect this work quantity to physical work done on or by the system
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being modelled.

2.5 Fundamental fluctuation relationships

To obtain the basic form of a fluctuation relation, we write generating functions

for the functionals defined above and note their symmetries, from which the full

fluctuation relations in Sec. 2.7 can be obtained. All of the fundamental fluctuation

relationships shown here first appeared in Harris and Schütz [2007].

2.5.1 Fundamental relation for reversal of protocol

To obtain the generating function of the functional RF , we first must define a the

weighted transition matrix Ω̂s(k), obtained by multiplying each element of Ωs, by

the corresponding increments (2.26) of the transition that element relates to. That

is, [
Ω̂s(k)

]
x′,x

= ωFs (x→ x′)e−k ln [ωF
s (x→x′)/ωF

s (x′→x)]. (2.50)

The diagonal elements are thus unchanged by this weighting, i.e.
[
Ω̂s(k)

]
x,x

=

ωs(x→ x).

The generating function of RF can then be written

〈e−kRF 〉F = 〈1| ḡk
(
t−1∏
s=0

Ω̂s(k)

)
f̄−k |f〉 , (2.51)

where 〈. . .〉F denotes the ensemble average in the forward process. f̄ and ḡ are

diagonal matrices with f(x) and g(x) as their diagonal elements and |f〉 is a column

vector with f(x) as its elements.

To measure RB in the backward process (the process with time-reversed

protocol), we use the same modified transition matrix but indexed backwards, i.e.

Ω̂t−s(k). The generating function for the backward process is

〈e−kRB 〉B = 〈1| f̄k
(
t−1∏
s=0

Ω̂t−s(k)

)
ḡ−k |g〉 , (2.52)

where the terms have the same meanings as (2.51). Note the subscript B on the en-

semble average denoting that this average is calculated with regards to the statistical

weights associated to trajectories generated by the backward process.

Next, we note that the modified transition matrix satisfies the symmetry
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Ω̂tr
s (k) = Ω̂s(1− k), which is proved by noting that[

Ω̂tr
s (k)

]
x′,x

=
[
Ω̂s(k)

]
x,x′

,

= ωFs (x′ → x)exp

[
−k ln

[
ωFs (x′ → x)

ωFs (x→ x′)

]]
,

= ωFs (x→ x′)exp

[
(1− k) ln

[
ωFs (x′ → x)

ωFs (x→ x′)

]]
,

= ωFs (x→ x′)exp

[
−(1− k) ln

[
ωFs (x→ x′)

ωFs (x′ → x)

]]
,

=
[
Ω̂s(1− k)

]
x′,x

, (2.53)

which can then be used to transform (2.51):

〈e−kRF 〉F = 〈1| ḡk
(
t−1∏
s=0

Ω̂s(k)

)
f̄−k |f〉 ,

= 〈f | f̄−k
(
t−1∏
s=0

Ω̂tr
t−s(k)

)
ḡk |1〉 ,

= 〈1| f̄1−k

(
t−1∏
s=0

Ω̂t−s(1− k)

)
ḡ−(1−k) |g〉 ,

= 〈e−(1−k)RB 〉B. (2.54)

This then gives us the fundamental fluctuation relationship, rewritten for clarity

〈e−kRF 〉F = 〈e−(1−k)RB 〉B. (2.55)

2.5.2 Fundamental relation for reversal of dynamics

If we weight the transition matrix with increments (2.31) then we obtain a different

weighted matrix Ω̄(k), then the matrix turns out to have the symmetry property.

Ω̄s(k) = Ω̄†s(k − 1), (2.56)
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which is proved by

[
Ω̄s(k)

]
x′,x

= ωs(x→ x′)exp

[
−k ln

[
ωs(x→ x′)

ω†s(x→ x′)

]]
,

= ωs(x→ x′)
ω†s(x→ x′)

ω†s(x→ x′)
exp

[
−k ln

[
ωs(x→ x′)

ω†s(x→ x′)

]]
,

= ω†s(x→ x′)exp

[
ln
ωs(x→ x′)

ω†s(x→ x′)

]
exp

[
−k ln

[
ωs(x→ x′)

ω†s(x→ x′)

]]
,

= ω†s(x→ x′)exp

[
−(k − 1) ln

[
ωs(x→ x′)

ω†s(x→ x′)

]]
,

=
[
Ω̂†s(k − 1)

]
x′,x

. (2.57)

The generating function for K is given by

〈e−kK〉 = 〈1|
t−1∏
s=0

Ω̂s(k) |f〉 , (2.58)

We then use (2.57) to obtain

〈e−kK〉 = 〈e−(k−1)K†〉, (2.59)

where K† is the value of the functional K when evaluated along a trajectory of the

adjoint process.

2.5.3 Fundamental relation for reversal of protocol and dynamics

Similarly to the above, the generating function for T is given

〈e−kT 〉 = 〈1|
t−1∏
s=0

Ω̌s(k) |f〉 , (2.60)

where the transition matrix Ω̌s(k) results from weighting Ωs with increments (2.34),

and obeys the symmetry

Ω̌tr
s (k) = Ω̌†s(k − 1), (2.61)
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proved by noting

[
Ω̌tr
s (k)

]
x′,x

=
[
Ω̌s(k)

]
x,x′

,

= ωs(x
′ → x)exp

[
−k ln

[
µs(x)

µs(x′)

]]
,

= ωs(x
′ → x)

µs(x
′)

µs(x)
exp

[
−k ln

[
µs(x)

µs(x′)

]]
µs(x)

µs(x′)
,

= ω†s(x
′ → x)exp

[
−k ln

[
µs(x)

µs(x′)

]]
exp

[
ln

[
µs(x)

µs(x′)

]]
,

= ω†s(x
′ → x)exp

[
−(1− k) ln

[
µs(x

′)

µs(x)

]]
,

=
[
Ω̌†s(1− k)

]
x′,x

, (2.62)

which gives us

〈e−kT 〉F = 〈e−(1−k)T †〉B. (2.63)

2.6 Large deviations

In this section we introduce the relevant aspects large deviation theory before detail-

ing how to obtain the large deviation rate function. The theory of large deviations is

an extension of Cramer’s theorem Cramér [1936, 1938] that details the exponential

decay in probability of fluctuations of a stochastic system around the most probably

state/trajectory. We provide a rough sketch of the theory for functions of discrete

variables. See Dembo and Zeitouni [2009] for a far more rigorous treatment.

2.6.1 Definition of the large deviation principle

Consider a discrete random variable At where the subscript t is an index. For

example, At could be the sum or product of t random variables. Let P [At = at] be

the probability that At takes some value at. If the limit

− lim
t→∞

1

t
ln P [At = at], (2.64)

exists then we say that P [At = at] satisfies a large deviation principle. In general

this limit could be 0 or ∞ in cases where P [At = at] decays to zero with increasing

t slower or faster (respectively) than exponentially. The cases of interest are when

this limit exists and is different from 0 and ∞. In these cases we call the resulting

function of a the ‘rate function’ Varadhan [1966]. In general t can be any variable

appropriate for taking a thermodynamic limit (e.g. particle number or system size),
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but here we will consider t is a number of discrete time steps, hence the label t. We

will express the above slightly more loosely as

P [At = at] ∼ e−E(a)t, (2.65)

as t approaches infinity. The rate function is now explicitly included on the RHS as

E(a). The rate function is always positive and has a minimum around the concentra-

tion points of the distribution of At. The rate function tells us about the fluctuation

properties of the variable At/t, and allows us to quantify how exponentially unlikely

a given fluctuation away from the mean is, in the long-time limit.

2.6.2 Obtaining the large deviation rate function

In order to calculate the rate function - provided that the limit (2.64) exists - we

first define the scaled-cumulant generating function (SCGF) as

ξAt(k) := lim
t→∞

1

t
lnGAt(k), (2.66)

where k ∈ R and GAt(k) is the generating function given by

GAt(k) := 〈e−kAt〉 =
∑
at∈R

e−katP [At = at] . (2.67)

The Gärtner-Ellis theorem Gärtner [1977]; Ellis [1984] states that if ξAt(k) exists

and is differentiable for all k ∈ R, then the process At satisfies a large deviation

principle of the form of (2.65) with a rate function E(a) that is the Legendre-Fenchel

transform of the SCGF

EAt(a) = Inf
k∈R

[ka+ ξAt(k)] . (2.68)

The Legendre-Fenchel transform is described and explained in Rockafellar [2015].

To see why one can obtain the rate function from the SCGF, let us suppose

the process obeys a large-deviation principle such that

P [At = at] ∼ e−E(a)t, (2.69)

and substitute this into the generating function (2.67)

〈e−kAt〉 ≈
∑
at∈R

e−katP(At = at) =
∑
at∈R

e−t[ka+E(a)]. (2.70)

To approximate this sum, we consider its largest summand, found by locating the
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minimum of ka+ E(a). We are able to make this approximation as the error asso-

ciated with this approximation is the same order as the error in the large deviation

approximation itself. Hence, we can write

〈e−kAt〉 ≈ et infa[ka+E(a)]. (2.71)

We then substitute (2.71) into (2.66) to write

ξAt(k) = lim
t→∞

1

t
ln 〈e−kAt〉 = inf

a
[ka+ E(a)] , (2.72)

where we have dropped the ‘approximate’ notation on the RHS as the limit will mean

the terms of (2.65) which are not time-extensive will vanish. We then recognise that

the final expression is the Legendre-Fenchel transform of E(a). As the Legendre-

Fenchel transform is self-involutive, we can write the desired result:

E(a) = inf
a

[ka+ ξAt(a)] . (2.73)

Note, that if we had differently defined the generating function (4.21) with

a positive ‘dummy parameter’ k rather than −k, then we would instead locate the

maximum of ka − E(a) in (2.70), meaning that the rate function E(a) would be

obtained as the supremum of ka− ξ(a) in (2.73).

The theorem allows us obtain the rate function E(a) without direct com-

putation of P [At = at]. As long as we can compute the SCGF and show that it

is differentiable, then this is sufficient to prove that P [At = at] satisfies a LDP. In

cases where the SCGF ξ(k) is not differentiable, then it can be proven that the

Legendre-Fenchel transform of the SCGF yields the convex envelope of the rate

function E(a) Touchette [2009]. This is only a brief and simplified introduction, for

a more complete and rigorous presentation of the Gärtner-Ellis theorem, see Ellis

[1995]; Dembo and Zeitouni [2009].

2.6.3 Rate function from modified Markov matrix

By rewriting an expectation of the form (2.67), the SCGF can often be obtained as

the logarithm of the principal eigenvalue of the Markov transition matrix which is

weighted to count the relevant quantity Touchette and Harris. Consider an additive

quantity R(xt) =
∑t−1

s=0 r(xs → xs+1) with time independent increments r(xs →
xs+1) measured along a trajectory xt = {xs}ts=0. The generating function for this
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quantity is written:

GR(k) = 〈e−kR〉 =
∑
xt

e−kRP [Xt = xt] ,

=
∑
xt

e−k[r(x0→x1)+r(x1→x2)+...+r(xt−1→xt)]π0(x0)ω(x0 → x1)ω(x1 → x2)...ω(xt−1 → xt),

=
∑
xt

π0(x0)ω(x0 → x1)e−kr(x0→x1)ω(x1 → x2)e−kr(x1→x2)...ω(xt−1 → xt)e
−kr(xt−1→xt),

(2.74)

where the ω terms are the transition probabilities as above. In this expression we

can recognise terms ω(x → x′)e−kr(x→x
′), which we can write as ω̂(x → x′) and

consider as elements of a weighted transition matrix[
Ω̂(k)

]
x′,x

= ω̂(x→ x′) : (2.75)

We can condense the notion now and write the sum as a vector operation (including

the summation vector 〈1| as defined in (2.11))

GR(k) = 〈1| Ω̂(k)t |π0〉 . (2.76)

The initial state |π0〉 can also be rewritten in terms of the basis described by the

matrix Ω̂(k) i.e. |π0〉 =
∑

i ai |ψ̂i〉, where ai are some constants and |ψ̂i〉 are the

eigenvectors of Ω̂(k). This allows us to finally rewrite the generating function as

GR(k) = −
∑
i

ai |ψ̂i〉 Ω̂(k)t = −
∑
i

ai |ψ̂〉i λ̂
t
i, (2.77)

where we have now replaced the matrix with its eigenvalues λ̂i via Ω̂(k) |ψ̂i〉 = λ̂i |ψ̂i〉.
We now approximate the sum by the largest contribution

GR(k) = −amax |ψ̂i〉 λ̂tmax. (2.78)

as all other eigenvalues will approach zero faster than the maximum eigenvalue as t

increases. As above, taking the limit -limt→∞
1
t lnGR(k) yields the SCGF

ξR(k) = − lim
t→∞

1

t
lnG(k) = lim

t→∞

[
ln amax |ψ̂max〉

t
+

ln λ̂tmax

t

]
= ln λ̂max, (2.79)

which is transformed into the rate function via the Legendre-Fenchel transform as

described above. That is, we can obtain the rate-function by the Legendre-Fenchel
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transform of the log largest eigenvalue of a modified Markov transition matrix,

weighted to count the relevant quantity R

2.7 Fluctuation relations

In this section, we discuss how a fluctuation relation (FR) can be classified phe-

nomenologically according to the types of relationship that a functional of the form

of (2.21) satisfies before detailing some examples of these various types of FT.

Throughout this section we consider RF to be a nondimensional functional

taking values in some discrete set n with distribution P [RF = R] to take some value

R in the forward process,

2.7.1 Integral fluctuation relations

A nondimensional discrete functional RF with distribution P [RF = R] to take some

value R in the forward process, satisfies an integral fluctuation relation (IFR) if

〈e−RF 〉 =
∑
R∈n

P [RF = R] e−R = 1. (2.80)

This can be easily obtained by setting k = 0 in (2.55) (and dropping the subscript

F or B as a similar relation applies in both processes, forward and reverse). The

corresponding relationship forRB is obtained by setting k = 1 in (2.55). By Jensen’s

inequality (the convexity of the exponential function implies e〈A〉 ≤ 〈eA〉), (2.80)

implies the inequality

〈R〉 ≥ 0. (2.81)

The IFR implies that there could exist trajectories for which the value of R is

negative. We will revisit this shortly in , but for now we note that (2.81) has the

same form as the 2nd law of thermodynamics. A relationship of the form of (2.80)

always holds for functionals of the type described by (2.21) for any normalised choice

of f and g.

Jarzynski equality

Let us take a process that satisfies time-dependent detailed balance (2.15). We

initialise the system with µ0(x0) and then allow the system to evolve for t time steps

and measure a quantity given by (2.21) where f(x0) = µ0(x0) and g(xt) = µt(xt).

Using a Boltzmann distribution µs(x) = e−Us(x)/Zs, where Us(x) is the po-

tential energy of configuration x and Zs is the partition function, the boundary term
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of (2.23) becomes

ln [f(x0)]− ln [g(xt)] = ln [µ0(x0)]− ln [µt(xt)]

=
∆U

T
−∆(lnZ). (2.82)

We can choose the transition weights r(x→ x′) to be equal to (2.42) and associate

the current term with the heat dissipated Q as in Sec. 2.4 . Using this choice

of r(x → x′), the expression for free energy F = −T lnZ and the first law of

thermodynamics W = Q + ∆U to relate the heat dissipated to the work done, we

can write

RF =
W −∆F

T
, (2.83)

and hence (2.80) in this case is written

〈e−RF 〉 = 〈e−(W−∆F )/T 〉,

= 1, (2.84)

or equivalently

〈e−W/T 〉 = e−∆F/T , (2.85)

since ∆F is trajectory independent and can be taken outside of the ensemble average.

Eq. (2.85) is known as the Jarzynski equality (JE) Jarzynski [1997b,a]. Superficially,

the JE seems similar to a previously obtained result known as the Bochkov-Kuzovlev

equality (BKE) Bochkov and Kuzovlev [1977, 1981] which we would write as

〈e−W0/T 〉 = 1 (2.86)

However, as is explained in Jarzynski [2007], the two results apply in slightly dif-

ferent scenarios as suggested above by the use of W0 rather than W in the BKE.

Whereas (2.85) was originally derived for processes with a time-dependent potential,

the Bochkov-Kuzovlev equality applies to systems with a time-independent poten-

tial but subject to a time-varying driving force. If the driving force results from

the time-varying potential, then both equalities can hold for a given system. While

the most obvious difference is that that the JE relates differences in free-energy

to the dissipated work, ultimately the difference between the two equalities derives

from the fact that the work done is defined differently (noted in Jarzynski [2007]

and Horowitz and Jarzynski [2007]).
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Integral fluctuation relation for entropy

Let us consider a system with initial distribution π0. We measure a quantity defined

by (2.21), with f and g chosen to correspond to the initial and final distribution of

the process. That is, if |πt〉 is determined by a master equation (2.9), the boundary

part of (2.23) can be written,

B(f, g) = ln
f

g
= ln

π0(x0)

πt(xt)
. (2.87)

The current and boundary terms of RF then correspond to changes in environment

and system entropy c.f. (2.40), we have

RF = ∆Senv(xt) + ∆Ssys(x0, xt) = ∆Stot, (2.88)

and hence (2.80) becomes an integral relationship for the total entropy change

〈e−∆Stot〉 = 1. (2.89)

As mentioned earlier, by Jensen’s inequality we can obtain a rather suggestive ex-

pression from such an IFR. Namely (2.89) implies

〈∆Stot〉 ≥ 0, (2.90)

which is exactly a statement of the 2nd law of thermodynamics. The fluctuation

relation is consistent with the 2nd law of thermodynamics as long as the latter is

properly interpreted as a statement about averages, not individual trajectories.

Eq. (2.90) is valid regardless of whether the dyanmics satisfy time-dependent

detailed balance. If time-dependent detailed balance does hold and the system

begins and ends in equilibrium, then (2.84) and (2.89) are equivalent.

Housekeeping heat

If we again consider a functional of the form (2.32), but this time consider a process

in which time-dependent detailed balance is not satisfied, then the conjugate process

is a time-reversal of the dynamics but not a reversal of the protocol. In this case,

K and RF measure the same quantity and only differ by boundary terms.

Associating K with the ‘housekeeping heat’ as before in Sec. 2.4.2, and us-

ing (2.56) and (2.58), we can obtain an integral fluctuation relation

〈e−Shk/T 〉 = 1, (2.91)
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which is the integral fluctuation relationship for housekeeping heat obtained by Speck

and Seifert [2005].

Hatano-Sasa fluctuation relation

Again similarly to the above, associating T to the ‘excess heat’ as in (2.49) allows

us to obtain the IFR

〈e−Sex/T+∆Ssys〉 = 1, (2.92)

which is known as the Hatano-Sasa relation Hatano and Sasa [2001]. This is most

often considered to be a extension of the 2nd law for stochastic systems as it details

the expected behaviour of the dissipated heat and the system entropy which are

exactly the quantities originally considered by Carnot in his formulation of the 2nd

law.

2.7.2 Detailed fluctuation relations

The detailed fluctuation relation (DFR) represents a stronger relationship for RF ,

namely
PBπt [RB = −R]

Pπ0 [RF = R]
= e−R, (2.93)

where PBπt is the process with a reversed protocol seen earlier in (2.30). It is trivial

to show that a DFR implies the corresponding IFR. The DFR and IFR represent

constraints on the distribution P [RF = R]. The DFT provides the easiest way to

explain why the fluctuation relation and (2.90) are consistent with the 2nd law of

thermodynamics: while trajectories with negative entropy production are possible,

they are exponentially less likely than trajectories with positive entropy production.

We note that a very broad class of nonequilibrium dynamics satisfy a detailed

fluctuation theorem of the form (2.93) with a functional similar to (2.40) Jarzynski

[2000]; Evans and Searles [2002].

Further statistical properties of P [RF = R] can be derived from the validity

of DFRs and IFR as shown in Merhav and Kafri [2010].

The relation (2.93) can be obtained from the generating function symme-

try (2.55) by rewriting the latter as∑
R∈n

P [RF = R] e−kR =
∑
R∈n

PB [RB = −R] e(1−k)R, (2.94)

and then noting that to be satisfied for all k requires (2.93).
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Evans-Searles fluctuation relation

If we consider a time-independent protocol, the forward and backward process are

identical, i.e. P = PB. If we further set f = g = π0 in (2.21) and (2.22), then we have

RF = RB = Z, where Z is the ‘Dissipation function’ of Evans and Searles Evans

and Searles [1994]; Searles and Evans [1999]. In this case (2.93) is written as

Pπ0 [Z = −z]
Pπ0 [Z = z]

= e−z, (2.95)

which holds for any choice of initial distribution π0 Evans and Searles [2002].

Steady state fluctuation relation

A special case of the Evans-Searles FR is obtained when we set f = g = µ, i.e. the

system is allowed to approach stationarity before the functional is evaluated. As

above in 2.7.1, RF can be identified with the total entropy change of the system

and we obtain the stronger DFR for total entropy production in the steady state

Pµ [∆Stot = −S]

Pµ [∆Stot = S]
= e−S . (2.96)

This is a stochastic form of the original FR proposed in Evans et al. [1993]. It

has been proven for systems with chaotic dynamics Gallavotti and Cohen [1995a],

and for stochastic diffusive systems Kurchan [1998]; Lebowitz and Spohn [1999]. In

these studies, the SSFT strictly only applies in the long-time limit as only the envi-

ronmental entropy change is considered. With the inclusion of the system entropy

change, the SSFT holds for finite times in the steady state Seifert [2005].

Crooks fluctuation relation

Now we consider a process that begins and ends in stationary states µ0 and µt where

µ0 6= µt, with time-dependent transition probabilities that satisfy time-dependent

detailed balance (2.15). We set f = µ0 and g = µt. As before with the JE (2.85),

making these choices for f , g and choosing rs(x → x′) = ln
[
ωs(x→x′)
ωs(x′→x)

]
allows us to

identify RF as the work dissipated, i.e. RF = W −∆F . Since the initial and final

stationary states are not necessarily the same, there can be a nonzero free energy

difference between Eq. (2.93) becomes

PB [W −∆F = −wd] = P [W −∆F = wd] e
−wd , (2.97)
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which is the Crooks nonequilibrium work relation for systems with a free-energy

difference Crooks [1999, 2000]. We here stress again that although the process

begins and ends in stationary states, this will not be true for s > 0, i.e. the system

will not be in a stationary state at intermediate times during the evolution. The

Crooks nonequilibrium work relation allows more reliable calculation of ∆F than

the JE in many applications. Since PB is normalised, (2.97) implies the JE, which

can be seen by taking the ensemble average over both sides.

2.7.3 Crooks-type fluctuation relations

The set of relationships known as Crooks-type fluctuation relations compare the dis-

tribution of the process P [R = R] with the distribution of the same quantity R in

some some conjugate process. We drop the subscript on R as the same functional is

evaluated in both the forward and conjugate process. The conjugate process most

frequently picked is the time-reversed process obtained from the adjoint dynam-

ics. Taking the adjoint dynamics as an example, the statement of the Crooks-type

fluctuation relation is

P† [R = R] = P [R = R] e−R, (2.98)

which implies an IFR forR since P and P† are both normalised. These IFRs can also

be obtained from symmetries of the generating function as discussed above. The

Crooks-type FR does not imply a DFR for R since P† refers to a different process.

One can consider (2.97) to be a relation of this type where the conjugate process is

the time-reversed protocol.

2.7.4 Fluctuation relations in the long-time limit

One final calss of fluctuation relation worth noting is the class of FRs that hold in

the long time limit, as t → ∞. Recall from Sec. 2.3.1 that the functional RF (and

of course RB) can be split into two contributions: a boundary term B and a current

term Jt. If we pick f = g = π0 and r to be antisymmetric transition weights, then

RF is the dissipation function Z as in Sec. 2.7.2 and can be split into two terms,

Z = Jt + ln
π0(x0)

π0(xt)
. (2.99)

Note that the first term on the right is extensive in time, whereas the second term

is not. One would expect that the current-term would grow linearly with increasing

time, and hence we might also expect that in the limit as t → ∞, one can neglect
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the boundary term altogether. In that case, one could rewrite (2.95) as

P [Jt = −jt]
P [Jt = jt]

∼ e−jt. (2.100)

Recalling from Sec. 2.4 that Jt can be identified with the environmental entropy

production, Eq. (2.100) is the stochastic equivalent of the Gallavotti-Cohen fluc-

tuation theorem found in Gallavotti and Cohen [1995a,b] for the steady-state of

deterministic systems (in which entropy is related to the contraction/expansion of

phase-space).

2.8 Conclusion

We have now covered all of the concepts that are required to further discuss stochas-

tic dynamics for feedback systems. Specifically we have defined trajectory function-

als and described how these functionals are related to thermodynamic concepts and

derived some known results. However, we have so far only discussed ‘autonomous’

systems. In Ch. 3 we will show how to extend the above framework for systems

subject to external control. We will then discuss ‘feedback’, whereby the specific

control protocol is chosen in response to the specific trajectory of the system.
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“We have modified our environment so

radically that we must now modify our-

selves in order to exist in this new envi-

ronment.”

Norbert Wiener, The Human Use of

Human Beings

3
Control and feedback

Having detailed the some established fluctuation relations, in this chapter we intro-

duce the notion of feedback control and consider how to treat controlled systems.

In Sec. 3.1 we introduce concepts from the branch of engineering and mathematics

known as ‘control theory’ and integrate this into the framework detailed in Ch. 2.

Before we continue, Sec. 3.2 completes the literature review content by detailing

some basic information theory, the relevance of which becomes clear nearer the end

of the chapter. In Sec. 3.3 we discuss how to introduce functionals for feedback

systems. Specifically, we want to introduce functionals that can be related to time-

reversal as before. We discuss the various ways in which the conjugate process can

be formulated for feedback systems, with comments on their use and applicability,

including the celebrated Sagawa-Ueda fluctuation relationship.

3.1 Control theory

Control theory is a framework that straddles a boundary between engineering and

mathematics. Some of the fundamental concepts appear as early as the 1800s in the

works of Airy and Maxwell (as described in Fuller [1976]). In particular, Maxwell

discussed extensively the feedback effects of a steam-regulating device known as the

Watt’s governor Maxwell [1867b], attempting to create a framework for sensibly dis-

43



cussing such devices. Many of those ideas were later expanded to apply to general

linear systems Routh [1877]; Hurwitz [1964]. Since then, concepts relating to control

of systems have been established as their own field, including the area of ‘cybernet-

ics’, developed by Norbert Wiener to describe the constraints and possibilities for

regulated or controlled systems Wiener et al. [1948].

By identifying the ‘inputs’ and ‘outputs’ of a system, a framework for con-

trol can be devised whereby the system output can be controlled to match some

desired target called the ‘reference’. In feedback controlled systems, the output is

monitored and the difference between the actual output and the reference used to

vary the input so as to match the output to the reference. Contemporary control

theory largely deals with the effects of control or feedback on dynamical systems

but also encompasses A number of other topics. These include study of the effi-

ciency of effectiveness of control, known as the ‘controllability’ of a system Ogata

and Yang [1970]; Isidori [1995]; the ‘observability’ of a system, to what extent those

are representative of the internal system state Kalman [1959]; and the stability of

the control, detailing the effect of fluctuations on the output and controllability of

a system.

A strong bridge between control theory and thermodynamics, as well as a

pre-saging of one of the key results of information-thermodynamics is found in the

consideration of the effect of feedback on the distribution of the system in state

space Touchette and Lloyd [2000]. Control techniques are most often expected to

match the system output to the reference from any general state. That is, although

the system can begin anywhere in state space, the objective of the control is to reach

some pre-determined target state (a subset of the total state space); this achieves a

reduction of entropy, as the uncertainty on the system state should be decreasing in

time as it approaches the target state. Conversely, control might be used to increase

the entropy of a system, by altering the control variables to allow a system to evolve

from a known initial state to a randomised final state.

3.1.1 Control protocols

A control protocol is a procedure for changing the values of control parameters of

a system. Those control parameters are a subset of the ‘inputs’ of a given system1

and can be altered over the course of the system evolution. Here we discuss two

methods of control. Open-loop and closed-loop control methods for generating and

applying a control protocol.

Bayesian networks (introduced by Neapolitan [1990]; Pearl [1985]) are graphs

1The other input being the initial condition.
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xs+2xs+1xs

ωs(xs→xs+1)

... ...
Figure 3.1: Bayesian causal diagram of a Markov chain. The nodes represent states
of the system. Edges between vertices represent causal relationships between those
states. For example, here, the state at time s, xs, is causally influential over the
state at time s + 1, xs+1. The arrow is labelled with the transition probability, as
the transition is the mechanism through which xs causes Xs+1 to take the value
xs+1, and ωs(xs → xs+1) is the conditional probability of this transition.

used to represent the conditional relationships between variables in a model. Each

vertex on the graph represents a variable and the directed edges describe conditional

dependence between them. Bayesian networks are always directed acyclic graphs

(DAGs) if they represent causal relationships between variables. An undirected

graph has no clear ‘causal’ relationships and a graph that is not acyclic would not

satisfy the local Markov property Russell et al. [1995]. The local Markov property

states that each variable should be conditionally independent of any variables that

are not causally influenced by it. Graphs that are cyclic or undirected can still be

used in the study of stochastic processes, although they are called ‘Markov random

fields’ Kindermann et al. [1980]. An example of a Markov random field is the Ising

model.

To map a Markov chain as a Bayesian network, each state is represented as

a node. Edges connect successive variables with the direction of causation running

from past to future states. In the case of the Markov chains discussed above, the

vertices represent the system states along a sample path and the directed edges

represent the dependency of the states on one another. Successive states are related

via the transition probability, which can be seen as a kind of conditional probabil-

ity; given that Xs = xs the probability that Xs+1 = xs+1 is ω(xs → xs+1). i.e.

P [Xs+1 = xs+1 |Xs = xs] = ω(xs → xs+1). Fig. 3.1 shows a generic section of a

causal diagram for a specific realisation of a Markov chain. For specific paths, the

graph is a ‘tree-like’ graph, with a unique path between any two vertices.

3.1.2 Open-loop control

In the previous chapter we discussed the possibility for the evolution of a system

to be governed by a variable known as the ‘control parameter’. Up until now we

have discussed a time-dependent protocol, whereby the transition probabilities are
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time-dependent and thus the control parameter is just the running time s. This is

an example of what is known as ‘open-loop’ control Kuo [1981]. This refers to the

fact that the system is ‘open’ to some external interference. The control parameter

evolves completely independently of the controlled system. An example of open-loop

control is a washing machine. The washing machine is programmed to spin and rest

at pre-determined times regardless of the state of the clothes it is washing. Clean

and dirty objects placed in the machine are subject to the same cycle regardless of

their input state or indeed their state at any instant in the process.

The process represented by Fig. 3.1 could be thought of as an example open-

loop control. The control protocol here is simply the time-dependence of the tran-

sition probabilities which evolve independently of the system state. To be more

explicit and include an external control protocol into the system, we now extend

our notation. First, we restrict our interest to time-independent transition proba-

bilities. In analogy to the system state and trajectory we define a variable C which

takes values c ∈ γ which is the control protocol. The full control protocol is written

in the same manner as a trajectory, i.e. ct = {cs}ts=0. We now write the transition

probabilities as

ω(x→ x′ | c) = P [Xs+1 = xs+1 |Xs = xs, Cs = cs] . (3.1)

Since the control parameter is used as an extra condition in the probability we carry

over this notation to the transition probability. However it is important to remember

that this notation only reminds us that the transition probability is dependent on

the value of the control parameter and has no other special mathematical meaning.

The probability of a trajectory through the system is then written as

P [Xt = xt,Ct = ct] = P [Xt = xt |Ct = ct] P [Ct = ct]

= P [Ct = ct]π0(x0)

t−1∏
s=0

ω(xs → xs+1 | cs) (3.2)

where P [Ct = ct] is the distribution of control protocols.

As mentioned earlier in Sec. 2.2.1, in order to be able to define meaningful

fluctuation relations, we must take care to preserve the validity of (2.16) and (2.17).

To do this, we generalise (2.6) to read

ω(x→ x′ | c) > 0 =⇒ ω(x′ → x | c) > 0 ∀x, x′ ∈ χ ∀c ∈ γ, (3.3)

which allows us to make a given transition impossible for some value of the control
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parameter without breaking the conditions of ergodic consistency.

3.1.3 Closed loop control

For systems with some form of feedback, we talk of ‘closed loop’ control Aström

and Murray [2010], whereby the evolution of the control parameter is dependent

on the evolution of the controlled system. The most explicit context for this is

measurement-based feedback. Consider a system that evolves according to some

transition probabilities which are determined by a control protocol. This control

protocol is in turn determined by some measurement performed on the system

state/trajectory, with the measurement history given as yt = {ys}ts=0. Without

loss of generality, we will always assume that Xs and Ys both take values in the

same state space χ. That is, if the variable Xs represents the system state at time

s, then ys also the state that the measurement device believes2 the system to be

in. As a contrast to the example given above of an open-loop controller, consider

an air-conditioner (AC) as an example of a closed-loop controller. A (sufficiently

sophisticated!!) AC will attempt to match the temperature of its environment to a

pre-set ‘reference’ point. The AC can measure the current temperature of its en-

vironment and then output heated or cooled air in response. The control protocol

of the AC can then be different depending on the specific evolution of the room

temperature i.e. the same AC will perform different protocols in a room filled with

ice and a room filled with coal-burners.

As an aside, we note that feedback control can be notationally and concep-

tually treated in several different ways. Throughout, we shall consider feedback

whereby the value of the control protocol is uniquely determined by the measure-

ment outcome. That is, the feedback controller maps measurement outcomes to

control actions so c = c(y). We condense the notation for transition rates and write

ω(x → x′ | c(y)) = ω(x → x′ | y). In general, it is possible to consider stochastic

control such that the value of the control parameter is related to the measurement

outcome through some conditional probability P [C = c | Y = y]. However, in our

case this generalisation is not necessary and any randomness in choosing a control

action could be absorbed into the measurement process. That is, we could write

p(c | x) := p(c | y)p(y | x) and then call c our measurement variable and look directly

at the correlation between x and c.

In systems where the state of the control system is dependent on the state of

2We use the loaded word ‘believe’ here, although we really mean a kind of naive guess based
solely on the outcome of the current measurement. If all you know is that your measurement device
is in state ys then you must rationally conclude that the system is most likely in state ys.
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p(ys|xs)

ωs(xs→xs+1|ys)
Figure 3.2: Bayesian causal diagram of a single repeated feedback process. Here, the
nodes representing the system state are connected to not only the node representing
the previous state, but also the node that represents the control parameter value,
which is itself causally dependent on the previous state.

the controlled system, and in turn the evolution of the controlled system is dependent

on the control system, the feedback is said to form a ‘closed-loop’, as no reference to

any event outside the system is needed to determine the control protocol. Fig. 3.2

shows the Bayesian causal diagram for this kind of system. Here the control parame-

ter Cs is taken to be exactly the variable Ys, which depends on Xs through a process

characterised by the conditional probability p(ys | xs) := P [Ys = ys |Xs = xs]. In

the diagram, the control protocol is explicitly included as a set of red nodes. These

red nodes have two edges representing their causal relationships. The first is a green

arrow that represents the conditional probability p(y |x). We will call this the ‘mea-

surement’ process, as Y takes a value that is conditionally dependent on the value

of X, and hence the outcome of Y could be used to make an inference about the

value of X.

The purple arrow denotes the influence of the control parameter on the tran-

sition probability. This arrow reflects the fact that the outcome of Ys is a causal

determinant of the outcome of Xs+1. In order to obtain an outcome of Xs+1, it is

necessary that Xs and Ys are determined, which is reflected by the direction and

placement of the arrows in Fig. 3.2. The probability of an individual trajectory is
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thus written

P [Xt = xt,Yt = yt] = π0(x0)p(y0 | x0)
t−1∏
s=0

ω(xs → xs+1 | ys)p(ys | xs). (3.4)

In a given time step, we have ω(x → x′ | y)p(y | x) for closed-loop as opposed to

ω(x→ x′ | c)p(c) for open-loop control.

Clearly, if we consider the composite system formed of bothX and Y , i.e. Z =

(X,Y ), then we can obtain a Markov chain Zt = {Xs, Ys}ts=0. In this section we will

not do this as it essentially circumvents the interesting facet of the system, namely

that the system is bi-partite or even multi-partite in general Hartich et al. [2014].

The conditional dependency of the interaction of the two subsystems is precisely

the behaviour of interest, and the terms used to quantify this interaction have some

significance when written explicitly, rather than hidden by the construction of a new

Markov chain on a larger state space.

Impacts on previous concepts

It is important to note that in this section we have not introduced any concepts

that fundamentally alter anything we have previously considered. In Sec. 2.2.1, we

considered that the control parameter was just the time variable s and that the

control protocol was the time-dependence of the transition probabilities. All we

have done in this section is generalised the notation to account for general control

parameters. This is made clear by realising that in Sec. 2.2.1, we could have written

the time-dependent transition probabilities as ω(x→ x′ | s) instead of ωs(x→ x′).

For a fixed control protocol ct, the fundamental fluctuation relationships from

Sec. 2.5 still hold and the connection to thermodynamic entropy made in Sec. 2.4

still holds, with the stochastic entropy production for a controlled system being

given by

∆Ss = ln
ω(xs → xs+1 | ys)
ω(xs+1 → xs | ys)

. (3.5)

3.2 Information theory

In this section we give a brief introduction to some key concepts from information

theory that will be relevant near the end of this chapter. First, we introduce the

concept of ‘Shannon entropy’ and ‘mutual information’, before describing a measure

of information known as the ‘change in uncertainty’ and how it relates to the mutual

information. Specifically, we will describe why information theoretic concepts will be
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Figure 3.3: The Shannon entropy H(X) plotted against p. H(X) is maximised at
p = 1/2 and is zero when p = 0 or p = 1.

useful in analysing the behaviour of the measurement device, as they are intuitively

applicable to the framework of measurement. A more thorough derivation of these

concepts is found in Cover and Thomas [2012] which provides a general and near

exhaustive overview of information theory as a whole, as well as its applications.

Here we consider only discrete random variables, although all of the relations in

this section have analogues for continuous random variables. Mostly, the sums

are replaced with integrals, i.e.
∑

x∈Z for an integer valued variable would become∫
x∈R dx for a real valued variable.

3.2.1 Shannon entropy

The Shannon entropy, named Claude Shannon and also known as the Shannon

information, measures the disorder or randomness of a random variable. Consider

a random variable X that takes integer values, i.e. x ∈ Z. We write as shorthand

P (x) := P [X = x], for the probability that x is realised.

The particular form for the Shannon information was chosen by Shannon

to satisfy several criteria; information is non-negative; events that always occur do

not contain information; information due to independent events should be additive.

The ‘information content’ associated with outcome x is − lnP (x)3. The Shannon

Information is the average information content associated with observing outcomes

of the random variable X Shannon [1948]; Jaynes [1957]. That is, the Shannon

information is given by the expectation value of the information content

H(X) := −
∑
x∈Z

P (x) lnP (x). (3.6)

3This really could be argued to be the key idea. Events that occur often carry little information.
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The Shannon information satisfies 0 ≤ H(X) ≤ lnN , where N is the number of

possible outcomes (i.e it is the size of set X). The lower bound is obtained if some

outcome of X has P (x) = 1, whereas the upper bound is satisfied when P (x) = 1/N .

As an example of how the Shannon information measures ‘randomness’, con-

sider the example of a variable X which takes values a or b. We set P (a) = p and

thus P (b) = 1 − P (a) = 1 − p. The Shannon information is then H(X) = H(p) =

−p ln p − (1 − p) ln(1 − p). If p = 1 or p = 0 then H(X) = 0 and X contains no

information and is not random, since X only ever gives a single outcome. When

either outcome is equally as likely then p = 1 − p = 1/2 and H(X) = ln 2. Hence,

when X is as random as it can possibly be, its Shannon information achieves a

maximum. Fig. 3.3 shows how H(X) varies with p.

3.2.2 Mutual information

If the Shannon entropy quantifies the randomness of a variable, then the mutual

information quantifies the correlation between two random variables. To see this,

we take two random variables X and Y (which take values x ∈ Z and y ∈ Z

respectively) with joint distribution P (x, y) = P [X = x, Y = y] from which we can

obtain marginal distributions via P (x) =
∑

y∈Y P (x, y) and P (y) =
∑

x∈X P (x, y).

In the case of independent random variables, the joint probability is P (x, y) =

P (x)P (y) . In this case, the conditional probability becomes P (x|y) = P (x, y)/P (y) =

P (x), meaning that one cannot obtain any greater certainty on the value of X by

observing an outcome of Y . An example of this would be independent coin-flips;

one cannot guess the outcome of one coin-flip by looking at the outcome of the

other. On the other hand, if X and Y are perfectly correlated then really only of

the variables is ‘necessary’; if the outcome of Y is known, then the outcome of X is

also known exactly.

For multiple random variables, the Shannon entropy is extended to the joint

Shannon entropy by

H(X,Y ) := −
∑
x,y∈Z

P (x, y) lnP (x, y). (3.7)

The Shannon entropy for the conditional probability P (x | y) is given by

H(X | y) := −
∑
x∈Z

P (x | y) lnP (x | y), (3.8)

and by averaging H(X | y) over all outcomes y, the conditional Shannon entropy is

51



defined

H(X | Y ) :=
∑
y∈Z

P (y)H(X | y) = −
∑
x,y∈Z

P (x, y) lnP (x | y). (3.9)

The conditional Shannon entropy satisfies:

H(X | Y ) = H(X,Y )−H(Y ), H(Y |X) = H(X,Y )−H(X). (3.10)

By definition, H(X | y) ≥ 0 and H(X | Y ) ≥ 0. Hence

H(X,Y ) ≥ H(Y ), H(X,Y ) ≥ H(X), (3.11)

which implies that the addition of a second random variable can never decrease the

overall randomness of the system.

The mutual information is defined as

I(X,Y ) := H(X) +H(Y )−H(X,Y ),

=
∑
x,y

P (x, y) ln
P (x, y)

P (x)P (y)
. (3.12)

As we demonstrate below, the mutual information satisfies

0 ≤ I(X,Y ) ≤ H(X), 0 ≤ I(X,Y ) ≤ H(Y ). (3.13)

I(X,Y ) = 0 is obtained when X and Y are independent which can be verified by

substituting P (x, y) = P (x)P (y) into (3.12). On the other hand, I(X,Y ) = H(X)

is obtained when H(X | Y ) = 0 (or equivalently, in the case where H(X | y) = 0 for

any y). This condition states that for any y, there is an x for which P (x |y) = 1 and

hence we can always estimate x precisely from an observation of y. By symmetry,

similar statements can be obtained to show I(X,Y ) ≤ H(Y ).

It is possible to use a Venn diagram to represent the relationship between

H(X), H(Y ), H(X,Y ), H(X | Y ), H(Y |X) and I(X,Y ). Fig. 3.4 represents the

Shannon entropy of the two variables, X and Y , as two circles where the size of

the circle represents the value of the Shannon entropy. The joint entropy is the

union of the two circles. When the two variables are correlated, there is an overlap

between the circles and which represents their mutual information, the amount of

uncertainty reduced in one variable when the other is known. The area of each

circle left over when the mutual information is removed represents the conditional

Shannon information. A correlation between the circles reduces the joint entropy

of the two variables by exactly the mutual information. If there is any correlation
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Figure 3.4: Venn diagram illustrating the relationship between Shannon entropy,
conditional Shannon entropy, joint Shannon entropy and Mutual information. The
red circle represents H(X) and the blue circle is H(Y ). Their union is the joint
entropy H(X,Y ).

between the variables, their joint entropy is less than if there were no correlation4.

If X and Y are perfectly correlated then I(X,Y ) = H(X) = H(Y ) =

H(X,Y ), and the circles in Fig. 3.4 would be totally overlapping, leaving no con-

ditional information. In general, the mutual information describes the degree of

correlation between X and Y with highly correlated random variables having a

higher mutual information.

To prove (3.13), we use the fact that ln a− 1 ≥ 1− a when a > 0 to write

−
∑
x∈Z

P (x, y) ln
P (x)P (y)

P (x, y)
≥ −

∑
x∈Z

P (x, y)

(
1− P (x)P (y)

P (x, y)

)
= 0, (3.14)

which implies I(X,Y ) ≥ 0 for the lower bounds of (3.13). For the upper bounds of

the inequalities, we have I(X,Y ) = H(X) −H(X | Y ) = H(Y ) −H(Y |X) which

implies I(X,Y ) ≤ H(X) and I(X,Y ) ≤ H(Y ). It is possible to use a Venn diagram

to represent the relationship between H(X), H(Y ), H(X,Y ), H(X | Y ), H(Y |X)

and I(X,Y ).

3.2.3 Change in uncertainty

In the context of measurements, it will be of interest to not only characterise the

amount of information entropy of the outcome of a random variable, but also quan-

tify the change in this information upon adding extra conditions. For example,

we wish to quantify how much the uncertainty of the system state changes in a

particular realisation or on average upon making a new measurement of a system.

4This statement follows from reversing (3.12) to read H(X,Y ) = H(X) +H(Y )− I(X,Y ).
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As in Ch. 2, consider that xt and yt are trajectories of Markov chains and that

at each time s, the values ys and xs are related through the conditional probability

p(ys | xs) as above in Sec. 3.1.1. Assume that we have access only to the yss and

do not have access to the xss directly, thus must infer the value xs through our

observations of yss. That is, we wish to quantify the reduction in uncertainty of xs

before and after observing ys. Prior to observing ys, the only source of information

we have on the current value of xs is the trajectory ys−1. The question we ask is,

upon observing ys, by how much does one’s uncertainty on xs change?

Bayes Rule and Uncertainty

Let us consider a system evolving under some discrete-time Markovian dynamics.

Its trajectory through state space up to time t can be written xt = {xs}ts=0. If we

now have some measurement process running parallel to this, we will obtain a series

of measurements yt = {ys}ts=0.

Given that − ln p expresses the information content of an individual event

that occurs with probability p, then it follows that the change in uncertainty after

witnessing such an event is ln p5. We define the change in uncertainty to be the

difference in the information gained (i.e. entropy ‘decreased’) when conditioning on

an additional variable. For the system described above, the change in uncertainty

on xs upon observing ys is written

∆Is = ln p(xs | y0, . . . , ys)− ln p(xs | y0, . . . , ys−1)

= ln
p(xs | y0, . . . , ys)

p(xs | y0, . . . , ys−1)
. (3.15)

Writing the change in uncertainty in this way makes explicit that ∆Is is the differ-

ence in information gained by observing xs conditioned on the measurement history

and when conditioned on the measurement history plus the most recent measure-

ment. That is, it is the amount of additional information gained when the most

recent measurement is taken into account. In advance of Sec. 3.3.5, we now show

that (3.15) is also expressed as

∆Is = ln
p(ys | xs)

p(ys | y0, . . . , ys−1)
, (3.16)

5Since one’s uncertainty decreases by exactly the amount of information stored in the event.
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To show this, we need to demonstrate that

p(ys | xs)
p(ys | y0, . . . , ys−1)

=
p(xs | y0, . . . ys)

p(xs | y0, . . . , ys−1)
. (3.17)

First, we add an extra condition to the numerator of (3.16). Namely, we condition

the numerator on the antecedent values of of ys. We are free to do this because

in a simple independent measurement, the outcome ys is only directly dependent

on xs. ys is dependent on its antecedent values indirectly through xs. Hence, ys is

conditionally independent of y0, . . . , ys−1 given xs. Thus, we write

p(ys | xs)
p(ys | y0, . . . , ys−1)

=
p(ys | xs, y0, . . . , ys−1)

p(ys | y0, . . . , ys−1)
. (3.18)

We can now use the conditional Bayes rule to re-write the numerator. The condi-

tional Bayes rule for events A = a and B = b, with some condition C = c is given

by

P (A = a | B = b, C = c) =
P (A = a,B = b | C = c)

P (B = b | C = c)
. (3.19)

And so, the LHS of (3.17) becomes

p(ys | xs, y0, . . . , ys−1)

p(ys | y0, . . . , ys−1)
=
p(xs, ys | y0, . . . , ys−1)/p(xs | y0, . . . , ys−1)

p(ys | y0, . . . , ys−1)
. (3.20)

We then reapply Bayes’ rule in order to write the RHS of (3.20) as

p(ys | xs, y0, . . . , ys−1)

p(ys | y0, . . . , ys−1)
=

p(xs | y0, . . . , ys)

p(xs | y0, . . . , ys−1)
. (3.21)

which implies (3.17).

Relationship to Mutual Information

The ensemble average of the time-integrated change in uncertainty is exactly the mu-

tual information between the two variables. First, we write that the time-integrated
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change in uncertainty is

∆It [xt,yt] =
t∑

s=0

ln
p(ys | xs)

p(ys | ys−1, . . . , y0)
,

=
t∑

s=0

ln
p(ys | xs)
p(ys | ys−1)

,

= ln
P (yt | xt)
P (yt)

, (3.22)

where we have used the general ‘product rule’ for probability quoted in Schum [2001]

P [Yt = yt] = P (yt) =

t∏
s=0

p(ys | ys−1), (3.23)

with p(y0 | y−1) := 1. The ensemble average of (3.22) is then

〈∆It [Xt,Yt]〉 =
∑

x∈X,y∈Y
P (xt,yt) ln

P (yt | xt)
P (yt)

,

=
∑

x∈X,y∈Y
P (xt,yt) ln

P (yt,xt)

P (xt)P (yt)
, (3.24)

where in going from the first to the second line we have used the definition of

conditional probability. The right hand side of Eq.(3.24) is then exactly the mutual

information between xt and yt, c.f. Eq. (3.12). Hence, the average total change in

uncertainty upon making a series of measurements is exactly the mutual information

between the two variables.

3.3 Reversal of feedback protocol

Now that we have introduced control and feedback to our stochastic systems, we

need to consider how these inclusions impact the form of the trajectory functionals.

Specifically, we want to know whether it is still possible to discuss trajectory func-

tionals that relate ‘forward’ and ‘backward’ trajectories, since we can then obtain

functionals that relate to stochastic entropy production. In this section we will dis-

cuss the general form of the trajectory functionals for feedback systems and in what

sense they can be ‘reversed’ and what the resultant fluctuation relations mean (if

they mean anything at all).
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3.3.1 General form of fluctuation relationship

Whereas previously we considered functionals of the form 2.21 for simple Markov

chains, we now consider general functionals of two trajectories of the form

Gt [xt,yt] := ln
P [Xt = xt,Yt = yt]

Q
[
X̃t = x̃t, Ỹt = ỹt

] (3.25)

where Q is the distribution of the reversed trajectories in some conjugate process.

There are several criteria we would want Gt to fulfil. Namely, those are

1. The functional should be well-defined for all possible trajectories

2. The functional should ideally have some relation to physical quantities (e.g.

heat, entropy, current etc)

3. The functional should be asymptotically time-extensive

4. The functional should satisfy some time reversal parity such that Gt [xt,yt] =

−Gt [x̃t, ỹt] (recalling that x̃t is the time reversed trajectory).

Our conjugate process should be chosen such that the functional Gt can meet these

requirements. In order to relate these functionals to physical concepts (such as en-

tropy or particle current) and to the previously obtained FRs, we wish to consider

a conjugate process that is in some sense a ‘time reversal’ of the forward process.

In the previous chapter, we obtained conjugate processes by time-reversing the evo-

lution of the control protocol or by defining new dynamics. For feedback systems,

the conjugate process, and how it could relate to time-reversal is not always clear.

Such systems involve the interaction of the main ‘controlled’ system with some sec-

ondary ‘controller’ system, and this interaction cannot always be simply reversed.

As before, different choices for the ‘conjugate’ process will yield different fluctu-

ation relationships. The functional essentially defines a relationship between two

processes which could be used to obtain a detailed fluctuation relation of the form

P [Gt = gt]

Q [Gt = −gt]
= egt. (3.26)
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Eq. (3.26) is obtained by using the definition of Gt in (3.25) and the final criteria

listed above, Gt [xt,yt] = −Gt [x̃t, ỹt], and writing

P [Gt = gt] =
∑
xt,yt

P [Xt = xt,Yt = yt] δ (Gt [xt,yt] = gt)

=
∑
xt,yt

Q
[
X̃t = x̃t, Ỹt = ỹt

]
eGt[xt,yt]δ (Gt [xt,yt] = gt)

=
∑
x̃t,ỹt

Q
[
X̃t = x̃t, Ỹt = ỹt

]
e−G[x̃t,ỹt]δ (Gt [x̃t, ỹt] = −gt)

= Q [Gt = −gt] egt. (3.27)

3.3.2 Trajectory through state space

The process shown in Fig. 3.2 generates trajectories through state space that can be

thought of in several different ways. As mentioned above at the end of Sec. 3.1.3, we

can gather the (Xs, Ys) pairs and treat them as states in a new Markov process. This

would generate the trajectory shown by the red line in Fig. 3.5. Conversely, we could

group the pairs (Xs+1, Ys) to generate a Markov process shown by the purple line in

Fig. 3.5. Both of these are reasonable choices, and both Markov models are easily

realisable in simulation. However, if we wish to implement the feedback system in

simulation we are forced to consider the selection of Xs and Ys as separate processes.

That is, we cannot select a Ys according to the measurement process characterised by

p(ys | xs) until xs is known, and hence we cannot transition directly from (xs, ys) to

(xs+1, ys+1), but must move through a transitory state (xs+1, ys) and then enact the

measurement process on this new state to transition from (xs+1, ys) to (xs+1, ys+1).

We will call the process shown with the blue line in Fig. 3.5 a “move-then-measure”

process, as the subsystem X must move to a new state before the measurement on

that state can be performed and the realise the next value of Y .

3.3.3 Reverse trajectory

Consider that the conjugate process to generate the reverse trajectory is the same as

the forward process, i.e. Q = P on a fixed time interval {0, . . . , t}. Using the forward

process to generate the reverse trajectory is still clearly a “move-then-measure”

process. The probability of obtaining that reverse trajectory is then written

P [x̃t, ỹt] = π0(xt)p(yt | xt)
t−1∏
s=0

ω(xs+1 → xs | ys+1)p(ys | xs), (3.28)
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Figure 3.5: State-space plot showing three different interpretations of a trajectory
through the system. Blue circles show the states (xs, ys), purple squares mark
the transitionary states (xs+1, ys) that occur when the system has evolved but a
new measurement has not yet been performed. The red line shows the Markov
trajectory through the (X,Y ) pairs, whereas the blue line shows the path through
the system that is taken in simulation, in which the state (xs, ys) transitions to
(xs+1, ys) before a new measurement is performed which then transitions the system
from (xs+1, ys) to (xs+1, ys+1). The purple line show another Markov process that
links the transitionary states (xs+1, ys)

ys ys+1 ys+2

xs+2xs+1xs

......

Figure 3.6: Bayesian causal diagram for generating the time-reversed trajectory
when Q = P. In this process, whilst the trajetory maybe be an exact reversal of
a forward trajectory, the transition x′ → x in this process occurs under a different
control parameter value y′.
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Figure 3.7: State-space plot showing two different trajectories. This plot compares
the implementation of the forward process described by Eq. (3.4) (blue arrows) to
the conjugate process as it may be realised by implementing the suggested by Eq.
(3.28) (green arrows).

and is represented by a causal diagram as shown in Fig. 3.6.

Substituting 3.28 into 3.25 yields

P [xt,yt]

P [x̃t, ỹt]
=
π0(x0)p(y0 | x0)

π0(xt)p(yt | xt)

t−1∏
s=0

ω(xs → xs+1 | ys)p(ys+1 | xs+1)

ω(xs+1 → xs | ys+1)p(ys | xs)
,

=
π0(x0)

π0(xt)

t−1∏
s=0

ω(xs → xs+1 | ys)
ω(xs+1 → xs | ys+1)

, (3.29)

where the terms p(y | x) all cancel owing to the telescoping product. It is not

clear what (3.29) represents. Firstly, the RHS appears to only depend on ys as a

condition rather than providing any term relating to its probability of being realised.

The terms ω(xs→xs+1 | ys)
ω(xs+1→xs | ys+1) are a ratio between transition rates across a given bond

under different control parameters and not obviously related to any meaningful

quantity.

Fig. 3.7 shows the path taken through the state space by the forward process

and the conjugate process. We see from this a detail that is not immediately obvious

from (3.29). That is, that the two paths are different, only sharing the same (xs, ys)

states, but moving through different transitory states. Of course, if we combine the
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Figure 3.8: Bayesian causal diagram for generating the time-reversed trajectory and
preserving the trajectory through path-space. The causal diagram features a cycle
which means that the process cannot be simulated as there is no ‘input’ state.

transition and measurement into a single process as in Sec. 3.1.3, then the reverse

process would move backwards along the red line in Fig. 3.5 and we would obtain

fluctuation relations as before, as the functional is essentially the same as (2.27),

only on a different state space.

Perhaps the biggest problem with this scheme is that it violates the first

(and probably most important) requirement we placed on the functional above,

that the functional should be well-defined for all realisable trajectories. Here we

have P [xt,yt] > 0 6=⇒ P [x̃t, ỹt] > 0 as ω(xs → xs+1 | ys) > 0 6=⇒ ω(xs+1 →
xs | ys+1) > 0. We could have a situation where P [xt,yt] > 0 and P [x̃t, ỹt] = 0,

hence Gt [xt,yt] =∞.

3.3.4 Modified-dynamics

In an attempt to make sure that the functional is defined for all trajectories realisable

by the forward process and that the reverse process produces the reverse trajectory

exactly, we could choose a conjugate process such that,

Q [x̃t, ỹt] = π0(xt)p(y0 | x0)

t−1∏
s=0

ω(xs+1 → xs | ys)p(ys+1 | xs+1), (3.30)

where the terms labelled e∆Ssys and e∆Senv are generalisations of (2.41) and (2.45)

when the system is explicitly conditioned on some control protocol. This conjugate

process is obtained by first considering the control protocol as generated by the

forward trajectory, which occurs with probability
∑t

s=0 p(ys | xs). We then assume
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that this protocol is employed in the reverse process so that the reverse trajectory

is exactly the reverse of the forward trajectory, that is, it follows the blue path in

Fig. 3.5 in reverse. There are two ways of rationalising this process; firstly as a

“move-then-measure” procedure as described above, or instead considering the con-

jugate process to be a “measure-then-move” process. Both of these rationalisations

encounter problems in their interpretation as real physical processes for reasons we

will describe below.

Placing 3.30 into 3.25 leads us to the FR

P [xt,yt]

Q [x̃t, ỹt]
=

e∆Ssys︷ ︸︸ ︷
π0(x0)p(y0 | x0)

π0(xt)p(yt | xt)

e∆Senv︷ ︸︸ ︷
t−1∏
s=0

ω(xs → xs+1 | ys)
ω(xs+1 → xs | ys)

= 1︷ ︸︸ ︷
p(ys+1 | xs+1)

p(ys+1 | xs+1)
,

= eR
′
F . (3.31)

The latter term in the product on the LHS of (3.31) cancels and we are left with

ratios of transition probabilities forward and backward across the same bond under

the same value of the control parameter. While notationally different from before,

this term is essentially the exponential of the counting increments (2.26), albeit

generalised to include the control protocol. As such, we can associate such a term

with the change in system entropy as before in Sec. 2.4. The first term on the LHS

of (3.31) (outside the product) could be thought of as a generalisation of the change

in environmental entropy as it is essentially the ratio of probability of finding the

system in the initial state (x0, y0) and the final state (xt, yt).

A recent paper by Ponmurugan [2010] obtains a fluctuation relation the same

as (3.31) for a feedback controlled system by starting from a different consideration.

Their starting point is that in the conjugate process, the feedback device processes

an exactly equal amount of information as in the forward process. Essentially, their

approach is ‘top-down’ assuming that the information obtained by the feedback

device is the same in the conjugate process, whereas our approach is ‘bottom-up’,

fixing the microscopic dynamics so that each transition can occur, and so that the

reverse process moves along the trajectory of the forward process. However, we

now argue that this fluctuation relation is not physically relevant as the conjugate

process is not physically realisable.

Let us first consider that the conjugate process is a “move-then-measure”

process as in Sec. 3.3.2. While not immediately obvious from the form of the FR, the

causal diagram shown in Fig. 3.8 provides insight on a problem with this formulation.

The first point of interest for this process is that it is clearly acausal. In fact, referring
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to Fig. 3.8 as a ‘causal’ diagram is something of a misnomer, as it does not fulfil

the ‘acyclic’ criteria of a Bayesian causal diagram owing to the presence of a loop.

The loop implies that a value xs is a descendant of itself. Stated in words, the

outcome of Xs is conditionally dependent on the outcome of Xs+1 which is in turn

conditionally dependent on the outcome of Ys, itself conditionally dependent on the

outcome of Xs. The result of this is that variables conditionally depend on variables

which are not determined yet as they depend on the first variable. That is, if we

attempted to implement this process in an algorithm, we would find ourselves at

the first step having to reference variables that will not be determined until later

steps and which themselves will be determined based on the variable currently being

determined. Stated simply, there is no ‘first cause’ in this causal chain. Finally, even

if we could somehow understand this acausal conjugate process, imagining it as a

“move-then-measure” process means the conjugate trajectory follows the green path

from Fig. 3.7, which we already suggested was a problem in Sec. 3.3.3.

Instead, if we consider the conjugate process to be a “measure-then-move”

process then we again run into conceptual problems stemming from the causal dia-

gram. In order to move backwards along the same trajectory as the forward process,

the state of the measurement in the conjugate process needs always to reflect the

next state to be transitioned to. That is, to move backwards along the blue line

in Fig. 3.7, the measurement must be performed to transition from ys to ys−1 so

that the system can then transition from xs to xs−1 under the control parameter

ys−1, mirroring how the system transitions from xs−1 to xs under ys−1 in the for-

ward process. This could be understood in multiple ways. We could be selecting

a trajectory of the “measure-then-move” process in which the measurement is not

correlated with the same variable as it is in the forward process, i.e. in the forward

process Ys is correlated with Xs, whereas in the backward process Ys is correlated

with Xs−1. Alternatively, the ‘measurement’ process may actually be an entirely

different mechanism (albeit one still characterised by the conditional distribution

p(y |x)). This conditional probability either describes a prediction of the next state,

or it represents a measurement of an as yet undetermined state, the latter of which

presents causal problems. We are unable to give a clear interpretation to the mea-

surement terms in this reverse process, and have no other reason to believe that the

ratio of these two probabilities describing different processes is of any direct interest.

In this case then, the functional is not really any different from 2.27. However,

owing to the issue discussed above, this functional is of limited interest as the reverse

protocol is either not physically realisable or not obviously of any specific relevance

to experimental situations.
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Figure 3.9: Bayesian causal diagram for a trajectory subject to open-loop feedback
control. A measurement history yt is sampled from P [Yt = yt] and then used as a
control parameter. For (3.33), we consider a yt such that each transition x′ → x
occurs under the same y that it would in the forward process.

3.3.5 Open-loop control

Another approach, discussed often in the literature (for example Horowitz and

Vaikuntanathan [2010]; Sagawa and Ueda [2010]) involves a conjugate process with

trajectories given by

Q [x̃t, ỹt] = P [x̃t | ỹt] P [ỹt]

= P [yt]π0(xt)
t−1∏
s=0

ω(xs+1 → xs | ys). (3.32)

In this process, the yt is provided running the forward dynamics many times and

recording yt and then reversing that protocol and enacting open-loop control. Thus,

in this conjugate process, no ‘feedback’ actually occurs as shown in the associated

Bayesian diagram in Fig. 3.9. As the diagram shows, the measurement history is

fed into the process as the system evolves, but each value of ys is actually sampled

from P [Yt = yt].

Again, we stress that no feedback takes place. The conjugate process is

an open-loop control process, contrasting with the forward process’s closed-loop

structure. This is reflected in the causal diagram which features a strictly tree-like

structure with only a single path connecting any two nodes, again contrasting with

Fig. 3.2, which has non-unique paths connecting nodes.
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Eq. (3.32) leads to the FR

P [xt,yt]

P [x̃t | ỹt] P [ỹt]
=

e∆Ssys︷ ︸︸ ︷
π0(x0)

π0(xt)

e∆Senv︷ ︸︸ ︷
t−1∏
s=0

ω(xs → xs+1 | ys)
ω(xs+1 → xs | ys)

e∆It︷ ︸︸ ︷
t∏

s=0

p(ys | xs)
p(ys | ys−1)

,

= e∆Stot+∆It . (3.33)

In Eq. (3.33), we can recognise the final term on the right hand side (second prod-

uct) as e∆It , the exponential of the time integrated change in uncertainty (3.22).

We know from Sec. 3.2.3 that this term quantifies the information gained by the

controller as it measures the state of the controlled system, and hence by consider-

ing this conjugate process, we obtain a functional that is the sum of the stochastic

entropy production ∆Stot and change in uncertainty of the feedback controller ∆It
along the trajectory.

Aside from resulting in physically meaningful quantities, this functional also

has the benefit that it is well defined (not singular) for all possible trajectories in

forward and backward processes, as the protocol dependent microscopic reversibil-

ity (3.3) applies and so both the entropy term ∆Stot and the information term ∆It
are non-singular for all trajectories that are realisable by the forward and conjugate

processes.

The ensemble average of the right hand side of (3.33) and evaluating that

average gives exactly the ‘Sagawa-Ueda’ fluctuation relation Sagawa and Ueda [2010]

〈e−∆Stot−∆It〉 = 1, (3.34)

from which the ‘generalised 2nd law’ can be immediately obtained by using the

convexity of the logarithm (Jensen’s inequality) i.e. 〈eA〉 ≥ e〈A〉 to obtain

〈∆Stot〉 ≥ −〈∆It〉. (3.35)

3.4 Generalised second law

3.4.1 Interpretation of the generalised law

The ‘traditional’ second law as expressed by (2.90) is not obeyed in the case of

∆It > 0 in (3.35). Eq. (3.35) suggests that in the presence of feedback, it is possible

to achieve negative values for the entropy production. This expression is also known
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as the ‘second law of information thermodynamics’6 and quantifies the reduction in

entropy possible because of devices like Maxwell’s dæmon. However, such reductions

in entropy are not considered in this framework to be violations of the second law,

since it is clear that we have neglected the cost of operating the dæmon.

Through the measurement process, the dæmon’s uncertainty is reduced by

exactly ∆It, which presumably corresponds to a change in the state of the dæmon.

Neglecting the changed state of the dæmon, one might think the second law had

been violated by this action. However, in order for the total system (that is, the

system and the dæmon) to be operated in a full cycle, the dæmon’s state must

eventually be reset. That is, the dæmon must regain uncertainty equal to ∆It.
That is, despite having reduced the entropy of the controlled system by ∆St, we

must reset the dæmon, and in so doing will generate entropy equal to ∆It. Hence,

even if we reach the upper bound of (3.35), and achieve ∆St = −∆It, we must

also generate entropy ∆It in the dæmon when we reset him. This is essentially the

Bennett rationalisation of the dæmon Bennett [1973]. The Landauer principle also

means that if we wish to erase the information ∆It to reset the dæmon, this process

cannot be done without generating at least ∆It worth of entropy Landauer [1961].

A dæmon must possess information about the state of the system in order to

be able to manipulate the system such that work can be extracted without dissipat-

ing heat. We here note that, while the dæmon may be in possession of an amount

of information ∆It, (3.35) does not guarantee that the entropy production will be

altered by the mere possession of this information. In the case of Maxwell’s dæmon,

the dæmon must not only possess information about the position and momentum

of the particles on either side of the partition, but must use this information in-

telligently to inform his control actions (the opening and closing of the partition).

Clearly, if a dæmon disregards the information about the system state and instead

decides to do nothing to the partition, then the entropy production will not be

affected. That is, while (3.35) places a boundary on what a dæmon can achieve

through feedback on a given measurement, it does not tell us what will be achieved

by a given protocol. To quantify the effectiveness that a specific feedback protocol

will have on the entropy production, one must introduce an ‘efficacy parameter’ as

in Sagawa and Ueda.

3.4.2 Szilárd engine

As a concrete example of a system that is described by (3.35), we consider the Szilárd

engine previously mentioned in Sec. 1.2. As described before, Szilárd’s thought

6Although information thermodynamics doesn’t really have first, third or zeroth laws distinct
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Figure 3.10: Control cycle of the Szilárd engine. The system starts in the top left,
labelled 1 and proceeds clockwise until it ends in the same state.

experiment considers a single-particle gas in contact with a heat-bath at temperature

T . For the purposes of this illustration, we set kB = T = 1. Fig. 3.10 shows the

cycle of the Szilárd engine. The engine works by operating the following procedure

in a cycle:

1. The particle is placed in a container of volume V0. The particle is allowed to

reach thermal equilibrium with the heat bath.

2. A partition is inserted in the centre dividing the container into two equal

volumes V0/2

3. An errorless measurement is made to determine which side on the partition

the particle is on.

4. The partition is allowed to quasistatically move to the opposite side of the

container, which is recognised as isothermal expansion of an ideal gas. The

system does7 work

W = −
∫ V0

V0/2

kBT

V
dV = −kBT ln 2. (3.36)

from those that already exist in the framework of stochastic thermodynamics.
7The negative sign in (3.36) comes from the fact that the system is performing work
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5. With the volume of the container now returned to V0, the system is allowed

to reequilibrate and the cycle completes in the same state is begins.

The engine operates in a closed cycle and so there is no change in internal energy.

The system does work during the expansion phase and during reequilibration ex-

hanges an amount of heat ∆Q =W < 0 with the heat bath. Hence, heat is extracted

from the heat bath and used by the system to do work, violating the Kelvin-Planck

formulation of the second law. We can also note that ∆Senv = ∆Q/T < 0, and

∆Ssys = 0, hence ∆Stot = − ln 2 always, and so by extension 〈∆Stot〉 = − ln 2 < 0,

and so (2.90) is also not obeyed by the Szilárd engine.

For a single cycle, let us consider that the particle position is modelled by

a random variable X that can take the values {L,R} depending on whether the

particle in in the left or the right side of the container. The measurement variable

Y also takes the values {L,R}. The control protocol is the decision to allow the

partition to expand to the left or the right. Since the particle position is binary,

there is one ‘bit’ of information in the position variable X. Measured in the nat-

ural logarithm, the Shannon information of X is H(X) = ln 2. The measurement

process is errorless and hence the mutual information 〈∆I〉 = H(X) = ln 2. The

generalised second law reads 〈∆Stot〉 ≥ −〈∆I〉, which is obeyed by the Szilárd en-

gine as 〈∆Stot〉 = −〈∆I〉 = − ln 2. More generally it can be shown Sagawa and

Ueda that no matter what volume ratio the two sides are divided into and with a

non error-free measurement, the Szilárd engine still obeys the generalised second

law (3.35).

3.5 Conclusion

Having examined three separate conjugate processes in Sec. 3.3, we are left with the

conclusion that for feedback processes, only an open-loop control conjugate process

as described in Sec. 3.3.5 provides an experimentally relevant or testable fluctuation

relation. In Ch. 4, we study a concrete example of a feedback controlled device

known as an ‘information heat engine’ that is able to convert an information re-

source created through measurement into a work resource. Specifically we shall

consider a feedback controller that uses the information resource to reduce the en-

tropy production of the system directly in precisely a manner that is bounded by

Eq. (3.35).
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“We all behave like Maxwell’s demon. Or-

ganisms organize. In everyday experience

lies the reason sober physicists across two

centuries kept this cartoon fantasy alive.”

James Gleick, The Information: A

History, a Theory, a Flood

4
Fluctuations in an Information engine

In the present chapter, we will discuss a concrete model of an information engine

and study its fluctuation properties by making use of the relationships described and

obtained above in Ch. 2 and Ch. 3. The chapter is structured as follows. Sec. 4.1

describes information engines in general. Sec. 4.2 describes the model we will use

of an information engine that operates using a Maxwell’s Dæmon type feedback

system. In Sec. 4.3 we briefly discuss the applicability/relevance of the fluctuation

relations obtained in Ch. 2 and Ch. 3 for this system. In Sec. 4.4 we consider the

fluctuations of information on the level of individual trajectories and how to obtain

large deviation rate functions. In Sec. 4.5 we show how a two-site version of the

model can be used to obtain exact expressions for the large deviation rate function.

In Sec. 4.6 we then discuss the difficulties in studying the large deviations of infor-

mation in systems with a larger state space. We give the details of an approximation

and compare to numerical results for these larger systems. In Sec. 4.7 we summarise

these results. This chapter is based on the paper Maitland et al. [2015] with some

differences in notation.
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4.1 Information engines

In this section we introduce the concept of information engines in general before

presenting our own model of an information engine inspired by contemporary ex-

perimental work on small-scale1 feedback mechanisms.

4.1.1 Types of information engine

Information engines are a class of thermodynamic system that use information to

extract heat from the environment and use this to do work, without the need for

a free-energy difference between the initial and final states of the system in con-

trast to traditional heat engines. Interest in these systems mostly stems from the

prospect of creating thermodynamic devices that are capable of extracting work

from information reservoirs or information processes such as measurements. How-

ever, understanding the theoretical importance of information in physics is also a

motivation.

Feedback-driven engine

A feedback-driven engine is a device whereby a measurement is performed on the

controlled system. The measurement outcomes are then fed back into the system as

described above in Ch. 3 and used to drive the system towards the desired reference

by varying the control parameters accordingly. The ‘information’ in this context

is the correlation between the controlled system and the measurement device. The

information here can be thought of a resource created by the interaction of two

systems, i.e. the measurement device interacts with the measured system and a

correlation is created between their states. In this chapter we will study a feedback-

driven engine. Measurements are performed which generate correlations between

the measurement and controlled systems.

Information-reservoir driven engine

The term ‘information reservoir’ Barato and Seifert [2014b] is used to denote a a

memory-register or tape that has its Shannon entropy modified by interaction with

another system. Interaction with an information reservoir allows one to reservoir-

driven engine uses an ‘information reservoir’ to do work. This can be an information

register that is fed into the system and used to vary the control parameters accord-

ing to the predetermined input from the reservoir. Another approach described

1Small time and spatial scales.
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in Mandal et al. [2013] uses an empty memory register and extracts heat from the

environment by writing into the memory register. In this context, the information

reservoir is seen as a generalisation of the concept of a ‘heat bath’, it is a resource

that already exists rather than a resource created by the interaction of the two

systems.

Bi-partite systems

Another type of information engine is realised in a bipartite system Barato et al.

[2013a,b]. Bipartite systems are a Markov process described by two variables such

that in any transition between states only one variable is allowed to change. Since

each component of the system is fully described by this type of model, the entropy

production of each component is also readily accessible. By viewing the controlled

and measurement systems as a bipartite system, it can be seen that the entropy

decrease realised by a Maxwell’s dæmon system comes at the cost of an increase in

the entropy of the measurement system. Particularly, Hartich et al. [2014] derives

bounds for the entropy reduction of the controlled system that can be achieved from

its coupling to the measurement system in a Maxwell’s dæmon.

4.1.2 Model motivation

We consider a model that abstractly resembles an experimental set-up involving a

colloidal particle rotating in an electric field Toyabe et al. [2010]. The experimental

system demonstrated a type of particle ratchet where some block or obstacle is

placed in the system in order to prevent it from evolving in an undesired manner.

By ratcheting in this way, the particle’s own thermal motion can be used to do

work. Reducing the entropy of a system on average (or extracting heat from the

environment and using that heat to do an amount of work2) without a change in free-

energy is forbidden by the traditional second law of thermodynamics, as mentioned

in Sec. 1.1 and (2.90). Hence, experiments of this type that act as a ‘proof of concept’

for measurement-based feedback allowing for heat extraction from the environment

have drawn a lot of attention Lopez et al. [2008]; Toyabe et al. [2010]; Bérut et al.

[2012]; Koski et al. [2014a,b]; Camati et al. [2016].

Specifically, the experiment cited above used a dimeric polystyrene particle

pinned on a surface so that it can exhibit rotational Brownian motion. The particle’s

motion is purely thermal, the particle being buffeted by the thermal fluctuations of

the buffer solution it is suspended in. A rotating electric field creates a constant

2The prohibition against this can be seen from (2.85), where ∆F = 0 =⇒ 〈W〉 ≥ 0. W is the
‘work done’ and must be negative if we are extracting work.
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torque on the particle, and switching of the phase of the field modulates the torque.

This constant torque is balanced so as to hold the particle at some equilibrium

position but allow it to fluctuate around this position. If the particle rotates far

enough away from its equilibrium position in the desired direction, the phase of the

field is switched and the particle adopts a new equilibrium position. The switching

protocol is based on measurement of the particle’s orientation so as to switch the

phase in such a way that the particle rotates preferentially in a single direction.

A cartoon diagram in Toyabe et al. [2010] of the experimental set-up repre-

sents the system as a staircase upon which a particle is hopping, and the switching

of the field phase as barriers being placed behind the particle as it hops ‘up’ the

staircase. The staircase is an abstraction of the potential well that the particle is

in3, and the barrier represents the switching phase of the potential to prevent the

particle from returning to its previous state. We take this cartoon diagram and

model it explicitly, with the difference that we consider a single movable barrier

which is repositioned by the feedback controller at every time step.

Our model is comprised of a random walk on a one dimensional lattice with a

single movable barrier. The random walk acts as an analogy to the colloidal particle

in the experiment, with the walker’s random motion modelling the thermal motion

of the experimental particle. We model in discrete space, as in the real experiment

there was a single coarse-grained measurement, essentially allowing the identification

of discrete ‘states’.

In experiment, the measurements are performed at regular intervals which

allows the whole feedback process to be thought of in discrete time steps. This

is clearly an idealisation of an actual physical system. The experiment in Toyabe

et al. [2010] studies how the efficacy of the control is affected by the frequency of

measurement/control events. Here we have one measurement/control event for each

particle jump.

In our model, the random walker transitions in discrete time between sites

on a lattice of size L with periodic boundary conditions and probabilities q and p

of jumping respectively left and right at each time step, such that p + q = 1. The

random walker’s motion is then described by a single parameter p, which in the

case where p 6= q describes a system with a bias in one direction. Without loss of

generality, we consider q > p for biased systems. We label jumps left as ‘down’, and

jumps right as ‘up’ as though the particle were moving in a tilted potential as per

the experiment the model is inspired by.

3Very abstract. The height up the staircase represents higher potential energy. The fact that
there are ‘steps’ is to represent the sinusoidal shape of the well.
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Figure 4.1: Schematic of the model. x and y represent the state of the particle and
the measurement respectively. The feedback mechanism makes a measurement y of
the particle position x and places the barrier to the left of the particle, according
to the outcome of the measurement. If y = x or y = x+ 1 then the barrier
influences the particle movement by preventing certain jumps as in the top and
middle right. For all other measurement values, the barrier has no effect and the
particle moves freely as in the bottom right.

In the spirit of the feedback process described in Toyabe et al. [2010], at each

time step a measurement is made of the particle position and the barrier is moved

to the measured location of the particle in an attempt to prevent it from moving

down. When the particle attempts to jump ‘through’ the barrier, it is blocked and

remains at the same site. If the measurement is always correct, the particle can

only ever jump up or stay still and the model is identical to a totally asymmetric

random walk process. However, if the measurement is incorrect then the barrier will

be placed incorrectly and will either not affect the particle’s motion or will act as a

blockade for jumps up. The system is initialised by first choosing a site uniformly

from the lattice sites and then performing the measurement process to obtain a first

measurement to determine the control protocol. Fig. 4.1 is a schematic diagram of

the system where the bias is represented by showing the lattice as a staircase. The

three possible results of the action of the feedback device are shown, including the

situation where the feedback has no effect on the particle motion.

73



4.2 Model description

In this section we detail the model we will be working with for the remainder of

this chapter. The position of the particle on the lattice at time s is represented as

a random variable Xs with a specific realisation denoted by xs. As above in Ch. 2

and, a trajectory of the system is written Xt = {Xs}ts=0 with a specific trajectory

denoted by xt. The initial distribution of the particle position on the lattice is

described by π0(x0) = P [X0 = x0].

We use the feedback-control framework described above in Sec. 3.1. That

is, we consider that the transition probabilities are determined by the outcome

of the measurement variable (which acts directly as a control parameter). The

measurement is represented in a similar fashion to the system trajectory, and is

written as Yt = {Ys}ts=0. The measurement Ys at time s only depends on the

current state Xs and we denote,

p(y | x) = P [Ys = y |Xs = x] ∀s, (4.1)

as the probability of obtaining outcome y given that the system is in state x. We

again assume a given measurement ys determines a unique control parameter and

thus along with the departure state xs determines the probability of transitions to

the next state xs+1. Again, as above we write the transition probabilities as

ω(xs → xs+1 | ys). (4.2)

The conditional distribution in (4.1) is derived from P, the path space mea-

sure of the full process {(Xs,Ys)}ts=0. This process is a Markov chain on the state

space given by X and Y pairs and can be described by the transition matrix

[Ω](x′,y′),(x,y) := ω(x→ x′ | y)p(y′ | x′). (4.3)

We also write P (xs) = P [Xs = xs] and P (ys) = P [Ys = ys] for the marginal distri-

butions of the process and measurement trajectories respectively. Note that, while

the measurements Ys are conditionally independent given the path Xt, the marginal

measurement process Yt exhibits correlations after integrating out Xt and is not a

sequence of independent identically distributed random variables. The probability

of obtaining yt given xt for this model is

P (yt | xt) =

t∏
s=0

p(ys | xs). (4.4)
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Entropy and Information

From Sec. 3.1 we use the definition of entropy production for controlled systems.

That is, the entropy production at time s in a feedback system is given by (3.5),

reprinted here

∆Ss = ln
ω(xs → xs+1 | ys)
ω(xs+1 → xs | ys)

. (4.5)

For a system with feedback it is also necessary to quantify and study the

information gained through measurement Horowitz and Vaikuntanathan [2010]. The

change in uncertainty of the feedback device over the full trajectory, defined earlier

in Sec. 3.2.3, is reprinted here

∆It [xt,yt] =
t∑

s=0

ln
p(ys | xs)

P (ys | ys−1)
,

= ln
P (yt | xt)
P (yt)

. (4.6)

Recall that this is the sum of the individual changes in uncertainty at each time

step as given by (3.16), also reprinted here

∆Is = ln
p(ys | xs)

p(ys | y0, . . . , ys−1)
. (4.7)

The denominator term in (4.6) is given by

P (yt) =
∑
xt

P [Xt = xt,Yt = yt] ,

=
∑
xt

π0(x0)p(y0 | x0)

t−1∏
s=0

ω(xs → xs+1 | ys)p(ys+1 | xs+1). (4.8)

Model parameters

The model can be described by three parameters: the lattice size L, the motion bias

p and the parameter r which characterises the measurement accuracy p(y | x),

p(y | x) =

r if y = x

w = 1−r
L−1 if y 6= x

, (4.9)

where 0 ≤ r ≤ 1 and r + (L − 1)w = 1. The measurement error is independent of

which site x the walker is at and all incorrect measurements (i.e. any y 6= x) are

equally likely.
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We consider the case of ‘accurate’ measurements (r > w) as in this regime

the measurements can be used to make useful inferences about the system state

and the information gained through measurement can be used in the operation of

the information engine. Contrastingly, in the special case r = w = 1/L, the joint

probability in (4.8) factorises as each measurement is statistically independent. In

that case

P (ys | ys−1, . . . , y0) = p(ys | xs) =
1

L
, (4.10)

and (4.7) is always zero; no information is ever gained by the dæmon. Interestingly,

we note that even when r < w it is possible for the Dæmon to gain information. For

a system with only two measurement outcomes, a daemon that measures ‘wrongly’

more often than ‘correctly’ is still useful as whenever the daemon gives an output,

one can guess that the system is more likely to be in the opposite state. In general we

do not study the r < w regime as it is not clear how to utilise the information gained

from a single measurement by a device that measures wrongly more frequently than

correctly for larger systems.

In the case of r = 1, we would have a perfect measurement device. The

measurements would never be never wrong and in this model, the entropy produc-

tion could never be positive. In this case, the mutual information between the

measurement and the system would be equal to the Shannon entropy of the system

state, i.e. 〈∆It〉 = I [Xt; Yt] = I [Xt; Xt] = H(Xt). Whilst arbitrarily accurate

measurements are theoretically possible, completely infallible measurements are of

limited experimental relevance4 and so we do not test the r = 1 case. However, we

will revisit this concept of perfect measurement later in Sec. 5.4.3

The three parameters, p, r and L completely characterise the model. At

each time step the contribution to the entropy production is given by (4.5) and is

∆Ss ∈ {− ln (p/q), 0, ln (p/q)}, where the non-zero terms correspond to successful

jumps down or up and 0 is the entropy produced if the particle attempts to move

through the barrier. All three parameters determine the average particle current

〈Jt〉
t

= pr + pw(L− 2)− qw(L− 1) ∀t > 0, (4.11)

where positive current is defined to be to the right. The first two terms in (4.11)

correspond to jumps to the right in the case of a correct measurement or an incorrect

measurement that does not block the particle. The final term corresponds to jumps

to the left when the particle position has not been measured correctly. Our choice

of parameters (q ≥ p and r > w) can produce a positive average current (current

4At least to mere mortals.
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against the bias), while in the absence of feedback one would expect a negative

current. As an example, consider a three site system where p = 0.3 r = 0.9. The

bias is in the negative direction (q = 1− p > p), but (4.11) shows that the average

current should be positive ( 〈Jt〉t = 0.16).

4.2.1 Calculating P (yt)

The change in uncertainty at a given time step cannot be counted by observing

individual transitions on a finite-state Markov chain. Eq. (4.7) shows that we need

the entire measurement history up until that time in order to calculate the change

in uncertainty for a transition at a given time. Aside from this fact, the term

P (ys | ys−1) is difficult to calculate in general, as it is heavily dependent on the

specific causal structure of the feedback process Ito and Sagawa [2013].

Evaluating the total information gained along an individual trajectory ∆It [xt,yt]

also requires the full measurement history, but is easier to calculate as we will see

presently. Subtracting ∆Is at two consecutive time steps, we see that (4.7) can be

written as

∆Is = ∆Is −∆Is−1,

= ln
P (ys | xs)
P (ys)

− ln
P (ys−1 | xs−1)

P (ys−1)
,

= ln
P (ys | xs)P (ys−1)

P (ys)
, (4.12)

where we have used the conditional independence of the measurements (4.4). Eq. (4.12)

only requires calculation of P (yt) (4.8).

We can evaluate (4.8) by writing the sum over trajectories xt as a matrix

product, representing the terms in the sum as the elements of matrices

[My]x′,x := ω(x→ x′ | y)p(y | x). (4.13)

These My matrices can be thought of as transition matrices for a Markov process

under a fixed value of the control parameter. It is also worth noting that these

matrices are similarity transforms of one another and thus have the same spectrum5.

With the initial probability distribution vector |π0〉 and the summation vector 〈1|
5This is true for any lattice size L.
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(as defined in Sec. 2.2.1), we can write P (yt) as

P (yt) = 〈1|
t∏

s=0

Mys |π0〉 . (4.14)

For any given series of measurements yt we can calculate P (yt). Each of the

matrices has a size L×L and we must multiply t+ 1 of these matrices to calculate

the information obtained up to time step t. Eq. (4.12) can then be written as

∆Is = ln p(ys | xs)
〈1|
∏s−1
s′=0Mys′ |π0〉

〈1|
∏s
s′=0Mys′ |π0〉

. (4.15)

We will see in Sec. 4.5 that this representation of ∆Is also clarifies potential cancel-

lation of terms in the products.

4.3 Entropy production and integral fluctuation rela-

tions

As a preliminary to Sec. 4.4, We numerically check the generalised integral fluc-

tuation relation (3.34). We also show that the integral fluctuation relation for en-

tropy (2.89) does not hold, and check the equality,

〈e−∆It〉 = 1, (4.16)

which follows from the definition (4.6), which can be rearranged to

e−∆It =
P (yt)

P (yt | xt)
. (4.17)

The expectation of (4.17) over all trajectories is given by

〈e−∆It〉 =
∑
xt,yt

P (xt,yt)
P (yt)

P (yt | xt)
,

=
∑
xt,yt

P (yt | xt)P (xt)
P (yt)

P (yt | xt)
,

=
∑
xt,yt

P (xt)P (yt),

= 1, (4.18)

78



●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆

5 10 15
t

0.5
1

5
10

50
100

500

● 〈e- St〉
□ 〈e- St- It〉
◆〈e- It〉

Figure 4.2: Numerical tests of (2.89), (3.34) and (4.16) in semi log scale.
Parameter values are L = 3, p = 0.2, r = 0.9. Points are plotted from averages
over 107 realisations. Error bars indicate the standard error on mean of 〈e−St−It〉
at representative points.

where we have used the definition of conditional probability in going from the first

line to the second. Fig. 4.2 confirms the (in)equalities (2.89), (3.34) and (4.16) at

different times t with numerical data obtained from Monte Carlo simulation of a

biased three-site system. Since the means of exponential quantities are determined

by rare events, fluctuations are large as indicated by the error bars on representative

points.

4.4 Fluctuations of information

It is possible to capture the fluctuations of the entropy production in this system

by computing the large deviation rate function. Since entropy production is not

the only quantity of interest in a feedback system, we here ask whether it is also

possible to analyse the fluctuations of the information flow between the system and

feedback controller by obtaining a large deviation rate function for information.
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4.4.1 Large Deviation Analysis

In order to study the fluctuation properties of ∆It/t, we follow the framework

described in Sec. 2.6 and start by assuming that ∆It/t obeys a large deviation

principle of the form,

P [∆It = it] ∼ e−E(i)t, (4.19)

as t approaches infinity, where E(i) is the ‘large deviation rate function’. Recall

from Sec. 2.6 that the rate function tells us about the fluctuation properties of

the variable ∆It/t, and allows us to quantify how exponentially unlikely a given

fluctuation away from the mean is in the long-time limit.

As before, to calculate the rate function, we first obtain the scaled cumulant

generating function (SCGF),

ξ(k) := lim
t→∞
−1

t
lnG(k), (4.20)

where G(k) is the moment generating function,

G(k) := 〈e−k∆It〉 =

∫ ∞
−∞

e−kuP [∆It = u] du, (4.21)

and obtain the rate function from the SCGF via the Legendre-Fenchel transform

E(i) = sup
k∈R

[ξ(k)− ki] . (4.22)

In practice, the SCGF (and hence the rate function) can be obtained from

a modified transition matrix as described in Sec. 2.6.3. However, this approach

can only be applied if the measured quantity depends only on the system state

or the transitions occurring at a given time, as is the case with particle current.

However, (4.12) shows that this is not the case for information, since the amount

of information gained in a single measurement depends on the entire measurement

history up until that point6. Hence individual states or transitions on the enlarged

state space of pairs (xs, ys) cannot be associated with specific values of ∆Is.

However, in the next section we show that for L = 2, ∆Is can be simplified

using (4.15) to an expression that only depends on the departure and target states

in a single transition, and so the SCGF can be obtained by weighting the transition

matrix (4.3) to count information gain leading to an exact analytical expression of

the large deviation rate function. This simplification does not hold for L ≥ 3, even

if the system is fully connected, i.e. every state is reachable from every other state

6That is, the information gained is not a state function.
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in a single transition. In Sec. 4.6 we describe approximate methods for obtaining

the rate function by approximating the sequence of ∆Iss as a Markov chain.

4.4.2 Fluctuations of ∆Is

The variables ∆It/t and ∆Is are of interest, being the time-averaged information

gain and instantaneous change in uncertainty, respectively. On the level of an in-

dividual trajectory the model allows for three types of events that influence ∆Is.

These are roughly described as follows,

• Correct measurements,

• Incorrect measurements that are not consistent with previous measurements,

• Incorrect measurements that are consistent with previous measurements.

Correct measurements are fairly intuitive to understand, the particle position is

measured correctly. We will observe below in Sec. 4.4.3 that correct measurements

yield positive amounts of information7. We will also see later that correctly observed

jumps against the bias yield more information than correctly observed jumps in the

direction of the bias that are blocked8. For unbiased systems the difference in ∆Is

between jumps up and down is small. Series of correct measurements yield one

of two baseline values for information gain ∆Is that correspond to jumps up and

blocked jumps down.

However, incorrect measurements are slightly more complicated. Some in-

correct measurements are obvious; if a particle appears to have suddenly jumped to

a site it should not be able to access, then the ratio P (ys−1)/P (ys) in (4.12) changes

and the amount of information gained is zero. Further incorrect measurements can

lead to negative values in information gain, interpreted as a change towards greater

uncertainty of the system state.

Whenever a series of incorrect measurements is made, the next series of cor-

rect measurements gains large positive amounts of information that partially retrieve

the ‘lost’ information of the incorrect measurements. As these correct measurements

are made, the ratio P (ys−1)/P (ys) relaxes and ∆Is returns to a baseline value which

we explain in detail in Sec. 4.4.3. The information theoretic interpretation is that

successive correct measurements allow the observer to infer which measurement was

7We note here that this accords with the information theoretic intuition. Correct measurements
give positive quantities of information, since they reduce uncertainty.

8One might wonder how a ‘blocked’ jump can be observed. Here we are referring to a jump
event where the particle doesn’t move (it jumps into the site it is currently occupying), and the
measurement history reflects this, i.e. ys = xs and ys+1 = xs+1.
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incorrect.

However, an incorrect measurement could be made that nevertheless looks

like a plausible measurement (one could measure the particle to have jumped one

step forward when in fact it has not moved). These type of measurements do not

alter P (ys−1)/P (ys) and when made consecutively lose information that cannot be

regained by subsequent positive measurements.

The consequences of this is that large positive deviations of ∆It/t are not

generated by an accumulation of the largest values of ∆Is as these are necessarily

preceded by large negative values as described above. They are instead generated

by strings of correct measurements which each generate less information than the

largest values of ∆Is. In contrast, large negative deviations are generated by se-

quences of incorrect measurements which happen to represent a possible system

trajectory. In this case large negative values of ∆Is can accumulate and are not

compensated by subsequent large positive values. In general, since the baseline

values discussed in the next section depend on the trajectory in case of correct mea-

surements, atypical trajectories also play a role in the realisation of large deviations

of ∆It/t.

4.4.3 Trajectory Analysis

To understand the various events that occur in the system, in Fig. 4.4 we plot

trajectories of ∆Is, P (ys−1)/P (ys), Xs and Ys. ∆Is is given by (4.12) (reproduced

again here slightly rewritten for clarity)

∆Is = ln p(ys | xs) + ln
P (ys−1)

P (ys)
, (4.23)

and hence ∆Is will always differ from lnP (ys−1)/P (ys) by ln r or lnw depending

on whether the measurement is correct or incorrect.

The value of P (ys−1)/P (ys) is determined by the measurement history itself

and is not directly dependent on the particle trajectory xt. We observe that there

are two ‘baseline’ values for this ratio that are obtained when the measurements

represent a possible trajectory for the particle, i.e. the particle does not appear

to jump more than one site in a single time step and does not appear to move

‘through’ the barrier. These two baseline values correspond to the particle jumping

up or being blocked attempting to jump down.

If the particle is blocked at site x for successive steps starting, for example,

at time s− 3, the probability of the correct measurement history is calculated via a
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matrix product as in Eq. (4.14),

P (ys) = 〈1|MyMyMy |vs−3〉 , (4.24)

where y = x and where |vs−3〉 =
∏s−3
k=0Myk |π0〉. The ratio P (ys−1)/P (ys) is then

dominated by the leading eigenvalue λLmax of the matrices, and therefore should

approach 1/λLmax in a small number of time steps. Recall that all matrices have the

same eigenvalues since they are related by translations of rows and columns. The

corresponding lower baseline value for ∆Is is given by

∆Ib = ln
r

λLmax

. (4.25)

On the other hand, let us assume that the particle jumps up for successive

time steps, starting in site x at time s − 3, and we measure this correctly. Then

the probability of the measurement history P (ys) is given by a product of matrices

with increasing index

P (ys) = 〈1|My+2My+1My |vs−3〉 , (4.26)

where y = x, and y + n is understood with periodic boundary conditions. The

successive matrices are translated by one column and one row, i.e. My+1 = T−1MyT ,

where the translation T is such that

(T |v〉)k = vk+1 and (〈w|T )k = wk−1. (4.27)

Similar to the eigenvalue case, the expression (4.26) then is dominated by vectors

〈v| and a scale factor α such that

(My |v〉)k = αvk+1, (4.28)

with periodic boundaries (i.e. (My |v〉)1 = αvL). So the upper baseline value for

information gain ∆Is should be given by

∆Iu = ln
r

α
, (4.29)

where α can be found numerically from (4.28) for any given system.

Fig. 4.3 shows data from simulation confirming our predictions for the base-

line values and demonstrate their scaling with L in unbiased and biased systems,

respectively. In these simulations, we force specific events (repeated up jumps and
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Figure 4.3: Baseline ∆I values for unbiased and biased systems. Symbols show
the value of ∆Is for consecutive up jumps and blocked down jumps obtained from
simulation. Lines show the predictions from (4.25) and (4.29).

repeated up jumps that are blocked) and sample ∆Is after 100 time steps (in order

to avoid any transient behaviour from the initial conditions). In an unbiased system,

the difference in P (ys−1)/P (ys) between an up and blocked down jump shrinks with

increasing L, whereas the values are roughly constant for biased systems. Fig. 4.4a

shows a typical section of a trajectory in a biased system. The baseline values of

P (ys−1)/P (ys) and ∆Is for blocked down and up jumps are seen around t = 310

and t = 315 respectively.

Isolated incorrect measurements as seen in Fig. 4.4a (at times t = 304 and

t = 307) and Fig. 4.4b (at time t = 44) cause P (ys−1)/P (ys) to increase while

we observe that the lnw term is negative such that ∆Is = 0. In the following

measurements, P (ys−1)/P (ys) is still larger than its baseline value and as the ln r

contribution is small in comparison, ∆Is is also larger than the baseline.

The information theoretic interpretation of these observations is that upon

making a measurement that is not compatible with the previous measurements, no

new information is gained. This is because it is not clear to the observer whether the

current measurement is incorrect, or the previous measurements were erroneous (or

both). It is only on subsequent measurements that information is gained, as more

measurements allow the observer to make inferences about which measurements

were incorrect. After an incorrect measurement, P (ys−1)/P (ys) (and hence ∆Is)

returns quickly to a baseline value.

To observe very large values of ∆Is and instantaneously gain large amounts

of information, it is necessary to first lose larger amounts of information through

incorrect measurements. An example of this is shown in Fig. 4.4b, where the large

amounts of information gained between t = 57 and t = 59 cannot balance the losses
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between t = 53 and t = 55. Hence it is not possible to gain additional information

by making strategically ‘wrong’ measurements, as a series of correct measurements

would yield more total information.

In the case of a wrong measurement that still represents a possible trajectory

for the particle, P (ys−1)/P (ys) does not change but the lnw contribution from the

incorrect measurement means that ∆Is takes a negative value. If the following mea-

surements are correct and also compatible with the previous wrong measurement,

then subsequent measurements will only gain a baseline amount of information. An

example of this is shown in Fig. 4.4c. Here, a wrong measurement occurs at time

t = 50 which is compatible with the previous history. Subsequent measurements

do not allow the observer to ascertain that any of the previous measurements were

incorrect and hence this information loss is not recovered.

4.5 2-site model

A special case of the model occurs when L = 2. In this case, there are just two

sites, and thus the state space is fully connected. The system can transition from

any state to any other state. Here we will describe how this fact allows for analytic

calculation of the large deviation rate function, and compare analytic results to data

obtained from simulation.

4.5.1 System matrices

For a system with L = 2 sites labeled 1 and 2, the matrices used in (4.14) are

M1 =

(
qr qw

pr pw

)
(4.30)

M2 =

(
pw pr

qw qr

)
(4.31)

corresponding to the two measurement outcomes. For the L = 2 case the matrices

have only one non-zero eigenvalue λ = qr + pw, allowing them both to be written

as tensor products on the eigenspace of the corresponding eigenvector. That is, we

can write My = |vry〉 〈vly| where 〈vly| and |vry〉 are the left and right eigenvectors of

My with respect to λ. The matrices can be rewritten as

M1 = |vr1〉 〈vl1| =

(
q

p

)(
r w

)
(4.32)
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and

M2 = |vr2〉 〈vl2| =

(
p

q

)(
w r

)
. (4.33)

Writing the matrices in this way shows that all but the final term of the

upper product in (4.15) cancel with terms in the lower product, leaving an inner

product between two vectors:

P (ys)

P (ys−1)
=
〈1|MysMys−1 . . .My1M0 |π0〉
〈1|Mys−1 . . .My0My0 |π0〉

,

=
〈1 | vrys〉 〈v

l
ys | v

r
ys−1
〉 〈vlys−1

| . . . |π0〉
〈1 | vrys−1

〉 〈vlys−1
| . . . |π0〉

,

= 〈vlys | v
r
ys−1
〉 . (4.34)

Eq. (4.34) shows us that P (ys)/P (ys−1) can take four values corresponding to the

values taken by ys−1 and ys, i.e., ys−1, ys ∈ {1, 2}. However, as the two My matrices

are permutations (meaning in this case that their eigenvectors are also permuta-

tions), only two distinct values can be obtained. These correspond to the cases

when ys 6= ys−1 or when ys = ys−1. The change in uncertainty upon making a

measurement in the two-site system is

∆Is = ln
p(ys | xs)
〈vlys | vrys−1

〉
, (4.35)

which for a given xs depends only on the previous and current measurements ys−1

and ys. From (4.35) it can further be deduced that the process {∆Is}ts=0 is a

sequence of i.i.d. random variables. This simplification only holds for L = 2 and is

demonstrated explicitly below in Sec.4.5.2.

4.5.2 Distribution of ∆Is

As p(ys | xs) has two possible values and 〈vlys | v
r
ys−1
〉 also has two possible values,

∆Is takes four possible values. Specifically, these are

ln
r

pr + qw
:= a, ln

r

qr + pw
:= b, (4.36)

for correct measurements made after jumps in the up and down directions (whether

blocked or not), respectively. For the same cases followed by incorrect measurements,
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Figure 4.5: Cumulative density function for ∆Is for different system sizes L with
p = 0.2 and r = 0.9. Dashed lines give theoretical values for L = 2 as given
by (4.36) and(4.37).

∆Is takes the values

ln
w

pr + qw
:= c, ln

w

qr + pw
:= d. (4.37)

The values taken by ∆Is can be associated with elements of the transition

matrix (4.3), for transitions on the state space (x, y). For L = 2 this matrix is

Ω =


qr qw pw pr

pr pw qw qr

qr qw pw pr

pr pw qw qr

 . (4.38)

The values in (4.36) and (4.37), along with the probabilities of these events occur-

ring, given by the transition matrix (4.38), are enough to determine the cumulative

density function (CDF) of the random variable ∆Is for all s ≥ 1 since we can easily
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count all possible events

CDF∆I(∆i) := P [∆I ≤ ∆i] ∀ ∆i ∈ R, (4.39)

which is plotted in Fig. 4.5 and compared with numerical data.

Independence of ∆Is for L = 2

To demonstrate that ∆Is are i.i.d. random variables for L = 2, we want to show

that the distribution of ∆Is+1 is independent of ∆Is and identical for all s. We

can do this by exhaustively considering all possible transitions, as there are only 16

possible transitions and much degeneracy between the cases. Let us first assume

that the system is in the state (xs, ys) = (1, 1). The probabilities for ∆Is+1 taking

the values from (4.36) and (4.37) are as follows:

∆Is+1 Transition Probability

a (1, 1)→ (2, 2) pr

b (1, 1)→ (1, 1) qr

c (1, 1)→ (1, 2) qw

d (1, 1)→ (2, 1) pw

By the translation invariance in the system, the same probabilities apply if the

system was in state (xs, ys) = (2, 2).

If the system starts in the state (xs, ys) = (1, 2), then the probabilities are:

∆Is+1 Transition Probability

a (1, 2)→ (1, 1) pr

b (1, 2)→ (2, 2) qr

c (1, 2)→ (2, 1) qw

d (1, 2)→ (1, 2) pw

which again by translation invariance also holds for beginning in the state (2, 1).

We can see then that the probability to obtain a particular value of ∆Is+1 is in fact

independent of the state (x, y) of the system. In particular, it does not depend on

the previous value ∆Is. Therefore, {∆Is}ts=0 is indeed a sequence of i.i.d. random

variables.
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4.5.3 Large deviations of information

It is possible to weight the Markov transition matrix (4.38) with the values of ∆Is

from (4.36) and (4.37) to obtain the tilted matrix,

Ω′(k) =


e−bkqr e−ckqw e−dkpw e−akpr

e−akpr e−dkpw e−ckqw e−bkqr

e−bkqr e−ckqw e−dkpw e−akpr

e−akpr e−dkpw e−ckqw e−bkqr

 , (4.40)

which has principal eigenvalue

λ(k) =e−akpr + e−bkqr + e−ckqw + e−dkpw. (4.41)

The logarithm of (4.41) is taken as the SCGF ξ(k) and Legendre transformed ac-

cording to (4.22) into the rate function E(i). Fig. 4.6 shows this rate function

plotted with data from simulation for a two-site system. The datapoints in Fig. 4.6

are −1/t ln p(i) where p(i) is the probability density function, estimated from the

data using kernel density smoothing. In the long-time limit the data converge well

to the rate function.

4.6 L-site models

For systems with three or more sites, the process {(Xs, Ys)}ts=0 is still a Markov chain

with a stationary state. However, unlike the L = 2 case, the information gained in

each measurement along a trajectory {∆Is}ts=0 is not a sequence of i.i.d. random

variables. Eq. (4.15) cannot be reduced to a simpler form as the My matrices for

L ≥ 3 have more than one non-zero eigenvalue, and cannot in general be written in

a form that allows cancellations like (4.34). Indeed, {∆Is}ts=0 is also not a Markov

chain because each value depends on the entire measurement history ys up to that

point, which is a larger object at each successive value of s.

4.6.1 General behaviour

From simulation we see that the information ∆It reaches linear growth after some

initial transient, and so we expect the information increments ∆Is to also converge

to a stationary distribution. As the matrices used to calculate ∆Is all have principal

eigenvalue λLmax < 1 (for all parameters except 1 − p = r = 1), the system should

exhibit an exponential decay of correlations. This allows us to assume that, at
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Figure 4.6: Large deviation rate function (4.22) for L = 2, p = 0.2, and r = 0.9.
The solid black line shows the theoretical curve obtained from Eq. (4.41)
and (4.22). Symbols represent data sampled at different finishing times t. Data
obtained from an ensemble of 107 realisations.
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long times, ∆Is only has significant dependence on a finite number of the previous

measurement outcomes / events. This observation that only a finite number of

previous events are relevant will be the basis of the approximation in Sec. 4.6.3.

We numerically investigate the behaviour of ∆Is for systems with L ≥ 3,

specifically we focus here on results for L = 10. Other L values (larger and smaller)

do not significantly differ in their general behaviour or numerics. Fig. 4.5 shows the

CDF for ∆Is, for various system sizes up to L = 20. The shape of the function and

the position of the minimum, maximum and most likely intermediate values do not

vary significantly. The scaling of the most likely, minimum and maximum of ∆Is

with L is detailed in Sec. 4.4.3 and 4.6.2.

Fig. 4.7 shows a scatter plot of ∆Is+1 against ∆Is for L = 10. Indepen-

dent random variables plotted this way would produce a symmetric cloud or grid

of points. However this plot features diagonal patterns which correspond to corre-

lation between the two variables. The projected probability densities are shown as

histograms along the axes. The histograms suggest that ∆Is and ∆Is+1 are identi-

cally distributed as expected. To check how successive values of ∆Is are correlated

and hopefully verify that the ∆Iss are independent, we compute the average sample

autocorrelation function (ACF), defined as

ACF∆Is(τ) = 〈
t
∑t−τ

s=1(∆Is − 〈∆I〉)(∆Is+τ − 〈∆I〉)
(t− τ)

∑t
s=1(∆Is − 〈∆I〉)2

〉. (4.42)

Fig. 4.8 shows the ACF of ∆Is after an initial transient period for biased and unbi-

ased cases with 95% white-noise confidence intervals. The autocorrelation functions

show significant negative correlation between ∆Is and ∆Is+1, but beyond this no

significant correlation. That is, the information gained at successive time steps is

anti-correlated. This is because when an incorrect measurement is made the next

measurement is likely to be correct, as correct measurements are more probable,

and the amount of information gained will be positive (see Sec. 4.4.3).

While successive correct measurements do each contribute positive amounts

of information, they do not differ as radically as the change from a negative to

positive amount of information. Fig. 4.8 also suggests that biased systems are less

strongly anti-correlated than unbiased. In Sec. 4.6.3 we use the one time-step cor-

relation and distribution of ∆Is as grounds for constructing a single-step Markov

chain model of {∆Is}ts=0 that we believe captures most of the relevant features.
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Figure 4.7: Scatter plot of ∆Is+1 against ∆Is for L = 10, p = 0.5, r = 0.9 to
illustrate correlations as explained in the text. Histograms on the axes show the
density of points on the plot. Datapoints are from consecutive time steps sampled
from late times in 107 independent realisations.
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Figure 4.8: The sample average autocorrelation function of ∆Is (4.42) for biased
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significant negative correlations between successive time steps. 95% confidence
intervals plotted as blue dashed lines. L = 10 and r = 0.9 in both cases.
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4.6.2 Maximum and Minimum of ∆Is

Fig. 4.9 shows numerical results for the maximum and minimum of ∆Is from 107

realisations up to t = 1000 for varying L. The minimum amount of information per

time step is obtained when an incorrect measurement is made and we argue that,

as in the L = 2 case (see Eq. (4.37)) its value is given by

Min(∆Is) = ln
w

λLmax

. (4.43)

The maximum value is observed to be exactly the minimum value reflected across

the lower baseline value for information gain (4.25), i.e. it is given by,

Max(∆Is) = ln
r

λLmax

−Min(∆Is) = ln
r

w
. (4.44)

This holds for all L ≥ 4 as shown by the numerical results in Fig. 4.9. For L ≤ 3,

the observed discrepancy is probably due to the fact that incorrect measurements

are more constrained e.g. any barrier placement in a two-site system will interfere
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Figure 4.10: The large deviation rate function (4.22) for L = 10, p = 0.5, r = 0.9.
Data obtained from 107 realisations. As in Fig. 4.6, the data points are obtained
by using kernel density smoothing to estimate the probability density function.
Lines show rate functions obtained from the Markov approximation with different
numbers of bins. The lines for 12 and 24 bins are not distinguishable at this scale.
Points represent data sampled at different finishing times t. The cutoff for positive
deviations is explained in the text and given in Eq. (4.45), and is represented by a
vertical line.

with the particle motion.

4.6.3 Markov chain model

To obtain an approximate rate function, we assume that after an initial transient,

{∆Is}ts=0 is described by a stationary Markov process taking values in a continuous

range. We define a finite state space Σ by coarse-graining this range and replacing

∆Is by its expected value in each bin. The transition matrix for this chain is then

obtained by binning data from a scatter plot such as Fig. 4.7 into these states and

normalising the number of counts in each bin. To count the information gain, the

new Markov matrix on the state space Σ is then weighted with the value of ∆Is in

the target state. The SCGF (and thus the rate function) can then be obtained

from the largest eigenvalue of this tilted transition matrix.

To check the method it can be shown that for L = 2, as the number of bins

96



Figure 4.11: The large deviation rate function (4.22) for L = 10, p = 0.2, r = 0.9.
Data obtained from 107 realisations. As in Fig. 4.10, the data points are obtained
by using kernel density smoothing to estimate the probability density function.
The solid line shows the rate function obtained by using 24 bins. Here there is no
cut-off present in the data, although presumably one still exists

is increased and more data is used in the scatter plot, the method converges to the

analytically obtained rate function for that case. Fig. 4.10 and Fig. 4.11 show the

rate functions obtained from data through this method for L = 10 plotted alongside

the same data displayed as points. Fig. 4.10 shows convergence of the estimated

rate functions with increasing number of bins, which appears to be consistent with

the data. This confirms the validity of the one-step Markov approximation for a

wide range of fluctuations. Fig. 4.11 shows the same plot for a different value of p

in order to confirm that the method applies to unbiased systems. However, as can

be seen in Fig. 4.10, for certain parameters the data indicate a cut-off in the rate

function for positive deviations that the Markov approximation does not predict. In

the next subsection we explain this feature by noting that large fluctuations of ∆Is

do not accumulate in the way that the Markov model allows.
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4.6.4 Beyond Markovian analysis

To correct the numerically obtained rate functions shown by solid lines in Fig. 4.10

we must consider the maximum possible value for It/t. Fig. 4.7 suggests that it

is possible to obtain large amounts of information on consecutive time steps (the

top right corner of this scatter-plot has a small but non-zero population). However,

investigation of individual trajectories of the system reveals that consecutive large

positive amounts can only be obtained after consecutive large negative amounts (see

Sec. 4.4.3). This is not reflected in the ACF in Fig. 4.8 owing to the fact that these

events occur very rarely, as can be seen from the marginal histograms in Fig. 4.7.

The maximum value of ∆It/t is obtained by measuring correctly every time

step. This maximum value is given by

∆Iumax

t
= ln

r

α
, (4.45)

where α is numerically obtained from the My matrices for that system. This is

discussed in Sec. 4.4.3.

Fig. 4.10 shows the cut-off value for an unbiased system with a black vertical

line. Unlikely trajectories in biased systems that always step against the bias can

generate large positive deviations of ∆It/t and so the rate function cuts off at higher

values. The cut-off is therefore less relevant when comparing data for biased systems

to the predicted rate function. This is corroborated by Fig. 4.11 which shows no

cut-off in range of the data. There is still a cut-off for unbiased systems that can

be obtained via the same method, but it does not appear in the simulation data

since the trajectories that generate the corresponding values are even rarer than the

analogous trajectories in unbiased systems.

The ∆Is process is clearly not a one-step Markov chain, and the rate function

obtained this way is also limited by finite sampling of transitions and limitations

on the number of bins used. However, the one-step Markov model gives a rate

function that converges reasonably quickly with increasing number of data points

and together with the cut-off, captures well the shape of the sampled data in a

way that a Gaussian or i.i.d. approximation would not. An n-step Markov chain

model might also capture this but it appears that simply including the cut-off at

the maximum value is sufficient to obtain a good approximate rate function.

98



4.7 Discussion

4.7.1 Summary

The information gain ∆It is a quantity recently introduced in the analysis of feed-

back systems Parrondo et al. [2015]; Horowitz and Vaikuntanathan [2010] and stud-

ied as a component in the development of information thermodynamics and infor-

mation engines Horowitz and Parrondo [2011]. The fluctuation properties of this

quantity are relevant when considering information processing in feedback devices;

the quantity of information gained is directly proportional to the work required to

delete that information from the feedback device’s memory.

In this chapter we have studied a simple model of an information engine

and obtained an exact analytical expression of the large deviation rate function for

information gain ∆It in a two-site system. For larger systems we have shown that

a one-step Markov approximation captures most of the relevant details of the large

deviations. We are also able to predict the cut-off of this rate function by considering

the maximum amount of information that can be obtained.

Significantly, the one-step Markov approximation allows us to easily obtain

an approximation of the rate function from data by sampling the information gain

at consecutive time steps. This is computationally easier than directly sampling

the distribution of ∆It/t (which requires very long times or cloning-type algorithms

Rohwer et al. [2014]) but together with the theoretically predicted cut-off seems to

provide a consistent estimate of the shape of the large deviation rate function.

4.7.2 Possible extensions

The work presented in this chapter is easily amenable to two extentions. Firstly,

the methods discussed here could be used to analyse different control systems, or

the trajectory sampling could be augmented in order to obtain more accurate large

deviation rate functions so as to better understand the fluctuations of information.

Information reservoir

In Sec. 4.1, we mentioned that instead of measurement based feedback, the in-

formation resource exploited by the feedback mechanism could be an ‘information

reservoir’ such as a memory register than can be written into. Such reservoir based

models are well studied Mandal and Jarzynski [2012]; Barato and Seifert [2013];

Deffner [2013]; Mandal et al. [2013], Recent work Barato and Seifert [2014a]; Shi-

raishi et al. [2016] has shown that the reservoir-based and measurement-based mod-
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els are essentially the same and that the different expressions of the second law for

information thermodynamics can obtained and described by a single ‘master’ second

law. It would be possible to alter our model here for open-loop control mediated

by an information reservoir and study the fluctuations of entropy and information

flow. This may be potentially easier for a reservoir-driven model since there are no

non-Markovian effects to complicate the computation of the rate function.

Population sampling

Cloning algorithms Lecomte and Tailleur [2007]; Giardina et al. [2011] operate by

creating a population of simulations and only allowing simulations that show the

behaviour of interest to continue. Simulations that are following uninteresting tra-

jectories or behaviour are replaced with ‘clones’ of the simulations that are showing

more interesting behaviour. By counting whenever a simulation is culled, the unin-

teresting behaviour can still be weighted and ‘observed’, but without wasting further

computational resources (time and memory). This technique can be used to observe

rare events without having to wait long times or use unreasonably large ensem-

bles. Using a cloning algorithm, the rare fluctuations or trajectories of a system

can be observed via a biasing of the system that allows more thorough sampling of

the trajectory-space without artificially influencing the statistical weight of the rare

events.

4.7.3 Conclusion

The rate functions obtained here demonstrate that the information gained by the

measuring device in a simple feedback system shows a strong asymmetry around

the mean. The cut-off value for this rate function is sensitive to the dynamics of the

system, namely whether the particle motion is symmetric or asymmetric. It would

be of interest to study other information engines to check whether these findings are

generic and to what extent the Markov approximation is applicable in other systems.

The large deviation rate function offers the possibility to explore detailed fluctuation

relationships beyond (3.34) for ∆It. To obtain a detailed fluctuation relationship,

care must be taken in deciding how to meaningfully time-reverse a feedback system.

In this context, we remark that the feedback process included in our model

considers a measurement process that is fully integrated into the system, meaning

that neither the measurement process nor the action of the feedback affects the

instantaneous state of the controlled system. Real-world measurement and feedback

processes may influence the state of the system by causing some ‘re-action’ e.g.,
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‘nudging’ individual particles when the measurement is made or when the barrier is

moved. However, we believe the framework of a reaction-less measurement process

is useful as a first step towards understanding the fluctuations of information in

closed-loop feedback devices.

Consideration of more complicated feedback systems where the system reacts

to the measurement process or has more complex dependence on multiple control

parameters, could help to establish which details are important for real physical

systems. In fact, the relationship between the controlled system and the controller

could even potentially be mirrored allowing two systems to enact control on each

other. In the next chapter, we will consider a model for such a feedback device with

mirrored or ‘mutual’ feedback. Contrastingly to the model in the current chapter,

the distinction between the controlled and controller system is less obvious in the

case of mutual feedback9.

9In fact, such a distinction proves to not really exist.
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Alice laughed: “There’s no use trying” she

said; “one can’t believe impossible things.”

“I daresay you haven’t had much

practice,” said the Queen. “When I was

younger, I always did it for half an hour

a day. Why, sometimes I’ve believed

as many as six impossible things before

breakfast.”

Lewis Carroll, Alice in Wonderland

5
Modelling of the measurement system

In this chapter, we discuss how feedback is more concretely modelled and explore

the limitations of this framework. We discuss how one can explicitly model the mea-

surement system and verify that the gains from feedback control are compensated

by the cost of performing measurements. In Sec. 5.1, we restate the relationship

of our framework to thermodynamic concepts like work and how a controlled sys-

tem can do work by extracting heat from the environment whilst a measurement

system dissipates heat. In Sec. 5.2 we describe an explicit model of measurement

and feedback and restate the functionals that can be used to measure the relevant

quantities. In Sec. 5.3 we show data from simulation that confirms the intuition

that work is extracted at the cost of work being spent elsewhere. In Sec. 5.4 we

discuss a recently proposed ‘double-dæmon’ Ford [2016] and how the use of feedback

on both the controlled system and the measurement system might push past the

bounds stated in Sec. 5.1. Finally, in Sec. 5.5 we compare these findings to related

frameworks for explicitly modelling feedback and comment on experimental set-ups.
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5.1 Work and the 2nd law

It is known that feedback control is capable of enabling the extraction of work from

an isolated system Abreu and Seifert [2011]; Koski et al. [2014a,b]. By using infor-

mation obtained about the system, control protocols can be employed which exploit

that reduction in uncertainty of the system. Indeed, it is exactly this statement

that the generalised second law (3.35) represents. If one considers the second law

to only relate to the entropy production Stot, then feedback ‘violates’ the second

law. However, if one generalises the law to include the information ∆Itpossessed

by the feedback device, then the total quantity still obeys a ‘second law-like’ in-

equality (3.35). Interpreted simply, the maximum ‘entropy change’ (be it work or

stochastic entropy production, depending on the choice of boundary terms) that can

be obtained is bounded by the amount by which the uncertainty about the system

can be reduced by the control device.

5.1.1 Extraction of work through feedback

Consider a system evolving along a trajectory up until some measurement time

tm, xtm = {xs}tms=0. Prior to measurement, there will be some uncertainty on the

specific state of this chain. A single measurement y is made of the state, and let us

assume that both x and y have the same state space χ. Through the measurement,

a correlation is established between y and the state of the system at the instant

of measurement, xtm . This reduction of uncertainty (or information gain) can be

used to inform some protocol for shifting the parameters to extract energy from

the system (or otherwise drive it towards some desired outcome) in the period

tm < s < t. The average information gained about the system is quantified by the

mutual information between the system and measurement device at the instant of

measurement, that is

I [Xtm ; Ytm ] = 〈∆I [Xtm , Y ]〉, (5.1)

where Xtm and Ytm are random variables representing the system state (at the

moment of measurement tm) and the measurement outcome respectively, and

∆I [x, y] = ln
p(y | x)

p(y)
, ∀x, y ∈ χ. (5.2)

By exploiting the information gained about the system state according to

some ‘exploitation’ protocol a negative amount of ‘work’ Wx can be done by the

system which translates to a positive amount of energy that can be extracted from

the system. The system can be allowed to relax back to equilibrium, meaning
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that there is zero change in internal energy and the only nonzero quantities will

be the work done (and entropy production). Abreu and Seifert [2011] show that

the amount of work that can be extracted after the measurement is bounded by

the mutual information between the system and the measurement at the instant of

measurement, i.e.

〈WX〉 ≥ −kBT 〈∆I [Xtm , Ytm ]〉. (5.3)

In a stochastic system, the work done WX is given by the current-like term of RF
as in Sec. 2.7.1. Eq. (5.3) tells us that the maximum energy we can extract from a

system about which we possess some information is bounded by the mutual informa-

tion, similar to (3.35). Further, (5.3) suggests that in the presence of measurement

based feedback, the work done can be negative, meaning that we can gain useful

work from such a system. For our models we can set kBT = 1, and hence (3.35)

and (5.3) are nearly equivalent, with the only differences being the choice of bound-

ary terms for the functional as described earlier in Ch. 2 and the fact that previously,

∆It was the total information gained by a series of measurements whereas here ∆I
is the mutual information between the two systems after a single measurement.

Since for us, entropy production and work done are both based on the functional R
but with different boundary conditions, during this chapter we will refer to ‘entropy

production’ and ‘work done’ somewhat interchangeably. However, it is important

to note that in other models/frameworks, the two quantities cannot necessarily be

simply conflated this way.

Eq. (5.3) shows that if we are in possession of an information resource, we

can extract energy through feedback. However, we do not get this information for

free. A measurement essentially creates a correlation between the state of the mea-

surement device and the state of the system that is to be measured. This correlation

is quantified by the mutual information, and creates an information resource. Since

every ‘bit’ of information costs energy to create, according to the views of Szilard

[1929] and Brillouin [1951]1, then the process of measurement costs energy2 propor-

tional to the amount of information gained in the measurement. The finding that

the process of measurement necessarily generates entropy or costs work, is illus-

trated in Granger and Kantz [2011]. The bounds on the work done in measurement

are Sagawa and Ueda [2009]

〈Wm〉 ≥ kBT 〈∆I [Xtm , Ytm ]〉, (5.4)

1Or erase according to Landauer [1961].
2Either in the process of measurement or when the information is ‘deleted’.
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where 〈∆I [Xtm , Ytm ]〉 is the mutual information that quantifies the correlation be-

tween the system and measurement device after the measurement process ends at

tm.

If we consider the entire process then, on average we can extract 〈WX〉 by

using the information from measurement, but we must on average pay 〈Wm〉 in

order to create that information. Combining (5.3) and (5.4), we obtain,

〈WX〉+ 〈Wm〉 ≥ 0. (5.5)

Even operating optimal feedback control (i.e. we achieve the bounds in (5.3) and (5.4))

leaves us at best empty handed. It costs as much energy to make the measurement

as we can extract through feedback control. In the following sections, we model the

measurement device and measurement process explicitly in order to demonstrate

this.

5.2 Modelling the measurement process

In Chapters 3 and 4, we never explicitly described the measurement process. That

is, we simply considered that the measurement creates a correlation between the

two variables Xs and Ys without modelling the dynamics of the system represented

by Y or how it becomes correlated with X. In this section we first briefly describe

a recently studied Langevin model that can be used to model the measurement

process. We then present a discrete-space and -time version of the model dæmon

that allows us to use our previous framework to study its operation.

5.2.1 Langevin model

We here detail the model proposed in Ford [2016], although we will use slightly

different notation. The key benefit of this model is that it explicitly models the

measurement process as a phase in the evolution of the total system with its own set

of dynamics, similar to models in Granger and Kantz [2011]; Mandal and Jarzynski

[2012]; Barato and Seifert [2013]; Strasberg et al. [2013]. The model we will now

discuss includes the measurement device, measurement process and feedback as

explicit components of the system and phases of its evolution. The measurement

process refers to a process that results in creating a correlation between the states

of the two components, and ‘control’ refers to the change in parameters that is

enacted thereafter. One component of the system has control enacted on it and

so can be called the ‘controlled’ system, whereas the other component is used as a
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‘measurement device’ or ‘daemon’.

The model consists of two 1-D oscillators connected to tethers via Hookean

springs. Both oscillators respond to noise in the environment. The oscillators are

coupled via a third Hookean spring. The oscillator positions take values in R. A

trajectory in this system is written (xt,yt) = {xs, ys}s∈[0,t]
3. The dynamics are

modelled with a pair of coupled stochastic differential equations (SDEs). Specifically,

a pair of coupled and over-damped Langevin equations

dXs

ds
= −Kx(s) [Xs − λx(s)]−Kx,y(s) [Xs − Ys] +

√
2ξx(s), (5.6)

dYs
ds

= −Ky [Ys − λy]−Kx,y(s) [Ys −Xs] +
√

2ξy(s), (5.7)

where Kx,y(s), Kx(s), λx(s) are the control parameters of the model which charac-

terise the spring constants and tether-position of the x oscillator. Ky and λy remain

constant throughout. The ξ(s) terms are white noise with properties 〈ξx(s)〉 = 0

and 〈ξx(s)ξx(s′)〉 = δ(s − s′) Gardiner et al. [1985]; Van Kampen [1992]. When

the control parameters are fixed, the system corresponds to two coupled Ornstein-

Uhlenbeck processes and therefore the stationary distributions of the oscillators un-

der these dynamics are normal distributions characterised by the control parameters.

The stationary distribution of the entire system is a bivariate Gaussian distribution.

The system evolves through four phases. In the first phase, the oscillators

are not coupled and allowed to approach stationarity independently. The second

‘measurement’ phase follows in which the coupling strength between the oscillators

is slowly and linearly raised before being instantaneously taken back to zero at the

end of this phase, uncoupling the oscillators but leaving their positions correlated.

The y oscillator position is used to inform the parameter values for the next phase.

In the third ‘exploitation’ phase, the parameters Kx(s) and λx(s) instantaneously

shift to exploitation values and then slowly return to their initial values. The final

phase is a relaxation, allowing the system to reach the same stationary distribution

from before the measurement phase and allowing the system to be operated again

in a cycle.

We can use the established framework from Ch. 2 to construct related model

in discrete time and space, which we now proceed to detail.

3Note the difference in indexing since this is a continuous time process.
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5.2.2 Discretised model

In analogy with oscillators moving freely in space, we consider two particles moving

randomly on discrete lattices. Our model is a discrete-time process with discrete

state space χ = {ma : m ∈ Z} where a > 0 is some lattice spacing. A trajectory

of this process is written (xt,yt) = {xs, ys}ts=0. The particle dynamics are formed

of two components. The two particles are subject to ‘forces’ acting on them in a

similar fashion to the Langevin model, which is described by a deterministic drift

term

dx(x, y, s) = −Kx(s)(x− λx(s))−Kx,y(s)(x− y) ∈ R, (5.8)

dy(y, x, s) = −Ky(y − λy)−Kx,y(s)(y − x) ∈ R. (5.9)

It should be noted that the drift term generates real numbers R, whereas the particle

can only take positions on the lattice. Under purely deterministic dynamics, the

particles would move to new sites based on these ‘drift’ terms, i.e. the X particle

would move from site xs to xs+1 if xs+1 − a/2 ≤ xs + dx(x, y, s) < xs+1 + a/2.

However, in analogy with the stochastic environmental noise, we add a gaussian

noise centred on the location of the drift term. The transition probabilities are then

given by

ωX(x→ x′ | y, s) = Pr
[
x′ − a

2
≤ N (x+ dx(x, y, s), 1) < x′ +

a

2

]
, (5.10)

ωY (y → y′ | x, s) = Pr
[
y′ − a

2
≤ N (y + dy(y, x, s), 1) < y′ +

a

2

]
, (5.11)

where N is a Gaussian noise centred around the drift term. To be clear, the prob-

ability of a transition x to x′, for example, is the probability that the value of the

Gaussian noise with mean x+dx is between the lattice positions x′−a/2 and x′+a/2.

The position of the other particle and the time s acts as a control parameter for

each system as they determine the drift term. Since the jumps are independent, we

can write the transition probability of transitions from states (x, y) to (x′, y′) as

ω((x, y)→ (x′, y′)) = ω(x→ x′)ω(y → y′). (5.12)

A cartoon diagram of a single jump using these dynamics (using the X particle as

an example) is shown in Fig. 5.1

As in the Langevin model, this discrete model evolves through four distinct

‘phases’. Firstly a phase in which x and y are allowed to approach stationarity

independently. This is followed by a measurement phase 0 ≤ s ≤ tm, in which the
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dx(x, y, s) (x+ dx(x, y, s), 1)

ωx(x → x ' y, s)

x x '

Figure 5.1: Cartoon diagram depicting the dynamics for the X particle described
by (5.8) and (5.10). The X particle occupies a site on the lattice shown by the
blue circle. The drift term (5.8) is shown as a black arrow. The current site plus
the drift term (i.e. x+ dx(x, y, s)) determines the centre of the noise term shown as
a pink line. The noise is shown as a pale blue Gaussian PDF around that centre.
The transition probability (5.10) is shown by highlighting in red the area under
the distribution (and centred around a lattice site x′) that corresponds to the
probability of transitioning to the site x′.

particles are coupled; an exploitation phase tm < s ≤ tex, in which the parameters

Kx(s) and λx(s) are varied and a final relaxation phase tex < s ≤ t, during which

the system is allowed to re-equilibrate. The specifics of these phases are discussed

in Sec. 5.2.4.

These dynamics are slightly contrived to produce a model analogous to the

Langevin model, but in discrete time and space so that we can use the framework

we have established for functionals of Markov chains in previous chapters. However,

since the dynamics are so closely related to the original system, we also know that

they share some important properties. Namely, for each fixed set of parameters

Kx,Ky > 0, Kx,y ≥ 0, there is a unique stationary distribution. Both particles

are always localised despite the state space being infinite. We also know that the
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stationary distribution for fixed parameters is unique since the Gauss noise means

that process is irreducible4. Finally, since the dynamics are so closely related to the

Langevin model, the stationary distributions are expected to be close to a discrete

version of the multivariate Gaussian.

5.2.3 Functional for the process

In order to track the entropy production of the two oscillators, we use the trajectory

functionals defined in Sec. 2.3, but generalised for control as in Sec. 3.1. We write

RXF = ln
µx0(x0)

µxt (xt)
+

t−1∑
s=0

ln
ω(xs → xs+1 | ys, s)
ω(xs+1 → xs | ys, s)

, (5.13)

RYF = ln
µy0(y0)

µyt (yt)
+

t−1∑
s=0

ln
ω(ys → ys+1 | xs, s)
ω(ys+1 → ys | xs, s)

, (5.14)

where µi0 and µit are the stationary distribution of subsystem i at the beginning

and end of the process. We are interested in control protocols that have the same

control parameter values at the beginning and end of the protocol, and so starting

from stationarity and given enough time to relax after the protocol, the system will

begin and end in the same distribution. That is, µi0 = µit. In the initial condition

the oscillators are not coupled to one another (Kx,y(0) = 0) and are only coupled

to their respective tethers with the same strength, which are both placed at the

origin (λx = λy = 0 and Kx(0) = Ky = 1), so the stationary distributions of both

oscillators will be identical and independent. The functionals RXF and RYF track the

entropy production of each oscillator as it evolves, and hence their sum

RF = RXF +RYF , (5.15)

tracks the entropy production of the entire system. We can sum the contributions

to entropy production linearly5 like this because the functionals are independent

owing to the independence of the transition probabilities (5.12).

Since the entire system begins and ends in the same stationary distribution,

we can interpret this functional as related to the ‘work done’ as we did before in

Sec. 2.7.1, RF = W − ∆F where the current term is the ‘work done’ and the

boundary term is the change in free energy ∆F . Of course, the system can only

ever approach stationarity, but we assume that the discrepancy between the initial

4Every state is accessible from every other state, and since the normal distribution has full
support, in this system every state is accessible from any other state in a single transition.

5Even though the processes are correlated.
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and final state is negligible and so the change in free energy should be zero in the

ensemble average, i.e. 〈∆F 〉 = 0. Thus, we only need to look at the current-like terms

of the functional, RF . We expect that, given a good control protocol, 〈RXF 〉 should

be negative after exploitation whereas 〈RYF 〉 will be positive and should at least

compensate the negative 〈RXF 〉 such that 〈RF 〉 ≥ 0. The protocols for exploitation

are detailed in Sec. 5.2.4.

We can also write for the final value of RF (which we write as RF (t))

RF (t) =Wm +WX , (5.16)

where Wm is the work done during the measurement phase and WX is the work

gained during the exploitation phase. Wm is given by Wm = RF (tm) − RF (0) =

RF (tm), whereas WX = RF (t)−RF (tm).

5.2.4 Protocol for Measurement and Exploitation

We now describe the specifics of the measurement and exploitation of this system.

We will here use notation and concepts applicable to the discretised model. Similar

expressions and concepts are obtained for the continuous system.

Throughout this chapter we use the word ‘protocol’ to refer to the evolution

of all parameters over the entire process. We will use ‘measurement phase’ to refer

to the time during which the oscillators are coupled and correlated with one another

and ‘measurement protocol’ to refer to the evolution of the parameters during this

time. Similarly, we use ‘exploitation phase’ and ‘exploitation protocol’ to refer to

the duration of time and evolution of parameters after the measurement phase, that

ideally results in extraction of ‘energy’ from the system, i.e. negative work done.

The specific values used for parameter evolution are summarised in Sec. 5.2.5.

Equilibration

Prior to the measurement and exploitation phase, we first initialise both oscillators

at the origin on the lattice and allow time6 for the system to approach a stationary

state. During this time, the parameters are Kx,y = 0 and Kx = Ky = 1 and

λx = λy = 0. The oscillators are uncoupled and will approach independent identical

stationary Gaussian distributions.

6Ideally an infinitely long period of time.
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Measurement

The oscillators will be at equilibrium following the previous equilibration phase.

Over the duration of the measurement phase, Kx,y is raised from 0 to some finite

positive value k over the time s = 0 to s = tm. All other parameters remain constant

during this time. At the end of the measurement phase, the oscillator position

variables Xs and Ys will be correlated. At the end of this phase, we instantly switch

Kx,y = 0 in preparation for the next phase.

During the measurement phase, we expect RXF , RYF and hence RF to be

positive and increasing up until tm. This is owing to the fact that for the process

to create a correlation between the two systems, it must necessarily be entropy

producing Granger and Kantz [2011]; Sagawa and Ueda [2012]. The smallest average

entropy production is in the limit of a quasistatic coupling, where the coupling is

introduced infinitely slowly (i.e. tm →∞) Spinney and Ford.

Exploitation and Relaxation

After the measurement phase, we begin the ‘exploitation phase’. To select a feedback

protocol, the value of y is used to determine what values Kx and λx should take.

Instantaneously at the beginning of this phase, we switch Kx = 1+k, λx = kytm/(1+

k). The y oscillator is allowed to relax and returns to its original state. The

exploitation takes place during the phase tm < s ≤ tex. During this time, the

changed control parameters are returned to their original values.

Finally, in the phase tex < s ≤ t, we allow the system to equilibrate. Since all

control parameters have been returned to their original values, the system will relax

back to the distribution it was initialised in. In reality, the system will only ever

asymptotically approach the stationary distribution and hence the final distribution

will not be exactly the same as the initial distribution. In simulation, we use a long

enough relaxation period that the difference will be assumed to be so small as to be

negligible. The system thus begins and ends in the same state and the total change

in system entropy (and free energy) should be zero.

During exploitation and relaxation, we expect that RXF can reach negative

values on average owing to the exploitation, while RYF will be positive such that the

final value of RF is positive on average.

5.2.5 Optimal protocols

We now discuss the optimal protocols for measurement and exploitation. These

protocols are considered ‘optimal’ as they minimise the work that must be done in
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s Kx,y Kx λx

s = 0 Kx,y = 0 Kx = 1 λx = 0

0 ≤ s < tm Kx,y → k Kx = 1 λx = 0

s = tm Kx,y = 0 Kx = 1 + k λx = kytm
1+k

tm < s ≤ tex Kx,y = 0 Kx → 1 λx = kytm
1+k

tex < s ≤ t Kx,y = 0 Kx = 1 λx = kytm
1+k

Table 5.1: Evolution of control parameters. Here the ‘→’ notation is to be read that
a parameter changes from its previous value (its value from the row above) to the
value written after the →, and does so linearly over the time period specified in the
first column. For example, Kx → 1 in the 4th row and 3rd column means that Kx

changes linearly from 1 + k to 1 over the time period tm to tex.

measurement and maximise the work that can be extracted from the system. That

is, they achieve the bounds in (5.3), (5.4) and (5.5). For measurement, it has been

shown in Granger and Kantz [2011]; Sagawa and Ueda [2009] that raising the cou-

pling linearly and infinitely slowly reaches the lower bound in (5.4). Optimal control

protocols for the exploitation of a single oscillator modelled by Langevin equations

such as (5.6) and (5.7) have been previously studied in Granger and Kantz [2011];

Abreu and Seifert [2011]; Sagawa and Ueda [2012]. Since our model is a discretisa-

tion of the scheme discussed in the literature, we use the same exploitation protocol

suggested in Abreu and Seifert [2011]. Specifically, the protocol we employ for our

system is shown in Table 5.1. There is not necessarily any reason to suspect that

this protocol will be ‘optimal’ for our discretised model, save for the fact that in ap-

propriate limits (lattice spacing a→ 0 and time stepping ∆s→ 0) our model should

scale to the Langevin model ((5.6) and (5.7)) for which the protocol is optimal.

5.3 Simulation

In this section we present data obtained from numerical simulation of the coupled

oscillator system. We first check the values of the trajectory functionals 〈RF 〉,
〈RXF 〉 and 〈RYF 〉 over the course of the entire protocol. We then examine the lim-

iting behaviour and verify that longer timescales for measurement and exploitation

approach the bound of (5.5). That is, we provide evidence that in the quasistatic

limit (all timescales →∞), one could achieve 〈RF 〉 = 0 or equivalently from (5.16),

〈Wm〉+ 〈WX〉 = 0.
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Figure 5.2: The work done over the course of a trajectory, with several different
time-scales for the evolution of the control parameter. Data for the solid lines was
obtained by averaging values from 107 simulations. The blue, black and red lines
show the evolution of 〈RF 〉 (5.15) for tm = te = 2000, 3000, and 6000 time steps
respectively, with relaxation periods of 4000 time steps afterwards. The total times
are thus t = 8000, 10000 and 16000.

5.3.1 Data

Fig. 5.2 shows averages of 〈RF 〉 (5.15) for three different timescales of the control

protocol and Fig. 5.3 shows the values of 〈RXF 〉 and 〈RYF 〉 for a single timescale. Both

plots show data obtained from averaging over 107 realisations. In each simulation,

the oscillators’ initial positions are the origin. The oscillators are then allowed to

approach stationarity before the process begins properly (i.e. the control parameters

start evolving). After that, the measurement phase is carried out over tm time steps.

At the end of the measurement phase, the exploitation protocol of X is carried out

over te = tex − tm time steps, before the system is allowed to re-equilibrate during

a relaxation phase. The control parameters during the relaxation period have the

same values as they do during the initial equilibration. For the data in Fig. 5.2, we

consider tm = te and plot 〈RF 〉 for tm = 4000, 6000, and 12000. Consistently with

our expectations in Sec. 5.2.3, Fig. 5.2 shows that the functional (5.15) can never be

negative on average but can approach zero as the timescales for measurement and

113



〈ℛ�
� 〉

〈ℛ�
�〉

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

Timestep s

Figure 5.3: The values of 〈RXF 〉 and 〈RYF 〉 for tm = te = 3000. Data obtained by
averaging values from 107 simulations. While 〈RXF 〉 can be negative after the
process, 〈RYF 〉 is much larger and positive.

exploitation are increased. Fig. 5.3 shows that while 〈RXF 〉 can be negative after

exploitation, 〈RYF 〉 is positive and of a much larger magnitude than 〈RYF 〉.
The measurement phase for Fig. 5.3 takes place between time steps s = 0

and s = 3000. During this time, the coupling between the oscillators is linearly

increasing from K(0) = 0 to K(s) = k. During this phase, both 〈RXF 〉 and 〈RYF 〉
are positive as expected, since the measurement process costs work. In a physical

system, this corresponds to the energy cost of changing the system Hamiltonian,

since changing the parameters will change the internal energy of the system. The

exploitation phase follows after s = 3000 and continues until s = 6000 after which

the system is allowed to relax. During the exploitation and relaxation phase, work

is extracted from the x oscillator and hence 〈RXF 〉 is negative at the end of the

relaxation. Interestingly, here it is not negative at the end of the exploitation phase

but requires some relaxation time since the parameter has changed too quickly.

Longer exploitation phases allow 〈RXF 〉 to become more negative before relaxing.

During the exploitation phase, the y oscillator is simply allowed to relax and 〈RXF 〉
decreases but still remains positive overall.
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(a) 〈Wm〉 − 〈∆I〉 for different timescales
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(b) 〈WX〉+ 〈∆I〉 for different timescales

Figure 5.4: Convergence of 〈Wm〉 − 〈∆I〉 and 〈WX〉+ 〈∆I〉 to zero with increasing
timescale. Red circles show 〈Wm〉−〈∆I〉 and 〈WX〉+〈∆I〉. Error bars indicate the
relative error on data points. Black diamonds and purple squares show the quantity
plotted in red ±0.5 respectively to support that 〈Wm〉 − 〈∆I〉 and 〈WX〉 + 〈∆I〉
indeed vanish exponentially in time. The solid line is ∝ e−t and is included as a
visual aid. As the timescales increase, 〈Wm〉 − 〈∆I〉 and 〈WX〉 + 〈∆I〉 appear to
show an exponential decay to zero with a log-scaled vertical axis. Data from 107

simulations.

5.3.2 Limiting behaviour

From Fig. 5.2, we can see that when the overall time scale t is longer, the final value

of 〈RF 〉 is smaller. This is consistent with the prediction that slower protocols can

achieve ‘better’ results. That is, if we couple the oscillators slowly enough, we can

introduce the correlation with a minimum of entropy production or work done and

when the exploitation timescale is long enough we can extract more work from the

system.

Recall from (5.3) that the work extracted from the system is bounded by the

mutual information created by the measurement. Fig. 5.4 shows data from simula-

tion that suggests that both 〈WX〉 + 〈∆I [Xtm , Ytm ]〉 and 〈Wm〉 − 〈∆I [Xtm , Ytm ]〉
asymptotically approach zero as the appropriate timescale t is increased. The

straight lines followed by the data in log-scale is fairly convincing evidence that in

the limits tm →∞ and tex−tm →∞7, the difference between 〈RF 〉 = 〈Wm〉+〈WX〉
and 〈∆I [Xtm , Ytm ]〉 vanishes exponentially and the process would achieve its lower

bound.

7That is, as the measurement and exploitation time scales are simultaneously taken to infinity.
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Figure 5.5: Control flow diagrams illustrating various feedback scenarios.
a) Ordinary feedback control. The ‘system’ state is correlated with a ‘dæmon’. The
dæmon selects a feedback protocol which is then used to control the system.
b) The same scenario as a) but reversed so that the dæmon benefits from a feedback
protocol selected by the system.
c) The double dæmon. Both system and dæmon are correlated and their states are
used to select feedback protocols for each another.

5.4 Double feedback

A model recently proposed by Ford [2016] asks why we cannot simultaneously enact

an exploitation protocol on the y oscillator. This rationale behind this proposal

can be understood as an observation that since the dæmon is a physical system,

‘feedback’ can just as equally be performed on the dæmon by selecting feedback

protocols based on the state of the controlled system. If one can perform feedback

in both directions, then one might ask why this cannot be done simultaneously.

Fig. 5.5 shows this rationale in a control-flow diagram. Previously it was possible

to extract energy from a single system equal to the energy input in creating the

measurement. Now, it should be possible to extract additional energy from the

second system. In effect, we ‘pay’ a one-off cost to create a correlation between the
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two systems, but can extract energy equal to that cost twice. Since both systems

are acting as a feedback controller for each other, we refer to this kind of system as

a ‘double dæmon’.

5.4.1 Exploitation of the measurement device

As before in Sec. 5.1.1, we set kBT = 1 for convenience. The work obtained from

exploitation of the x oscillator is bounded by (5.3). Similarly, if we were to exploit

the ‘measurement’ system (the y oscillator) in exactly the same way, the bounds on

the work done by that exploitation should be

〈WY 〉 ≥ −〈∆I [Xtm , Ytm ]〉. (5.17)

By combining (5.3), (5.4) and (5.17), we can write

〈WX〉+ 〈WY 〉+ 〈Wm〉 ≥ −〈∆I [Xtm , Ytm ]〉, (5.18)

which suggests that the overall work done on the system can be negative. To clarify,

〈WY 〉 and 〈WY 〉 are expected to be negative quantities8, whereas 〈Wm〉 is a positive

quantity equal to the work done in correlating the two systems. 〈∆I [Xtm , Ytm ]〉 is

the mutual information between the two systems at the end of this correlating

process. This is to say that if we enact feedback symmetrically, we should be able

to extract work, and that work extracted is bounded by the mutual information.

5.4.2 Double dæmon simulation

The results of simulation are shown in Fig. 5.6 and Fig. 5.7. We simulate the

double dæmon by operating the same protocol as before, but instead of allowing

the y oscillator to relax after measurement, we select exploitation protocols in a

symmetrical manner to the selection of a protocol for x. That is, where we switch

the tether of the x oscillator to λx(tm) = ytmk/(1 + k), we also switch λy(tm) =

xtmk/(1 + k), as well as changing both spring constants to (1 + k). We then return

these parameters to their initial values and allow relaxation. The first observation

is that 〈RF 〉 can be negative when the timescale is long enough. When we check

the individual components of 〈RF 〉, 〈RXF 〉 and 〈RYF 〉, we note that they are both

the same shape as 〈RXF 〉 in Fig. 5.3.

8They will be negative since they are the ‘work done’ by a process that expects to gain rather
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Figure 5.6: The work done over the course of a trajectory for the double dæmon,
with several different time-scales for the evolution of the control parameter. Data
for the solid lines was obtained by averaging values from 107 simulations. The
blue, black and red lines show the evolution of 〈RF 〉 (5.15) for
tm = te = 2000, 3000, and 6000 time steps, with relaxation periods of 4000 time
steps afterwards. The purple dashed line shows the mutual information 〈∆I〉 since
it is the lower bound of (5.18).

5.4.3 Second-law violating?

It is tempting to say that the double dæmon’s behaviour constitutes a ‘violation’

of the second law since it appears that work is extracted from the system despite

having counted cost of creating the information resource. Before we claim that this

behaviour is a violation it is important to note that (5.18) has the same bound

as (5.3). Indeed, both of these inequalities express the same idea as (3.35). That is,

in the presence of feedback control, quantities like the entropy production or work

extracted can be negative and this effect is bounded by the mutual information.

Since this fact is not considered a ‘violation’ of the second law in the case of ordinary

feedback control, there is no reason to suspect it is a ‘violation’ here either.

In the case of single oscillator exploitation, the model of coupled oscillators

and treatment of the measurement process allows us to see that work extraction

from feedback control in one system is compensated by a work cost in another

than expend work.
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Figure 5.7: The values of 〈RXF 〉 and 〈RXF 〉 for tm = te = 3000. Data obtained by
averaging values from 107 simulations. Here, both oscillators benefit from
exploitation and so the final value of both functionals is negative.

system. Here, the position variable of the y oscillator acts as the measurement

variable used to select a control protocol for the x oscillator. The cost of creating the

correlation between the variables balances the gains from extraction. We consider

our description of the system is ‘complete’ in so far as we have modelled all the

relevant components and processes.

For double exploitation, we essentially have a system that appears to be

‘self-exploiting’. That is, the system uses its own state to select a feedback protocol.

Fig. 5.8 shows what ‘self feedback’ is and how the double dæmon can be considered

as a self feedback system. Seen this way, we are not looking at two systems selecting

control protocols for each other but instead seeing a system select a control protocol

for itself. For the double dæmon, the variable to be measured is (X,Y ) and the

control variable that is used to select a feedback protocol is also (X,Y ). This is the

same as picking a feedback protocol for a single system X based directly on X rather

than some measurement variable Y . When we consider this kind of ’self-feedback’

we essentially neglect the cost of correlating the control variable for the system with

the system state. Earlier in Sec. 4.2 we mentioned the case of perfect measurements.

Self feedback is essentially the same as the case of perfect measurements for the 1D
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b) System Feedback
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Dæmon
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Feedback

Feedback

Figure 5.8: Control flow diagrams illustrating various feedback scenarios.
a) Ordinary feedback control. The ‘system’ state is correlated with a ‘dæmon’. The
dæmon then selects a feedback protocol which is then used to control the system.
The system benefits from the feedback control but the dæmon does not.
b) Self feedback. The feedback protocol is generated directly by the state without
including an intermediate ‘dæmon’.
c) The double dæmon. If one considers both the system and demon as a single
composite system, then the situation in c) appears identical to b).

information engine; the control variable is perfectly correlated with the system state,

but we have not counted the cost of creating that correlation since we do not model

the control variable.

To pick a feedback protocol, we must gain information about the state of the

system through some process. To exploit just a single oscillator, we couple the X

oscillator to the Y oscillator and then can use the state of Y to infer the state of

X without disturbing the state of X. The Y system acts as the control variable for

X. When feedback is enacted in both directions, the ‘system’ is (X,Y ) and we do

not explicitly have a control variable. To be able to exploit the state of the system

(X,Y ), we would have to correlate it with some additional third system and use the

state of this third system to pick exploitation protocols for X and Y . Although the
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trajectory functionalRF counts the cost of creating a correlation between the X and

Y variables, it does not count the cost of creating the correlation between (X,Y )

and the variable used to select a control protocol. This essentially means that the

double dæmon model is not ‘complete’. To fully count the entropy production of the

entire system we would need to include the entropy production from the operation

of this additional third ‘proxy’ system that is used to select a feedback protocol for

(X,Y ).

5.5 Conclusion

In this chapter we have included dynamics for the measurement system of a feedback

controller and demonstrated that for measurement-based feedback control, the work

extracted through feedback control is at least balanced by the work cost of creating

an information resource used to choose the feedback protocol. Rather than consider

that we gain information about the state of the system through some unspecified

process, we have modelled the process by which the a correlation is created between

the measured and measurement systems. The correlation between the two systems

is then exploited by one system and work is extracted, having paid a cost during the

measurement phase that can at best be fully ‘recouped’ from exploitation, consistent

with intuitions of the second law of thermodynamics. Overall, we note that this

view accords with the argument of Ford [2016]; one cannot ‘borrow’ from the bank

of entropy and pay back later, we must ‘pay’ first and benefit afterwards. That is, to

be able to enact a protocol that decreases entropy on average, we must first produce

entropy. Similarly here, to enact feedback control we must exploit information from

an information resource, and to create that information resource costs work up front.

We have also considered what happens when feedback is enacted symmet-

rically between two systems and identified this as ‘self-feedback’ whereby a system

uses its own state in order to select a control protocol. In this case the work that can

be extracted is bounded by the mutual information, although we note that this does

not allow us to ‘violate’ the second law since we have now not properly accounted for

the feedback process. For double feedback, the bound on it’s performance is given

by (5.3). If one wanted to fully count the entropy of the total feedback process for

double feedback, then one should include an additional ‘measurement’ system that

is used to select a control protocol for the whole system.
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5.5.1 Related frameworks

In this chapter we studied a system of coupled oscillators in order to model the

process of measurement and feedback. We are able to consider the coupled oscillators

as a ‘system’ and ‘dæmon’ and show that in order to be able to extract work in a cycle

from an information engine, prior work must be done in creating the information

resource that is then exploited in feedback. However, this is not the only way of

modelling a Maxwell’s dæmon system. Earlier in Sec. 4.1 we discussed two other

frameworks that are used to study Maxwell’s dæmon. Neither of these models

necessarily employ explicit measurement or feedback processes. Nevertheless we

discuss how our results are similar to the findings from these other frameworks.

Bipartite systems

The intuition that entropy reduction in one system is compensated for by entropy

production in another is confirmed more directly by the study of bipartite sys-

tems Barato et al. [2013a,b]. These are processes modelled as two variables but only

allow one variable can change in each transition. Previous work has also considered

feedback and information processing in bipartite systems modelled by Langevin dy-

namics Horowitz and Sandberg [2014]; Hartich et al. [2016]. By considering each

variable as representing the state of a subsystem, the process can be considered

as two interacting systems. The interactions and evolution of the whole system is

‘autonomous’ and operates without control or time-varying parameters.

Since all the dynamics are explicitly modelled in these systems, the entropy

production from each transition is easily accessible and is shown to obey a second-law

like inequality. Hartich et al. [2014] uses this framework to make a direct analogy to

Maxwell’s dæmon, considering one variable to represent the ‘system’ and the other

variable to represent the ‘dæmon’. The study confirms that the work extracted

from one system is compensated for by heat dissipation in the other subsystem and

places bounds on those quantities. Our model can be seen as a bipartite system

since, while both variables change in a single transition, this is only because we

model in discrete time. Our model shows a similar result in Sec 5.3 to previous

work on bipartite systems; the dæmon can use feedback control to extract work

from one system, but must dissipate heat through its own operation with the result

that the entire system cannot benefit on average.
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Information registers/tapes

Other ‘autononous’ dæmons are realised in models involving a system interacting

with a binary tape Mandal et al. [2013]; Barato and Seifert [2014b]. In fact many

of these system can be modelled as bipartite systems and so there is some overlap

with the above. These types of Maxwell dæmons use sets of dynamics that write

information into an empty memory register. The dynamics and interaction with the

tape can be chosen such that thermodynamic work is done by the system whilst the

information entropy of the register increases. In this framework, one could think of

information and entropy being equivalent, and that the generation of information

in the memory register is what balances the entropy reduction in the system. Alter-

natively, one can consider the Landauer perspective; that the information must be

‘deleted’ at a later time which will cost work at least equal to the work that could

be extracted by the system. Our model is slightly different in that that the work

costs must be ‘paid up front’. That is, in our model the dæmon must pay the cost

of measurement before work can be extracted from the system.

5.5.2 Experimental considerations

Since the model is based on a Brownian particle connected to a tether via a Hookean

spring then constructing exactly that system may be the most appropriate way to

test the framework (i.e verify the bounds in (5.3), (5.4) and (5.5)). The difficulty

with this system is that the protocol requires the alteration of the spring constant

which is not necessarily easy to do. The experiment should ideally take place at

constant temperature so as not to alter the thermal fluctuations that the protocol

is trying to exploit. However, the only way of changing the spring constant appears

to be changing the temperature of the spring Manninen and Säynäjäkangas [2012]

which will be difficult to do without affecting the temperature of the medium. Given

these considerations, it is likely that the experimental apparatus has to be somewhat

abstracted from the model description.

Many groups have previously used colloidal particles in optical-tweezers to

test the concepts of stochastic thermodynamics Wang et al. [2002]; Carberry et al.

[2004]; Trepagnier et al. [2004]; Speck et al. [2007]; Blickle et al. [2006]; Gomez-Solano

et al. [2010]. By using a laser (specifically, the momentum exchange between the

laser beam photons and the particle), it is possible to confine a particle to a specific

region Ashkin et al. [1986]. Simple laser-traps can be used to establish the harmonic

potentials that are similar to the potential energy of the Hookean spring. To couple

particles together using laser-trapping might require a slightly more sophisticated
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set-up. Ideally the particles should be coupled to one another, but establishing a

controllable coupling force between the two particles may be difficult.

Finally, it is also possible to construct electronic system as per Averin et al.

[2011]; Koski et al. [2014a,b, 2015] that are capable of using feedback control. Such

systems use feedback control to manipulate and cool single electrons in electronic

circuits. Since these kinds of systems have already been used to verify the previous

information thermodynamic results such as the Sagawa-Ueda FR, it may also be

possible to use them to study the measurement and feedback system in more detail.
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“I think that the task of philosophy is not

to provide answers, but to show how the

way we perceive a problem can be itself

part of a problem.”

Slavoj Žižek

6
Outlook and Discussion

In this final chapter, we will provide an overview and summary of the research pre-

sented in the previous chapters. Sec. 6.1 summarises our findings and points towards

other contemporary research and directions for future study. Finally, Sec. 6.2 pro-

vides some concluding remarks on the status of information thermodynamics and

the prognosis for the second law and Maxwell’s dæmon.

As stated in Ch. 1 and evidenced by the large body of literature Bekenstein

[1972]; Bennett [1987]; Evans et al. [1993]; Evans and Searles [1994]; Sheehan and

Means [1998]; Ritort [2004]; Cavina et al. [2016]; challenging the second law is

something of an enduring fascination for Physicists. It is worth noting (as in Sec. 2.7)

that the second law of stochastic thermodynamics does not forbid decreases in any

kind of entropy or negative values of trajectory functionals. Rather, the second law

inequalities are statements of expectation. They refer to the average behaviour of

the systems under consideration, and hence individual ‘violations’ of the second law

are always possible1.

1No matter how large the system or how long the time period, in an infinite ensemble the
probability of seeing at least one trajectory that reduces entropy is unity.
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6.1 Summary and outlook

In this thesis we have described how feedback can be integrated into the framework

of stochastic thermodynamics and using discrete-time and -space Markov chains as

a basis we have shown how some key results can be obtained. Our contribution

to this framework has been an analysis of the notion of ‘time reversal’ from the

perspective of causal diagrams. Particularly, in Ch. 3 we explored the alternatives

for ‘time reversed’ conjugate processes and found that only open-loop control as

the conjugate process results in a meaningful fluctuation relation. Specifically, we

provided a conceptual justification for use of open-loop feedback in the derivation

of the Sagawa-Ueda fluctuation relation.

In Ch. 4 we presented a concrete model of an information engine which is

analytically solvable for small systems. Since impact of information flow in these

systems is well studied Ito [2016], we provide an analysis of the fluctuations of that

information flow. Particularly, we obtained an exact expression of the large devi-

ation rate function for information flow in a two site system. For general systems

with more than two sites, we provided an approximate analysis of the fluctuations of

information by constructing a Markov model in order to be able to infer a large devi-

ation rate function from transitions on a coarse-grained state space. Recent work has

explored the fluctuations of information flow for systems with continuous informa-

tion flow Rosinberg and Horowitz [2016] as opposed to our discrete model. It would

be of potential interest to explore the differences between information fluctuations

in discrete and continuous systems. Our research may also be connected to work

on using large deviation theory to optimise feedback protocols themselves Gagliardi

et al. [2016].

Finally, we included the measurement process explicitly in Ch. 5. By mod-

elling the system and dæmon as explicitly and considering the measurement process

as a process that creates a correlation between their states, we were able to see

that entropy reduction in one system is compensated by commensurate increases

in other system. We confirmed previously found bounds on the work that can be

extracted through feedback control as well as the work that must be paid to be-

forehand in measurement. Our work is part of broader interest in full models of

Maxwell’s dæmon Barato et al. [2013a,b]; Mandal et al. [2013]; Barato and Seifert

[2014b]; Hartich et al. [2014], other contemporary studies that have found limits

on the outcomes of feedback control Barato et al. [2014]; Machta [2015] and clar-

ifications of existing bounds Wächtler et al. [2016]; Boyd et al. [2016]. Models of

Maxwell’s dæmon attempt to extract work on average from the controlled system.
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We note that it is possible to design protocols aimed at maximising the possibility

for positive fluctuations in the extraction of work Cavina et al. [2016]. There is also

work on developing optimal protocols for memory erasure Gavrilov and Bechhoefer

[2016], since many views of Maxwell’s dæmon view information erasure as being the

key component to the operation of the dæmon.

In the next section, we will provide a brief history of the second law and place

our work within the narrative of ongoing effort to fully explore and understand its

meaning and ramifications.

6.2 The second law II

The culmination of nearly 150 years of discussions about Maxwell’s Dæmon has been

the framework of information thermodynamics Sagawa and Ueda [2010], which illu-

minates the profound importance of information in thermodynamics Seifert [2012];

Abreu and Seifert [2012]. By including the effect of system memory Zhou and Se-

gal [2010] and/or information processing Maruyama et al. [2009] the 2nd law can

be reformulated to include information entropy and used to study the operation

of finite-time information processing systems systems Berry et al. [1999] such as

information heat engines Jayannavar [1996] and refrigerators Mandal et al. [2013].

6.2.1 Exorcising the dæmon

As was alluded to in Sec. 1.3, the second law has a long and storied history of being

challenged and reformulated in response to those challenges. The challenge posed

by Maxwell’s ‘neat-fingered being’ has been so powerful, that devices, systems and

processes that provide apparent ‘violaions’ of the second law are all granted the

title of ‘dæmons’, taking on the role of spiritual successors to that first challenge.

The common spelling ‘demon’ perhaps belies a fact about the dæmon, that it has

‘bedeviled’ physics by continually challenging a law thought to be fundamental and

forcing reinterpretation of that law. As each dæmon has challenged the law, new

ideas and frameworks have been developed in order to ‘save’ the second law and

‘exorcise’ the dæmon.

In its original form, the dæmon itself did not violate the second law, rather,

the dæmon simply observed and exploited the rare and unexpected events that occur

on microscopic scales. The dæmon’s ability was accepted as a consequence of the

kind of judgements and actions that humans themselves are capable of: observing a

situation and responding accordingly to bring about desired and possibly otherwise

unlikely outcomes. The dæmon constitutes less of a violation of the second law,
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than a clarification of it. That is, in the presence of some special circumstances

such as interference from a ‘dæmon’, the second law does not hold. However, in the

pursuit of precision, the information thermodynamical framework has been able to

augment this statement. Additional to pointing out that special circumstances can

violate the second law, we have been able to place bounds on the degree to which

the second law can be broken. Rather than being a statement about the average

behaviour of the entropy production 〈∆St〉, the second law becomes a statement

about a new quantity with a similar inequality, 〈∆St〉 + 〈∆It〉 ≥ 0. That is, the

second law describes the behaviour of a more general quantity with terms that refer

to the system and its interaction with the dæmon. The second law is thus generalised

and the action of the dæmon understood to only violate an incomplete version of

the law.

However, this can be augmented still. By modelling the dæmon itself and

including the process by which the dæmon’s state becomes correlated with the sys-

tem, we can show that the entropy reduction in the exploited system is compensated

by the operating cost of the dæmon. The dæmon is thus fully understood not to

constitute a ‘violation’ of the second law. When we consider the entropy of the en-

tire scenario – the system and the dæmon – we see that this quantity is greater than

or equal to zero on average. Thus feedback control and dæmons cannot provide us

with sources of unlimited work extraction of indefinite entropy reduction. However,

we are fully aware of the limitations on what can be achieved by exploiting systems

using feedback or dæmonic control, or by creating systems with autonomous dæ-

monic dynamics. While we cannot decrease the total entropy on average, we can be

clever about where it is produced and reduced.

6.2.2 The nature of information

Much of the framework of feedback and control theory involves talk about infor-

mation and information processing. Several thinkers have even made direct equiva-

lences between information and thermodynamic entropy. ‘Information’ is an incredi-

bly loaded term. Loaded not just with different methodological interpretations, but

also philosophical baggage. On the methodological side, whilst Shannon’s ‘infor-

mation entropy’ and the Boltzmann entropy have similar mathematical definitions,

they do not share the same foundations. Thermodynamic entropy is a property

of probability distributions, whereas Shannon information was originally developed

as a property of a communication system. Thermodynamic entropy is fundamen-

tally a relationship between temperature and heat which have no clear analogue in

communications systems. Divorced of concepts like energy, heat and temperature,

128



many have argued that the connection between the concepts is theoretical rather

than actual Rapoport [1976]; Morowitz [1986]; Müller [2007]; Ben-Naim [2008]. That

said, stochastic thermodynamics can already bridge the gap between abstract math-

ematical systems and real physical systems and so this criticism is perhaps not so

crippling.

The much harder problem to address is the interpretation of what information

itself actually is. In Sec. 3.2.3 we described an interpretation of the change in

uncertainty as an amount of information ‘gained’ by an observer. However, we were

referring to a quantity calculated as ln p, where p is some probability. Given that

p ≥ 0, it is clear that ln p ≤ 0. Rather than describing an amount of information

‘gained’ by an observer, it is perhaps more appropriate to think of it as an amount

of uncertainty that is ‘removed’ by the act of observation2. Uncertainty is more

naturally thought of as a property of an agent’s belief; it has an epistemic character.

On the other hand, Landauer’s “information is physical”, seems to suggest that not

only does the existence of information have an impact on the physics of a given

system, but can also be read literally and taken to mean that information is a

physical property of a process or system and hence has an ontological character.

6.2.3 Information as perspective

Whether information/entropy represents a property of the universe or the uncer-

tainty of the agents within it is something of a metaphysical issue, but it has an

impact on the way in which we think about the operation of information thermo-

dynamic devices. If entropy is only a quantification of an agent’s uncertainty, then

we must adduce reasons as to why one’s uncertainty must increase. Indeed, the en-

tire endeavour of science can be seen as a somewhat successful reduction in human

uncertainty.

As an example; in performing a simulation, it is possible to keep track of

a complete description of the system state and hence never see any increase in en-

tropy/uncertainty. It is only in discarding that detailed information that uncertainty

on the future state of the system appears3. Increases in entropy could thus be seen

as a consequence of not modelling a system comprehensively enough. In essence,

the second law could be related to the central anxiety of the statistical/probabilistic

2This view isn’t particularly flattering to the observers; they are never really in possession of
information, they are in possession of uncertainty.

3Compare this with another famous physical ‘dæmon’; Laplace’s dæmon, who possesses knowl-
edge of the position and momentum of every particle in the universe at a single instant. In a de-
terministic universe, the entire past and future would be known to such a dæmon and hence can
never be more or less certain.
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methodology; ‘in discarding a full microscopic description of a system, what might

have been lost that was worth keeping?’. That is to say, if increasing uncertainty

is a consequence of the act of approximation, then perhaps entropy is something

humanity simply has to live with, since “truth . . . is much too complicated to allow

anything but approximations” von Neumann [1947].

130



Bibliography

David Abreu and Udo Seifert. Extracting work from a single heat bath through

feedback. Europhysics Letters, 94(1):10001, 2011.

David Abreu and Udo Seifert. Thermodynamics of genuine nonequilibrium states

under feedback control. Physical Review Letters, 108(3):030601, 2012.

Arthur Ashkin, JM Dziedzic, JE Bjorkholm, and Steven Chu. Observation of a

single-beam gradient force optical trap for dielectric particles. Optics letters, 11

(5):288–290, 1986.

Karl Johan Aström and Richard M Murray. Feedback systems: an introduction for

scientists and engineers. Princeton University Press, 2010.
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