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(iii) 

ABSTRACT 

The following is split into two chapters. The first chapter gives 

a brief history concerning g-measures, their state of investigation and 

under what conditions, on g, unique g-measures exist. It concludes by 

giving equivalent conditions for a g-function to have a unique g-measure. 

This will, possibly, lead to a solution to Keanesoriginal problem about 

the uniqueness of a g-measure for an arbitrary g-function. 

The second chapter generalises the result of Prof. K. Schmidt that 

the Beta-function is invariant under finitarily isomorphic (with finite 

expected code length) Markov spaces, to g-spaces with certain conditions 

on the g-function. The approach adopted is essentially that of Schmidt 

with slight modifications due to the more restrictive nature of the 

problem. The condition on the g-function, that of finite first moment 

variational sum, fits nicely between the two more commonly used conditions, 

finite variation sum and exponentially decreasing variation. 



CHAPTER 1 

EQUIVALENT CONDITIONS FOR THE UNIQUENES OFg-MEASURES 



1.1 

1. INTRODUCT ION 

The study of g~easures was derived from trying to understand 

equilibrium states and phase transitions, which have direct applications 

in the field of statistical 'mechanics. 

The problan as to whether a g-function has a unique g-measure 

was originally posed by Keane [6] in 1974, where he studied so-called 

"covering transformations". The problem, derived from his work, is 

an example of a covering transformation the one-sided subshift of 

finite type. This uniqueness problem, I'm afraid, I was unable to 

so lve .Ho"'elf~ n the process of tryi ng to provide a solution, I was 

able to produce equivalent conditions for the uniqueness of g-measure. 

In Walters [12J a sufficient condition for uniqueness was given. 

However this,unfortunately. was not a necessary condition as exhibited 

by 'H~auers example. I produce in this paper a new class of examples, 

gene-alizing Hofbauers example,which. again have unique g-measures 

but do not satisfy the Walters condition. 

Acknowledgements 

I would like to thank M. Pollicott and P. Walters for useful 

discussions concerning this paper. 
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1.2 

2. ONE SIDED SUBSHIFTS OF FINITE TYPE AND g-MEASURES 

Let Xo be a set of s)111bols (states) of finite cardinality IXol. 

Denote by Xt the one sided full shift 

The shift transformation, denoted by 0, operates on X+ as follows: 

o:X+ ~ X+, where (o(x))n = Xn+l 

(i.e. a ~oves the coordinates of x I-place nearer the zeroth 

coordinate, the zeroth coorindate dropping off the end.) 

A closed subset X c X+ is said to be a subshift of finite type 

if aX = X and the points of X are completely determined by a finite 

collection, G, of sets, if each C € G is a member of x~, some N > o. 
(i.e. when we look at N coordinates, of a point in X, it defines a 

set in G.) 

X is said to be one-sided topologically transitive if for each 

non-empty sets U,V, in X, 3 n ~ 1 st a-nU n V ~~. X is said to be 

topologically mixirYJ if ;N > 1 with o-nU n V ~ ~ Yn ~ N. 

It is well known, when X is a one-sided topolog'ically transitive 

subshift of finite type, that X can be represented as a disjoint 

union of closed subsets, {Xi}~=l ' with oXi = Xi+lmodd' odXi = Xi' 

~nd ad is topologically mixing when restricted to Xi. (see Chung [lJ). 

The number d ~ 1 is called the period of X. 
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1.3 

Defini ti on 2.1 

With X+as above we shall denote by M(X) M(X,o) the set of 

all probability and,o-invariant Borel-probabilities on X. (i.e. 
-1 . , 

1J f:M(X,o) if1J(o B} =1J(B} for all Borel subsets of X.) 

Keane [6] originally defined a g-measure in terms of, what 

has become known as, the Ruelle operator. However, since that 

time, many equivalent conditions ha~e been found so we therefore 

shall define a g-measure by the results of the next theorem. First, 

however, we shall need to know what is meant by the Ruelle operator. 

For ~ € C(x} define the Ruelle operator L~:C{X) + C{X} by 

{L~f(x} = L. _le~(Y}f(Y}. We look at special functions of the 
Yf:O x 

form ~ = log 9 where 9 f: G = {g'f: c{x}lg > 0 and L .-1 g{y) = 1 
y€(J' x 

for all x E: X+}. Thus (Llogg1}{x) = L -1 g{y}, L10gg1 = I, and 
Yf:O x 

Llo~Uof = f where Uaf = f 0 o. ,Such 9 are called g-functions. The 

following Theorem is used as a definition of a g-measure, giving 

several equivalent conditions for a g-measure. In this Theorem 
-t\ 

L*:C(X) + C(X}* denotes the adjoint of L1og~C(X) + C(X) and 

E1J (fl
o-1B} denotes the conditional expectation of f f: L'(lJ} relative 

to the o-algebra o-lB, where B denotes the Borel o-a1gebra of X. 

Theorem 2.1 (Ledrappier [8]) 

Let 9 f: G and lJ f: M(X) = {the probability measures on X}. 

If L denotes Llogg the following are equivalent 



(i) * Lll=ll· 
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(ii) II E: M(X~o) and E (flo-1
B)(X) = L -1 g(z)f(z) a.e. II 

. II z€.o ox 

(iii) II €. M(X,o) and II is an equilibrium state for log g. In fact 

hll fa) + II (1 og g) = o. 

( i v) dJll
o = ~ •. 0 

A II satisfying any of (1), (iv) and hence all is called a 

g-measure. 

Leoma 2.1 

(a) If 9 E: G then II has full support, i.e. each g-measure II gives 

positive measure to each non-empty open set • 

. (b) If g1,g2 E: G and some gl-measure coincides with some g2-measure 

then g1 = g2· 

Proof 

See Walters [12]. 

By the Schauder-Tychanoff fixed point theorem, (Dunford and 

Schwartz [5], page 456) L* always has a fixed point in M(X) so a 

g-measure always exists. The question immediately posed is-as-t~ 

whether there is a unique g-measure given an arbitrary 9 E: G. The 

following partial result is due to P. walters although I have 

extended it slightly from the topologically mixing case to the 

transitive. 
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1.5 

Theorem 2.2 

Let o~X+X be a topo1igica11y transitive one sided subshift 

of finite type and 9 £ G. Denote L10gg by L. Then, if 

;. m~.1 'varm(1og g) < ClO (p = period of the transformation), 

N-1 Lnf . 
~ ~ converges uniformly to a constant ~(f) Yf £ C(X}. 

n=1 

The~ is the unique g-measure. 

Proof 

walters, in [12], proves the result for the topologically 

mixing case so essentially all we have to do, in the transitive 

case, is to reduce this to the topologically mixing one. By 
p 

earlier comments we can represent a transitive X = U Xi such 
i=1 

that oPIX i is a topologically mixing .. map. The function 

p(x} = g(x}g(ox) ••. g(oP-1(x) is a g-function with respect to oP (i.e. 
" -1 . 

~ _p g(x} .... g(o~ x) = 1}. Thus, if we can verify ~ varmP < ClO, 

y£o x 
we tan apply walters Theorem on Xi w.r.t. oP, assume m > p 

. P k 
varm10g p = varm (~ log g(o x)) 

. k=Q 

m 
s ~ vark log 9 

k=m-p 

ClO rrt 

so ~ varm log p s ~ ~ vark10g 9 < ClO 

m>p m='p+l k=m-p 

~ I tp.,.i) ,varmlogg < ClO. 

m=r 
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Then by Walters for each 1 ~ 1 ~ P we can find a oP-invariant 

measure ~i € M(Xi,oP) such that if f € C(Xi ), ~ L(109 p,cP)f ~ ~i(f). 

Let f € C(X). We can express f as f = f1 + ••• +fp where f; = fiX; € C(X i ), 

P the period of the subshift. 

Then if x € Xp 

m-l p ) 
= ~p L, (L L _(p-\) (L_kp g(z) •• ,g(ok p-1Z)f1(Z))g(y)g(ay) ••• g(Jp-i-l y: 

k=O i=l y€O' ~x)Z€o y 

1 P = - L 
mp 1=1 

ill-I k ( . 1) 
L -(p-il L L Pfi(y)g(y)g( y) ••• g(o P-l- y} 

y€O lx) k=O 

lettlng m + ~ this converges to 

1 P ,../ \ «p-i-1)) (f) p L (L -(p.-i) ~Y/ ••• g 0 Y r-i. 
1=1 y€o\ (x) 

= f f d (~1 +. '" + ~ ) 
p p 

We can show by a similar method if x € Xl 
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This convergence is uniform on each Xi and thus uniform on X. We 
1 mp-l k 

thus have proved mp k~O Lloggf converges uniformly to 

f 
~l + ••. + ~ 

f dll if ~ = p p • 

N-l 
as n .... ~. I claim this implies hN = ~ L 

n=O 

uniformly to Jf dll as N .... ~. 

Proof of C la im 

n 
Lloggf converges 

If h ~ C(x). Let a(h) = min hand S(h) = max h. Then we 

have 

by the above. Also since a(~p) .... I f d~ and 13(hmp ) .... J f dll. as 

m .... ~. it follows that ~ hN = Jf dll and the convergence is 

uniform. 

By the above convergence property it follows that L1099 II = ~ 
and l! is a g-measure. 

If v is 'another g-measure 

. J f dv • J ~ ~~ L~Oggf dv for each N 

But as N"" ex> the integrand converges to' [f dll. Thus \) = II and II 

is the unique g~easure 
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Ranark 

Note that if p > 1 then L~Oggf -f-> f f d~. For if 

f = f = X then LnPf + f d~ = 1 1 1 J 
~ (X ) = ~(X ) 

1 'X1 lIP 

It follows however. from the above. in the topologically 

mixing case that LrOggf converges to J f d~. The condition that 

1: var n logg < 00 is not however a necessary cond; ti on. There 
n= I 
are a class of functions where this sometimes fails. these functions 

are called Grid functions (seeMarkley-Paul[2]). 

Let 9. = (0 •••• 0 ••• ) c {O.UN be the point with all coordinates 

zero. Let {Mnl be a partition of [OJ\ 0 with the following properties. 

(1) lim Mn = 9. 

i.e. d(Mn'~ + 0 as m + 00 (i.e. max d(x.~ + 0 as n + 00 ). 

xE:Mn 

(ii) Each Mn is closed and open (i.e. a finite union of cylinders). 

(iii) ko s1. if B c [OJo \0 is a cylinder. of length greater than ko' 

there is a Mj (B) with B c Mj (B)' 

Let 1 .~ an > 0 be a decreasing sequence of reals with an 

converg i ng to a. 

Define 9 = 1: Mnan + a Xo on [0]0 and g(lx) = 1 - g(Ox) 
n=l -

(i.e. 9 is defined to be a g-function). 



1.9 

I claim 9 has a unique g~easure. I will show that if B is a 

cylinder, contained in [0]\0, of length greater than kot ~ a 

g~easure, then ~(B) is uniquely determined by Mn and g. 

Since ~ is non-atomic by Lemma 2.1, this shows ~ is uniquely 

determined on [0]. 

Lemma 2.2 (Markley-Paul) 

Let A c [0] \0 be a cylinder of length 1 and B c [O]\Q 

a cylinder of length ~ Ko Then ~(AB) = K(A,B) ~(B). 

Proof 

(K (A,B) is a constant depending also on 9 and the partition). 

~(AB) = f L1XAB d~. 
x=n{O,ll 

N 

=J I -1 g(y) ••• g(01-1Y)XA(y)XB(x) d~ • 
Yf.O X 

= K(A,B) ~(B) by property (iii) on M and definition of g. 0 
n 
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Thus by Lemma 2.2 

~(BAB) = K(BA,B)~(B) 2. (i) 

Now by Kac's Theorem (see [13]). if r{z) denotes the.return time 

of a point in B to B, we have 

1 = J
B 

r{z)d~ = I (numbers depending) ~(B) 
. only on g and Mn 

. (by expression 2.(;». 

Thus ~(B) is uniquely determined by g and M). Similarly we can 
'. n 

j..... ' , 

construct the partition of [1]0 . 

n ~ 1, M~ = {(Ix) : Ox € Mn}.(l Q) and obtain that ~ is.uniquely 

determined on cylinders B of length greater than Ko' . It thus 

follows that ~ is uniquely determined. 

An example of a grid function is an adaptation of Hofbauer's 

{see (3]) example where we take M = (O~ 1]. n > 1. An easy 
n n 

computation shows that var log g = log a la. Therefore. if we 
n n 

ql\=c:)(r(~.j.I~o.) we have that 1: log a does not exist, the condition 
. n 

in Theorem 2.2 is, therefore, not a necessary one (see P. Hulse. 

Ph.D. Thesis) (4]. 
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Theorem 2.3 - THE MAIN THEOREM AND ITS PROOF. 

Let 9 ~ G then the following are equivalent 

(i) g has a unique g-measure ',. 

N-l 
(ii) ~ Z L~Oggf(X) ~ ~(f) for all x and each f £ C(X). 

n=O 

(iii) As (ii) but the convergence is uniform. 
,. 

(iv) C(X) = t ~ B where B = {L1ogg f-flf ~ C(X)}. 

Proof 

.' 

The proof is essentially the same as when we are looking for 

a uniquely ergodic shift invariant measure. (See Parry [to]). 

First note that if f ~ , (i.e. a constant function) 

N-l 
.~ Z L~09g f = f = ~(f) and convergence is trivial. 

n=O 

Similarly. if f = Ll h - h ~ B; we have og 

N N 
li ~ :~~ L~ogg f II~' II L102gh-h II~ ~ [~LlogR II· +11·11 hll~ 

N-l 
which clearly tends to zero as N + QQ. Therefore 1 r L~ f tends 

N n=O O9g 

uniformly to 0 when f ~ B or, by approximation. when f € S. Clearly 

1 N-l B n , = {O}. and N r Lnl leaves functions in I unaltered and 
n=O O9g 

converges to zero for functions in S. These remarks show that 

(iv) .. (111). (11i).. (11). (11) ... (i) follows fran the fact 
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that if III is another g-measure, f E: C(X), then 

f 
N-1 

U1(f) = lim ~ E L~Oggf dJ.i 1 = ll(f) 
N-+oo n=O 

and III = II (see Walters [llJ Theorem 6.2 page 147). It thus 

renains to show (i) ... (iv). 

Let x E: X c n Xo' since Xis a cOOlpact met ri c space we can 
-14 

choose a dense set {f n}~=l of funct ions in (C(X), II Uoo) (see 

Kelley [7]). 

N-1 
Note that, since U~ I L~Ogg fl (x)ll ~ Uflll; we can choose 

n=O 
N-l 

a subsequence 141 cf4 such that lim ~ r L~o 9 fl (x) converges. 
N£l4 l n=O 9 

N-l 
Again, since ~ r L~Ogg f 2(x), N E: 141, is a bounded sequence, we 

n:::O 

can choose a subsequence 142 c 141 such that 

N-l 
~ ~ E L~Ogg f 2(x) 
ITT"" n:::O 

exists. Repeating this argument for each fi we obtain sequence of 
i . 

integers 141 ~ N2 ~ 143 , where 14i = MI , M~ ••• such that 

N-l 
lim ~ I L~Ogg fj(x) exists for j ~ i. Taking the diagonal 
NElli n=O 

sequence N = M~, m~; ••• we have that lim (lIN) Nil Ln
l fi(x) 

N£N n=O egg 

exists for all 1. Since {fi} is dense in C(X). 
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N-l 
lim (lIN) E L~Ogg f(x) = J(f) exists for all f £ C(X). 
NeN n=O 

This defines a continuous linear functional which is clearly 

positive. Moreover. since 9 £ G. J(l) = 1 and J(Ll09gf) = J(f) 

for f € C(X). Thus using the Riesz Representation Theorem and 

Theorem 2.1 J defines the unique g-measure lJ. Then for any 

other point y £ X we can construct a subsequence N' c N such that 

N-l 
lim lIN E L~Ogg f(y) = lJ(f). 
N+oo n=O 
NeN' 

Therefore. if we do this for a dense set of points in X, the 

diagonal sequence produces a sequence Nil such that 

1 N-l 
N L L~Ogg f(x) = 1J(f) Yf £ C{X), Yx £ X. 

n=O 

Let f £ C(X) then we can write 

2.(i1) 

f = f -lJ{f) + lJ{f) and f-1J{f) £ ker J {h £ C{X)!J{h) = O} 

so in order to prove {i)'" (iv) it will be sufficient to show 

ker J = B. By the above Ker J ~ B is closed, J being continuous. 

Hence. by the extension theorem for continuous functionals on closed 

subsets (Dunford, Schwartz. [5])) we need on ly show that any 

continuous linear functional. on C{X), annihilates Ker J when it 

annihilates B (or equivalently B). So suppose P € C(X)~is 

such that P(Lloggf-fJ = 0). "I f £ C(X). Let f € kerj then, by 

using Lebesgues dominated convergence Theorem and 2.(ii) we have 
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N-1 
~ E P(L~Oggf) -+- 0 as N -+- 00 N E: Nil t 

n=O 

and since P(Ll f- f) = 0 ogg 

1 N-1 
rr E P(f) -+- 0, N E: Nil. 
n n=O 

In other words P(f) = 0 yf E: ker J and the Theorem is proven. 

Corollary 2.4 

The set of {g € GI there is a unique g~easure} is a dense 

Go in G. 

Proof 

The proof is essentially Palmers [9] but I include it for 

canpl eteness. 

Let {fn}~=l be dense in C(X). For natural numbers n, m, N 

and c € R. Let U N n,m ,c, 
N-l 

= {g € GI 1l~ E L~Ogg fn - cll< 
k=O 

1 -} . m 

This is an open subset of G and therefore 

... 
G = n n u u U is a G 

n m c N n,m,c,N o' 
... 

I claim in fact G = {g € GI for all f € C(X) there exists 
1 N-l k 

c(f) € R with ll-N" E Ll f - c(f)l)-+- O} • 
k=O ogg 
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... 
If we assume the claim then, by Theorem~·3G is the set of 9 with 

unique g-measures. It therefore remains to prove the claim. If 
... 

9 belongs to this set then 9 ~ G. 
... 

Conversely if 9 ~ G then 

for all n, m there exists Cm(n), N, such that 

If II is any g-measure 

, J 1 Nd k 
N I Ll og 9 f dJ.I = lJ (f) • 

k=Q 

Thus using 2.(111) 

Therefore 

2.(11;) 



1.16 

Thus if M = 2N we obtain using 2(iii) 

1 2 1 2 _ 2 
s;- - + ----2 m 2 m m • 

By induction of R. if M = RoN we have 

1 mN-l k 
Therefore lim limN 1: Llogg fn -ll(fn)J1= 0 

IJtt'OD . k =0 

1 N-l k 
and it follows that lim II N 1: L10gg fn - ll(fn) II = O. 

N-+- k=O 

N-l k 
Therefore IJ ~ l: Lloggf -l1(f)lI+ 0 for all f € C(X). 

k=O 

Since there are a dense set of 9 with unique g-measures the 

resu 1t follows. 
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CHAPTER 2 

INVARIANCE OF THE BETA~FUNCTION UNDER FINITARY 

ISOMORPHISMS WITH FINITE EXPECTED CODE LENGTH 



2.1 

INTRODU CT ION 

The following sections are a generalization of the work of 

K. Schmidt and W. Parry concerning the invariance, under finitary 

isomorphism with finite expected code length, of the a-function 

for Markov shifts, see Parry-Schmidt [1], Schmidt [1]. 

The result has interesting applications to Axiom A flows 

concerning the invariance of the a-function when looking at the 

associated suspension of the flow. For further details, about 

axiom A flows, se~ Pollicott [1]. For details about the a-function 

and its properties look at Tuncel [1] and Parry-Tuncel [1]. 

The result is as follows: 
\ 

If ~:Xl + X2, is a finitary isomorphism with finite expected 

code length, between g-spaces, where the g-functions have finite 

first moment variational sum (i .e. I r var ~ < m ) then the a-function 
r=l r 

is an invariant, if Xl' Xl are topologically mixing. 

The first interest, in finitary isomorphisms, came about 

because of the paper of M. Keane and M. Smorodinsky concerning the 

fact that two Markov shifts, which have the same entropy and period, 

are fi nitari, ly isomorphic. 

This Theorem led to people investigating as to whether the 

period and entropy where complete invariants under finitary isomorphism~ 

wi th fi ni te ,expected code length. Thi s was found to_be'_ fa 1 se see (Parry 

[3]), and people sought after further invariants to solve this completeness 

problem. One, such invariant 
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that arose was the a-function. a: R + R defined by a(t) = exp P(-tlp) 

(where P(-tlp) denotes the pressure of -t times the information 

function with respect to a Markov measure. (See S. Tuncel [1]). 

A discussion of the S-function. as an invariant. can be found in 

Tuncel, S.[1]as well as fur.ther information. 
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3. ISOMORPHISMS WITH FINITE EXPECTED CODE LENGTH 

Let (X,a) be the two-sided shift space on k-symbols. Let 

g1 € C(X), 1 = 1,2, be such that it depends only on coordinates to 

the right of zero and g1 € G, when restricted to X+. We also assume 

that the g11s have finite first moment variational sum. Then by 

Theorem 2.1 we can choose ~i(i = 1,2). Since the ~i are members of 

M(X+,a) they can be extended uniquely to a-invariant measures on X. 

For brevity these measures will also be called ~1'~2. The subshifts 

(Xl,crl'~l)' (X2.cr2.~2) are said to be isomorphic if there exists a 

measure preserving isomorphism ~:(Xra1·~1) + (X2,a2'~2) with 

~~~ • azP' this isomorphism ~ is called finitary if there exists 

null sets E1 c Xl' E2 c X2 such that the restrictions of ~ and 

~-1 to X1\E1 and X2\E2 are continuous. If ~ is a finitary isomorphism 

we can find measurable, non-negative, integer valued funcuions a~ 

and m~ on X w1th 

whenever x, Xl € X1\E1 satisfy Xi = xi for all i €Z with 

~~(x) sis a~(x). We can similarly define analogous objects 

a_I' m 1 for ~-1. 
~ ~-

Definition 

~ is said to have finite expected code length if 
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and f (a -1 + m _1)d1l2 < OC> • 

<t> cp 

For the remainder of this paper we shall assume <t>:{X1,o1'1l1) ~ (X2,o2'1l2) 

is a finitary isomorphism with finite expected code length. 

Following Krieger [1.] we observe that 

a:(x} = sup {a",{o-n{x)}-n} < 00 

't' n~O 't' 

m:(x) = sup (m",(on(x}}-n) < 00 a.e. 
't' n~O 't' 

From this Krieger draws the following conclusions. 

Prpposition 3.1 

(i) There exists a null set E~ such that if x,x' € ~Ei 

satisfy x = xi for all i € Z with - oo.~i s a;(x} (-m;(x) s i < 00 ) 

then we have <t>(x}i = CP(x'}i for all i s O(i ~ O}. An analogous 

statement can be made about cp-1. 

(ii) If x,x' € X1\Er and Xi = xi for i ~ N for some N € Z then 

there exists an integer M, depending on x, N with <t>(x)i = <t>(x'}i 

for i ~ M; 

* (iii) Similarly, if x,x' € X1\E1 satisfy Xi = xi for i s N there 

exists M = M(N,x} with <t>(x}i = <t>(x'}i for isM. 

* If x.x' € X\E1 satisfy Xi = xi for Iii ~ N ~ 0 there exists 

M' = M'(N,x) with <t>(x)i = <t>(x')i for Iii ~ M'. Similar results for 

<t> -1. 
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Since the functions a; and m; are finite a.e. we can find 

an integer M ~ 0 and a cylinder set C = [i_m• im]~ c X 

such that 

has positive measure. 
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4. LOCALLY FINITE DIMENSIONAL AUTOMORPHISM. 

An autanorphism V:X(~ Xr is said to be locally finite dimensional 

if V is non-singular and fixes all but a finite number of coordinates 

for a.e. (~) x £ X. Krieger essentially expresses this in the 

following manner; Define an equivalence relation on X by x ~ Xl 

if xn = x~ for all but finitely many n £ Z. A non-singular auto

morphism V of X is then locally finite dimensional if for ~-a.e. x, 

Vx ~ x. Denote by F1, F2 the group of all non-singular locally 

finite dimensional automorphisms of (Xl'~l)' (~~2)' then (iv) of 

Proposition 3.1 tells us that ~F1~-1 = F2• For further reference 

we sha 11 denote by Ei the group generated by F i (i = 1,2) and a. 

For calculation purposes, concerning the invariance of the 

a-function, we are really interested in the elements of Fi which 

leave the set C (as described in Section 3) invariant. Thus we 

define a subgroup of Fi , with this property, as follows: 

H~ = {v £ F i 1 V (x) j = x j for j s M} 

+ - i . H.= H.H. is then a subgroup of Fi w th the above property concernlng 
111 

C. We can thus ~iscuss the way in which H acts on {C,~J} (~J is the 

measure induced on C by ~.)wlth the following result. 
1 
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Proposition 4.1 

The action of H on the space (C,~~) is ergodic, i = (1,2) 

Proof 
(\01\- h-i via.l 
\ . 

We have to prove if B is a Borel subset of C 

; V € H st ~~(VB n C\B) > O. 
I\ol\-mvicJ 

We shall in fact prove if B1, B2 are\Borel subsets of C 

(i.e. B1' B2 € B n C) then J V € H with 1l~(VB1) n B2} > O. 
Bc 

I claim if C1' C2 € Bc are cIQpe(\~V E: H('\PW'i~h(VC1) n C2)=C2. • 

Assuming the claim, for the moment, given B1,B2 E: Bc we can choose 

elopen sets C1,C2 E: Be with ll~(Cl ~ B1} < E , ~~(C2~ B2) < E , 

where E > 0 is arbitrary. We can thus find V E: H with 

~i(V(Cl) n (C2)) > O. I claim in fact if E is chosen small enough 

this implies ~i(V(B1} n B2} > O. For if ~{V(B1} n B2) = 0 for . 

every E > 0 
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By the above assumptions this is 

(E as in Lem~a below) . 

which implies 11i(V(C1) n C2) =;tt .. (C
2

) can be chosen to be arbitrarily 

small a contradiction. It thus suf~ices to prove the claim. 

Let C~, C~ be two arbitrary cylinders. And assume R.(C'1) ~R..(C~) 

and choose a subcyl inder, of c~, of the same length as C~. We thu scan, 
, ,. 

in effect for the proof, assume that C1' C2 have the same length. 
I , 

Now define V:X i + Xi which fixes C by mapping the co-ordinates of C1 to 
I 

C~ and vice-versa. (By similarly looking at subclinders we can assume 

the images of V do in fact lie in Xi)' leaving all other co-ordinates 
, 

which are not part of the determining co-ordinates of the Cils, fixed. 

We can assume C, is a union of more cylinders than c2 • We then 

construct V by using V'on a subset 6t cylinders of C, until 

VeC,) = C2 • V is clearly uniformly loc~lly finite dimensional 

enri we need just to vArify it is non-singular. 

Lemma 

If V:X i + Xi is uniformly locally finite dimensional automorphism then 

J111 V d11i 
both exist, (i = 1,,2). (i.e. 11V and 11 are equivalent). 

~' d]..l.v 
1 1 

Proof 

I claim it is sufficient to prove .3 D,E. > a such that 
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00 

exists for all n ~ a and x = (xn)n=l € Xi. This is so since (*) shows 

clearly that ViV and Vi have the same sets of zero measure. It remains 

to prove (*). Assume V fixes coordinates uniformly for Inl ~ N. Then since 

L*Vi = ).Ii we obtain that 

= J 9;(a-n.y) ••• 95Y) ••• 9~any) dvi(y) where B=[(Vx)_n····'(Vx)o··· 

n-N 
(Vx)n] 

s: exp [k~O vark l099i + 2N 1I 1099i lloo]v;[x_n••• •• xo'··· .xn] 

00 

Thus if C = exp [I var k l099i + 2N 1I1099i II ] then one side of the 
. k=O 00 

inequality follows. Similarly if 

00 

o = exp [- (k:O var k 10991 + 2N 1I1099i II OCI )] 

the other side of the inequality follows. 
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From now on X is an arbitrary topologically mixing subshift of finite 

type, X+ its obvious restriction. 

The following lemma is essentially Sinai's result (Sinai [1] page 28). 

The finite first moment variational sum being the condition essentially 

used in Sinai's proof. 

LaTITla 4.2 
00 

If $ c C(X) st. L k vark $ < 00 then $ is cohomo10gous 
k=l 

00 

to a function $+ £ C(X+) (where L k vark ~+ < 00 and C(X+) c C(X) 
k=l 

is identified with functions of C(X). which depend only on coordinates 

to the right of zero. ) 

Proof 

Sinai's proof shall be included for completeness. 

Define gn(z) = sup $(x) nand 
xC[Z_n)···' zn]_n 

$n = gn-gn_l for n ~ 1. 

lim ¢n = O. n ~ 1. 

Therefore if we let, $0 = go then 

If 1JJ = 

u = 

00 

00 

$=$ + L 4> 
o n~l n 

n then 1JJ t: C(X+). L 4>no, 
n=O 

00 n-1 k 
L L 4>no • Then U ulloa 

n=l k=O 

Let 

00 

~ L 
k=l 

I< 'vark4> < oc • 



Sin ce, 9 i v en x ,Y € X, 

00 

!u(x)-u(y)! s 1: 
n=1 

00 

s 1: 
n=1 

00 

s 1: 
n=1 

Moreover, 

2.10 

n-1 k n-1 k 
1: <Pno (x) - 1: <Pno (x) I 

k=O k=O 

n-1 k 
- <pnok(x) I 1: I <Pno (x) 

k=O 

n varn tb<co 

the lemma is thus complete. 
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5. THE INFORMATION COCYCLE 

Let a be the time zero partition of X (i.e. a = {[i]ol i ~ {l, ••• ,k}) n X 
00 00 • 

and let A be the a-algebra generated by U a-na (i.e. A = V a-1a). 
n=O i =1 

As, in Butler-Scllnidt [1], Sctmidt-Parry [1] we shall define the 

information cocycle, for V ~ E, as follows: 

-1 
- log E (~. IA) 0 V. 

]..I ,dll 

Where ~('IA) denotes the conditional expectation with respect to A 

and I (AIV~lA) is the information about A given V-1A (see Parry [2] 
II . 

for full information). The information cocyc1e has the following 

properties and values, for the case under conSideration, as given by 

the following proposition. 

Proposition 5.1 

(i) J (A,·) is indeed an information cocycle on E namely: 
II 

J (A,·) : E ~ Rand 
II 

J)A,ph) = J (A,p) 0 h + J (A,h) a .e. II . P ,h ~ E. 
,.. II II 

(where llis, and always shall be, from here on, a g~easure for a g 

with finite first moment variational sum which by Lemma 4.2 can be 

assumed to depend only on coordinates to the right of zero and as 

such g € G). 
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(ii) For V ~ E. ~ and g as 1n (1) 

a.e. ~ 

Proof 

(i) See Butler-Schmidt [1] Theorem 4.13. 

(ii) For this we shall need the following Lemmas. 

Lenma 5.2 

J~(A.aHx} = I~(Ala-1A)(x) = log g(~) a.e. ~ • 

Lenma 5.3 (Butler-Schmidt [1] Theorem 4.18.) 

Let P = {v ~ E such that V fixes all coordinates for Ii) ~ N 

where N is independent of x} 

let [P] = {v ~ EIVx ~ Px for~. a.e. x ~ Xl. 

Then for every V ~ [P] and p ~ P we have 

J~(A.V}(x) = J~(A.p}(x} 

~. a.e. on Bp = {x ~ XIVx =px}. 

Remark 5.4 

It is easy to see that in fact [P] = E and thus 1n order to 

compute J~(AtV}. for V ( E. we can assume V fixes all coordinates for 

Iii ~ N (some N (N) independent of x. 
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Assuming these Lemma's, for the moment, we shall continue 

with the proof of Proposition 5.l{ii). By Remark 6.4 we can choose 

N > 0 such that V fixes coordinates a.e.~ for Inl ~N, thus oNVo-N 

fixes all coordinates to the right of zero and oN V o-NA = A. Thus 

N -1 -N = -log E (d}.lo VOlA) 0 oNVo-N 
~ cIll 

~ -1 -N = -log E (d}.l V 0 ooNVo-N 1A) (By Expectation property). 
~ d~ 

= -log E ( ~ -N jA) 
~ d~o Vo 

= -log E ( d}.l_N IA) since ~ is o-invariant. 
~ d~Vo 

I claim this is in fact equal to zero in other words: 

It will suffice to prove if [xo' I~]O is a cylinder starting at 0 

then 
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( M -N _ ( . ) 
~ d]..l 00 d]..l -]..I [xo' IXmJo' 

[Xo' .xmJo 

(*) 

this implies 
For, then, 

and since J]..I(A,lid ) = 0, using the cocyc1e property: 

N -1 -N Since 0 V 0 also fixes A we have that 

( N -1 -N (...9JL -N
1

) J]..I A,o V 0 ) = -log E]..I d]..lV-l 00 A. 

dll -N
1 

N-N 
Thus log E (~-1 00 A) 00 Vo 

]..I d]..lV 

i.e. (~(dJ: oo-N1A) = [E]..I(d~V oo-NIA)]~l 

= 1) 

It ranains just to prove (*). 
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Since V fixes coordinates for Inl > N then 

Thus 5.2(i ii) 

Using the cocycle property we obtain that 

Note that since J~(A,lid) = 0 we obtain again using the cocycle property, 

that 

J~{A,a-N) = -J~(A,aN) 0 a-N 

Thus, using these two identities we obtain from 5.2(i1i) 

N) -N () -N N-N o = J (A,a 0 Va + J'I A,V 0 a - J (A,a ) 0 a 
~ ~ ~ 
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This implies 

By Lemma 5.2 and the cocycle property we can obtain that 

Thus 

N-l 
J (A,oN) = log n 
~ m=O 

N-I 
J
II 

(A,V) = log n 
... m=O 

Thus since V fixes coordinates to the right of N Proposit ion 5.1 1 s 

proven. To complete the proof we need to verify Lemma's 5.2 and 

5.3. 

Proof of Lemma 5.2 

If al ,a2 are two partitions of X, denote byal v a2 their 
~ ~ ~ 

refinement and al the a-algebra generated by aI' al va2 the a-algebra 

generated by al v a2• 

By definition (see Parry [I]) 
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i=1 
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" . 
-1 ) a ex. 

QO" m· QO 

= I,. (ex. I V a-iex.} + I (Va-lex. I V 
~ i=1 l.l i=1 i=1 

" -i ) a ex. 

k " = lim I (ex. I V a-iex.) (By Theorem 6 Parry [ 1 ]). 
k~ l.l i=1 

Let l.l+ be the restriction of l.l of X+. then l.l+ is a g-measure for the 

restriction of g to X+ by the way in which l.l was defined. 

. k" i II! (ex. I V a- ex.) depends on lyon coordinates to the right 
~ i=1 

of zero and thus is equal to 

k " • 
-1 } 

I (ex. I V a ex. • 
l.l+ i=1 

By definition 
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m i m. 
where ~([i]1 V a-~) = E{X(i] J V a-l~) 

1=1 1=1 

So 
m . 

-1'" I +(a/ V a a) 
II i=1 

Thus by taking limits and using the increasing martingale Theorem 

(Parry (1] Theorem 2 Page 30). 

co • 

1 {a J V cr-1&} 
II 1=1 

dll+O = 10g-
dll+ 

= log 1 by Theorem 2.1. g 

Thus I
ll

(Ala-1A) = log ~. 
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P roof of Lenma 5.3 

As already indicated the proof is to be found in Schmidt-

But ler Theorem 4.18. 

Proposition 5.5 

Using the ,notation of earlier we have 

Proof 

The proof is exactly the same as for the Markov measure case 

given in Parry [3J (finitary isomorphisms with finite expected code 

length us ~~ BuHer_SchMid~-rheo("eM tr·Il,.. 

LelTllla 5.6 

For V € E. ~. g as in previous notation. then 

Proof 
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By Propos it ion 5.1 we kn ow tha t 

Also 

00 

= log n 
n=-m 

-log E ( dJ.[ mlA) 
II dJ,lVa 

= -log Ell(irvlamA) oam (since II a-invariant) 

; g(enV} = {E (~ I~A»-1. 
n=-m , g(an) II c41V 

Taking tte limit as II tends to infinity ard using tte increasing 

Martingale Theorem (see Parry [1]). 

This implies 

(~)-1 =; g(anV) 
dllV n=-oo g (on) 

and 
dl1V = ; g(enV} 

dJ.I n=-oo g{en> 
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Remark 5.6(1) 

Note that n g(anV) exists since V is locally finite 
n=-oo 9 (an) 

dimensional and 9 has finite first moment variational sum. 

Lenma 5.7 
00 00 

If V € H then IfoV-fl < k = I: var 10991 + I: varn 10992 < 00 on D. 
n=1 n n=1 

(f as in Proposition 5.5). 

Proof 

By Proposition 5.5 we have that 

f oV - f = J (A.V) - J (~-lA.V) 
~l \Jl 

Thus estimates, involving the expression foV - f. can be computed by 

studyi n9 the information cocycles which we have expressions for. 

The computation of J\J{A.V). for V € H. can be reduced even further 

as follows: 

Each V £ H 1s of the form V = V- V+ and, by the cocycle equation for 

. J\J (A,·). 
I 

J\J (A.V) = J,. (A.V-V+) 
I t"1 

= J\J (A.V-) 0 V+ + J\J (A.V+) 
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Thus in order to prove fV-f is bounded we need only prove that 

J~1 (A.V+) - J~(~-lA,V+), J~1 (A,V-) - J~1 (~-lAtV-) 

are bounded. 

co 

J
II 

(A,V-) = log n 
"'1 n=O 

n -) g (11 V 
g(on) 

(by Proposition 5.1(1i» 

and. since V- fixes coordinates to the right of -M and 9 depends only 

on coordinates to the right of zero this equals zero. 

-1 -) Analogously, since J},ll (eI> A,V 

= J (A,4>V-4> -1) 0 4> , 
},l2 

it fOllows that J (cp-1A,V-) = O. 
~1 

By Lemma 5.6 and Proposition 5.1(ii) 

= I E 
n=-1 

~ varn 109 91 (since V+ fixes coordinates to 
n=l the left of M ). 
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we have that 

d1l2 
00 

( n +-1 
109 9 0 <t>V cp ) 0 cpl 

2 . 92(on) 
= I L 

n=-l 

On D. since a; s M and V+ fixes coordinates to the left of M. 

+ 
{(cp(V x)Ln = (cp(x»_n In = 0.1 •••• } • 

Thus 

Thus 

00 92 (onCPV+) 
I L log 
n=l 92 (oncp) 

00 

s L var n log 92' 
n=l 

d V+ d V+ 
+ 111 111 1 + 

s IJ (A.V) - 109 d I + peg d - J'I (cp - A.V)l 
111 111 111"'1 
co 

s L yarn 109 91 + yarn 109 92" 
n=l 
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Therefore we obtain Lemma 5.7. We are now in a position to prove 

the main proposition of this section. 

Proposi tion 5.8 

f (as in Proposition 5.5) is bounded a.e. ~1 on D. 

Proof 

Choose a € R such that AE = {x:lf(x) - a\<E}n 0 has positive 

measure for every E> 0 and such that lal is minimal. If f is not 

bounded by \al we can choose e € R (lei> la\) with the property 

that BE{xi If(x) - el<dn 0 has positive measure for all E > O. 

By Proposition 4.1 we can choose V € H st VAE n BE F <1>. 

Lemma 5.7 tells us that If(Vx) - f(x)1 < k a.e. x € D. This implies, 

since VA n B ~ <1>. that there exists x st lfV(x) - S\ < E and 
E E 

If(x) - al <E. 

Therefore: 

Ie -<xl s le-fV{)(}I+ If(V(x» - f(x)l + If(x)-al • 

00 

S 2E + t var 10991 + var n 10992' 
n=l n 

But E > 0 was arb; trary therefore 

l e -al s k. 

Therefore f is bounded a. e. Pl on 0 and 



2.24 

Let CI be an upper bound for f on D. 

Definition 

Let AI = {x € Xl : If(X),)1 s 2C I}. 

By Proposition 5.8 DeAl a.e. ~land thus A has positive ~l measure. 

Proposition' 5.9 
+ We have ~l (VD\AI) = 0 for fINery V € HI u Hi. 

Proof 

By Lemma 5.7 we have the relation: 

IfV~fls k a.e. x € D and Y V € HI· 

By the proof of Lenma 5.7 we can deduce K s C~ By definition 

we have 

If(x)' I s CI a.e. x € D. 

Thus 

IfV(x)1 s IfV(x) - f(x)1 + If(x)1 s 2C I • 

Corollary 5. 9( i) 

There exists a null set A c D such that for every x € D\A. n ~ O. 

Xl € Xlwith xi = xi for i ~ ~ and i s -M-n (or for isM and i ~ M+n) 

we have x I € A. 



2.25 

Proof 

The proof is exactly the same as in Proposition 3.4 of Schmidt [1] 

using Proposition 5.9. 
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6. PRESSURE 

The concept of pressure was considered, RS a quantity 

for subshifts, by Ruelle [ 1 ]. Wal ters [ 1] general i sed the concept 

to arbitrary dynamical systems (X,T) and verified the so-called 

"variational fonnula" for pressure namely: 

If f £ C(X) P(f) = 

There are now many equivalent definitions of pressure but, for convenience, 

the above variational formula shall be taken as the definition of pressure. 

Definition 

Let X be an arbitrary topologically mixing subshift of finite type. 

Pressure 1s a function: 

P : C(X,R) + R described as follows. 

tP £ C(X,R) 

P(tP) = 

= 

sup 
lJE:M(X,a) 

sup 
l!E:M(X .e:) 

We shall be needing the following Leoma to be found in Walters [1 ]). 
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Lenma 6.1 
00 

If (jl ~ C«X+.R) c; C(X,R) is such that 1: var n(jl < 00 

n=1 

Then p«(jl) = log ~ where ~ is the spectral radius of L(jl:C(X+) + C(X+). 

(i.e. the maximum eigenvalue.) 0 

Pressure has the following properties for subshifts of finite 

type. 

Theoran 6.2 

If f,g € C(X,R) then 

( i ) I P ( f ) - P ( g ) I s II f -g II 00 • 

(ii) P(·) is a convex function. 

Proof 

See Walters [2] page 214. 

Condition (i) implies that P is a Lipschitz continuous function 

with respect to the sup metric on C(X,R). We would like to define some 

sort of "differentiability" of the pressure function. Thus if. 

f.h € C(X) consider the map 

~ ~ P(f+Ah) - P{f) 
A 
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Since P is convex, (ii) above, this is monotone1y increasing and by 

(i) it has upper and lower bounds ± IlhHoo • We may thus define a 

derivative fram the right of f in the direction h by 

0; P(h) = lim /P(f+Ahl-P(f) ~ -llhll oo • Similarly we may define a left 
A 1,0 k 1\010).'\ ~o 

derivative. In general these o.re not}be equal. l-klwever Ruelle [1] 

showed if we restrict to f~ = {f E: C(~+,IR)I var nf scan, c E: R, 0 < a < 1} 

(the set of exponentially decreasing variation functions) the left and 

right derivatives are equal and P is said to be II rea1 ana1ytic ll
• 

There are several equivalent definitions of real analyticity of 

a function f:B + t, where B is a Banach space. An alternative to the 

above is to define analyticity in terms of normal complex analysis. 

Namely defining 1:0 + B ( n open domain in [) to be analytic if 1h 

is analytic for all h E: B*;f is then said to be analytic if 1f is 

analytic for all analytic 1. 1f being analytic is, of course, equivalent 

to 1f having a power series expansion at every point of G. (See 

M.J. Field [1 ]). 
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7. e-FUNCT 100 

The ~-function was originally introduced by S. Tuncel [1] in 

the form a (t) = exp P(-tl) (where P denotes the pressure and I 
II II . II 

is the information function w.r.t. the measure ll). however the 

basic ideas. concerning the pressure and the e-function. are due 

to D. Ruelle. Parry-Tunce1 .[1] proved. in the Markov case. that 

the e-function can be represented in the following form. 

B(t) = lim ( I exp(l-t)J, (A.an)dllp)l/n 
~ ,~p 

(llp being the Markov measure associated with the stochastic matrix P). 

This characterisation of the e-function can in fact be generalised to 

g-measures as the following result shows. 

Lenma 7.1 
co 

Let g E: G be such that 1: n var n lO9g < co then if II is the 
n=l 

unique g-measure. 

Proof 

lim 1 log II (exp t J (A.an)) = log ~,(l-t) Y t E: R 
fl+CO n II ... 

Jll (A.an) 

pointwise convergence. 

n-1 
= - 1: 1 og g ( a JY\) =: S n ( -1 ogg ) • 

m=l 

Therefore. 
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1 im ~ log ~(exp t J (A,an)) 
n-+-oo ~ 

= lim 110g ~ (exp Sn(-t 10gg)). 
~n 

By definition ~ (1-t) = exp P(-(1-t}I (Ala-1A}) 
~ ~ 

= exp P«1-t)logg). 

The result thus follows fran the following Lerona. 

Lemma 7.2 
co 

If g € G, E n varnlog g < co. ~ the uniCJ.Ie g-measure. f € C(X+)}.f~o. 
n=1 

co 

such that E varnf < co then lim n1 log ~ (exp Snf) = P(logg + f). 
n=1 

Proof 

By the definition of pressure applying the spectral radius formula . 
• 

we obtain 

p(1ogg + f) = lim log ( UL~1l )l/n = lim log L~l. (<I> = 10gg + f) 
n-.oo 'I' f'l'+OG 'I' 
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I claim the last limit is 'the same as lim ~ log ~ (exp Snf). 

Assuming this the proof is complete. 

Proof of claim 

We have to show lim [L~ogg(eSnf)]l/n = lim [~(eSnf)]l/n. 
n~ n~ 

Because ~. is a g~easure 

( Snf) _ (Ln (Snf» 
~ e - ~ 10gg e • 

~ 11m 
n~ 

By Ruelle's Operator Theorem (See Walters [1] Theorem 3.1) 

2 (1) • 



2.32 

Remark 

Lemma 7.2 is in fact true under the conditions f, ~ € C(X+), 

L: lJ = XlJ for some A > O. See Tuncel, S. [1]. The result then 

takes the fonn: 

Thus Lemma 1 actually holds under the conditions g € G, lJ a g-measure. 

In Ruelle [1] a proof that the s-function, in the case of logg 

having exponentially decreasing variation, is analytic can be found. 

The method ,essentially adopted by Ruelle, is to show that the 

Pressure function is analytic on f~ = {f € C(X+,JR)lvarnf s ce n, c € R 
e o < e < 1}. This is deduced fran the fact that, for ~ € f(P" L~ 

has a maximal isolated eigenvalue. It therefore seemed quite reasonable, 

in order to prove the analyticity of the S-function for ~ with finite 

first manent variation, to adopt an analogous line of reasoning. In 

order to achieve this goal we shall need the following definitions. 

Definition 7.3 
+ Let fvar = {f £ C(X+) I II fll var = I varkf < QO} 

k=O 

We shall show that, if ¢ € C(X+) has finite first manent variational 

sum then L¢(f~ar} c f~ar' By defining the nonn 
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+ we can make fvar into a Banach space. For if lim III f -f III var = 0 
m,n n m 

by cOOlpleteness of (C(X+), 11 lICX1) there exist f € C(X+) with 

lifn - fll oo tending to zero. I now claim that f € f~ar and 

jUfn - flU var tends to zero. 

Proof of Claim 

Thus {llf nil var}~=l is bounded above by sOOle constant C"€ R. Thus 

for each M ~ 0 

Letting m tend to infinity this implies 

M 
1: var f s C". 

n=O n 

Letting M tend to infinity we obtain Uftl var s CIt and f € f: ar • 

Thus Uf n - fit var .... 0 as n .... co. Then IUfn - fillvar .... 0 and the 

claim is proven. 

Lanma 7.4 

The closed unit III IU var -ball is U 1I~ compact. 
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Proof 

The map f + IlIfHI var is lower semicontinuous on f~ar with 

respect to II Ito:) (i. e. given E; > 0, f, we can find <5 > 0 such if 

h £ f~ar IUh -fll~ar < <5implies IlIhlli var ~ 11Iflll var -£·) 

For given £ > 0 we can choose M such that 

Then 6 = 2~ and the lower semi-continuity follows. 

The lower semi-continuity of this map implies the compactness of 

the III Illvar one ball, S;ar' as follows: 

Lower semi-continuity implies that S!ar is closed in the JI lIeo-norm. 

For, if fn £ S!ar and IlIfn-flllvar + 0 as n tends to infinity, by 

lower semi-continuity given £ > 0 we can choose <5 > 0 such that 

implies: 

Sut, £ > 0, is arbitrary and B!ar is closed in the Ii 110:) -nonn. 

S!ar is clearly bounded in the 11 llco-norm and therefore. by the 

Arzela-Ascoli Theorem. i s U· JI~compact. 
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Theorem 7.5 
00 

Let <I> ~ {¢ ~C(x+)1 1: rvarr<l> < ool,then there exists A > 0, 
r=l 

v ~ M(X+) + and h ~ fvar such that 

(i) Lq,h = Ah. 

(ii) All other eigenvalues of the operator L<I>:f~ar + f~ar have 

strictly smaller modulus. 

* ( iii) L<I> v = A v • 

Lnf 
(iv) If f € C(X+) then ~ + v( f) h unifonnly. 

A 

(v) A is a simple eigenvalue. 

(vi) p(<I» = log A. 

Proof 

(i) Parts (i), (iii), (iv), (v) are already known under finite 

variation sum (Due to P. Walters [1]). A different proof, based 

on M. Pollicott's thesis, is given from which we can deduce (ii), 

not known under finite first moment variational sum. 
00 

(11) Let's = {f ~ C(X+) I f(x) ~ exp ( 1: varr<l»f(y), 
r=k+1 

if d{x,y) ~ k!l ' f ~ 0 and IIflloo~ H. 

The first inequality means that for d(x,y) ~ k!l 
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~ ~ 

f(x) - f(y) s f(y)(exp (1: varr«p) - 1) s IIfll ~ {exp (1: var «p) - 1). 
r=k+1 r=k+1 r 

Therefore, 

~ 

varkf s IIfJJ~{exp (1: varr«p)- 1) 
r=k+1 

~ ~ 

s IIfllCIQ(exp (i: varr«p) I varr«p). 
r=l r= 1( ..... 

Thus 
~ ~ 

IlIfHl var s UfllJ!XP~:l varr«p) r:1 rvarr«P 

and so 

~ OD 

11iflU var s C UfH o)' C =exp(I varr«p) I rvarr«P' 
r=l r=l 

Thus S is contained in the III lIivar-ball of radius Max(C,l). 

As Sis \I II v arc los ed it is thus . 11 U Q)-coJ1llact by lsnma 7.4. 

Define 

which is well defined since: 
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1 To show S is Ln-invariant notice that if d(x,y) s k+1 then 

L~(f + 1/n)(x) = 1: e~(ix)(f + 1/n)(ix) 
ixE:X+ 

00 

s 1: exp(~(iy) + vark+1~)(f + 1/n)(iy) exp (1: var~) 
iXE:X+ r=k+2 r 

00 

= exp ( 1: varrq,)L,j,(f + 1/n)ty). 
r=k+1 't' 

Since S is convex and Ln is 11 doo continuous there exists a 

fixed point fn E: S (see the Schauder-Tychanoff fixed point theorem). 

If we let An = ULq,(fn + 1/n)1I
00 

then 

In particular 

By rearranging this we see that 

A ~ (1 + ,1 _)e-lI~lloo > o. 
n nlnffn 

Choose subsequ'ence f ... h then by continuity lim A = A > 0 and 
ni i~ ni . 
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+ By compactness h ESC fvar ' If h(x) = 0 for some ~ E X+ then 
00 

n -n L,j,h(x) = 0 for all n ~ 0 (i.e. h(y) = 0 for all y E U a x. 
't' n=O 

Since X+ is topologically mixing this set is dense and so h must 

be strictly greater than zero since it has positive norm. 

We may define from this result a g-function, 9 E G, by 

log 9 = ¢ + log h - log A - log ho 

00 

varn 10gg s 2 E varr¢ • 
r=n 

00 00 

Therefore L var n 10gg s 2 E nvar ¢ < 00 

n=O 1 n 

(ii) Let f E f:ar , and define 9 as in the first part. In order 

to prove (il) it suffices to show all other eigenvalues of L10gg are 

strictly less than one. (The calculations from here on are essentially 
1 due to Walters [1]). Let d(x.y) s k+l 

= 1 E n g(px)g(apx)g{a2px) ••• g(on-l pX )f{pX)_g(py) ••. g{an-1py)f(PY)I 
P€S - . nl 

s I 

-{pE{O.l •••.• k} PXEX+} 

-n En g(px)g(opx) ••• g(a px) [f{px) - f(py)] I 
peS 

+ 1 E n f(py) [g(px) ••• g{an-1px)_g{py) ••• g{an-1py}]I 
PES 

s SUp If{px)-f{py)1 + Ilfll oo 1 n Ig(px) ••• g{afl
-
1px)_g(py) ••• g(on-1py) I. 

p€Sn PES 
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However 

19(px) ••• g(on-l pX ) - g(py) ••• g(on-l py )l 

= 

Therefore 

where 

g(py) ••• g(on-l py ) 19(px) 
g(py 

( n-l 
9 0 px) _ 11 
g(on-l py ) 

n+k 

n+k I varr 10gg 
n-l ' k g(py) ••• g(o PY)max(e( I varr1og. 1, 1 - e- r= ) 

r=k 
00 

I I var 10gg 00 

n-l r=k r 
g(py) ••• g(o py)e I varr10gg. 

r=k 

" . 

co 

k~O varkL~Oggf ~ C(n) IlIflll var + IIflle» C'" 

0) 

l var r 10gg 
C'" = er=O 

00 

00 

and C(n) = k~O varn+kf ,if f r const. 
00 

Thi s gives 
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7.5(b) HL~oggfll var ~ C(n) IliflU var + Utll <Xl CIN 

0) 

~ ~;r 1 ogg CXI 

if f i const. and C" I = e r-O r I rvar logg. 
r=l r 

7.5(c) IUL~oggfll~ar ~ C(n) IIlflli var + IIfllcoC .. I(CIII= max U,C" I 
}) 

Equation 7.5(a) implies {LrOggf}~=o is an equicontinuous family. 

II LrOggfjJ <Xl is also bounded above by IIfH <X> so, by the Arzela-Ascoli 

Theo:em, the closure of {Lnfln ~ O} is compact. Hence there exists 

f* ~ C(X) and a sequence ni of positive integers such that; 

If a(h), ~(h) denote the maximum and minimum values of h ~ C(X+} 

we have: 

n. 
Note that, since lim a(L If) = a(f~), lim a(Lnf )= a(f*) 

n i -+-<xl n-+-<xl 

a(f*) = a(Lf*}: This implies 

if 
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Thus, using topological mixing of X+, we see that f* attains its 

minimum on every cylinder set as follows: 
\ 

Let wn minimise Lnf*. The set of sequences {(wn)} has a 

symbol i such that 

(wn)o = i for infinitely many n. 

Thus if C is a cylinder there exist N such that for n ~ N 

Thus we can choose no ~ N such that 

-n n C n (J Ow 0 f ~. 

And thus f attains its minimum on C. 

Therefore f* is a constant and clearly Lnf converges to f* 

uniformly. 

Since L109g (l) = 1) L10gg defines an operator P on the 

quotient space f:ar/.R and inequality 7.5(c) becomes: 
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n By the above varoP f converges to zero so we have, for large n, 

since C(n) + 0 as n tends to infinity: 

IlIP
2n

fili var S C' varo pnf + C(n) (C'varof + C(n) IlIflli var) 

< 1 7.5(d). 

By Lemma 7.4 B~ar={f I II/fill var S 1} is II lico-compact, so we 

may choose n so that 7.5(d) holds for all f in this ball. Equation 

7.5(d) with the above thus implies that the operator 

P:f~arlR + f~artR has norm strictly less than 1. This, with the 

observation that all eigenvalues have modulus less than or equal 

to the norm, gives the result. 

(iii), (iv), (v) 

These results are standard and can be found in Walters [1], 

and M. Po11icott's Thesis. 

(v i) 

Two functions f,g £ C(X+) are said to be cohomo10gous if there 

exists u £ C{X+) such that f = 9 + uo - u. We then write f ~ g. 

By earlier parts we know that <P~logg + log A. It can be shown, see 

Walters ( 2], that two cohomo1ogous functions have the same pressure, 

P{log g) = 0 and that P(logg + log A) = P{logg) + P{log A) = log A. 0 
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Theorem 7.6 

The function ~ + P(~) is a real analytic function on the 
ClO 

space {t~lt (R} if ~ n varn~ < ClO ,~€ C(X+). 
n=l 

Proof 

The theorem above, for the exponentially decreasing variation 

case, was proven by Ruelle ([lJ, p.92). The proof adopted here is 

based on the elaborated version, of Ruelle's proof, given by 

M. Pollicott. I shall denote by {z~lz ( a} and f~ar the complex 

versioo of f~ar and {t~1 t € R}. 

It 
Let~: {~z:z € It} + fvar be given by: 

~(~) = {x + exp ~(ix)}} 
ix€X+ 

I claim ~ is III Ilivar-analytic. 

Proof of claim 

By earlier coounents it is sufficient to show, if R.:~' + (~, III Ilivar) 

and u ( (f~art, {~= {z~1 z€It)} 

that u cIl R. has a power series expansion about zero of l:(ucIlR.)l/nl. 
ClO n 

It is in fact sufficient to check ~ *f is convergent in 
n=Q 

(f~ar' III IlI var )· We shall show in fact that it is in fact absolutely 

convergent namely 

~ 

'\.'. 



00 

1:: 
n=O 

III 1/J/JIn var < 00 

nl 
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222 1 
vark t4J = sup {/t4J (x) - t4J (y)/ /d(x,y) :s k+l } 

= sup {lP(x)(llJ(x) - llJ(y» + t4J(y)(t4J(x) -llJ(y)lld(x,y) :s k~l} 

By induction this imp1ies 

n . 1 n-1 n-1 
vark lfi :;; IIlfi/ 00 2 varklP. 

Therefore 

And i t f 011 ows 

JI1 "'" III var :s 2
n
-
1 

111"'111 n 't' 't' var • 

Thus 

00 IIi lJI n III var 00 2n- 1 
IlllJl III n var 

t :s t 
n=O nf n=O n! 

2n n+1 
III lP lJl var nf = lim -L and lim 

2n- 1 
llllPlll~ar IlllJlllI var = o. Il+oo (n+1)1 n+1 



Therefore, 

oc 

L 2n-1 

n=O 

l//l/l III ~ar 
n! . 

exists by the ratio test. 0 
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oc 

, and thus L 
n=O 

Thus, using the above and the linearity of 

h .... {f .... L exp (h((x»f(ix)}, we see that 
iXE:X+ 

J: ~ = {zl/ljz E: ~} .... B(f~ar) 
given by 

ip.... Lip is 111 1l1var analytic. 

IlIw
n 

III var , 
n! 

If q> E: {tl/llt E: R, l/l E: C(X+) L nvarnl/l < oc} then, by Theoran 7.5, 

we have that the spectrum of L , sp(L ) = L U {Aip} , where {Aip} 

and L are disjoint. Choose a path r in ~, about Aip , separating 

these two parts of the spectrum. Define an operator P on f~ by 
var 

p = - ~. J -L dz. 
21Tl r L-z 

¢ 

This operator has the following properties. 

Theoran 7.7 

p2 = P (Le. P is a projection). We can decanpose f~ as a 
var 

direct sum of two L~ invariant subspaces. M = P(ft }, N = (1-P}(f t ) 
~ var var ' 



2.46 

such that the spectrum of L~, when restricted to M and N, is [1 

and [2 respectively where [1 is contained within f. 

Proof 

See Kato [1J, Theorem 6.17, p. 178. 

By the above [1 is in fact just A, furthermore since A is 

a simple eigenvalue dim M = 1. 

Let w € ~ = {z~lz € t tn varn~ < ~} and 
II 

1 et S = Lu( Lq, and f € f var· 

Let us first consider an heuristic argument about when, and 

( -I 
under what conditions, the operator LW-A) exists, A € II. 

This series is absolutely convergent provided A € (t\SP(L~) and 

Thus if sur III (L -L )flll < min sup 1/1 (L -A)f/ll 
{f:j-1 fill vars1J ¢ w var A€f {f:lllfll/

var
s1} ~ var 

then r cC\Sp(L ) {Note that min sup III {LA, -A)flll > 0 for f is 
-.. W A€r {fllllfilivarsl} 'I' var 

compact and A -+ sup JHL¢f-Aflllvar is a continuous map}. 
{ f I III f HI v ar sl } 



enough we may define 

PS=-2n
1

1' J L1_A dA. 
r u. 
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is small 

By Theorem 7.7, Sp(Lw) = I1(Lw) U L2(Lw) where r separates L1 from L2' 

I claim that if Lw-L~ = S is small enough this implies 

IIII P s - P Ii f var < 1. 

Assuming this for the moment then dim Psf~ar = dim M = 1. This can 

be seen as follows: 

If dim Psf~ar > 1 we may choose f1,f2 ~ Psf~ar such that Pf1 = f1 

and Pf2 = O. Then 

This contradicts Ullp s-Plili var < 1. 

It ranains to show that if Lu;-L~ is small enough IIl1p s-PIIII var <: l. 

By an earlier computation 



2.48 

1 . -1 -1 n 
= 1\ H - TT (L. -A) l: [ (L. -A) ( L", -L )] d). 1111 va r J 

00 

r ~ n=1 ~ ~ w 

Let DI= max 1111 L<p-AUU~~r 
A~r 

Then 

J 
00 

1- l: 
21T r n=1 

so that if 

it imp 1 i es 

1111 p s - p 1111 var < 1. 

which is equivalent to 

21T 
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Thus if IlIlL¢-Lw llll var is small enough III1Ps-PIIII < 1 and the proof 

is complete. 

Furtnermore since 

-1 
= 1 + A (Lw -A ) • 

Thus L (L _A)-l = 1 + A(L _A)-1 
w w w 7.7(a). 

Also since L is a closed operator and the fact that we can approximate w . 
an integral by a finite sum we obtain using 7.7(a): 

L P = - -, -. L (L -A) dA 1 J -1 
w s 21Tl r w w 

= - 21. J 1 + A (L -A) -1 dA 
1Tl r w 

Expanding the integrand as a power series and passing the integral 

through the summation we obtain 



2.50 

00 

A ( S )n 
L -A L -A dA 

<P ¢ 

Therefore, since w + L ,is an analytic map in a neighbourhood of 
w 

{t1jJ! t E R. Ln varn~' < co} within its cClnplexification, w + LwP s is 

an analytic map. 

By the use of pe~turbation theory (see Kato [I] ), it can 

be shown that 

¢ I~ tr(LpP s) = A~ 
is a real analyti c {~a~) IO;e. IR I or (; c:.(x~), £ n vC\rt"\ 't' < <>0 }. 

'rherefore, by restricting to {t1jJ!t E R, 1jJ E C(X+). Ln varn,1jJ < co} 

and using the analyticity of log and trace (tr), we see that 

is a real analytic map. 

Coroll ary 7.'6 
00 

Let j.l be the unique g-fTleasure, for agE G with L nvar lo99 < 00 , 

n=O n 
then 0 :R + R j.l 

• 1 bj.l(t) = exp P(-t Ij.l(A!o- A) 

is a real analytic function. 

Proof 

by an earlier camputation Ij.l(A!a-1A) = -log g. Therefore, since 

t + -tlogy is analytic and P is analytic on {tloggl Ln varnlogg < oo} 

we have ttlat 
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B (t) = exp P(-tI (Alo-1A) 
II 4 

is real analytic. 
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8. THE MAIN THEOREM AND ITS PROOF 

Theorem 8.1 

Let ~:(X1'~1) + (X2'~2) be a finitary isomorphism with finite 

code length and inverse code length between two topological mixing 

subshifts of finite type Xl and X~, (~1 and ~2 are the unique g~easures 

of 91' g~ which have finite first moment variational sum)then the 

S-functions Sl(t) S2(t) are identical. 

Proof 

This proof uses the Techniques of Schmidt (1]. Let C, D the 

sets as described in Section 3. By Proposition 5.5 we can find a 

measurable function f:X I + R satisfying Proposition 5.5 and 5.8. 

Define A' ~ D as in Section 5 th~n ~l(A') > 0 and, by Proposition 5.8 

and definition of A' 

n -n 8.(i) = jfocr -fj s 4C ' on A' n cr A' a.e. ~1 and for every n ~ 1. 

I sha 11 prove 
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Assuming ti.(ii), for the moment, we can complete the proof as follows: 

(by change of variables parthasarathY~. 135) 

Thus taking limits as n tends to infinity we obtain 

= ~2(1-t) 't t E: R, t > o. 

The inequality is symmetric in 1 and 2 and we have that 

The analyticity of the S-function (Corollary 7.8) reveals that 

Sl (t) = S2(t) for all t E: R. 

It just ranains for us to verify relation 8. (ii). Consider the 
00 

-i i 
partition C generated by U 0 a u U 0 a, 

i=n-M i=-M 
n > 2M. 
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Let [xJC be an atan of this partition containing the element x € x. 
C Denote by ~l,x the conditional measure of x, with respect to the 

measure ~1' given by this partition. The conditional measure on [xJ
C 

with respect to the partition C is defined to be the measure ~Cl which 
,;It 

satisfies the following two conditions. 

Since [X]C is a finite set the measure which satisfies (i) and (ii) 

,'s the atOOlic measure which assigns to the point (y)~ € [x] 
n -~ c 

C ( n-M ~l,x ({(y)}) = ~l [YM' ..• Yn-MJ
M 

) 

~l ([xMJM n [xn-M]n-M) 

(Note that Xm = Ym and Xn_M = Yn-M and that ~l([xmJM u [Xn-MJn_M) > a 

since ~1 has full support). 

The measure which satisfies (1) and (i1) is unique (see V.A. Rohlin [1 ]). 

Thus by property (ii) 
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. J I -n I exp[tJ (A,on) Jd~l 
Ano A ~l 

J. J ( n C = -n I exp[t J A,o) Jd~l d~l 
Ano (A) ~l ,x 

( . C (AI -nA'l 1 Slnce ~l.x n 0 = 
-n a.e. x ~ D noD 

= J -n E exp[t J (A,on)(y)] 
Dno D y~[xJC ~1 

n-1 
ex [t J ( A ,on )(y ) ] = ( II 

~l k=O 

1 )t 
k 

9,(0 y) 

1 Q(2M-2)t J 1: n-M 
-n y~[xJC (II 

~([iMJOn[i-M]) Dno D k=fv1 

where Q > 0 is a rea 1 number chosen such that 1> Q. 9 
S 

Define PS(x) = inf II 
z~[xo' xs] k=O 

1 
k • 

91(0 z) 

by Corollary 5.9(i)) 
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s 
Pc (y) = i nf n 

,J [ ] k=O z€ Yo' •• Ys 

Ps is constant on cylinders of length s+l. Also 

Pn-2M(x) ~ 

so that 

Pn_2m(oMx) 

Therefore 

(2M-2)t Q 

n-2M 
n 

k=lJ 

n-M 
~ n 

k=M 

1 , 
K 

91(0 x) 

1 

k gl(o x) 

The above equality being true since on cylinders of length n-2M+1, between 

M'th and n-M'th co-ordinates, Pn_2M(oM) is a constant. Therefore; 



= ~l (Dna-nO)Q(2M-2)t 

~l ([il~]on[i-M]n_N) 
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~l (Ona-nO)Q(2M-2)t 
=------- J (p ) t d~ 

[ 0 ] [0 ] n-2M 1 1M on 1_M n-2M 

(The last equality is by the a-invariance of ~l and the change of 

variables formula Parthasarathy [lJ p. 135). 

n-2M 
log Pn 2M(x) = inf l: 

- z~[x .... ~x 2M] k=O a . n-

for z ~ [xo' ,xn_2MJ we have the following: 

n-2M 
J l: 

k=U 

n-2M 1 n-2M 
.. l: log I S I var 1 n og 91 . 

k=O 91 (akx) k=O 



2.58 

Therefore 

n-2M n-2M n-2M 
r log 1 ~ r log 1 r 1 k k - yarn ogg1· 

k=u 91(0' z) k=O 91(0' xl k=O 

Thus 

n 2M n-2M 
log P ')M(x) ~ J

l1 
(A,a - lex) - r varnlogg1 • 

n-, 1"'1 k=O 

Therefore: 

ThUS putting all these inequalities together 

Thus takin9 lim sup's \\e obtain 

lim Sup(! -n exp [t J (A,an)Jd~l)l/n 
n Ana A ~l 
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Lemma 8.1 

With ~1' 91 as above 

Assuming Lamna 8.1, for the manent, 8(ii) is then proven and Theorem 

B.1 is canplete. 
, 

P roof of Lanma 8.1 
n-2M) 

Clearly, since exp [t J1 • (A,a J > 0 
. "'1 

J 
( n-2M) )l/n 

slim ( exp [t J~ A,a Jd~l 
0+00 Xl 1 

It thus suffices to prove the converse inequa 1 i ty. 

exp [t J (A,a - )Jd~l J 
n 2M 

~1 

J 
( n-2M) 

= >:: exp[t J~ A,a Jd~l 
i ,j [ i In [j In -2M 1 

8.(ii;). 

Consider an estimate for 
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8.(iv) . 

let a(x) = (x,x1 xn_2M-l,j,X2M .. , ) 

8. (v):. I J exp [t J~ (A,on-2M)] (a(x» - exp[t J~ (A,a
n

-
2M

)](b (x»d~l • 

xl' ... ,xn-2M-l 1 

exp 

Therefor.e since: 

n-2M 
1109 II 

R,=O 

n-2M 
= ( II 

R,=O 

n-2M 
1 _ 109 II 

91 (o"a(x)) R,=O 



n-2M 
( IT 

R.=O 
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Putting this inequality into expression 8.(V) we obtain: 

x E J exp[t J~ (A,on-2M) ](a(x}) - exp [t J~ (A,a
n

-
2M

){b(x))]dVj 

1 t xn- 1- 2M 1 1 

Therefore putting these inequalities together it follows that: 

Subing this expression into 8.(1ii) and taking n'th roots we obtain 

the inequal ity. 
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2 n-2M-1 [k (exp[t (L var
k 10991 + varo10991)J) - 1J + 1J

1
/
n 

k=O 

Taking lim sup as n tends to infinity we obtain the converse inequality 

and Lemma 8.1 follows. Thus Theorem 8.1 is complete. 
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