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Abstract

Approximate Monte Carlo algorithms are not uncommon these days, their

applicability is related to the possibility of controlling the computational cost by

introducing some noise or approximation in the method. We focus on the stabil-

ity properties of a particular approximate MCMC algorithm, which we term noisy

Metropolis-Hastings. Such properties have been studied before in tandem with the

pseudo-marginal algorithm, but under fairly strong assumptions. Here, we examine

the noisy Metropolis-Hastings algorithm in more detail and explore possible correc-

tive actions for reducing the introduced bias. In this respect, a novel approximate

method is presented, motivated by the class of exact algorithms with randomised

acceptance. We also discuss some applications and theoretical guarantees of this

new approach.
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Chapter 1

Introduction

Monte Carlo algorithms are without doubt one of the most important class of meth-

ods that, together with modern computers, have modified the everyday practice of

statistical inference. In particular, the appearance of Markov Chain Monte Carlo

(MCMC) has been a milestone in several fields including physics, computer science,

economics and of course statistics. The celebrated Metropolis-Hastings (MH) al-

gorithm, originally conceptualised in Metropolis et al. (1953) and later refined in

Hastings (1970), is possibly one of the most popular methods belonging to this class

of algorithms. In words, an MCMC algorithm allows the construction of a Markov

chain, by accepting or rejecting proposed moves, whose stationary probability dis-

tribution, say π, is some target of interest. In order to do this, the (almost) only

requirement is the availability of the corresponding target density up to a constant

of proportionality. Due to this, MCMC methods have found increasing application

in Bayesian statistics, where the aforementioned target distribution is usually the

posterior distribution of a parameter x with density

π (x) ≡ p (x |D ) ∝ p0 (x) l (x;D) ,

where l (x;D) denotes the likelihood function given a set of observations D, and p0

is some prior distribution for x.

However, in many statistical applications the target density π (x) may be in-

tractable or expensive to evaluate. By intractable we mean that an analytic expres-

sion is not available. Common sources of intractability arise when latent variables

are used to model observed data, e.g. missing-data models or hierarchical models.

For such cases, the likelihood may involve integrating out some unobserved process
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Z, i.e.

l (x;D) =

∫
p (D |z, x) p (z |x) dz,

which is usually impossible to perform analytically. Furthermore, even for tractable

likelihoods, the point-wise evaluation of l (x;D) may be computationally expensive,

e.g. when the size of D is huge. Therefore, in many of the previous settings stan-

dard Monte Carlo methods are infeasible and one must resort to more elaborate

techniques.

One of these non-standard methods is the pseudo-marginal approach (see

Beaumont, 2003 or Andrieu and Roberts, 2009), and for its implementation one

requires non-negative unbiased estimates of the density π (x). Similarly to a MH

algorithm, the pseudo-marginal algorithm generates a Markov chain (now on an ex-

tended space), where the proposed moves are accepted or rejected using an appropri-

ate probability ensuring π is again the stationary distribution (at least marginally).

For this reason, the pseudo-marginal is considered an exact method. The remark-

able property here is that point-wise evaluations of π (x) are no longer needed, for

this reason the pseudo-marginal has been object of recent study, see e.g. Andrieu

et al. (2010), Andrieu and Vihola (2015), Andrieu and Vihola (2016), Doucet et al.

(2015), Lyne et al. (2015), Maire et al. (2014) and Sherlock et al. (2015), Deligian-

nidis et al. (2015), Bardenet et al. (2015). Nevertheless, this approach comes with

the trade-off of extra variability (due to the estimation of π (x)) that can affect

drastically the mixing properties of the chain. In addition, it may be the case that

unbiased estimates for the density of π are not at hand; hence the need for exploring

alternative approaches, even if this means introducing some bias.

Approximate Monte Carlo algorithms are not uncommon these days, their

applicability is related to the possibility of controlling the computational cost by in-

troducing some noise or approximation in the method. One example is approximate

Bayesian computation (ABC), belonging to the class of likelihood-free methods,

which has been studied in some depth, see e.g. Marin et al. (2012). The theoretical

study of approximate Markov chain methods is more recent, with a growing litera-

ture in the area. Examples include: Roberts et al. (1998) in the context of computer

round-off error; Pillai and Smith (2014) and Rudolf and Schweizer (2015) for per-

turbations under the Wasserstein distance; the authors in Durmus and Moulines

(2015), Dalalyan (2016), Alquier et al. (2014) and Teh et al. (2016) discuss approx-

imate Langevin dynamics; approximations using sub-sampling ideas for large data

sets are explored in Singh et al. (2012), Korattikara et al. (2014), Quiroz et al.

2



(2014), Maire et al. (2015) and Bardenet et al. (2015); more recently, the authors

in Johndrow et al. (2015) investigate the computational time trade-off of some ap-

proximate MCMC methods.

A major part of this thesis focuses on the stability properties of a particu-

lar approximate MCMC algorithm, which we term noisy MH. In fact, the original

pseudo-marginal algorithm (Beaumont, 2003) appeared as a modification of a spe-

cific noisy MH algorithm introduced in O’Neill et al. (2000). Nevertheless, the noisy

MH algorithm has fundamentally different properties that have been studied in tan-

dem with the pseudo-marginal by Beaumont (2003), Andrieu and Roberts (2009)

and Alquier et al. (2014), but under fairly strong assumptions. The aim of this

work is to examine the noisy MH algorithm in more detail and to explore possible

corrective actions for reducing the introduced bias.

1.1 Outline and Contributions

The rest of this chapter contains a list of convention and notation used throughout

the thesis. In Chapter 2 some of the background material essential for addressing

the different chapters is presented. A brief review on Markov chains and geometric

ergodicity is presented, together with some important aspects of the MH algorithm.

We then discuss importance sampling and sequential Monte Carlo (SMC) algo-

rithms, the latter in the context of hidden Markov models. Lastly, we introduce

the pseudo-marginal and noisy MH algorithms, with a review of existing results and

known properties of the corresponding chains.

Chapter 3 is joint work with Anthony Lee and Gareth Roberts and is based

on the publication Medina-Aguayo et al. (2016). Fundamental stability properties of

the noisy MH chain, like positive recurrence and geometric ergodicity, are discussed.

Our main contributions are Theorems 3.1, 3.2 and 3.4, where we explore sufficient

conditions for inheriting geometric ergodicity from a standard MH chain, as well

as convergence of the approximate stationary distribution towards the true target.

The relationship between our work and some results in Pillai and Smith (2014) and

Rudolf and Schweizer (2015) is pointed out in subsequent remarks.

Chapter 4 is divided into 3 main sections. The first one, which is based also

on the publication Medina-Aguayo et al. (2016), addresses a particular setting of

the noisy MH algorithm arising from importance sampling. Sufficient conditions

in this specific setting are explored leading to Proposition 4.5, which is a direct

application of Theorem 3.4. The second section considers a different setting using

SMC estimates for a specific hidden Markov model. Once again, sufficient conditions
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for this particular case are investigated. The last section is devoted to the refinement

and generalisation of some ideas presented in Chapter 3. Proposition 4.9 arises from

these ideas, which is an improved version of Proposition 4.5.

In Chapter 5, we explore a novel method, described in Algorithm 5.1, which

was motivated by a class of exact algorithms with randomised acceptance in an

attempt to reduce the bias produced by the noisy MH algorithm. This new method

is based on the penalty method (Ceperley and Dewing, 1999), which has become

relevant in some recent work, e.g. in Andrieu and Vihola (2016), Sherlock et al.

(2015), Deligiannidis et al. (2015) or Yıldırım (2016). We provide a section with

some applications of the new approach, including sub-sampling for large data sets.

In addition, theoretical guarantees are presented under some assumptions on the

target and noise. Our main results are Theorem 5.4 and 5.6, which deal with a

diffusion limit of the approximate chain and the convergence of the approximate

stationary distribution.

Finally, in Chapter 6, we present a final discussion with a summary of our

findings and with possible future research avenues.

1.2 Notation and Conventions

• For a measurable space (X ,B (X )), let B (X ) denote the collection of Borel

sets on X . We write ν � µ to say a measure ν is absolutely continuous with

respect to µ. Throughout, we assume probability distributions have densities,

denoted with the same letter, with respect to a dominating σ-finite measure

µ. The Lebesgue measure is denoted by µLeb.

• For a probability distribution π on (X ,B (X )), we denote expectations of func-

tions f : X → R by

π (f) :=

∫
X
f (x)π (dx) .

Alternatively, if X ∼ π (·) we also use the notation E [f (X)] ≡ π (f), and we

define the variance of f (X) as follows

V [f (X)] := E
[
(f (X)− E [f (X)])2

]
= π

(
(f − π (f))2

)
.

• Let N
(
a, b2

)
denote the Normal or Gaussian distribution with mean a and

variance b2. We use the letters φ and Φ for denoting the density function

and cumulative distribution function, respectively, of a standard Gaussian
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distribution N (0, 1). Confusion should be avoided from the context when

using Φ for denoting a Markov chain.

• Ber (p) denotes a Bernoulli distribution with success probability p, Bin (N, p)

denotes a binomial distribution of parameters N and p, Mult(N,w) denotes a

multinomial distribution of parameters N and w, Exp (λ) denotes an exponen-

tial distribution of rate λ, Beta (a, b) denotes a Beta distribution of parameters

a and b, logN
(
a, b2

)
denotes a log-normal distribution of parameters a and

b2, and χ2
d denotes a Chi-square distribution with d degrees of freedom.

• The Euclidean distance and the corresponding norm for vectors and matrices

are denoted by ‖·‖. The total variation distance is denoted by ‖·‖TV .

• Standard notation is used to denote the natural (N), integer (Z) and real (R)

numbers . The non-negative and positive real numbers are denoted by R+
0 and

R+, respectively. Similarly, the non-negative integers are denoted by N0.

• We use O (·) and o (·) for the big-O and little-o notations, respectively. We

also write for two functions f and g, defined on a common domain D,

f (x) . g (x) ,

if there exists a constant K > 0 such that f (x) ≤ Kg (x) for any x ∈ D.

• Denote by C2 the space of twice continuously differentiable functions, by C∞c

the set of smooth and compactly supported functions, and by D the space

of càdlàg (right continuous with limits on the left) functions. For a function

ψ defined on a topological space X, we define the support of ψ, denoted by

supp (ψ), to be the closure of the set of points x ∈ X for which ψ (x) = 0.

• The gradient of a function f is denoted by ∇f , sometimes appearing with a

subscript to avoid confusion with other variables. The corresponding Hessian

matrix is denoted by ∇2f .

• Let δx (·) be the Dirac-delta distribution centred at x, and denote the indicator

function over a set A by 1 (A).

• The n-dimensional zero vector is denoted by 0n := (0, . . . , 0). The unit func-

tion over the product space X T is denoted by 1T : X T → R, where 1T (x) = 1

for x ∈ X T .
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Chapter 2

Preliminaries

In this chapter we introduce the probabilistic tools and background material re-

quired throughout the thesis. The first section is devoted to well-known results

about Markov chains in general state spaces and the introduction of the Metropolis-

Hastings algorithm. Geometric ergodicity and some important consequences are

also discussed. The second section deals with importance sampling and sequential

Monte Carlo methods, which will become relevant when dealing with intractabil-

ity. In this respect, the final section introduces the pseudo-marginal and noisy

MH chains, where existing work related to the ergodic properties of both chains

is presented. This provides a stepping stone for the further analysis of the noisy

Metropolis-Hastings chain in Chapters 3 and 4.

2.1 Markov Chain Monte Carlo

Suppose we want to simulate from a probability distribution π on a measurable space

(X ,B (X )). Since simulating directly from π is not always possible, the purpose

of Markov Chain Monte Carlo (MCMC) is to create a Markov chain {Φi}∞i=0, on

(X ,B (X )), that converges in some sense towards π. In a Bayesian context, π is

usually a posterior distribution whose density, also denoted by π and with respect to

a dominating measure µ, only needs to be known up to a constant of proportionality.

In this section concepts and standard results about Markov chains are pre-

sented. These tools will be helpful for analysing properties of forthcoming MCMC

algorithms and related approximations. In the last part of this section, the cele-

brated Metropolis-Hastings algorithm is introduced and discussed.
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2.1.1 Markov Chains

Let (Ω,F ,P) be a probability space with filtration (Fn)n≥0 and consider a mea-

surable space (X ,B (X )), where X is usually a subset of Rd. A Markov Chain

Φ = {Φ0,Φ1, . . . } is an X -valued stochastic process adapted to (Fn)n≥0 that satis-

fies, for every A ∈ B (X ) and every n ≥ 0,

P [Φn+1 ∈ A| Fn] = P [Φn+1 ∈ A|Φn] , P-a.s.

Our focus restricts to Markov chains with transitions that are independent

of time. The definition of a transition kernel is required.

Definition 2.1 (Transition kernel). Let P : X × B (X )→ [0, 1] be a mapping such

that:

(i). For each A ∈ B(X ), P (·, A) is a measurable function on X ;

(ii). For each x ∈ X , P (x, ·) is a probability measure on B(X ).

Then P is a transition probability kernel.

A Markov chain Φ with transition kernel P and initial distribution µ on

(X ,B (X )) is time-homogeneous if, for any n ≥ 0 and sets A0, . . . , An ∈ B (X ),

P [Φ0 ∈ A0,Φ1 ∈ A1, . . . ,Φn ∈ An]

=

∫
A0

µ (dy0)

∫
A1

P (y0, dy1) . . .

∫
An

P (yn−1, dyn).

By defining the n-step transition probability kernels

Pn (x, ·) :=

∫
X
P (x, dy)Pn−1 (y, ·) , for n ≥ 1,

and P 0 (x, ·) := δx (·) ,

a time-homogeneous Markov chain satisfies, for all m,n ≥ 0 and any A ∈ B (X ),

P [Φn+m ∈ A |Φn ] = Pm (Φn, A) .

An important aspect about Markov chains, which is crucial to MCMC, is

the long-term behaviour of the chain. Under some conditions, a Markov chain will

converge to its unique invariant distribution, provided it admits one.
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Definition 2.2 (Invariant distribution). The probability measure π is an invariant

distribution for a chain with transition kernel P if

π (A) =

∫
X
π (dx)P (x,A) , (2.1)

for any A ∈ B (X ).

A useful way for determining whether a Markov chain admits an invariant

distribution is via reversibility, i.e. if it satisfies∫
A
π (dx)

∫
B
P (x, dy) =

∫
B
π (dy)

∫
A
P (y, dx) , (2.2)

for any A,B ∈ B (X ). The above condition is commonly known as detailed balance

and, by choosing B = X , (2.2) implies (2.1).

The needed conditions for a Markov chain to converge are related to the

concepts of aperiodicity and irreducibility.

Definition 2.3 (Aperiodicity and irreducibility). A Markov chain with transition

kernel P and invariant distribution π is:

(i). Aperiodic, if there are no d ≥ 2 disjoint subsets X1, . . . ,Xd ⊆ X such that

P
(
x,X(i (mod d))+1

)
= 1 for any x ∈ Xi, where π(Xi) > 0 for all i ∈ {1, . . . , d};

(ii). ϕ-irreducible, if there exists a non-zero measure ϕ on (X ,B (X )) such that for

any A ∈ B (X ) with ϕ(A) > 0, and all x ∈ X there exists n ≥ 1 such that

Pn (x,A) > 0.

Let ‖ · ‖TV denote the total variation norm given by

‖µ‖TV :=
1

2
sup
|g|≤1

∣∣∣ ∫ µ(dy)g(y)
∣∣∣ = sup

A∈B(X )
µ(A), (2.3)

where µ is any finite signed measure satisfying µ (X ) = 0. The ergodic theorem for

Markov chains can be now enunciated.

Theorem 2.1 (Ergodicity). Consider a ϕ-irreducible and aperiodic Markov chain

Φ, with transition kernel P and invariant distribution π, then for π-a.e. initial state

Φ0 = x ∈ X

lim
n→∞

‖Pn (x, ·)− π (·)‖TV = 0.
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A proof of the above result can be found in Roberts and Rosenthal (2004,

Theorem 4). The idea is to show that ϕ-irreducibility implies the existence of sets

where the chain regenerates (Meyn and Tweedie, 1994, Theorem 5.2.2), and then

use a coupling argument for two chains with common transition kernel P , one with

initial distribution π and the other starting at x. It is natural to ask whether the

above result holds for any x ∈ X and not just π-a.e. A sufficient condition for this

to happen is to impose Harris recurrence (see Meyn and Tweedie, 1994, Chapter

9). However, throughout the thesis, we restrict only to ϕ-irreducible and aperiodic

chains.

Additionally, when using MCMC and other Monte Carlo methods, one is

often interested in estimating π (f) =
∫
X π (dx) f (x), for some π-integrable function

f : X → R. This is done by using ergodic averages of the form

Sn (f) :=
1

n

n−1∑
i=0

f (Φi) , for n ≥ 0.

Under the same conditions of Theorem 2.1, and provided π (|f |) <∞, as n→∞

Sn (f)
a.s.−→ π (f) ,

for π-a.e. starting point Φ0 = x ∈ X . A proof of the above strong law of large

numbers can be found in Meyn and Tweedie (1994, Theorem 17.1.2).

2.1.2 Geometric Ergodicity

Theorem 2.1 states the asymptotic convergence of a Markov chain, however this

is merely a qualitative result. A powerful characterisation of the behaviour of a

Markov chain is provided by geometric ergodicity, defined below. Geometrically

ergodic Markov chains have a limiting invariant probability distribution, which they

converge towards geometrically fast in total variation (Meyn and Tweedie, 2009,

Chapter 15).

Definition 2.4 (Geometric ergodicity). A ϕ-irreducible and aperiodic Markov chain

Φ, with transition kernel P and invariant distribution π, is π-a.e. geometrically

ergodic if there exists a π-a.e. finite function V ≥ 1 and constants τ < 1, R < ∞
such that

‖Pn (x, ·)− π (·) ‖TV ≤ RV (x) τn. (2.4)

Remark 2.1. We say a Markov chain is uniformly ergodic if supx V (x) <∞ in (2.4).
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Geometric ergodicity does not necessarily provide fast convergence in an

absolute sense. For instance, consider cases in (2.4) where τ , or R, are “extremely”

close to one, or “very large” respectively. Then, the decay of the total variation

distance, though geometric, is not particularly fast (see Roberts and Rosenthal,

2004 for some examples). Nevertheless, geometric ergodicity is a useful tool when

analysing reversible and non-reversible Markov chains, as will become apparent in

further chapters. Additionally, geometric ergodicity is a desirable property since

it can guarantee the existence of a Central Limit Theorem (CLT) for Sn (f), see

Roberts and Rosenthal (2004) for a general review. A proof of the following theorem

can be found in Chan and Geyer (1994, Theorem 2) .

Theorem 2.2 (CLT). Let Φ be a geometrically ergodic Markov chain with invariant

distribution π and transition kernel P . Then, for π-a.e. initial state Φ0 = x ∈ X
and any f : X → R with π

(
|f |2+δ

)
<∞ for some δ > 0, the asymptotic variance

σ2
f,P := lim

n→∞
nV [Sn (f)] <∞, (2.5)

and

√
n (Sn (f)− π (f))

d−→ N
(
0, σ2

f,P

)
.

Remark 2.2. For π-reversible Markov chains, the above result will hold for functions

with π
(
f2
)
<∞ as proved in Roberts and Rosenthal (1997, Corollary 2.1).

Unfortunately, in many cases assessing geometric ergodicity is not a straight-

forward task. A possible approach is to assess whether a Markov chain satisfies a

drift condition towards a small set, with the help of Foster-Lyapunov functions. For

that, we first define the concept of small set.

Definition 2.5 (Small set). Let P be the transition kernel of a Markov chain Φ. A

subset S ⊆ X is small if there exists a positive integer n0, ε > 0 and a probability

measure ν on (X ,B (X )) such that the following minorisation condition holds

Pn0(x, ·) ≥ εν(·), for x ∈ S. (2.6)

Let PV (x) :=
∫
X P (x, dz)V (z), for a transition kernel P and function V .

The following theorem, which is immediate from combining Roberts and Rosenthal

(1997, Proposition 2.1) and Meyn and Tweedie (2009, Theorem 15.0.1), establishes

the equivalence between geometric ergodicity and a geometric drift condition.
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Theorem 2.3 (Geometric drift). Suppose that Φ is a ϕ-irreducible and aperiodic

Markov chain with transition kernel P and invariant distribution π. Then, the

following statements are equivalent:

(i). There exists a small set S, constants λ < 1 and b < ∞, and a π-a.e finite

function V ≥ 1 satisfying the geometric drift condition

PV (x) ≤ λV (x) + b1 (x ∈ S) , for x ∈ X . (2.7)

(ii). The chain is π-a.e. geometrically ergodic, where the function V in (2.4) can

be taken as in (i).

Finally, we introduce the concept of simultaneously geometrically ergodic

chains, as in Roberts et al. (1998). This allows us to characterise a class of kernels

satisfying a geometric drift condition as in (2.7) using the same V , S, λ and b. This

concept will be crucial for addressing convergence of some chains in the following

chapters.

Definition 2.6 (Simultaneous geometric ergodicity). A class of Markov chain ker-

nels {Pk}k∈K is simultaneously geometrically ergodic if there exists a class of proba-

bility measures {νk}k∈K, a measurable set S ⊆ X , a real valued measurable function

V ≥ 1, a positive integer n0 and positive constants ε, λ, b such that for each k ∈ K:

(i). S is small for Pk, with Pn0
k (x, ·) ≥ ενk(·) for all x ∈ S;

(ii). the chain Pk satisfies the geometric drift condition in (2.7) with drift function

V , set S and constants λ and b.

2.1.3 Metropolis-Hastings Algorithm

In general, MCMC methods require the introduction of an auxiliary kernel q :

X × B (X ) → [0, 1] for proposing moves along X . Such moves will be accepted

with certain probability that guarantees invariance under π. Assume π and q have

densities (denoted with the same letters) with respect a dominating measure µ, and

define the acceptance ratio by

r (x, y) :=
π (y) q (y, x)

π (x) q (x, y)
.
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The acceptance probability in the celebrated Metropolis-Hastings (MH) algorithm

(see Metropolis et al., 1953 and Hastings, 1970) is given by

αMH (x, y) := min {1, r (x, y)} = min

{
1,
π (y) q (y, x)

π (x) q (x, y)

}
, (2.8)

implying the MH transition kernel can be expressed as follows

PMH(x, dy) = q(x, dy)αMH(x, y) + δx(dy)ρMH(x), (2.9)

where

ρMH(x) := 1−
∫
X
q(x, dy)αMH(x, y)

denotes the rejection probability at state x ∈ X .

It is straightforward to verify that π and PMH satisfy detailed balance as

in (2.2). A single draw from PMH is described in Algorithm 2.1, noting that for

its implementation the density of π needs to be known only up to a constant of

proportionality.

Algorithm 2.1 Simulating from PMH(x, ·)

1. Sample Y ∼ q(x, ·).

2. With probability αMH (x, Y ) defined in (2.8):

return Y ;

otherwise:

return x.

Aperiodicity and irreducibility are directly satisfied under specific conditions

on π and q that are not uncommon in practice. The following result covers the case

where the target and proposal have densities with respect the Lebesgue measure,

denoted by µLeb.

Theorem 2.4. Assume the density π (x) is bounded away from 0 and∞ on compact

sets of X . In addition, suppose there exist δq > 0 and εq > 0 such that, for every

x ∈ X ,

‖x− y‖ ≤ δq implies q (x, y) ≥ εq.

Then, a MH chain targeting π with proposal q is µLeb-irreducible, aperiodic and
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every non-empty compact set is small.

Remark 2.3. A proof of the above result can be found in Roberts and Tweedie

(1996a, Theorem 2.2), noting in there that the minorisation condition in (2.6) is

merely attained by the sub-kernel q(x, dy)αMH(x, y).

Respecting the proposal distribution, several options are available. A special

case, which will be relevant in Chapter 5, is to choose a symmetric proposal with

density satisfying

q(x, y) = q(‖y − x‖), (2.10)

e.g. a Gaussian random walk. For this case, the acceptance ratio reduces to

r (x, y) =
π (y)

π (x)
,

and the resulting algorithm is commonly known as random-walk Metropolis, due to

the seminal paper Metropolis et al. (1953). Other possibilities include the indepen-

dence sampler, for which q (x, y) = q (y); or the Langevin algorithm, where

Y ∼ N (x+ δ/2∇ log π (x) , δ) , for some δ > 0,

motivated by a discretisation of the Langevin diffusion (Roberts and Tweedie,

1996b).

Furthermore, the MH algorithm is not the only MCMC method that targets

π. As noted in Hastings (1970), the acceptance probability in (2.8) can be replaced

by any acceptance of the form

αs (x, y) = s (x, y) (1 + r (y, x))−1 , (2.11)

where s : X 2 → R+
0 is a symmetric function satisfying s (x, y) ≤ 1 + r (y, x) for any

(x, y) ∈ X 2. Any Markov chain generated using αs satisfies detailed balance in (2.2)

since, for any (x, y) ∈ X 2,

αs (x, y)

αs (y, x)
= r (x, y) . (2.12)

Clearly, the MH acceptance falls into this category by choosing

sMH (x, y) = 1 + min {r (x, y) , r (y, x)} .
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If instead sB (x, y) ≡ 1, the resulting acceptance αB is commonly known as Barker’s

acceptance (Barker, 1965). Later on, in Chapter 5, we will discuss a different ap-

proach for obtaining αB, involving randomised acceptance probabilities.

Finally, a useful way for assessing the optimality among two different π-

reversible Markov chains is to consider Peskun’s off-diagonal ordering (see e.g.

Peskun, 1973 and Tierney, 1994). In the MCMC context, let αs1 and αs2 be two

acceptance probabilities of the form (2.11) targeting π with common proposal ker-

nel q, and let Ps1 and Ps2 be the corresponding π-reversible MCMC kernels. If

αs1 (x, y) ≥ αs2 (x, y) for all x 6= y where (x, y) ∈ X 2, then the corresponding

asymptotic variances as in (2.5), for f : X → R with π
(
f2
)
<∞ , satisfy

σ2
f,Ps1

≤ σ2
f,Ps2

.

Therefore, for fixed target π and proposal q, the MH acceptance (denoted from now

on simply by α) is the optimal choice in terms of asymptotic variance among other

acceptance probabilities of the form (2.11).

2.2 Estimating intractable densities

We now look at a different approach for estimating the expectation of a function

f : X → R under some probability distribution π on (X ,B (X )), i.e.

π (f) =

∫
X
f (x)π (dx) . (2.13)

In contrast with the previous section, where we constructed a Markov chain that

admits π as invariant distribution, we consider appropriately weighted samples from

some auxiliary distribution q.

Later on, the approaches discussed in this section will prove useful when

dealing with an intractable distribution, i.e. when an analytical expression for its

density is not available. The two main cases we consider are importance sampling

and sequential Monte Carlo methods.
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2.2.1 Importance Sampling

If simulating from π is possible, a natural estimator of (2.13) is given by the naive

Monte Carlo estimator

MCπ,N (f) :=
1

N

N∑
i=1

f (Xi) ,

where {Xi}
i.i.d∼ π (·). This estimator is clearly unbiased and by the law of large

numbers MCπ,N (f)
a.s.→ π (f), provided f is π-integrable. If in addition π

(
f2
)
<∞,

then

V [MCπ,N (f)] =
1

N
V [f (X1)] ,

which guarantees the existence of a CLT and the construction of approximate con-

fidence intervals for MCπ,N (f).

However, as discussed in the previous section, simulating from π is not always

plausible. Importance sampling may prove useful when it is possible to simulate from

an auxiliary distribution q such that π � q. In such case, and assuming π and q

have densities with respect to a dominating measure µ, (2.13) can be expressed as

π (f) =

∫
X
f (x)

π (x)

q(x)
q(dx).

This leads to the importance sampling estimator

ISπ
q
,N (f) := MCq,N

(
f
π

q

)
=

1

N

N∑
i=1

f (Xi)
π (Xi)

q (Xi)
, (2.14)

where now {Xi}
i.i.d∼ q (·).

When the ratio π/q is only known up to a constant of proportionality, a self-

normalised version of the above estimator should be preferred. Let wπ
q

(x), or simply

w (x), denote the computable and proportional version of π/q, the self-normalised

importance sampling estimator is given by

ĨS π
q
,N (f) :=

∑N
i=1 f (Xi)w (Xi)∑N

i=1w (Xi)
.

Even though this self-normalised version is not unbiased, by the law of large numbers

it still converges towards π (f). Additionally, as noted in Robert and Casella (2013),

for some settings the estimator ĨS can perform better since its bias may be negligible

15



and its variance may be smaller when compared to IS.

Clearly, the choice of the auxiliary distribution q plays a fundamental role in

the effectiveness of the importance sampling estimator. For instance, the authors

in Robert and Casella (2013) show that its variance may be infinite if the ratio of

densities π/q is unbounded. From a practical point of view, and for the estimator

in (2.14), the authors suggest to look for distributions q for which, if X ∼ q (·), then

|f (X)| π (X)

q (X)

is almost constant and with finite variance.

2.2.2 Sequential Monte Carlo

Estimating expectations of the form (2.13) may become difficult using importance

sampling. In particular, coming up with good proposals may be challenging if π

has a complicated form. Sequential Monte Carlo (SMC) methods (see e.g. Doucet

et al., 2001) are a convenient approach when π can be decomposed in a sequence

of distributions, for which importance sampling can be implemented at each step.

We only develop this idea in the context of hidden Markov models, see e.g. Doucet

et al. (2000) or Cappé et al. (2005) for a more comprehensive study. Nevertheless,

SMC methods can be applied in more generality as described in the monograph

Del Moral (2004).

A hidden Markov model (HMM) comprises two processes {Xn} n≥0 and

{Yn} n≥1 on measurable spaces (X ,B (X )) and (Y,B (Y)), respectively. The ran-

dom variables {Xn}n≥0 form a time-homogeneous Markov chain with transition

kernel mθ that depends on a set of parameters θ ∈ Θ, and for simplicity we as-

sume throughout that the initial value X0 = x0 is known. The observed random

variables {Yn}n≥1 are conditionally independent given the unobserved {Xn}n≥1 and

distributed according to

Yn |Xn ∼ gθ (· |Xn ) ,

which may also depend on θ. Figure 2.1 summarises a generic HMM.

Y1 Y2 YT

x0
mθ // X1

gθ

OO

mθ // X2

gθ

OO

mθ // . . .
mθ // XT

gθ

OO

Figure 2.1: Hidden Markov Model
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Let πθ,y1:T be the θ-dependent conditional distribution of {Xn} Tn=1 given a

fixed set of observations y1:T := {yn} Tn=1. Usually, we are interested in estimating

expectations of the form

πθ,y1:T (f) =

∫
XT f (x1:T )

∏T
n=1mθ (xn−1, dxn)

∏T
n=1 gθ (yn |xn )

l (θ; y1:T )
, (2.15)

for some function f : X T → R, where l (θ; y1:T ) denotes the likelihood for θ and

given by

l (θ; y1:T ) : =

∫
XT

T∏
n=1

mθ (xn−1, dxn)
T∏
n=1

gθ (yn |xn ) . (2.16)

For simplicity, define the following measure on
(
X T ,B

(
X T
))

γθ,T (A) :=

∫
A

T∏
n=1

mθ (xn−1, dxn)
T∏
n=1

gθ (yn |xn ) , for A ∈ B
(
X T
)
, (2.17)

leading to a simplification of (2.15). This simply becomes

πθ,y1:T (f) =
γθ,T (f)

γθ,T (1T )
,

where 1T : X T → R is the unit function, noting also that the likelihood for θ reduces

to

l (θ; y1:T ) = γθ,T
(
X T
)

= γθ,T (1T ) .

For the simple case where mθ and gθ follow Gaussian distributions, an explicit

form for the likelihood l (θ; y1:T ) is available since the integrals in γθ,T (1T ) can be

computed analytically in a recursive manner. The involved recursions are usually

known as the Kalman filter due to the seminal paper Kalman (1960). However,

for non-Gaussian models or for complicated f , computing πθ,y1:T (f) will require

solving complicated and high-dimensional integrals. One possible approach is to

use self-normalised importance sampling with the help of an auxiliary distribution

qθ,y1:T (depending possibly also on the initial state x0), which leads to the following

approximation

ĨS πθ,y1:T
qθ,y1:T

,N
(f) =

N∑
i=1

f
(
X

(i)
1:T

) w
(
X

(i)
1:T

)
∑N

j=1w
(
X

(j)
1:T

) ,
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where
{
X

(i)
1:T

}
i.i.d∼ qθ,y1:T (·) and

w (x1:T ) :=
γθ,T (x1:T )

qθ,y1:T (x1:T )
=

∏T
n=1mθ (xn−1, xn)

∏T
n=1 gθ (yn |xn )

qθ,y1:T (x1:T )

= γθ,T (1T )

∏T
n=1mθ (xn−1, xn)

∏T
n=1 gθ (yn |xn )

γθ,T (1T ) qθ,y1:T (x1:T )
∝
πθ,y1:T (x1:T )

qθ,y1:T (x1:T )
.

2.2.2.1 Bootstrap

Choosing an adequate qθ,y1:T may be a difficult task. A possibility is to construct

such proposal sequentially, which may be useful as more observations become avail-

able. For doing this, as noted in Doucet and Johansen (2009), the auxiliary densities

must satisfy

qθ,y1:n (x1:n) = qθ,y1:n−1 (x1:n−1)m′θ,yn (xn−1, xn) , for n ≥ 2,

where m′θ,yn (xn−1, ·) is an auxiliary proposal distribution. This implies that, for

n ≥ 2, the weights can be expressed as follows

w (x1:n) =
γθ,n (x1:n)

qθ,y1:n (x1:n)

=

∏n−1
m=1mθ (xm−1, xm)

∏n−1
m=1 gθ (ym |xm )

qθ,y1:n−1 (x1:n−1)

(
mθ (xn−1, xn) gθ (yn |xn )

m′θ,yn (xn−1, xn)

)

= w (x1:n−1)

(
mθ (xn−1, xn) gθ (yn |xn )

m′θ,yn (xn−1, xn)

)
︸ ︷︷ ︸

=:αn(x(n−1):n)

.

This method is commonly known as Sequential Importance Sampling (SIS) since

the trajectories
{
X

(i)
1:n

}
i
, also known as particles, are sequentially propagated using

the auxiliary proposals
{
m′θ,yn

}
n
. For what follows, we restrict to the special case

where m′θ,yn = mθ, but more sensible choices for m′θ,yn should be preferred whenever

possible. For this case, the incremental weight reduces to

αn
(
x(n−1):n

)
= αn (xn) =

mθ (xn−1, xn) gθ (yn |xn )

m′θ,yn (xn−1, xn)
= gθ (yn |xn ) .

Although SIS may prove useful in some scenarios, it is a well known fact that

it suffers from weight-degeneracy, meaning a small number of weights in
{
w
(
x

(i)
1:n

)}
i

will dominate all the others as n increases. In order to overcome the degeneracy
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behaviour, a resampling procedure for the particles may be introduced before the

propagating step. The idea is to duplicate those trajectories whose weights are non-

negligible. For this, we consider the number of offspring coming from the particle

X
(i)
1:n, denoted by N

(i)
n , and obtain N equally-weighted resampled particles

{
X̃

(i)
1:n

}
i
.

The offspring variables
{
N

(i)
n

}
i

can be selected according to a multinomial distri-

bution of parameters N and vector probabilities w̃1:N
n :=

(
w̃

(1)
n , . . . , w̃

(N)
n

)
, where

w̃(i)
n :=

αn

(
x

(i)
n

)
∑N

j=1 αn

(
x

(j)
n

) =
gθ

(
yn

∣∣∣x(i)
n

)
∑N

j=1 gθ

(
yn

∣∣∣x(j)
n

) . (2.18)

This modification to SIS, with the choice m′θ,yn = mθ, is commonly known as the

bootstrap filter (Gordon et al., 1993) and is summarised in Algorithm 2.2.

Algorithm 2.2 Bootstrap Filter

For each n ∈ {1, . . . , T}:

1. For each i ∈ {1, . . . , N}:

(a) If n = 1:

sample X
(i)
1 ∼ mθ (x0, ·);

otherwise:

sample X
(i)
n ∼ mθ

(
X̃

(i)
n−1, ·

)
and set X

(i)
1:n =

(
X̃

(i)
1:n−1, X

(i)
n

)
.

(b) Compute w̃
(i)
n using (2.18).

2. Resample N particles from
{
X

(i)
1:n

}
i

according to a Mult
(
N, w̃1:N

n

)
to obtain{

X̃
(i)
1:n

}
i
.

Estimate (2.15) using

πNθ,y1:T (f) :=
N∑
i=1

f
(
X

(i)
1:T

)
w̃

(i)
T .

The resampling step comes with the cost of additional variance. In practice,

one may implement variants of this algorithm, performing a resampling step only

when the variance of the weights exceeds some predefined threshold (see e.g. Jun

S. Liu, 1998). Additionally, the resampling process does not necessarily need to be

done by means of the multinomial distribution. Other approaches are possible (see

e.g. Douc and Cappé, 2005 or Li et al., 2015 for a more recent overview), as long as
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the following condition is satisfied

E
[
N (i)
n

∣∣∣{w̃(i)
n

}
i

]
= Nw̃(i)

n .

Such “unbiased” condition guarantees that unbiased estimators remain unbiased

after the resampling step.

Algorithm 2.2 does not only provide a way for estimating (2.15) using πNθ,y1:T ,

it also provides unbiased estimators of the normalising constants γθ,n (1n) = l (θ; y1:n)

at each step using

γNθ,n (1n) :=
n∏

m=1

 1

N

N∑
j=1

αm

(
X(j)
m

) =

n∏
m=1

 1

N

N∑
j=1

gθ

(
ym

∣∣∣X(j)
m

) , (2.19)

see Del Moral (2004, Proposition 7.4.1) or Pitt et al. (2012).

Later on, we will pay special attention to the estimator in (2.19) since it

provides an unbiased estimator for l (θ; y1:T ) in intractable settings. For our pur-

poses, bounding the relative variance of γNθ,T (1T ) will be of particular interest. In

Cérou et al. (2011), the authors show that under strong mixing conditions (basically

requiring uniform upper and lower bounds on the densities of mθ and gθ), and for

N sufficiently large

V

[
γNθ,T (1T )

γθ,T (1T )

]
≤ Cθ (T )

N
, (2.20)

where the constant Cθ (T ) is linear with T .

Finally, it is worth pointing out that there exists an extensive literature ad-

dressing error bounds and convergence results for πNθ,y1:T and γNθ,n, see e.g. Del Moral

(2004, Chapters 7 and 9), Chopin (2004), Douc et al. (2014) or Whiteley (2013).

However, this is beyond the scope of this thesis.

2.3 The Pseudo-Marginal and Noisy Metropolis-Hastings

The aim is to simulate from an intractable probability distribution π for some ran-

dom variable X, which takes values in a measurable space (X ,B(X )). Suppose as

before, π has a density π (x) with respect to some reference measure µ, e.g. the

counting or the Lebesgue measure. By intractable we mean that an analytical ex-

pression for the density π (x) is not available and so implementation of a Markov

chain Monte Carlo (MCMC) method targeting π is not straightforward.
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One possible solution to this problem is to target a different distribution on

the extended space (X ×W,B(X )× B(W)), which admits π as marginal distribu-

tion. The pseudo-marginal algorithm (see Beaumont, 2003 or Andrieu and Roberts,

2009) falls into this category since it is a Metropolis–Hastings (MH) algorithm

targeting a distribution π̄N defined on the product space (X ×W,B(X )× B(W)),

where W ⊆ R+
0 := [0,∞). It is given by

π̄N (dx, dw) := π(dx)Qx,N (dw)w, (2.21)

where {Qx,N}(x,N)∈X×N is a family of probability distributions on (W,B(W)) satis-

fying for each (x,N) ∈ X × N

E [Wx,N ] ≡ 1, for Wx,N ∼ Qx,N (·). (2.22)

We restrict our attention to the case where, for each x ∈ X , Wx,N is Qx,N -a.s.

strictly positive, for reasons that will become clear.

The random variables {Wx,N}x,N are commonly referred as the weights. For-

malising this algorithm using (2.21) and (2.22) was introduced by Andrieu and Vi-

hola (2015), and “exactness” follows immediately: π̄ admits π as a marginal. Given

a proposal kernel q : X × B(X ) → [0, 1], the respective proposal of the pseudo-

marginal is given by

q̄N (x,w; dy, du) := q(x, dy)Qy,N (du),

and, from (2.8), the acceptance probability can be expressed as

ᾱN (x,w; y, u) := min

{
1,
π(y)uq(y, x)

π(x)wq(x, y)

}
. (2.23)

The pseudo-marginal algorithm defines a time-homogeneous Markov chain, with

transition kernel P̄N on the measurable space (X ×W,B(X )× B(W)). A single

draw from P̄N (x,w; ·, ·) is presented in Algorithm 2.3.

Due to its exactness and straightforward implementation in many settings,

the pseudo-marginal has gained recent interest and has been theoretically studied

in some depth, see e.g. Andrieu and Roberts (2009), Andrieu and Vihola (2015),

Andrieu and Vihola (2016), Doucet et al. (2015), Lyne et al. (2015), Maire et al.

(2014), Sherlock et al. (2015) and Deligiannidis et al. (2015). These studies typically

compare the pseudo-marginal Markov chain with a “marginal” Markov chain, arising

in the case where all the weights are almost surely equal to 1, and (2.23) is then the
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Algorithm 2.3 Simulating from P̄N (x,w; ·, ·)

1. Sample Y ∼ q(x, ·).

2. Draw U ∼ QY,N (·).

3. With probability ᾱN (x,w;Y,U) defined in (2.23):

return (Y,U);

otherwise:

return (x,w).

standard Metropolis–Hastings acceptance in (2.8).

2.3.1 Examples of pseudo-marginal algorithms

A common source of intractability for π occurs when a latent variable Z on (Z,B (Z))

is used to model observed data, as in HMMs presented in Section 2.2.2. Although

the density π(x) cannot be computed, in principle it can be approximated via im-

portance sampling, using an auxiliary distribution hx such that πx � hx, where πx

denotes the conditional distribution of Z|X = x. Therefore, for this setting, the

weights are given by

Wx,N =
1

N

N∑
k=1

πx

(
Z

(k)
x

)
hx

(
Z

(k)
x

) , where
{
Z(k)
x

}
k

i.i.d.∼ hx(·),

which motivates the following generic form when using averages of unbiased estima-

tors

Wx,N =
1

N

N∑
k=1

W (k)
x , where

{
W (k)
x

}
k

i.i.d.∼ Qx(·) and E
[
W (k)
x

]
≡ 1. (2.24)

It is clear that (2.24) describes only a special case of (2.22). Nevertheless, we will

pay special attention to the former in Chapter 4. For similar settings to (2.24) see

Andrieu and Roberts (2009).

Since (2.22) is more general, it allows Wx,N to be any random variable with

expectation 1. As discussed in Section 2.2.2, SMC methods involve the simulation of

a system of particles and provide unbiased estimates of likelihoods associated with

HMMs, irrespective of the size of the particle system. Looking back at the model

given by Figure 2.1 on page 16, we recall from (2.16) and (2.17) that the likelihood
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function for θ is given by

l (θ; y1:T ) = γθ,T (1T ) =

∫
XT

T∏
n=1

mθ (xn−1, dxn)
T∏
n=1

gθ (yn |xn ) ,

and the unbiased SMC estimator for l (θ; y1:T ), based on N particles, is given by

γNθ,T (1T ) in (2.19) as a result of Algorithm 2.2. Therefore, we can then define

Wθ,N :=
γNθ,T (1T )

γθ,T (1T )
, (2.25)

noting that (2.22) is satisfied but (2.24) is not. The resulting pseudo-marginal

algorithm has been developed and discussed in detail in Andrieu et al. (2010), where

it and related algorithms are referred to as particle MCMC methods.

2.3.2 The noisy algorithm

Although the pseudo-marginal has the desirable property of exactness, it can suffer

from “sticky” behaviour, exhibiting poor mixing and slow convergence towards the

target distribution (Andrieu and Roberts, 2009 and Lee and  Latuszyński, 2014).

The cause for this is well-known to be related with the value of the ratio between

Wy,N and Wx,N at a particular iteration. Heuristically, when the value of the current

weight (w in (2.23)) is large, proposed moves can have a low probability of accep-

tance. As a consequence, the resulting chain may not move after a considerable

number of iterations.

In order to overcome this issue, a subtly different algorithm is performed

in some practical problems (see, e.g., McKinley et al., 2014). The basic idea is

to refresh, independently from the past, the value of the current weight at every

iteration. The ratio of the weights between Wy,N and Wx,N still plays an important

role in this alternative algorithm, but here refreshing Wx,N at every iteration can

improve mixing and the rate of convergence.

This alternative algorithm is commonly known as Monte Carlo within Metropo-

lis (MCWM), as in O’Neill et al. (2000), Beaumont (2003) or Andrieu and Roberts

(2009), since typically the weights are Monte Carlo estimates as in (2.24). From

this point onwards it will be referred as the noisy MH algorithm or simply the noisy

algorithm to emphasize that our main assumption is (2.22). Due to independence

from previous iterations while sampling Wx,N and Wy,N , the noisy algorithm also

defines a time-homogeneous Markov chain with transition kernel P̃N (properly de-

fined in the next chapter), but on the measurable space (X ,B(X )). A single draw
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from P̃N (x, ·) is presented in Algorithm 2.4, and it is clear that we restrict our at-

tention to strictly positive weights because the algorithm is not well-defined when

both Wy,N and Wx,N are equal to 0.

Algorithm 2.4 Simulating from P̃N (x, ·)

1. Sample Y ∼ q(x, ·).

2. Draw W ∼ Qx,N (·) and U ∼ QY,N (·), independently.

3. With probability ᾱN (x,W ;Y, U) defined in (2.23):

return Y ;

otherwise:

return x.

Even though these algorithms differ only slightly, the related chains have very

different properties. In Algorithm 2.4, the value w is generated at every iteration

whereas in Algorithm 2.3, it is treated as an input. As a consequence, Algorithm

2.3 produces a chain on (X ×W,B(X )× B(W)) contrasting with a chain from Al-

gorithm 2.4 taking values on (X ,B(X )). However, the noisy chain is not invariant

under π and it is not reversible in general. Moreover, it may not even have an

invariant distribution as shown by some examples in Chapter 3.

From O’Neill et al. (2000) and Fernández-Villaverde and Rubio-Ramı́rez

(2007), it is evident that the implementation of the noisy algorithm goes back even

before the appearance of the pseudo-marginal, the latter initially conceptualised as

Grouped Independence Metropolis–Hastings (GIMH) in Beaumont (2003). Theoret-

ical properties, however, of the noisy algorithm have mainly been studied in tandem

with the pseudo-marginal by Beaumont (2003), Andrieu and Roberts (2009) and

more recently by Alquier et al. (2014).

The noisy chain generated by Algorithm 2.4 can be seen as a perturbed

version of an idealised Markov chain where the weights {Wx,N}x,N are all equal

to one. Perturbed Markov chains have been investigated in, e.g., Roberts et al.

(1998), Breyer et al. (2001), Shardlow and Stuart (2000), Mitrophanov (2005), Ferré

et al. (2013). More recently Pillai and Smith (2014) and Rudolf and Schweizer

(2015) study such chains using the notion of Wasserstein distance. We focus on

total variation distance introduce in (2.3), which is in fact a particular case of the

Wasserstein distance.
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2.3.3 Ergodic properties

As noted in Andrieu and Roberts (2009), if the weights {Wx,N}x,N are not essen-

tially bounded then the pseudo-marginal chain cannot be geometrically ergodic; in

such cases the “stickiness” may be more evident. In addition, if P̄N has a left spec-

tral gap (see Appendix A) and from Andrieu and Vihola (2015, Proposition 10) a

sufficient, but not necessary (Lee and  Latuszyński, 2014), condition ensuring the

pseudo-marginal inherits geometric ergodicity from the marginal is that the weights

are uniformly bounded, i.e. for fixed N

sup
x∈X

Wx,N <∞.

More recently, the authors in Deligiannidis and Lee (2016) have showed that if the

the weights have uniformly bounded second moments, i.e. for fixed N

sup
x∈X

V [Wx,N ] <∞,

then the asymptotic variance σ2
f,P̄N

for functions of the primary variable f (·, u) :

X → R will be finite provided the marginal chain is variance bounding (see Appendix

A).

The analyses in Andrieu and Roberts (2009) and Alquier et al. (2014) mainly

study the noisy algorithm in the case where the marginal Markov chain is uniformly

ergodic, see Remark 2.1. For this case, it has been shown that provided a noisy

invariant distribution exists for the noisy chain, say π̃N ,

lim
N→∞

‖π̃N (·)− π (·)‖TV = 0.

However, there are many MH Markov chains for statistical estimation that cannot

be uniformly ergodic, e.g. random walk Metropolis chains when π is not compactly

supported (Mengersen and Tweedie, 1996). Our focus in the following chapter is

therefore on inheritance of geometric ergodicity by the noisy chain, complementing

existing results for the pseudo-marginal chain.
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Chapter 3

Stability of Noisy

Metropolis–Hastings

The objectives of this chapter can be illustrated using a simple example. Let π be a

standard univariate Gaussian distribution N (0, 1) and let the weights {Wx,N} have

an arithmetic average form as in (2.24) with

Qx(·) = logN
(
−1

2
σ2, σ2

)
and σ2 = 5,

where logN (µ, σ2) denotes a log-normal distribution of parameters µ and σ2. In

addition, let the proposal q be a random walk given by q(x, ·) = N (x, 4). For this

example, Figure 3.1 shows the estimated densities using the noisy chain for different

values of N .

It appears that the noisy chain has an invariant distribution, and as N in-
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Figure 3.1: Estimated densities using the noisy chain with 100, 000 iterations for
N = 10 (left), N = 100 (centre) and N = 1, 000 (right)
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creases it seems to approach the desired target π. Our objectives here are to answer

the following types of questions about the noisy algorithm in general:

• Does an invariant distribution exist, at least for N large enough?

• Does the noisy Markov chain behave like the marginal chain for sufficiently

large N?

• Does the invariant distribution, if it exists, converge to π as N increases?

We will see that the answer to the first two points is negative in general. However, all

three questions can be answered positively when the marginal chain is geometrically

ergodic and the distributions of the weights satisfy additional assumptions.

In order to formalise our analysis, let P denote the Markov transition kernel

of a standard MH chain on (X ,B(X )), targeting π with proposal q. We will refer to

this chain and this algorithm using the term marginal (as in Andrieu and Roberts,

2009 and Andrieu and Vihola, 2015), which is the idealised version for which the

noisy chain and corresponding algorithm are simple approximations. Therefore, as

in (2.9),

P (x, dy) = α(x, y)q(x, dy) + δx(dy)ρ(x),

where α and ρ are the MH acceptance and rejection probabilities, respectively, which

are given by

α (x, y) = min

{
1,
π (y) q (y, x)

π (x) q (x, y)

}
and ρ (x) = 1−

∫
X
α (x, y) q (x, dy) .

(3.1)

Similarly, for the transition kernel P̃N of the noisy chain, moves are proposed ac-

cording to q but are accepted using ᾱN (as in (2.23)) instead of α, once values for

Wx,N and Wy,N are sampled. In order to distinguish the acceptance probabilities

between the noisy and the pseudo-marginal processes, despite being the same after

sampling values for the weights, define

α̃N (x, y) := E [ᾱN (x,Wx,N ; y,Wy,N )] . (3.2)

Here α̃N is the expectation of a randomised acceptance probability, which permits

defining the transition kernel of the noisy chain by

P̃N (x, dy) := α̃N (x, y) q (x, dy) + δx (dy) ρ̃N (x) ,
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where ρ̃N is the noisy rejection probability given by

ρ̃N (x) := 1−
∫
X
α̃N (x, y) q (x, dy) . (3.3)

As noted in Section 2.3.2, the noisy kernel P̃N is just a perturbed version of P

involving a ratio of weights in the noisy acceptance probability α̃N . When such

weights are identically one, i.e. Qx,N ({1}) = 1, the noisy chain reduces to the

marginal chain, whereas the pseudo-marginal becomes the marginal chain with an

extra component always equal to 1.

In Section 3.1, some simple examples are presented for which the noisy chain

is positive recurrent, so it has an invariant probability distribution. This is perhaps

the weakest stability property that one would expect a Monte Carlo Markov chain

to have. However, other fairly surprising examples are presented for which the noisy

Markov chain is transient even though the marginal and pseudo-marginal chains are

geometrically ergodic. Section 3.2 is dedicated to inheritance of geometric ergodicity

from the marginal chain, where we explore two different sets of sufficient conditions

on the weights {Wx,N} satisfying the general form in (2.22). The particular settings

where the weights arise from arithmetic averages as in (2.24), or from a particle

filter as in (2.25), are studied in the following chapter. Once geometric ergodicity

is attained, it guarantees the existence of an invariant distribution π̃N for the noisy

chain. Under the same sets of conditions, we show in Section 3.3 that π̃N and π can

be made arbitrarily close in total variation as N increases. Moreover, explicit rates

of convergence are possible to obtain in principle.

3.1 Motivating examples

3.1.1 Homogeneous weights with a random walk proposal

Assume a log-concave target distribution π on the positive integers, whose density

with respect to the counting measure is given by

π(m) ∝ exp {−h(m)}1 (m ∈ N) ,

where h : N→ R is a convex function. In addition, let the proposal distribution be

a symmetric random walk on the integers, i.e.

q(m, {m+ 1}) =
1

2
= q(m, {m− 1}), for m ∈ Z. (3.4)
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From Mengersen and Tweedie (1996), it can be seen that the marginal chain is

geometrically ergodic.

Now, assume the distribution of the weights {Wm,N}m,N is homogeneous

with respect to the state space, meaning

Wm,N = WN ∼ QN (·), for all m ∈ N. (3.5)

In addition, assume WN > 0 QN -a.s., then for m ≥ 2

P̃N (m, {m− 1}) =
1

2
E

[
min

{
1,

exp{h(m)}
exp{h(m− 1)}

(
W

(1)
N

W
(2)
N

)}]

and P̃N (m, {m+ 1}) =
1

2
E

[
min

{
1,

exp{h(m)}
exp{h(m+ 1)}

(
W

(1)
N

W
(2)
N

)}]
,

where
{
W

(k)
N

}
k∈{1,2}

i.i.d.∼ QN (·). For this particular class of weights and using the

fact that h is convex, the noisy chain is geometrically ergodic, implying the existence

of an invariant probability distribution. The proof of the following proposition can

be found in Section 3.4.

Proposition 3.1. Consider a log-concave target density on the positive integers

and a proposal density as in (3.4). In addition, let the distribution of the weights

be homogeneous as in (3.5). Then, the chain generated by the noisy kernel P̃N is

geometrically ergodic.

It is worth noting that the distribution of the weights, though homogeneous

with respect to the state space, can be taken arbitrarily, as long as the weights are

positive. Homogeneity ensures that the distribution of the ratio of such weights is

not concentrated near 0, due to its symmetry around one, i.e. for z > 0

P

[
W

(1)
N

W
(2)
N

≤ z

]
= P

[
W

(1)
N

W
(2)
N

≥ 1

z

]
.

In contrast, when the support of the distribution QN is unbounded, the correspond-

ing pseudo-marginal chain cannot be geometrically ergodic.

3.1.2 Transient noisy chain with homogeneous weights

In contrast with example in Section 3.1.1, this one shows that the noisy algorithm

can produce a transient chain even in simple settings. Let π be a geometric distri-

bution on the positive integers, whose density with respect to the counting measure
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is given by

π(m) =

(
1

2

)m
1 (m ∈ N) . (3.6)

In addition, assume the proposal distribution is a simple random walk on the inte-

gers, i.e.

q (m, {m+ 1}) = θ = 1− q (m, {m− 1}) , for m ∈ Z. (3.7)

where θ ∈ (0, 1). Under these assumptions, the marginal chain is geometrically

ergodic, see Proposition 3.5 in Section 3.4.

Consider N = 1 and as in Section 3.1.1, let the distribution of weights be

homogeneous and given by

W = (b− ε)Ber (s) + ε, for b > 1 and ε ∈ (0, 1) , (3.8)

where Ber (s) denotes a Bernoulli random variable of parameter s ∈ (0, 1) . There

exists a relationship between s, b and ε that guarantees the expectation of the

weights is identically one. The following proposition, proven in Section 3.4 by taking

θ > 1/2, shows that the resulting noisy chain can be transient for certain values of

b, ε and θ.

Proposition 3.2. Consider a geometric target density as in (3.6) and a proposal

density as in (3.7). In addition, let the weights when N = 1 be given by (3.8). Then,

for some b, ε and θ the chain generated by the noisy kernel P̃N=1 is transient.

In contrast, since the weights are uniformly bounded by b, the pseudo-

marginal chain inherits geometric ergodicity for any θ, b and ε. The left plot in

Figure 3.2 shows an example.

3.1.3 Transient noisy chain with non-homogeneous weights

One could argue that the transient behaviour of the previous example is related to

the large value of θ in the proposal distribution. However, as shown here, for any

value of θ ∈ (0, 1) one can construct weights satisfying (2.22) for which the noisy

chain is transient. With the same assumptions as in the example in Section 3.1.2,

except that now the distribution of weights is not homogeneous but given by

Wm,1 = (b− εm)Ber(sm) + εm,

for b > 1 and εm = m−(3−(m (mod 3))),
(3.9)
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the noisy chain will be transient for b large enough. The proof can be found in

Section 3.4.

Proposition 3.3. Consider a geometric target density as in (3.6) and a proposal

density as in (3.7). In addition, let the weights when N = 1 be given by (3.9). Then,

for any θ ∈ (0, 1) there exists some b > 1 such that the chain generated by the noisy

kernel P̃N=1 is transient.

The reason for this becomes apparent when looking at the behaviour of the

ratios of weights. Even though εm → 0 as m → ∞, the non-monotonic behaviour

of the sequence implies

εm−1

εm
∈

 O
(
m2
)

O
(
m−1

) if
m (mod 3) = 0,

m (mod 3) ∈ {1, 2},

and

εm+1

εm
∈

 O
(
m−2

)
O (m)

if
m (mod 3) = 2,

m (mod 3) ∈ {0, 1}.

Hence, the ratio of the weights can become arbitrarily large or arbitrarily close to

zero with a non-negligible probability. This allows the algorithm to accept moves to

the right more often, if m is large enough. Once again, the pseudo-marginal chain

inherits the geometrically ergodic property from the marginal. See the central and

right plots of Figure 3.2 for two examples using different proposals. In the following

chapter, we will come back to this and the previous examples where we will look at

the behaviour of the associated noisy chains as N increases.

3.2 Inheritance of ergodic properties

The inheritance of various ergodic properties of the marginal chain by pseudo-

marginal Markov chains has been established using techniques that are powerful

but suitable only for reversible Markov chains (see, e.g. Andrieu and Vihola, 2015).

Since the noisy Markov chains treated here can be non-reversible, we approach the

problem using the geometric drift condition stated in Section 2.1.2. From this point

onwards, we assume that the marginal and noisy chains are ϕ-irreducible and ape-

riodic. In addition, for many of the following results we assume the marginal chain

is geometrically ergodic and its kernel satisfies a specific minorisation condition as

stated below.
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Assumption (P1). The marginal chain is geometrically ergodic, implying its kernel

P satisfies the geometric drift condition in (2.7) for some constants λ < 1 and

b <∞, some function V ≥ 1 and a small set S ⊆ X .

Assumption (P2). Let S be a small set for the marginal chain with transition

kernel P . Then, for some ε > 0 and probability measure ν on (X ,B(X )), the

marginal acceptance probability α and the proposal kernel q satisfy∫
A
α(x, y)q(x, dy) ≥ εν(A), for x ∈ S and A ⊆ X .

Remark 3.1. Assumption P2 ensures the minorisation condition in (2.6) is attained

by the sub-kernel α(x, y)q(x, dy). This occurs under fairly mild assumptions when

S is compact, as noted in Remark 2.3.

3.2.1 Conditions involving a negative moment

From the examples of the previous section, it is clear that the weights play a fun-

damental role in the behaviour of the noisy chain. The following theorem states

that the noisy chain will inherit geometric ergodicity from the marginal under some

conditions on the weights, involving a uniform convergence in probability and con-

vergence of negative moments.

Assumption (W1). For any δ > 0, the weights {Wx,N}x,N satisfy

lim
N→∞

sup
x∈X

P
[∣∣Wx,N − 1

∣∣ ≥ δ] = 0.
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Remark 3.2. The above assumption should be understood as uniform (in x) conver-

gence in probability of Wx,N towards 1.

Assumption (W2). The weights {Wx,N}x,N satisfy

lim
N→∞

sup
x∈X

E
[
W−1
x,N

]
= 1.

Theorem 3.1. Assume P1, P2, W1 and W2. Then, there exists N0 ∈ N such that

for all N ≥ N0, the noisy chain with transition kernel P̃N is geometrically ergodic.

The above result is obtained by controlling the dissimilarity of the marginal

and noisy kernels. This is done by looking at the corresponding rejection and ac-

ceptance probabilities. The proofs of the following lemmas appear in Section 3.4.

Lemma 3.1. For any δ > 0 and (x, z) ∈ X 2

P
[
Wz,N

Wx,N
≤ 1− δ

]
≤ 2 sup

x∈X
P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2

]
.

Lemma 3.2. Let ρ(x) and ρ̃N (x) be the rejection probabilities from (3.1) and (3.3)

respectively. Then, for any δ > 0

ρ̃N (x)− ρ(x) ≤ δ + 2 sup
x∈X

P
[∣∣Wx,N − 1

∣∣ ≥ δ

2

]
.

Lemma 3.3. Let α(x, y) and α̃N (x, y) be the acceptance probabilities from (3.1)

and (3.2) respectively. Then,

α̃N (x, y) ≤ α(x, y)E
[
W−1
x,N

]
.

Notice that Assumptions W1 and W2 allow control on the bounds in the

above lemmas. While Lemma 3.2 provides a bound for the difference of the rejection

probabilities, Lemma 3.3 gives one for the ratio of the acceptance probabilities. The

proof of Theorem 3.1 is now presented.

Proof of Theorem 3.1. Since the marginal chain P is geometrically ergodic, it sat-

isfies the geometric drift condition in (2.7) for some λ < 1, b < ∞, some function
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V ≥ 1 and a small set S ⊆ X . Now, using the above lemmas

P̃NV (x)− PV (x) =

∫
X
q(x, dz) (α̃N (x, z)− α(x, z))V (z)

+ V (x) (ρ̃N (x)− ρ(x)) ≤
(

sup
x∈X

E
[
W−1
x,N

]
− 1

)
PV (x)

+

(
δ + 2 sup

x∈X
P
[∣∣Wx,N − 1

∣∣ ≥ δ

2

])
V (x).

By Assumptions W1 and W2, for any ε, δ > 0 there exists N1 ∈ N such that

sup
x∈X

P
[∣∣Wx,N − 1

∣∣ ≥ δ

2

]
<
ε

4
and sup

x∈X
E
[
W−1
x,N

]
− 1 < ε,

whenever N ≥ N1, implying

P̃NV (x) ≤ PV (x) + εPV (x) +
(
δ +

ε

2

)
V (x)

≤
(
λ+ ελ+ δ +

ε

2

)
V (x) + b (1 + ε)1 (x ∈ S) .

Taking δ = ε
2 and ε ∈

(
0, 1−λ

1+λ

)
, the noisy chain with kernel P̃N also satisfies a

geometric drift condition if N ≥ N1, for the same function V and set S.

It remains to prove that the set S is also small for P̃N . Take A ⊆ X , for any

δ ∈ (0, 1)

P̃N (x,A) ≥
∫
A
α̃N (x, z)q(x, dz) ≥

∫
A
E
[
min

{
1,
Wz,N

Wx,N

}]
α(x, z)q(x, dz)

≥ (1− δ)
∫
A

(
1− P

[
Wz,N

Wx,N
≤ 1− δ

])
α(x, z)q(x, dz).

Then, by Lemma 3.1

P̃N (x,A) ≥ (1− δ)
(

1− 2 sup
x∈X

P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2

])∫
A
α(x, z)q(x, dz).

By W1, there exists N2 ∈ N such that for N ≥ N2

sup
x∈X

P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2

]
≤ δ

2
,

giving

P̃N (x,A) ≥ (1− δ)2

∫
A
α(x, z)q(x, dz).
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Due to P2,

P̃N (x,A) ≥ (1− δ)2εν(A), for x ∈ S.

The result then follows by considering N0 = max {N1, N2}.

Remark 3.3. In fact, W1 and W2 together guarantee for any δ > 0 and taking N

sufficiently large

−δ ≤ α̃N (x, y)− α(x, y) ≤ α(x, y)δ,

which is the crucial assumption in Pillai and Smith (2014, Lemma 3.6) for obtaining

a similar drift condition.

3.2.2 Conditions on the proposal distribution

In this subsection a different bound for the acceptance probabilities is provided,

which allows dropping assumption W2 but imposes a different one on the proposal

q instead.

Assumption (P1*). Assumption P1 holds and for the same drift function V in P1

there exists K <∞ such that the proposal kernel q satisfies

qV (x) ≤ KV (x), for x ∈ X .

Theorem 3.2. Assume P1*, P2 and W1. Then, there exists N0 ∈ N such that for

all N ≥ N0, the noisy chain with transition kernel P̃N is geometrically ergodic.

In order to prove Theorem 3.2 the following lemma is required. Its proof can

be found in Section 3.4. In contrast with Lemma 3.3, this lemma provides a bound

for the additive difference of the noisy and marginal acceptance probabilities.

Lemma 3.4. Let α(x, y) and α̃N (x, y) be the acceptance probabilities as defined in

(3.1) and (3.2), respectively. Then, for any η > 0

α̃N (x, y)− α(x, y) ≤ η + 2 sup
x∈X

P
[∣∣∣Wx,N − 1

∣∣∣ ≥ η

2 (1 + η)

]
.
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Proof of Theorem 3.2. Using Lemma 3.2 and Lemma 3.4 with η = δ

P̃NV (x)− PV (x) =

∫
X
q(x, dz) (α̃N (x, z)− α(x, z))V (z)

+ V (x) (ρ̃N (x)− ρ(x)) ≤
(
δ + 2 sup

x∈X
P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2 (1 + δ)

])
qV (x)

+

(
δ + 2 sup

x∈X
P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2

])
V (x)

≤
(
δ + 2 sup

x∈X
P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2 (1 + δ)

])
(qV (x) + V (x)) .

By W1, there exists N1 ∈ N such that

sup
x∈X

P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2 (1 + δ)

]
<
ε

4
,

whenever N ≥ N1. This implies

P̃NV (x) ≤ PV (x) +
(
δ +

ε

2

)
(qV (x) + V (x)) ,

and using P1*

P̃NV (x) ≤
(
λ+

(
δ +

ε

2

)
(K + 1)

)
V (x) + b1 (x ∈ S) .

Taking δ = ε
2 and ε ∈

(
0, 1−λ

1+K

)
, the noisy chain with kernel P̃N also satisfies a

geometric drift condition if N ≥ N1, for the same function V and set S.

From the proof of Theorem 3.1, W1 and P2 imply the existence of N2 ∈ N
such that the set S is small for P̃N , if N ≥ N2 . The proof is completed by

considering N0 = max {N1, N2}.

Remark 3.4. By itself, W1 implies for any δ > 0 and taking N sufficiently large

|α̃N (x, y)− α(x, y)| ≤ δ,

but it needs to be paired with P1* to obtain the desired result. These assumptions

are comparable to those in Pillai and Smith (2014, Lemma 3.6), taking f constant

therein. Additionally, W1 and P1* imply the required conditions on E and λ in

Rudolf and Schweizer (2015, Corollary 31), where a similar result is proved.

In general, assumption P1* may be difficult to verify as one must identify

a particular function V , but it is easily satisfied when restricting to log-Lipschitz

targets and when using a random walk proposal of the form (2.10). To see this the
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following assumption is required, which is a particular case of P1 and is satisfied

under some extra technical conditions (see, e.g., Roberts and Tweedie, 1996a).

Assumption (P1**). X ⊆ Rd. The target π is log-Lipschitz, meaning that for some

L > 0

| log π(z)− log π(x)| ≤ L‖z − x‖.

P1 holds taking the drift function V = π−s, for any s ∈ (0, 1). The proposal q is a

random walk as in (2.10) satisfying∫
Rd

exp {a‖u‖} q(‖u‖)du <∞,

for some a > 0.

See Section 3.4 for a proof of the following proposition.

Proposition 3.4. P1** implies P1*.

3.3 Convergence of the noisy invariant distribution

So far the only concern has been whether the noisy chain inherits the geometric

ergodicity property from the marginal chain. As an immediate consequence, geo-

metric ergodicity guarantees the existence of an invariant probability distribution

π̃N for P̃N , provided N is large enough. In addition, using the same conditions from

Section 3.2, we can characterise and in some cases quantify the convergence in total

variation of π̃N towards the desired target π, as N →∞.

3.3.1 Convergence in total variation

Provided N is large, the noisy kernels {P̃N+k}k≥0 together with the marginal P will

be simultaneous geometrically ergodic, as defined in Definition 2.6. This will allow

the use of coupling arguments for ensuring π̃N and π get arbitrarily close in total

variation.

Theorem 3.3. Assume P1, P2, W1 and W2. Alternatively, assume P1*, P2 and

W1. Then,

(i). There exists N0 ∈ N such that the class of kernels
{
P, P̃N0 , P̃N0+1, . . .

}
is

simultaneously geometrically ergodic;
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(ii). For all x ∈ X , limN→∞ ‖P̃N (x, ·)− P (x, ·)‖TV = 0;

(iii). limN→∞ ‖π̃N (·)− π(·)‖TV = 0.

Part (iii) of the above theorem is mainly a consequence of Roberts et al.

(1998, Theorem 9) when parts (i) and (ii) hold. Indeed, by the triangle inequality,

‖π̃N (·)− π(·)‖TV ≤ ‖P̃nN (x, ·)− π̃N (·)‖TV + ‖Pn(x, ·)− π(·)‖TV
+ ‖P̃nN (x, ·)− Pn(x, ·)‖TV .

(3.10)

Provided N ≥ N0, the first two terms in (3.10) can be made arbitrarily small by

increasing n. In addition, due to the simultaneous geometrically ergodic property,

the first term in (3.10) is uniformly controlled regardless the value of N . Finally,

by an inductive argument (explained in detail later on for deriving (3.12)), part (ii)

implies that for all x ∈ X and all n ∈ N

lim
N→∞

‖P̃nN (x, ·)− Pn(x, ·)‖TV = 0.

Proof of Theorem 3.3. From the proofs of Theorem 3.1 and Theorem 3.2, under the

stated assumptions there existsN0 ∈ N such that the class of kernels
{
P, P̃N0 , P̃N0+1, . . .

}
satisfies conditions (i) and (ii) in Definition 2.6 for the same function V , small set

S and constants λ, b; where the latter constants may differ from those considered in

Assumption P1 or Assumption P1* .

To prove (ii), apply Lemma 3.2 and Lemma 3.4 to get

sup
A∈B(X )

{
P̃N (x,A)− P (x,A)

}
≤
(
η + 2 sup

x∈X
PQx,N

[∣∣∣Wx,N − 1
∣∣∣ ≥ η

2 (1 + η)

])
× sup
A∈B(X )

q(x,A) + (ρ̃N (x)− ρ(x)) sup
A∈B(X )

1x∈A

≤
(
η + 2 sup

x∈X
PQx,N

[∣∣∣Wx,N − 1
∣∣∣ ≥ η

2 (1 + η)

])
+

(
δ + 2 sup

x∈X
PQx,N

[∣∣Wx,N − 1
∣∣ ≥ δ

2

])
(3.11)

Finally, taking N →∞ and by W1

lim
N→∞

sup
A∈B(X )

{
P̃N (x,A)− P (x,A)

}
≤ η + δ.

The result follows since η and δ can be taken arbitrarily small.

For (iii), see Theorem 9 in Roberts et al. (1998) for a detailed proof.
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Remark 3.5. A Wasserstein distance variant of part (iii) in Theorem 3.3 has been

proved in Rudolf and Schweizer (2015, Corollary 28), in which control of the differ-

ence between α̃N and α is still required and can be obtained using W1.

3.3.2 Rate of convergence

Let {Φ̃N
n }n≥0 denote the noisy chain and {Φn}n≥0 the marginal chain, which move

according to the kernels P̃N and P , respectively and define

cx : = 1− ‖P̃N (x, ·)− P (x, ·)‖TV .

Using notions of maximal coupling for random variables defined on a Polish space

(see Lindvall, 2002 and Thorisson, 2013), there exists a probability measure νx(·)
such that

P (x, ·) ≥ cxνx(·) and P̃N (x, ·) ≥ cxνx(·).

Let c := infx∈X cx, define a coupling in the following way

• If Φ̃N
n−1 = Φn−1 = y, with probability c draw Φn ∼ νy(·) and set Φ̃N

n = Φn.

Otherwise, draw independently Φn ∼ R(y, ·) and Φ̃N
n ∼ R̃N (y, ·), where

R (y, ·) := (1− c)−1 (P (y, ·)− cνy(·))

and R̃N (y, ·) := (1− c)−1
(
P̃N (y, ·)− cνy(·)

)
.

• If Φ̃N
n−1 6= Φn−1, draw independently Φn ∼ P (y, ·) and Φ̃N

n ∼ P̃N (y, ·).

Since

P
[
Φ̃N
n 6= Φn

∣∣∣Φ̃N
0 = Φ0 = x

]
≤ P

[
Φ̃N
n 6= Φn

∣∣∣Φ̃N
n−1 = Φn−1, Φ̃

N
0 = Φ0 = x

]
+ P

[
Φ̃N
n−1 6= Φn−1

∣∣∣Φ̃N
0 = Φ0 = x

]
≤ 1− c+ P

[
Φ̃N
n−1 6= Φn−1|Φ̃N

0 = Φ0 = x
]
,

and noting

P
[
Φ̃N

1 6= Φ1

∣∣∣Φ̃N
0 = Φ0 = x

]
≤ sup

x∈X
‖P̃N (x, ·)− P (x, ·)‖TV = 1− c,

an induction argument can be applied to obtain

P
[
Φ̃N
n 6= Φn

∣∣∣Φ̃N
0 = Φ0 = x

]
≤ n sup

x∈X
‖P̃N (x, ·)− P (x, ·)‖TV .
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Therefore, using the coupling inequality, the third term in (3.10) can be bounded

by

‖P̃nN (x, ·)− Pn(x, ·)‖TV ≤ P
[
Φ̃N
n 6= Φn|Φ̃N

0 = Φ0 = x
]

≤ n sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV . (3.12)

On the other hand, using the simultaneous geometric ergodicity of the kernels

and provided N is large enough, the noisy and marginal kernels will each satisfy a

geometric drift condition as in (2.7) with a common drift function V ≥ 1, small set

S and constants λ, b. Therefore, by Theorem 2.3, there are R > 0 and τ < 1 such

that

‖P̃nN (x, ·)− π̃N (·)‖TV ≤ RV (x)τn

and ‖Pn(x, ·)− π(·)‖TV ≤ RV (x)τn.
(3.13)

Explicit values for R and τ are in principle possible, as done in Rosenthal (1995)

or Meyn and Tweedie (1994), but this is not pursued here. For simplicity assume

infx∈X V (x) = 1, then combining (3.12) and (3.13) in (3.10), for all n ∈ N

‖π̃N (·)− π(·)‖TV ≤ 2Rτn + n sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV . (3.14)

So, if an analytic expression in terms of N is available for the second term on the

right hand side of (3.14), it will be possible to obtain an explicit rate of convergence

for π̃N and π.

Theorem 3.4. Assume P1, P2, W1 and W2. Alternatively, assume P1*, P2 and

W1. In addition, suppose

sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV ≤

1

r(N)
,

where r : N→ R+ and limN→∞ r(N) = +∞. Then, there exists D > 0 and N0 ∈ N
such that for all N ≥ N0,

‖π̃N (·)− π(·)‖TV ≤ D
log (r(N))

r(N)
. (3.15)

Proof. Let R > 0, τ ∈ (0, 1) and r > 0. Pick r large enough, such that

log
(
2Rr log

(
τ−1

))
≥ 1,
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then the convex function f : [1,∞)→ R+ where

f(s) = 2Rτ s +
s

r
,

is minimised at

s∗ =
log
(
2Rr log

(
τ−1

))
log (τ−1)

.

Restricting the domain of f to the positive integers and due to convexity, it is then

minimised at either

n1 = bs∗c or n2 = ds∗e.

In any case

min {f(n1), f(n2)} ≤ f(s∗ + 1) =
1

r

(
1 +

τ + log
(
2Rr log

(
τ−1

))
log (τ−1)

)
.

Finally, take N large enough such that

log
(
2Rr(N) log

(
τ−1

))
≥1,

and from (3.14)

‖π̃N (·)− π(·)‖TV ≤ min {f(n1), f(n2)}

≤ 1

r(N)

(
1 +

τ + log
(
2Rr(N) log

(
τ−1

))
log (τ−1)

)
= O

(
log (r(N))

r(N)

)
,

obtaining the result.

Remark 3.6. A general result bounding the total variation between the law of a

Markov chain and a perturbed version is presented in Rudolf and Schweizer (2015,

Theorem 21). This is done using the connection between the V -norm distance and

the Wasserstein distance introduced in Hairer and Mattingly (2011). With such a

result, and considering the same assumptions in Theorem 3.4, one could in principle

obtain an explicit value for D in (3.15).

So far, two different sets of sufficient conditions have been provided under

which the noisy chain inherits geometric ergodicity from the marginal chain. In

Chapter 4, the particular cases when the weights arise from an arithmetic average

as in (2.24), or as a result of a bootstrap filter as in (2.25) are discussed. Also, some
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examples of Section 3.1 will be revisited, where the behaviour as N → ∞ of the

corresponding chains is studied. We finish this chapter with the remaining proofs

of the technical lemmas and propositions previously stated.

3.4 Proofs

The following proposition for state-dependent Markov chains on the positive integers

will be useful for addressing some proofs. See Norris (1999) for a proof of parts (i)

and (ii), for part (iii) see Callaert and Keilson (1973), which is proved within the

birth-death process context.

Proposition 3.5. Suppose we have a random walk on N with transition kernel P .

Define for m ≥ 1

pm := P (m, {m+ 1}) and qm := P (m, {m− 1}),

with q1 = 0, p1 ∈ (0, 1] and pm, qm > 0, pm + qm ≤ 1 for all m ≥ 2. The resulting

chain is:

(i). Recurrent if and only if

∞∑
m=2

m∏
i=2

qi
pi
→∞;

(ii). Positive recurrent if and only if

∞∑
m=2

m∏
i=2

pi−1

qi
<∞; (3.16)

(iii). Geometrically ergodic if

lim
m→∞

pm < lim
m→∞

qm. (3.17)

Remark 3.7. Notice that (iii) is not an if and only if statement and, if the chain is

not state-dependent, (3.16) implies (3.17).
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3.4.1 Section 3.1

Proof of Proposition 3.1. Since h is convex

h(m)− h(m− 1) ≥ h′(m− 1) and

h(m)− h(m+ 1) ≤ −h′(m),

implying

P̃N (m, {m− 1})
P̃N (m, {m+ 1})

≥
E
[
min

{
1, exp{h′(m− 1)}W

(1)
N

W
(2)
N

}]
E
[
min

{
1, exp{−h′(m)}W

(1)
N

W
(2)
N

}] .

Define Z :=
W

(1)
N

W
(2)
N

, and since π(m)→ 0 it is true that

log(k) := lim
m→∞

h′(m) > 0, (3.18)

hence

lim
m→∞

P̃N (m, {m− 1})
P̃N (m, {m+ 1})

≥ E [min {1, kZ}]
E [min {1, k−1Z}]

. (3.19)

If k = +∞, it is clear that the limit in (3.19) diverges, consequently the

noisy chain is geometrically ergodic according to Proposition 3.5. If k < ∞, the

noisy chain will be geometrically ergodic if

E [min {1, kZ}] > E
[
min

{
1, k−1Z

}]
,

which can be translated to

kE
[
Z1
(
Z ≤ k−1

)]
+P
[
Z > k−1

]
> k−1E [Z1 (Z < k)] + P [Z ≥ k] ,

or equivalently to

kP
[
k−1 < Z < k

]
+
(
k2 − 1

)
E
[
Z1
(
Z ≤ k−1

)]
> E

[
Z1
(
k−1 < Z < k

)]
. (3.20)

Now consider two cases, first if P
[
k−1 < Z < k

]
> 0 then it is clear that

E
[
(k − Z)1

(
k−1 < Z < k

)]
> 0,
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which satisfies (3.20). Finally, if P
[
k−1 < Z < k

]
= 0 then

P
[
Z ≤ k−1

]
=

1

2
= P [Z ≥ k] ,

implying from (3.18)

(
k2 − 1

)
E
[
Z1
(
Z ≤ k−1

)]
> 0,

and leading to (3.20).

Proof of Proposition 3.2. For simplicity the subscript N is dropped. In this case,

Qm,1 (·) = Q (·) = (b− ε)Ber(s) + ε,

and the condition E [W ] = 1 implies

s =
1− ε
b− ε

. (3.21)

Let θ ∈
(

1
1+2ε , 1

)
and set

b = ε
2θ

1− θ
, (3.22)

this implies ᾱ(m,w;m− 1, u) ≡ 1 and

ᾱ(m,w;m+ 1, u) =


1−θ
2θ

1(
1−θ
2θ

)2 if

u = w

u = b, w = ε

u = ε, w = b

.

Therefore, for m ≥ 2,

α̃(m,m− 1) = 1 and

α̃(m,m+ 1) =
1− θ

2θ

(
s2 + (1− s)2

)
+

(
1 +

(
1− θ

2θ

)2
)
s (1− s) .
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Consequently, P̃ (m, {m− 1}) = 1− θ and

P̃ (m, {m+ 1}) = θ

(
1− θ

2θ

(
s2 + (1− s)2

)
+

(
1 +

(
1− θ

2θ

)2
)
s (1− s)

)
> θs(1− s).

From Proposition 3.5, if

P̃ (m, {m+ 1}) > P̃ (m, {m− 1}),

then the noisy chain will be transient. For this to happen, it is enough to pick θ

and s such that

θs(1− s)− (1− θ) ≥ 0.

Let s = ε, then from (3.21) and (3.22)

θ =
(1− ε+ ε2)

1− ε+ 3ε2
= 1− 2ε2

1− ε+ 3ε2
, (3.23)

and if ε ≤ 2−
√

3 then

θs(1− s)− (1− θ) =
ε

1− ε+ 3ε2

(
(1− ε+ ε2)(1− ε)− 2ε

)
≥ ε

1− ε+ 3ε2

(
(1− ε)2 − 2ε

)
=

ε

1− ε+ 3ε2

(
(2− ε)2 − 3

)
≥ 0.

Hence, for ε ∈
(
0, 2−

√
3
)

and setting s = ε, θ as in (3.23) and b as in (3.22),

the resulting noisy chain is transient.

Proof of Proposition 3.3. For simplicity the subscript N is dropped. In this case,

Qm,1 (·) = Qm (·) = (b− εm)Ber(sm) + εm,

and the condition E [Wm] = 1 implies

sm =
1− εm
b− εm

.
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Then, for m large enough

α̃(m,m− 1) = E [ᾱ(m,Wm;m− 1,Wm−1)]

= min

{
1,

2θ

1− θ

}
sm−1sm + sm−1(1− sm)

+ (1− sm−1)(1− sm)1 (m (mod 3) = 0) +O
(
m−1

)
,

and

α̃(m,m+ 1) = E [ᾱ(m,Wm;m+ 1,Wm+1)]

= min

{
1,

1− θ
2θ

}
smsm+1 + (1− sm)sm+1

+ (1− sm)(1− sm+1)1 (m (mod 3) 6= 2) +O
(
m−1

)
.

Define

cm :=
P̃ (m, {m− 1})
P̃ (m, {m+ 1})

=
(1− θ)α̃(m,m− 1)

θα̃(m,m+ 1)
.

Since sm → 1
b as m→∞,

c0,∞ := lim
k→∞

c3k =

(
1− θ
θ

) (min
{

1, 2θ
1−θ

}
− 1
)

1
b2

+ 1
b +

(
1− 1

b

)2(
min

{
1, 1−θ

2θ

}
− 1
)

1
b2

+ 1
b +

(
1− 1

b

)2
≤
(

1− θ
θ

)
1

1− 1
b

=

(
1− θ
θ

)
b

b− 1
=: l0,

c1,∞ := lim
k→∞

c3kc3k+1 = c0,∞

(
1− θ
θ

) (
min

{
1, 2θ

1−θ

}
− 1
)

1
b2

+ 1
b(

min
{

1, 1−θ
2θ

}
− 1
)

1
b2

+ 1
b +

(
1− 1

b

)2
≤ l0

(
1− θ
θ

) 1
b

1− 1
b

=

(
1− θ
θ

)2 b

(b− 1)2
=: l1

and

lim
k→∞

c3kc3k+1c3k+2 = c1,∞

(
1− θ
θ

) (min
{

1, 2θ
1−θ

}
− 1
)

1
b2

+ 1
b(

min
{

1, 1−θ
2θ

}
− 1
)

1
b2

+ 1
b

≤ l1
(

1− θ
θ

) 1
b

1
b

(
1− 1

b

) =

(
1− θ
θ

)3 b2

(b− 1)3 =: l2.
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Therefore, for any δ > 0 there exists k0 ∈ N, such that whenever k ≥ k0 + 1

K :=

k−1∏
j=k0

c3jc3j+1c3j+2 < (l2 + δ)k−k0 ,

implying

Kc3k < (l2 + δ)k−k0(l0 + δ),

Kc3kc3k+1 < (l2 + δ)k−k0(l1 + δ),

and Kc3kc3k+1c3k+2 < (l2 + δ)k−k0(l2 + δ).

Hence, for i ∈ {0, 1, 2} and some C > 0

3k+i∏
j=2

cj < C(l2 + δ)k.

Let am :=
∏m
j=2 cj , then a sufficient condition for the series

∑∞
m=2 am to

converge, implying a transient chain according to Proposition 3.5, is l2 < 1. This is

the case for b ≥ 3 +
(

1−θ
θ

)3
, since

1− l2 = 1−
(

1− θ
θ

)3 b2

(b− 1)3 =
b2

(b− 1)3

(
(b− 1)3

b2
−
(

1− θ
θ

)3
)

=
b2

(b− 1)3

(
b− 3 +

3

b
− 1

b2
−
(

1− θ
θ

)3
)

>
b2

(b− 1)3

(
b− 3−

(
1− θ
θ

)3
)
≥ 0.

Hence, the resulting noisy chain is transient if b ≥ 3 +
(

1−θ
θ

)3
, for any θ ∈ (0, 1).

3.4.2 Section 3.2

Proof of Lemma 3.1. For any δ > 0

P
[
Wz,N

Wx,N
≤ 1− δ

]
≤ P

[
Wx,N ≥ 1 +

δ

2

]
+ P

[
Wz,N ≤ 1− δ

2

]
≤ P

[∣∣∣Wx,N − 1
∣∣∣ ≥ δ

2

]
+ P

[∣∣∣Wz,N − 1
∣∣∣ ≥ δ

2

]
≤ 2 sup

x∈X
PQx,N

[∣∣∣Wx,N − 1
∣∣∣ ≥ δ

2

]
.
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Proof of Lemma 3.2. Using the inequality

min {1, ab} ≥ min {1, a}min {1, b} , for a, b ≥ 0,

and applying Markov’s inequality with δ > 0,

ρ̃N (x) = 1−
∫
X
q(x, dz)α̃N (x, z) ≤ 1−

∫
X
q(x, dz)α(x, z)E

[
min

{
1,
Wz,N

Wx,N

}]
≤ 1− (1− δ)

∫
X
q(x, dz)α(x, z)P

[
min

{
1,
Wz,N

Wx,N

}
> 1− δ

]
= 1− (1− δ)

∫
X
q(x, dz)α(x, z) + (1− δ)

∫
X
q(x, dz)α(x, z)P

[
Wz,N

Wx,N
≤ 1− δ

]
≤ 1− (1− δ) (1− ρ(x)) +

∫
X
q(x, dz)α(x, z)P

[
Wz,N

Wx,N
≤ 1− δ

]
.

Finally, using Lemma 3.1

ρ̃N (x) ≤ ρ(x) + δ (1− ρ(x)) + 2 sup
x∈X

P
[∣∣Wx,N − 1

∣∣ ≥ δ

2

]
(1− ρ(x))

≤ ρ(x) + δ + 2 sup
x∈X

P
[∣∣Wx,N − 1

∣∣ ≥ δ

2

]
.

Proof of Lemma 3.3. For the first claim apply Jensen’s inequality and the fact that

min {1, ab} ≤ min {1, a} b, for a ≥ 0 and b ≥ 1,

hence

α̃N (x, z) ≤ min

{
1,
π(z)q(z, x)

π(x)q(x, z)
E
[
Wz,N

Wx,N

]}
≤ α(x, z)E

[
W−1
x,N

]
E [Wz,N ]

= α(x, z)E
[
W−1
x,N

]
.

Proof of Lemma 3.4. Using the inequality

min {1, ab} ≤ min {1, a} b, for a ≥ 0 and b ≥ 1,
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α̃N (x, z) = E

[
ᾱN (x,Wx,N ; z,Wz,N )1{Wz,N

Wx,N
<1+η

}
]

+ E

[
ᾱN (x,Wx,N ; z,Wz,N )1{Wz,N

Wx,N
≥1+η

}
]

≤ α(x, z) (1 + η)P
[
Wz,N

Wx,N
< 1 + η

]
+ P

[
Wz,N

Wx,N
≥ 1 + η

]
≤ α(x, z) + η + P

[
Wz,N

Wx,N
≥ 1 + η

]
.

Notice that

P
[
Wz,N

Wx,N
≥ 1 + η

]
= P

[
Wx,N

Wz,N
≤ 1

1 + η

]
,

then applying Lemma 3.1 taking δ = η
1+η .

α̃N (x, z) ≤ α(x, z) + η + 2 sup
x∈X

P
[∣∣∣Wx,N − 1

∣∣∣ ≥ η

2 (1 + η)

]
.

Proof of Proposition 3.4. Taking V = π−s, where 0 < s < min
{

1, aL
}

,

qV (x)

V (x)
=

∫
X

V (z)

V (x)
q(x, dz) =

∫
X

(
π(x)

π(z)

)s
q(x, dz)

≤
∫
Rd

exp {a‖z − x‖} q(‖z − x‖)dz.

Finally, using the transformation u = z − x,

qV (x)

V (x)
≤
∫
Rd

exp {a‖u‖} q(‖u‖)du,

which implies P1*.
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Chapter 4

Particular Cases and

Generalisations

When weights {Wx,N} are given by arithmetic averages, e.g. when using importance

sampling for approximating π (x), specific conditions can be imposed in order for the

noisy chain to inherit geometric ergodicity from the marginal chain. Such conditions

are explored in Section 4.1, where we also look back at some examples of Section

3.1, exploring the ergodic properties of the corresponding noisy chains as N → ∞.

We will see that the behaviour of the ratio of the weights, at least in the tails of the

target π, plays an important role.

In Section 4.2, we discuss and provide an example of a noisy version of particle

MCMC for the HMM in Figure 2.1 on page 16. Recall that the likelihood for θ,

denoted by l (θ; y1:T ), is unbiasedly estimated using γNθ,T (1T ) given by (2.19) and

as a result of the bootstrap filter described in Algorithm 2.2. Sufficient conditions

on the weights {Wθ,N} are also provided, which will ensure the noisy chain inherits

geometric ergodicity from the marginal chain.

The last part of this chapter, Section 4.3, is devoted to the relaxation of some

assumptions on the weights {Wx,N} for the general case. The ideas stated there will

be of some use in the following chapter, where a modification of the noisy algorithm

is presented.
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4.1 Conditions for arithmetic averages

In the particular setting where the weights {Wx,N} are arithmetic averages of unbi-

ased estimators as in (2.24), i.e.

Wx,N =
1

N

N∑
k=1

W (k)
x , where

{
W (k)
x

}
k

i.i.d.∼ Qx(·) and E
[
W (k)
x

]
≡ 1,

specific conditions on these can be obtained to ensure geometric ergodicity is inher-

ited from the marginal chain. For the simple case where the weights are homogeneous

with respect to the state space, W1 is automatically satisfied. In order to attain

W2, the existence of a negative moment for a single weight is required. In order

to state this and other assumptions that follow, consider a prototypical weight Wx

that has the same distribution as W
(k)
x for any k ∈ {1, . . . , N}.

Proposition 4.1. Assume weights as in (2.24). If E
[
W−1
x

]
<∞ then

lim
N→∞

E
[
W−1
x,N

]
= 1. (4.1)

Proof. By Jensen’s inequality

1

N

N∑
k=1

1

W
(k)
x

− N∑N
k=1W

(k)
x

≥ 0,

which implies, also by Jensen’s inequality,

E

[
1

N

N∑
k=1

1

W
(k)
x

− N∑N
k=1W

(k)
x

]
≤ E

[
W−1
x

]
− 1.

Then, using Fatou’s lemma and the law of large numbers

E
[
W−1
x

]
− 1 ≥ lim sup

N→∞
E

[
1

N

N∑
k=1

1

W
(k)
x

−W−1
x,N

]
≥ lim inf

N→∞
E

[
1

N

N∑
k=1

1

W
(k)
x

−W−1
x,N

]

≥ E

[
lim inf
N→∞

(
1

N

N∑
k=1

1

W
(k)
x

)
− lim sup

N→∞
W−1
x,N

]
≥ E

[
W−1
x

]
− 1,

hence

lim
N→∞

E

[
1

N

N∑
k=1

1

W
(k)
x

−W−1
x,N

]
= E

[
W−1
x

]
− 1. (4.2)
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Finally, since

E

[
1

N

N∑
k=1

1

W
(k)
x

−W−1
x,N

]
= E

[
W−1
x

]
− E

[
W−1
x,N

]
,

the expression in (4.2) becomes

lim
N→∞

E
[
W−1
x,N

]
= 1.

For homogeneous weights, (4.1) implies W2. When the weights are not ho-

mogeneous, stronger conditions are needed for W1 and W2 to be satisfied. An

appropriate first assumption is that the weights are uniformly integrable.

Assumption (W3). The weights {Wx}x satisfy

lim
K→∞

sup
x∈X

E [Wx1 (Wx > K)] = 0.

The second condition imposes an additional assumption on the distribution

of the weights {Wx}x near 0.

Assumption (W4). There exists γ ∈ (0, 1) and constants M <∞, β > 0 such that

for w ∈ (0, γ) the weights {Wx}x satisfy

sup
x∈X

P [Wx ≤ w] ≤Mwβ.

These new conditions ensure W1 and W2 are satisfied.

Proposition 4.2. For weights as in (2.24),

(i). W3 implies W1;

(ii). W1 and W4 imply W2.

The following corollary is obtained as an immediate consequence of the above

proposition, Theorem 3.1 and Theorem 3.2.

Corollary 4.1. Let the weights be as in (2.24). Assume W3 and either

(i). P1, P2 and W4;

(ii). P1* and P2.

Then, there exists N0 ∈ N such that for all N ≥ N0, the noisy chain with transition

kernel P̃N is geometrically ergodic.
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The proof of Proposition 4.2 follows the statement and proof of Lemma 4.1.

This lemma allows us to characterise the distribution of Wx,N near 0 assuming W4

and also provides conditions for the existence and convergence of negative moments.

Lemma 4.1. Let γ ∈ (0, 1) and p > 0.

(i). Suppose Z is a positive random variable, and assume that for z ∈ (0, γ)

P [Z ≤ z] ≤Mzα, where α > p,M <∞.

Then,

E
[
Z−p

]
≤ 1

γp
+ pM

γα−p

α− p
.

(ii). Suppose {Zi}Ni=1 is a collection of positive and independent random variables,

and assume that for each i ∈ {1, . . . , N} and z ∈ (0, γ)

P [Zi ≤ z] ≤Miz
αi , where αi > 0,Mi <∞.

Then, for z ∈ (0, γ)

P

[
N∑
i=1

Zi ≤ z

]
≤

(
N∏
i=1

Mi

)
z
∑N
i=1 αi .

(iii). Let the weights be as in (2.24). If for some N0 ∈ N

E
[
W−px,N0

]
<∞,

then for any N ≥ N0

E
[
W−px,N+1

]
≤ E

[
W−px,N

]
.

(iv). Assume W1 and let g : R+ → R be a function that is continuous at 1 and

bounded on the interval [γ,∞). Then

lim
N→∞

sup
x∈X

E
[
|g (Wx,N )− g (1)|1Wx,N≥γ

]
= 0.

Proof. The proof of (i) is motivated by Piegorsch and Casella (1985, Theorem 2.1)

and Khuri and Casella (2002, Theorem 3), however the existence of a density func-
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tion is not assumed here. Since Z−p is positive,

E
[
Z−p

]
=

∫
R+

P
[
Z−p ≥ z

]
dz ≤ 1

γp
+

∫
(γ−p,∞)

P
[
Z−p ≥ z

]
dz

=
1

γp
+

∫
(0,γ)

pu−p−1P [Z ≤ u] du ≤ 1

γp
+ pM

γα−p

α− p
.

For part (ii), since the random variables {Zi} are positive, then for any z > 0

P

[
N∑
i=1

Zi ≤ z

]
= P

[
N∑
i=1

Zi ≤ z, max
i∈{1,...,N}

{Zi} ≤ z

]
.

Therefore, for z ∈ (0, γ)

P

[
N∑
i=1

Zi ≤ z

]
≤ P

[
max

i∈{1,...,N}
{Zi} ≤ z

]
=

N∏
i=1

P [Zi ≤ z]

≤

(
N∏
i=1

Mi

)
z
∑N
i=1 αi .

Part (iii) can be seen as a consequence of Wx,N and Wx,N+1 being convex

ordered and g(x) = x−p being a convex function for x > 0 and p ≥ 0, (see, e.g.,

Andrieu and Vihola, 2016). We provide a self-contained proof by defining for j ∈
{1, . . . , N + 1}

S
(j)
x,N :=

1

N

N+1∑
k=1,k 6=j

W (k)
x ,

and we have

Wx,N+1 =
1

N + 1

N+1∑
j=1

S
(j)
x,N

and since the arithmetic mean is greater than or equal to the geometric mean

Wx,N+1 ≥

N+1∏
j=1

S
(j)
x,N

 1
N+1

.
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This implies for p > 0

E
[
W−px,N+1

]
≤ E


N+1∏

j=1

S
(j)
x,N

−
p

N+1

 ≤ N+1∏
j=1

(
E
[(
S

(j)
x,N

)−p]) 1
N+1

= E
[(
S

(1)
x,N

)−p]
= E

[
W−px,N

]
,

where Hölder’s inequality has been used and the fact that the random variables{
S

(j)
x,N : j ∈ 1, . . . , N + 1

}
are identically distributed according to Qx,N .

For part (iv), let Mγ = supy∈[γ,∞) |g(y)| and due to continuity at y = 1, for

any ε > 0 there exists a δ > 0 such that

E
[
|g (Wx,N )− g(1)|1Wx,N∈[γ,∞)

]
≤ 2MγP [γ ≤Wx,N ≤ 1− δ]

+ 2MγP [1 + δ ≤Wx,N ] + E
[∣∣g (Wx,N )− g(1)

∣∣1Wx,N∈(1−δ,1+δ)

]
≤ 2MγP

[∣∣Wx,N − 1
∣∣ ≥ δ]+ εP

[∣∣Wx,N − 1
∣∣ < δ

]
.

Therefore, for fixed ε and by W1

lim
N→∞

sup
x∈X

E
[∣∣g (Wx,N )− g(1)

∣∣1Wx,N∈[γ,∞)

]
≤ 2Mγ lim

N→∞
sup
x∈X

P
[∣∣Wx,N − 1

∣∣ ≥ δ]+ ε

≤ ε,

obtaining the result since ε can be picked arbitrarily small.

Proof of Proposition 4.2. Part (i) is a consequence of Chandra (1989, Theorem 1).

Assuming W3, it implies

lim
N→∞

sup
x∈X

E
[∣∣Wx,N − 1

∣∣] = 0.

By Markov’s inequality

E
[∣∣Wx,N − 1

∣∣] ≥ δP [∣∣Wx,N − 1
∣∣ ≥ δ] ,

and the result follows.

To prove (ii), assume W4 and by part (ii) of Lemma 4.1, for w ∈ (0, γ)

P [NWx,N ≤ w] ≤MNwNβ .
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Take p > 1 and define N0 := b pβ c+ 1, then using part (i) of Lemma 4.1 if N ≥ N0

sup
x∈X

E
[
W−px,N

]
≤ N

γp
+ pNMN γNβ−p

Nβ − p
.

Hence, by Hölder’s inequality

E
[∣∣W−1

x,N − 1
∣∣1Wx,N∈(0,γ)

]
≤ E

[
W−1
x,N1Wx,N∈(0,γ)

]
≤
(
E
[
W−px,N

]) 1
p

(P [Wx,N < γ])
p−1
p ,

and applying part (iii) of Lemma 4.1, for N ≥ N0

E
[∣∣W−1

x,N − 1
∣∣1Wx,N∈(0,γ)

]
≤
(
E
[
W−px,N0

]) 1
p

(P [Wx,N < γ])
p−1
p .

Therefore,

sup
x∈X

E
[∣∣W−1

x,N − 1
∣∣1Wx,N∈(0,γ)

]
≤
(

sup
x∈X

E
[
W−px,N0

]) 1
p
(

sup
x∈X

P [Wx,N < γ]

) p−1
p

.

Since γ < 1 and by W1

lim
N→∞

sup
x∈X

P [Wx,N < γ] = 0,

implying

lim
N→∞

sup
x∈X

E
[∣∣W−1

x,N − 1
∣∣1Wx,N∈(0,γ)

]
= 0. (4.3)

Now, for fixed γ ∈ (0, 1) the function g(x) = x−1 is bounded and continuous on

[γ,∞), implying by part (iv) of Lemma 4.1

lim
N→∞

sup
x∈X

E
[∣∣W−1

x,N − 1
∣∣1Wx,N∈[γ,∞)

]
= 0. (4.4)

Finally, using (4.3) and (4.4)

lim
N→∞

sup
x∈X

E
[∣∣W−1

x,N − 1
∣∣] = 0,

and by the triangle inequality

sup
x∈X

E
[∣∣W−1

x,N − 1
∣∣] ≥ sup

x∈X
E
[
W−1
x,N

]
− 1,
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the result follows.

4.1.1 Remarks on some examples

Equipped with the previous results, we return to the examples in Section 3.1.2 and

Section 3.1.3. Even though the noisy chain can be transient in these examples, the

behaviour is quite different when considering weights that are arithmetic averages

of the form in (2.24). Since in both examples the weights are uniformly bounded

by the constant b, they immediately satisfy W1. Additionally, by Proposition 4.1,

condition W2 is satisfied for the example in Section 3.1.2. This is not the case

for example in Section 3.1.3, but condition P1* is satisfied by taking V = π−
1
2 .

Therefore, applying Theorem 3.1 and Theorem 3.2 to examples in Section 3.1.2 and

in Section 3.1.3 respectively, as N increases the corresponding chains will go from

being transient to geometrically ergodic.

Despite conditions W1 and W2 guaranteeing the inheritance of geometric

ergodicity for the noisy chain, they are not necessary. Consider a modification of

the example in Section 3.1.2, where the weights are given by

Wm,1 = (bm − εm)Ber(sm) + εm,

where bm > 1 and εm ∈ (0, 1] for all m ≥ 1.

Again, there exists a relationship between the variables bm, εm and sm for ensuring

the expectation of the weights is equal to one. Let Bin (N, s) denote a binomial

distribution of parameters N ∈ N and s ∈ (0, 1). Then, in the arithmetic average

context, Wm,N becomes

Wm,N =
(bm − εm)

N
Bin (N, sm) + εm,

where bm > 1 and εm ∈ (0, 1] for all m ≥ 1.

(4.5)

For particular choices of the sequences {bm}m∈N and {εm}m∈N, the resulting noisy

chain can be geometrically ergodic for all N ≥ 1, even though neither W1 nor W2

hold.

Proposition 4.3. Consider a geometric target density as in (3.6) and a proposal

density as in (3.7). In addition, let the weights be as in (4.5) with bm →∞, εm → 0

as m→∞ and

lim
m→∞

εm−1

εm
= l, where l ∈ R+ ∪ {+∞} .
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Then, the chain generated by the noisy kernel P̃N is geometrically ergodic for any

N ∈ N.

Proof. First notice that if l <∞ then l ≥ 1. To see this, define

am :=
εm−1

εm
,

then for fixed δ > 0, there exists M ∈ N such that for m ≥M

am < l + δ.

Then, for m ≥M

ε1

εm
=

m∏
j=2

aj < (l + δ)m−M
ε1

εM
,

and because εm → 0, it is clear that (l + δ)m →∞ as m→∞. Therefore, l+ δ > 1

and since δ can be taken arbitrarily small, it is true that l ≥ 1.

Now, for weights as in (4.5) and using a simple random walk proposal, the

noisy acceptance probability can be expressed as

α̃N (m,m− 1) =

N∑
j=0

N∑
k=0

min

{
1,

2θ

1− θ
bm−1j + (N − j) εm−1

bmk + (N − k) εm

}(
N

j

)

×
(
N

k

)
(sm−1)j (sm)k (1− sm−1)N−j (1− sm)N−k

(4.6)

and

α̃N (m,m+ 1) =
N∑
j=0

N∑
k=0

min

{
1,

1− θ
2θ

bm+1j + (N − j) εm+1

bmk + (N − k) εm

}(
N

j

)

×
(
N

k

)
(sm+1)j (sm)k (1− sm+1)N−j (1− sm)N−k .

(4.7)

Since bm → ∞, then sm → 0 as m → ∞; therefore, any term in (4.6) and

(4.7), for which j + k 6= 0, tends to zero as m→∞. Hence,

α̃N (m,m− 1) = min

{
1,

2θ

1− θ
× εm−1

εm

}
(1− sm−1)N (1− sm)N + o(1),
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and

α̃N (m,m+ 1) = min

{
1,

1− θ
2θ
× εm+1

εm

}
(1− sm+1)N (1− sm)N + o(1),

implying

lim
m→∞

P̃N (m, {m− 1})
P̃N (m, {m+ 1})

=
(1− θ) limm→∞min

{
1, 2θ

1−θ ×
εm−1

εm

}
θ limm→∞min

{
1, 1−θ

2θ ×
εm+1

εm

} . (4.8)

If l = +∞, (4.8) tends to +∞, whereas if l <∞

lim
m→∞

P̃N (m, {m− 1})
P̃N (m, {m+ 1})

= 2l
min {1− θ, 2θl}
min {2θl, 1− θ}

≥ 2.

In any case, this implies

lim
m→∞

P̃N (m, {m− 1}) ≥ 2 lim
m→∞

P̃N (m, {m+ 1}) ,

and since

lim
m→∞

P̃N (m, {m− 1}) = min {1− θ, 2θl} > 0,

the noisy chain is geometrically ergodic according to Proposition 3.5.

Finally, in many of the previous examples, increasing the value of N seems to

improve the ergodic properties of the noisy chain. However, the geometric ergodicity

property is not always inherited, no matter how large N is taken. The following

proposition shows an example rather similar to Proposition 4.3, but in which the

ratio εm−1/εm does not converge as m→∞.

Proposition 4.4. Consider a geometric target density as in (3.6) and a proposal

density as in (3.7). In addition, let the weights be as in (4.5) with bm = m and

εm = m−(3−(m (mod 3))).

Then, the chain generated by the noisy kernel P̃N is transient for any N ∈ N.
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Proof. Noting that

εm−1

εm
∈

 O
(
m2
)

O
(
m−1

) if
m (mod 3) = 0,

m (mod 3) ∈ {1, 2},

and
εm+1

εm
∈

 O
(
m−2

)
O (m)

if
m (mod 3) = 2,

m (mod 3) ∈ {0, 1},

expressions in (4.6) and (4.7) become

α̃N (m,m− 1) = (1− sm−1)N (1− sm)N 1 (m (mod 3) = 0) +O
(
m−1

)
,

and

α̃N (m,m+ 1) = (1− sm+1)N (1− sm)N 1 (m (mod 3) = 0, 1) +O
(
m−1

)
.

Therefore,

P̃N (m, {m− 1})
P̃N (m, {m+ 1})

=

(
1− θ
θ

)
(1− sm−1)N +O(m−1)

(1− sm+1)N +O(m−1)
1 (m (mod 3) = 0)

+O
(
m−1

)
1 (m (mod 3) = 1)

+O(1)1 (m (mod 3) = 2) ,

implying there exists C ∈ R+ such that for j = 0, 2

lim
k→∞

P̃N (3k + j, {3k + j − 1})
P̃N (3k + j, {3k + j + 1})

≤ C,

and

lim
k→∞

P̃N (3k + 1, {3k})
P̃N (3k + 1, {3k + 2})

= 0.

Then, for fixed δ > 0 there exists k0 ∈ N such that whenever k ≥ k0

P̃N (3k + j, {3k + j − 1})
P̃N (3k + j, {3k + j + 1})

< C + δ, for j = 0, 2

and

P̃N (3k + 1, {3k})
P̃N (3k + 1, {3k + 2})

< δ.

60



Let

cm :=
P̃N (m, {m− 1})
P̃N (m, {m+ 1})

,

then for k ≥ k0 + 1

3k+1∏
j=2

cj =

k∏
j=1

c3j−1c3jc3j+1 ≤
(

(C + δ)2 δ
)k−k0 k0∏

j=1

c3j−1c3jc3j+1.

Take δ small enough, such that (C + δ)2 δ < 1, hence

∞∑
k=1

3k+1∏
j=2

cj =

k0∑
k=1

3k+1∏
j=2

cj +
∞∑

k=k0

3k+1∏
j=2

cj

≤
k0∑
k=1

3k+1∏
j=2

cj +

k0∏
j=1

c3j−1c3jc3j+1

∞∑
k=k0

(
(C + δ)2 δ

)k−k0
=

k0∑
k=1

3k+1∏
j=2

cj +

∏k0
j=1 c3j−1c3jc3j+1

1− (C + δ)2 δ
<∞.

Similarly, it can be proved that

∞∑
k=0

3k+2∏
j=2

cj <∞ and
∞∑
k=1

3k∏
j=2

cj <∞,

thus

∞∑
m=2

m∏
j=2

cj <∞,

implying the noisy chain is transient according to Proposition 3.5.

4.1.2 Rate of convergence

We conclude the arithmetic average setting with a result providing a rate of con-

vergence for the total variation between π̃N and π. In order to obtain an explicit

expression for r(N), appearing in Theorem 3.4 and such that

sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV ≤

1

r (N)
,

we must impose a slightly stronger assumption than W3.
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Assumption (W3*). There exists k > 0, such that the weights {Wx}x satisfy

sup
x∈X

E
[
W 1+k
x

]
<∞.

Proposition 4.5. Assume P1, P2, W4 and W3*. Alternatively, assume P1*, P2

and W3*. Then, there exists Dk > 0 and N0 ∈ N such that for all N ≥ N0,

‖π̃N (·)− π(·)‖TV ≤ Dk
log (N)

N
τ

2+k

,

where τ = k if k ∈ (0, 1) and τ = 1+k
2 if k ≥ 1. If in addition W3* holds for all

k > 0, then for any ε ∈ (0, 1/6) there will exist Dε > 0 and N0 ∈ N such that for

all N ≥ N0,

‖π̃N (·)− π(·)‖TV ≤ Dε
log (N)

N
1
2
−ε

.

Proof. From (3.11) and taking δ < 1
2 , η = δ

1−δ

sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV ≤ 3δ + 4 sup

x∈X
P
[∣∣∣Wx,N − 1

∣∣∣ ≥ δ

2

]
,

implying by Markov’s inequality

sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV ≤ 3δ + 4 sup

x∈X
P

[∣∣∣Wx,N − 1
∣∣∣1+k

≥
(
δ

2

)1+k
]

≤ 3δ +
23+k

δ1+k
sup
x∈X

E
[∣∣∣Wx,N − 1

∣∣∣1+k
]
.

By the Marcinkiewicz-Zygmund inequality for i.i.d random variables, see e.g.

Gut (2013, Chapter 3, Corollary 8.2), there exists Bk <∞ such that

E
[∣∣∣Wx,N − 1

∣∣∣1+k
]
≤ BkE

[∣∣∣Wx − 1
∣∣∣1+k

]
N−τ ,

where

τ =

k if k ∈ (0, 1)

1+k
2 if k ≥ 1.
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Therefore,

sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV ≤ 3δ +

23+kBk
δ1+kN τ

sup
x∈X

E
[∣∣∣Wx − 1

∣∣∣1+k
]
.

Now, let

Ck = Bk sup
x∈X

E
[∣∣∣Wx − 1

∣∣∣1+k
]
,

then the convex function f : R+ → R+ where

f(s) =3s+
23+kCk
s1+kN τ

,

is minimised at

s∗ =

(
(1 + k)23+kCk

3N τ

) 1
2+k

= O
(
N−

τ
2+k

)
.

Then,

sup
x∈X
‖P̃N (x, ·)− P (x, ·)‖TV ≤ f(s∗) = O

(
N−

τ
2+k

)
+O

(
N−τ+

τ(1+k)
2+k

)
= O

(
N−

τ
2+k

)
.

Applying Theorem 3.4 by taking r(N) ∝ N
τ

2+k , the result is obtained.

For the second claim, take kε ≥ (2ε)−1 − 2 ≥ 1 and apply the first part.

4.2 Conditions for noisy particle MCMC

More complex examples arise when using particle MCMC methods, for which noisy

versions can also be performed. They may prove to be useful in some inference

problems as seen in the following example. Recall that in this setting the weights

{Wθ,N} are given by (2.25), i.e.

Wθ,N =
γNθ,T (1T )

γθ,T (1T )
,

where γθ,T (1T ) = l (θ; y1:T ) is the likelihood function for θ in the HMM from Figure

2.1 on page 16, and γNθ,T (1T ) is the unbiased estimator based on N particles as a

result of Algorithm 2.2.
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Example 4.1. Consider the hidden Markov model given by Figure 2.1 on page 16,

where X0 = x0 is fixed, and let

mθ (xn−1, ·) = N
(
axn−1, σ

2
X

)
and gθ (· |xn ) = N

(
xn, σ

2
Y

)
.

In this case, the set of parameters θ is

θ = {x0, a, log (σX) , log (σY )} ,

and once a prior distribution for θ is specified, p0 say, the aim is to conduct Bayesian

inference on the posterior distribution

π (θ |y1:T ) ∝ p0 (θ) l (θ; y1:T ) .

As noted in Chapter 2, for this particular setting the posterior distribution

is tractable. This will allows us to compare the results obtained from the marginal,

pseudo-marginal and noisy chains, the latter two relying on the SMC estimator

γNθ,T (1T ) of the likelihood, defined in (2.19) and obtained using Algorithm 2.2. Using

uniform improper priors over R for the parameters and a random walk proposal,

Figure 4.1 shows the run and autocorrelation function (ACF) for the autoregressive

parameter a of the marginal chain.

Similarly, Figure 4.2 shows the corresponding run and ACF for both the

pseudo-marginal and the noisy chain when N = 250. It is noticeable how the

pseudo-marginal gets “stuck”, resulting in a lower acceptance than the marginal

and noisy chains. In addition, the ACF of the noisy chain seems to decay faster

than that of the pseudo-marginal chain.

Finally, Figure 4.3 and Figure 4.4 show the estimated posterior densities

for the parameters when N = 250 and N = 750, respectively. There, the trade-

off between the pseudo-marginal and the noisy algorithm is noticeable. For lower

values of N , the pseudo-marginal will require more iterations due to the slow mixing,

whereas the noisy converges faster towards an unknown noisy invariant distribution.

By increasingN , the mixing in the pseudo-marginal improves and the noisy invariant

approaches the true posterior.

4.2.1 Bounding the relative variance

In the noisy particle MCMC context, obtaining specific conditions on the weights

{Wθ,N} is not as straightforward as for arithmetic averages. The main reason is

because expressions for the moments of the estimated likelihood γNθ,T (1T ) are usually
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Figure 4.1: Last 20, 000 iterations of the marginal algorithm for the autoregressive
parameter a (top). Estimated ACF of the corresponding marginal chain (bottom).
The mean acceptance probability was 0.256
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Figure 4.2: Last 20, 000 iterations of the pseudo-marginal (top left) and noisy (bot-
tom left) algorithms, for the autoregressive parameter a when N = 250. Estimated
ACFs of the corresponding pseudo-marginal (top right) and noisy (bottom right)
chains. The mean acceptance probabilities were 0.104 for the pseudo-marginal and
0.283 for the noisy chain
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Figure 4.3: Estimated densities using the marginal, pseudo-marginal and noisy
chains for the 4 parameters when N = 250. Vertical lines indicate the real val-
ues.
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Figure 4.4: Estimated densities using the marginal, pseudo-marginal and noisy
chains for the 4 parameters, when N = 750. Vertical lines indicate the real val-
ues.
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unavailable. Nevertheless, the relative variance of γNθ,T (1T ) has been object of major

study, which will allow us to explore a sufficient conditions leading to W1.

Consider a vector b = (b1, . . . , bT+1) ∈ {0, 1}T+1, from Lee and Whiteley

(2015, Lemma 2) the second moment of γNθ,T (1T ) can be expressed by

E
[
γNθ,T (1T )2

]
=

∑
b∈{0,1}T+1

T+1∏
n=1

{(
1

N

)bn (
1− 1

N

)1−bn
}
µθ,T (b) , (4.9)

where

µθ,T (b) := E

[
T∏
n=1

gθ (yn |Xn ) gθ
(
yn
∣∣X ′n )

]
, (4.10)

and (Xn, X
′
n)1≤n≤T is a joint Markov chain on X 2 distributed as follows:

• If b1 = 0, then X1 ∼ mθ (x0, ·) and X ′1 ∼ mθ (x0, ·) independently; whereas if

b1 = 1 then X ′1 = X1 ∼ mθ (x0, ·).

• For n ∈ {2, . . . , T}, if bn = 0 then Xn ∼ mθ (Xn−1, ·) and X ′n ∼ mθ

(
X ′n−1, ·

)
independently; if bn = 1 then X ′n = Xn ∼ mθ (xn−1, ·).

An equivalent expression for the aforementioned second moment was first proved in

Cérou et al. (2011, Proposition 3.4), however for our purposes (4.9) will be more

useful. The following assumption will imply W1, as proved in the proposition stated

immediately after.

Assumption (W5). For fixed T ∈ N and for any b ∈ {0, 1}T+1

sup
θ∈Θ

µθ,T (b)

γθ,T (1T )2 <∞.

Proposition 4.6. For weights as in (2.25), W5 implies W1.

Proof. By Markov’s inequality, it is enough to show that

lim
N→∞

sup
θ

V [Wθ,N ] = 0. (4.11)

Notice that for the zero vector, denoted by 0T+1, µθ,T (0T+1) = γθ,T (1T )2. Hence,
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using (4.9),

V [Wθ,N ] =
E
[
γNθ,T (1T )2

]
γθ,T (1T )2 − 1 =

T+1∑
j=1

(
T + 1

j

)
(−1)j N−j

+
∑

b6=0T+1

T+1∏
n=1

{(
1

N

)bn (
1− 1

N

)1−bn
}

µθ,T (b)

γθ,T (1T )2

= O
(
N−1

)
+

(
1− 1

N

)T+1 ∑
b 6=0n+1

1

(N − 1)
∑T+1
n=1 bn

(
µθ,T (b)

γθ,T (1T )2

)

= O
(
N−1

)
+O

(
N−1

) ∑
b6=0n+1

µθ,T (b)

γθ,T (1T )2 .

The result follows by taking the supremum over θ and then N →∞.

Similarly to Corollary 4.1, the following corollary is obtained as an immediate

consequence of the above proposition and Theorem 3.2.

Corollary 4.2. Let the weights be as in (2.25). Assume P1*, P2 and W5. Then,

there exists N0 ∈ N such that for all N ≥ N0, the noisy chain with transition kernel

P̃N is geometrically ergodic.

4.2.2 Simpler but stronger condition

Although Assumption W5 may be a direct condition for inheriting geometric er-

godicity, it is probably difficult to verify. Instead, one could rely on the following

condition on the conditional density gθ.

Assumption (W5*). For each n ∈ {1, . . . , T} there exists Cn ∈ (0,∞) such that

the conditional density gθ satisfies

Cn := sup
x,x′,θ

gθ(yn|x)

gθ(yn|x′)
<∞.

Proposition 4.7. W5* implies W5.

Proof. Consider two independent copies of the chain X1:T , say X̄
(1)
1:T and X̄

(2)
1:T . Then,

68



using Jensen’s inequality,

µθ,T (b)

γθ,T (1T )2 =
E
[∏T

n=1 gθ (yn |Xn ) gθ (yn |X ′n )
]

E
[∏T

n=1 gθ

(
yn

∣∣∣X̄(1)
n

)]
E
[∏T

n=1 gθ

(
yn

∣∣∣X̄(2)
n

)]
≤ E

 T∏
n=1

gθ (yn |Xn ) gθ (yn |X ′n )

gθ

(
yn

∣∣∣X̄(1)
n

)
gθ

(
yn

∣∣∣X̄(2)
n

)
 ≤ T∏

n=1

C2
n <∞,

as required.

However, W5* turns out to be quite strong since it is rarely satisfied in prac-

tice, not even for the simple and tractable model in Example 4.1. This assumption

will mainly hold if both, the state space of the hidden chain X and the parameter

space Θ are compact. As stated below, if W5* holds then the weights are uniformly

bounded, which will also imply W2.

Proposition 4.8. Under W5*, the weights are uniformly positive and uniformly

bounded in θ. Hence, W2 is satisfied.

Proof. Let X̄1:T be an independent copy of the chain X1:T . On one side, if W5*

holds and using Jensen’s inequality

Wθ,N =
γNθ,T (1T )

γθ,T (1T )
=

∏T
n=1

{
1
N

∑N
j=1 gθ

(
yn

∣∣∣X(j)
n

)}
E
[∏T

n=1 gθ
(
yn
∣∣X̄n

)]
≤ E

 T∏
n=1

1

N

N∑
j=1

gθ

(
yn

∣∣∣X(j)
m

)
gθ
(
yn
∣∣X̄n

)
∣∣∣∣∣∣
{
X

(j)
1:T

}N
j=1

 ≤ T∏
n=1

Cn <∞.

Similarly, using properties of the arithmetic and harmonic averages,

W−1
θ,N = E

 T∏
n=1

gθ
(
yn
∣∣X̄n

)
1
N

∑N
j=1 gθ

(
yn

∣∣∣X(j)
n

)
∣∣∣∣∣∣
{
X

(j)
1:T

}N
j=1


≤ E

 T∏
n=1

1

N

N∑
j=1

gθ
(
yn
∣∣X̄n

)
gθ

(
yn

∣∣∣X(j)
n

)
∣∣∣∣∣∣
{
X

(j)
1:T

}N
j=1

 ≤ T∏
n=1

Cn <∞.
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Hence, by the Cauchy-Schwartz inequality,

E
[∣∣∣W−1

θ,N − 1
∣∣∣] = E

[
|Wθ,N − 1|
Wθ,N

]
≤ (V [Wθ,N ])1/2

(
E
[
W−2
θ,N

])1/2

= (V [Wθ,N ])1/2
T∏
n=1

Cn,

implying

sup
θ

E
[∣∣∣W−1

θ,N − 1
∣∣∣] ≤ (sup

θ
V [Wθ,N ]

)1/2 T∏
n=1

Cn.

The result follows from (4.11).

Finally, throughout this section the number of observations T has been con-

sidered fixed, focusing only on increasing N irrespective of T . If instead, we allow T

to increase, the variance of Wθ,N could in principle be controlled using the bound in

(2.20). However, stronger conditions than W5* are usually required, see e.g. Cérou

et al. (2011, Theorem 5.1).

4.3 Towards a more general method

Until now, we have studied a particular perturbation of the marginal chain with

transition kernel P , involving a randomised acceptance ratio leading to the following

noisy acceptance

α̃N (x, y) := E
[
min

{
1, r (x, y)

Wy,N

Wx,N

}]
,

where Wy,N and Wx,N are independent positive random variables with expectation

1. However, the above assumptions on the weights Wy,N and Wx,N can be relaxed,

allowing us to encompass more general settings as done in Alquier et al. (2014).

Looking back at Theorem 3.2, the result is still valid even when Wy,N and

Wx,N are dependent or when they have expectation different to 1, as long as W1

holds. In this section, we rely on a similar condition that can provide stronger results.

This is Assumption W0 (stated below), which controls the difference between α̃N

and α and the dissimilarity between the kernels P̃N and P , as stated in the lemma

immediately after.
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Assumption (W0). The weights satisfy

lim
N→∞

sup
x∈X

E [|log (Wx,N )|] = 0.

Lemma 4.2. Suppose supx∈X E [|log (Wx,N )|] <∞, then

sup
(x,y)∈X 2

|α̃N (x, y)− α (x, y)| ≤ 2 sup
x∈X

E [|log (Wx,N )|]

and

sup
x∈X

∥∥∥P̃N (x, ·)− P (x, ·)
∥∥∥
TV
≤ 4 sup

x∈X
E [|log (Wx,N )|] .

Proof. First, by Jensen’s inequality

|α̃N (x, y)− α (x, y)| =
∣∣∣∣[Emin

{
1, r (x, y)

Wy,N

Wx,N

}]
−min {1, r (x, y)}

∣∣∣∣
≤ E

[∣∣∣∣min

{
1, r (x, y)

Wy,N

Wx,N

}
−min {1, r (x, y)}

∣∣∣∣] .
The function g (x) = min {1, exp {x}} is Lipschitz with coefficient 1, hence

|α̃N (x, y)− α (x, y)| ≤ E
[∣∣∣∣min

{
1, r (x, y)

Wy,N

Wx,N

}
−min {1, r (x, y)}

∣∣∣∣]
≤ E

[∣∣∣∣log

(
r (x, y)

Wy,N

Wx,N

)
− log (r (x, y))

∣∣∣∣] ≤ E [|log (Wy,N )|] + E [|log (Wx,N )|]

≤ 2 sup
x

E [|log (Wx,N )|] ,

and the first result follows.

For the second claim, take A ∈ B (X ) and apply the triangle and Jensen’s

inequalities to obtain∣∣∣P̃N (x,A)− P (x,A)
∣∣∣ ≤ ∣∣∣∣∫

A
[α̃N (x, y)− α (x, y)] q (x, dy)

∣∣∣∣
+

∣∣∣∣∫
X

[α̃N (x, y)− α (x, y)] q (x, dy)

∣∣∣∣ ≤ 2

∫
X
|α̃N (x, y)− α (x, y)| q (x, dy)

≤ 2 sup
x,y
|α̃N (x, y)− α (x, y)| .

Similarly to the results in Chapter 3, under Assumption W0 and using the

previous lemma it is possible to show (provided P1 and P2 hold and N is sufficiently
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large) the existence of a noisy invariant π̃N for P̃N , and also

lim
N→∞

‖π̃N (·)− π(·)‖TV = 0.

This is not pursued here, instead we focus on an interesting consequence of Lemma

4.2 when the weights are given by an arithmetic average as in (2.24). For such case

a bound on

sup
x∈X

E [|log (Wx,N )|]

in terms of N is available, which in turn provides a sharper rate of convergence as

N →∞ for

‖π̃N (·)− π (·)‖TV .

This is discussed next and accompanied with a neat example. In the following

chapter, the idea of relaxing assumptions on the weights Wy,N and Wx,N is developed

in more depth. There, motivated by a correction to the noisy algorithm, a novel

approximate method is analysed.

4.3.1 Arithmetic averages revisited

We introduce the following assumption on the single variables Wx, that guarantees

W0 holds.

Assumption (W0*). The weights {Wx}x satisfy

sup
x∈X

V [Wx] <∞ and sup
x∈X

E
[
W−1
x

]
<∞.

Remark 4.1. Notice that W0* implies Assumptions W1 and W2. In addition and

combined with part (iii) of Lemma 4.1, Assumption W0* implies

sup
x,N

E
[
W−1
x,N

]
<∞.

The convergence result for the kernels P̃N and P is now presented. As a

consequence, an improved rate of convergence for π̃N and π is achieved in comparison

to Proposition 4.5. In contrast to such result, notice (apart from the ε improvement)
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the much weaker requirement of

sup
x

V [Wx] <∞,

as opposed to W3* holding for all k > 0.

Proposition 4.9. For weights as in (2.24) and under W0*

sup
x∈X

∥∥∥P̃N (x, ·)− P (x, ·)
∥∥∥
TV
≤ O

(
N−1/2

)
.

Additionally, if P1 and P2 hold then

‖π̃N (·)− π (·)‖TV ≤ O
(
N−1/2 log (N)

)
.

Proof. First, notice that the logarithmic function satisfies for any x > 0

|log (x)| ≤ |x− 1|√
x

.

Hence

sup
x

E [|log (Wx,N )|] ≤ sup
x

E

[∣∣∣∣∣Wx,N − 1√
Wx,N

∣∣∣∣∣
]
,

and using the Cauchy-Schwartz inequality

sup
x

E [|log (Wx,N )|] ≤
(

sup
x

E
[
W−1
x,N

])1/2(
sup
x

V [Wx,N ]

)1/2

= O
(
N−1/2

)
.

Therefore, by Lemma 4.2

sup
x

∥∥∥P̃N (x, ·)− P (x, ·)
∥∥∥
TV
≤ O

(
N−1/2

)
.

The second claim follows directly from Theorem 3.4 by applying the the first

part.

We now look at an example which shows the rate of convergence for the

kernels P̃N and P in Theorem 4.9 is tight. It also shows that better rates may be

possible if the marginal acceptance ratio r (x, y) lies outside a neighbourhood around

1.
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Proposition 4.10. Consider a geometric target distribution π on the non-negative

integers with density

π (x) ∝
(

1

2

)x
1 (x ∈ N0) .

In addition, take a random walk proposal on the integers where q (x, x+ 1) = θ =

1− q (x, x− 1) and let Wx ∼ Exp (1). Then, the noisy and marginal kernels satisfy

sup
x

∥∥∥P̃N (x, ·)− P (x, ·)
∥∥∥
TV

=

O
(
N−1

)
if θ 6= 1

3

O
(
N−1/2

)
if θ = 1

3 .

Proof. The arithmetic average assumption implies

Wy,N

Wx.N

d
=
G1

G2

d
=

V

1− V
,

where Gi
i.i.d∼ Gamma (N, 1) and V ∼ Beta (N,N) . Let B (x, y) denote the beta

function, then for x ∈ N0

P̃N (x, x+ 1) = θE
[
min

{
1,

(
1− θ

2θ

)
V

1− V

}]
= θ

[(
1− θ

2θ

)
B (N + 1, N − 1)

B (N,N)
I 2θ

1+θ
(N + 1, N − 1) + 1− I 2θ

1+θ
(N,N)

]
= θ

[(
1− θ

2θ

)
N

N − 1
I 2θ

1+θ
(N + 1, N − 1) + 1− I 2θ

1+θ
(N,N)

]
,

where Iz (x, y) is the regularised incomplete beta function given by

Iz (x, y) =

∫ z
0 v

x−1 (1− v)y−1 dv

B (x, y)
, for z ∈ [0, 1] .

Similarly, for x ∈ N

P̃N (x, x− 1) = (1− θ)E
[
min

{
1,

(
2θ

1− θ

)
V

1− V

}]
= (1− θ)

[(
2θ

1− θ

)
N

N − 1
I 1−θ

1+θ
(N + 1, N − 1) + 1− I 1−θ

1+θ
(N,N)

]
.

Then, if θ < 1
3 , and using Proposition B.2 in Appendix B

P̃N (x, x+ 1) = θ + o
(
N−1

)
and P̃N (x, x− 1) = 2θ +O

(
N−1

)
,
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whereas if θ > 1
3

P̃N (x, x+ 1) =
1

2
(1− θ) +O

(
N−1

)
and P̃N (x, x− 1) = 1− θ + o

(
N−1

)
.

Therefore, if θ 6= 1
3

sup
x

∥∥∥P̃N (x, ·)− P (x, ·)
∥∥∥
TV

= O
(
N−1

)
.

If θ = 1
3

P̃N (x, x+ 1) =
1

3

[
N

N − 1
I 1

2
(N + 1, N − 1) +

1

2

]
=

1

3

[
N

N − 1

(
1

2
− 1

22N−1NB (N,N)

)
+

1

2

]
,

and applying Proposition B.1 in Appendix B

P̃N (x, x+ 1) =
1

3
+O

(
N−1/2

)
.

Similarly,

P̃N (x, x− 1) =
2

3
+O

(
N−1/2

)
,

which implies

sup
x

∥∥∥P̃N (x, ·)− P (x, ·)
∥∥∥
TV

= O
(
N−1/2

)
when θ = 1

3 .

As a final remark, notice that the bound for ‖π̃N (·)− π (·)‖TV in Proposition

4.9 is not tight since for the above example and if θ 6= 1
3

‖π̃N (·)− π (·)‖TV = O
(
N−1

)
.

In addition, if θ = 1
3 the noisy invariant π̃N is in fact equal to π since for x 6= 0

π̃N (x) ∝

 θE
[
min

{
1,
(

1−θ
2θ

)
V

1−V

}]
(1− θ)E

[
min

{
1,
(

2θ
1−θ

)
V

1−V

}]
x

=

(
1

2

)x
.
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Chapter 5

Approximate MCMC via

Geometric Averages

The noisy MH algorithm may prove useful when dealing with an intractable dis-

tribution π on (X ,B (X )). For its implementation, one relies on the availability of

unbiased estimates of the point-wise evaluation of the target density. These are

π̂x := π (x)Wx (5.1)

where Wx ∼ Qx (·) taking values inW ⊆ R+ and satisfying E [Wx] ≡ 1 for all x ∈ X .

With such estimates, the usual acceptance ratio r (x, y) given by

r (x, y) =
π (y) q (y, x)

π (x) q (x, y)
,

is estimated using

Rnoix,y :=
π̂yq (y, x)

π̂xq (x, y)
= r (x, y)

Wy

Wx
. (5.2)

Usually, as discussed in Sections 4.1 and 4.2, the variables {Wx}x∈X may be also

indexed by N ∈ N such that Wx,N
a.s.→ 1 as N →∞. Even though the chain produced

by the noisy algorithm is not invariant under π, for some cases and under some

conditions discussed throughout Chapter 3, a noisy invariant distribution π̃N exists

for the noisy chain. Additionally, as N → ∞, π̃N can converge (in an appropriate

sense) to the desired target π. In some cases, however, π̃N may not provide a good

approximation of the target unless N is very large. Hence, with N fixed, is it possible

to modify the noisy algorithm in order to obtain a better approximation of π?

In this chapter, we study a plausible approach for (approximately) correcting
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chains generated by acceptance probabilities of the form

min {1, Rx,y} , (5.3)

where Rx,y is a random approximation for the usual ratio r (x, y). This correction

is motivated by a class of algorithms with randomised acceptance as in (5.3), that

produce reversible chains with respect to the target π. Hence, the idea is to modify

Rx,y in such a way that the resulting chain is π-reversible or “close” to being so.

From this point onwards, the subscript N is dropped since it is merely a distraction

for this chapter.

Consider the following generic form for Rx,y, serving as proxy for r (x, y),

Rx,y := r (x, y)Vx,y, (5.4)

where Vx,y ∼ νx,y(·) having support V ⊆ R+. Notice that the ratio Rnoix,y used in the

noisy MH algorithm is a special case of (5.4), where Vx,y = Wy/Wx. A Markov chain

generated by the randomised acceptance rule in (5.3) will satisfy detailed balance

in (2.2) if the following condition (similar to (2.12)) holds

r (y, x)
E [min {1, Rx,y}]
E [min {1, Ry,x}]

= 1. (5.5)

Notice that

E [min {1, Rx,y}] = E
∫ ∞

0
1 (u ≤ min {1, Rx,y}) du

=

∫ ∞
0

1 (u ≤ 1)P [u ≤ Rx,y] du =

∫ 1

0
P
[
Vx,y ≥

u

r(x, y)

]
du

= r (x, y)

∫ 1/r(x,y)

0
P [Vx,y ≥ u] du,

implying that the left hand side of (5.5) can be expressed as

r (y, x)
E [min {1, Rx,y}]
E [min {1, Ry,x}]

= r (y, x)
r (x, y)

∫ 1/r(x,y)
0 P [Vx,y ≥ u] du

r (y, x)
∫ 1/r(y,x)

0 P [Vy,x ≥ u] du

=
r (x, y)

∫ 1/r(x,y)
0 P [Vx,y ≥ u] du∫ r(x,y)

0 P [Vy,x ≥ u] du
. (5.6)

The expression above is close to E [Vx,y] (provided this value is finite) if r (x, y)

is small, whereas for large values of r (x, y) the expression is close to (E [Vy,x])−1.
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Therefore, assuming E [Vx,y] < ∞ for all (x, y) ∈ X 2, one possible modification to

the acceptance ratio Rx,y is to consider instead

R̃x,y :=
Rx,y

E [Vx,y]
. (5.7)

In O’Neill et al. (2000) and Beaumont (2003), the authors suggest using the

following modified acceptance instead of Rnoix,y in (5.2)

Rnoix,y

r(x, y)

E
[
Rnoix,y

] = Rnoix,y

1

E
[
WyW

−1
x

] = Rnoix,y

1

E
[
W−1
x

] ,
which in fact coincides with (5.7) when Vx,y = Wy/Wx and Wy is independent of

Wx. However, this correction is not applicable in general since E [Vx,y] = E
[
W−1
x

]
is usually unknown. Additionally, it is not clear if for moderate values of r (x, y) the

correction is of some use.

The rest of this chapter is organised as follows. In Section 5.1, we take a

look at a class of algorithms defined in terms of randomised acceptance ratios that

are exact, in the sense that the resulting chain is invariant under the target π. Also

there, we will see that for specific cases the corrected ratio in (5.7) produces an

exact algorithm. In Section 5.2, a new approximate MCMC algorithm (Algorithm

5.1) is presented and motivated by the penalty method, the latter belonging to the

aforementioned class of methods with randomised ratios. Section 5.3 contains some

examples for which Algorithm 5.1 is applicable. Even though some of these examples

are quite simple or artificial, we will be able to identify the existing trade-off when

implementing and tuning Algorithm 5.1. Finally, in Section 5.4, we present some

theoretical results dealing with a diffusion limit of the approximate chain and the

convergence of the approximate stationary distribution towards π.

5.1 Exact algorithms with randomised acceptance

Recall the generic form of a randomised acceptance ratio given by (5.4). Since the

resulting chain may not be reversible with respect to π, would it be possible to

transform Vx,y in such way that the new chain is reversible? Consider a function

hx,y : V → [0,∞) for fixed (x, y) ∈ X 2, detailed balance condition in (5.5) can be

78



expressed by

π (x) q (x, y)

∫
V
νx,y (u) min {1, r (x, y)hx,y (u)} du (5.8)

= π (y) q (y, x)

∫
V
νy,x (ū) min {1, r (y, x)hy,x (ū)} dū.

Taking ū = gx,y (u) for some invertible and continuously differentiable function

gx,y : V → V, a sufficient condition for satisfying (5.8) is

hx,y (u) =
νy,x (ū)

νx,y (u)

∣∣∣∣∂ū∂u
∣∣∣∣ and hy,x (ū) =

νx,y (u)

νy,x (ū)

∣∣∣∣∂ū∂u
∣∣∣∣−1

,

since this implies

π (x)q (x, y) νx,y (u) min {1, r (x, y)hx,y (u)}

= π (y) q (y, x) νy,x (gx,y (u)) min {1, r (y, x)hy,x (gx,y (u))}
∣∣∣∣ ∂∂ugx,y (u)

∣∣∣∣ . (5.9)

By the inverse function theorem

hy,x (ū) =
νx,y

(
g−1
x,y (ū)

)
νy,x (ū)

∣∣∣∣ ∂∂z̄ g−1
x,y (ū)

∣∣∣∣ ,
which imposes an involution-type condition, in this case g−1

x,y = gy,x. Additionally,

notice that the above arguments remain valid for more general domains V ⊆ R.

Theorem 5.1. Let Vx,y ∼ νx,y(·) defined on V ⊆ R and suppose gx,y : V → V is

a continuously differentiable function satisfying g−1
x,y = gy,x, the Markov chain with

proposal q generated by the acceptance ratio

R̄x,y := r (x, y)
νy,x (gx,y (Vx,y))

νx,y (Vx,y)

∣∣∣∣∣ ∂∂ugx,y (u)

∣∣∣∣
u=Vx,y

∣∣∣∣∣ , (5.10)

is invariant under π.

This type of chain was first studied in Nicholls et al. (2012) where the ‘very

detailed balance’ condition in (5.9) was established. In Maire et al. (2014) this idea

is studied in more generality in the context of inhomogeneous Markov chains. We

now discuss two particular cases for which R̄x,y provides an explicit expression for

the acceptance probability

E
[
min

{
1, R̄x,y

}]
.
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5.1.1 Barker’s acceptance

The chain generated using Barker’s acceptance

αB (x, y) =
r (x, y)

1 + r (x, y)

can be seen as a special case of the randomised acceptance setting. Barker’s al-

gorithm dates back to Barker (1965) and, as discussed in Section 2.1.3, it is less

efficient in terms of asymptotic variance when compared to a MH algorithm using

the same proposal q. Nevertheless, the authors in  Latuszyński and Roberts (2013)

have shown that the asymptotic variance of Barker’s algorithm is at most, roughly

speaking, two times that of MH. Additionally, Barker’s acceptance is everywhere

differentiable (in terms of r ≡ r (x, y)), which may be more appealing in situations

where derivatives of the acceptance α (r) are required.

We do not discuss Barker’s acceptance further on since it is not the main focus

of this chapter. However, up to our knowledge, this is the first time the acceptance

probability in Barker’s algorithm is regarded as an expectation of a randomised MH

acceptance. The following proposition states such result.

Proposition 5.1. Let V ∼ ν(·) have a density with respect to µLeb given by

ν(u) = 2 (1 + u)−3
1 (u > 0) ,

and take the involution on R+ given by g (u) = u−1. Then, using R̄x,y defined in

(5.10),

E
[
min

{
1, R̄x,y

}]
= αB (x, y) .

Proof. Set r = r (x, y), then

E
[
min

{
1, R̄x,y

}]
= E

[
min

{
1, r

(
1 + V −1

)−3

V 2 (1 + V )−3

}]

= E [min {1, rV }] =

∫ r−1

0
2ru (1 + u)−3 du+

∫ ∞
r−1

2 (1 + u)−3 du

=
r

(1 + r)2 +
r2

(1 + r)2 =
r

1 + r
.
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5.1.2 The penalty method

The second example, which is our main focus, appears when log-unbiased estimates

of the acceptance ratio r (x, y) are available. As noted in Nicholls et al. (2012), if

log (Rx,y) ∼ N
(
log (r (x, y)) , τ2

x,y

)
, (5.11)

it is possible to obtain an exact algorithm by making a correction to the randomised

acceptance. This idea was first introduced in Ceperley and Dewing (1999) under

the name of the penalty method, with an increasing relevance in recent work, see

e.g. Deligiannidis et al. (2015) or Yıldırım (2016).

Proposition 5.2. Consider the randomised acceptance in (5.4), where Rx,y satisfies

(5.11) and τ2
x,y = τ2

y,x for all (x, y) ∈ X 2. Therefore, the acceptance ratio of the

penalty method given by

R̄pen (x, y) := Rx,y exp

{
−1

2
τ2
x,y

}
,

defines an exact algorithm.

Proof. Let Zx,y ∼ N
(
0, τ2

x,y

)
and consider the involution on R given by gx,y (z) =

τ2
x,y − z, applying Theorem 5.1 the acceptance ratio

R̄x,y = r (x, y) exp {Zx,y} exp

{
−1

2
τ2
x,y

}
defines an exact algorithm. Since Rx,y satisfies (5.11) it can be expressed as

Rx,y = r (x, y)Vx,y = r (x, y) exp {Zx,y} ,

which completes the proof.

In order to analyse in more depth the properties of the penalty chain, let

P : X × B (X ) → [0, 1] and P̄pen : X × B (X ) → [0, 1] denote the kernels associated

to the marginal chain and the penalty method, respectively. The corresponding

expressions are given by

P (x, dy) := q (x, dy)α (x, y) + δx (dy)

[
1−

∫
X
q (x, dy)α (x, y)

]
and P̄pen (x, dy) := q (x, dy) ᾱpen (x, y) + δx (dy)

[
1−

∫
X
q (x, dy) ᾱpen (x, y)

]
,
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where

α (x, y) := min {1, r (x, y)}

and ᾱpen (x, y) := E
[
min

{
1, R̄pen (x, y)

}]
.

Remark 5.1. Notice that

ᾱpen (x, y) = E
[
min

{
1, elog(R̄pen(x,y))

}]
= Φ

(
log (r (x, y))− 1

2τ
2
x,y

τx,y

)
+ r (x, y) Φc

(
log (r (x, y)) + 1

2τ
2
x,y

τx,y

)
,

(5.12)

where Φ denotes the cumulative distribution function of the standard Normal dis-

tribution and Φc := 1− Φ.

We now look at a relationship between the penalty acceptance ᾱpen and the

marginal acceptance α. The acceptance probability of the penalty method can be

upper and lower bounded in terms of the marginal acceptance.

Lemma 5.1. The acceptance probabilities ᾱpen and α satisfy

2Φ
(
−τx,y

2

)
α (x, y) ≤ ᾱpen (x, y) ≤ α (x, y) .

Proof. Let Zx,y ∼ N
(
0, τ2

x,y

)
, then

ᾱpen (x, y) = E
[
min

{
1, r (x, y) exp

{
Zx,y −

1

2
τ2
x,y

}}]
≥ E

[
min

{
1, exp

{
Zx,y −

1

2
τ2
x,y

}}
min {1, r (x, y)}

]
.

Using Remark 5.1 with r (x, y) ≡ 1

E
[
min

{
1, exp

{
Zx,y −

1

2
τ2
x,y

}}]
= 2Φ

(
−1

2
τx,y

)
,

which implies the first inequality. The second part is proved by Jensen’s inequality,

ᾱpen (x, y) ≤ min

{
1, r (x, y)E

[
exp

{
Zx,y −

1

2
τ2
x,y

}]}
= α (x, y) .

Using Peskun’s off-diagonal ordering, the above result directly implies the

penalty method is less efficient, in terms of asymptotic variance, than a MH chain

with the same target and proposal. Additionally, one can show the penalty method
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chain is geometrically ergodic whenever the marginal chain is geometric and the

variance τ2
x,y is uniformly bounded. This is shown in the following theorem using

Dirichlet forms for reversible Markov chains (see Appendix A).

Theorem 5.2. The chain generated by P̄pen inherits geometric ergodicity from the

marginal chain if

sup
(x,y)∈X 2

τ2
x,y <∞.

Proof. Using Lemma 5.1, the Dirichlet form of P̄pen (see Appendix A) satisfies

EP̄pen (g) =
1

2

∫
π (dx) q (x, dy) ᾱpen (x, y) [g (x)− g (y)]2

≥
∫
π (dx) q (x, dy)α (x, y) Φ

(
−1

2
τx,y

)
[g (x)− g (y)]2

≥ 2 inf
x,y

Φ

(
−1

2
τx,y

)
EP (g) ,

and

EP̄pen (g) ≤ 1

2

∫
π (dx) q (x, dy)α (x, y) [g (x)− g (y)]2 = EP (g) .

Therefore,

GapR
(
P̄pen

)
= inf

g:π(g)=0,π(g2)=1
EP̄pen (g) ≥ 2 inf

x,y
Φ

(
−1

2
τx,y

)
GapR (P )

and

GapL
(
P̄pen

)
= inf

g:π(g)=0,π(g2)=1

(
2− EP̄pen (g)

)
≥ GapL (P ) .

The result follows by the existence of an absolute spectral gap for P (Theorem A.1),

and the fact that

inf
x,y

Φ

(
−1

2
τx,y

)
> 0

whenever supx,y τ
2
x,y <∞.

In practice, log-normal estimates for the acceptance ratio as in (5.11) are

not always available. Moreover, an expression for the variance of such estimates
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τ2
x,y may be unknown, making the implementation of the penalty method difficult.

An approximate version of this method has been presented in Nicholls et al. (2012,

Algorithm 5), which relies on an estimate for τ2
x,y but still requires log-normality.

In the following section we explore a similar approximate algorithm using geometric

averages of estimators, where the log-normal assumption is not essential and in some

cases can produce good results, as seen in the examples of Section 5.3.

5.2 Correcting the bias with geometric averages

The penalty method described in the previous section is applicable to the noisy MH

algorithm, with ratio Rnoix,y given by (5.2), whenever log (Wx) ∼ N
(
−1

2σ
2
x, σ

2
x

)
and

if σ2
x is available as a function of x ∈ X . For such case, assuming Wx and Wy are

independent,

log
(
Rnoix,y

)
= log (r (x, y)) + log (Wy)− log (Wx)

∼ N
(

log (r (x, y))− 1

2

(
σ2
y − σ2

x

)
, σ2

y + σ2
x

)
.

However, neither the independence assumption between Wx and Wy nor the un-

biasedness condition E [Wx] ≡ 1 are essential for obtaining an exact method. In

this section we propose an approach that attempts mimicking the penalty method;

this is based on geometric averages of estimators
{
R

(i)
x,y

}
satisfying (5.4) and the

introduction of an approximate penalty term.

Consider again the estimator Rx,y from (5.4) and define for all (x, y) ∈ X 2

mx,y := E [log (Vx,y)] and τ2
x,y := V [log (Vx,y)] , (5.13)

where mx,y and τ2
x,y satisfy

mx,y = −my,x and τ2
x,y = τ2

y,x.

From Proposition 5.2, and provided τ2
x,y < ∞, we can correct Rx,y using my,x as

stated in the following corollary.

Assumption 1. τ2
x,y = V [log (Vx,y)] <∞ for any (x, y) ∈ X 2.

Corollary 5.1. Consider the randomised acceptance ratio Rx,y in (5.4). Under As-

sumption 1 and if Rx,y is log-normally distributed for any (x, y) ∈ X 2, the acceptance
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ratio

R̄x,y := Rx,y exp

{
my,x −

1

2
τ2
x,y

}
defines an exact algorithm.

Remark 5.2. The correction given by R̃x,y in (5.7) is identical to R̄x,y above when

the variables {Wx} are log-normally distributed.

Notice that if τ2
x,y is large, the probability of accepting a move may be small

even for large values of the acceptance ratio r (x, y) . Thus, although exact, the

algorithm might mix poorly requiring an infeasible number of iterations for being

of any use. To alleviate this, we consider the geometric average of M independent

log-normal estimators
{
R

(i)
x,y

}M
i=1

as follows

R̄M (x, y) :=

(
M∏
i=1

R(i)
x,y

)1/M

exp

{
my,x −

1

2M
τ2
x,y

}
= r (x, y) exp

{
τx,y√
M
ξ − 1

2M
τ2
x,y

}
, (5.14)

where ξ ∼ N (0, 1).

Corollary 5.2. Consider M independent random variables
{
R

(i)
x,y

}M
i=1

, where each

R
(i)
x,y satisfies (5.4) and is log-normally distributed for any (x, y) ∈ X 2. Under

Assumption 1, the acceptance ratio R̄M defines an exact algorithm for any M ∈ N.

As commented before, the estimator Rx,y may not be log-normally dis-

tributed and even in such case the expressions for mx,y and τ2
x,y may be unknown.

Despite this, the log-normality assumption can be relaxed with a large enough sam-

ple
{
R

(i)
x,y

}
i

and relying on the Central Limit Theorem (CLT). Additionally, in some

cases mx,y and τ2
x,y can be approximated using the variables

{
R

(i)
x,y

}
i
, we will see

examples of this later on. Let m̂x,y,M and τ̂2
x,y,M be such approximations; one could

then consider the following approximate acceptance ratio

R̃M (x, y) :=

(
M∏
i=1

R(i)
x,y

)1/M

exp

{
m̂y,x,M −

1

2M
τ̂2
x,y,M

}
, (5.15)

which is implemented in Algorithm 5.1 and is a variant of Nicholls et al. (2012,

Algorithm 5).

85



Algorithm 5.1 Approximate Penalty Method (APM)

Assumptions: Suitable approximations for mx,y and τ2
x,y in (5.13), say m̂x,y,M and

τ̂2
x,y,M respectively, are available.

Given the current state Xi = x, simulate Xi+1 as follows:

1. Sample Y = y ∼ q(x, ·).

2. Draw
{
R

(i)
x,y

}M
i=1

satisfying (5.4) and Assumption 1.

3. Compute m̂y,x,M and τ̂2
x,y,M .

4. With probability min
{

1, R̃M (x, y)
}

, where R̃M is given by (5.15):

set Xi+1 = Y ;

otherwise:

set Xi+1 = x.

Since V [log (Vx,y)] = V [log (Rx,y)], a natural unbiased and consistent esti-

mator for τ2
x,y is obtained via the sample variance

τ̂2
x,y,M :=

1

M − 1

M∑
i=1

(
L(i)
x,y − L̄x,y,M

)2
, (5.16)

where L
(i)
x,y := log

(
R

(i)
x,y

)
for each i ∈ {1, . . . ,M} and

L̄x,y,M :=
1

M

M∑
j=1

L(j)
x,y.

In contrast, estimating mx,y is not always as straightforward as estimating τ2
x,y. In

the following section some examples for which mx,y is known or suitably approxi-

mated are explored. For our purposes, suitably approximated implies that the mean

absolute error of m̂x,y,M decays polynomially as a function of M−1 and the distance

‖y − x‖, as stated below.

Assumption 2. The estimator m̂x,y,M satisfies for some k ∈ N

E [|m̂x,y,M −mx,y|] . Pβ,γ
k

(
M−1, ‖y − x‖

)
,

where Pβ,γ
k (a, b) =

∑k
j=1 a

βjbγj , βj , γj ∈ R+
0 with βj +γj > 0 for all j ∈ {1, . . . , k},
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and

lim
a,b→0

b−2Pβ,γ
k (a, b) = 0.

The above assumption will be important for addressing some aspects of the

theoretical results presented in Section 5.4. In the following section, we explore

some examples for which Assumption 2 can be verified.

5.3 Examples

We consider four examples for which the Approximate Penalty Method (APM) in

Algorithm 5.1 is implemented. The first two, presented in Sections 5.3.1 and 5.3.2,

deal with special cases of noisy MH relying on estimates of the density of π, as in

(5.1). For the first one we will see that the log-normal assumption is not essential for

still obtaining accurate results. The second one assumes log-normality, but provides

a way for estimating mx,y for the implementation of the APM algorithm.

The last two examples, appearing in Section 5.3.3, deal with intractability

arising from large data sets, where sub-sampling approaches are considered. This

idea is not new and has been considered in the past, see e.g. Bardenet et al. (2015)

for a good overview. We only focus in two possible expressions for Rx,y under this

scenario, briefly discussing the trade-off arising from the choice of the sub-sample

size and the value of M (the number of estimators involved).

5.3.1 Homogeneous noise

When the noise of the estimates π̂x in (5.1) is homogeneous with respect to the state

space, i.e. when Wx ≡W ∼ Q (·) for all x ∈ X , then

mx,y = E [log (Wy)− log (Wx)] ≡ 0

for all (x, y) ∈ X 2.

Example 5.1. Consider a Gaussian target π on R and let

Q (dw) ∝ (1 + w)−(1+β)
1 (w > 0)µLeb (dw) ,

where β > 0.

In Figure 5.1, we can see that the APM may perform much better than the

corresponding pseudo-marginal. One interesting aspect of this example is that the
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APM provides a good approximation of the target density for small values of M ,

even when the noise variables W are not log-normally distributed and have infinite

variance. However, the homogeneous assumption on the weights {Wx} is difficult to

attain in practice.

5.3.2 Log-normal noise

If the distribution of Wx is concentrated around 1, the delta method may be a suit-

able approach for estimating E [log (Wx)]. Using a second order Taylor expansion,

E [log (Wx)] ≈ −1

2
E
[
(1−Wx)2

]
≈ −1

2
V [Wx] .

Similarly, with a first order approximation V [log (Wx)] ≈ V [Wx], implying

E [log (Wx)] ≈ −1

2
V [log (Wx)] .

In fact, when Wx has expectation 1 and is log-normally distributed the above ex-

pression becomes an equality.

Define Lx := log (π̂x) and let s2
x,M denote the sample variance of

{
L

(i)
x

}M
i=1

,

which follows a similar expression to (5.16). Although −1
2

(
s2
y,M − s2

x,M

)
is an

unbiased and consistent estimator of mx,y = −1
2

(
σ2
y − σ2

x

)
, its variance may be

large affecting drastically the ergodic properties of the resulting chain. Instead, a

better approach would be to estimate the difference σ2
y − σ2

x directly. Using Taylor

expansions,

σ2
y − σ2

x ≈ (y − x) · ∇σ2
x and σ2

x − σ2
y ≈ (x− y) · ∇σ2

y ,

leading to

σ2
y − σ2

x ≈
1

2
(y − x) ·

(
∇σ2

y +∇σ2
x

)
.

The aim is now to appropriately estimate the gradient of σ2
x.

Proposition 5.3. Let Lx = log (π̂x) be normally distributed and suppose an expres-

sion for ∇xLx is available. For a sample
{
L

(i)
x

}M
i=1

define

ds2
x,M := ∇xs2

x,M =
2

M − 1

M∑
i=1

[(
L(i)
x − L̄x,M

)
∇xL(i)

x

]
,
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Figure 5.1: Estimated densities of Example 5.1 where β = 1.1, using 1 million
iterations for the marginal (black), APM (red) and pseudo-marginal (blue) chains.
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where

L̄x,M :=
1

M

M∑
j=1

L(j)
x .

Then

ds2
x,M ∼

χ2
(M−1)

M − 1
∇σ2

x,

where χ2
d denotes a Chi-square distribution with d degrees of freedom.

Proof. Due to normality, Lx can be expressed as

Lx = log (π (x))− 1

2
σ2
x + σxξ,

where ξ ∼ N (0, 1). Then,

ds2
x,M =

2σx
M − 1

M∑
i=1

[(
ξ(i) − ξ̄

)(
∇ log (π (x))− 1

2
∇σ2

x + ξ(i)∇σx
)]

=
2σx∇σx
M − 1

M∑
i=1

[(
ξ(i) − ξ̄

)
ξ(i)
]

=
∇σ2

x

M − 1

[
M∑
i=1

(
ξ(i)
)2
−Mξ̄2

]

∼ ∇σ2
x

M − 1
χ2

(M−1).

Remark 5.3. In order for this approach to be useful, one relies on the availability

of ∇xLx. This is the case when π̂x is obtained via importance sampling, see e.g.

Andrieu and Roberts (2009).

One can then consider the following estimate

m̂x,y,M = −1

4
(y − x) ·

(
ds2
y,M + ds2

x,M

)
,

which satisfies Assumption 2, provided ∇σ2
x is bounded and the Hessian ∇2σ2

x is
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(component-wise) Lipschitz, since

E [|m̂x,y,M −mx,y|] ≤ E [|m̂x,y,M − Em̂x,y,M |] + |[Em̂x,y,M ]−mx,y|

≤
√

V [m̂x,y,M ] +
1

2

∣∣∣∣(σ2
y − σ2

x

)
− 1

2
(y − x) ·

(
∇σ2

y +∇σ2
x

)∣∣∣∣
≤

√
‖y − x‖2

8 (M − 1)

(∥∥∇σ2
y

∥∥2
+ ‖∇σ2

x‖
2
)

+
‖y − x‖2

8

∥∥∇2σ2
ρ1 −∇

2σ2
ρ2

∥∥
.
‖y − x‖√

M
+ ‖y − x‖2 ‖ρ1 − ρ2‖ .

‖y − x‖√
M

+ ‖y − x‖3 ,

where ρ1 and ρ2 lie on the segment joining x and y.

Example 5.2. Consider a Gaussian target π on R and let log (Wx) ∼ N
(
−1

2σ
2
x, σ

2
x

)
with

σ2
x = σ2 (1 + a sin (x)) ,

where |a| < 1. In this case we want to control the distance between the proposed

move y and the current state x. For doing this, we use a Gaussian random-walk

proposal q with variance δ2.

Table 5.1 presents estimated effective sample sizes (ESS) expressed as per-

centage, for different values of δ and M . The values coloured in red correspond to

the APM, whereas the values for the pseudo-marginal appear on the extreme left

column in blue. The estimated ESS for the marginal chain is presented on the top-

left cell of the table. Clearly, an increase of M results in an increase of the estimated

ESS, whereas decreasing the proposal standard deviation δ has the opposite effect.

12.66 M\δ δ0 = 2 δ0/2 δ0/2
2 δ0/2

3 δ0/2
4

0.13 M0 = 3 2.63 0.88 0.25 0.08 0.04

0.15 2M0 4.30 1.57 0.46 0.13 0.05

0.22 22M0 5.79 2.29 0.74 0.19 0.07

0.38 23M0 6.59 2.98 0.87 0.24 0.08

0.43 24M0 7.64 3.41 1.06 0.30 0.09

Table 5.1: Estimated effective sample size (ESS) of Example 5.2 (expressed as per-
centage) for the marginal (black), APM (red) and pseudo-marginal (blue) chains.
The proposal is δ0 = 2 for the marginal and pseudo-marginal chains.

However, there is a trade-off present when choosing δ and M , which is no-

ticeable from looking at Tables 5.2 and 5.3. These contain estimated values of the

mean squared errors (MSE) of the expected value and the 90th percentile, respec-
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tively, for the target distribution π. We observe how the APM may provide good

estimates in this setting for some values of δ and M . For instance, possible good

choices for δ are 0.5 or 0.25, together when M is 12 or 24 (italic bold numbers on

the tables). Here, the trade-off between the number of iterations and the choice of

δ is important. Taking smaller values of δ can improve the estimates but with the

cost of increasing the length of the chain.

0.01 M\δ δ0 = 2 δ0/2 δ0/2
2 δ0/2

3 δ0/2
4

0.70 M0 = 3 26.64 25.92 16.50 14.85 7.31

1.88 2M0 24.36 26.09 7.43 3.45 0.88

3.26 22M0 16.84 23.62 2.15 0.97 3.23

0.25 23M0 14.16 24.25 1.82 0.30 2.40

0.38 24M0 10.47 23.11 2.60 0.86 2.84

Table 5.2: Estimated mean squared error (MSE) of Example 5.2 (expressed in thou-
sands) of the expected value of π for the marginal (black), APM (red) and pseudo-
marginal (blue) chains. The proposal is δ0 = 2 for the marginal and pseudo-marginal
chains.

0.01 M\δ δ0 = 2 δ0/2 δ0/2
2 δ0/2

3 δ0/2
4

9.36 M0 = 3 58.38 44.80 59.13 67.95 62.60

0.64 2M0 28.66 8.64 5.31 2.75 4.03

0.58 22M0 21.28 3.73 0.20 2.48 5.40

0.37 23M0 17.12 2.23 0.17 0.44 1.43

0.57 24M0 13.12 1.52 0.17 0.45 4.29

Table 5.3: Estimated mean squared error (MSE) of Example 5.2 (expressed in thou-
sands) of the 90th percentile of π for the marginal (black), APM (red) and pseudo-
marginal (blue) chains. The proposal is δ0 = 2 for the marginal and pseudo-marginal
chains.

Finally in Figure 5.2, estimated densities for some values of δ and M are

shown. Specifically, we fix M = 12 and consider

δ ∈ {δ0 = 2, δ2 = δ0/2 = 0.5, δ4 = δ0/4 = 0.125} .

The lines of the estimated densities contain numbers which correspond to the value

of δ used in the simulation. Notice that the chains for δ2 and δ4 provide more

accurate estimates than the pseudo-marginal chain, the latter shown in blue colour.
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Figure 5.2: Estimated densities of Example 5.2 where M = 12, using 1 million
iterations for the marginal (black), APM (red) and pseudo-marginal (blue) chains.
Numbers indicate the subscript in δk, where δ0 = 2, δ2 = δ0/2

2 and δ4 = δ0/2
4.

5.3.3 Sub-sampling

A different type of intractability arises when dealing with large data sets, where

sub-sampling approaches may prove useful. Suppose we have i.i.d. observations

D = {Di}ni=1 coming from f (· |x); in a Bayesian framework the aim is to sample

from the posterior

π (x) = π (x |D ) ∝ p0 (x) exp {l (x |D )} ,

where p0 is the prior for the parameter x, and l is the log-likelihood function given

by

l (x |D ) :=
n∑
i=1

li (x) :=
n∑
i=1

log (f (Di |x)) .

Evaluating the above posterior may be difficult when n is very large; nevertheless,

a possible (approximate) solution is to take a random sub-sample
{
Dij

}k
j=1

at each

iteration of the MH algorithm. This idea is not new and has been studied extensively

in the past, see e.g. Korattikara et al. (2014), Quiroz et al. (2014) or Bardenet et al.

(2015) for a more complete review. For this case and considering a symmetric

proposal, the Metropolis-Hastings ratio can be estimated with the following naive
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estimator

R(I)
x,y =

p0 (y)

p0 (x)
exp

nk
k∑
j=1

[
lij (y)− lij (x)

] ,

which is a log-unbiased estimator of acceptance ratio r (x, y) since

E
[
log
(
R(I)
x,y

)]
= log

(
p0 (y)

p0 (x)

)
+
n

k
E

 k∑
j=1

(
lij (y)− lij (x)

)
= log

(
p0 (y)

p0 (x)

)
+
n

k

n∑
i=1

[li (y)− li (x)]E [1 (i ∈ {i1, . . . , ik})]

= log (r (x, y)) .

Therefore, for this case mx,y ≡ 0 and the implementation of the APM algorithm is

straightforward. We now present a very simple Gaussian example.

Remark 5.4. Throughout this section we only consider sub-sampling without re-

placement. However, for implementational purposes, one may prefer using sub-

samples with replacement.

Example 5.3. Consider observations {Di}ni=1, where Di
i.i.d∼ N

(
µ, σ2

0

)
with σ2

0

known and take a uniform prior for the parameter µ. The Metropolis ratio given by

r (µ, µ∗) = exp

{
− 1

2σ2
0

n∑
i=1

[
(Di − µ∗)2 − (Di − µ)2

]}
,

is estimated using a sub-sample
{
Dij

}k
j=1

via

R
(I)
µ,µ∗ = exp

− n

2kσ2
0

k∑
j=1

[(
Dij − µ∗

)2 − (Dij − µ
)2] .

Provided n is large and considering ‖µ− µ∗‖ = O
(
n−1/2

)
, which allows control over

the marginal acceptance, the variance τ2
µ,µ∗ = V

[
log
(
R

(I)
µ,µ∗

)]
satisfies for large n

τ2
µ,µ∗ ≈ ‖µ− µ∗‖

2 n
(n− k)

k
= O

(
n− k
k

)
.

This suggests taking kM ∝ n for controlling the acceptance rate of the penalty

method as n increases. Figure 5.3 shows the estimated densities when the product

kM is a fixed proportion of n. Notice there that the accuracy of the estimation will
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Figure 5.3: Estimated densities of Example 5.3 using n = 106 observations for the
marginal (black) and APM (red) chains. The values of k and M are such that
kM = n/10.

depend on how M and k are individually chosen.

It is possible to reduce the variability of R(I) using a control variate approach,

as done e.g. in Bardenet et al. (2015, Section 7.2), but sacrificing the log-unbiased

condition. By a Taylor expansion argument

l (y |D )− l (x |D ) ≈ (y − x) · ∇l (y |D ) +∇l (x |D )

2
,

and using a sub-sample
{
Dij

}k
j=1

, the gradient terms ∇l (· |D ) are estimated unbi-

asedly using

∇l (x̂ |D ) +
n

k

k∑
j=1

[
∇lij (·)−∇lij (x̂)

]
,

where x̂ is some reference point, e.g. the maximum likelihood estimator (MLE).

Hence, the acceptance ratio r (x, y) can be estimated using

R(II)
x,y =

p0 (y)

p0 (x)

× exp

(y − x) ·

∇l (x̂ |D ) +
n

k

k∑
j=1

[∇lij (y) +∇lij (x)

2
−∇lij (x̂)

] .
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For this case and assuming the Hessian ∇2l (x |D ) is (component-wise) Lipschitz,

|mx,y| =
∣∣∣E [log

(
R(II)
x,y

)]
− log (r (x, y))

∣∣∣
=

∣∣∣∣(y − x) · ∇l (y |D ) +∇l (x |D )

2
− (l (y |D )− l (x |D ))

∣∣∣∣
=

1

4

∣∣∣(y − x)T
[
∇2l (ρ1 |D )−∇2l (ρ2 |D )

]
(y − x)

∣∣∣
. ‖y − x‖2

∥∥∇2l (ρ1 |D )−∇2l (ρ2 |D )
∥∥ . ‖y − x‖3 ,

where ρ1 and ρ2 lie on the segment joining x and y. Therefore, Assumption 2 is

immediately satisfied by considering m̂x,y,M ≡ 0.

Notice that for Example 5.3, R
(II)
µ,µ∗ is in fact not random. This will not be

true in general, however R(II) can perform much better than R(I) in more complex

scenarios, provided a reference point x̂ is available. A logistic regression example is

now presented.

Example 5.4. Consider a set of observations {xi, yi}ni=1 , where xi ∈ R, yi ∈ {0, 1}
and for (β0, β1) ∈ R2

θi (β) := P [Yi = 1|xi, β0, β1] =
1

1 + exp {− (β0 + β1xi)}
.

Using uniform prior distributions for β0 and β1, the usual acceptance ratio is esti-

mated with a sub-sample
{
xij , yij

}k
j=1

by

R
(II)
β,β∗

= exp

(β∗ − β) ·

∇l (β̂ |y,x)+
n

k

k∑
j=1

[∇lij (β∗) +∇lij (β)

2
−∇lij

(
β̂
)] ,

where

l (· |y,x) =

n∑
i=1

li (·) =

n∑
i=1

[yi log (θi (·)) + (1− yi) log (1− θi (·))] .

Figure 5.4 shows the estimated densities for the parameter β1 and for different

values of k andM using usingR
(II)
β,β∗ . Even though kM � n, the method can perform

well with a much lower computational cost than a standard MH algorithm, the latter

requiring n = 106 evaluations at every iteration. In this example, the reference point

x̂ considered is the MLE, which was computed numerically in advance but with the

advantage of performing this step only once. Once more, notice from the plots the
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existing trade-off between k and M , where possibly larger values of M should always

be preferred in order for the CLT to kick in. More analysis on this trade-off is clearly

required.

5.4 Theoretical results

This section contains some theoretical results under fairly strong conditions on the

target π and the noise Vx,y from the estimator Rx,y in 5.4, contrasting with the

empirical findings of the examples in the previous section. We investigate the be-

haviour and ergodic properties of the APM chain as the proposal variance δ2 → 0

and the number of estimators M →∞.

For our analysis, let P̄M : X × B (X ) → [0, 1] and P̃M : X × B (X ) → [0, 1]

be the kernels associated to the chains generated by the penalty method and the

APM, with acceptance ratios R̄M and R̃M given by (5.15) and (5.14), respectively.

These are

P̄M (x, dy) := q (x, dy) ᾱM (x, y) + δx (dy)

[
1−

∫
X
q (x, dy) ᾱM (x, y)

]
and P̃M (x, dy) := q (x, dy) α̃M (x, y) + δx (dy)

[
1−

∫
X
q (x, dy) α̃M (x, y)

]
,

where

ᾱM (x, y) := E
[
min

{
1, R̄M (x, y)

}]
and α̃M (x, y) := E

[
min

{
1, R̃M (x, y)

}]
.

Assumption 2 involves the distance between the proposed moved y and

the current state x. Therefore, random-walk proposals are a natural choice for

controlling the estimator m̂x,y,M . Consider a family of random-walk proposals

{qn (x, ·)}(x,n)∈X×N, and for simplicity assume they are Gaussian. Here, Yn ∼
qn (x, ·) implies

Yn = x+ δnξ, (5.17)

where {δn}n is a decreasing sequence of positive terms converging to 0 as n → ∞
and ξ is an independent Gaussian random variable with mean E [ξ] = 0 and variance

E
[
ξ2
]

= 1.

The first main result of this section concerns with the weak convergence

towards a diffusion process of the sped-up of chain generated by the penalty method
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Figure 5.4: Estimated densities for β1 in Example 5.4 using n = 106 observations
for the marginal (black) and APM (red) chains. The different values for the product
kM are comparable among the two plots.
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kernel P̄M,n, for fixed M ∈ N and as n → ∞. Such diffusion depends on the

expression for τx,x, but when τx,x ≡ τ it reduces to the usual Langevin diffusion

satisfying

dW (t) =
1

2
γ∇ log (π (W (t))) dt+

√
γdB (t) , (5.18)

for some γ > 0 and where B (t) denotes standard Brownian motion. The analysis

of limiting diffusions for MCMC chains has been exploited before in the context of

scaling limits as the dimension of the state space X increases. This was initially

done in Roberts et al. (1997) which has led to several related publications, for

example Roberts and Rosenthal (2001), Bédard and Rosenthal (2008), Mattingly

et al. (2012) and Beskos et al. (2015) to name a few. In fact, the resulting diffusion

in the following theorem is also discussed in Beskos et al. (2015), where the authors

address the behaviour of the random-walk Metropolis algorithm when π concentrates

on a sub-manifold. Here we tackle a much simpler problem, assuming the state space

X = R and some conditions on the target π and noise Vx,y from the random ratio

Rx,y in (5.4). Recall from Section 5.2 the following three important variables

Lx,y = log (Rx,y) = log (r (x, y)) + log (Vx,y) ,

mx,y = E [log (Vx,y)] and τ2
x,y = V [log (Vx,y)] = V [Lx,y] .

Assumption 3. supx,y E
[
(Lx,y − E [Lx,y])

4
]
<∞ and infx,y τ

2
x,y > 0.

Assumption 4. The function τ2
x,y : X 2 → R+ and target density π (x) on R satisfy:

1. τ2
x,y ∈ C2

(
R2
)

with bounded 1st and 2nd order partial derivatives;

2. log (π (x)) ∈ C2 (R) with bounded 1st and 2nd derivatives.

Theorem 5.3. Set T > 0, M ∈ N and let
{
X̄M,n (k)

}
k≥0

be the discrete-time

Markov chain generated by P̄M,n with proposal distribution qn. If X̄M,n (0) ∼ µ (·)
and under Assumptions 3 and 4, the continuous-time process

X̄M,n (t) := X̄M,n

(⌊
tδ−2
n

⌋)
converges weakly as n → ∞, in the Skorokhod topology on D ([0, T ] ,R), to the dif-

fusion process {WM (t)}t∈[0,T ] satisfying{
dWM (t) = 1

2bM (WM (t)) dt+
√
aM (WM (t))dB (t)

WM (0) ∼ µ (·) ,
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where

aM (x) = 2Φ

(
− τx,x

2
√
M

)
and bM (x) = ∇aM (x) + aM (x)∇ log (π (x)) .

See Appendix C for a brief review of the Skorokhod topology on D ([0, T ] ,R).

Nevertheless, the accuracy of the APM relies on increasing M . The following result

shows that the sped-up chain generated by the APM with kernel P̃M,n also converges

to a diffusion limit, as both M,n → ∞ in a suitable way. Looking back at the

previous result and taking M → ∞, a correct guess for such limit is the Langevin

diffusion satisfying (5.18) with γ = 1.

Theorem 5.4. Set T > 0 and let
{
X̃n (k)

}
k≥0

be the discrete-time Markov chain

generated by P̃M,n with proposal qn and where M = Mn is such that Mnδ
4
n →∞ as

n → ∞. If X̃n (0) ∼ µ (·) and under Assumptions 2, 3 and 4, the continuous-time

process

X̃n (t) := X̃n

(⌊
tδ−2
n

⌋)
converges weakly as n → ∞, in the Skorokhod topology on D ([0, T ] ,R), to the dif-

fusion process {W (t)}t∈[0,T ] satisfying

{
dW (t) = 1

2∇ log (π (W (t))) dt+ dB (t)

W (0) ∼ µ (·) .

The above result provides some information on the relationship between M

and δn, although it appears to be quite restrictive for practical purposes. For in-

stance, halving the value of the proposal variance δ2 not only suggests doubling the

length of the chain, but also taking a new M greater than 4 times the original value,

as the relationship Mnδ
2
n →∞ indicates.

Even though the corresponding limiting diffusions of the APM chain and

marginal chain converge for a fixed time horizon T , this does not imply the APM

chain is even positive recurrent. We now address the existence of an invariant

distribution for the kernel P̃M,n, this is done via geometric ergodicity. From Theorem

5.2, we know that the chain generated by the penalty method kernel P̄M,n inherits

geometric ergodicity from the marginal chain if supx,y τ
2
x,y < ∞. This implies, by

Theorem 2.3, that there exists a function VM,n ≥ 1, λM,n < 1, bM,n < ∞ and a
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small set SM,n ⊆ X such that the following drift condition holds

P̄M,nVM,n (x) ≤ λM,nVM,n (x) + bM,n1 (x ∈ SM,n) , for all x ∈ X .

The idea is to prove a similar condition for P̃M,n for large enough n and M . However,

this becomes a difficult task unless we know VM,n, λM,n, bM,n and SM,n explicitly,

or unless we have uniform control over them. Under some conditions, the latter

approach is feasible allowing us to prove the inheritance of geometric ergodicity

from the marginal chain with kernel Pn, provided M and n are large.

Assumption 5. The target density π (x) is continuous, positive, symmetric and

β-log-concave in the tails. The latter meaning there are x∗ > 0 and β > 0 such that

for all y ≥ x ≥ x∗ and y ≤ x ≤ −x∗

log (π (x))− log (π (y)) ≥ β |x− y| .

Theorem 5.5. Suppose Assumptions 2, 3 and 5 hold. For n sufficiently large,

there exists Mn ∈ N such that the class of kernels
{
Pn, P̃Mn,n, P̃Mn+1,n, . . .

}
is

simultaneously geometrically ergodic.

Of course, geometric ergodicity guarantees the existence of a noisy invariant

π̃M,n if M and n are large enough. As done in Section 3.3.2 for obtaining (3.14),

the simultaneous geometric ergodicity property from the above theorem implies the

existence of Rn <∞ and τn < 1 such that for any k ∈ N

‖π̃M,n(·)− π(·)‖TV ≤ Rnτkn + k sup
x∈X
‖P̃M,n(x, ·)− Pn(x, ·)‖TV . (5.19)

In this case, one can show

sup
x∈X
‖P̃M,n(x, ·)− Pn(x, ·)‖TV . Pβ,γ

k

(
M−1, δn

)
+M−1/2,

and under some conditions for Rn and τn the invariants will converge in total vari-

ation.

Theorem 5.6. Suppose Assumptions 2, 3 and 5 hold. If n is sufficiently large,

there are Mn ∈ N, Rn < ∞ and τn < 1 such that if M ≥ Mn the invariants π̃M,n

and π satisfy

‖π̃M,n(·)− π(·)‖TV ≤
1 + log

(
rn (M) log

(
τ−1
n

)
Rnτ

−1
n

)
rn (M) log

(
τ−1
n

) ,
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where rn (M)−1 ∝Pβ,γ
k

(
M−1, δn

)
+M−1/2. Additionally, if

lim
M,n→∞

log (Rn)

rn (M) log
(
τ−1
n

) → 0, (5.20)

then

lim
M,n→∞

‖π̃M,n(·)− π(·)‖TV = 0.

In practice, showing (5.20) holds may be challenging. Under some additional

conditions, one could possibly obtain explicit expressions for Rn and τn as done in

Rosenthal (1995). However this is not attempted here.

Finally, notice that Assumptions 3, 4 and 5 are fairly strong, but they were

chosen in this way for clarity and simplicity in the proofs of the previous theorems.

We envisage that many of the aforementioned assumptions could be relaxed, allowing

us to obtain similar results for more complicated targets on Rd. We finish this

chapter with a set of technical results, leading to the proofs of the above theorems.

5.4.1 Bounds on the acceptance probabilities

This section provides some bounds for the acceptance probability α̃M in terms of

the penalty method acceptance ᾱM and the marginal acceptance α. These bounds

will be useful in the following sections since they provide enough control on the

dissimilarity between the various chains considered. In order to do so, let P̌M :

X × B (X ) → [0, 1] be the kernel of the chain generated using the acceptance ratio

R̄M in (5.14), but without the log-normality assumption. To avoid confusion, let

ŘM denote such acceptance ratio, i.e.

ŘM (x, y) =

(
M∏
i=1

R(i)
x,y

)1/M

exp

{
my,x −

1

2M
τ2
x,y

}
,

where
{
R

(i)
x,y

}
i

are not necessarily log-normally distributed. Therefore,

P̌M (x, dy) := q (x, dy) α̌M (x, y) + δx (dy)

[
1−

∫
X
q (x, dy) α̌M (x, y)

]
,

where

α̌M (x, y) := E
[
min

{
1, ŘM (x, y)

}]
.
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The following result bounds ᾱM in terms of the marginal acceptance α.

Corollary 5.3. The acceptance probability ᾱM satisfies

ᾱM (x, y) = Φ

(
log (r (x, y))− 1

2M τ
2
x,y

τx,y/
√
M

)
+ r (x, y) Φc

(
log (r (x, y)) + 1

2M τ
2
x,y

τx,y/
√
M

)
,

with partial derivative

∂

∂y
ᾱM (x, y) = r (x, y)∇ log π (y) Φc

(
log (r (x, y)) + 1

2M τ
2
x,y

τx,y/
√
M

)

− 1√
M

∂

∂y
(τx,y)φ

(
log (r (x, y))− 1

2M τ
2
x,y

τx,y/
√
M

)
.

Additionally, the acceptance probabilities ᾱM and α satisfy

2Φ

(
− τx,y

2
√
M

)
α (x, y) ≤ ᾱM (x, y) ≤ α (x, y) .

Proof. The expression for ᾱM and the bounds in terms of α follow from Remark 5.1

and Lemma 5.1 respectively, by considering τx,y/
√
M instead of τx,y. The expression

for the partial derivative follows from direct calculations.

The next two lemmas provide bounds for the difference between α̌M and ᾱM ,

and between α̃M and α̌M . These results will be useful later on for addressing the

proofs of Theorems 5.4, 5.5 and 5.6.

Lemma 5.2. Under Assumption 3, the acceptance probabilities α̌M and ᾱM satisfy

sup
(x,y)∈X 2

|α̌M (x, y)− ᾱM (x, y)| .M−1/2.

Proof. Using Jensen’s inequality,

|α̌M (x, y)− ᾱM (x, y)|

=
∣∣E [min

{
1, ŘM (x, y)

}]
− E

[
min

{
1, R̄M (x, y)

}]∣∣
=

∣∣∣∣∫ 1

0

(
P
[
u < ŘM (x, y)

]
− P

[
u < R̄M (x, y)

])
du

∣∣∣∣
≤
∫ 1

0

∣∣P [u < ŘM (x, y)
]
− P

[
u < R̄M (x, y)

]∣∣ du.
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From the expressions of ŘM and R̄M

P
[
u < ŘM (x, y)

]
= P

[
log (u) +

1

2M
τ2
x,y < L̄x,y,M −mx,y

]
= P

[
log (u) +

1

2M
τ2
x,y − log (r (x, y)) < L̄x,y,M − E [Lx,y]

]
= P

[
L̄x,y,M − E [Lx,y]

τx,y/
√
M

>
log (u) + 1

2M τ
2
x,y − log (r (x, y))

τx,y/
√
M

]
,

and

P
[
u < R̄M (x, y)

]
= P

[
log (u) +

1

2M
τ2
x,y <

τx,y√
M
ξ + log (r (x, y))

]
= Φc

(
log (u) + 1

2M τ
2
x,y − log (r (x, y))

τx,y/
√
M

)
.

Hence, by the Berry-Esseen Theorem

∣∣P [u < ŘM (x, y)
]
− P

[
u < R̄M (x, y)

]∣∣
≤ sup

w∈R

∣∣∣∣∣P
[
L̄x,y,M − E [Lx,y]

τx,y/
√
M

≤ w

]
− Φ (w)

∣∣∣∣∣
.

E
[
|Lx,y − E [Lx,y]|3

]
τ3
x,y

√
M

,

implying

sup
x,y
|α̌M (x, y)− ᾱM (x, y)| .M−1/2

supx,y E
[
|Lx,y − E [Lx,y]|3

]
infx,y τ3

x,y

.

Lemma 5.3. Under Assumptions 2 and 3 the acceptance probabilities α̃M and α̌M

satisfy

|α̃M (x, y)− α̌M (x, y)| . Pβ,γ
k

(
M−1, |y − x|

)
+M−3/2.

Proof. Since the function g(x) = min {1, exp {x}} is Lipschitz with coefficient equal

to 1,
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|α̃M (x, y)− α̌M (x, y)| ≤ E
[∣∣∣min

{
1, R̃M (x, y)

}
−min

{
1, ŘM (x, y)

}∣∣∣]
≤ E

[∣∣∣log
(
R̃M (x, y)

)
− log

(
ŘM (x, y)

)∣∣∣]
≤ E [|m̂x,y,M −mx,y|] +

1

2M
E
[∣∣τ̂2

x,y,M − τ2
x,y

∣∣] .
By Assumption 2

E [|m̂x,y,M −mx,y|] . Pβ,γ
k

(
M−1, |y − x|

)
,

and using Assumption 3

E
[∣∣τ̂2

x,y,M − τ2
x,y

∣∣] ≤ (V [τ̂2
x,y,M

])1/2 ≤M−1/2 sup
x,y

E
[
(Lx,y − E [Lx,y])

4
]

.M−1/2.

Therefore

|α̃M (x, y)− α̌M (x, y)| . Pβ,γ
k

(
M−1, |y − x|

)
+M−3/2,

as required.

The lemma appearing below provides a relationship between the approximate

acceptance α̃M and the marginal acceptance α. This result will be useful for showing

compact sets are small for the APM chain.

Lemma 5.4. Under Assumptions 2 and 3 there exists C > 0 such that the accep-

tance probabilities α̃M and α satisfy

α̃M (x, y) ? α (x, y) exp
{
−CPβ,γ

k

(
M−1, |y − x|

)}
.

Proof. Applying the inequality min {1, ab} ≥ min {1, a}min {1, b} and Jensen’s in-
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equality in that order,

α̃M (x, y)

α (x, y)
≥ E

[
min

{
1, exp

{
1

M

M∑
i=1

log
(
V (i)
x,y

)
+ m̂y,x,M −

1

2M
τ̂2
x,y,M

}}]

≥ E

[
exp

{
− 1

M

M∑
i=1

∣∣∣log
(
V (i)
x,y

)
−mx,y

∣∣∣− |mx,y − m̂x,y,M | −
1

2M
τ̂2
x,y,M

}]

≥ exp

{
− 1

M

M∑
i=1

E
[∣∣∣log

(
V (i)
x,y

)
−mx,y

∣∣∣]− 1

2M
E
[
τ̂2
x,y,M

]}
× exp {−E [|mx,y − m̂x,y,M |]} .

By Assumption 3

E [|log (Vx,y)−mx,y|] ≤ sup
x,y

E [|Lx,y − E [Lx,y]|] <∞,

and

E
[
τ̂2
x,y,M

]
= τ2

x,y ≤ sup
x,y

E
[
(Lx,y − E [Lx,y])

2
]
<∞.

Therefore, using Assumption 2, there exists C > 0 such that

α̃M (x, y)

α (x, y)
& exp {−E [|mx,y − m̂x,y,M |]}

≥ exp
{
−CPβ,γ

k

(
M−1, |y − x|

)}
.

5.4.2 Proofs of Theorems 5.3 and 5.4

Proof of Theorem 5.3. In order to prove weak convergence, we need to show that

the convergence of the finite-dimensional distributions and relative compactness

hold. This is done by showing convergence of the corresponding generators in an

appropriate sense. For the first task, we rely on Ethier and Kurtz (2008, Chapter

4, Theorem 8.2), where equations (8.8)-(8.11) must be satisfied.

Equation (8.8). We need to prove

sup
n

sup
t≤T

E |ςM,n (t)| <∞, (5.21)

where

ςM,n (t) := δ−2
n

∫ δn

0
E
[
ψ
(
X̄M,n (t+ s)

) ∣∣X̄M,n (t)
]
ds,
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and ψ belonging to the core of the generator of WM . From Ethier and Kurtz (2008,

Chapter 8, Theorem 2.1) and under Assumptions 3 and 4, the set of smooth and

compactly supported functions, denoted by C∞c , is a suitable core; hence (5.21) is

immediately satisfied.

Equation (8.11). As noted in Ethier and Kurtz (2008, Chapter 4, Remark

8.3 (a)), it suffices to show

lim
n→∞

E
∣∣GM,nψ

(
X̄M,n (t)

)
− GMψ

(
X̄M,n (t)

)∣∣ = 0, (5.22)

where GM,n and GM are the generators of X̄M,n and WM , respectively, given by

GM,nψ (x) := δ−2
n E

[
ψ
(
X̄M,n

(
t+ δ2

n

))
− ψ

(
X̄M,n (t)

) ∣∣X̄M,n (t) = x
]
,

GMψ (x) :=
1

2

[
bM (x)ψ′ (x) + aM (x)ψ′′ (x)

]
.

Set k =
⌊
tδ−2
n

⌋
and notice that X̄M,n (t) = X̄M,n (k) and X̄M,n

(
t+ δ2

n

)
= X̄M,n (k + 1),

which implies

GM,nψ
(
X̄M,n (t)

)
= GM,nψ

(
X̄M,n (k)

)
= δ−2

n E
[(
ψ
(
Y (k+1)
n

)
− ψ

(
X̄M,n (k)

))
ᾱM

(
X̄M,n (k) , Y (k+1)

n

) ∣∣X̄M,n (k)
]
,

where Y
(k+1)
n ∼ qn

(
X̄M,n (k) , ·

)
. Take x ∈ supp (ψ) and for simplicity let αx,M (y) :=

ᾱM (x, y), then using a Taylor expansion for ψ and αx,M (y)

(ψ (y)− ψ (x))αx,M (y)

= ψ′ (x) (y − x)
(
αx,M (x) + α′x,M (x) (y − x)

)
+

1

2
ψ′′ (x)αx,M (x) (y − x)2

+ (y − x)3

(
1

6
ψ′′′
(
ρ(1)
)
αx,M (y) +

1

2
ψ′′ (x)α′x,M

(
ρ(2)
)

+
1

2
ψ′ (x)α′′x,M

(
ρ(3)
))

,

where ρ(i) ∈ (x, y) ∪ (y, x) for all i ∈ {1, 2, 3}. For Yn as in (5.17),

GM,nψ (x) = δ−2
n E [(ψ (Yn)− ψ (x))αx,M (Yn)]

= α′x,M (x)ψ′ (x) +
1

2
αx,M (x)ψ′′ (x) +

1

6
δnE

[
ξ3ψ′′′

(
ρ(1)
n

)
αx,M (Yn)

]
+

1

2
δnψ

′′ (x)E
[
ξ3α′x,M

(
ρ(2)
n

)]
+

1

2
δnψ

′ (x)E
[
ξ3α′′x,M

(
ρ(3)
n

)]
.

(5.23)

Now, from Corollary 5.3 αx,M (x) = aM (x), α′x,M (x) = 1
2bM (x) and under Assump-
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tions 3 and 4 it is not difficult to show

sup
x∈supp(ψ)

∣∣∣α′x,M (ρ(2)
n

)∣∣∣ . 1 and sup
x∈supp(ψ)

∣∣∣α′′x,M (ρ(3)
n

)∣∣∣ .M1/2 (1 + δn |ξ|) ,

implying

sup
x∈supp(ψ)

|GM,nψ (x)− GMψ (x)| . δnM
1/2.

Additionally, if x /∈ supp (ψ) then GMψ (x) ≡ 0 and

(ψ (y)− ψ (x))αx,M (y) =
1

6
ψ′′′ (ρ) (y − x)3 αx,M (y) ,

which directly implies

sup
x/∈supp(ψ)

|Gnψ (x)− Gψ (x)| . δn.

Therefore,

∣∣GM,nψ
(
X̄M,n (t)

)
− GMψ

(
X̄M,n (t)

)∣∣ . δnM
1/2 (5.24)

and (5.22) follows since M is fixed.

Equation (8.9). We must show

sup
n

sup
t≤T

E
∣∣GM,nψ

(
X̄M,n (t)

)∣∣ <∞. (5.25)

From (5.24) and using the triangle inequality

∣∣GM,nψ
(
X̄M,n (t)

)∣∣ ≤ ∣∣GM,nψ
(
X̄M,n (t)

)
− GMψ

(
X̄M,n (t)

)∣∣+
∣∣GMψ (X̄M,n (t)

)∣∣
. δnM

1/2 +
∣∣GMψ (X̄M,n (t)

)∣∣ .
Since GMψ (x) ≡ 0 for x /∈ supp (ψ), then

|GMψ (x)| .

(
sup

x∈supp(ψ)
|bM (x)|+ 1

)
,

implying

sup
x
|GM,nψ (x)| .M1/2. (5.26)
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Condition in (5.25) follows immediately since M is fixed.

Equation (8.10). Also from Ethier and Kurtz (2008, Chapter 4, Remark

8.3 (a)), it suffices to show

lim
n→∞

E
∣∣ςM,n (t)− ψ

(
X̄M,n (t)

)∣∣ = 0. (5.27)

First notice that X̄M,n (t+ s) = X̄M,n (t) for s ∈
[
0, δ2

n

)
, hence for any s ∈

[
0, δ2

n

]
∣∣E [ψ (X̄M,n (t+ s)

)
− ψ

(
X̄M,n (t)

) ∣∣X̄M,n (t)
]∣∣

≤
∣∣E [ψ (X̄M,n

(
t+ δ2

n

))
− ψ

(
X̄M,n (t)

) ∣∣X̄M,n (t)
]∣∣ = δ2

n

∣∣GM,nψ
(
X̄M,n (t)

)∣∣ .
Thus,

∣∣ςM,n (t)− ψ
(
X̄M,n (t)

)∣∣ =

∣∣∣∣∣δ−2
n

∫ δ2n

0
E
[
ψ
(
X̄M,n (t+ s)

)
− ψ

(
X̄M,n (t)

) ∣∣X̄M,n (t)
]
ds

∣∣∣∣∣
≤ δ−2

n

∫ δ2n

0

∣∣E [ψ (X̄M,n (t+ s)
)
− ψ

(
X̄M,n (t)

) ∣∣X̄M,n (t)
]∣∣ ds

≤ δ2
n

∣∣GM,nψ
(
X̄M,n (t)

)∣∣ .
Finally, from (5.26)

∣∣ςM,n (t)− ψ
(
X̄M,n (t)

)∣∣ . δ2
nM

1/2, (5.28)

and (5.27) follows since M is fixed.

To prove relative compactness we use Ethier and Kurtz (2008, Chapter 4,

Corollary 8.6), where equations (8.33) and (8.34) must be satisfied.

Equation (8.33). We must show

lim
n→∞

E

[
sup
t≤T

∣∣ςM,n (t)− ψ
(
X̄M,n (t)

)∣∣] = 0, (5.29)

which is immediate since (5.28) implies

sup
t≤T

∣∣ςM,n (t)− ψ
(
X̄M,n (t)

)∣∣ . δ2
nM

1/2.

Equation (8.34). We need to prove for some p > 1
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sup
n

E

[(∫ T

0

∣∣GM,nψ
(
X̄M,n (t)

)∣∣p dt)1/p
]
<∞, (5.30)

which follows directly from (5.26).

Remark 5.5. From the previous proof, notice that the result is obtained if the fol-

lowing sufficient condition holds

lim
n→∞

sup
x
|GM,nψ (x)− GMψ (x)| = 0.

If instead M increases as δn decreases, the corresponding limiting process

is the usual Langevin diffusion satisfying (5.18) with γ = 1. The following lemma

states such result.

Lemma 5.5. Set T > 0 and let
{
X̄n (k)

}
k≥0

be the discrete-time Markov chain

generated by P̄M,n with proposal qn and where M = Mn is such that Mnδ
2
n →∞ as

n → ∞. If X̄M,n (0) ∼ µ (·) and under Assumptions 3 and 4, the continuous-time

process

X̄n (t) := X̄n

(⌊
tδ−2
n

⌋)
converges weakly as n → ∞, in the Skorokhod topology on D ([0, T ] ,R), to the dif-

fusion process {W (t)}t∈[0,T ] satisfying

{
dW (t) = 1

2∇ log (π (W (t))) dt+ dB (t)

W (0) ∼ µ (·) .

Proof. The proof requires showing similar expressions of equations (5.21)-(5.30),

although now M needs to be considered as a function of n. Using Remark 5.5, it

suffices to show

lim
n→∞

sup
x
|Gnψ (x)− Gψ (x)| = 0,

where Gn and G are given by

Gnψ (x) := δ−2
n E

[
ψ
(
X̄n
(
t+ δ2

n

))
− ψ

(
X̄n (t)

) ∣∣X̄n (t) = x
]
, (5.31)

Gψ (x) :=
1

2

[
∇ log (π (x))ψ′ (x) + ψ′′ (x)

]
.
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Similarly to (5.23), a Taylor series expansion for ψ and αx,M (y) gives

Gnψ (x) = δ−2
n E [(ψ (Yn)− ψ (x))αx,M (Yn)]

= E
[
ξ2E

[
α′x,M (x+ δnξU)

∣∣ ξ]]ψ′ (x) +
1

2
αx,M (x)ψ′′ (x)

+
1

6
δnαx,M (x)E

[
ξ3ψ′′′

(
ρ(1)
n

)]
+

1

2
δnE

[
ξ3ψ′′

(
ρ(3)
n

)
α′x,M

(
ρ(2)
n

)]
,

where U is an independent uniform random variable coming from the integral form

of the remainder. As before, αx,M (x) = aM (x) and

sup
x∈supp(ψ)

∣∣∣α′x,M (ρ(2)
n

)∣∣∣ . 1,

which implies

supx∈supp(ψ) |Gnψ (x)− Gψ (x)|
. supx∈supp(ψ)

∣∣∣E [ξ2α′x,M (x+ δnξU)
]
− 1

2∇ log (π (x))
∣∣∣

+ supx∈supp(ψ) |aM (x)− 1|+ δn,

(5.32)

Additionally, if x /∈ supp (ψ) then Gψ (x) ≡ 0 and

(ψ (y)− ψ (x))αx,M (y) =
1

6
ψ′′′ (ρ) (y − x)3 αx,M (y) ,

which directly implies

sup
x/∈supp(ψ)

|Gnψ (x)− Gψ (x)| . δn.

The proof reduces to show the right hand side of the inequality (5.32) goes

to zero. Using a Taylor expansion for aM (x) in terms of M−1/2

sup
x∈supp(ψ)

|aM (x)− 1| = sup
x∈supp(ψ)

|aM (x)− a∞(x)| .M−1/2.

Respecting the other term, looking back at the analytic expression for α′x,M (t) in

Corollary 5.3 and under the assumptions for π, it is enough to show

lim
n→∞

sup
x∈supp(ψ)

∣∣∣∣∣∇ log π (x)

(
E

[
ξ2Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)]
− 1

2

)∣∣∣∣∣ = 0,

(5.33)

where Tn = x+ δnξU with ξ and U independent.
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Take ε > 0 and define Aε := {x ∈ supp (ψ) : |∇ log π (x)| > ε}, then

sup
x∈supp(ψ)\Aε

|∇ log π (x)| ≤ ε. (5.34)

Since supp (ψ) is compact and ∇ log π is continuous, there exists γ > 0 (independent

of x) such that for any x ∈ Aε and any z such that|z − x| < γ

∇ log π (z) ≥ ε

2
or ∇ log π (z) ≤ −ε

2
.

We only deal with the latter case, the proof of the former is similar. If Yn ∈ (x, x+ γ)

there exists Zn ∈ (x, Tn) ⊆ (x, Yn) such that

Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)
= Φc

(
∇ log π (Zn) (Tn − x) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)

= Φ

(
|∇ log π (Zn)| δnξU − 1

2M τ
2
x,Tn

τx,Tn/
√
M

)
≥ Φ

(√
Mδn

εξU

2τ̄
− 1

2
√
M
τ̄

)
,

where τ̄ := supx,y τx,y. If instead Yn ∈ (x− γ, x), then Zn ∈ (Tn, x) ⊆ (Yn, x) and

Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)
= Φ

(
|∇ log π (Zn)| δnξU − 1

2M τ
2
x,Tn

τx,Tn/
√
M

)

= Φc

(
|∇ log π (Zn)| δn |ξ|U + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)
≤ Φc

(√
Mδn

ε |ξ|U
2τ̄

)
.

Consequently, recalling that Yn = x+ δnξ,

sup
x∈Aε

∣∣∣∣∣E
[
ξ2Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)]
− 1

2

∣∣∣∣∣ ≤ E
[
ξ21

(
|ξ| ≥ γ

δn

)]
+ E

[
ξ2Φc

(√
Mδn

ε |ξ|U
2τ̄

)
1

(
− γ

δn
< ξ < 0

)]
+

(
1

2
− E

[
ξ2Φ

(√
Mδn

εξU

2τ̄
− 1

2
√
M
τ̄

)
1

(
0 < ξ <

γ

δn

)])
,

which implies by the Dominated Convergence Theorem, assuming Mnδ
2
n →∞,

lim
n→∞

sup
x∈Aε

∣∣∣∣∣E
[
ξ2Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)]
− 1

2

∣∣∣∣∣ = 0. (5.35)
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Therefore, from (5.34) and (5.35)

lim
n→∞

sup
x∈supp(ψ)

∣∣∣∣∣∇ log π (x)

(
E

[
ξ2Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)]
− 1

2

)∣∣∣∣∣
. lim

n→∞
sup
x∈Aε

∣∣∣∣∣E
[
ξ2Φc

(
log (r (x, Tn)) + 1

2M τ
2
x,Tn

τx,Tn/
√
M

)]
− 1

2

∣∣∣∣∣
+ lim
n→∞

sup
x∈supp(ψ)\Aε

|∇ log π (x)| . ε,

and (5.33) holds since ε can be taken arbitrarily small.

Thus,

lim
n→∞

sup
x
|Gnψ (x)− Gψ (x)| = 0 (5.36)

as required.

Finally, we are in shape for proving Theorem 5.4.

Proof of Theorem 5.4. As before, it suffices to show

lim
n→∞

sup
x

∣∣∣G̃nψ (x)− Gψ (x)
∣∣∣ = 0,

where G̃n and G are given by

G̃nψ (x) := δ−2
n E

[
ψ
(
X̃n
(
t+ δ2

n

))
− ψ

(
X̃n (t)

) ∣∣∣X̃n (t) = x
]
,

Gψ (x) :=
1

2

[
∇ log (π (x))ψ′ (x) + ψ′′ (x)

]
.

Consider Gn as in (5.31), then∣∣∣G̃nψ (x)−Gnψ (x)
∣∣∣

= δ−2
n |E [(ψ (Yn)− ψ (x)) (α̃M (x, Yn)− ᾱM (x, Yn))]|

. δ−2
n E |α̃M (x, Yn)− ᾱM (x, Yn)|

. δ−2
n (E |α̃M (x, Yn)− α̌M (x, Yn)|+ E |α̌M (x, Yn)− ᾱM (x, Yn)|) ,

where Yn is given by (5.17). By Lemmas 5.2 and 5.3
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|α̃M (x, y)− α̌M (x, y)|+ |α̌M (x, y)− ᾱM (x, y)|

. Pβ,γ
k

(
M−1, |y − x|

)
+M−1/2,

leading to

sup
x

∣∣∣G̃nψ (x)−Gnψ (x)
∣∣∣ . δ−2

n

(
E
[
Pβ,γ
k

(
M−1, δn |ξ|

)]
+M−1/2

)
. δ−2

n Pβ,γ
k

(
M−1, δn

)
+ δ−2

n M−1/2.

Therefore, by the triangle inequality and using (5.36)

lim
n→∞

sup
x

∣∣∣G̃nψ (x)− Gψ (x)
∣∣∣ ≤ lim

n→∞
sup
x

∣∣∣G̃nψ (x)−Gnψ (x)
∣∣∣

+ lim
n→∞

sup
x
|Gnψ (x)− Gψ (x)| . lim

n→∞
δ−2
n Pβ,γ

k

(
M−1
n , δn

)
+ lim
n→∞

δ−2
n M−1/2

n = 0,

as required.

5.4.3 Proofs of Theorems 5.5 and 5.6

We first look at the marginal kernel Pn which, under some assumptions, satisfies a

geometric drift condition as in (2.7) with uniform V , b and S. The term λn will

converge to 1 as n → ∞, but an explicit rate of convergence can be obtained that

will prove useful. Before such result, a technical lemma is proved involving the

standard Gaussian cumulative distribution function Φ.

Proposition 5.4. Consider x ∈ [0, 1], then∣∣∣∣exp

{
1

2
x2

}
Φc (x)−

(
1

2
− x√

2π
+
x2

4

)∣∣∣∣ ≤ x3.

Proof. Set

f (x) := exp

{
1

2
x2

}
Φc (x) ,

a Taylor expansion around 0 gives

f (x) =
1

2
− x√

2π
+
x2

4
+
x3

6
f ′′′ (ξ) ,
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where ξ ∈ (0, x). The result is obtained by noting that for x ∈ [0, 1]

∣∣f ′′′ (ξ)∣∣ =

∣∣∣∣f (ξ)
(
3ξ + ξ3

)
− 2 + ξ2

√
2π

∣∣∣∣ ≤ 1

2
exp

{
1

2
x2

}(
3x+ x3

)
+

2 + x2

√
2π

≤ 6.

Lemma 5.6. Suppose Assumption 5 holds, then for any n ∈ N there are λn > 0,

b <∞ and x∗ > 0, such that the kernel Pn satisfies the following condition

PnV (x) ≤ λnV (x) + b1 (x ∈ S) ,

where S = {x : |x| ≤ x∗} and V (x) = exp
{
β
2 |x|

}
. Moreover, as δn → 0

λn = 1− β2δ2
n

8
+O

(
δ3
n

)
.

Proof. Let φn denote the density of a Gaussian distribution with mean 0 and vari-

ance δ2
n. From the proof of Mengersen and Tweedie (1996, Theorem 3.2) there are

x∗ > 0 and C∗ <∞, independent of n, such that if x > x∗

λx,n :=
PnV (x)

V (x)

≤ 1−
∫ x

0

(
1− exp

{
−β

2
z

})2

φn (dz) + 2Φc

(
x

δn

)
≤ 1−

∫ ∞
0

(
1− exp

{
−β

2
z

})2

φn (dz) + 3Φc

(
x∗

δn

)
=: λn,

and

λx,n ≤ C∗

whenever 0 ≤ x ≤ x∗. Hence, due to symmetry,

PnV (x) = λx,nV (x)

≤ V (x) (λn1 (|x| > x∗) + C∗1 (|x| ≤ x∗))

≤ λnV (x) + C∗V (x)1 (|x| ≤ x∗)

≤ λnV (x) + C∗V (x∗)1 (|x| ≤ x∗) .
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Now, notice that∫ ∞
0

exp {−sz}φn (dz) = exp

{
1

2
s2δ2

n

}
Φc (sδn) ,

implying

λn ≤ 1−
(

1

2
− 2 exp

{
1

2

(
β2δ2

n

4

)}
Φc

(
βδn
2

)
+ exp

{
1

2
β2δ2

n

}
Φc (βδn)

)
+ o

(
δ3
n

)
.

Thus, by Proposition 5.4 and taking δn ≤ β−1

λn ≤ 1−

(
(βδn)2

4
− (βδn)2

8

)
+O

(
δ3
n

)
= 1− β2δ2

n

8
+O

(
δ3
n

)
.

The penalty method kernel P̄M,n will satisfy a similar geometric drift condi-

tion as Pn, if M is large enough. In fact, the drift condition is satisfied using the

same V , b and S from the previous result.

Lemma 5.7. Assume Pn satisfies for all n ∈ N

PnV (x) ≤ λnV (x) + b1 (x ∈ S) ,

where λn > 0, b < ∞, S is a small set and V ≥ 1. If supx,y τ
2
x,y < ∞, then there

exists C ∈ (0,∞) such that

P̄M,nV (x) ≤
(
λn + CM−1/2

)
V (x) + b1 (x ∈ S) .

Proof. Let τ̄ := supx,y τx,y, applying Corollary 5.3

P̄M,nV (x) =

∫
X
V (y) ᾱM (x, y) qn (x, dy) + V (x)

[
1−

∫
X
ᾱM (x, y) qn (x, dy)

]
≤
∫
X
V (y)α (x, y) qn (x, dy) + V (x)

[
1− 2Φ

(
− τ̄

2
√
M

)∫
X
α (x, y) qn (x, dy)

]
≤ PnV (x) + V (x)

[
1− 2Φc

(
τ̄

2
√
M

)]∫
X
α (x, y) qn (x, dy)

≤ λnV (x) + b1 (x ∈ S) + V (x)

[
1− 2Φc

(
τ̄

2
√
M

)]
=

[
λn + 1− 2Φc

(
τ̄

2
√
M

)]
V (x) + b1 {x ∈ S} .
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The result follows since

0 ≤ 1− 2Φc

(
τ̄

2
√
M

)
≤ τ̄√

2πM
.

Using the above lemmas, we can now present the proofs of Theorems 5.5 and

5.6.

Proof of Theorem 5.5. First we show that the kernel P̃M,n satisfies a similar drift

to the one satisfied by Pn in Lemma 5.6. Notice that V is log-Lipschitz, therefore

from Lemma 5.2

∣∣P̌M,nV (x)− P̄M,nV (x)
∣∣

V (x)
=

∣∣∣∣E [(V (Yn)

V (x)
− 1

)
(α̌M (x, Yn)− ᾱM (x, Yn))

]∣∣∣∣
.M−1/2E

∣∣∣∣exp

{
log

(
V (Yn)

V (x)

)}
− 1

∣∣∣∣ .M−1/2E [exp {C |Yn − x|} − 1]

.M−1/2E exp {Cδ1 |ξ|} .M−1/2.

Now, by Lemma 5.3

∣∣∣P̃M,nV (x)− P̌M,nV (x)
∣∣∣

V (x)
=

∣∣∣∣E [(V (Yn)

V (x)
− 1

)
(α̌M (x, Yn)− ᾱM (x, Yn))

]∣∣∣∣
. E

∣∣∣∣(exp

{
log

(
V (Yn)

V (x)

)}
− 1

)(
Pβ,γ
k

(
M−1, |Yn − x|

)
+M−3/2

)∣∣∣∣
. E

[
exp {Cδ1 |ξ|}

(
Pβ,γ
k

(
M−1, δn |ξ|

)
+M−3/2

)]
. Pβ,γ

k

(
M−1, δn

)
+M−3/2.

Thus, by the triangle inequality and Lemmas 5.6 and 5.7, there exists C > 0 such

that

P̃M,nV (x) ≤ P̌M,nV (x) + C
(
Pβ,γ
k

(
M−1, δn

)
+M−3/2

)
V (x)

≤ P̄M,nV (x) + C
(
Pβ,γ
k

(
M−1, δn

)
+M−1/2

)
V (x)

≤
(
λn + C

(
Pβ,γ
k

(
M−1, δn

)
+M−1/2

))
V (x) + b1 {x ∈ S}

≤
(

1− β2δ2
n

8
+ C

(
δ3
n + Pβ,γ

k

(
M−1, δn

)
+M−1/2

))
V (x) + b1 {x ∈ S} .
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By Assumption 2 and taking δn sufficiently small, there exists M1 (n) ∈ N such that

sup
M≥M1

λ̃M,n := 1− β2δ2
n

8
+ C

(
δ3
n + Pβ,γ

k

(
M−1, δn

)
+M−1/2

)
< 1.

What is left to show is the smallness of the set S = {x : |x| ≤ x∗}, which

appears in Lemma 5.6, for the class of kernels
{
Pn, P̃M1,n, P̃M1+1,n, . . .

}
. Take

A ⊆ S, by Lemma 5.4 there exists C > 0 such that

P̃M,n (x,A) ≥
∫
A
α̃M (x, y) qn (x, dy)

&
∫
A
α (x, y) exp

{
−CPβ,γ

k

(
M−1, |y − x|

)}
qn (x, dy)

≥ exp

{
−C sup

x,y∈S
Pβ,γ
k

(
M−1, |y − x|

)}∫
A
α (x, y) qn (x, dy)

≥ exp
{
−CPβ,γ

k (1, 2x∗)
}∫

A
α (x, y) qn (x, dy)

&
∫
A
α (x, y) qn (x, dy) .

Finally, by Theorem 2.4, the conditions for π and qn imply S is small for Pn, and

from Remark 2.3, the minorisation condition is attained by the sub-kernel

α (x, y) qn (x, dy) ,

which completes the proof.

Proof of Theorem 5.6. First notice

‖P̃M,δn(x, ·)− Pδn(x, ·)‖TV = sup
A∈B(X )

∣∣∣P̃M,δn(x,A)− Pδn(x,A)
∣∣∣

≤ sup
A∈B(X )

∣∣∣∣∫
A

(α̃M (x, y)− α (x, y)) qn (x, dy)

∣∣∣∣
+ sup
A∈B(X )

1 (x ∈ A)

∣∣∣∣∫
X

(α (x, y)− α̃M (x, y)) qn (x, dy)

∣∣∣∣
≤ 2

∫
X
|α̃M (x, y)− α (x, y)| qn (x, dy)

.
∫
X
|α̃M (x, y)− ᾱM (x, y)| qn (x, dy) +

∫
X
|ᾱM (x, y)− α (x, y)| qn (x, dy) .
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Then, by Lemmas 5.2 and 5.3

‖P̃M,δn(x, ·)− Pδn(x, ·)‖TV . Pβ,γ
k

(
M−1,

∫
X
|y − x| qn (x, dy)

)
+M−3/2

+M−1/2 + 1− 2Φ

(
− τx,y

2
√
M

)
. Pβ,γ

k

(
M−1, δn

)
+M−1/2.

Consider rn (M)−1 ∝ Pβ,γ
k

(
M−1, δn

)
+ M−1/2, the right hand side of (5.19) is

minimised either at
⌊
k∗n,M

⌋
or
⌈
k∗n,M

⌉
, where

k∗n,M :=
log
(
rn (M)Rn log

(
τ−1
n

))
log
(
τ−1
n

) .

This implies,

‖π̃M,n(·)− π(·)‖TV ≤ Rnτ
k∗n,M+1
n +

k∗n,M + 1

rn (M)

≤
1 + log

(
rn (M) log

(
τ−1
n

)
Rnτ

−1
n

)
rn (M) log

(
τ−1
n

) .

Notice that the variables {Rn, Rn+1, . . . } can be taken in such way that

inf
n

log (Rn) > 0,

hence the result follows using (5.20).
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Chapter 6

Final Discussion

In this thesis some fundamental stability properties and examples of approximate

MCMC algorithms were explored. The approximate Markov kernels considered are

perturbed MH kernels defined by a collection of state-dependent distributions. Gen-

eral results for the noisy MH algorithm, involving random weights with expectation

1, were covered in Chapter 3. There, we do not assume a specific form for these

weights, which can be simple arithmetic averages or more complex random variables

as discussed in Chapter 4. The former may arise when unbiased importance sam-

pling estimates of a target density are used (Section 4.1), while the latter may arise

when such densities are estimated unbiasedly using a particle filter (Section 4.2).

Additionally, in an attempt of correcting the noisy MH algorithm, a novel method

was studied in Chapter 5. This is presented in Algorithm 5.1 and is based on the

penalty method, the latter belonging to a class of exact algorithms with randomised

acceptance probabilities (Section 5.1).

In Chapter 3, two different sets of sufficient conditions were provided under

which the noisy MH chain inherits geometric ergodicity from the marginal chain.

The first pair of conditions, W1 and W2, involve a stronger version of the Law of

Large Numbers for the weights and uniform convergence of the first negative mo-

ment, respectively. For the second set, W1 is still required but W2 can be replaced

with P1*, which imposes a condition on the proposal distribution. These conditions

also imply simultaneous geometric ergodicity of a sequence of noisy Markov kernels

together with the marginal Markov kernel, which then ensures that the noisy invari-

ant π̃N converges to π in total variation as N increases (Theorem 3.3). Moreover,

an explicit bound for the rate of convergence between π̃N and π is possible when-

ever an explicit bound is available for the convergence between P̃N (x, ·) and P (x, ·)
(Theorem 3.4).
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Specific conditions for inheriting geometric ergodicity from the corresponding

marginal chain were given in Chapter 4 for the cases when the weights are arithmetic

averages as in (2.24), or when they arise from a particle filter as in (2.25). In the

arithmetic averages context, the uniform integrability condition in W3 ensures that

W1 is satisfied, whereas W4 is essential for satisfying W2. Regarding the noisy

invariant distribution π̃N , W0* (which implies W1 and W2) leads to an explicit

bound on the rate of convergence of the difference between π̃N and π (Proposition

4.9). For the particle filter case, the bounded condition in W5 is enough for satisfying

W1, although it may be difficult to verify in practice. A simpler but fairly stronger

condition is given in W5*, essentially requiring the parameter and hidden state

spaces to be compact.

The Approximate Penalty Method (APM) was studied in Chapter 5, pro-

viding some applications (Section 5.3) and stability properties (Section 5.4). The

method is based on geometric averages of estimators Rx,y of the usual MCMC ac-

ceptance ratio r (x, y), and introduces a correction in an attempt to mimic the exact

penalty method. The examples illustrate the possible potential of the algorithm in

some scenarios, including the noisy MH setting or when dealing with sub-samples

for large data sets. The theoretical results mainly deal with convergence of the

APM chain towards a Langevin diffusion and simultaneous geometric ergodicity in

tandem with the marginal chain.

6.1 Open Questions

• The noisy MH algorithm remains undefined when the weights have positive

probability of being zero. If both weights were zero one could accept the move,

reject the move or keep sampling new weights until one of them is not zero.

Each of these lead to different behaviour.

• As seen in the examples of Section 4.1.1, the behaviour of the ratio of the

weights (at least in the tails of the target) plays an important role in the

ergodic properties of the noisy chain. It seems plausible to obtain geometric

noisy chains, even when the marginal is not, if the ratio of the weights decays

sufficiently fast to zero in the tails.

• As noted also in Nicholls et al. (2012), the further exploration of exact algo-

rithms with randomised acceptance could lead to novel and useful approaches.

The penalty method and Barker’s algorithm are only two possibilities.

• The first two examples of Section 5.3 implement APM in the noisy MH context,
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when the weights are homogeneous or log-normally distributed. It remains

an open question how to fulfil these conditions in more realistic, practical

problems. In this respect, a connection to the work done in Bérard et al.

(2014) may be investigated. Additionally, for the sub-sampling setting, more

analysis on the trade-off between M (the number of estimators used in the

geometric average) and k (the size of the sub-sample) is required.

• The theoretical results of Section 5.4 are only proved for the one dimensional

case, and under fairly strong assumptions on the target π and the noise coming

from the estimators Rx,y. It seems plausible to relax the stated assumptions

in order to obtain similar results for more general targets on Rd.
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Appendix A

Variance Bounding, Geometric

Ergodicity and Spectral Gaps

Definition. A Markov chain with transition kernel P and unique stationary distri-

bution π is variance bounding if

sup
g:π(g)=0,π(g2)=1

σ2
g,P <∞,

where σ2
g,P denotes the asymptotic variance given by (2.5).

For π-reversible Markov chains, variance bounding is the weakest property

that guarantees the existence of a Central Limit Theorem for ergodic averages of

any function in L2 (π) :=
{
f : π

(
f2
)
<∞

}
(see e.g. Roberts and Rosenthal, 2008,

Theorem 7). Under reversibility, variance bounding and geometric ergodicity follow

a close relationship, this is easily seen when looking at Markov kernels as operators

on function spaces.

A π-reversible Markov kernel P : X × B (X ) → [0, 1] can be regarded as a

self-adjoint linear operator acting on L2 (π). The typical inner-product in L2 (π) is

given by

〈f, g〉 =

∫
X
f (x) g (x)π (dx) ,

which induces the norm ‖f‖2L2 = 〈f, f〉. Define the Dirichlet form of P , for g ∈
L2 (π), as follows

EP (g) := 〈g, (I − P ) g〉 =
1

2

∫
π (dx)P (x, dy) [g (x)− g (y)]2 .
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The right spectral gap of P is given by

GapR (P ) := inf
g:π(g)=0,π(g2)=1

EP (g) ,

which can be useful for assessing the variance bounding property of reversible

Markov chains, as stated below.

Theorem (Roberts and Rosenthal, 2008, Theorem 14). A π-reversible Markov

chain with transition kernel P is variance bounding if and only if GapR (P ) > 0.

Additionally, the left spectral gap of P is given by

GapL (P ) := inf
g:π(g)=0,π(g2)=1

(2− EP (g)) ,

allowing us to define the absolute spectral gap of P as follows

Gap (P ) : = min {GapR (P ) ,GapL (P )} .

The following result relates geometric ergodicity with the existence of an absolute

spectral gap for reversible Markov chains, see e.g. Roberts and Tweedie (2001, The-

orem 2) together with Roberts and Rosenthal (1997, Theorem 2.1) or Kontoyiannis

and Meyn (2012, Proposition 1.2) for a proof.

Theorem A.1. A π-reversible, ϕ-irreducible and aperiodic Markov chain with tran-

sition kernel P is π-a.e. geometrically ergodic if and only if Gap (P ) > 0.
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Appendix B

Some Properties of the Beta

Function

Proposition B.1. Let B (x, y) denote the beta function, then for N ∈ N

B (N,N) = O

(
1

22N
√
N

)
.

Proof. Stirling’s approximation for the factorial implies

N ! = O
(
NN+1/2e−N

)
.

Hence, the beta function satisfies

B (N,N) =
2 (N !)2

N (2N)!
= O

(
N2N+1e−2N

N (2N)2N+1/2 e−2N

)

= O

(
1

22N
√
N

)
.

Proposition B.2. Let B (x, y) denote the beta function, and let Iz (x, y) be the

regularised incomplete beta function which is given by

Iz (x, y) =

∫ z
0 v

x−1 (1− v)y−1 dv

B (x, y)
, for z ∈ [0, 1] .
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For N ∈ N and z < 1
2 ,

Iz (N,N)

Iz (N + 1, N − 1)

Iz (N − 1, N + 1)

 = o
(
N−1

)
.

Proof. Notice that for z < 1
2∫ z

0
vN−1 (1− v)N−1 dv ≤ zN (1− z)N−1

and

B (N,N) ≥
(

1

2
− z
)(

1 + 2z

4

)N−1(3− 2z

4

)N−1

,

implying

Iz (N,N) ≤ zN (1− z)N−1(
1
2 − z

) (
1+2z

4

)
N−1

(
3−2z

4

)N−1

≤ O

((
16z (1− z)

(1 + 2z) (3− 2z)

)N)
.

Since

ρz :=
16z (1− z)

(1 + 2z) (3− 2z)
< 1

if z 6= 1
2 , then

Iz (N,N) ≤ O
(
eN log(ρz)

)
.

Now, using integration by parts

Iz (N,N) = Iz (N + 1, N − 1) +
zN (1− z)N−1

NB (N,N)

= Iz (N − 1, N + 1)− zN−1 (1− z)N

NB (N,N)
.

Therefore, what is left to prove is

zN (1− z)N

NB (N,N)
= o

(
N−1

)
,
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which is immediate using Proposition B.1 and the fact that 4z2 − 4z + 1 > 0 if

z 6= 1
2 .
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Appendix C

Skorokhod topology on

D ([0, T ] ,R)

Let D ([0, T ] ,R) be the space of càdlàg (right continuous with limits on the left)

functions from the closed interval [0, T ] into R. This space of functions with “jumps”

is convenient for the study of various phenomena and its probabilistic importance

dates back to Skorokhod (1956). An appropriate metric on this space should be

able to deal with the difficulties arising when considering discontinuous functions.

Consider x ∈ D ([0, T ] ,R), the uniform metric defined in terms of the uniform norm

‖x‖T := sup
0≤t≤T

{|x (t)|} ,

works well on the subspace of continuous functions. However, when discontinuities

are present we should not insist on jumps occurring exactly at the same time in

order for two functions to be close.

Among the different Skorokhod’s topologies introduced in Skorokhod (1956),

J1 is the most appropriate for studying D ([0, T ] ,R) since it allows small perturba-

tions of time when addressing the closeness of two functions.

Definition. Let Λ denote the class of strictly increasing homeomorphisms on [0, T ].

We say that a sequence of functions {xn} on D ([0, T ] ,R) converges to x ∈ D ([0, T ] ,R)

as n→∞, in the Skorokhod (J1) topology, if

dJ1 (xn, x) := inf
λ∈Λ

max {‖λ− I‖T , ‖xn ◦ λ− x‖T } → 0,

where I is the identity map.

Remark. The space D ([0, T ] ,R) is separable but not complete under the metric
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dJ1 . In Billingsley (1968), an equivalent metric was introduced that induces the

Skorokhod topology and makes D ([0, T ] ,R) a Polish space.
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O. Cappé, E. Moulines, and T. Ryden. Inference in Hidden Markov Models. Springer

Series in Statistics. Springer, 2005.

D. M. Ceperley and M. Dewing. The penalty method for random walks with uncer-

tain energies. The Journal of Chemical Physics, 110(20):9812–9820, 1999.

F. Cérou, P. Del Moral, and A. Guyader. A nonasymptotic theorem for unnormalized

Feynman-Kac particle models. Ann. Inst. H. Poincaré Probab. Statist., 47(3):
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