A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/89143

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

UNIQUENESS OF g-MEASURES AND THE INVARIANCE OF THE BETA-FUNCTION UNDER FINITARY ISOMORPHISMS, WITH FINITE EXPECTED_CODE LENGTHS 2 BETWEEN_G-SPACES. --
 by
 ANDREW HARDING

Thesis submitted for a Ph.D. in Mathematics

October, 1985
Ma thematics Institute
University of Warwick
COVENTRY CV4 7AL

University of Warwick Library, Coventry

AUTHOR
DEGREE
DATE OF DEPOSIT

TITLE

I agree that this thesis shall be available in accordance with the regulations governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
Any proposal to restrict access to the thesis and/or publication of the summary (normally only up to three years from the date of the deposit) must be made by the candidate in writing to the Postgraduate Section, Academic Office at the earliest opportunity. See paragraphs 9 and 11 of "Requirements for the Presentation of Research Theses".

I agree that the thesis may be photocopied (single copies for study purposes only) YES/DO
(The maximum period of restricted access to be granted should not normally exceed three years, although further extensions of up to a maximum of five years will be considered.)

Author's Signature

User's Declaration

(i) I undertake not to quote or make use of any information from this thesis without making acknowledgment to the author.
(ii) I further undertake to allow no-one else to use this thesis while it is in my care.

DATE
SIGNATURE
ADDRESS

(i)

CONTENTS

CHAPTER 1
EQUIVALENT CONDITIONS FOR THE UNIQUENESS OF g-MEASURES

1. Introduction 1.1
2. One-sided subshift of finite types and g-measures 1.2
References 1.17
CHAPTER 2
INVARIANCE OF THE BETA-FUNCTION UNDER FINITARY ISOMORPHISMS
WITH FINITE EXPECTED CODE LENGTH
3. Isomorphisms with finite expected code length 2.3
4. Locally finite dimensional automorphisms 2.6
5. The information cocycle 2.11
6. Pressure 2.26
7. β-function 2.29
8. The main theorem and its proof 2.52
References 2.62

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor K. Schmidt for his expertise and encouragement throughout the writing of this Thesis. My thanks also go to Professor William Parry, Professor Peter Walters, Dr. Mark Pollicott for several helpful discussions.

DECLARATION

All work within this thesis is original except where explicitly stated.

ABSTRACT

The following is split into two chapters. The first chapter gives a brief history concerning g-measures, their state of investigation and under what conditions, on g , unique g -measures exist. It concludes by giving equivalent conditions for a g-function to have a unique g-measure. This will, possibly, lead to a solution to Keane'soriginal problem about the uniqueness of a g-measure for an arbitrary g-function.

The second chapter generalises the result of Prof. K. Schmidt that the Beta-function is invariant under finitarily isomorphic (with finite expected code length) Markov spaces, to g-spaces with certain conditions on the g-function. The approach adopted is essentially that of Schmidt with slight modifications due to the more restrictive nature of the problem. The condition on the g-function, that of finite first moment variational sum, fits nicely between the two more commonly used conditions, finite variation sum and exponentially decreasing variation.

CHAPTER 1

1. INTRODUCTION

The study of g -measures was derived from trying to understand equilibrium states and phase transitions, which have direct applications in the field of statistical mechanics.

The problem as to whether a g-function has a unique g-measure was originally posed by Keane [6] in 1974, where he studied so-called "covering transformations". The problem, derived from his work, is an example of a covering transformation the one-sided subshift of finite type. This uniqueness problem, I'm afraid, I was unable to solve.However, in the process of trying to provide a solution, I was able to produce equivalent conditions for the uniqueness of g-measure. In Walters [12] a sufficient condition for uniqueness was given. However this, unfortunately, was not a necessary condition as exhibited by Hoffauers example. I produce in this paper a new class of examples, generalizing Hofbauers example,which again have unique g-measures but do not satisfy the Walters condition.

Acknowledgements

I would like to thank M. Pollicott and P. Walters for useful discussions concerning this paper.

2. ONE SIDED SUBSHIFTS OF FINITE TYPE AND g-MEASURES

Let X_{0} be a set of symbols (states) of finite cardinality $\left|X_{0}\right|$. Denote by $X+$ the one sided full shift

$$
x+=\operatorname{II}_{N} \quad X_{0}=\left\{\left(x_{n}\right)_{0}^{\infty} \mid x_{i} \in X_{0}\right\} .
$$

The shift transformation, denoted by σ, operates on $X+$ as follows:

$$
\sigma: x_{+}+x_{+} \text {, where }(\sigma(x))_{n}=x_{n+1}
$$

(i.e. σ-moves the coordinates of $\times 1$-place nearer the zeroth coordinate, the zeroth coorindate dropping off the end.)

A closed subset $X<X+$ is said to be a subshift of finite type if $\sigma X=X$ and the points of X are completely determined by a finite collection, G, of sets, if each $C \in G$ is a member of X_{0}^{N}, some $N>0$. (i.e. when we look at N coordinates, of a point in X, it defines a set in G.)
X is said to be one-sided topologically transitive if for each non-empty sets U, V, in $X, \exists n \geq 1$ st $\sigma^{-n} U \cap V \neq \emptyset$. X is said to be topologically mixing if $\mathbf{Z}_{N}>1$ with $\sigma^{-n} U \cap \vee \neq \emptyset \quad \forall n \geq N$.

It is well known, when X is a one-sided topologically transitive subshift of finite type, that X can be represented as a disjoint union of closed subsets, $\left\{x_{i}\right\}_{i=1}^{d}$, with $\sigma x_{i}=x_{i+1 \text { modd }}{ }^{d} \sigma^{d} x_{i}=x_{i}$, and σ^{d} is topologically mixing when restricted to x_{i}. (see Chung [1]). The number $d \geq 1$ is called the period of X.

Definition 2.1

With $X+$ as above we shall denote by $M(X) M(X, \sigma)$ the set of all probability and σ-invariant Borel-probabilities on X. (i.e. $\mu \in M(X, \sigma)$ if $\mu\left(\sigma^{-1} B\right)=\mu(B)$ for all Borel subsets of X.)

Keane [6] originally defined a g-measure in terms of, what has become known as, the Ruelle operator. However, since that time, many equivalent conditions have been found so we therefore shall define a g-measure by the results of the next theorem. First, however, we shall need to know what is meant by the Ruelle operator.

For $\phi \in C(x)$ define the Ruelle operator $L_{\phi}: C(X) \rightarrow C(X)$ by $\left(L_{\phi} f(x)=\sum_{y \in \sigma}-_{x} e^{\phi(y)} f(y)\right.$. We look at special functions of the form $\phi=\log g$ where $g \in G=\left\{g \in C(x) \mid g>0\right.$ and $\underset{y \in \sigma^{-1} x}{\Sigma} g(y)=1$ for all $x \in X+\}$. Thus $\left(L_{\log g} 1\right)(x)=\sum_{y \in \sigma}-1 x(y), L_{\log g} 1=1$, and $L_{\log g} U_{\sigma} f=f$ where $U_{\sigma} f=f \circ \sigma$. Such g are called g-functions. The following Theorem is used as a definition of a g-measure, giving several equivalent conditions for a g-measure. In this Theorem $L^{*}: C(X)^{*} \rightarrow C(X)^{*}$ denotes the adjoint of $L_{\log } \dot{ }(X) \rightarrow C(X)$ and $E_{\mu}\left(f \mid \sigma^{-1} B\right)$ denotes the conditional expectation of $f \in L^{\prime}(\mu)$ relative to the σ-algebra $\sigma^{-1} B_{z}$, where B denotes the Borel σ-algebra of X.

Theorem 2.1 (Ledrappier [8])
Let $g \in G$ and $\mu \in M(X)=\{$ the probability measures on X\}. If L denotes $L_{\text {logg }}$ the following are equivalent
(i) $L^{*}{ }_{\mu}=\mu$.
(ii) $\mu \in M(X ; \sigma)$ and $E_{\mu}\left(f \mid \sigma^{-1} B\right)(x)=\sum_{z \in \sigma^{-1} \sigma X} g(z) f(z)$ a.e. μ
for $f \in L^{\prime}(\mu)$
(iii) $\mu \in M(X, \sigma)$ and μ is an equilibrium state for $\log g$. In fact $h_{\mu}(\sigma)+\mu(\log g)=0$.
(iv) $\frac{d \mu \sigma}{d \mu}=\frac{1}{g}$.

A μ satisfying any of (i), (iv) and hence all is called a g-measure.

Lerma 2.1

(a) If $g \in G$ then μ has full support, i.e. each g-measure μ gives positive measure to each non-empty open set.
(b) If $g_{1}, g_{2} \in G$ and some g_{1}-measure coincides with some g_{2}-measure then $g_{1}=g_{2}$.

Proof

See Walters [12].
By the Schauder-Tychanoff fixed point theorem, (Dunford and Schwartz [5], page 456) L^{*} always has a fixed point in $M(X)$ so a g -measure always exists. The question immediately posed is-as-to whether there is a unique g-measure given an arbitrary $g \in G$. The following partial result is due to P. Walters although I have extended it slightly from the topologically mixing case to the transitive.

Theorem 2.2

Let $\sigma: X \rightarrow X$ be a topoligically transitive one sided subshift of finite type and $g \in G$. Denote $L_{\text {logg }}$ by L. Then, if $\sum_{\substack{m=1 \\ N-1}}^{\infty} \quad \operatorname{var}_{m}(\log g)<\infty \quad(p=$ period of the transformation),
$\sum_{n=1}^{n} \frac{L^{n} f}{N}$ converges uniformly to a constant $\mu(f) \quad \forall f \in C(X)$.

The μ is the unique g-measure.

Proof

Walters, in [12], proves the result for the topologically mixing case so essentially all we have to do, in the transitive case, is to reduce this to the topologically mixing one. By earlier corments we can represent a transitive $X=\underset{i=1}{p} X_{i}$ such that $\sigma^{\mathrm{P}} \mid X_{i}$ is a topologically mixing \therefore map. The function $p(x)=g(x) g(\sigma x) \ldots g\left(\sigma^{p-1}(x)\right.$ is a g-function with respect to σ^{p} (i.e. $\left.\sum_{y \in \sigma}-p_{x} g(x) \ldots g\left(\sigma_{1}^{p-1} x\right)=1\right)$. Thus, if we can verify $\Sigma \operatorname{var}_{m} p<\infty$, we can apply walters Theorem on X_{i} w.r.t. σ^{p}, assume $m>p$

$$
\begin{aligned}
\operatorname{var}_{m} \log p & =\operatorname{var}_{m}\left(\sum_{k=0}^{p} \log g\left(\sigma^{k} x\right)\right) \\
& \leq \sum_{k=m-p}^{m} \operatorname{var}_{k} \log g
\end{aligned}
$$

$$
\text { so } \sum_{m>p} \operatorname{var}_{m} \log p \leq \sum_{m=p+1}^{\infty} \sum_{k=m-p}^{m} \operatorname{var}_{k} \log g<\infty
$$

$$
\leqslant \sum_{m=1}^{\infty}(p+i) \cdot \operatorname{var}_{m} \log g<\infty .
$$

Then by Walters for each $1 \leq i \leq p$ we can find a σ^{P}-invariant measure $\mu_{i} \in M\left(X_{i}, \sigma^{p}\right)$ such that if $f \in C\left(X_{i}\right), \lim _{m \rightarrow \infty} L^{m}\left(\log P, \delta^{p}\right)^{f} \rightarrow \mu_{i}(f)$.

$$
\left.\left(\lim _{n \rightarrow \infty} \sum_{y \in \sigma}-m p_{x} P(y) P\left(\sigma_{y} y\right) \ldots P\left(\sigma^{P(n-1)} y\right) f(y)=\mu_{i}(f)\right)\right) .
$$

Let $f \in C(X)$. We can express f as $f=f_{1}+\ldots+f_{p}$ where $f_{i}=f \mid X_{i} \in \mathbb{C}\left(X_{i}\right)$, p the period of the subshift.

Then if $x \in X_{p}$

$$
\begin{aligned}
& \frac{1}{m p} \sum_{k=0}^{m p-1} L_{l o g g}^{k} f(x) \\
= & \frac{1}{m p} \sum_{k=0}^{m-1}\left(\sum _ { i = 1 } ^ { p } \sum _ { y \in \sigma ^ { - } } ^ { \sum } (p - i) _ { x , k \in \sigma } (\sum _ { j } - k p _ { y } g (z) \ldots g (\sigma ^ { k p - 1 } z) f _ { i } (z)) g (y) g (\sigma y) \ldots g \left(\sigma^{(p-i-1)} y .\right.\right. \\
= & \frac{1}{m p} \sum_{i=1}^{p} \sum_{y \in \sigma}^{\sum}-(p-i\}_{x} \sum_{k=0}^{m i} L^{k p_{f}}(y) g(y) g(y) \ldots g\left(\sigma^{(p-i-1)} y\right)
\end{aligned}
$$

letting $\mathrm{m} \rightarrow \infty$ this converges to

$$
\begin{aligned}
& \frac{1}{p} \sum_{i=1}^{p}\left(\sum_{y \in \sigma^{+}}=(p-i)\right. \\
= & \int f(x) \\
& \left.\int \frac{d(y) \ldots g(\sigma(p-i-1)}{y}\right) \mu_{i}(f) \\
p &
\end{aligned}
$$

We can show by a similar method if $x \in X_{i}$

$$
\frac{1}{m p} \sum_{k=0}^{m p-1} L_{\operatorname{logg}}^{k} f(x) \rightarrow \int f \frac{d\left(\mu_{1}+\cdots+\mu_{p}\right)}{p}
$$

1.7

This convergence is uniform on each X_{i} and thus uniform on X. We thus have proved $\frac{1}{m p} \sum_{k=0}^{m p-1} L_{\operatorname{logg}}^{k} f$ converges uniformly to

$$
\int f \mathrm{~d} \mu \text { if } \mu=\frac{\mu_{1}+\ldots+\mu_{p}}{P}
$$

as $n+\infty$. I claim this implies $h_{N}=\frac{1}{N} \sum_{n=0}^{N-1} \quad L_{\text {logg }}^{n}$ converges uniformly to $\int f d \mu$ as $N+\infty$.

Proof of Claim

If $h \in C(x)$. Let $\alpha(h)=\min h$ and $E(h)=\max h$. Then $w e$ have

$$
\alpha\left(h_{0}\right) \leq \alpha\left(h_{1}\right) \leq \int f d \mu \leq \leq \beta\left(h_{0}\right) \leq \beta\left(h_{0}\right)
$$

by the above. Also since $\alpha\left(h_{m p}\right) \rightarrow \int f d \mu$ and $\beta\left(h_{m p}\right) \rightarrow \int f d \mu$, as $m+\infty$, it follows that $\lim _{N \rightarrow \infty} h_{N}=\int f d \mu$ and the convergence is uniform.

By the above convergence property it follows that $L_{\text {logg }}^{*} \mu=\mu$ and μ is a g-measure.

If v is another g-measure

$$
\int f d v=\int \frac{1}{N} \sum_{n=0}^{N-1} L_{\log g}^{n} f d v \text { for each } N
$$

But as $N \rightarrow \infty$ the integrand converges to $\int f d \mu$. Thus $\nu=\mu$ and μ is the unique g-measure

Remark
Note that if $p>1$ then $L_{\operatorname{logg}}^{n} f \rightarrow \int f d \mu$. For if
$f=f_{1}=x_{x_{1}}$ then $L^{n p_{f}}+\int f_{1} d \mu=\frac{\mu_{1}\left(x_{1}\right)=\mu\left(x_{1}\right)}{P}$ on x_{i}
but $L^{n p_{f_{1}}} \rightarrow 0$ on $X \backslash X_{1}$.
It follows however, from the above, in the topologically mixing case that $L_{\text {logg }}^{n}$ f converges to $\int f d \mu$. The condition that $\sum_{n=1}^{\infty} \quad \operatorname{var}_{n} \log \mathrm{~g}<\infty$ is not however a necessary condition. There are a class of functions where this sometimes fails, these functions are called Grid functions (see Markley-Paul[2]).

Let $\underline{0}=(0, \ldots 0 \ldots)=\{0,1\}^{\mathrm{N}}$ be the point with all coordinates zero. Let $\left\{M_{n}\right\}$ be a partition of [0] 0 with the following properties.
(i) $\lim M_{n}=\underline{0}$
i.e. $d\left(M_{n}, \underline{0}\right) \rightarrow 0$ as $m \rightarrow \infty$ (i.e. $\max _{x \in M_{n}} d(x, 0) \rightarrow 0$ as $n+\infty$).
(ii) Each M_{n} is closed and open (i.e. a finite union of cylinders).
(iii) k_{0} s.t. if $B \subset[0]_{0} \backslash \underline{0}$ is a cylinder, of length greater than k_{0}, there is a $M_{j}(B)$ with $B \subset M_{j}(B)^{-}$

Let $1>a_{n}>0$ be a decreasing sequence of reals with a_{n} converging to a.

$$
\text { Define } g=\sum_{n=1}^{\infty} M_{n} a_{n}+a x_{\underline{0}} \text { on }[0]_{0} \text { and } g(1 x)=1-g(0 x)
$$

(i.e. g is defined to be a g-function).

I claim g has a unique g-measure. I will show that if B is a cylinder, contained in [0] $\backslash \underline{0}$, of length greater than k_{0}, μ a g-measure, then $\mu(B)$ is uniquely determined by M_{n} and g. Since μ is non-atomic by Lemma 2.1, this shows μ is uniquely determined on [0].

Lemma 2.2 (Markley-Paul)

Let $A \subset[0] \backslash \underline{0}$ be a cylinder of length ℓ and $B \in[0] \backslash \underline{Q}$
a cylinder of length $\geq K_{D}$ Then $\mu(A B)=K(A, B) \mu(B)$.
($K(A, B)$ is a constant depending also on g and the partition).

Proof

$$
\begin{aligned}
\mu(A B) & =\int_{X=\mu\{0,1\}} L^{\ell} x_{A B} d \mu . \\
& =\int_{y \in \sigma} \sum_{x}-\ell_{x} g(y) \ldots g\left(\sigma^{\ell-1} y\right) x_{A}(y) x_{B}(x) d \mu .
\end{aligned}
$$

Let $A=\left[a_{0}, \ldots, a_{\ell-1}\right]$ and $a=\left(a_{0}, \ldots, a_{\ell-1}\right)$. Then

$$
\begin{aligned}
& \int \sum_{y \in \sigma^{-\ell}} g(y) \ldots g\left(T^{\ell-1} y\right) x_{A}(y) x_{B}(x) d \mu \\
= & \int g(a x) \ldots g\left(\sigma^{\ell-1} a x\right) x_{B}(x) d \mu
\end{aligned}
$$

$=K(A, B) \mu(B)$ by property (iii) on M_{n} and definition of g.

Thus by Lenma 2.2

$$
\begin{equation*}
\mu(B A B)=K(B A, B) \mu(B) \tag{i}
\end{equation*}
$$

Now by Kac's Theorem (see [13]), if $r(z)$ denotes the return time of a point in B to B, we have

$$
1=\int_{B} r(z) d \mu=\Sigma\binom{\text { numbers depending }}{\text { only on } g \text { and } M_{n}} \mu(B)
$$

(by expression 2.(i)).

Thus $\mu(B)$ is uniquely determined by g and M_{n}). Similarly we can construct the partition of $[1]_{0}$ $n \geq 1, M_{n}^{i}=\left\{(1 x): 0 x \in M_{n}\right\},(1 \underline{0})$ and obtain that μ is uniquely determined on cylinders B of length greater than K_{0}. It thus follows that μ is uniquely determined.

An example of a grid function is an adaptation of Hofbauer's (see [3]) example where we take $M_{n}=\left[0_{n} 1\right], n>1$. An easy computation shows that $\operatorname{var}_{n} \log g=\log a_{n} / a$. Therefore, if we choose $a_{n}=\exp \left(\frac{1}{n}+\log a\right)$ we have that $\Sigma \log a_{n}$ does not exist, the condition in Theorem 2.2 is, therefore, not a necessary one (see P. Hulse, Ph.D. Thesis) [4].

Theorem 2.3-THE MAIN THEOREM AND ITS PROOF.

Let $g \in G$ then the following are equivalent
(i) g has a unique g-measure :
(ii) $\frac{1}{N} \sum_{n=0}^{N-1} L_{\text {logg }}^{n} f(x) \rightarrow \mu(f)$ for all x and each $f \in C(X)$.
(iii) As (ii) but the convergence is uniform.
(iv) $C(X)=C \oplus \bar{B}$ where $B=\left\{L_{\text {logg }} f-f \mid f \in C(X)\right\}$.

Proof

The proof is essentially the same as when we are looking for a uniquely ergodic shift invariant measure. (See Parry [10]). First note that if $f \in \mathbb{C}$ (i.e. a constant function)
$\frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f=f=\mu(f)$ and convergence is trivial.
Similarly, if $f=L_{\log } h-h \in B$; we have
$\left\|\frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f\right\|_{\infty}=\left\|\frac{L^{N} \operatorname{logg}^{n-h}}{N}\right\|_{\infty} \leq\left[\frac{\|L \operatorname{logg}\|^{N}+1}{N}\right]\|n\|_{\infty}$
which clearly tends to zero as $N+\infty$. Therefore $\frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f$ tends uniformly to 0 when $f \in B$ or, by approximation, when $f \in \bar{B}$. Clearly $\bar{B} \cap \mathbb{C}=\{0\}$, and $\frac{1}{N} \sum_{n=0}^{N-1} L_{\text {logg }}^{n}$ leaves functions in \mathbb{C} unaltered and converges to zero for functions in $\overline{\mathrm{B}}$. These remarks show that (iv) \Rightarrow (iii), (iii) \Rightarrow (ii). (ii) \Rightarrow (i) follows fram the fact
that if μ_{1} is another g-measure, $f \in C(X)$, then

$$
\mu_{1}(f)=\lim _{N \rightarrow \infty} \int \frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} d_{\mu_{1}}=\mu(f)
$$

and $\mu_{1}=\mu$ (see Walters [11] Theorem 6.2 page 147). It thus remains to show (i) \Rightarrow (iv).

Let $X \in X \subseteq \prod_{N} X_{0}$, since X is a compact metric space we can choose a dense set $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions in $\left(C(X),\| \|_{\infty}\right)$ (see Kelley [7]).

Note that, since $\left\|\frac{1}{N} \sum_{n=0}^{N-1} L_{\log g}^{n} f_{1}(x)\right\| \leq\left\|f_{1}\right\|$; we can choose a subsequence $N_{1} \in N$ such that $\lim _{N \in N_{1}} \frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f_{1}(x)$ converges. Again, since $\frac{1}{N} \sum_{n=0}^{N-1} L_{\text {logg }}^{n} f_{2}(x), N \in N_{1}$, is a bounded sequence, we can choose a subsequence $N_{2} \subset N_{1}$ such that

$$
\lim _{N+\infty} \frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f_{2}(x)
$$

exists. Repeating this argument for each f_{i} we obtain sequence of integers $N_{1} \supset N_{2}=N_{3}$, where $N_{i}=M_{1}^{i}, M_{2}^{i} \ldots$ such that
$\lim _{N \in N_{i}} \frac{1}{N}_{n=0}^{N-1} L^{n} \operatorname{logg} f_{j}(x)$ exists for $j \leq i$. Taking the diagonal sequence $N=M_{1}^{1}, m_{2}^{2} \ldots$ we have that $\lim _{N \in N}(1 / N) \sum_{n=0}^{N-1} L_{\log g}^{n} f_{i}(x)$ exists for all i. Since $\left\{f_{i}\right\}$ is dense in $C(X)$.
$\lim _{N \in N}(1 / N) \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f(x)=J(f)$ exists for all $f \in C(X)$.
This defines a continuous linear functional which is clearly positive. Moreover, since $g \in G, J(1)=1$ and $J\left(L_{\text {logg }} f\right)=J(f)$ for $f \in C(X)$. Thus using the Riesz Representation Theorem and Theorem 2.1 J defines the unique g-measure μ. Then for any other point $y \in X$ we can construct a subsequence $N^{\prime} \subset N$ such that

$$
\lim _{\substack{N+\infty \\ N \in N^{\prime}}} 1 / N \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f(y)=\mu(f) .
$$

Therefore, if we do this for a dense set of points in X, the diagonal sequence produces a sequence $N^{\prime \prime}$ such that

$$
\begin{equation*}
\lim _{\substack{N+\infty \\ N \in N^{\prime}}} \frac{1}{N} \sum_{n=0}^{N-1} L_{\operatorname{logg}}^{n} f(x)=\mu(f) \quad \forall f \in C(X), \quad \forall x \in X . \tag{ii}
\end{equation*}
$$

Let $f \in \mathcal{C}(X)$ then we can write

$$
f=f-\mu(f)+\mu(f) \text { and } f-\mu(f) \in \operatorname{ker} J\{h \in C(X) \mid J(h)=0\}
$$

so in order to prove (i) \Rightarrow (iv) it will be sufficient to show ker $\mathrm{J}=\overline{\mathrm{B}}$. By the above Ker $\mathrm{J} \sim \overline{\mathrm{B}}$ is closed, J being continuous. Hence, by the extension theorem for continuous functionals on closed subsets (Dunford, Schwartz, [5])) we need only show that any continuous linear functional, on $C(X)$, annihilates Ker J when it annihilates \bar{B} (or equivalently B). So suppose $P \in C(X)^{*}$ is such that $\left.P\left(L_{\log g} f f\right)=0\right), \forall f \in C(X)$. Let $f \in \operatorname{ker} \mathcal{I}$ then, by using Lebesgues dominated convergence Theorem and 2.(ii) we have

$$
\frac{1}{N} \sum_{n=0}^{N-1} P\left(L_{\operatorname{logg}}^{n} f\right) \rightarrow 0 \text { as } N+\infty N \in N^{n},
$$

and since $P\left(L_{\operatorname{logg}} f-f\right)=0$

$$
\frac{1}{N} \sum_{n=0}^{N-1} P(f) \rightarrow 0, N \in N^{\prime \prime} .
$$

In other words $P(f)=0 \forall f \in k e r J$ and the Theorem is proven.

Corollary 2.4

The set of $\{g \in G \mid$ there is a unique g-measure $\}$ is a dense G_{δ} in G.

Proof

The proof is essentially Palmers [9] but I include it for completeness.

Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be dense in $C(X)$. For natural numbers n, m, N and $c \in R$. Let $u_{n, m, c, N}$

$$
=\left\{g \in G \left\lvert\,\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\log g}^{k} f_{n}-c\right\|<\frac{1}{m}\right.\right\} .
$$

This is an open subset of G and therefore

$$
\tilde{G}=\begin{array}{lllll}
n & n & u & u & U_{n, m, c, N} \\
n & m & c & N
\end{array} \text { is a } G_{\delta} .
$$

I claim in fact $\tilde{G}=\{g \in G \mid$ for all $f \in C(X)$ there exists $c(f) \in R$ with $\left.\left\|\frac{1}{N} \cdot \sum_{k=0}^{N-1} L_{\operatorname{logg}}^{k} f-c(f)\right\| \rightarrow 0\right\}$.

1.15

If we assume the claim then, by Theorem $2 \cdot 3 \tilde{G}$ is the set of g with unique g-measures. It therefore remains to prove the claim. If g belongs to this set then $g \in \tilde{G}$. Conversely if $g \in \tilde{G}$ then for all n, m there exists $C_{m}(n), N$, such that

$$
\begin{equation*}
\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\operatorname{logg}}^{k} f_{n}-c_{m}(n)\right\|_{\infty}<\frac{1}{m} \tag{iii}
\end{equation*}
$$

If μ is any g-measure

$$
\int \frac{1}{N} \sum_{k=0}^{N-1} L_{\operatorname{logg}}^{k} f d_{\mu}=\mu(f)
$$

Thus using 2.(iii)

$$
\left|\mu\left(f_{n}\right)-c_{m}(n)\right|<\frac{1}{m} \text { and thus }
$$

$$
\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\operatorname{logg}}^{k} f_{n}-\mu\left(f_{n}\right)\right\|_{\infty}<\frac{2}{m} \text { for } M>N
$$

Therefore

$$
\begin{aligned}
& \left\|\frac{1}{M} \sum_{k=0}^{M-1} L_{\operatorname{logg}}^{k} f_{n}-\mu\left(f_{n}\right)\right\|_{\infty} \\
\leqslant & \frac{N}{M}\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\log }^{k} f_{n}-\mu\left(f_{n}\right)\right\|_{\infty}+\left\|\frac{1}{M} \sum_{k=N}^{M-1} L_{\log g}^{k} f_{n}-\left(\frac{M-N}{N}\right) \mu\left(f_{n}\right)\right\|_{\infty}
\end{aligned}
$$

Using the fact that $\left\|L_{\text {log }}\right\| \leq 1$ we obtain

$$
\leq \frac{N}{M}\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\operatorname{logg}}^{k} f_{n}-\mu\left(f_{n}\right)\right\|_{\infty}+\left(\frac{M-N}{M}\right)\left\|\frac{1}{M-N} \sum_{k=0}^{M-N-1} L_{\operatorname{logg}}^{k} f_{n}-\mu\left(f_{n}\right)\right\|_{\infty}
$$

$$
1.16
$$

Thus if $M=2 N$ we obtain using $2(i i i)$

$$
\leq \frac{1}{2} \frac{2}{m}+\frac{1}{2} \frac{2}{m}=\frac{2}{m}
$$

By induction of ℓ if $M=\ell N$ we have

$$
\begin{aligned}
& \left\|\frac{1}{\ell N} \sum_{k=0}^{N-1} L_{\log g}^{k}\left(f_{n}\right)-\mu\left(f_{n}\right)\right\|_{\infty} \\
& \leqslant \frac{1}{\ell} \frac{2}{m}+\left(\frac{\ell-1}{\ell}\right) \frac{2}{m}=\frac{2}{m} .
\end{aligned}
$$

Therefore $\lim _{m \rightarrow \infty}\left\|\frac{1}{m N} \sum_{k=0}^{m N-1} L_{\text {loge }}^{k} f_{n}-\mu\left(f_{n}\right)\right\|=0$
and it follows that $\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\operatorname{logg}}^{k} f_{n}-\mu\left(f_{n}\right)\right\|=0$.
Therefore $\left\|\frac{1}{N} \sum_{k=0}^{N-1} L_{\text {log }}^{k}-\mu(f)\right\| \rightarrow 0$ for all $f \in C(X)$.
Since there are a dense set of g with unique g-measures the result follows.

REFERENCES

[1] Chung, K.L. Markov Chains with stationary transition probabilities. Springer, Berlin (1960).
[2] Markley, N.C., Paul, M.E. Equilibrium States of Grid Functions. T.A.M.S. November 1982 Volume' 274 (p. 169-191).
[3] Hofbauer, F. Examples of non-uniqueness of Equilibrium States. Transactions of the Amer. Math. Soc. 228, 223-241 (1977).
[4] Hulse, P. Ph.D. Thesis (Warwick 1982).
[5] Dunford, N., Schwartz, J.T. Linear Operators 1, Interscience, John Wiley, New York, Part 1 (1958).
[6] Keane, M. Strongly mixing g-measures. Inventiones Mathematicae 16 (1972), 309-324.
[7] Kelley, J.L. General Topology, Van Nostrand (1958).
[8] Ledrappier, P. Principe variational et systemes dynamiques symbolique. Z. Wahrschenlichkeitstheorie Verw. Gabiete, 30 (1974), 185-202
[9] Palmer, M.R., Parry, W., Walters, P. Large sets of endomorphisms and g-measures S.L.N. 668, Springer, Berlin 1978.
[10] Parry, W. Topics in Ergodic Theory, C.U.P. (1981).
[11] Walters, P. An Introduction to Ergodic Theory. Van Nostrand, 1981.
[12] Walters, P. Ruelle's operation theorem and g-measures. T.A.M.S. 214 (1975), 375-387
[13] Rohlin, V.A. Lectures on the entropy of measure preserving transformations. Russian Maths survey 22 (1967) 1-52.

CHAPTER 2

INVARIANCE OF THE BETA-FUNCTION UNDER FINITARY
ISOMORPHISMS WITH FINITE EXPECTED CODE LENGTH

2.1

INTRODUCTION

The following sections are a generalization of the work of K. Schmidt and W. Parry concerning the invariance, under finitary isomorphism with finite expected code length, of the β-function for Markov shifts, see Parry-Schmidt [1], Schmidt [1].

The result has interesting applications to Axiom A flows concerning the invariance of the β-function when looking at the associated suspension of the flow. For further details, about axiom A flows, see Pollicott [1]. For details about the β-function and its properties look at Tuncel [1] and Parry-Tuncel [1].

The result is as follows:
If $\phi: X_{1} \rightarrow X_{2}$, is a finitary isomorphism with finite expected code length, between g-spaces, where the g-functions have finite first moment variational sum (i.e. $\sum_{r=1} r \operatorname{var}_{r} \phi<\infty$) then the β-function $r=1$ is an invariant, if X_{1}, X_{2} are topologically mixing.

The first interest, in finitary isomorphisms, came about because of the paper of M. Keane and M. Smorodinsky concerning the fact that two Markov shifts, which have the same entropy and period, are finitarily isomorphic.

This Theorem led to people investigating as to whether the period and entropy where complete invariants under finitary isomorphisms with finite expected code length. This was found to be false see (Parry [3]), and people sought after further invariants to solve this completeness problem. One such invariant
that arose was the β-function, $\beta: \mathbf{R}+\mathbf{R}$ defined by $\beta(t)=\exp P(-t I p)$ (where $P(-t I p)$ denotes the pressure of -t times the information function with respect to a Markov measure. (See S. Tuncel [1]). A discussion of the β-function, as an invariant, can be found in Tuncel, S.[1]as well as further information.

ACKNOWLEDGEMENTS
I am deeply indebted to my supervisor, Professor K. Schmidt, for the suggestion of this problem and his encouragement throughout its writing. I would also like to thank Professor William Parry for reading a preliminary draft and making several useful observations.

3. ISOMORPHISMS WITH FINITE EXPECTED CODE LENGTH

Let (x, σ) be the two-sided shift space on k-symbols. Let $g_{i} \in C(X), i=1,2$, be such that $i t$ depends only on coordinates to the right of zero and $g_{i} \in G$, when restricted to $X+$. We also assume that the g_{j} 's have finite first moment variational sum. Then by Theorem 2.1 we can choose $\mu_{i}(i=1,2)$. Since the μ_{i} are members of $M(X+, \sigma)$ they can be extended uniquely to σ-invariant measures on X. For brevity these measures will also be called $\mu_{1} \mu_{2^{\prime}}$. The subshifts $\left(X_{1}, \sigma_{1}, \mu_{1}\right),\left(X_{2}, \sigma_{2}, \mu_{2}\right)$ are said to be isomorphic if there exists a measure preserving isomorphism $\phi:\left(x_{1}, \sigma_{1} \cdot \mu_{1}\right) \rightarrow\left(x_{2}, \sigma_{2}, \mu_{2}\right)$ with $\phi \sigma_{1}=\sigma_{2} \phi$, this iscmorphism ϕ is called finitary if there exists null sets $E_{1} \subset X_{1}, E_{2} \in X_{2}$ such that the restrictions of ϕ and ϕ^{-1} to $X_{1} \backslash E_{1}$ and $X_{2} \backslash E_{2}$ are continuous. If ϕ is a finitary isomorphism we can find measurable, non-negative, integer valued functions a_{ϕ} and m_{ϕ} on X with

$$
(\phi(x))_{0}=\left(\phi\left(x^{\prime}\right)\right)_{0}
$$

whenever $x, x^{\prime} \in X_{1} \backslash E_{1}$ satisfy $x_{i}=x_{i}^{\prime}$ for all $i \in \mathbb{Z}$ with $-m_{\phi}(x) \leq i \leq a_{\phi}(x)$. We can similarly define analogous objects $a_{\phi^{-1}}, m_{\phi^{-1}}$ for ϕ^{-1}.

Definition

ϕ is said to have finite expected code length if

$$
\int\left(a_{\phi}+m_{\phi}\right) d \mu_{1}<\infty \quad \text { and } \int\left(a_{\phi}^{-1}+m_{\phi}-1\right) d \mu_{2}<\infty .
$$

For the remainder of this paper we shall assume $\phi:\left(X_{1}, \sigma_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \sigma_{2}, \mu_{2}\right)$ is a finitary isomorphism with finite expected code length.

Following Krieger [1] we observe that

$$
\begin{aligned}
& a_{\phi}^{*}(x)=\sup _{n \geq 0}\left(a_{\phi}\left(\sigma^{-n}(x)\right)-n\right)<\infty \\
& m_{\phi}^{*}(x)=\sup _{n \geq 0}\left(m_{\phi}\left(\sigma^{n}(x)\right)-n\right)<\infty \quad \text { a.e. }
\end{aligned}
$$

Fram this Krieger draws the following conclusions.

Proposition 3.1

(i) There exists a null set E_{1}^{*} such that if $x, x^{\prime} \in X_{1} \mid E_{1}^{*}$
satisfy $x=x_{i}^{\prime}$ for all $i \in Z$ with $-\infty<i \leq a_{\phi}^{*}(x)\left(-m_{\phi}^{*}(x) \leq i<\infty\right)$ then we have $\phi(x)_{i}=\phi\left(x^{\prime}\right)_{i}$ for all $i \leq 0(i \geq 0)$. An analogous statement can be made about ϕ^{-1}.
(ii) If $x, x^{\prime} \in X_{1} \backslash E_{1}^{*}$ and $x_{j}=x_{j}^{\prime}$ for $i \geq N$ for some $N \in Z$ then there exists an integer M, depending on x, N with $\phi(x)_{j}=\phi\left(x^{\prime}\right)_{j}$ for $\mathbf{i} \geq M$;
(iii) Similarly, if $x, x^{\prime} \in X_{1} \backslash E_{1}^{*}$ satisfy $x_{i}=x_{i}^{\prime}$ for $i \leq N$ there exists $M=M(N, x)$ with $\phi(x)_{i}=\phi\left(x^{\prime}\right)_{i}$ for $i \leq M$.

If $x, x^{\prime} \in X \backslash E_{1}^{*}$ satisfy $x_{i}=x_{i}^{\prime}$ for $|i| \geq N \geq 0$ there exists $M^{\prime}=M^{\prime}(N, x)$ with $\phi(x)_{i}=\phi\left(x^{\prime}\right)_{i}$ for $|i| \geq M^{\prime}$. Similar results for ϕ^{-1}.

Since the functions a_{ϕ}^{*} and m_{ϕ}^{*} are finite a.e. we can find an integer $M \geq 0$ and a cylinder set $C=\left[\mathbf{i}_{-m}, \quad i_{m}\right]_{-m}^{m} \subset X$ such that

$$
D=C n\left\{x: a_{\phi}^{*}(x) \leq M \text { and } M_{\phi}^{*}(x) \leq M\right\}
$$

has positive measure.
4. LOCALLY FINITE DIMENSIONAL AUTOMORPHISM.

An automorphism $V: X_{1}+X_{1}$ is said to be locally finite dimensional if V is non-singular and fixes all but a finite number of coordinates for a.e. $(\mu) x \in X$. Krieger essentially expresses this in the following manner; Define an equivalence relation on X by $x \sim x^{\prime}$ if $x_{n}=x_{n}^{\prime}$ for all but finitely many $n \in Z$. A non-singular automorphism V of X is then locally finite dimensional if for μ-a.e. x, $V x \sim x$. Denote by F_{1}, F_{2} the group of all non-singular locally finite dimensional automorphisms of $\left(X_{1}, \mu_{1}\right),\left(X_{2}, \mu_{2}\right)$, then (iv) of Proposition 3.1 tells us that $\phi F_{1} \phi^{-1}=F_{2}$. For further reference we shall denote by E_{i} the group generated by $F_{i}(i=1,2)$ and σ.

For calculation purposes, concerning the invariance of the β-function, we are really interested in the elements of F_{i} which leave the set C (as described in Section 3) invariant. Thus we define a subgroup of F_{i}, with this property, as follows:

$$
\begin{aligned}
& H_{i}^{+}=\left\{V \in F_{i} \mid V(x)_{j}=x_{j} \text { for } j \leq M\right\} \\
& H_{i}^{-}=\left\{V \in F_{i} \mid V(x)_{j}=x_{j} \text { for } j \geq-M\right\}
\end{aligned}
$$

$H_{i}=H_{i}^{+} H_{i}^{-}$is then a subgroup of F_{i} with the above property concerning C. We can thus discuss the way in which H acts on $\left\{C_{s} \vdash_{c}^{i}\right\}$ ($\mu c c$ measure induced on C by μ_{i}) with the following result.

Proposition 4.1
The action of H on the space $\left(C, \mu_{c}^{i}\right)$ is ergodic, $i=(1,2)$

Proof
We have to prove if B is a Borel subset of C
$Z V \in H$ st $\mu_{C}^{i}(V B \cap C \backslash B)>0$.
We shall in fact prove if B_{1}, B_{2} are non-trivial ${ }^{n}$ Borel subsets of C (i.e. $B_{1}, B_{2} \in B_{B_{C}^{n}}^{n} C$) then $\exists V \in H$ with $\left.\mu_{c}^{i}\left(V B_{1}\right) \cap B_{2}\right)>0$.

I claim if $C_{1}, C_{2} \in B_{C}$ are clopen $I V \in H \cap P$ with $\left.\left(V C_{1}\right) \cap C_{2}\right)=C_{2}$. Assuming the claim, for the moment, given $B_{1}, B_{2} \in B_{c}$ we can choose clopen sets $C_{1}, C_{2} \in B_{c}$ with $\mu_{c}^{i}\left(C_{1} \Delta B_{1}\right)<\varepsilon, \mu_{c}^{i}\left(C_{2} \Delta B_{2}\right)<\varepsilon$, where $\varepsilon>0$ is arbitrary. We can thus find $V \in H$ with $\mu_{i}\left(V\left(C_{1}\right) \cdot n\left(C_{2}\right)\right)>0$. I claim in fact if ε is chosen small enough this implies $\mu_{i}\left(V\left(B_{1}\right) \cap B_{2}\right)>0$. For if $\mu_{1}\left(V\left(B_{1}\right) \cap B_{2}\right)=0$ for every $\varepsilon>0$

$$
\begin{aligned}
& \mu_{c}^{i}\left(V\left(C_{1}\right) \cap C_{2}\right) \leq \mu_{c}^{i}\left(V\left(B_{1} \cup\left(B_{1} \Delta C_{1}\right)\right) \cap\left(B_{2} \cup B_{2} \Delta C_{2}\right)\right. \\
& \leq \mu_{c}^{i}\left(V\left(B_{1}\right) \cap B_{2}\right)+\mu_{c}^{i}\left(V\left(B_{1}\right) \cap\left(B_{2} \Delta C_{2}\right)\right) \\
&+\mu_{c}^{i}\left(V\left(B_{1} \Delta C_{1}\right) \cap B_{2}\right) \\
&+\mu_{c}^{i}\left(V\left(B_{1} \Delta C_{1}\right) \cap B_{2} \Delta C_{2}\right)
\end{aligned}
$$

By the above assumptions this is

$$
\leq 2 \varepsilon+\varepsilon E \quad \text { (} E \text { as in Lemma below) }
$$

which implies $\mu_{j}\left(V\left(C_{1}\right) \cap C_{2}\right)=\mu_{i}\left(C_{2}\right)$ can be chosen to be arbitrarily small a contradiction. It thus suffices to prove the claim.

Let $C_{1}^{\prime}, C_{2}^{\prime}$ be two arbitrary cylinders. And assume $\ell\left(C_{1}^{\prime}\right) \geq \ell\left(C_{2}^{\prime}\right)$ and choose a subcylinder, of C_{2}^{\prime}, of the same length as C_{1}^{\prime}. We thus can, in effect for the proof, assume that $C_{1}^{\prime}, C_{2}^{\prime}$ have the same length. Now define $V^{\prime}: X_{i} \rightarrow X_{i}$ which fixes C by mapping the co-ordinates of C_{1}^{\prime} to C_{C}^{\prime} and vice-versa. (By similarly looking at subclinders we can assume the images of V do in fact lie in X_{i}), leaving all other co-ordinates which are not part of the determining co-ordinates of the $C_{i}^{\prime} ' s$, fixed. We can assume C_{1} is a union of more cylinders than C_{2}. We then construct V by using V^{\prime} on a subset of cylinders of C_{1} until $V\left(C_{1}\right)=C_{2} \cdot V$ is clearly uniformly locally finite dimensional and we need just to verify it is non-singular.

Lemma
If $V: X_{i} \rightarrow X_{i}$ is uniformly locally finite dimensional automorphism then $\frac{d \mu_{1} V}{d \mu_{i}}, \frac{d \mu_{i}}{d \mu_{i} V}$ both exist, $(i=1,2)$. (i.e. μV and μ are equivalent).

Proof
I claim it is sufficient to prove $\exists \mathrm{D}, \mathrm{E}>0$ such that
(*) $D \mu_{i}\left[x_{-n}, \ldots, x_{0}, \ldots, x_{n}\right] \leq \mu_{i} V\left[x_{-n}, \ldots, x_{0}, \ldots, x_{n}\right] \leq E \mu_{i}\left[x_{-n}, \ldots, x_{0}, \ldots, x_{n}\right]$
exists for all $n \geq 0$ and $x=\left(x_{n}\right)_{n=1}^{\infty} \in X_{i}$. This is so since (*) shows clearly that $\mu_{j} V$ and μ_{i} have the same sets of zero measure. It remains to prove (*). Assume V fixes coordinates uniformly for $|n| \geq N$. Then since $L{ }^{*} \mu_{j}=\mu_{i}$ we obtain that

$$
\begin{aligned}
& u_{i}\left[(v x)_{-n}, \ldots,(v x)_{0}, \ldots,(v x)_{n}\right] \\
& =\int g_{i}\left(\sigma^{-n} y\right) \ldots g_{i}(y) \ldots g\left(\sigma^{n} y\right) d \mu_{i}(y) \text { where } B=\left[(v x)_{-n}, \ldots,(v x)_{0}, \ldots\right. \\
& \leq \exp \left[\sum_{k=0}^{n-N} \operatorname{var}_{k} \operatorname{logg}_{i}+2 N\left\|\operatorname{logg}_{i}\right\|_{\infty}\right] \mu_{i}\left[x_{-n}, \ldots, x_{0}, \ldots, x_{n}\right]
\end{aligned}
$$

Thus if $C=\exp \left[\sum_{k=0}^{\infty} \operatorname{var}_{k} \log _{\mathfrak{i}}+2 N\left\|\log \dot{g}_{j}\right\|_{\infty}\right]$ then one side of the inequality follows. Similarly if

$$
D=\exp \left[-\left(\sum_{k=0}^{\infty} \operatorname{var}_{k} \operatorname{logg}_{i}+2 N\left\|\operatorname{logg}_{i}\right\|_{\infty}\right)\right]
$$

the other side of the inequality follows.

From now on X is an arbitrary topologically mixing subshift of finite type, $X+$ its obvious restriction.

The following lemma is essentially Sinai's result (Sinai [1] page 28). The finite first moment variational sum being the condition essentially used in Sinai's proof.

Lemma 4.2

If $\phi \in C(X)$ st. $\quad \sum_{k=1}^{\infty} k \operatorname{var}_{k} \phi<\infty$ then ϕ is cohomologous
to a function $\phi_{+} \in C(X+)$ (where $\sum_{k=1}^{\infty} k \operatorname{var}_{k} \phi_{+}<\infty$ and $C(X+) \subset C(X)$
is identified with functions of $C(X)$, which depend only on coordinates to the right of zero.)

Proof
Sinai's proof shall be included for completeness.
Define $g_{n}(z)=\sup _{x \in\left[z_{-n}, \cdots, z_{n}\right]_{-n}^{n}} \quad$ and

$$
\phi_{n}=g_{n}-g_{n-1} \text { for } n \geq 1
$$

Then $\left\|\phi_{n}\right\|_{\infty} s v a r_{n} \phi, \phi_{n}$ depends only on ($\left.z_{-n}, \ldots, z_{0}, \ldots, z_{n}\right)$ and $\lim _{\phi_{n}}=0, n \geq 1$.

Therefore if we let, $\phi_{0}=g_{0} \quad$ then

$$
\phi=\phi_{0}+\sum_{n \geq 1} \phi_{n}
$$

If. $\psi=\sum_{n=0}^{\infty} \phi_{n} \sigma^{n}$, then $\psi \in C(X+)$. Let

$$
u=\sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \phi_{n} \sigma^{k} \text {. Then }\|u\|_{\infty} \leq \sum_{k=1}^{\infty} K \cdot \operatorname{var}_{k} \phi<\infty .
$$

Since, given $x, y \in X$,

$$
\begin{aligned}
|u(x)-u(y)| & \leq \sum_{n=1}^{\infty}\left|\sum_{k=0}^{n-1} \phi_{n} \sigma^{k}(x)-\sum_{k=0}^{n-1} \phi_{n} \sigma^{k}(x)\right| \\
& \leq \sum_{n=1}^{\infty} \sum_{k=0}^{n-1}\left|\phi_{n} \sigma^{k}(x)-\phi_{n} \sigma^{k}(x)\right| \\
& \leq \sum_{n=1}^{\infty} n \operatorname{var}_{n} \phi<\infty \quad .
\end{aligned}
$$

Moreover,

$$
u c-u=\sum_{n=0}^{\infty} \phi_{n} \sigma^{n}-\sum_{n=0}^{\infty} \phi_{n}=\psi-\phi
$$

the lerma is thus complete.

5. THE INFORMATION COCYCLE

Let α be the time zero partition of X (i.e. $\alpha=\left\{[i]_{0_{\infty}} \mathbf{i} \in\{1, \ldots, k\}\right.$) $\cap X$ and let A be the σ-algebra generated by $\bigcup_{n=0}^{\infty} \sigma^{-n} \alpha$ (i.e. $A=V_{i=1}^{\infty} \sigma^{-i} \alpha$). As, in Butlè-Schmidt [1], Schmidt-Parry [1] we shall define the information cocycle, for $V \in E$, as follows:

$$
\begin{aligned}
J_{\mu}(A, V) & =I_{\mu}\left(A \mid V^{-1} A\right)-I_{\mu}\left(V^{-1} A \mid A\right) \\
& =\log E_{\mu}\left(\left.\frac{d \mu V^{-1}}{d \mu} \right\rvert\, A\right) \circ V .
\end{aligned}
$$

Where $E_{\mu}(\cdot \mid A)$ denotes the conditional expectation with respect to A and $I_{\mu}\left(A \mid V^{-1} A\right.$) is the information about A given $V^{-1} A$ (see Parry [2] for full information). The information cocycle has the following properties and values, for the case under consideration, as given by the following proposition.

Proposition 5.1

(i) $J_{\mu}\left(A_{1} \cdot\right)$ is indeed an information cocycle on E namely:

$$
\begin{aligned}
& J_{\mu}(A, \cdot): E \rightarrow R \text { and } \\
& J_{\mu}(A, p h)=J_{\mu}(A, p) \circ h+J_{\mu}(A, h) \text { a.e. } \mu \quad p, h \in E .
\end{aligned}
$$

(where $\mu \mathrm{is}$, and always shall be, from here on, a g -measure for a g with finite first moment variational sum which by Lemma 4.2 can be assumed to depend only on coordinates to the right of zero and as such $g \in G$).
(ii) For $V \in E, \mu$ and g as in (i)

$$
J_{\mu}(A, V)=\log \prod_{n=0}^{\infty} \frac{g\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)} \text { a.e. } \mu
$$

Proof
(i) See Butler-Schmidt [1] Theorem 4.13.
(ii) For this we shall need the following Lemmas.

Lemma 5.2

$$
J_{\mu}(A, \sigma)(x)=I_{\mu}\left(A \mid \sigma^{-1} A\right)(x)=\log \frac{1}{g(x)} \text { a.e. } \mu \text {. }
$$

Lerma 5.3 (Butler-Schmidt [1] Theorem 4.18.)

Let $P=\{V \in E$ such that V fixes all coordinates for $|i| \geqslant N$ where N is independent of x \}
let

$$
[P]=\{V \in E \mid V x \in P x \text { for } \mu \text {. a.e. } x \in X\}
$$

Then for every $V \in[P]$ and $P \in P$ we have

$$
\begin{aligned}
& J_{\mu}(A, V)(x)=J_{\mu}(A, p)(x) \\
& \mu . \text { a.e. on } B_{p}=\{x \in x \mid V x=p x\}
\end{aligned}
$$

Remark 5.4

It is easy to see that in fact $[P]=E$ and thus in order to compute $J_{\mu}(A, V)$, for $V \in E$, we can assume V fixes all coordinates for $|i| \geqslant N($ some $N \in N)$ independent of x.

Assuming these Lerma's, for the moment, we shall continue with the proof of Proposition 5.1(ii). By Remark 6.4 we can choose $N>0$ such that V fixes coordinates a.e. μ for $|n| \geqslant N$, thus $\sigma N_{V \sigma}{ }^{-N}$ fixes all coordinates to the right of zero and $\sigma^{N} V \sigma^{-N} A=A$. Thus

$$
\begin{aligned}
& J_{\mu}\left(A g N_{V \sigma}-N\right)=I_{\mu}\left(A \mid \sigma^{N} V^{-1} \sigma^{-N} A\right)-I_{\mu}\left(\sigma^{N} V^{-1} \sigma^{-N} A \mid A\right) \\
& -\log E_{\mu}\left(\left.\frac{d \mu \sigma^{N} V^{-1} \sigma_{\sigma}-N}{d \mu} \right\rvert\, A\right) \circ \sigma^{N_{V \sigma}-N} . \\
= & -\log E_{\mu}\left(\left.\frac{d \mu \sigma^{N} V^{-1} \sigma^{-N}}{d \mu} \right\rvert\, A\right) \circ \sigma^{N} V_{\sigma}-N \\
= & -\log E_{\mu}\left(\frac{d \mu \sigma^{N} V^{-1}-N}{d \mu} \circ \sigma^{N} V_{\sigma}-N|A\rangle \quad\right. \text { (By Expectation property). } \\
= & -\log E_{\mu}\left(\left.\frac{d \mu}{d \mu \sigma} V_{V_{\sigma}}^{-N} \right\rvert\, A\right) \\
= & -\log E_{\mu}\left(\left.\frac{d \mu}{d \mu V \sigma^{-N}} \right\rvert\, A\right) \text { since } \mu \text { is } \sigma-\text { invariant. } \\
= & -\log E_{\mu}\left(\left.\frac{d \mu}{d \mu V} \circ \sigma^{-N} \right\rvert\, A\right) .
\end{aligned}
$$

I claim this is in fact equal to zero in other words:

$$
E_{\mu}\left(\left.\frac{d \mu}{d \mu V} \circ \sigma^{-N} \right\rvert\, A\right)=1
$$

It will suffice to prove if $\left[x_{0},, x_{m}\right]_{0}$ is a cylinder starting at 0 then

$$
\begin{equation*}
\int_{\left[x_{0}, x_{m}\right]_{0}} \frac{d \mu V}{d \mu} 0 \sigma^{-N} d \mu=\mu\left(\left[x_{0}, x_{m}\right]_{0}\right) . \tag{*}
\end{equation*}
$$

this implies
For, then,

$$
E_{\mu}\left(\left.\frac{d \mu V}{d \mu} \circ \sigma^{-N} \right\rvert\, A\right)=1
$$

and since $J_{\mu}\left(A, 1_{i d}\right)=0$, using the cocycle property:

$$
0=J_{\mu}\left(A, \dot{1}_{i d}\right)=J_{\mu}\left(A, \sigma^{-N} V^{-1} \sigma^{-N}\right) \circ \sigma^{N} V^{-N}+J_{\mu}\left(A, \sigma^{N} V_{\sigma}-N\right) .
$$

Since $\sigma^{N} V^{-1} \sigma^{-N}$ also fixes A we have that

$$
J_{\mu}\left(A, \sigma^{N} V^{-1} \sigma^{-N}\right)=-\log E_{\mu}\left(\left.\frac{d \mu}{d \mu V}-1 \circ \sigma^{-N} \right\rvert\, A\right)
$$

Thus $\log E_{\mu}\left(\left.\frac{d \mu}{d \mu V^{-1}} \circ \sigma^{-N} \right\rvert\, A\right) \circ \sigma^{N} V \sigma^{-N}$

$$
=-\log E_{\mu}\left(\left.\frac{d \mu}{d \mu V} \circ \sigma^{-N} \right\rvert\, A\right)
$$

i.e. $\left(E_{\mu}\left(\left.\frac{d \mu V}{d \mu} \circ \sigma^{-N} \right\rvert\, A\right)=\left[E_{\mu}\left(\left.\frac{d \mu}{d \mu V} \circ \sigma^{-N} \right\rvert\, A\right)\right]^{-1}\right.$
= 1)

It remains just to prove (*).

$$
\begin{aligned}
\int_{\left[x_{0},, x_{m}\right]_{0}} \frac{d \mu V}{d \mu} 0 \sigma^{-N} d \mu & =\int_{\left[x_{0}, x_{m}\right]_{N}} \frac{d \mu V}{d \mu} d \mu \\
& =\mu V\left[x_{0},, x_{m}\right]_{N} .
\end{aligned}
$$

Since V fixes coordinates for $|n|>N$ then

$$
V\left[x_{0}, \quad, x_{m}\right]_{N}=\left[\begin{array}{ll}
x_{0}, & , x_{m}
\end{array}\right]_{N}
$$

and

$$
\mu V\left[x_{0^{\prime}}, x_{m}\right]_{N}=\mu\left[x_{0}, \quad, x_{m}\right]_{N}=\mu\left[x_{0}, \quad, x_{m}\right]_{0} .
$$

Thus

$$
\begin{equation*}
J_{\mu}\left(A, \sigma^{N} V_{\sigma}-N\right)=0 \tag{iii}
\end{equation*}
$$

Using the cocycle property we obtain that

$$
J_{\mu}\left(A, \sigma N_{V \sigma}-N\right)=J_{\mu}\left(A, \sigma^{N}\right) \circ V_{\sigma}^{-N}+J_{\mu}(A, V) \circ \sigma^{-N}+J_{\mu}\left(A, \sigma^{-N}\right)
$$

Note that since $J_{\mu}\left(A, 1_{i d}\right)=0$ we obtain again using the cocycle property, that

$$
J_{\mu}\left(A, \sigma^{-N}\right)=-J_{\mu}\left(A, \sigma^{N}\right) \circ \sigma^{-N}
$$

Thus, using these two identities we obtain fram 5.2(iii)

$$
0=J_{\mu}\left(A, \sigma^{N}\right) \circ V \sigma^{-N}+J_{\mu}(A, V) \circ \sigma^{-N}-J_{\mu}\left(A, \sigma^{N}\right) \circ \sigma^{-N}
$$

This implies

$$
J_{\mu}(A, V)=J_{\mu}\left(A, \sigma^{N}\right)-J_{\mu}\left(A, \sigma^{N}\right) \circ V
$$

By Lemma 5.2 and the cocycle property we can obtain that

$$
J_{\mu}\left(A, \sigma^{N}\right)=\log \prod_{m=0}^{N-1} \frac{1}{g\left(\sigma^{m}\right)}
$$

Thus

$$
J_{\mu}(A, V)=\log \prod_{m=0}^{N-1} \frac{g\left(0^{m} V\right)}{g\left(\sigma^{m}\right)} .
$$

Thus since V fixes coordinates to the right of N Proposition 5.1 is proven. To complete the proof we need to verify Lenma's 5.2 and 5.3.

Proof of Lerma 5.2

If α_{1}, α_{2} are two partitions of x, denote by $\alpha_{1} \vee \alpha_{2}$ their refinement and $\hat{\alpha}_{1}$ the σ-algebra generated by $\alpha_{1}, \hat{\alpha}_{1} \vee \hat{\alpha}_{2}$ the σ-algebra generated by $\alpha_{1} \vee \alpha_{2}$.

By definition (see Parry [1])

$$
\begin{aligned}
& I\left(A \mid \sigma^{-1} A\right)=\lim _{m \rightarrow \infty} I\left(V_{i=0}^{m} \sigma^{-i} \alpha \mid \sigma^{-1} A\right) . \\
& I_{\mu}\left(V_{i=0}^{m} \sigma^{-i} \alpha \mid \sigma^{-1} A\right) \\
& =I_{\mu}\left({\underset{i=0}{m}}_{V} \sigma^{-i} \alpha \mid \underset{i=1}{\vee} \hat{\sigma}^{-i} \alpha\right) \\
& =I_{\mu}\left(\alpha \mid \underset{i=1}{\infty} \hat{\sigma^{-i}} \alpha\right)+I_{\mu}\left(V_{i=1}^{m} \sigma^{-i} \alpha \mid V_{i=1}^{\infty} \hat{\sigma^{-i}} \alpha\right) \\
& =\lim _{k \rightarrow \infty} I_{\mu}\left(\alpha \mid V_{i=1}^{k} \hat{\sigma}^{-i} \alpha\right) \text { (By Theorem } 6 \text { Parry [1]). }
\end{aligned}
$$

Let μ_{+}be the restriction of μ of $X+$, then $\mu+$ is a g-measure for the restriction of g to $X+$ by the way in which μ was defined.

$$
I_{H}\left(\alpha \mid{ }_{i=1}^{k} \hat{\sigma}^{-i} \alpha\right) \text { depends only on coordinates to the right }
$$

of zero and thus is equal to

$$
I_{\mu_{+}}\left(\alpha \mid V_{i=1}^{k} \hat{\sigma}^{-i} \alpha\right)
$$

By definition

$$
\begin{aligned}
& I_{\mu_{+}}\left(\alpha \mid V_{i=1}^{m} \sigma^{-i} \hat{\alpha}\right) \\
= & \left.\sum_{i \in\{1, \ldots, k\}} \sum_{[i]}^{\log \mu([i] \mid} V_{i=1}^{m} \sigma^{-i \hat{\alpha}}\right)
\end{aligned}
$$

$$
2.17
$$

$$
\text { where } \begin{aligned}
& \mu\left(\left.[i]\right|_{i=1} ^{m} \sigma^{-i} \hat{\alpha}\right)=E\left(\left.x_{[i]}\right|_{i=1} ^{m} \sigma^{-i} \hat{\alpha}\right) \\
= & \left.x_{1},{ }^{\Sigma} x_{m} \in\{1, \ldots, k\}\left[x_{1} \cdots, x_{m}\right]\right]_{1}\left(\int_{\left[x_{1} \cdots, x_{m}\right]_{1}} x_{[i]} d \mu\right) \frac{1}{\mu\left[x_{p} \cdots, x_{m}\right]} \\
= & \left.x_{1}{ }^{\Sigma} x_{m} \quad x_{\left[x_{1}\right.} x_{m}\right] \frac{\mu\left[i x_{1}, \cdots, x_{m}\right]}{\mu\left[x_{1}, \cdots, x_{m}\right]} .
\end{aligned}
$$

So

$$
\begin{aligned}
& \quad I_{\mu+}\left(\alpha| |_{i=1}^{m} \sigma^{-i} \hat{\alpha}\right) \\
& =-x_{0},{ }^{\sum} x_{m} x_{\left[x_{\alpha} \cdots, x_{m}\right]} \log \frac{\mu\left[x_{0}, x_{1}, \cdots, x_{m}\right]}{\mu\left[x_{1}, \cdots, x_{m}\right]} \\
& =\log E\left(\left.\frac{d \mu_{+} \sigma}{d \mu_{+}} \right\rvert\, V_{i=0}^{m} \sigma^{-i} \hat{\alpha}\right) .
\end{aligned}
$$

Thus by taking limits and using the increasing martingale Theorem (Parry [1] Theorem 2 Page 30).

$$
\begin{aligned}
& I_{\mu}\left(\alpha \mid \bigvee_{i=1}^{\infty} \sigma^{-i} \hat{\alpha}\right) \\
= & \log \frac{d \mu_{+} \sigma}{d \mu_{+}}
\end{aligned}
$$

$=\log \frac{1}{9}$ by Theorem 2.1.
Thus $I_{\mu}\left(A \mid \sigma^{-1} A\right)=\log \frac{1}{g}$.

Proof of Lemma 5.3

As already indicated the proof is to be found in SchmidtButler Theorem 4.18.

Proposition 5.5

Using the notation of earlier we have

$$
J_{\mu_{1}}(A, V)-J_{\mu_{1}}\left(\phi^{-1} A, V\right)=f V-f \quad \forall V \in E_{1}
$$

where $f=I_{\mu_{1}}\left(A \mid \phi^{-1} A\right)-I_{\mu_{1}}\left(\phi^{-1} A \mid A\right)$ is measurable.

Proof
The proof is exactly the same as for the Markov measure case given in Parry [3] (finitary isomorphisms with finite expected code length using Butler-Schmidt Theorem 4.14 .

Lemma 5.6

For $V \in E, \mu, g$ as in previous notation, then

$$
\frac{d \mu V}{d \mu}=\prod_{n=-\infty}^{\infty} g \frac{\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)} .
$$

Proof

$$
\begin{aligned}
& \text { For } m \geq N \quad \sigma^{-m} V \sigma^{m}(A)=A, \text { therefore } \\
& J_{\mu}\left(A, \sigma^{-m} V \sigma^{m}\right)=-\log E_{\mu} \frac{\left(d \mu \sigma^{-m} V^{-1} \sigma^{m} \mid A\right)}{d \mu} \circ \sigma^{-m} V \sigma^{m} \\
&=-\log E_{\mu} \frac{(d \mu \mid A)}{d \mu V \sigma^{m}}
\end{aligned}
$$

By Proposition 5.1 we know that

$$
\begin{aligned}
J_{\mu}\left(A, \sigma^{-n} V_{\sigma}^{n}\right) & =\log \prod_{n=0}^{\infty} g \frac{\left(\sigma^{n} \sigma^{-m V_{\sigma}}{ }^{m}\right)}{g\left(\sigma^{n}\right)} \\
& =\log \prod_{n=-m}^{\infty} g \frac{g\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)} \circ \sigma^{m}
\end{aligned}
$$

Also

$$
\begin{aligned}
&-\log E_{\mu}\left(\left.\frac{d \mu}{d \mu V \sigma^{m}} \right\rvert\, A\right) \\
&=-\log E_{\mu}\left(\left.\frac{d \mu}{d i V} \right\rvert\, \sigma^{m} A\right) \circ \sigma^{m} \quad(\text { since } \mu \sigma \text {-invariant }) \\
&= \log \left(E_{\mu}\left(\left.\frac{d \mu}{d \mu V} \right\rvert\, \sigma^{m} A\right)\right)^{-1} o \sigma^{m} \\
& \prod_{n=-m}^{\infty} \frac{g\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)}=\left(E_{\mu}\left(\left.\frac{d \mu}{d \nu V} \right\rvert\, \sigma^{m} A\right)\right)^{-1}
\end{aligned}
$$

Taking the limit as mends to infinity and using the increasing Martingale Theorem (see Parry [1]).

This implies

$$
\begin{aligned}
& \left(\frac{d \mu}{d \mu V}\right)^{-1}=\prod_{n=-\infty}^{\infty} \frac{g\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)} \\
& \frac{d \mu V}{d \mu}=\text { III }_{n=-\infty}^{\infty} \frac{g\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)}
\end{aligned}
$$

and

Remark 5.6(i)

Note that $\prod_{n=-\infty} \frac{g\left(\sigma^{n} V\right)}{g\left(\sigma^{n}\right)}$ exists since V is locally finite
dimensional and g has finite first moment variational sum.

Lemma 5.7

$$
\text { If } V \in H \text { then }|f o v-f|<k=\sum_{n=1}^{\infty} \operatorname{var}_{n} \log _{1}+\sum_{n=1}^{\infty} \operatorname{var}_{n} \log _{2}<\infty \text { on } D \text {. }
$$

(f as in Proposition 5.5).

Proof
By Proposition 5.5 we have that

$$
f \circ V-f=J_{\mu_{1}}(A, V)-J_{\mu_{1}}\left(\phi^{-1} A, V\right)
$$

Thus estimates, involving the expression foV - f, can be computed by studying the information cocycles which we have expressions for. The computation of $J_{\mu}(A, V)$, for $V \in H$, can be reduced even further as follows:

Each $V \in H$ is of the form $V=V^{-} V^{+}$and, by the cocycle equation for $J_{\mu_{1}}(A, \cdot)$,

$$
\begin{aligned}
J_{\mu}(A, V) & =J_{\mu_{1}}\left(A, V^{-} V^{+}\right) \\
& =J_{\mu}\left(A, V^{-}\right) \circ V^{+}+J_{\mu}\left(A, V^{+}\right)
\end{aligned}
$$

Thus in order to prove fV-f is bounded we need only prove that $J_{\mu_{1}}\left(A, V^{+}\right)-J_{\mu}\left(\phi^{-1} A, V^{+}\right), J_{\mu_{1}}\left(A, V^{-}\right)-J_{\mu_{1}}\left(\phi^{-1} A, V^{-}\right)$
are bounded.

$$
J_{\mu_{1}}\left(A, V^{-}\right)=\log \prod_{n=0}^{\infty} g \frac{\left(\sigma^{n} V^{-}\right)}{g\left(\sigma^{n}\right)} \text { (by Proposition 5.1(ii)) }
$$

and, since V^{-}fixes coordinates to the right of $-M$ and g depends only on coordinates to the right of zero this equals zero.

$$
\begin{aligned}
\text { Analogously, since } & J_{\mu_{1}}\left(\phi^{-1} A, V^{-}\right) \\
= & J_{\mu_{2}}\left(A, \phi V^{-}-1\right) \circ \phi
\end{aligned}
$$

it follows that $J_{\mu_{1}}\left(\phi^{-1} A, V^{-}\right)=0$.

By Lemma 5.6 and Proposition 5.1 (ii)

$$
\begin{aligned}
& \left\lvert\, \log \frac{d \mu_{1} V^{-}}{d \mu_{1}}\right.-J_{\mu_{1}}\left(A, V^{+}\right) \mid \\
&=\left|\sum_{n=-1}^{\infty} \log \frac{g_{1}\left(\sigma^{n} V^{+}\right)}{g_{1}\left(\sigma^{n}\right)}\right| \\
& \leq \sum_{n=1}^{\infty} \operatorname{var}_{n} \log g_{1}\left(\text { since } V^{+}\right. \text {fixes coordinates to } \\
&\text { the left of } M) .
\end{aligned}
$$

Since $J_{\mu_{1}}\left(\phi^{-1} A, V^{+}\right)=J_{\mu_{2}}\left(A, \phi V^{+} \phi^{-1}\right) \circ \phi \quad$ and

$$
\frac{d \mu_{2} \phi V_{\phi}^{+1}}{d \mu_{2}} \circ \phi=\frac{d \mu_{1} V^{+}}{d \mu_{1}}\left(\text { recall that } \mu_{2} \phi=\mu_{1}\right)
$$

we have that

$$
\begin{aligned}
& \left|\log \frac{d \mu_{1} V^{+}}{d \mu_{1}}-J_{\mu_{1}}\left(\phi^{-1} A, V^{+}\right)\right| \\
& \quad=\left|\left(J_{\mu_{2}}\left(A, \phi V^{+}{ }^{-1}\right)-\log \frac{d \mu_{2} \phi V^{+}{ }^{-1}}{d \mu_{2}}\right) \circ \phi\right| \\
& \quad=\left|\sum_{n=-1}^{\infty} \log g_{2} \frac{\left(\sigma^{n} \phi V^{+} \phi-1\right)}{g_{2}\left(\sigma^{n}\right)} \circ \phi\right| .
\end{aligned}
$$

On D, since $a_{\phi}^{*} \leq M$ and V^{+}fixes coordinates to the left of M, $\left\{\left(\phi\left(V^{+} x\right)\right)_{-n}=(\phi(x))_{-n} \mid n=0,1, \ldots\right\}$.
Thus

$$
\begin{aligned}
& \left|\sum_{n=1}^{\infty} \log \frac{g_{2}\left(0^{n} \phi V^{+}\right)}{g_{2}\left(0^{n} \phi\right)}\right| \\
\leq & \sum_{n=1}^{\infty} \operatorname{var}_{n} \log g_{2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|J_{\mu_{1}}\left(A, V^{+}\right)-J_{\mu_{1}}\left(\phi^{-1} A, V^{+}\right)\right| \\
\leq & \left|J_{\mu_{1}}\left(A, V^{+}\right)-\log \frac{d \mu_{1} V^{+}}{d \mu_{1}}\right|+\left|\log \frac{d \mu_{1} V^{+}}{d \mu_{1}}-J_{\mu_{1}}\left(\phi^{-1} A, V^{+}\right)\right| \\
\leq & \sum_{n=1}^{\infty} v a r_{n} \log g_{1}+v a r_{n} \log g_{2} .
\end{aligned}
$$

Therefore we obtain Lemma 5.7. We are now in a position to prove the main proposition of this section.

Proposition 5.8

f (as in Proposition 5.5) is bounded a.e. μ_{1} on D.

Proof
Choose $\alpha \in R$ such that $A_{\varepsilon}=\{x:|f(x)-\alpha|<\varepsilon\} \cap D$ has positive measure for every $\varepsilon>0$ and such that $|\alpha|$ is minimal. If f is not bounded by $|\alpha|$ we can choose $\beta \in R(|\beta|>|\alpha|)$ with the property that $B_{\varepsilon}\{x| | f(x)-B \mid<\varepsilon\} \cap D$ has positive measure for all $\varepsilon>0$. By Proposition 4.1 we can choose $V \in H$ st $V A_{\varepsilon} \cap B_{\varepsilon} \neq \phi$. Lemma 5.7 tells us that $|f(V x)-f(x)|<k$ a.e. $x \in D$. This implies, since $V A_{\varepsilon} \cap B_{\varepsilon} \neq \phi$, that there exists x st $|f V(x)-\beta|<\varepsilon$ and $|f(x)-\alpha|<\varepsilon$.

Therefore:

$$
\begin{aligned}
|\beta-\alpha| & \leq|\beta-f V(x)|+|f(V(x))-f(x)|+|f(x)-\alpha| . \\
& \leq 2 \varepsilon+\sum_{n=1}^{\infty} \operatorname{var}_{n} \log _{1}+\operatorname{var}_{n} \log _{2} .
\end{aligned}
$$

But $\varepsilon>0$ was arbitrary therefore

$$
|\beta-\alpha| \leq k .
$$

Therefore f is bounded a.e. μ_{1} on D and

$$
|f| \leq 2 \max \{K,|\alpha|\} .
$$

Let C^{\prime} be an upper bound for f on D.

Definition

Let $\left.A^{\prime}=\left\{x \in X_{1}: \mid f(x)\right) \mid \leq 2 C^{\prime}\right\}$.
By Proposition $5.8 \mathrm{D} \subset \mathrm{A}^{\prime}$ a.e. μ_{1} and thus A has positive μ_{1} measure.

Proposition 5.9

We have $\mu_{1}\left(V D \backslash A^{\prime}\right)=0$ for every $V \in H_{1}^{+} \cup H_{1}^{-}$.

Proof
By Lerma 5.7 we have the relation:

$$
|f V-f| \leq k \text { a.e. } x \in D \text { and } \forall V \in H_{I} \text {. }
$$

By the proof of Lerma 5.7 we can deduce $\mathrm{K} \leq \mathrm{C}$. By definition we have

$$
|f(x)| \leq C^{\prime} \quad \text { a.e. } \quad x \in D
$$

Thus

$$
|f V(x)| \leq|f V(x)-f(x)|+|f(x)| \leq 2 C^{\prime} .
$$

Corollary 5.9(1)

There exists a null set $\Delta c D$ such that for every $x \in D \backslash \Delta, n \geq 0$, $x^{\prime} \in X_{1}$ with $x_{i}=x_{i}^{\prime}$ for $\mathfrak{i} \geq-M$ and $\mathfrak{i} \leq-M-n$ (or for $\mathfrak{i} \leq M$ and $\mathfrak{i} \geq M+n$) we have $x^{\prime} \in A$.

Proof
The proof is exactly the same as in Proposition 3.4 of Schmidt [1] using Proposition 5.9.

6. PRESSURE

The concept of pressure was considered, as a quantity for subshifts, by Ruelle [1]. Walters [1] generalised the concept to arbitrary dynamical systems (X, T) and verified the so-called "variational formula" for pressure namely:

If $f \in \mathbb{C}(X) \quad P(f)=$

$$
=\sup _{\mu \in M(X, T)} \int f d \mu+h_{\mu}(T)
$$

There are now many equivalent definitions of pressure but, for convenience, the above variational formula shall be taken as the definition of pressure.

Definition
Let X be an arbitrary topologically mixing subshift of finite type; Pressure is a function:
$P: C(X, R) \rightarrow R$ described as follows.
$\phi \in C(X, R)$

$$
\begin{aligned}
P(\phi) & =\sup _{\mu \in M(X, \sigma)} \int \phi d \mu+n_{\mu}(\sigma) \\
& =\sup _{\mu \in M\left(X, c^{i}\right)} \int \phi+I_{\mu} d \mu
\end{aligned}
$$

We shall be needing the following Lemma to be found in Walters [1]).

Lemma 6.1

If $\phi \in C\left((X+, R) \subset C(X, R)\right.$ is such that $\sum_{n=1}^{\infty} \operatorname{var}_{n} \phi<\infty \quad$.
Then $P(\phi)=\log \lambda$ where λ is the spectral radius of $L_{\phi}: C(X+) \rightarrow C(X+)$. (i.e. the maximum eigenvalue.)

Pressure has the following properties for subshifts of finite type.

Theorem 6.2

If $f, g \in C(X, R)$ then

$$
\begin{align*}
& \text { (i) } \quad|P(f)-P(g)| \leq\|f-g\|_{\infty} . \tag{i}\\
& \text { (ii) } \quad P(\cdot) \text { is a convex function. }
\end{align*}
$$

Proof

See Walters [2] page 214.
Condition (i) implies that P is a Lipschitz continuous function with respect to the sup metric on $C(X, R)$. We would like to define some sort of "differentiability" of the pressure function. Thus if, $f, h \in C(X)$ consider the map

$$
\lambda \rightarrow \frac{P(f+\lambda h)-P(f)}{\lambda}
$$

Since P is convex, (ii) above, this is monotonely increasing and by (i) it has upper and lower bounds $\pm\|\mathrm{h}\|_{\infty}$. We may thus define a derivative from the right of f in the direction h by $D_{f}^{+} P(h)=\lim _{\lambda+0} \frac{P(f+\lambda h)-P(f)}{\lambda} \geq-\|h\|_{\infty}$. Similarly we may define a left derivative. In general these are not be equal. However Ruelle [1] showed if we restrict to $f_{\mathbb{R}}^{\theta}=\left\{f \in \mathbb{C}(X+, \mathbb{R}) \mid \operatorname{var}_{n} f \leq C \theta^{n}, C \in R, 0<\theta<1\right\}$ (the set of exponentially decreasing variation functions) the left and right derivatives are equal and P is said to be "real analytic".

There are several equivalent definitions of real analyticity of a function $f: B \rightarrow C$, where B is a Banach space. An alternative to the above is to define analyticity in terms of normal complex analysis. Namely defining $\ell: \Omega \rightarrow B(\Omega$ open domain in $C)$ to be analytic if ℓh is analytic for all $h \in B^{*} ; f$ is then said to be analytic if ℓf is analytic for all analytic ℓ. \&f being analytic is, of course, equivalent to ℓ f having a power series expansion at every point of Ω. (See M.J. Field [1]).

7. β-FUNCTION

The β-function was originally introduced by S. Tuncel [1] in the form $\beta_{\mu}(t)=\exp P\left(-t I_{\mu}\right)$ (where P denotes the pressure and I_{μ} is the information function w.r.t. the measure μ), however the basic ideas, concerning the pressure and the β-function, are due to D. Ruelle. Parry-Tuncel [1] proved, in the Markov case, that the β-function can be represented in the following form.

$$
B(t)=\lim _{n \rightarrow \infty}\left(\int \exp (1-t) J_{\mu_{P}}\left(A, \sigma^{n}\right) d \mu_{P}\right)^{1 / n}
$$

(u_{p} being the Markov measure associated with the stochastic matrix P). This characterisation of the β-function can in fact be generalised to g -measures as the following result shows.

Lenma 7.1

$$
\text { Let } g \in G \text { be such that } \sum_{n=1}^{\sum} n \operatorname{var}_{n} \log g<\infty \text { then if } \mu \text { is the }
$$ unique g-measure,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mu\left(\exp t J_{\mu}\left(A, \sigma^{n}\right)\right)=\log _{\mu} B_{\mu}(1-t) \forall t \in R
$$ pointwise convergence.

Proof

$$
J_{\mu}\left(A, \sigma^{n}\right)=-\sum_{m=1}^{n-1} \log g\left(\sigma^{m}\right)=: S_{n}(-\log g) .
$$

Therefore,

$$
\exp t J_{\mu}\left(A, \sigma^{n}\right)=\exp S_{n}(-t \log g),
$$

and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \mu\left(\operatorname{exp~t~} J_{\mu}\left(A, \sigma^{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \mu\left(\exp S_{n}(-t \log g)\right) .
\end{aligned}
$$

By definition $B_{\mu}(1-t)=\exp P\left(-(1-t) I_{\mu}\left(A \mid \sigma^{-1} A\right)\right)$

$$
=\exp P((1-t) \log g) .
$$

The result thus follows fram the following Lerma.

Lemma 7.2
If $g \in G, \sum_{n=1}^{\infty} n \operatorname{var}_{n} \log g<\infty, \mu$ the unique g-measure, $f \in C(X+), f \geqslant 0$.
such that $\sum_{n=1}^{\infty} \operatorname{var}_{n} f<\infty \quad$ then $\lim \frac{1}{n} \log \mu\left(\exp S_{n} f\right)=P(\log g+f)$.

Proof

By the definition of pressure applying the spectral radius formula we obtain

$$
\begin{aligned}
P(\log g+f) & =\lim _{n \rightarrow \infty} \log \left(\left\|L_{\phi}^{n}\right\|\right)^{1 / n}=\lim _{n \rightarrow \infty} \log L_{\phi}^{n} 1 .(\phi=\log g+f) \\
& =\lim _{n+\infty} \frac{1}{n} \log L_{\log g}^{n}\left(e^{S_{n} f}\right) .
\end{aligned}
$$

I claim the last limit is the same as $\lim \frac{1}{n} \log \mu\left(\exp S_{n} f\right)$. Assuming this the proof is complete.

Proof of claim

$$
\text { We have to show } \lim _{n \rightarrow \infty}\left[L_{\operatorname{logg}}^{n}\left(e^{S_{n} f}\right)\right]^{1 / n}=\lim _{n \rightarrow \infty}\left[\mu\left(e^{S_{n} f}\right)\right]^{1 / n}
$$

Because μ is a g-measure

$$
\mu\left(e^{S_{n} f}\right)=\mu\left(L_{\text {logg }}^{n}\left(e^{S_{n} f}\right)\right)
$$

And thus $\lim _{n \rightarrow \infty}\left(\mu\left(e^{S_{n} f}\right)\right)^{1 / n}=\lim _{n \rightarrow \infty}\left[\mu\left(L_{\log }^{n}\left(e^{S_{n} f}\right)\right]^{1 / n}\right.$.

By Holders mequality

$$
\geq \lim _{n \rightarrow \infty} \mu\left\{\left[L_{\log g}^{n}\left(e^{S_{n} f}\right)\right]^{1 / n}\right\}=\lim _{n \rightarrow \infty}\left[L_{\operatorname{logg}}^{n}\left(e^{S_{n} f}\right)\right)^{1 / n}
$$

By Ruelle's Operator Theorem (See Walters [1] Theorem 3.1)

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left[\mu\left(e^{S_{n} f}\right)\right]^{1 / n} & =\lim _{n \rightarrow \infty} \lim _{m+\infty}\left[L_{\operatorname{logg}}^{m}\left(e^{S_{n} f}\right)\right]^{1 / n} \\
& \leq \lim _{n \rightarrow \infty}\left[L_{\operatorname{logg}}^{n}\left(e^{S_{n} f}\right)\right]^{1 / n} \tag{i}
\end{align*}
$$

Remark

Lemma 7.2 is in fact true under the conditions $f, \phi \in C(X+)$, $L_{\phi}^{p} \mu=\lambda \mu$ for some $\lambda>0$. See Tuncel, S. [1]. The result then takes the form:

$$
\lim \frac{1}{n} \log \mu\left(e^{S_{n} f}\right)=P(f+\phi)-P(\phi)
$$

Thus Lemma 1 actually holds under the conditions $g \in G, \mu$ a g-measure.
In Ruelle [1] a proof that the β-function, in the case of $\log g$ having exponentially decreasing variation, is analytic can be found. The method, essentially adopted by Ruelle, is to show that the Pressure function is analytic on $f_{\mathbb{R}}^{\theta}=\left\{f \in C(X+, \mathbb{R}) \mid \operatorname{var}_{n} f \leq C \theta, c \in R\right.$ $0<\theta<1\}$. This is deduced from the fact that, for $\phi \in f_{\mathbb{R}}^{\theta}, L_{\phi}$ has a maximal isolated eigenvalue. It therefore seemed quite reasonable, in order to prove the analyticity of the β-function for ϕ with finite first moment variation, to adopt an analogous line of reasoning. In order to achieve this goal we shall need the following definitions.

Definition 7.3

$$
\text { Let } f_{v a r}^{+}=\left\{f \in C(X+) \mid\|f\|_{v a r}=\sum_{k=0}^{\infty} \operatorname{var}_{k} f<\infty\right\}
$$

We shall show that, if $\phi \in C(X+)$ has finite first moment variational sum then $L_{\phi}\left(f_{v a r}^{+}\right)=f_{v a r}^{+}$. By defining the norm

$$
\left\|\|f\|_{\text {var }}=\max \left\{\|f\|_{\infty},\|f\|_{\text {var }}\right\}\right.
$$

we can make $f_{v a r}^{+}$into a Banach space. For if $\lim _{m, n}\| \| f_{n}-f_{m} \mid\| \|_{\text {var }}=0$ by completeness of $\left(C(X+),\| \|_{\infty}\right)$ there exist $f \in C(X+)$ with $\left\|f_{n}-f\right\|_{\infty}$ tending to zero. I now claim that $f \in f_{\text {var }}^{+}$and $\left|\left\|f_{n}-f \mid\right\|\right.$ var tends to zero.

Proof of Claim

$$
\left\|f_{n}-f_{m}\right\|_{\text {var }} \geq\| \| f_{n}\left\|_{\text {var }}-\right\| f_{m} \|_{\text {var }} \mid .
$$

Thus $\left\{\left\|f_{n}\right\|_{\operatorname{var}}\right\}_{n=1}^{\infty}$ is bounded above by some constant $C^{\prime \prime} \in R$. Thus for each $M \geq 0$

$$
\sum_{n=0}^{M} \operatorname{var}_{n} f_{m} \leq C^{\prime \prime}
$$

Letting m tend to infinity this implies

$$
\sum_{n=0}^{M} \operatorname{var}_{n} f \leq C^{\prime \prime} .
$$

Letting M tend to infinity we obtain $\|f\|_{\text {var }} \leq C^{\prime \prime}$ and $f \in f_{\text {var }}^{+}$ Thus $\left\|f_{n}-f\right\|_{\text {var }} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\|\left\|f_{n}-f \mid\right\|_{\text {var }} \rightarrow 0\right.$ and the claim is proven.

Lemma 7.4
The closed unit ||| $\left\|\|_{\text {var }}\right.$-ball is $\|\left\|\|_{\infty}^{-}\right.$compact.

Proof

The map $f+\left|\left||f| \|\right.\right.$ var is lower semicontinuous on $f_{v a r}^{+}$with respect to $\left\|\|_{\infty}\right.$ (i.e. given $\varepsilon>0, f$, we can find $\delta>0$ such if $h \in f_{\operatorname{var}}^{+}\| \| h-f\| \|_{\operatorname{var}}<\delta$ implies $\left.\|\|\mid\| \operatorname{var} \geq\|\|f\|_{\operatorname{var}}-\varepsilon_{.}\right)$ For given $\varepsilon>0$ we can choose M such that

$$
\sum_{n=0}^{\infty} \operatorname{var}_{n} f-\frac{\varepsilon}{2} \leq \sum_{n=0}^{M} \operatorname{var}_{n} f \leq 2 M| ||f-h| \|\left.\right|_{\infty}+\sum_{n=0}^{M} \operatorname{var}_{n} h .
$$

Then $\delta=\frac{\varepsilon}{2 M}$ and the lower semi-continuity follows.
The lower semi-continuity of this map implies the compactness of the IIl $\|_{\text {var }}$ one ball, $B_{v a r}^{1}$, as follows:
Lower semi-continuity implies that $B_{v a r}^{1}$ is closed in the $\left\|\|_{c o}\right.$-norm. For, if $f_{n} \in B_{v a r}^{1}$ and $\left|\left|\left|f_{n}-f\right|\left\|\|_{v a r} \rightarrow 0\right.\right.\right.$ as n tends to infinity, by lower semi-continuity given $\varepsilon>0$ we can choose $\delta>0$ such that $\left\|f_{n}-f\right\|_{\infty}<\delta \quad$ implies:

$$
\left\|\|f\|_{\operatorname{var}} \leq \varepsilon+\mid\right\| f_{n}\| \|_{\operatorname{var}} \leq 1+\varepsilon
$$

But, $\varepsilon>0$, is arbitrary and $B_{v a r}^{1}$ is closed in the $\left\|\left\|\|_{\infty}\right.\right.$-norm. $B_{v a r}^{1}$ is clearly bounded in the $\left\|\left\|\|_{\infty}\right.\right.$-norm and therefore, by the Arzela-Ascoli Theorem,is \|. $\|_{\infty}$-compact.

Theorem 7.5

Let $\phi \in\left\{\phi \in C(X+) \mid \sum_{r=1}^{\infty} r v a r_{r} \phi<\infty\right\}$, then there exists $\lambda>0$,
$v \in M(x+)$ and $h \in f_{\text {var }}^{+}$such that
(i) $L_{\phi} h=\lambda h$.
(ii) All other eigenvalues of the operator $L_{\phi}: f_{v a r}^{+} \rightarrow f_{v a r}^{+}$have strictly smaller modulus.
(iii) $L_{\phi}^{*} \nu=\lambda v$.
(iv) If $f \in C(X+)$ then $\frac{L_{\phi}^{n_{f}}}{\lambda^{n}} \rightarrow v(f) h$ uniformly.
(v) λ is a simple eigenvalue.
(vi) $P(\phi)=\log \lambda$.

Proof

(i) Parts (i), (iii), (iv), (v) are already known under finite variation sum (Due to P. Walters [1]). A different proof, based on M. Pollicott's thesis, is given from which we can deduce (ii), not known under finite first moment variational sum.

$$
\begin{align*}
& \text { Let } s=\left\{f \in C(x+) \mid f(x) \leq \exp \left(\sum_{r=k+1}^{\infty} \operatorname{var}_{r} \phi\right) f(y)\right. \text {, } \tag{ii}\\
& \text { if } \left.d(x, y) \leq \frac{1}{k+1}, f \geq 0 \text { and }\|f\|_{\infty} \leq 1\right\} .
\end{align*}
$$

The first inequality means that for $d(x, y) \leq \frac{1}{k+1}$

$$
f(x)-f(y) \leq f(y)\left(\exp \left(\sum_{r=k+1}^{\infty} \operatorname{var}_{r} \phi\right)-1\right) \leq\|f\|_{\infty}\left(\exp \left(\sum_{r=k+1}^{\infty} \operatorname{var}_{r} \phi\right)-1\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{var}_{k} f & \leq\|f\|_{\infty}\left(\exp \left(\sum_{r=k+1}^{\infty} \operatorname{var}_{r} \phi\right)-1\right) \\
& \leq\|f\|_{\infty}\left(\exp \left(\sum_{r=1}^{\infty} \operatorname{var}_{r} \phi\right) \sum_{r=k+1}^{\infty} \operatorname{var}_{r} \phi\right)
\end{aligned}
$$

Thus

$$
\left\|\|f \mid\|_{\operatorname{var}} \leq\right\| f \|_{\infty} \exp \left(\sum_{r=1}^{\infty} \operatorname{var}_{r} \phi\right) \sum_{r=1}^{\infty} r v a r_{r} \phi
$$

and so

$$
\left.\left\|\|f\|_{v a r} \leq C\right\| f \|_{\infty,}, C=\exp _{r=1}^{\infty} \sum_{r=1} \operatorname{var}_{r} \phi\right) \sum_{r=1}^{\infty} r v a r_{r} \phi .
$$

Thus S is contained in the $I\|\quad \mid\|_{\text {var }}$-ball of radius $\operatorname{Max}(C, 1)$. As S is $\left\|\left\|\|_{\text {var }}{ }^{-c l o s e d}\right.\right.$ it is thus $\left.\|\right\| \|_{\infty}$-compact by Lemma 7.4. Define

$$
L_{n}: S \rightarrow S \text { by } L_{n} f=\frac{L_{\phi}(f+1 / n)}{\left\|L_{\phi}(f+1 / n)\right\|_{\infty}}
$$

which is well defined since:

$$
L_{\phi}(f+1 / n) \geq \frac{1}{n} e^{-\|\phi\| \infty} .
$$

To show S is L_{n}-invariant notice that if $d(x, y) \leq \frac{1}{k+1}$ then

$$
\begin{aligned}
& L_{\phi}(f+1 / n)(x)=\sum_{i x \in X+} e^{\phi(i x)}(f+1 / n)(i x) \\
& \quad \leq \sum_{i x \in X+} \exp \left(\phi(i y)+\operatorname{var}_{k+1} \phi\right)(f+1 / n)(i y) \exp \left(\sum_{r=k+2}^{\infty} \operatorname{var}_{r} \phi\right) \\
& \quad=\exp \left(\sum_{r=k+1}^{\infty} \operatorname{var}_{r} \phi\right) L_{\phi}(f+1 / n)(y) .
\end{aligned}
$$

Since S is convex and L_{n} is $\left\|\|_{\infty}\right.$ continuous there exists a fixed point $f_{n} \in S$ (see the Schauder-Tychanoff fixed point theorem). If we let $\lambda_{n}=\left\|L_{\phi}\left(f_{n}+1 / n\right)\right\|_{\infty}$ then

$$
f_{n} \geq\left(\inf f_{n}+1 / n\right) \frac{e^{-\|\phi\|_{\infty}}}{\lambda_{n}}
$$

In particular

$$
\inf f_{n} \geq\left(\frac{\inf f_{n}}{\lambda_{n}}+\frac{1}{n \lambda_{n}}\right) e^{-\|\phi\| \alpha}>0
$$

By rearranging this we see that

$$
\lambda_{n} \geq\left(1+\frac{1}{\operatorname{ninff}_{n}}\right) e^{-\|\phi\|_{\infty}}>0
$$

Choose subsequence $f_{n_{i}} \rightarrow h$ then by continuity $\lim _{\boldsymbol{j} \rightarrow \infty} \lambda_{n_{\boldsymbol{j}}}=\lambda>0$ and $L_{\phi} h=\lambda h$.

By compactness $h \in S \subset f_{\text {var }}^{+}$. If $h(x)=0$ for some $x \in X+$ then $L_{\phi}^{n} h(x)=0$ for all $n \geq 0$ (i.e. $h(y)=0$ for all $y \in u_{n=0}^{\infty} \sigma^{-n} x$.

Since $X+$ is topologically mixing this set is dense and so h must be strictly greater than zero since it has positive norm.

We may define from this result a g-function, $g \in G$, by $\log g=\phi+\log h-\log \lambda-\log h \sigma$

$$
\operatorname{var}_{n} \operatorname{logg} \leq 2 \sum_{r=n}^{\infty} \operatorname{var}_{r} \phi
$$

Therefore $\sum_{n=0}^{\infty} \operatorname{var}_{n} \operatorname{logg} \leq 2 \sum_{1}^{\infty} n v a r_{n} \phi<\infty \quad$.
(ii) Let $f \in f_{v a r}^{+}$, and define g as in the first part. In order to prove (ii) it suffices to show all other eigenvalues of $L_{\text {logg }}$ are strictly less than one. (The calculations from here on are essentially due to Walters [1]). Let $d(x, y) \leq \frac{1}{k+1}$

$$
\begin{aligned}
& \left|L_{\text {logg }}^{n} f(x)-L_{\operatorname{logg}}^{n} f(y)\right| \\
& \left.=\mid \sum_{p \in S^{n}} \underset{\left\{p \in\{0,1, \ldots, k\}^{n} \mid p x \in X+\right\}}{ } g(p x) g(\sigma p x) g \sigma^{2}{ }^{2} x\right) \ldots g\left(\sigma^{n-1} p x\right) f(p x)-g(p y) \ldots g\left(\sigma^{n-1} p y\right) f(p y) \mid \\
& \leq\left|\sum_{p \in S^{n}} g(p x) g(\sigma p x) \ldots g\left(\sigma^{-n} p x\right)[f(p x)-f(p y)]\right| \\
& +\left|\sum_{p \in S^{n}} f(p y)\left[g(p x) \ldots g\left(\sigma^{n-1} p x\right)-g(p y) \ldots g\left(\sigma^{n-1} p y\right)\right]\right| \\
& \leq \sup _{p \in S^{n}}|f(p x)-f(p y)|+\|f\|_{\infty} \sum_{p \in S^{n}}\left|g(p x) \ldots g\left(\sigma^{n-1} p x\right)-g(p y) \ldots g\left(0^{n-1} p y\right)\right| .
\end{aligned}
$$

However

Therefore
$7.5(a) \operatorname{var}_{k} L_{\text {log }}^{n} f \leq \operatorname{var}_{n+k} f+\|f\|_{\infty} e^{\sum_{r=k}^{\infty} \operatorname{var}_{r} \log g} \sum_{r=k}^{\infty} \operatorname{var}_{r} \log g$

$$
\sum_{k=0}^{\infty} \operatorname{var}_{k} L_{l o g g}^{n} f \leq C(n)\|f f\|_{v a r}+\|f\|_{\infty} C^{\prime \prime \prime}
$$

$$
C^{\prime \prime \prime}=e^{\sum_{r=0}^{\infty} \operatorname{var}_{r} \log g} \sum_{r=1}^{\infty} r v a r_{r} \log g
$$

and $c(n)=\frac{\sum_{k=0}^{\infty} \operatorname{var}_{n+k^{f}}}{\sum_{k=0}^{\infty} \operatorname{var}_{k} f}$, if $f \neq$ const.

This gives

$$
\begin{aligned}
& \left|g(p x) \ldots g\left(\sigma^{n-1} p x\right)-g(p y) \ldots g\left(\sigma^{n-1} p y\right)\right| \\
& =g(p y) \ldots g\left(\sigma^{n-1} p y\right)\left|\frac{g(p x) \quad g\left(\sigma^{n-1} p x\right)}{g\left(p y \quad g\left(\sigma^{n-1} p y\right)\right.}-1\right| \\
& \left.\leq g(p y) \ldots g\left(\sigma^{n-1} p y^{\prime}\right)_{\max (e l} \sum_{r=k}^{n+k} \operatorname{var}_{r} \log -1,1-e^{-\sum_{r=k} \operatorname{var}_{r} \log g}\right) \\
& \leq g(p y) \ldots g\left(\sigma^{n-1} p y\right) e^{\sum_{r=k}^{\infty} \operatorname{var}_{r} \log g} \sum_{r=k}^{\infty} \operatorname{var}_{r} \operatorname{logg} .
\end{aligned}
$$

7.5(b) $\quad\left\|L_{l_{\text {log }}}^{n} f\right\|_{v a r} \leq C(n) \quad\| \| f\left\|_{v a r}+\right\| f \|_{\infty} C^{\prime \prime \prime}$
if $f \neq$ cost. and $C^{\prime \prime \prime}=e^{\sum_{r=0}^{\infty} \operatorname{var}_{r} \operatorname{logg}} \sum_{r=1}^{\alpha_{1}} r v a r_{r} \log g$.

Since $\left\|L_{\text {log }}^{f}\right\|_{\infty} \leq\|f\|_{\infty}$. This implies
$7.5(c)\left|\left\|L_{\text {Jog }}^{n} f\right\| L_{\text {var }} \leq C(n)\|f \mid\| \operatorname{var}+\|f\|_{c o} C^{\prime \prime \prime \prime}\left(C^{\prime \prime \prime}=\max \left\{1, C^{\prime \prime \prime}\right\}\right)\right.$

Equation 7.5(a) implies $\left\{L^{n} \operatorname{logg}^{f}\right\}_{n=0}^{\infty}$ is an equicontinuous family.
$\left\|L_{l o g g}^{n} f\right\|_{\infty}$ is also bounded above by $\|f\|_{\infty}$ so, by the Arzela-Ascoli Theorem, the closure of $\left\{L^{n} f \mid n \geq 0\right\}$ is compact. Hence there exists $f_{*} \in C(X)$ and a sequence n_{i} of positive integers such that;

$$
\lim _{n_{i} \rightarrow \infty}\left\|L_{\operatorname{logg}}^{n_{i}} f-f_{*}\right\|_{\infty}=0
$$

If $c(h), \xi(h)$ denote the maximum and minimum values of $h \in C(X+)$ we have:

$$
\alpha(f) \leq \alpha\left(L_{\log } f\right) \leq \alpha\left(f_{*}\right) \leq \beta\left(f_{*}\right) \leq \beta(L f) \leq \beta(f) .
$$

Note that, since $\lim _{n_{i}+\infty} \alpha\left(L^{n_{i}} f\right)=\alpha\left(f_{*}\right), \lim _{n \rightarrow \infty} \alpha\left(L^{n_{f}}\right)=\alpha\left(f_{*}\right)$
$\alpha\left(f_{*}\right)=\alpha\left(L f_{*}\right): \quad$ This implies

$$
f_{\star}(y)=\alpha\left(f_{*}\right) \text { for } y \in \sigma^{-1} z
$$

if

$$
\alpha\left(f_{*}\right)=\alpha\left(L f_{*}\right)=L f_{*}(z) .
$$

Similarly if $\alpha\left(f_{*}\right)=\alpha\left(L^{k} f_{*}\right)=L f_{*}(\omega)$ then

$$
f_{*}(y)=\alpha\left(f_{*}\right) \text { for } y \in \sigma^{-k} .
$$

Thus, using topological mixing of $X+$, we see that f_{*} attains its minimum on every cylinder set as follows:

Let ω^{n} minimise $L^{n} f_{*}$. The set of sequences $\left\{\left(\omega^{n}\right)\right\}$ has a symbol \mathbf{i} such that

$$
\left(\omega^{n}\right)_{0}=i \text { for infinitely many } n .
$$

Thus if C is a cylinder there exist N such that for $n \geq N$

$$
C n \sigma^{-n}[i] \neq 0 \quad \forall n \geq N .
$$

Thus we can choose $n_{0} \geq N$ such that

$$
\subset n \sigma^{-n} o_{\omega} n_{0} \neq \emptyset .
$$

And thus f attains its minimum on C.
Therefore f_{*} is a constant and clearly $L^{n} f$ converges to f_{*} uniformly.

Since $L_{\text {logg }}(1)=1, L_{\text {logg }}$ defines an operator P on the quotient space $f_{\text {var }}^{+} / R$ and inequality 7.5(c) becomes:

$$
\left\|\left\|P^{n} f\right\|_{\text {var }} \leq C(n)\right\| f\left\|\|_{\text {var }}+C^{\prime} \operatorname{var}_{o} f .\right.
$$

By the above var $P^{n^{n}}$ converges to zero so we have, for large n, since $C(n) \rightarrow 0$ as n tends to infinity:

$$
\begin{aligned}
\left\|\| P^{2 n_{f}\| \|} \operatorname{var}\right. & \leq C^{\prime} \operatorname{var}_{0} P^{n_{f}}+C(n)\left(C^{\prime} \operatorname{var}_{0} f+C(n)\|f\| \|_{\operatorname{var}}\right) \\
& <1 \quad 7.5(d)
\end{aligned}
$$

By Lemma 7.4 $\mathrm{B}_{\mathrm{var}}^{\prime}=\{\mathrm{f}| ||\mathrm{f}| \| \mathrm{var} \leq 1\}$ is $\left\|\|_{\infty}\right.$-compact, so we may choose n so that $7.5(\mathrm{~d})$ holds for all f in this ball. Equation 7.5(d) with the above thus implies that the operator $P: f_{v a r}^{+} / R \rightarrow f_{v a r}^{+} / R$ has norm strictly less than 1 . This, with the observation that all eigenvalues have modulus less than or equal to the norm, gives the result.
(iii), (iv), (v)

These results are standard and can be found in Walters [1], and M. Pollicott's Thesis.

Two functions $f, g \in C(X+)$ are said to be cohomologous if there exists $u \in C(X+)$ such that $f=g+u \sigma-u$. We then write $f \sim g$. By earlier parts we know that $\phi \sim \log g+\log \lambda$. It can be shown, see Walters [2], that two cohomologous functions have the same pressure, $P(\log g)=0$ and that $P(\log g+\log \lambda)=P(\log g)+P(\log \lambda)=\log \lambda$.

Theorem 7.6

The function $\phi_{\infty} \rightarrow P(\phi)$ is a real analytic function on the space $\{t \psi \mid t \in \mathbb{R}\}$ if $\sum_{n=1}^{\infty} n \operatorname{var}_{n} \psi<\infty, \psi \in \mathbb{C}(X+)$.

Proof

The theorem above, for the exponentially decreasing variation case, was proven by Ruelle ([1], p.92). The proof adopted here is based on the elaborated version, of Ruelle's proof, given by M. Pollicott. I shall denote by $\{z \Psi \mid z \in \mathbb{C}\}$ and $f_{\text {var }}^{\mathbb{Q}}$ the complex version of $f_{v a r}^{+}$and $\{t \psi \mid t \in R\}$.

Let $\Phi:\{\psi z: z \in \mathbb{C}\} \rightarrow f_{\text {var }}^{\mathbb{C}}$ be given by:

$$
\left.\Phi(\phi)=\left\{x \rightarrow \exp _{i x \in X_{+}} \phi(i x)\right\}\right\}
$$

I claim Φ is $\left|\left|\left|\mid \|_{\text {var }}\right.\right.\right.$-analytic.

Proof of claim

By earlier comments it is sufficient to show, if $\ell: \Omega 2 \rightarrow\left(\psi,\left|\|\mid\| \|_{\text {var }}\right)\right.$ and $u \in\left(f_{\text {var }}^{\mathbb{G}}\right)^{*}$,

$$
\{\Psi=\{z \psi \mid z \in \mathbb{C})\}
$$

that $u \Phi \ell$ has a power series expansion about zero of $\Sigma(u \Phi \ell) 1 / n!$. It is in fact sufficient to check $\sum_{n=0}^{\infty} \frac{\psi^{n}}{n!}$ is convergent in ($f_{\text {var }}^{\mathbb{G}}$, III $\mid \|_{\text {var }}$). We shall show in fact that it is in fact absolutely convergent namely

$$
\sum_{n=0}^{\infty} \frac{\|\psi\|_{n}^{n} \quad \text { var }}{n!}<\infty
$$

$$
\operatorname{var}_{k} \psi^{2}=\sup \left\{\left|\psi^{2}(x)-\psi^{2}(y)\right| \left\lvert\, d(x, y) \leq \frac{1}{k+1}\right.\right\}
$$

$$
=\sup \left\{\psi(x)\langle\psi(x)-\psi(y))+\psi(y)\left(\psi(x)-\psi(y)| | d(x, y) \leq \frac{1}{k+1}\right\}\right.
$$

$$
\leq\|\psi \mid\|_{\infty} 2 \operatorname{var}_{k} \psi
$$

By induction this implies

$$
\operatorname{var}_{k} \psi^{n} \leq\|\psi\|_{\infty}^{n-1} 2^{n-1} \operatorname{var}_{k} \psi
$$

Therefore

$$
\sum_{k=0}^{\infty} \operatorname{var}_{k} \psi^{n}=\left\|\psi^{n}\right\|_{v a r} \leq\| \| \psi \mid\left\|_{\infty}^{n-1} 2^{n-1} \quad\right\| \psi \|_{\operatorname{var}} .
$$

And it follows

$$
\left\|\left\|\psi^{n} \mid\right\|_{v a r} \leq 2^{n-1} \quad\right\|\|\psi\| \|_{v a r}^{n}
$$

Thus

$$
\sum_{n=0}^{\infty} \frac{\| \| \psi^{n} \mid \|_{\text {var }}}{n!} \leq \sum_{n=0}^{\infty} \frac{2^{n-1}\left|\|\psi \mid\|_{\text {var }}^{n}\right.}{n!}
$$

and $\left.\lim _{n \rightarrow \infty} \frac{2^{n}\left|\|\psi \mid\|_{v a r}^{n+1}\right.}{(n+1)!} \cdot \frac{n!}{2^{n-1}\left|\|\psi \mid\|_{v a r}^{n}\right.}=1 \operatorname{mim} \frac{2}{n+1} \cdot\| \| \psi \right\rvert\, \|_{v a r}=0$

Therefore,

$$
\sum_{n=0}^{\infty} 2^{n-1} \frac{\| \| \psi \mid \|_{\text {var }}^{n}}{n!} \text {, and thus } \sum_{n=0}^{\infty} \frac{\left\|\psi^{n} \mid\right\|_{\text {var }}}{n!} \text {, }
$$

exists by the ratio test.
Thus, using the above and the linearity of
$h \rightarrow\left\{f \rightarrow \sum_{i x \in X+} \exp (h((x)) f(i x)\}\right.$, we see that

$$
J: \Psi=\{\mathbf{z} \psi \mid z \in \mathbb{C}\} \rightarrow B\left(f_{\operatorname{var}}^{\mathbb{C}}\right)
$$

given by

$$
\phi \rightarrow L_{\phi} \text { is }\left\|\|\quad\|_{\text {var }}\right. \text { analytic. }
$$

If $\phi \in\left\{t \psi \mid t \in \mathbb{R}, \psi \in \mathbb{C}(X+) \Sigma n v a r_{n} \psi<\infty\right\}$ then, by Theorem 7.5, we have that the spectrum of $L, \operatorname{sp}(L)=\Sigma u\left\{\lambda_{\phi}\right\}$, where $\left\{\lambda_{\phi}\right\}$ and Σ are disjoint. Choose a path Γ in \mathbb{C}, about λ_{ϕ}, separating these two parts of the spectrum. Define an operator P on $f_{\text {var }}^{\mathbb{\llbracket}}$ by

$$
P=-\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{L_{\phi}-z} d z
$$

This operator has the following properties.

Theorem 7.7

$P^{2}=P$ (i.e. P is a projection). We can decompose $f_{v a r}^{\mathbb{d}}$ as a direct sum of two L_{ϕ} invariant subspaces, $M=P\left(f_{v a r}^{\mathbb{C}}\right), N=(1-P)\left(f_{v a r}^{\mathbb{C}}\right)$,
such that the spectrum of L_{ϕ}, when restricted to M and N, is Σ_{1} and Σ_{2} respectively where Σ_{1} is contained within Γ.

Proof

See Kato [1], Theorem 6.17, p. 178.
By the above Σ_{1} is in fact just λ, furthermore since λ is a simple eigenvalue $\operatorname{dim} M=1$.

Let $\omega \in \Phi=\left\{z \psi \mid z \in \mathbb{C} \quad\right.$ in $\left.\operatorname{var}_{n} \phi<\infty\right\}$ and let $S=L_{\omega}-L_{\phi}$ and $f \in f_{\text {var }}^{\mathbb{\emptyset}}$.

Let us first consider an heuristic argument about when, and under what conditions, the operator $\left(L_{\omega}-\lambda\right)^{-1}$ exists, $\lambda \in \mathbb{C}$.

$$
\begin{aligned}
\frac{1}{L_{\omega}-\lambda}=\frac{1}{L_{\omega}-L_{\phi}}+L_{\phi}-\lambda & =\frac{1}{\left(L_{\phi}-\lambda\right)}\left(\frac{1}{1-\left(-L_{\omega}+L_{\phi}\right)}\right) \\
& =\frac{1}{L_{\phi}-\lambda} \sum_{n=0}^{\infty}\left[\left(L_{\phi}-\lambda\right)^{-1}\left(L_{\phi}-L_{\omega}\right)\right]^{n} .
\end{aligned}
$$

This series is absolutely convergent provided $\lambda \in \mathbb{C} \backslash \operatorname{Sp}\left(\mathrm{L}_{\phi}\right)$ and

$$
\sup _{\|\mid\| f \|_{v a r} \leq 1}\| \| L_{\phi}^{f-L_{\omega} f i\| \|_{v a r}<\sup _{\{\||\|f \mid\| \operatorname{var} \leq 1\}}\left\|\left(L_{\phi}-\lambda\right) f \mid\right\| \|_{\text {var }} ~ . ~}
$$

Thus if $\sup _{\left\{f:\left\|f\left|\|\mid\|_{v a r} \leq 1\right\}\right.\right.}\left|\left\|\left(L_{\phi}-L_{\omega}\right) f\left|\left\|\operatorname{var}<\min _{\lambda \in \Gamma\left\{f:\left|\|f \mid\|_{v a r} \leq 1\right\}\right.}\left|\left\|\left(L_{\phi}-\lambda\right) f \mid\right\| \|_{\operatorname{var}}\right.\right.\right.\right.\right.$ then $\Gamma \subseteq \operatorname{CXSp}\left(L_{\omega}\right)$ (Note that $\min _{\lambda \in \Gamma\left\{f| || | f \mid \|_{\operatorname{var}} \leq I\right\}}\left|\left\|\left(L_{\phi}-\lambda\right) f \mid\right\| \|_{\text {var }}>0\right.$ for Γ is compact and $\lambda \rightarrow \sup _{\left\{f| || | f \mid \|_{\text {var }} \leq 1\right\}}| |\left|L_{\phi} f-\lambda f\right| \|_{\text {var }}$ is a continuous map $\}$.

enough we may define

$$
P_{S}=-\frac{1}{2 \pi i} \int_{\Gamma^{\prime}} \frac{1}{L_{u}-\lambda} d \lambda
$$

By Theorem 7.7, $\operatorname{Sp}\left(L_{\omega}\right)=\Sigma_{1}\left(L_{\omega}\right) \cup \Sigma_{2}\left(L_{\omega}\right)$ where Γ separates Σ_{1} from Σ_{2}. I claim that if $L_{\omega}-L_{\phi}=S$ is small enough this implies

$$
\left\|\left\|P_{s}-P\right\|\right\|_{v a r}<1
$$

Assuming this for the moment then $\operatorname{dim} P_{S} f^{\mathbb{C}}$ var $=\operatorname{dim} M=1$. This can be seen as follows:
If $\operatorname{dim} P_{s} f_{\text {var }}^{\mathbb{C}}>1$ we may choose $f_{1}, f_{2} \in P_{s} f_{\text {var }}^{\mathbb{Q}}$ such that $P f_{1}=f_{1}$ and $\mathrm{Pf}_{2}=0$. Then

$$
\left(P_{s}-P\right) f_{2}=P_{s} f_{2}=f_{2}
$$

This contradicts $\left\|\left\|P_{S}-P\right\|\right\|_{\text {var }}<1$.
It remains to show that if $L_{u^{-}}^{-L_{\phi}}$ is small enough $\left\|\left\|P_{s}-P\right\|\right\| \|_{v a r}<1$. By an earlier computation

$$
\begin{aligned}
& \left\|\left\|P_{s}-P\left|\| \|=\| \|\left\|\left.-\frac{1}{2 \pi i} \int_{\Gamma^{\prime}}\left(L_{\phi}-\lambda\right)^{-1} \sum_{n=0}^{\infty}\left[\left(L_{\phi}-\lambda\right)^{-1}\left(L_{\phi}-L_{\omega}\right)\right]^{n}-\left(L_{\phi}-\lambda\right)^{-1} d \lambda \right\rvert\,\right\| \|_{\operatorname{var}}\right.\right.\right. \\
& \quad=\| \|-\frac{1}{2 i} \int_{\Gamma}\left(L_{\varphi}-\lambda\right)^{-1} \sum_{n=1}^{\infty}\left[\left(L_{\phi}-\lambda\right)^{-1}\left(L_{\phi}-L_{\omega}\right)\right]^{n} d \lambda\| \|_{\operatorname{var}} \\
& \quad \leq \frac{1}{2 \pi} \int_{\Gamma} \sum_{n=1}^{\infty}\| \| L_{\phi}-\lambda\left|\| \|_{\operatorname{var}}^{-(n+1)}\| \| L_{\phi}-L_{\omega}\right|\| \|_{\operatorname{var}}^{n} d \lambda
\end{aligned}
$$

Let $D^{\prime}=\max _{\lambda \in \Gamma}| || | L_{\phi}-\lambda| || |_{v a r}^{-1}$

Then

$$
\leq \frac{1}{2 \pi}\left[\left.\frac{D^{\prime}}{\left(1-|\|| L_{\phi}\right.}-L_{\omega} \right\rvert\,\| \| \|_{\operatorname{var}}{\overline{D^{\prime}}}^{D^{\prime}}\right]
$$

so that if
it implies

$$
\left\|\left\|P_{s}-P \mid\right\|\right\|_{\operatorname{var}}<1
$$

which is equivalent to

$$
\left\|\left\|\| L_{\phi}-\left.L_{\omega}|I|\right|_{v a r}<\frac{2 \pi}{\left(2 \pi+D^{\prime}\right) D^{\prime}}\right.\right.
$$

Thus if $\left\|\left\|L_{\phi}-L_{\omega} \mid\right\|\right\| \|_{v a r}$ is small enough $\left\|\left\|\left\|P_{s}-P\right\|\right\|\right\|<1$ and the proof is complete.

Furthermore since

$$
\begin{aligned}
& L_{\omega}\left(L_{\omega}-\lambda\right)^{-1}=L_{\omega}\left(L_{\omega}\right)^{-1} \sum_{n=0}^{\infty} \lambda^{n}\left(L_{\omega}\right)^{-n} \\
& =1+\lambda \sum_{n=1}^{\infty} \lambda^{n-1}\left(L_{\omega}\right)^{-n} \\
& =1+\lambda\left(L_{\omega}-\lambda\right)^{-1}
\end{aligned}
$$

Thus $L_{\omega}\left(L_{\omega}-\lambda\right)^{-1}=1+\lambda\left(L_{\omega}-\lambda\right)^{-1} \quad 7.7(a)$.
Also since L_{ω} is a closed operator and the fact that we can approximate an integral by a finite sum we obtain using 7.7(a):

$$
\begin{aligned}
& L_{\omega} P_{s}=-\frac{1}{2 \pi i} \int_{\Gamma} L_{\omega}\left(L_{\omega}-\lambda\right)^{-1} d \lambda \\
&=-\frac{1}{2 \pi i} \int_{\Gamma^{\prime}} 1+\lambda\left(L_{\omega}-\lambda\right)^{-1} d \lambda \\
&=-\frac{1}{2 \pi i} \int_{\Gamma^{\prime}} \lambda\left(L_{\omega}-\lambda\right)^{-1} d \lambda \\
&=-\frac{1}{2 \pi i} \int_{\Gamma} \frac{\lambda}{L_{\phi}+S-\lambda} d \lambda \\
& \quad\left(s=L_{\omega}-L_{\phi}\right)
\end{aligned}
$$

Expanding the integrand as a power series and passing the integral through the summation we obtain

$$
L_{\omega} P_{S}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 \pi i} \int_{\Gamma} \frac{\lambda}{L_{\phi}^{-\lambda}}\left(\frac{S}{L_{\phi}-\lambda}\right)^{n} d \lambda .
$$

Therefore, since $\omega \rightarrow L_{\omega}$.is an analytic map in a neighbourhood of $\left\{t \psi \mid t \in R . \quad \sum n v a r_{n} \psi<\infty\right\}$ within its complexification, $\omega \rightarrow L_{\omega} P_{S}$ is an analytic map.

By the use of perturbation theory (see Kato [1]), it can be shown that

$$
\left\{t_{\psi} \mid t \in \mathbb{R}, \psi \in c(x+), \sum n \operatorname{var}_{n} \psi<\infty\right\} \text {. }
$$

Therefore, by restricting to $\left\{t \psi \mid t \in R, \psi \in C(X+)\right.$. $\left.\sum n \operatorname{var} r_{n} \psi<\infty\right\}$ and using the analyticity of \log and trace (tr), we see that

$$
\phi \rightarrow \log \operatorname{tr}\left(L_{\phi} P_{S}\right)=\log \lambda_{\phi}=P(\phi)
$$

is a real analytic map.

Corollary 7.8

Let μ be the unique g-measure, for a $g \in G$ with $\sum_{n=0}^{\infty} n v a r_{n} \log g<\infty$, then $\mathrm{D}_{\mu}: \mathrm{K} \rightarrow \mathrm{R}$

$$
B_{\mu}(t)=\exp P\left(-t I_{\mu}\left(\dot{A} \mid \sigma^{-1} A\right)\right.
$$

is a real analytic function.

Proof

By an earlier computation $I_{\mu}\left(A \mid \sigma^{-1} A\right)=-\log g$. Therefore, since $t \rightarrow-t \log y$ is analytic and P is analytic on $\left\{t \operatorname{logg} \mid \sum n\right.$ var $\left.r_{n} \log g<\infty\right\}$ we have that

2.51

$$
B_{\mu}(t)=\exp P\left(-t I_{\mu}\left(A \mid \sigma^{-1} A\right)\right.
$$

is real analytic.

8. THE MAIN THEOREM AND ITS PROOF

Theorem 8.1
Let $\phi:\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$ be a finitary isomorphism with finite code length and inverse code length between two topological mixing subshifts of finite type X_{1} and $X_{2},\left(\mu_{1}\right.$ and μ_{2} are the unique g-measures of g_{1}, g_{2} which have finite first moment variational sum) then the β-functions $\beta_{1}(t) \beta_{2}(t)$ are identical.

Proof

This proof uses the Techniques of Schmidt [1]. Let C, D the sets as described in Section 3. By Proposition 5.5 we can find a measurable function $f: X_{1} \rightarrow R$ satisfying Proposition 5.5 and 5.8. Define $A^{\prime}=D$ as in Section 5 then $\mu_{1}\left(A^{\prime}\right)>0$ and, by Proposition 5.8 and definition of A^{\prime}

$$
\left|J_{\mu_{1}}\left(A, \sigma^{n}\right)-J_{\mu_{2}}\left(A, \sigma^{n}\right) \circ \phi\right|
$$

8.(i) $=\mid$ foo $0^{n}-f \mid \leq 4 C^{\prime}$ on $A^{\prime} \cap \sigma^{-n} A^{\prime}$ a.e. μ_{1} and for every $n \geq 1$.

I shall prove
8. (ii) $\limsup _{n \rightarrow \infty}\left(\int_{A^{\prime} n \sigma^{-n} A^{\prime}} \operatorname{expt} J_{\mu_{1}}\left(A, \sigma^{n}\right) d \mu_{1}\right)^{1 / n}$

$$
=\lim _{n \rightarrow \infty}\left(\int \operatorname{expt} J_{\mu_{1}}\left(A, \sigma^{n}\right) d \mu_{1}\right)^{1 / n}=\beta_{1}(1-t) \quad \forall t>0 .
$$

Assuming 8.(ii), for the moment, we can complete the proof as follows:

$$
\begin{aligned}
& \left(\int_{A^{\prime} \cap \sigma^{-n} A^{\prime}} \exp t J_{\mu_{1}}\left(A, \sigma^{n}\right) d \mu_{1}\right)^{1 / n} \\
= & \left(\int_{\phi\left(A^{\prime} \cap \sigma^{-n} A^{\prime}\right)} \operatorname{expt} J_{\mu_{1}}\left(A, \sigma^{n}\right) \circ \phi^{-1} d \mu_{2}\right)^{1 / n}
\end{aligned}
$$

(by change of variables Parthasarathy p. 135)

$$
\leq\left(\int \exp \left[t\left(J_{\mu_{2}}\left(A, \sigma^{n}\right)+4 C^{\prime}\right)\right] d \mu_{2}\right)^{1 / n} \text { by } 8 .(i)
$$

Thus taking limits as n tends to infinity we obtain

$$
\begin{aligned}
G_{1}(1-t) & \leq \lim _{n \rightarrow \infty}\left(\int \exp \left[t\left(J_{\mu_{2}}\left(A, \sigma^{n}\right)+4 C^{\prime}\right)\right] d \mu_{2}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left(\exp t 4 C^{\prime}\right)^{1 / n}\left(\int \exp t J_{\mu_{2}}\left(A, \sigma^{n}\right) d \mu_{2}\right)^{1 / n} \\
& =\beta_{2}(1-t) \quad \forall t \in R, t>0 .
\end{aligned}
$$

The inequality is symmetric in 1 and 2 and we have that

$$
B_{1}(1-t)=B_{2}(1-t) \quad \forall t \in R, t>0 .
$$

The analyticity of the β-function (Corollary 7.8) reveals that $\beta_{1}(t)=\beta_{2}(t)$ for all $t \in R$.
It just remains for us to verify relation 8.(ii). Consider the partition C generated by $\bigcup_{i=n-M}^{\infty} \sigma^{-i} \alpha \cup \bigcup_{i=-M} \sigma^{i} \alpha, n>2 M$.

Let $[x]_{C}$ be an atam of this partition containing the element $x \in X$. Denote by $\mu_{1, x}^{C}$ the conditional measure of x, with respect to the measure μ_{1}, given by this partition. The conditional measure on $[x]_{C}$ with respect to the partition C is defined to be the measure $\mu_{1, x}^{C}$ which satisfies the following two conditions.
(i) $\mu_{1, x}^{C}\left([x]_{C}\right)=1$
(ii)

$$
\mu_{1}(B)=\int x_{1} \mu_{1, x}^{C}(B) d \mu \text { for all } B \in B_{x}
$$

Since $[X]_{C}$ is a finite set the measure which satisfies (i) and (ii) is the atomic measure which assigns to the point $\left(y_{n}\right)_{-\infty}^{\infty} \in[x]_{c}$

$$
\mu_{1, x}^{C}(\{(y)\})=\frac{\mu_{1}\left(\left[Y_{M} \cdots \cdot Y_{n-M}\right]_{M}^{n-M}\right)}{\mu_{1}\left(\left[x_{M}\right]_{M} \cap\left[x_{n-M}\right]_{n-M}\right)}
$$

(Note that $X_{m}=Y_{m}$ and $X_{n-M}=Y_{n-M}$ and that $\mu_{1}\left(\left[X_{m}\right]_{M} \cup\left[X_{n-M}\right]_{n-M}\right)>0$ since μ_{1} has full support).

The measure which satisfies (i) and (ii) is unique (see V.A. Rohlin [1]).

Thus by property (ii)

$$
\begin{aligned}
& \int_{A_{n}^{\prime} \sigma^{\prime}-n_{A}^{\prime}} \exp \left[\omega_{\mu_{1}}\left(A, \sigma^{n}\right)\right] d \mu_{1} \\
& =\int: \int_{A_{n}^{\prime} \sigma^{-n}\left(A^{\prime}\right)} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n}\right)\right] d \mu_{1, x}^{C} d \mu_{1} \\
& \geq \int_{D n \sigma}-n_{D} \int \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n}\right)\right] d \mu_{1, x}^{C} d \mu_{1} \\
& \text { (since } \mu_{1, x}^{C}\left(A^{\prime} \cap \sigma^{-n} A ́\right)=1 \text { ale. } x \in D \cap \sigma^{-n} D \text { by Corollary 5.9(i)) } \\
& =\int_{D n \sigma^{-n} D} \sum_{y \in[X]_{C}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n}\right)(y)\right] \frac{\mu_{1}\left[X_{M}, \ldots, X_{n-M}\right]}{\mu_{1}\left(\left[X_{M}\right]_{M} n\left[X_{n-M}\right]_{M}\right)} d \mu_{1}
\end{aligned}
$$

Since $x \in D \quad \circ \sigma^{-n_{D}}, X_{m}=i_{M}, X_{n-M}=i_{-M}$. Thus since also

$$
\begin{aligned}
& \operatorname{ex}\left[t J_{\mu_{1}}\left(A, \sigma^{n}\right)(y)\right]=\left(\prod_{k=0}^{n-1} \frac{1}{g_{1}\left(\sigma^{k} y\right)}\right)^{t} \\
& \int_{D \cap \sigma} n_{D} \sum_{y \in[X]_{C}} \exp t\left[J_{\mu_{1}}\left(A, \sigma^{n}\right)(y)\right] \frac{\mu_{1}\left[x_{m}, \cdots, x_{n-M}\right]_{M}^{n-M}}{\mu_{1}\left(\left[X_{M}\right]_{M} \cap\left[X_{n-M}\right]_{M}\right.} d \mu_{1} \\
& \left.\geq \frac{1}{\mu\left(\left[i_{M}\right]_{0}[i-M]\right)} Q^{(2 M-2) t} \int_{D \cap \sigma}-n_{D} \sum_{y \in[x]}^{C} \sum_{k=M}^{n-M} \frac{1}{g_{1}\left(\sigma^{k} y\right)}\right)^{t}\left[X_{M}, \ldots, X_{n-M}\right] d_{1} 1
\end{aligned}
$$

where $Q>0$ is a real number chosen such that $\frac{1}{g}>Q$.

$$
\text { Define } P_{S}(x)=\inf _{z \in\left[x_{0}, x_{S}\right]}^{\prod_{k=0}^{S}} \frac{1}{g_{1}\left(\sigma^{k} z\right)} .
$$

Then if $x_{0}=y_{0}, \ldots, x_{s}=y_{s}, y \in x$,

$$
P_{S}(y)=\inf _{z \in\left[y_{0}, m, y_{S}\right]} \prod_{k=0}^{S} \frac{1}{g_{1}\left(\sigma^{k} z\right)}=P_{S}(x) \text {, i.e. }
$$

P_{s} is constant on cylinders of length s+1. Also

$$
P_{n-2 M}(x) \leq \prod_{k=0}^{n-2 M} \frac{1}{g_{1}\left(\sigma^{k} x\right)}
$$

so that

$$
P_{n-2 m}\left(\sigma^{M} x\right) \leq \prod_{k=M}^{n-M} \frac{1}{g_{1}\left(\sigma^{k} x\right)}
$$

Therefore
 Now;

$$
\int_{\left[i_{M}\right]_{M} n[i-M]_{n-M}} P_{n-2 M}\left(\sigma^{M}\right) d \mu_{1}=\sum_{y \in[x]_{C}}\left[P_{n-2 M}\left(\sigma^{M} y\right)\right] \mu_{1}\left(\left[i_{M}, y_{m+1} \cdots, i_{-M}\right]\right)
$$

The above equality being true since on cylinders of length $n-2 M+1$, between M^{\prime} th and $n-M^{\prime}$ th coordinates, $P_{n-2 M}\left(\sigma^{M}\right)$ is a constant. Therefore;
(The last equality is by the σ-invariance of μ_{1} and the change of variables formula Parthasarathy [1] p. 135).

$$
\left.P_{n-2 M}(x)=\inf _{z \in\left[x_{0}, \ldots, x_{n-2 M}\right]}{ }_{\left(\prod{ }_{k=0}^{n-2 M}\right.} \frac{1}{g_{1}\left(\sigma_{z}^{k}\right)}\right)
$$

$$
\log P_{n-2 M}(x)=\inf _{z \in\left[x_{0}, \ldots ; x_{n-2 M}\right]}^{\sum_{k=0}^{n-2 M}} \log \frac{1}{g_{1}\left(\sigma^{k} z\right)}
$$

for $z \in\left[x_{0},, x_{n-2 M}\right]$ we have the following:

$$
\left|\sum_{k=0}^{n-2 M} \log \frac{1}{g_{1}\left(\sigma^{k} z\right)}-\sum_{k=0}^{n-2 M} \log \frac{1}{g_{1}\left(\sigma^{k} x\right)}\right| \leq \sum_{k=0}^{n-2 M} \operatorname{var}_{n} \log g_{1} .
$$

$$
\begin{aligned}
& \frac{Q^{(2 M-2) t}}{\mu\left(\left[i_{M}\right]_{0} n[i-M]_{n-2 M}\right)} \int_{D_{n} \sigma^{-n} D}^{\sum_{y \in[x]_{c}}\left[P_{n-2 M}\left(\sigma^{M} y\right)\right]^{t} \mu_{L}\left[x_{M},\left[x_{n-M}\right] d \mu_{1}\right.} \\
& =\frac{U^{(2 M-2) t}}{\mu_{1}\left(\left[i_{M}\right]_{0} n\left[i_{-M}\right]_{n-2 M}\right)} \int_{D n \sigma}^{-n_{D}} \int_{\left[i_{M}\right]_{M^{n}}\left[i_{-M}\right]_{n-M}}\left[P_{n-2 M}\left(\sigma^{M}\right)\right]^{t} d \mu_{1} d \mu_{1} \\
& =\frac{\mu_{1}\left(D_{n} \sigma^{-n_{D}}\right) Q^{(2 M-2) t}}{\mu_{1}\left(\left[i_{M}\right]_{0}[i-M]_{n-M}\right)} \int_{\left[i_{M}\right]_{M} n\left[i_{-M}\right]_{n-M}}\left[P_{n-2 M}\left(\sigma^{M}\right)\right]^{t} d \mu_{1} \\
& =\frac{\mu_{1}\left(D_{n \sigma}{ }^{-n} D\right) Q^{(2 M-2) t}}{\mu_{1}\left(i_{M} o^{n} i_{-M n-M}\right)} \quad \int_{\left[i_{M}\right]_{0} n\left[i_{-M}\right]_{n-2 M}}\left(P_{n-2 M}\right)^{t} d \mu_{1}
\end{aligned}
$$

Therefore

$$
\sum_{k=0}^{n-2 M} \log \frac{1}{g_{1}\left(\sigma^{k} z\right)} \geq \sum_{k=0}^{n-2 M} \log \frac{1}{g_{1}\left(\sigma^{k} x\right)}-\sum_{k=0}^{n-2 M} \operatorname{var}_{n} \log _{1} .
$$

Thus

$$
\log P_{n-2 M}(x) \geq J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)(x)-\sum_{k=0}^{n-2 M} \operatorname{var}_{n} \log g_{1}
$$

Therefore:

$$
\left(P_{n-2 M}(x)\right)^{t} \geq \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] \exp \left[-t\left(\sum_{k=0}^{n-2 M} \operatorname{var}_{n} \log _{1}\right)\right]
$$

Thus putting all these inequalities together

$$
\begin{aligned}
& \quad \int_{A n \sigma^{-n} A} \exp t J_{\mu_{1}}\left(A, \sigma^{n}\right) d \mu_{1} \\
& \geq \frac{\mu_{1}\left(D n \sigma^{-n} D\right) Q^{(2 M-2) t}}{\mu_{1}\left(\left[i_{M}\right]_{0}^{n\left[i_{-M}\right]_{n-2 M}}\right.} \exp \left(-t\left(^{n-2 M} \sum_{k=0} \operatorname{var}_{n} \operatorname{logg}_{1}\right)\right) \int_{\left[i_{M}\right] n\left[i_{-M}\right]_{n-2 M}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d x
\end{aligned}
$$

Thus taking 1 im sup's we obtain

$$
\begin{aligned}
& \lim _{n} \sup \left(\int_{A n \sigma^{-n} A} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n}\right)\right] d \mu_{1}\right)^{1 / n} \\
\geq & \lim _{\left(\operatorname{mup}_{n}\right.}\left(\int_{\left[i_{M}\right]_{0}^{n\left[i_{-M}\right]_{n-2 M}}} \exp \left(t J_{\mu}\left(A, \sigma^{n-2 M}\right)\right) d \mu_{1}\right)^{1 / n}
\end{aligned}
$$

Lemma 8.1

With μ_{1}, g_{1} as above
$\lim _{n \rightarrow \infty}\left(\int_{\left[i_{M}\right]_{0}^{n\left[i_{-M}\right]_{n-2 M}}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}\right)^{1 / n}$
$=\lim _{n \rightarrow \infty}\left(\int \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-}\right)^{2 M}\right] d \mu_{1}\right)^{1 / n}$.
Assuming Lenma 8.1, for the moment, $8(i i)$ is then proven and Theorem 8.1 is complete.

Proof of Lenma 8.1

Clearly, since $\exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right]>0$

$$
\begin{aligned}
& \operatorname{lim\operatorname {sup}}\left(\int_{\left.\left.\left[i_{M \rightarrow \infty}\right]_{0}^{n\left[i_{-M}\right]_{n-2 M}}\right) \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}\right)^{1 / n}}^{\quad \leq \lim _{n \rightarrow \infty}\left(\int_{X_{1}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}\right)^{1 / n}}\right.
\end{aligned}
$$

It thus suffices to prove the converse inequality.

$$
\begin{align*}
& \int \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1} \\
= & \sum_{i, j} \int_{[i] n[j]_{n-2 M}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1} \tag{iii}
\end{align*}
$$

Consider an estimate for

$$
\int_{[i] n[j]_{n-2 M}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}-\int_{\left[i_{M}\right] n[i}-M_{n-2 M} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}
$$

$$
=\sum_{x_{1}, \ldots, x_{n-2 M-1}} \int_{\left[i, x_{1}, \ldots, x_{n-2 i n-1}, j\right]} \operatorname{exp[tJ_{\mu _{1}}(A,\sigma ^{n-2M})]d\mu _{1}}
$$

$$
\left.-\sum_{x_{1}, \cdots, x_{n-2 M-1}} \int_{\left[i_{M}, x_{1}, \ldots, x_{n-2 M-1}, i\right.}{\exp \left[M^{]}\right.}^{t J_{\mu_{1}}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}
$$

let $a(x)=\left(x, x_{1} \quad x_{n-2 M-1}, j, x_{2 M} \ldots\right)$

$$
b(x)=\left(i_{M} x_{1}, \quad x_{n-2 M-1}, i-M, x_{n-2 M}, \cdots\right), x=\left(x_{i}\right)_{i=1}^{\infty} .
$$

8. (v) $\frac{\bar{x}_{1}, \ldots, x_{n-2 M-1}}{} \int \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right](a(x))-\exp \left[t J_{\mu}\left(A, \sigma^{n-2 M}\right)\right](b(x)) d \mu_{1}$. $\exp t\left[J_{\mu_{1}}\left(A, \sigma^{n-2 M^{2}}\right](a(x))\right.$

$$
=\left(\prod_{l=0}^{n-2 M} \frac{1}{g\left(\sigma^{l}(a(x))\right.}\right)^{t}
$$

Therefore since:

$$
\begin{aligned}
& \quad\left|\log \prod_{l=0}^{n-2 M} \frac{1}{g_{1}\left(\sigma_{a}^{l}(x)\right)}-\log \prod_{l=0}^{n-2 M} \frac{1}{g_{1}\left(\sigma l_{b}(x)\right)}\right| \\
& \sum_{k=0}^{n-2 M-1} \operatorname{var}_{k} \log g_{1}+\operatorname{var}_{0} \log g_{1}
\end{aligned}
$$

$\left.\left(\prod_{l=0}^{n-2 M} \frac{1}{g_{1}\left(\sigma^{\ell}\right.} a(x)\right)\right)^{t} \leq \exp \left[t\left(\prod_{k=0}^{n-2 M-1} \operatorname{var}_{k} \log _{1}+\operatorname{var}_{0} \log _{1}\right)\right]\left(\prod_{l=0}^{n-2 M} \frac{1}{g_{1}\left(\sigma^{\ell}(b(x))\right)}\right)^{t}$
Putting this inequality into expression 8.(v) we obtain:
$x_{1}, \sum_{x_{n-1-2 M}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right](a(x))-\exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)(b(\dot{x}))\right] d \mu_{1}$ $\left.\leq x_{1}, \sum_{n-1-2 M} \int\left[\exp \left[t\left(\sum_{k=0}^{n-2 M-1} \operatorname{var}_{k} \operatorname{logg}_{1}+\operatorname{var}_{0} \operatorname{logg}_{1}\right)\right]-1\right)\right] \operatorname{expt} J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)(b(x)) d \mu_{1}$
$\left.=\left[\operatorname{exp[t}\left(\sum_{k=0}^{n-2 M-1} \operatorname{var}_{k} \log _{1}+\operatorname{var}_{0} \log _{1}\right)\right]-1\right] \int_{\left[i_{M}\right]^{\prime}\left[i_{-M}\right]_{n-2 M}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}$

Therefore putting these inequalities together it follows that:

$$
\int_{[i]_{0} n[j]_{n-2 M}} \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}
$$

$\leq\left[\exp \left[t\left(\sum_{k=0}^{n-2 M-1} \operatorname{var}_{k} \log g_{1}+\operatorname{var}_{0} \operatorname{logg}_{1} I\right]-1\right] \int_{\left[i_{m}\right] n\left[i_{-M}\right]_{n-2 M}}^{\exp \left[t-J_{\mu}\left(A, \sigma^{n-2 M}\right)\right] d u_{1}}\right.$

$$
+\int_{\left[i_{M}\right] n\left[i_{-M}\right]_{n-2 M}} \exp \left[t-J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}
$$

Cubing this expression into 8 .(iii) and taking n 'th roots we obtain the inequality.

$$
2.62
$$

$$
\begin{aligned}
& \left.\left[k^{2}\left(\exp \left[t \quad\left(\sum_{k=0}^{n-2 M-1} \operatorname{var}_{k} \operatorname{logg}_{1}+\operatorname{var}_{0} \operatorname{logg}_{1}\right)\right]\right)-1\right]+1\right]^{1 / n} \\
& \quad\left(\int_{\left[i_{M}\right] \cap\left[i_{-M}\right]_{n-2 M}} \exp \left[t \mathrm{~J}_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}\right)^{1 / n} \\
& \quad=\left(\int \exp \left[t J_{\mu_{1}}\left(A, \sigma^{n-2 M}\right)\right] d \mu_{1}\right)^{1 / n}
\end{aligned}
$$

Taking lim sup as n tends to infinity we obtain the converse inequality and Lemma 8.1 follows. Thus Theorem 8.1 is complete.

REFERENCES

Butler, R., Schmidt, K.

[1] : An information cocycle for groups of non-singular transformations.
Preprint (Warwick, 1982).
Kato, T.
[1] : Perturbation Theory for Linear Operators. Springer, Berlin (1966).

Keane, M.
[1]: Strongly mixing g-measures. Inventiones Mathematicae 16 (1972) 309-324.

Keane, M., Smorodinsky, M.
[1] : Finitary Isomorphisms of irreducible Markov shifts. Israel Journal of Mathematics 34, 281-286 (1979).

Krieger, W.
[1] : On Finitary isomorphisms of Markov shifts that have expected coding time. Z. Wahrschein-Liehkeitstheorie und verw. Gebiete 65, 323-328 (1983).
Palmer, R., Parry, W., Walters, P.
[1] : Large sets of endomorphisms and of g-measures.
S.L.N. 668, Springer, Berlin (1978).

Parry, W.
[1] : Introduction to Ergodic Theory, C.U.P. (1981).
[2] : Entropy and generators in ergodic theory, C.U.P. (1968).
[3] : Finitary Isomorphism with finite expected code length. Bul1. London Math. Soc., 11 (1979) 170-176

Parry, W., Tunce 1, S.
[1] : On the classification of Markov chains by finite equivalence. Ergodic Theory and Dynamical Systems 1, 303-335 (1981).

Parthasarathy, K.
[1] : Introduction to Probability and measure. Macmillan, London (1977). Pollicott, M.
[1] : Doctoral Thesis (Warwick, 1984).
[2] : M.Sc. Dissertation (Warwick, 1982).
Ruelle, D.
[1] : Thermodynamic Formalism. Addison-Wesley, Reading (1978).
Rohlin, V.A.
[1] : Lectures on the Entropy Theory of measure preserving transformations. Russian Maths survey 22 (1967), 1-52.

Schmidt, K.
[1] : Invariants for finitary isomorphisms with finite expected code lengths. Inventiones Mathematicae.

Sinai, Ya. G.
[1] : Gibbs Measures in Ergodic Theory, Russian Mathematical Surveys No. 4 (1968), 21-64.

Parry-Schmidt,
[1] : Natural coefficients and invariants for Markov shifts. Inventiones Mathematicae 76, 15-32 (1984).

Tunce 1, S.

[1] : Conditional pressure and coding. Israel Journal of Mathematics, 39, 101-112 (1981).

Walters, P.
[1]: Ruelle'is Operator Theorem and g-measures, Trans. Amer. Math. Soc. 214 (1975), 375-381
[2]: Introduction to Ergodic Theory. Springer Verlag (1982).

