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ABSTRACT

The following is split into two chapters. The first chapter‘gives
a brief history concerning g-measures, their staté of investigation and
under what conditions, on g, unique g-measures exist. It concludes by
giving equivalent conditions for a g-function to have a unique g-measure.
This will, possibly,lead to a solution to Keaﬁeﬁsoriginal problem about
the uniqueness of a g-measure for an arbitrary g-function.

The second chapter generalises the result of Prof. K. Schmidt that
the Beta-function is invariamt under finitarily isomorphic (with finite
expected code length) Markov spaces, to g-spaces with certain conditions
on the g-function. The approach adopted is essentially that of Schmidt
with slight modifications due to the more restrictive nature of the
problem. The condition on the g-function, that of finite first moment
varijational sum, fits nicely between the two more commonly used conditions,

finite variation sum and exponentially decreasing variation.
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~ EQUIVALENT CONDITIONS FOR THE UNIQUENES OF g-MEASURES
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1. INTRODUCTION

The study of g-measures was derived from trying to understand
equilibrium states and phase transitions, which have direct applications
in the field of statistical mechanics.

| The problem as to whether a g-function has a unique g-measure f‘
was originally posed by Keane [6] in 1974, where he studied so-called
“"covering transformations". The problem, derived from his work, is
an example of a covering transformation the one-sided subshift of
finite type. This uniqueness problem, I'm afraid, I was unable to
solve.Hoaevesin the process of trying to provide a solution, I was
able to produce equivalent conditions for the uniqueness of g-measure.
In Walters [12] a sufficient condition for uniqueness was given.
However this,unfortunately, was not a necessary condition as exhibited
by "Hofbauers example. I produce in this paper a new class of examples,
generalizing Hofbauers example,which. again have unique g-measures

but do not satisfy the Walters condition.

Acknowledgements
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2. ONE_SIDED SUBSHIFTS OF FINITE TYPE AND_g-MEASURES

Let X, be a set of symbols (states) of finite cardinality X |.
Denote by X+ the one sided full shift

X+i= Nn Xy = {(xg) o lx5 € X}

0
The shift transformation, denoted by o, operates on X+ as follows:

g:X+ + X+, where (o(x))n = Xn+1
(i.e. o -moves the coordinates of x l-place nearer the‘zeroth
coordinate, the zeroth coorindate dropping off the end.)

A closed subset X < X+‘is said to be a subshift of finite type
if oX = X and the points of X are completely determined by a finite
collection, G, of sets, if each C ¢ G is a member of Xﬁ. some N > 0.
(i.e. when we look at N coordinates, of a point in X, it defines a
set in G.) »

X is said to be one-sided topologically transitive if for each
non-empty sets U,V, in X, 3nz21stoWaV# p. X is said to be
topologically mixing if AN> 1 witho U nV#@ V¥n2N.

It is well known, when X is a one-sided topoTéQEcally transitive
subshift of finite type, that X can be represented”as a disjoint
| +1m0ddr % = Xg»
and o9 is topologically mixing when restricted to Xy (see Chung [1]).

union of closed subsets, {Xi}?=1 » With oXy = X

The number d 2 1 is called the period of X.
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Definition 2.1

With X+as above we shall denote by M(X) M(X,o) the set of
all probability an&‘d-invariaht Borel-probabilities on X. (i.e.
| | ﬁ € M(X,o):if‘u(c-lB) = u(é) for all Borel subsets of X.)

VKeéne‘[6] origina]]y defined a g-measure in terms of, what
has become known as, the Ruelle operator. However, since that -
time, many equivaientlcqnditions have been found so we therefore
shall define a g-measure by the results of the next theorem. First,
however, we shall heed to knbw what is meant by the Ruel]é operator.

For ¢ e C(x) define the Ruelle operator L@:C(X) -+ C(X) by

(L¢f(x) = I, ,e¢(y)f(y). We look at special functions of the
- yeo X -

form ¢ = log g where g ¢ G = {g € C(x)|g > 0 and Z gly) = 1
| ‘ yeg X

for all x e X+}. Thus (Llogéi)(x) = I ;1 a(y), Lloggl =1, and
. Yeo X

L]ogéuof = f where Ucf = fod. .Such g are called g-functions. The
‘following Theorem is used as a definition of a g-measure, giving
several equivalent conditions for a g-measure. In this Theorem
L*:C(ka + C(X)* denotes the adjoint of Llogéc(x) + C(X) and
Eu(flc'lB) denotes the conditional expeétation of f ¢ L'(1) relative

to the o-algebra c'lB, where B denotes the Borel o-algebra of X.

Theorem 2.1 (Ledrappier [8])

Let g € G and u € M(X) = {the probability measures on X}.
If L denotes L]ogg the following are equivalent
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(i) L*u = U.

(1) e MXyo) and E (Flo™'B)(x) = £, g(2)f(2) a.e.
. H Zeo T OX

for f e L'(y)

(i11) u € M(X,0) and p is an equilibrium state for log g. In fact
hu(o) + u(log g) = 0.

gy) duo .1
(iv). TR ]

A usatisfying any of (i), (iv) and hence all is called a

g-measure.

Lemma 2.1

(a) Ifge@ thenvu has full support, i.e. each g-measure p gives

positive measure to each non-empty open set.

(b) If g1»9, € G and some g,-measure coincides with some g,-measure

then g9 = 9p-

Proof

See Walters [12].

By the Schauder-Tychanoff fixed point theorem, (Dunford and
Schwartz [5], page 456) L* always has a fixed point in M(X) so a
g-measure always exists. The question immediately posed is_as-to
whether there is a unique g-measure given an arbitrary g ¢ G. The
following partial result is due to P. Walters although I have
extended it slightly from the topologically mixing case to the

transitive.
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Theorem 2.2

Let o¥X+X be a topoligically transitive one sided subshift

of finite type and g ¢ G. Denote L]ogg
(-]

T “varﬁ(]og g) < » (p = period of the transformation),
‘m=1 ' :

“N-1 ¢ _

zl =y~ converges uniformly to a constant u(f) ¥f e C(X).
n=

by L. Then, if

The y is the unique g-measure.

Proof

Walters, in [12], proves the result for the t0pologica1]y
mixing case so essentially all we have to do, in the transitive
case, is to reduce this to the topologically mixing one. By

P
earlier coments we can represent a transitive X = u1 Xi such
i=
that opIX1 is a topologically mixing - map. The function

p(x) = Q(X)Q(OX)---g(cp'l(x)‘is a g-function with respect to & (i.e.
2 _p g(x)"-g(cP'IX) = 1). Thus, if we can verify & var p < @,

yea Px

we can apply Walters Theorem on Xy w.r.t. P, assume m > p

. . P
var,log p = var, ( I 1log g(OkX))
' k=0

m
s L var logg
k=m-p
o0 ‘ m ’
so I var, logps I b vark]og g <o
m>p m=p+l k=m-p

<

e

m

Hev 8

, (pri) var logg < .
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Then by Walters for each 1 < 1 < p we can find a oP-invariant

. .m
measure y; € M(Xi.op) such that if f € C(Xi). ;lz L(]og P’Op)f - ui(f).

(fim z P(y)P(erg)...P(oP‘(m"l)y)f(y) = uy(F))).
mreo Yeg px

Let f € C(X). We can express f as f = f; +...#f ) where f, = f|X; e C(X;),

p the period of the subshift.

Then if X ¢ Xp

mp-1
L 5Tk

P =0 L1°99f (x)

kp‘ 9(2)...9(c*P12)f, (Z))g(y)g(oy g(dP-1-D,

- B
LBy & LPr (y)g(y)a( ¥)...a(aP"Dy)

letting m + = this converges to

1 P (b-i-l) |
v 151 (= - ,)(x)g(y) yIp(f)

= ; fd(uy +t vE)
< 3

We can show by a similar method if x ¢ X1

1 ““;:'1 K

mp k=0 Lloggf(x) +I f d(ul Pt “Q)

P
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This convergence is uniffrm on each X; and thus uniform on X. We
mp-

1 k

= f
thus have proved mp kfo L]ogg converges uniformly to

u + o e 0 +u
‘ If du ifu= ——p P,
1 N-1
s s = 1 n

as n+o . I claim this implies hN *N nEO Lloggf converges

uniformly to If du as N + «,

Proof of Claim
If heC(x). Leta(h) =min h and £(h) = max h. Then we

have

a(ho) < a(hl) s.ff dus < B(ho) < B(ho)

by the above. Also since a(hmp) -+ I f du and B(hmp) - I f du, as

m-+ o, it follows that lim hN = !f du and the convergence is
Neroo

uniform.

By the above convergence property it follows that Lfégg H=H
and 4 is a g-measure.

If v is another g-measure

N &

. . 1 N_l n
‘ If dv = | = o L f dv for each N
n=0 logg ;

But as N + « the integrand'converges to’ If du. Thus v = p and u

is the unique g-measure
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Remark

Note that if p > 1 then L?oggf —> [ f du. For if

uy (X)) = u(Xy)
- = np =11 1
f=1 Xxl then L f, I fldu P on X,

but anfl > 0on X\X. O

It follows however, from the above, in the topologically

mixing case that L?oggf converges to I f du. The condition that

0

z varnlogg < « is not however a necessary condition. There
n=|

are a class of functions where this sometimes fails, these functions
are called Grid functions (see Markley-Paull2]).

Let 0= (0,...0...) 0,1} be the point with'alllcoordinates
zero. Let {Mn} be a partition of [0]\ O with the following properties.

(1) limm =0

f.e. d(M,0) >0 asm~+ (i.e. max d(x,0) + Oasn=+ ),

XEMn

(i1) Each Mn is closed and open (i.e. a finite union of cylinders).

(iid) k° st.if B c [0]0\9_15 a cylinder, of length greater than kg,

there is a NB(B) with B Mj(B)’
Let 1 » a, > 0 be a decreasing sequence of reals with a,
converging to a.

[+

Defineg= I Ma +aX on [0], and g(1x) = 1 - g(Ox)
n=1 —_

(i.e. g is defined to be a g-function).
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I claim g has a unique g-measure. I will show that if B is a
qylinder; contained in [0]J\0, of length greater than kgs ¥ @
g-measure, then u(B) is uniquely determined by M, and g.
Since u is non-atomic by Lemma 2.1, this shows u is uniquely

determined on [0].

Lemma 2.2 (Markley-Paul)
Let A < [0] \O be a cylinder of length £ and B < [0\Q

a cylinder of length 2 K, Then u(AB) = K(A,B) u(B).
(K (A,B) is a constant depending also on g and the partition).

Proof

L

u(AB) = I L%, du.
x=m{0,1} AB
N

-1 TE (x) du .
I St g(y)eeeg (o™ "y)xqlyixg(x) du

Let A = [ao.....az_l] and a = (ao.....az_l). Then

. g-1
! yio’“x 9(y)eer g(T" y)xp(y) xg(x) du

[ sl@ng(elax) xpx) o

K(A,B) u(B) by property (iif) on M, and definition of g. O



choose

1.10

Thus by Lemma 2.2
u(BAB) = K(BA,B)u(B) 2.(1)

Now by Kac's Theorem (see [13]), if r(z) denotes the return time
of a point in B to B, we have

= _ numbers depending
1= JB r(z)du = 2 ‘only on g and M_ ) u(B)

. (by expression 2.(i)).

Thus p(B) is uniquely detgrmined by g and M ). Similarly we can

i

construct the partition of [1]6 '
nz1, M; = {(1x) : Ox € Mn}. {1 0) and obtain that u is.uniquely

~determined on cylinders B of length greater than Ko' It thus

follows that u is uniquely determined.

An example of a grid functionbis an adaptation of Hofbauer's
(see [3]) example where we take M, = [Q_H_Q 11, n > 1. An easy
computation shows that var, log g = log an/a. Therefore, if we
qﬁ=<xFG%+%y0 we have that I log a, does not exist, the condition

in Theorem 2.2 is, therefore, not a necessary one (see P. Hulse,
Ph.D. Thesis) [4].
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Theorem 2.3 - THE MAIN THEOREM AND ITS PROOF.

Let g ¢ G then the following are equivalent

(i) g has a unique g-measure - .

| p N-1
(i1) N 20
n=

] |
L]oggf(x) + u(f) for all x and each f € C(X).

(ii1) As (i) but the convergence is uniform.

(iv) C(X) = € ® B where B = f-f|f e C(X)}.

{L]ogg

Proof

The proof is essentially the same as when we are looking for
a uniquely ergodic'shift invariant measure. (See Parry [i0]). |
First note that if f ¢ € (i.e. a constant function) |

N-1 :
A%- Zo L?ogg f =1f =pu(f) and convergence is trivial.
n=

Similarly, if f = L]og h - h e B; we have

gt

N h
Ly __h-h bty .ol 1] -
n = logg 1o

N-1

: : n
which clearly tends to zero as N + «. Therefore %.nio Liogg tends"
uniformly to O when f ¢ B or, by approximation, when f e B. Clearly
- 1 N‘l n
Bn€={0},and ¥ £ L leaves functions in € unaltered and
N n=0 .Iogg

converges to zero for functions in B. These remarks show that

(iv) » (iii), (i1i) » (ii). (ii) = (i) follows from the fact
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that if My is another g-measure, f ¢ C(X), then

(f)][lN'l"f ()
U =lim|{g I L = u(f
1= im R, llogg" %t M
and Wy =M (see Walters [11] Theorem 6.2 page 147). It thus
remains to show (i) = (iv).

let x e X ¢ I Xo’ since X is a compact metric space we can
N
choose a dense set {fn}:=1 of functions in (C(X), || ) (see

Kelley [7]).

N-1
Note that, since ﬂ& Z L]ogg f1(x)]| = |If;ll + we can choose

N 1
a subsequence NI < N such that Tim N' z L]ogg 1(x) converges.
NeN
1

N-1
logg

1

Again, since N' fz(x), N e Nl’ is a bounded sequence, we

can choose a subseguence N2 c Nl such that

N-1
lim 1

N N z L]ogg fz(x)

exists. Repeating this argument for each fi we obtain sequence of

integers Nl > N2 > N3 s Where Ni = M{, M; ... such that

N-1
lim 1 r L° f.(x) exists for j < i. Taking the diagonal
N logg 'J
NeN n=0
i L 2 N-1
sequence N = Ml’ My3... we have that lim (1/N) z L]ogg fi(x)

NeN
exists for all i. Since {fi} is dense in C(X).
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lim (1/N) Nél L?ogg f(x) = J(f) exists for all f e C(X).
NeN n=0
This defines a continuous linear functional which is clearly
positive. Moreover, since g € G, J(1) = 1 and J(L]oggf) = J(f)
for f € C(X). Thus using the Riesz Representation Theorem and
Theorem 2.1 J defines the unique g-measure u. Then for any
other point y ¢ X we can construct a subsequence N' c'N such that
lim I/N G fly) = u(f).
Nr-oo n=0 1999
NeN'
Therefore, if we do this for a dense set of points in X, the

diagonal sequence produces a sequence N" such that

N-1

17 n _ .
&iﬂ N-nfo Llogg f(x) = u(f) V¥f ¢ C(X), ¥x e X. 2.(ii)
NeN'

Let f € C(X) then we can write

f=f -p(f)+ u(f) and f-u(f) € ker J {h e C(X)|d(h) = 0}

so in order to prove (i) =» (iv) it will be sufficient to show

ker J = B. By the above Ker J > B is closed, J being continuous.
~Hence, by the extension theorem for continuous functionals on closed
subsets (Dunford, Schwartz, [5])) we need only show that any
continuous linear functional, on C(X), annihilates Ker J when it
annihilates B (or equivalently B). So suppose P e c(x) s

such that'P(Llogs-gf-f) =0), ¥ feC(X). Let f e kerJF then, by

using Lebesgues dominated convergence Theorem and 2.(ii) we have



1.14

].Nl "
N' Z P(Llogf)-rOasN-roo N e N",

and since P(L]oggf -f)=0

N-1
I P(f) >0, N eN".
n=0

1
N
In other words P(f) = 0 ¥f ¢ ker J and the Theorem is proven.

Corollary 2.4

The set of {g e G| there is a unique g-measure} is a dense

GG in G.

Proof

The proof is essentially Palmers [ 9] but I include it for

campleteness.
Let {fn}n =1 be dense in C(X). For natural numbers n, m, N
and ¢ ¢ R. Let un m,c,N
N-1
k 1
= {g € G| llN Z L]ogg n-cll< @l o

This 1s an open subset of G and therefore

E = v U

v Unamac,N is a GG.

n n
nm

! O6OC

I claim in fact G = {g ¢ Gl for all f € C(X) there exists

N-1
c(f) eRwith || & 2 L]ogg - c(f)]|~ o} .
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If we assume the claim then, by Theorem)-g‘é s the set of g with
unique g-measures. It therefore remains to prove the claim. If
g belongs to this set then g ¢ G.  Conversely if g ¢ then

for all n, m there exists Cm(n). N, such that

le

I N Z Liogg Tn = Cn(ni,, <—- 2.(i11)
If y is any g-measure
N-1
1 k -
] N kzo L]OQQ f dll U(f)

Thus using 2.(iii)

Iu(fn) - cm(n)l < -'lﬁand thus

lNzl X u(f )l < & for M> N,
“N-k-o Togg fa o<

Therefore
M-1
1 k

N-1 M 1
N1l k k M-N
swly kzo L]og TN HM z Llogg n - ) ul(f )l

Using the fact that ﬂL]oggu <1 we obtain

M-N
T oL ulf )Ml
MuN k=0 'logg fo = w(f )t Gl w2 N oo logg fo -
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Thus if M = 2N we obtain using 2(iii)

3
<+
N)—=
=TT
1]
=1

1
=27
By induction of 2 if M = 4N we have

N-1

Z
gy o Liogg!Fa) - mEII,,
1 2 -1, 2 _ 2
s TatTgm-
T mN‘l k
herefore ;2: “lﬂN kzo L1ogg Tn w(f )]l =0

N-1
. . 1 k
and it follows that lim || § kfo logg fn = M(f ol =

1 MLy

Therefore || N Z L-Iogg - u(f)}]> 0 for all f ¢ c(X).

Since there are a dense set of g with unique g-measures the

result follows.
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CHAPTER 2

INVARIANCE OF THE BETA-FUNCTION UNDER FINITARY

ISOMORPHISMS WITH FINITE EXPECTED CODE LENGTH




2.1

INTRODUCTION

The following sections are a generalization of the work of
K. Schmidt and W. Parry concerning the invariance, under finitary
isomorphism with finite expected code length, of the g-function
for Markov shifts, see Parry-Schmidt [1], Schmidt [11.

The result has interesting applications to Axiom A flows
concerning the invariance of thé B-function when looking at the
associated suspension of the flow. qu further details, about
axiom A flows, sed Pollicott [1]. For details about the g-function
and its properties look at Tuncel [1] and Parry-Tuncel [1].

The result is as fol]ows: ,

If c‘p:X1 -+ X2. is a finitary isomorphism with finite expected |
code length, between g-spaces, where the g-functions have finite

first moment variational suﬁ ({.e. Z r var g < o ) then the B-function
r=1 ‘ ‘

is an invariant, if Xis X, are topologica]ly‘mixing.
The first interest, in finitary 1somofphisms, came about
because of the paper of M. Keane and M. Smorodinsky concerning the
fact that two Markov shifts, which have the same entropy and period,
are finitarily isomorphic. |
This Theorem led to people investigating as to whether the
period and entropy where complete invariants under finitary isomorphisms
with finite expected code length. This was found to_be_false see. (Parry
[3]), and people sought after further invariants to solve this completeness

problem. One such invariant
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that arose was the g-function, B: R + R defined by B(t) = exp P(-tIp)
(where P(-tIp) denotes the pressure of -t times the information
function with réspect to a Markov measure. (See S. Tuncel [1]).

A discussion of the g-function, as an invariant, can be found in

Tuncel, S.[1]as well as further information.
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5. ISOMORPHISMS WITH FINITE EXPECTED CODE LENGTH

Let (X,0) be the two-sided shift space on k-symbols. Let
g; € C(X), i = 1,2, be such that it depends oniy on coordinates to
the right of zero and gi € G, when restricted to X+. We also assume
that the gi's have finite first moment varfationa] sum. Then by
Theorem 2.1 we can choose ui(i = 1,2). Since the p; are members of
M(X+,0) they can be extended uniquely to o-invariant measures on X.
For brevity these measures will also be called HpsHpe The subshifts
(Xl.cl.ul), (X2'°2’“2) are said to be isomorphic if there exists a
measure preserving isomorphism ¢‘(Xr°1'“1) + (X2’°2’“2) with
$0y = Oghs this isomorphism ¢ is called finitary if there exists
null sets E1 c Xl’ E, © X2 such that the restrictions of ¢ and
¢-1 to Xl\E1 and X2\E2 are continuous. If ¢ is a finitary isomorphism
we can find measurable, non-negative, integer valued functions a¢
and m_ on X with

¢

(6(x)), = (6(x')),

whenever Xy X' € Xl\E1 satisfy X; = x% for all 1 ¢Z with
-m¢(x) <is a¢(x). We can similar]y define analogous objects
a _jom 4 for o7t
¢ ¢
Definition

¢ is séid to have finite expected code length if
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' [ (a¢ + m¢)du1 < » and I (a ot -l)d“2 <w
¢ ¢
For the remainder of this paper we shall assume ¢:(X1.cl.u1) -> (X2’°2’”2)
is a finitary isamorphism with finite expected code length.
Following Krieger [1 ] we observe that

'a;(X) = sw (a¢(o'"(X))-n) <
m;(*) = ::g (m¢(on(x))-n) <o a.e.

From this Krieger draws the following conclusions.

Prpposition 3.1

(i) There exists a null set EI such that if x,x' e &bEI
satisfy x = x{ for all i ¢ Z with - »<i < a;(x) (-m;(x) $i< o)
then we have ¢(x)i = ¢(x')1 for all 1 < 0(i 2 0). An analogous

statement can be made about ¢'1.

(i1) If x,x' € Xl\EI and X5 =vx% for 1 2N for some N € Z then
there exists an integer M, depending on x, N with ¢(x)i = ¢(x')i

for i 2 M;

(i11) Similarly, if x,x' € Xl\EI satisfy Xy = x; for i < N there
exists M = M(N,x) with ¢(x)i = ¢(x')i for i < M.

If x,x' € X\EI satisfy x; = x; for |i| 2 N 2 0 there exists

M' = M'(N,x) with ¢(x)i = ¢(x')i for [i] = M'. Similar results for

oL,
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Since the functions a; and m; are finite a.e. we can find

an integer M 2 0 and a cylinder set ¢ = [1_m. im]Tm c X

such that

D =Cn {x:a;(x) <M and M;(x) < M}

has positive measure.
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4. LOCALLY FINITE DIMENSIONAL AUTOMORPHISM.

An autamorphism V:X,+ X is said to be locally finite dimensional
if V is non-singular and fixes all but a finite number of coordinates
for a.e. (M) x € X. Krieger essentially expresses this in the
following manner; Define an equivalence relation on X by x ~ x'
if Xp = xa for all but finitely many n ¢ Z. A non-singular auto-
morphism V of X is then locally finite dimensional if for u-a.é. Xy
Vx ~ x. Denote by Fl' F2 the group of all non-singular locallx
finite dimensional automorphisms of 0&'“1)’ Cg?uz). then (iv) of
Proposition 3.1 tells us that ¢F1¢'1 = F,. For further reference
we shall denote by Ei the group generated by Fi (i =1,2) and o.

For calculation purposes, concerning the invariance of the
B-function, we are really intgrested in the elements of Fi which
leave the set C (as described in Section 3) invariant. Thus we

define a subgroup of Fi’ with this property, as follows:

H; ={veF, [V(x), = x; for J s M}

Hy = {v e Fy [ V(x); = x; for § 2 M}
Hi= H:H; is then a subgroup of Fi with the above property concerning
C. We can thus discuss the way in which H acts on'{C,Lg} (ug is the

measure induced on C by ui)with the following result.
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Proposition 4.1

The action of H on the space (C,ul) is ergodic, i = (1,2)

-—PrOOf Aoz\-hivial

We have to prove if B is a\Borel'subset of C

AV eHst u‘c(va n C\B) > 0.
Aon—h—ivjal

We shall in fact prove if Bl’ B2 aré\Borel subsets of C

(i.e. By B, ¢ B Bn C) then JFV e H with ug(vel) n B,) > 0.

c
I claim if Cl’ CZ € Bc are cfoPer\ AV e HnPwHA(VCI) n C2)=§L .
Assuming the claim, for the moment, given Bl,B2 € Bc we can choose
clopen sets Cl.C2 € Bc with ul(cl A Bl) <€, ul(CZA Bz) < €,
where € > 0 is arbitrary. We can thus find V ¢ H with
H§V(C1)An (Cz)) > 0. I claim in fact if € is chosen small enough
this implies ujV(Bl) n Bz) > 0. For if u{V(Bl) n BZ) = 0 for

every € > 0
ML(V(C,) 0 Cp) s WL(V(B, u (By & C))) n (B q B, A C,)
S WL(V(B) n B,) +ul(V(B;) n (B, 4 Cy))
* u'ic(V(B1 A Cy) nBy)

+ u;(V(Bl A ¢;) a By A G,
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By the above assumptions this is

< e+EE (E as in Lemma below)

which implies ui(V(Cl) n Cz) =/ﬁ(02)‘can be chosen to be arbitrarily

~small a contradiction. It thus-suffices to prove the claim.

Let Ci, Cé be two .arbitrary cylinders. And assume l(Cl) zl(cé)

and choose a subcylinder, of Cé, of the same length as C1 We thus can,
~in effect for the proof, assume that Ci, Cé have the same length.

Now define VEXi - Xi which fixes C by mepping the co-ordinates of Ci to

C; and vice-versa. (By similarly looking at subclinders we can assume
the images of V do in fact lie in Xi)’ leaving all other co-ordinates

which are not part of the determining co-ordinates of the C;'s, fixed.

We can assume C1 is a union of more cylinders than C,. We then

. [ , . .
construct V by using V on a subset oif cylinders of C1 until

‘V(Cq) = C,4 V is clearly uniformly locally finite dimensional

and we need just to verify it is non-singular.

Lemma

If V:Xi + Xi is uniformly locally finite dimensional automorphism then

Bl ( V and ivalent)
both exist, (i = 1,2). (i.e. uV and p are equivalent).

Gug * o duyV ’ >

Proof

I claim it is sufficient to prove 3 D,E > 0 such that

(*) Dui[x_n,...,x ,...,xn] < u1V[k_n,...,xo,...,xn] SE‘H[x-n”"’xo""’xn]

0
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©

exists for all n 2 0 and x = (xn)n=1 e X;. This is so since (*) shows
clearly that ”iv and My have the same sets of zero measure. It remains

to prove (*). Assume V fixes coordinates uniformly for'lnl 2 N. Then since

L*ui = py we obtain that

B4 £(VX)_nt- ‘-9(Vx)o:~- . a(vx)n]

I gi(c'n'y) cee 95 y) ... gso" y) dui(y)where B=[(Vx)_n....,(Vx)°,..
| ()]

n-N
< exp [kzo var, logg; + 2N || Togg; |l JusIx_aeeesXgseeeax]

Thus if C = exp [ T var, logg; + 2N |logd;|| .1 then one side of the
' k=0

inequality follows. Similarly if

D = exp [- (kzo var, logg, + 2N | logg;l,,)]

the other side of the inequality follows.
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From now on X is an arbitrary topologically mixing subshift of finite
type, X+ fts obvious restriction.

The following lemma is essentially Sinai's result (Sinai [1].page 28).
The finite first moment variational sum being the condition essentially

used in Sinai's proof.

Lema 4.2
©
If ¢ e C(X)st. I k var, ¢ < « then ¢ is cohomologous
k=1

to a function ¢, e C(X+) (where I k var, ¢, < » and C(X+) < €(X)
k=1

is identified with functions of C(X), which depend only on coordinates

to the right of zero. )

Proof

Sinai's proof shall be included for completeness.

Define gn(z) = sup ¢(x), and
Xé[Z_n)m) Zn]_n

O = 9y~9y-p fOrnzl.

Then |fo I}, s var, ¢, ¢, depends only on (z_, seeesZyseeesZ,) and

n

1im oy = O, n21.

Therefore if we lets ¢, = 9, then
¢ =¢,+t Z ¢
° pa "

If y= I ¢.0" theny eC(X+). Let
n=0

bt n-1 k s
u= I I ¢.0. Then|uf] = Z

Kvar < = .
n=l k=0 k=1
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Since, given x,y € X,
n-1 n-1

k k

I ¢0((x)~ I ¢.0

lu(x)-u(y)| = £ |
n=l k=0

= nl Ky .k
< n£1 Z | o0 (x) - o0 (x)]

Moreover,

the lTema is thus complete.
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5. THE INFORMATION COCYCLE

v O-Ia) .
=1

and let A be the g-algebra genérated by U o-na (i.e. A=
; 1

n=0
As, in But!ér-Schmidt [1], Schmidt-Parry [1] we shall define the

information cocycle, for V ¢ E, as follows:
3 (AV) = 1 (AvIa) - 1 (viaja)
H H H
--log E (g}fy--nl |A)o V. -
uhoduyo R
Khere Eu(-lA) denotes the conditional expectation with respect to A
and Iu(AlvflA) is the information about A given VI (see Parry [2]
for full information).‘ The information cocycle has the following
properties and values, for the case under consideration, as given by

the following proposition.

Proposition 5.1

(1) Ju(A.-) is indeed an information cocycle on E namely:

J“(A,-) : E+R and
J,(A,ph) = J,(Ap)oh +J (Ah) ae.u . psheE.
(where p is, and always shall Be, from here on, a g-measure for a g

with finite first moment variational sum which by Lemma 4.2 can be

assumed to depend only on coordinates to the right of zero and as

such g € G).
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(11) For V ¢ E, p and g as in (i)

J (A,V) = log n 91———) a.e. yu
H n=0 g(o")

Proof
(i) See Butler-Schnidt {1] Theorem 4.13.

(i1) For this we shall need the following Lemmas.

Lemma 5.2

-1 1
Ju(A.o)(x) = Iu(Alc A)(x) = 109,5127' a.e. y

Lenma 5.3 (Butler-Schmidt [1] Theorem 4.18.)

Let P = {v ¢ E such that V fixes all coordinates for [i] > N
where N is independent of x}

let [P]=1{v e E[Vx ¢ Px for u. a.e. x e X}.

Then for every V ¢ [P] and p ¢ P we have

Ju(A.V)(X) = Ju(A.p)(X)

M. a.e. on B = {x e X|Vx ¥Apx}.

P

Remark 5.4
It is easy to see that in fact [P] = E and thus in order to

compute Ju(A,V). for V ¢ E, we can assume V fixes all coordinates for

|i] = N (some N e N) independent of x.
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Assuming these Lemma's, for the moment, we shall continue
with the proof of Proposition 5.1(ii). By Remark 6.4 we can choose
N > 0 such that V fixes coordinates a.e.p for |n| 2N, thus AR
fixes all coordinates to the right of zero and NV o™= A This

J,(hg Nyoy - Iu(AloNV'10°NA) - Iu(oNV'lo"NAlA)

N,~1 -N
- log EU(QEELff—il——— |A) o Mo,
u

N,-1 -N
-log Eu(gﬁo—y——o— |A) o o™
du

-1 _-N
-log Eu(gggﬁi——g——-o oNVc'NIA) (By Expectation property).
du

= -log £ (—ff— IA)

duo Vo

-log Eu(-—gH:N-lA) since u is o-invariant.
duVo

= -log Fm(-‘i}‘- oa™NA).
duV
I claim this is in fact equal to zero in other words:
Euogﬂ- oo™Ma) = 1.
duVv

It will suffice to prove if [xo. ’xm]o is a cylinder starting at 0

then
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g'.I'L\LOO'-l\lle = U([x y X ] )' (*)
[ ] du ‘ 0 m-o
Xor *no
this implies
FOY‘, then’

Eu(%y- oo NA) = 1-

’

and since Jp(A’lid) = 0, using the cocycle property:
0 = 3, (Asdigd= 3 (Ao V™) 0 M+ g (aMNe™).

, N,-1 -N .
Since gV "o  also fixes A we have that

Ny-1 =Ny _ Ay Npay
Ju(A,o Ve ) = -log Eu(duV‘l oo |A).

Thus Tog Eu(—QH—_1 oc'NIA) oao N
' d

uV

- __E-
log E“(duv oo |A)

i.e. (Eu(—}‘—oo = [E (d_upV°° |A):|.'1

1)

It remains just to prove (*).
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LT O'Ndu = duv

o'’ m

= uV[xo, 'xm]N .

Since V fixes coordinates for |n| > N then

V[Xo) 'meN = EXO’ lxm]N

1

and uV[xo. txm]N = IJEXO. txm]N = UExow }meO.
Thus 3,(A,0Ms™) = 0 5.2(i11)
Using the cocycle property we obtain that
N, =Ny _ N -N - -
Ju(A,o Vo ) = Ju(A.c ) o Vo " + Ju(A’V) oo N4 Ju(A,o N)

Note that since Ju(A’lid) = 0 we obtain again using the cocycle property s

that

-Ny _ N -N
Ju(A,o ) = Ju(A,c Joo

Thus, using these two identities we obtain fram 5.2(iii)

0 = Ju(A,aN) 0 Vo'N + Ju(A,V) oo N. J“(A,GN) 0 c'N
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This implies
3 (AV) = Jd (A,0Y) - a (A,dY) o v.
TR p'? TR

By Lemma 5.2 and the cocycle property we can obtain that

N N-l
J (A, o) =1log I
e 1

Thus

N-1
B a(d"v)
J“(A?V) teg g=0 g(a"™)

Thus since V fixes coordinates to the right of N Proposition 5.1 is
proven. To complete the proof we need to verify Lema's 5.2 and

5.3.

Proof of Lemma 5.2

If a;sa, are two partitions of X, denote by a4 Vo, their
refinement and &1 the o-algebra generated by ays &1 v 52 the g-algebra

generated by % Vg

By definition (see Parry [1])
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-1 moo
I(A|o "A) = lim I(V o ajo A).
me =0

mo s -
I(V o la|o 1p)
H1=0
_‘i © A-'i
a| vV o @)
H'i=0 i=1

n
Pt
-
L~
Q

= I (of ‘\7 ;‘1a) + 1 (3‘ o lu |V ;_ia)
LR Hi=1 i=1

| -
lin L (a |V o la) (By Theorem 6 Parry [ 19).
el

koo

Let u, be the restriction of ¥ of X+, then pt 15 a g-measure for the

restriction of g to X+ by the way in which u was defined.

I (dl 5 3'1a) depends only on coordinates to the right
3 i=1

of zero and thus 1s equal to

k "5
[ (@] V o @)
Uy o §=1

By definition

m A
v o'ia)
o

I (o
My | jl

m o _ia
2 - 3 X_.. log (i1} Y o o).
ié{lo..-)k} [1] 1-1
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-]A

m
h 13y -
 where “([131131 o a) E(x[ij [ V o o

= I . (] du) —L
Xpo Xy € {1,005k} [xf *n Cxpeox, 1y “J " ulxpesx ]

_ . u[‘xl) )X ]
X X [x1 X1 X,
So

moo_s.
Iw(o:lil/1 c o)

= - z X 1o
ulx, X ]
an ,Xm EXd'“)xm] 1 /
dy,o -
= 1ogs<—d—ui’: Vo)

Thus by t‘aking Timits and using the increasing martingale Theorem
(Parry [ 1] Theorem 2 Page 30).

[ -iA
1] \_I1 v a)

du+d
log du+

= log = g by Theorem 2.1.

S FRR §
Thus Iu(AIG A) = log g
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Proof of Lemma 5.3
As already indicated the proof is to be found in Schmidt- |

Butler'Theokem 4.18.

Proposition 5.5
Using the notation of earlier we have

31 (A) - (o7IAN) = fV-f ¥V ey
1 g

wherve f = [ (Al‘P-lA) -1 (¢'1A]A) is Measurable,
H ¥

Proof
The proof is exactly the same as for the Markov measure case

(finitary isomorphisms with finite expected code.

given in Parry (3]
length us}rlj BuPIer—ScL@BJI' Theorem G-l

Lemma 5.6
For V ¢ E, W, g as in previous notation, then
o n
av . g g (V) .
-ﬁt— —
n=—e  g(c")
- Proof

Form 2 N ™ (A) = A, therefore
- -l M
£laus™V YA o 5 y™
H dy ;

JU(A,G*“Vom) = -log



By Proposition 5.1 we know that

; gg&b*WJQ

‘JAo-nvn=]
e T
= log E’ 1—211
n=-m (o )

Also
d
-log Eu("lLTE'A)

duVo
(since u o-invariant)

= -Tog Eu(%;o ma) od"

tog (€, (| )

pooale) - o

n=-m g(c)

Taking the 1imit as m tends to infinity and using the increasing

Martingale Theorem (see Parry [1]),
This implies
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Remark 5.6(1i)

n
Note that I 9{9-%)- exists since V is locally finite
- n=~= g(o

dimensional and g has finite first moment variational sum.

Lema 5.7

-+ -4
If Ve Hthen |[foV-f| <k = z var, logg, + I var logg, < = onD.
n=1 n=1

(f as in Proposition 5.5).

Proof

By Proposition 5.5 we have that

fov-f=4d (AV)-J (¢>'1A.V)
H1 31

Thus estimates, involving the expression foV - f, can be computed by
studying the information cocycles which we have expressions for.

The computation of Ju(A.V). for V ¢ H, can be reduced even further

as follows:

Each V ¢ H is of the fom V = ' V+ and, by the cocycle equation for
. Jul(Al.)'

-+
Jul(A.V) Jul(A.V V)

- ot
=9, (AV) oV + Ju(A.V+)



2.21

Thus in order to prove fV-f is bounded we need only prove that

J Y o9 ol AVT) -0 (o7hav
ul(A.v ) - 9,06 AN, Jul( ) u, (0 )

are bounded.

© n., -
J (AV)=1og T g SﬁLj%;l (by Proposition 5.1(ii))
H n=0 g(o")

and, since V- fixes coordinates to the right of ~M and g depends only

on coordinates to the right of zero this equals zero.

1. -
Analogously, since J“l(¢ AV )

=0 (AVeN) od s
Ha

it follows that Jul(db'lA.V-) = 0.

By Lemma 5.6 and Proposition 5.1(i1)

du v +
“09 1 - Ju (AQV )l
dul 1
. n,.+
® gl(o v )
= |z log n ’
n=-1 91‘(0 )

< ; var, log g; (since V' fixes coordinates to

the left of M ).

+ -1
Since d (o~1A V") =J (A,0V'97) 04 and
H1 H2
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+ -1 +
) dy,Vv
M—-¢——o b = L (recall that Wb = ul)
dUZ : dul
we have that
+
du,V -
|log —1— -9 (oA"Y
dul 51
+ -1
dupV ¢
= 13, (Aev'od) - 1og —5——) o 9|
H2 du,

o n.,+ -1
=l X ]oggzmu_)_ °¢l

n=-1 vgz(on)

On D, since a; <M and V+ fixes coordinates to the left of M,

e V'), = (o(x))_, [ = 0ul,.en }
Thus .
- 9,(c"eV")
o9 n

n=1 92(0 9)

s I ovar, log g,

Thus

+ -1, .+
19, (A7) -9, (@7ANT]

dy * du vt

v 1 -1,
< ldul(A.v*) - Tog dﬁll + Jog = -9, 67AN)]

o

< I var, log g, +var, logg,.
n=l
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Therefore we obtain Lemma 5.7. We are now in a position to prove

the main proposition of this section.

Proposition 5.8

f (as in Proposition 5.5) is bounded a.e. My on D.

Proof

Choose d ¢« R such that A_ = {x:|f(x) - a|<e}n D has positive
measure for every € > 0 and such that Ja| is minimal. If f is not
bounded by |a| we can choose B € R (|B| > |a|) with the property
that B_{x| [f(x) - B|<e}n D has positive measure‘for all e > 0.

By Proposition 4.1 we can choose V ¢ H st VAe n BE Fo.
Lemma 5.7 tells us that |[f(Vx) - f(x)| < k a.e. x ¢ D. This implies,

since VA_ n B_ # ¢, that there exists x st [fV(x) - 8] < € and
|f(x) - o| <c.

Therefore:

|8 | s [B-fVu)|+ [F(V(x)) - F(x)| + [f(x)a] .

o0
<2e+ I

£ var, logg1 + var, 10992.

But € > 0 was arbitrary therefore

|8 -a] < k.

Therefore f is bounded a.e. ¥y on D and
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|f| s 2 max {Ks|a|}

Let C' be an upper bound for f on D.

Definition
Let A' = {x e X, : [f(x))] < 2C'}.

By Proposition 5.8 D c A' a.e. ul,and thus A'has bositive W) Measure.

Proposition 5.9

+

We have pl(VD\A') = 0 for every V ¢ H v Hy .

Proof

By Lemma 5.7 we have the relation:

|fV-f|< k a.e. x e D and ¥V ¢ Hj-

By the proof of Lema 5.7 we can deduce K < C. By definition

we have

|f(x) | sC' a.e. x eD.

Thus

[fV(x)| = [fV(x) - f(x)| + |f(x)] s 2C'.

Corollary 5.9(1)

There exists a null set A < D such that for every x ¢ D\a, n 2 0,
X' € Xlwith Xq = x% fori > -Mand i < -M-n (or for i <M and i 2 Mtn)

we have x' € A.
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Proof
The proof is exactly the same as in Proposition 3.4 of Schmidt [1]
using Proposition 5.9. |
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6. PRESSURE

The concept of p}essure was considefed; as a-quantity
for subshifts, by Ruelle [1]. Walters [ 1] generalised the concept
to arbitrary dynamical systems (X,T) and verified the so-called

"variational formula" for pressure namely:

If f eC(X) P(f) =

- swp [fdu+h (1).
neM(x,T) H

There are now many equivalent definitions of pressure but, for convenience,

the above variational formula shall be taken as the definition of pressure.

Definition

Let X be an arbitrary topologically mixing subshift of finite types
Pressure is a'function{

P : C(X,R) = R described as follows.

¢ € C(X,R)

P(¢) = sup I ¢ du + h (o)
veM(X,0) H

= sup : I ¢ + 1 du.
ueM(X 4¢:) W

We shall be needing the following Letma to be found in Walters [11]).
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Lemma 6.1

If & ¢ C((X+,R) « C(X,R) is such that & var ¢ <
n=1

Then P(¢) = log A where X\ is the spectral radius of L¢:C(X+) + C(X+).
(i.e. the maximum eigenvalue.) O

Pressure has the following properties for subshifts of finite

type.

Theorem 6.2

If f,g € C(X,R) then

(1) |P(f) - P(a)] = lf-gll, -

(i) P(*) is a convex function.

Proof

See Walters [2] page 214.

Condition (i) implies that P is a Lipschitz continuous function
with respect to the sup metric on C(X,R). We would 1ike to define some
sort of "differentiability" of the pressure function. Thus if,

f,h € C(X) consider the map

A — P(ffkg) - P(f) .
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Since P is convex, (ii) above, this is monotonely increasing and by
(i) it has upper and lower bounds # |lh]} = . We may thus define a
derivative from the right of f in the direction h by

£ P(h) = tim PAEAMPAD 5 i)} L similarly we may define a left
AV0 kacwa Fo

derivative. In general these are not\be equal. However Ruelle [1]
showed if we restrict to fgz= {f e C(X+,m)lvarnf <C",ceR, 0<8 <1}

(the set of exponentially decreasing variation functions) the left and
right derivatives are equal and P is said to be "real analytic".

There are several equivalent definitions of real analyticity of
a function f:B = €, where B is a Banach space. An alternative to the
above is to define analyticity in terms of normal complex analysis.
Namely defining 2:8 - B ( Q open domain in €) to be analytic if gh
is analytic for all h ¢ B%f is then said to be analytic if &f is
analytic for all analytic 2. &f being analytic is, of course, equivalent
to &f having a power series expansion at every point of Q. (See

M.J. Field [1]).
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7. B-FUNCTION

The g-function was originally introduced by S. Tuncel [1] in

the form Bu(t) exp P(-tlu) (where P denotes the pressure and Iu
is the information function w.r.t. the measure u), however the
basic ideas, concerning the pressure and the g-function, are due
to D. Ruelle. Parry-Tuncel [1] proved, in the Markov case, that
the g-function can be represented in the following form.

B(t) = Tim ( f exp(1-t)9, (A.o")dup)l/"

N0 P

(uP being the Markov measure associated with the stochastic matrix P).
This éharacterisation of the B-function can in fact be generalised to

g-measures as the following result shows.

Lemma 7.1

Let g € G be such that L

n varnlogg < o then if u is the
n=1

“unique g-measure,

Tim L l0g u (exp t 9 (A,0") = log B (1-t) ¥ t &R
oo H H
pointwise convergence.

Proof

Ju(A.on) = -

n-1
L log g(o”) =: S (-Togg).
m=1

Therefore,
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exp tJill(A,cn) = exp Sn(-t logg),

and

1im %log u(exp t J (A.on))
. W u

= 1im
N+

=2 L

log u (exp S (-t logg)).

By definition Bu(l-t) = exp P(-(l-t)lu(A|o'1A))

= exp P((1-t)logg).
The result thus follows fram the following Lemma.

Lemma 7.2

©o

IfgeG, I nvarlogg< e,y theunique g-measure, f e C(X+), £70.
n=1

such that zlvar f <o then lim % Tog u (exp Snf) = P(logg + f).
n- .

Proof
By the definition of pressure applying the spectral radius formula

we obtain

P(logg + f) = Tim Tog ( fILy| 121 < Tim Tog Lyl. (¢ = logg + f)
nre o0

1 Spf
1im = log " (e’n") .
oo N logg
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I claim the last limit is the same as lim %-log u (exp Snf).

Assuming this the proof is complete.

Proof of claih

, We have to show 1im [L']‘og(.;(esnf)]lln = lim [u(esnf)]lln.

n->-co N

Because u is a g-measure

u (@) = (] gq (€M)

md thus tin (ue*n )M = Tim [u(1]  (eST)IHM,
N,

N’

By Heliders meoualiby

n Snfyq1/ny_ s n Snfyy1/n
2 Tm ulllyogg(e™ )1/ Tim L1 g (e™))

By Ruelie's Operator Theorem (See Walters [ 1] Theorem 3.1)

lim (enf)1/™ = vim 1im [ (eSnf)y/m
e nomao 1099

Saf
< 1im [Ln (e n
nreo 1099

nin - 2(4).
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Remark

Lemma 7.2 is in fact true under the conditions f, ¢ e C(X+),
Ly w = Xu for some A > 0. See Tuncel, S. [1]1. The result then
takes the form:

Tim %\- Tog u (es"f) = P(f+p) - P(s).

Thué Lemma 1 actually holds under the conditions g ¢ G, u a g-measure.

In Ruelle [1 ] a proof that the g-function, in the case of logg
having exponential]y decreasing variation, is analytic can be found.
The method , essentially adopted by Ruelle, is to show that the
Pressure function is analytic on f%‘= {f e C(X+,n0|varnf < Ce", ¢ eR
0<6 <1}, This is deduced from the fact that, for ¢ e fo, L,
has a maximal isolated eigenvalue. It therefore seemed quite reasonable,
in order to prove the analyticity of the g-function for ¢ with finite

first moment variation, to adopt an analogous line of reasoning. In

order to achieve this goal we shall need the following definitions.

Definition 7.3

let £ = {f e C(xt)| |If]

= I var,f < «}
var .29 k

We shall show that, if ¢ e C(X+) has finite first moment variational

+
sum then L¢(fvar

) c f:ar‘ By defining the norm

“lf“lvar = max { "f“m ’ "f“ var }
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we can make f:ar into a Banach space. For if lim Ian- =0

flll var

by completeness of (C(X+)s'l|*llw) there exist f ¢ C(X+) with

» 1 +
(f, - fll,. tending to zero. I now claim that f e f . and

|Ufn - flll var tends to zero.

Proof of Claim

Uy - full var 2 | lufn“var‘ = Il varl

Thus {“fnl]var}:=1 is bounded above by some constant C"e¢ R. Thus

for each M 2 0

M
n
nEO varnfh sCc" .,

Letting m tend to infinity this implies

z varnf < C".
n=0

. . . . " +
Letting M tend to infinity we obtain ufl'var < C"and f e far

Thus |[f, - fllyge >0 @s n>= . Then [[f - f| . +0and the

claim is proven.

Lemma 7.4

The closed unit [ |l -ballis || || - compact.
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Proof

The map f + [[[f]]l .. is Tower semicontinuous on f:ar with

respect to || ||, (i.e. given € > 0,f, we can find § > O such if
+ N
e fhge [N = FllLge < stmpltes il o = WFIl]q-e-)

For given € > 0 we can choose M such that

o M M
I varf -=s 1 var f < 2M||f-h |, * I var h.
0 " 2 p0 " rhlll = 2 varn

Then § = f% and the lower semi-continuity follows.

The lower semi-continuity of this map implies the compactness of

the ||| » as follows:

1
var

+ 0 as n tends to infinity, by

one ball, B1

“lvar var

Lower semi-continuity implies that B is closed in the || |_-norm.

1
For, if f, e B, .. and l"fn'fluvar

lower semi-continuity given € > 0 we can choose § > 0 such that

I f,-fll, <6  implies:
Mgy s & IF Ly s 1+ .

But, € > 0, is arbitrary and B&ar s closed in the || || -norm.

Bsar is clearly bounded in the || || _-norm and therefore, by the

Arzela-Ascoli Theorem,is || . || -compact.
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Theorem 7.5

Let ¢ e {¢ eC(X+)| Z rvar ¢ < «} ,then there exists A > 0,
r=1

+
v € M(X+) and h € fvar such that

(1) Lh = A

+

+ f have

(ii) A1l other eigenvalues of the operator L¢:fvar var

strictly smaller modulus.

(111) L;v = .

LPf
(iv) If f e C(X+) then -‘P}‘— > v(f)h uniformly.
A

(v) A 1is a simple eigenvalue.

(vi) P(¢) = Tog A.

Proof

(i) Parts (i), (iii), (iv), (v) are already known under finite
variation sum (Due to P. Walters {1]). A different proof, based

| on M. Pollicott's thesis, is given from which we can deduce (ii),

not known under finite first moment variational sum.
(i1) Let's ={f e C(X+) | f(x) sexp ( = var, ¢)f(y),
r=k+1
if d(x,y) STGl-T » f20and |f[]_s< 1}

The first inequality means that for d(x,y) < F%T
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f(x) - f f -1 : -
flx) - fly) s fy)(exp (L, vane) ) <lifll, (exp (E vard)- 1)

Therefore,
var,f < |If]] (exp( £ wvarg¢)-1)
= Al rektl

[« -]
b varr¢).

f
< Jfll, (exp (ril var ¢) I

Thus

(- 4

UFllyar = WFllem(E var) £ rvar

and so

@
z

fillyae s € lfll,s € =exp‘§§1 Var"¢)r :

rvar,¢.

Thus S is contained in the [[| [fl .-ball of radius Max(C,1).
As S is|| || rclosed it is thus -|| || -compact by Lemma 7.4.
Define

L¢(f+1/n)
Ln:S + S by Lnf =
UL¢(f+1/n)|lw

which is well defined since:

1 - [
L¢(f +1/n) 2 =e e i .
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To show S is Ln-invariant notice that if d(x,y) < F%T' then

LG+ Um0 =z @ ym)(in
‘ ixeX+

s I oexp(o(iy) +var,  ¢)(f + 1/n)(iy) exp (2 var¢)
ixeX+ r=k+2

=exp (L vare)L.(f + 1/n){y).
rek¢1 T 0

Since S is convex and L is || || continuous there exists a

fixed point f, € S (see the Schauder-Tychanoff fixed point theofem).
If we Tet A = uL¢(fn + 1/n)|f, then

f, = (inf £+ 1/n) g:“¢119
An

In particular inf £
nf
: n o, _1,.-ll¢ll«
inf fn 2 ( X +']An)e >0.

By rearranging this we see that

1__ye-llolle
Ay 2 (1 + ninffg)e > 0.
Choose subsequence f_ - h then by continuity 1im A = A > 0 and
n‘i ) n'i :

= Ah.
L¢h h
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By compactness h € S ¢ f:ar' If h(x) = 0 for some X € X+ then
th(x) =0 for allnz20(i.e. h(y) =0for all ye v o .
n=0

Since X+ is topologically mixing this set is dense and so h must
be strictly greater than zero since it has positive norm.

We may define from this result a g-function, g € G, by

log g =¢ + log h-1log A - log ho

<0

var, logg <2 I var g .
n ren r

(-] [+]

Therefore I var_logg <2 I mnvar ¢ < o«

z n n
n=0 1

(ii) Llet f € f:ar’ and define g as in the first part. In order

to prove (i1) it suffices to show all other eigenvalues of L]ogg are

strictly less than one. (The calculations from here on are essentially

due to Walters [1]). Let d(x,y) s F%T

n
| LloggT (®) = Ligggf )]

| 2 9(Px)g(aPx)glo°px) .. (o™ Tpx)F(pK)-g(py)...a(c" Lpy) £ (py)|
P S(pel0,1,... k)" pxeX+]

A

| Za g(px)g(opx ). g(0"px) [F(px) = F(py)]|
pes’

+ | pZSn £(py) E9(px) ee + 90" Lpx)-g(py) . 9(a"py) 1]

sup | f(px)-Fley)| + |Ifl],, an |9(px)-g(a" L px)-g(py)-nug(o

peS pe

n-1

A

py)|.



2.39

However
n-1 n-1
[g(px) «+eg(c” "px) = g(py) ... g(a" “py)|
n-1 v ia(px)  g(o" lpx)
= g(py) s glo “py) | o - 1
| glpy  gla “py) n+k
1 n+k i rik var.logg
< 9(py) e 9(o "pYdmax (e Zk var log -1, 1 - e )
r:
t I var logg
n-1_yr= T -
< g(py)essg(o “pyle z varrlogg.
r=k
Therefore ’
& var logg ,
7.5(a) var,L" f<svar  f+ |f] e =k z var_ lo
) k~Togg n+k o r=k r 099
o n o y
szo varbyoggt < ) IlIFLL o * UIFLL, €
¥ var_logg
r=0 r‘ [} .
where c" =e z rvarrlogg
r=1
and C(n) = k§0 varn+kf , 1f f # const.
I varf
=0 k

This gives
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7,500 [Loggfll yar < €00 MFIl g * UFII, C

(=3}

. .

-q var logg «

r=0 r I rvarrlogg.
r=1

—t.

if f # const. and C"* = e
Since “LlogglL»S [if]l- This implies
7.5(0) [1L0gqlllar < 0 IFI yap + IFILLC™(C"s max (1,6 3)

Equation 7.5(a) implies {L?oggf}:=o is an equicontinuous family.

llL?oggf“ . 1s also bounded above by [[f|l  so, by the Arzela-Ascoli

Theorem, the closure of {L"fln 2 0} 1is compact. Hence there exists

f. € C(X) and a sequence n, of positive integers such that;

. n.
lim JjLy! f -f = 0.
niw) l‘ 'Iogg * “oo

If a(h), s(h) denote the maximum and minimum values of h e C(X+)

we have:
alf) salligf) < alfy) < 6(f,) < 8(LF) s &(F).

n,
Note that, since lim ofL 'f) = a(fe), lim a(L"f )= a(f,)
N N

i
alf,) = a(Lf,): This implies

f*(.Y) = OL(f*) for y € O-IZ
if
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affye) = a(Lf,) = Lf,(2).
similarly if a(f,) = a(L¥F,) = Lf,(w) then

fely) = a(f,) for y e c—kw .

Thus, using topological mixing of X+, we see that f, attains its

minimum on every cylinder set as follows:
. \

Let w" minimise L"f,. The set of sequences {(w")} has a

symbol i such that
(wn)o = i for_infinite]y many n.

Thus if C 1s a cylinder thefe exist N‘ such that for n 2 N
Cno il #0 ¥n 2 N,

" Thus we can choose Ny 2 N such that

Cnoloylogg,

And thus f attains its minimum on C.

Therefore f, is a constant and clearly Lnf converges to f;

uniformly.

Since L]ogg(l) =1 defines an operator P on the

) L]ogg
quotient space f:ar/R and inequality 7.5(c) becomes:

Pl yap s Cn) INFIN 0 + C varf.
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By the above varoPnf converges to zero so we have, for large n,

since C(n) »~ 0 as n tends to infinity:
2ng i n '
WPTTFIll yqp s C' vary POF + C(n) (C'var f + C(n) [[if]] var)

<1 7.5d).

By Lemma 7.4 B, ={f | [|IfI} . =1} is [ ||,-compact, so we
may choose n so that 7.5(d) holds for all f in this ball. Equation

7.5(d) with the above thus implies that the operator

P:f:ar/R - ftar/R has norm strictly less than 1. This, with the
observation that all eigenvalues have modulus less than or equal
to the nom, gives the result.

(iii)s (iv), (v)

-These results are standard and can be found in Walters [1],

and M. Pollicott's Thesis.
(vi)

Two functions f,g e C(X+) are said to be cohomologous if there
exists u e C(X+) sdch that f = g + uo - u; We then write f v g.
By earlier parts we know that ¢ ~vlogg + log A. It can be shown, see
Né]ters [ 2], that two cohomologous fﬁnctions have the same pressure,

P(log g) = 0 and that P(logg + log A) = P(logg) + P(log A) = log A. [J
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Theorem 7.6
The function ¢ -+ P(¢) is a real analytic function on the

©

space {ty|t e R} if 21 nvary < e ,ye C(X+).
n=

Proof

The theorem above, for the exponentially decreasing variation
case, was proven by Ruelle ([1], p.92). The proof adopted here is
based on the elaborated version, of Ruelle's proof, given by
M. Pollicott. I shall denote by {z¥|z ¢ C} and fSar the complex

. + .
version of f . and {ty|t e R}.
Let ¢: {yz:z € C} ~» fgar be given by:
o(¢) = {x ~ exp ¢(ix)}}
ixeX+

Iclaime is || [f,,.-analytic.

Proof of claim

~ By earlier comments it is sufficient to show, if 2:Q - (v, ||| l”var)
* ' —-—
and u € (fsar) ’ {¥={zyp|zel)}

that u® & has a power series expansion about zero of £(ud2)l/n!.

It is in fact sufficient to check I %T is convergent in
n=0

(fear’ Il Il )+ We shall show in fact that it is in fact absolutely

convergent namely
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; " var <
n=0 nl
var v2 = sup ([ (x) - 2] [dlxy) < Zp )
= sup (W)W x) = v ) F VI ) - vy [dixy) < 2o
<

folll,2 varg-
By induction this implies
var, W s ”w[]:'l 2" var g .
Therefore
e s Wl s IS gy,
And it follows |

W yap = 2" 1l -

Thus
. w oN-1 n
; I mvar < 1 2 Mlevar
n= n! n=0 n!
on n+l
and 1im 9l var nl

mo  (n+l)! | h-1 I“w,”car lim ﬁ%T" IHW]"var = 0.
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Therefore, ‘
n - n
z Zn_l ”l‘p“lvar , and thUS Z “,lp l”var ,
n=0 nl - n=0 n!

exists by the ratio test. O
Thus, using the above and the linearity of
h+ {f » 1 exp (h((x))f(ix)}, we see that
ixeX+ '

J: ¥ = {zyjz ¢ C} ~ B(ffar)

given by
¢ -+ L¢ is || ‘”var analytic.

If ¢ « {ty|t e R, ¥ € C(X+) Z nvar,y < =}  then, by Theoren 7.5,

we have that the spectrum of L , sp(L )=zu {A¢} » where {A¢}
and I are disjoint. Choose a path I in €, about A¢ , separating
these two parts of the spectrum. Define an operator P on f&ar by
1. 1
P=-_—-_f —_—dZo
2mt Jp L¢—z

This operator has the following properties.

Theorem 7.7

P2 =P (i.e. P is a projection). We can decompos e f&ar as a

direct sum of two L, invariant sqbspaces, M= p(fgar)’ N = (I'P)(fgar)’
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such that the spectrum of L¢, when restricted to M and N, is zl

and I, respectively where I, is contained within T.

Proof
See Kato [1], Theorem 6.17, p. 178.

By the above I; is in fact just A, furthermore since A is

a simple eigenvalue dim M = 1.
let w e @ = {zY[z e € In var ¢ < «o} and
¢
let S = Ly L¢ and f e f ..
Let us first consider an heuristic argument about when, and
under what conditions, the operator (H»-A)'l exists, 1 e (.

1 1

1 __1 = (
L, - DGyrly-r o (L-A) 1-(-L 4L, )
L -\
¢
1
= Z [(L )7 sk
Ly n=0 )J

This series is absolutely convergent provided A ¢ ¢\Sp(L¢) and

L f-L fi]| < - .
TP R G T R
L f < -
Thus if {f?li{]fflllvaﬁl‘y( e L Flll var f;?;} {fsnrfmvar }”(ch ME,
then T cQ\Sp(L ) (Note that ;\nl? {?ﬁ”fl[lvarsill(Lq)‘}\)flllvar >0 forr is

compact and A + ﬂﬁL f-Af]“var s a continuous map}.
l “lflllvar
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Thus if ““Hw'L¢u”var = IHL¢f-Afi” vap 1S small

A g <t

enough we may define

1 . 1
e [
S 21‘1 11 LU'-}\

By Theorem 7.7, Sp(Lw) = ;ﬁLw) u Zz(Lw) where T separates Z from Zy

I claim that if Lw-L¢ = S is small enough this implies

[11Pg = Pllyqp < 2

C

sfvar = dimM=1. This can

Assuming this for the moment then dim P_f
be seen as follows:

C C -
If dim Psfvar > 1 we may choose fl.f2 € Psfvar such that Pf1 = f1

‘and sz = 0. Then

(Pe-P)f, = Pf, = f,.

This contradicts I[P PIIHvar

It remains to show that if Lw-L¢ is small enough [[||P-Pll]| .. < 1.

By an earlier computation
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T U OGN il

. n—

- 1 (Lol : -
= “ “ - 2__1'11’ (Lq‘)'k) : nfl [(Lq')-)\) 1(L¢-Lw)]n d)\“ “var

* i%.If nfl UHL -Al“lv§2+l) uuL¢ Lwlurbar dr

let U'= ?:? l“lL Al“lvar

Then

1 = -
L il i e @

L { D’ .
RETTRE ()

so that if

D‘ -.D_...<1

n(1- I L, qullvaP)
it implies |

leg = Pllllyar <2

wnich is equivalent to

2m
L, -ty var < (2ne0')0!
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Thus if ““L¢'Lw|“lvar is small enough ““PS-Plﬂl <1 and the proof

is comp]éte.

Furthermore since

8

L =)t s Ay ™

n=u

[+ °]

1+ a2 ¢ A"
n=1

l(Lw)'n

-1
1+ (Lw-x) .
Thus L (L-A)"t =1+ a(L-a)t 7.7(a)
ww w ) '
Also since Lw is a closed operator and the fact that we can approximate

an integral by a finite sum we obtain using 7.7(a):

R -l
prs 2mi jl‘ Lw(Lw A) TdA

R 21
= - 33 fr 1+ A(Lw A) Tdh

1 -1
T T 2mi Ilﬁ\(l’w-}\) dA

(s = Lw-L¢').
Expanding the integrand as a power series and passing the integral

through the summation we obtain
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L -A

® n
Lp. = 3 L—ll—f A (250" o
= o™ N

Therefore, since w -+ Lw.is an analytic map in a neighbourhocod of

{ty|t e R. In var < «} within its complexification, w - prs is

an analytic map.
By the use of perturbation theory (see Kato [t] ), it can
be shown that
f ) - >\
g —> tr(Lgp ) ¢
is a real analytic map on

{l:\,u] belR, ye Clxey, 2"V“’n‘}’<°°}.
Therefore, by restricting to {ty|t ¢ R, ¥ e C(X+). In var ¥ < w}

and using the analyticity of log and trace (tr), we see that
¢ - log tr(L¢Ps) = log A¢ = P(¢)
is a real analytic map.

Corollary 7.8

z

Let u be the unique g-measure, for a g ¢ G with
: n=0

nvarnlogg <w
then o :R - R
M
\ _ Y-l
bu(t) = exp P(-t Iu(Alo A)
is a real analytic function.

Proof
by an earlier camputation Iu(Alo_lA) = -log g. Therefore, since

t +~ -tlogg is analytic and P is analytic on {tlogg| In varnlogg < o}

we have that
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BH(t) = exp P(-tIH(A]c-lA)

is real analytic.
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8. THE MAIN THEOREM AND ITS PROOF

Theorem 8.1
Let ¢:(X1’“1) -+ (x2,u2) be a finitary isomorphism with finite

code length and inverse code length between two topological mixing

subshifts of finite type X1 and xz, (ul and u, are the unique g-measures

of gl; g, which have finite first moment variational sum)then the

g-functions Bl(t) Bz(t) are identical.

Proof.
This proof uses the Techniques of Schmidt [1]. Let C, D the
sets as described in Section 3. By Proposition 5.5 we can find a
measurable function f:X1 + R satisfying Proposition 5.5 and 5.8.

Define A' > D as in Section 5 then ul(A') > 0 and, by Proposition 5.8

and definition of A'

n
IJul(A.Un) - "uz(A"’ )os|

8.(i) = lfogn-fl <4C' on A' n c'nA' a.e. and for every n > 1.

I shall prove

8.(11)"”\\“‘? (I -n expt Ju (A,O’n)dl-ll)l/n
n>oo A'no A 1 .

= 1im ([ expt J, (A.Gn)dul)l/n = B(1-t) ¥t >0,
neeo 4 1
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Assuming 8.(ii), for the moment, we can complete the proof as follows:

n 1/n
exp t Jul(A,o )dul)

(IA'no-nA'

)1/“

n, . -1
I¢(A'no-nA') BXpE J“l(A’cj Joo = duy

(by change of variables Parthasarathy \ﬁ 135)
n ' 1/n .
< (| exp [t(du (Ay0') + 4C')1du,)""" by 8.(i).
2
Thus taking limits as n tends to infinity we obtain

y(at) < 1in ([ explt(a, (Ao + 4071 laig) VT

lim (exp t4ch/" (I exp t J. (A,d")du, )"
N> H2 2

B,(1-t) ¥t eR, t>0.

The inequality is symmetric in 1 and 2 and we have that
Bl(l-t) = Bz(l-t) ¥teR, t>0.

The analyticity of the B-function (Corollary 7.8) reveals that

Bl(t) = Bz(t) for all t ¢ R.

It just remains for us to verify relation 8.(ii). Consider the
o« N .
o au U oo, n>2M.

partition C generated by U
- i=n-M i=-M
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Let [x]C be an atam of this partition containing the element x ¢ X.

Denote by u% X the conditional measure of x, with respect to the
O
measure u; s given by this partition. The conditional measure on [x]C

with respect to the partition C is defined to be the measure ug 5 Which
L]

satisfies the following two conditions.
(1) wd, ([x]) =1
M1,x C
oy ) c
(i) ul(B) = le ul,x(B)du for all B ¢ B, -

Since [X]. 1s a finite set the measure which satisfies (i) and (ii)

is the atomic measure which assigns to the point (yn)f; € [x]c

n-M

o (EOI) = e Yyt

H1,x

up (Dxydy 0 Dxpoydpom)

(Note that Xm = Ym and Xn_M = Yn_M and that UI([xm]M u [Xn_M]n_M) >0

since My has full support).

The measure which satisfies (i) and (ii) is unique (see V.A. Rohlin [1]).

Thus by property (i1)
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. ' n |
f , exp[tdul(A,c )]du1

Anc A

s C
=1, _ exp[t J (A,cn)]du du
I j Ko™ (K) My Lx

n (o
2 ] _ J exp[t J (A,0 )ldu du
Dag ny My 1,x 1

(since “f,x (A'n o'nA) =] a.e. X eDn o™ by Corollary 5.9(1))

W Ly Xy
by (DXyJynlX 3, ) 1

- J LB ety (Ad))]
Dac D .YEEXJC !

Since x e D o o D, Xn = iye Xpm = i+ Thus since also

ex [td (Ad")(y)] =(nﬁ1 -—JE—-)t
e k=0 go'y)

| n-M
g DXy

I LD exp tld (Ad")()]
Dno™"D  yelXJc 1 uy ydy o D ydy
! (2M-2)t 1 Mt
Q JDnO-nD .YEEX]C (kI_EM g|(O'R_Y)) '[xM’.“)Xn-M]dul

u(Liydgnli-41)

1

where Q > 0 is a real number chosen such that rig Q.
> | 1
Define Ps(x) = inf I ——

ze[xgs X1 k=0 g;(a72)
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Then if Xg = YgmeXs = ¥gs ¥ € X,
> 1
Pcly) = inf n = P(x), i.e.
¥ 2elYgomaygd k=0 gl(ckz)

P_ is constant on cylinders of length s+l. Also

3
n'ZM 1
P (X) < I s
n-2M - j
k=0 gl(cKX)
So that
n-M
M 1
Pn-Zm(U X) s kEM -
91(0 X)
Therefore
‘ n-M
M-2)t - : 1 t
1 q(&M-2) f Lz (kI=IM — AT N S Y
u,Li,d ali ] Do "D ye[x] g, (c"y)
1= M0 e ) c 1

(eM-2)t M\t
2 —4 = S T AR & AT (WO S | P
pl([iMJOn[i_M]n-ZM [ Dao™D yelx3, " 1M w5
Now;
] Pn-2M(°M) dup = I [Pn-ZM(GmY)] ul(EiM’yh+1*"i;M])
EiM]wh[i-M]n—M ye[x]c
I

The above equality being true since on cylinders of length n-2M+1, between

M'th and n-M'th co-ordinates, Pn_ZM(oM) is a constant. Therefore;
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Q(ZM-Z)t ‘ f . : -
“([iMJonEi-M]n-ZM) Dno D yEEX]C [Pn-ZM(O )] H[XM’ [Xn_M]dul

_glan-2)t

- [p Myt
uy (Ciydonli_ydogw) 20n0™D J Ciygdyalid, n-zn(o 1" duy duy

ul(DﬂG-nD)Q(ZM-Z)t f
up (LI nli-M1, ) [iM]Mn[i_M]n

[Pn_ZM(UM)]t dul
M

ul (Dnc'nD)Q(ZM'Z)t

f (p )t du
s . . . n=-2M 1
My By o0 Ty o) Ligdon Ll yln-2m

(The last equality is by the o-invariance of p and the change of
variables formula Parthasarathy [1] p. 135).
n-2M

‘ . 1
P . (x) = inf (I )
n-2M » -
ZGEXO,..-,Xn_ZM J k 0 gl (OkZ)

1

Tlog P . {x) = inf pX log —
n-zi 0"','xxn_2M] k=0 gl(g Z)

for z ¢ [xo, ’Xn-ZM] we have the following:

n-2M 1 n-2M 1 n-2M
Z log = L log
k=0 k=0

gl(ckz)
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Therefore
-2M
n-2M 1 n-2M 1 n
2 lg—F—2 I Jog—"—- I var Togg, .
k=u Oggl(o z) k=0 gi{ox) k=0 "
Thus

log P _y(x) 2 Jul(A,O )(x) - I var logg, .

Therefore:
t J (Aa™ M7 exp [-t (n-ZZM var_logg,)]
(x))" z exp[t u k=0 %89

(Pn-ZM

Thus putting all these inequalities together

Anc"A "1
-n. .\, (2M-2)t n-2M | '
. ul(Dno D)Q exp(-t{ Z varn'loggl))f['i 3 exp[t JVI(A’On-ZM)]dl
. =0 ngl
ul([iM]on[1_M]n_2M k My M n-2M

Thus taking 1im sup's we obtain

n 1/n
i ‘ A,o')Jdu, )
su _exp [t d (A, 1
]r:m P (IAno A 1
2 lim sup‘(f exp (t JH(A.Un-ZM))dul)l/"
i gl oliyd
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Lemma 8.1
With Hys 91 as above

(A,0" 2 3 ) 1

lim sup‘(J . exp[t J
n-e [iyd n[1_yJ H
0 n-2M

= Tim ( j exp [t Jul(A,on') 1 dyy yim,

oo

Assuming Lemma 8.1, for the moment, 8(ii) is then proven and Theorem

8.1 is complete.

Proof of Lemma 8.1

' S-2M
Clearly, since exp [t J 1( )1>0

1im sup'(j ) exp[t JuI(A.Gn-ZM)]dul)l/"
™ [1M]on[i'M]n-2M

< 1im (f exp [t V) (A0~ 2M)]du )
nr>oo X 1

1/n

It thus suffices to prove the converse inequality.

-2M
| j exp [t Jul(A,dn )Jduy

explt 9, o) 1dwy 8.(111).

2
i,j ‘Ci1aL3d-2m

Consider an estimate for
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eXp[t J}l (A’Un-ZM)]dIJl - j | exp[t Ju1(A,0‘n-2M)]dul

(110031, oy 1 CiydoCigd

8.(iv).

. | I _explt J (A,Gn-ZM)]dul
SRR S e R L

.exp[tJu (A,crn'ZM

. )Jdu
[1Msxls'~)xn_2M_1,1_M] 1 1

-
Xpsee2Xp-2M-1

]et a(X) = (X,Xl xn"ZM"l,j’XZM e )

b(x) = (iy*y> xn-ZM'l’ifM’xn-ZM'”)’ x = (Xq)ja-

8.(v) = I J exp [t Jul(A,on-ZM)](a(X)) - explt 9, (A" )1 0x) ey

Xporr¥p-2m-1

exp t[Jul(A.on'ZM](a(X))

n-2M 1 )t

=(I[ —_—

00 glo*alx))

Therefore since:

n-2M g g n}[ZM 1
lo it —_ - . 1
|1eg 2=0 gl(oga(x)) 2=0 Ql(czb(X))
n-2M- '
- + var, log 9

< I var, 1099
k=0 k
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t n-2M-1 : . : )]{ -ZM 1 | )t
)* <exp [t( I var, logg, + var 10gg
0 K0 1520 g, (M b(x))

n-2M 1
(I
220 g (c*a(x))

Putting this inequality into expression 8.(v) we obtain:

2 | exlt Jul‘A'°"'2M)](a‘x” - exp [t 3, (A" (60D Ieby

X2 Xp-1-2M

n-2M-1 )
<z J [explt( I vark10991+varologgl)]~1)JeXP tJ, (A" 2M)(b(x))du1
X1* *p-1-2M k=0 1

n-2M-1 exp[t J (A,on'ZM)]du
ul 1

: s 1]
Cexple( 2 varlogg ™o e I R
k=0 M -

Therefore putting these inequalities together it follows that:

I exp(t J (A.o"'ZM)Jdul
L3031 [ oM 1

n ZM)

n-2M-1 + var ]0991)] - 1] Jexp[t - J (A, 1dyy

<  T[exp[t( Z var 10991
ko K - i Il M]
' -2M
o 3y (A" ey
[iyInli_
M M n-2n
Subing this expression into 8.(iii) and taking n'th roots we obtain

the inequality.
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n-2M-1 /n

' 1
[kz(eXP[t ( ¢ var, logg; * varologgl)]) -11+ 1]
k=0

-2M 1/n
€xp [t Jul(AaGn )]dul)

‘(
I CiydeLid

z'([ explt J, (A, M 1au) "
1

Taking 1im sup as n tends to infinity we obtain the converse inequality

and Lemma 8.1 follows. Thus Theorem 8.1 is complete.
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