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holiday effects: improving a national daily
syndromic surveillance service for detecting
public health threats
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and Gillian E. Smith2

Abstract

Background: As service provision and patient behaviour varies by day, healthcare data used for public health
surveillance can exhibit large day of the week effects. These regular effects are further complicated by the impact of
public holidays. Real-time syndromic surveillance requires the daily analysis of a range of healthcare data sources,
including family doctor consultations (called general practitioners, or GPs, in the UK). Failure to adjust for such
reporting biases during analysis of syndromic GP surveillance data could lead to misinterpretations including false
alarms or delays in the detection of outbreaks.
The simplest smoothing method to remove a day of the week effect from daily time series data is a 7-day moving
average. Public Health England developed the working day moving average in an attempt also to remove public
holiday effects from daily GP data. However, neither of these methods adequately account for the combination of
day of the week and public holiday effects.

Methods: The extended working day moving average was developed. This is a further data-driven method for
adding a smooth trend curve to a time series graph of daily healthcare data, that aims to take both public holiday
and day of the week effects into account. It is based on the assumption that the number of people seeking
healthcare services is a combination of illness levels/severity and the ability or desire of patients to seek healthcare
each day. The extended working day moving average was compared to the seven-day and working day moving
averages through application to data from two syndromic indicators from the GP in-hours syndromic surveillance
system managed by Public Health England.

Results: The extended working day moving average successfully smoothed the syndromic healthcare data by
taking into account the combined day of the week and public holiday effects. In comparison, the seven-day and
working day moving averages were unable to account for all these effects, which led to misleading smoothing
curves.

Conclusions: The results from this study make it possible to identify trends and unusual activity in syndromic
surveillance data from GP services in real-time independently of the effects caused by day of the week and public
holidays, thereby improving the public health action resulting from the analysis of these data.
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Background
Syndromic surveillance is the near real-time collection, ana-
lysis, interpretation, and dissemination of health related
data to enable the early identification of the impact of po-
tential public health threats [1]. The real-time syndromic
surveillance team at Public Health England (PHE) co-
ordinates a suite of syndromic surveillance systems in order
to provide early warning of outbreaks of infectious disease,
situational awareness during a public health incident, and
reassurance of lack of impact [2–5]. These syndromic sur-
veillance systems are used to complement and support
existing public health surveillance programmes.
Line graphs of time series data offer a simple and

effective way to review data and undertake exploratory ana-
lysis [6, 7]. They are used, in addition to automated statis-
tical alarms, by the real-time syndromic surveillance team
to investigate, interpret, and present the current trends in
syndromic data and for comparisons of the current data
with previous years to identify changes from the norm.
Regular, large fluctuations at small time-scales can, how-
ever, make it difficult to identify longer time-period trends
in time series graphs. These difficulties can be overcome by
adding to the graph a smooth trend curve which takes into
account these known day-to-day fluctuations [8].
The GP in-hours syndromic surveillance system (GP

in-hours SSS) monitors the number of in-hours family
doctor (known as general practitioner, or GP, in the UK)
consultations [9]. Daily data on the number of GP con-
sultations are analysed, and are aggregated into syn-
dromic indicators based on symptoms and clinical
diagnoses (e.g. influenza-like illness, diarrhoea, chicken-
pox) [9]. Although much of the GP in-hours SSS is auto-
mated, statistical alarms are created that require manual,
in-depth investigation [10]. Effective data visualisations
must be used in order for the manual investigation stage
not to become the bottleneck of the real-time data
analysis process [11].
Graphs of the syndromic indicators from the GP in-

hours SSS are presented to the public and wider audi-
ences in weekly bulletins published by PHE [12]. This is
an additional reason to ensure that the current trend in
illness levels can be clearly interpreted from the graph
without additional data or expert knowledge.
Regular fluctuations at a weekly time-scale, known as

day of the week effects, have been observed in the num-
ber of patient consultations with GP services [10]. The
number of consultations is also observed to regularly
change on a public holiday and on the days immediately
after [10]. We refer to this as a public holiday effect.
The purpose of syndromic surveillance is to identify ab-

normally elevated disease levels as early as possible so that
action can be taken to minimise the problem [13, 14].
However, if the systematic changes in the number of con-
sultations with GPs due to day of the week and public

holidays are not accounted for, they could mask real in-
creases in disease levels, create false alarms, and delay de-
cision making over public holiday periods as more data
are required to understand the current trend. It is import-
ant to try to distinguish the expected changes in consult-
ation numbers due to day of the week or public holiday
effects from unexpected changes due to potential public
health threats.
The purpose of this work is to develop and explore an

appropriate smoothing method that takes the expected
day of the week and public holiday effects into account
simultaneously and displays no trend due to these predict-
able variations. This method will be applied to time series
graphs to enhance visual analysis of daily GP consultation
data for syndromic surveillance. This will improve daily
risk assessments by epidemiological investigators.
Data from healthcare services reflect the time at which

patients sought healthcare advice. This does not necessar-
ily correspond with date of symptom onset. In particular,
patients with milder illnesses may not present unless they
become more severe or complications develop [15, 16].
Therefore, the number of healthcare consultations is not a
simple measure of illness in the population but rather a
combination of illness levels, severity of the illness, avail-
ability of healthcare services, and ability or willingness to
seek healthcare [17]. Based on this, we develop a data-
driven smoothing method, the extended working day mov-
ing average, using scaling factors to take both day of the
week and public holiday effects into account.
The rest of this paper is organised as follows. The Back-

ground will conclude with a short discussion of the exist-
ing literature of smoothing methods to account for day of
the week and public holiday effects in healthcare data, a
description of the specific calendar effects observed in the
GP in-hours SSS, and a description of the seven-day and
working day moving average. The limitations of these
methods justify the development of the extended working
day moving average to take day of the week and public
holiday effects into account simultaneously, which will be
described in the Methods section. This will be followed by
a description of the data from the GP in-hours SSS to
which the smoothing methods will be applied. An evalu-
ation of the extended working day moving average, with
comparison to the seven-day and working day moving av-
erages will be presented in the Results section. Finally, the
strengths and limitations of the smoothing methods and
the impact of using the extended working day moving
average on public health practice will be discussed.

Existing literature of smoothing methods to account for
day of the week and public holiday effects in healthcare
data
Smoothing to remove day of the week effects and visual-
ise trends has been noted as being important for analysis
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of healthcare data [18–22], although few smoothing
methodologies have specifically been developed to en-
hance visual interpretations in this context. However,
both model-based and data-driven smoothing methods
have been used to remove day of the week and/or public
holiday effects as part of more complex detection
algorithms [17].
Many published methodologies are able to smooth day

of the week effects but do not consider public holiday ef-
fects [17, 22, 23]. However, this study will demonstrate
that both day of the week and public holiday effects
must be considered simultaneously to enable continued,
effective surveillance of GP consultation data during and
around public holidays.
The working day moving average was developed by

PHE to visualise trends in syndromic data from the GP
in-hours SSS, however this has not previously been
described in the literature.

Day of the week and public holiday effects in the GP
in-hours SSS
In the GP in-hours SSS more consultations occur on
Monday than on any other day of the week. There were
typically fewer consultations on each of Tuesday through
Friday, and a negligible number of consultations on
weekends. Figure 1 displays, as examples, the proportion
of the week’s consultations (Monday – Sunday) on each
day of the week, for the severe asthma and gastroenter-
itis indicators. On all public holidays there were a negli-
gible number of consultations (Fig. 1), and the first

working day after a public holiday typically had a higher
number of consultations than expected for the day of
the week.

Description of smoothing methods used for comparisons
A 7-day moving average is the simplest data-driven
smoothing approach to remove a day of the week effect.
No adjustment is made for public holiday effects in this
method.
A moving average is a series of averages of subsets of

the time series of syndromic data. The first element of a
7-day moving average is the average of the first seven
data points. The second element is the average of the
second to eighth data point. This is continued so that
each set of seven consecutive data points is averaged
[24]. Seven days was chosen in this context as day of the
week effects have 7-day periodicity.
The working day moving average method was previ-

ously developed by PHE to take both day of the week
and public holiday effects into account when visualising
data from syndromic surveillance systems. This simple
adjustment of the 7-day moving average aims to take
into account public holidays and ensure the smoothing
line takes values similar to the number of consultations
on an average working day.
The working day moving average is constructed as fol-

lows. Due to reduced opening hours, very few routine
in-hours GP consultations occur on public holidays.
Therefore, public holidays are grouped with weekends,
and a moving average is computed that takes into

a b

Fig. 1 Box plots of data from the GP in-hours syndromic surveillance system demonstrating the day of the week and public holiday effects for
the (a) severe asthma indicator and (b) gastroenteritis indicator. Daily consultation numbers for each day between 2nd April 2012 and 11th Janu-
ary 2015 were grouped into weeks from Monday to Sunday and the proportion of the week's consultations on each day of the week are sum-
marised in the box plots
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account the number of working days. Let n denote the
number of working days within the current block of 7
days being considered to give an element of the moving
average. In the GP in-hours SSS this is typically five, as
doctors’ surgeries do not typically open on weekends.
However, in blocks containing public holidays it will be
fewer. Instead of simply computing the average of the
number of consultations on the 7 days, the sum of the
number of consultations on working days was multiplied
by 5

n and the sum of the number of consultations on
non-working days was multiplied by 2

7−n . The sum of
these totals was then divided by five, the typical number
of working days in the GP in-hours SSS.
For a block of 7 days with no public holidays, this

calculation just gives 1
5 times the sum of the number of

consultations on the 7 days in question, a basic moving
average. For blocks of 7 days containing public holidays,
this calculation weights the working days slightly more
than the simple sum and the non-working days slightly
less. This accounts for the expected reduction in total
consultations in the week due to the public holiday.

Methods
Extended working day moving average
In the extended working day moving average, we do not
simply assume that healthcare seeking behaviour on
public holidays is the same as on weekend days and that
behaviour on all other weekdays is the same. Instead,
each different day of the week and each day affected by
a public holiday is assigned a scaling factor. This simul-
taneously takes into account changes in the number of
healthcare consultations on days surrounding public hol-
idays, changes in the number of consultations on the
public holiday itself, and the day of the week effect.
Data from one complete year, excluding any weeks

containing public holidays, were used to give the scaling
factors of the extended working day moving average for
a syndromic indicator from the GP in-hours SSS. There-
fore, the scaling factors will be different for each
syndromic indicator.
In order to compute the scaling factors, the proportion

of each week’s activity (Monday – Sunday) on each day
was calculated. These were averaged over all weeks not
containing public holidays to give an average proportion
of the weekly activity on each day of the week. These
average proportions were multiplied by five, the number
of working days in a typical week in the GP in-hours
SSS, to give the initial scaling factors. Additional scaling
factors were developed based on the public holiday ef-
fects. Each public holiday was assigned the same scaling
factor as a typical Sunday, and the first working day after
a public holiday was given the same scaling factor as a
typical Monday. These scaling factors reflect the typical

number of consultations on each day of the week; a
value larger than one reflects a day with typically a
higher than average number of consultations.
To construct the extended working day moving aver-

age, the sum of each 7-day block was divided by the sum
of the corresponding scaling factors. Note that the ex-
tended working day moving average for a 7-day block
without a public holiday is simply the sum of consulta-
tions divided by five, giving a basic moving average dur-
ing these periods.

Data
The extended working day moving average has been de-
veloped for smoothing data from the GP in-hours SSS.
However, the dynamics of the diseases that generate the
syndromic data are complex, and the recorded activity
levels are affected by system coverage fluctuations, data
collection changes, and other unknown influences on
top of the day of the week and public holidays effects
[10]. This can make it difficult to clearly compare and
evaluate the different smoothing methods. Therefore,
they were first applied to synthetic data with the same
public holiday and day of the week effects as the GP in-
hours SSS but without longer-term trends and noise.
We constructed synthetic data for a period of 4 weeks.

Based on historic data, we considered a total of 2900 con-
sultations per week and split this into 696 consultations on
Monday (24% of the week’s consultations), 522 (18%) on
each of Tuesday to Friday, and 58 (2%) on weekend days.
In order to incorporate a public holiday effect, the third
Monday of the synthetic data was denoted as a public holi-
day. This day was given the same number of consultations
as a Sunday (58 consultations, or 2.4% of the public holiday
week’s consultations). The Tuesday immediately after was
given the same number of consultations as the typical
Mondays (696 consultations, or 28.6%). The number of
consultations on all other days in this week was left un-
changed (522, or 21.4%, on the remaining weekdays and
52, or 2.4%, on the weekend days). There were fewer con-
sultations overall in the week containing the public holiday.
The synthetic data are presented in Fig. 2.
The smoothing methods were also applied to actual

data from the GP in-hours SSS for 52 weeks, from 13th
January 2014 to 11th January 2015. The indicators severe
asthma and gastroenteritis were chosen as examples.
Other syndromic indicators could have been used;
similar day of the week and public holiday effects are
extensively observed across the system.

Results
As previously described, the extended working day mov-
ing average was applied to synthetic data and the severe
asthma and gastroenteritis syndromic indicators from
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the GP in-hours SSS. The 7-day and working day mov-
ing averages were also applied for comparison.
Using the percentages 2%, 18%, and 24% described in

the Data section, the scaling factors for the extended
working day moving average applied to the synthetic data
were calculated as 0.1 for weekends and public holidays,
1.2 for typical Mondays and the first working day after a
public holiday, and 0.9 for all other typical weekdays. The
scaling factors calculated from the severe asthma and
gastroenteritis indicator data are given in Table 1.
The extended working day moving average showed a

no-trend line when applied to the synthetic data, as the
combination of day of the week and public holiday ef-
fects were taken into account (Fig. 2). The extended
working day moving average also continued to display
the trends in the syndromic data throughout public
holiday periods (Fig. 3).
In the absence of public holidays, the seven-day mov-

ing average applied to the synthetic data smoothed the
regular day of the week effect to highlight the current
trend. However, there is a dip in the smoothing trend
curve for 7 days around the public holiday (Fig. 2).
These synthetic data followed the expected behaviour of
no-trend syndromic data around a public holiday. With
real data, this dip in the smoothing curve could mask an
actual increase in disease levels over this time period.
However, this change is entirely expected due to the
change in healthcare service provision on public holi-
days. Additionally, the 7-day moving average was lower
than the average number of consultations on a working
day. It is more useful that the smooth trend curve gives

an indication of the number of healthcare contacts on a
typical working day.
These same results were also observed when the 7-day

moving average was applied to surveillance data for the
severe asthma and gastroenteritis indicators (Fig. 3).
The working day moving average applied to synthetic

data gave a better smooth curve than the 7-day moving
average (Fig. 2). However, a drop 3 days before and a peak
4 days after public holidays were still present in the
smoothing curve when applied to both synthetic and real
data (Figs. 2 and 3). These were due to the combination of

Fig. 2 The extended working day moving average applied to synthetic data, with the seven-day and working day moving averages for comparison.
Synthetic data were generated for 28 days, containing day of the week and public holiday effects representative of those observed in the GP in-hours
syndromic surveillance system, but without noise and longer term trends. The synthetic data included a public holiday Monday. This is indicated by
the grey vertical line and easily identifiable by the negligible number of consultations on this day. The extended working day moving average was
applied to this data with the seven-day and working day moving average shown for comparison. The red box highlights the pre- and post- public
holiday period of interest

Table 1 Scaling factors for indicators from the GP in-hours
syndromic surveillance system for the extended working day
moving average

Scaling factors:
severe asthma

Scaling factors:
gastroenteritis

Monday 1.30 1.25

Tuesday 0.95 0.95

Wednesday 0.91 0.91

Thursday 0.87 0.90

Friday 0.93 0.95

Saturday 0.03 0.02

Sunday 0.01 0.01

Public holiday 0.01 0.01

First working day after public holiday 1.30 1.25

The scaling factors for the extended working day moving average for Monday
– Sunday were based on 52 weeks of data (13th January 2014 - 11th January
2015) using the method outlined in the main text. The scaling factors for
public holidays and their surrounding days were based on observations made
of the GP in-hours syndromic surveillance system over multiple years
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the day of the week and public holiday effects. The drop
was caused by that 7-day sum not including a typical
Monday, and the peak was caused by that 7-day sum in-
cluding both a typical Monday and the elevated Tuesday
directly after the public holiday.
In the absence of big day of the week effects, the work-

ing day moving average would smooth a simple public
holiday effect. However, the interaction between day of
the week and public holiday effects, and extended holiday
effects such as a change in activity on the first working
day after a public holiday, are not accounted for.
Smoothing trend curves are used to help investigators

visually identify current unusual activity during daily sur-
veillance of syndromic disease data. It is easy to

retrospectively look at the smoothing curve given by the
working day moving average and identify the spikes as
clearly spurious due to their short duration. However, in
order to emphasise how misleading the 7-day and working
day moving averages can be we applied all the smoothing
methods to the dataset that would be available a week
after a Monday public holiday. This graph would be used
to assess the current trend in the number of severe
asthma consultations (Fig. 4). The trend 1 week after a
public holiday would be noted as increasing if either the
7-day or working day moving averages were used. This
could lead to unnecessary alarm. The extended working
day moving average did not show an increasing trend and,
more importantly, neither did the data. The extended

a

b

Fig. 3 The number of (a) severe asthma and (b) gastroenteritis consultations from the GP in-hours syndromic surveillance system with the extended
working day moving average. The seven-day and working day moving averages are also included for comparison. The grey vertical lines indicate public
holidays. The red boxes highlight the pre- and post- Monday public holiday dips and peaks in the seven-day and working day moving average and their
removal in the extended working day moving average
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working day moving average would make it easier for in-
vestigators to identify unusual activity during this period.

Discussion
It is widely acknowledged that day of the week and pub-
lic holiday effects exist in healthcare data used for syn-
dromic surveillance and that this can disguise anomalies
in the data when visually inspecting it [10, 17–23]. In
this study, we described the previous smoothing method
used by PHE to smooth data from the GP in-hours SSS.
We also developed a smoothing method where both day
of the week and public holiday effects are taken into
account simultaneously. We demonstrated how the
extended working day moving average can be used to
aid interpretation of the trends in real-time syndromic
surveillance data from GP services, thereby improving
the public health action resulting from the analysis. The
extended working day moving average method retains
the ability to display unusual changes in the trends of
syndromic indicators from the GP in-hours SSS during
public holiday periods, and it removes the potentially
misleading spikes observed in the working day moving
average. This reduces the potential for delays in the
detection of public health threats during this time.
The inter-quartile ranges of the proportion of consulta-

tions on each day of the week are quite narrow (Fig. 1).

This indicates that the day of the week effect is consistent
throughout the year. However, day of the week and public
holiday effects are just one cause of noise in these com-
plex data sets. The number of GP consultations fluctuates
and contains regular trends due to other factors that we
do not discuss or control for here. These include, for
example, seasonal disease outbreaks and changes in the
data collection systems.
In this study only relatively simple data-driven

smoothing methods were considered. Syndromic surveil-
lance uses large, varied data sets, and it is desirable for
syndromic surveillance reporting systems to be as auto-
mated as possible. A simple data-driven smoothing
approach ensures sufficient flexibility so that smoothing
methods can be applied to a wide range of indicators in
an automated way [25]. As discussed in the Background,
data-driven smoothing methods have previously been
used to remove day of the week and/or public holiday
effects from daily syndromic data as part of more com-
plex detection algorithms [17, 20, 26, 27]. However, this
study shows that both day of the week and public holi-
day effects must be considered simultaneously to create
adequately smooth daily healthcare data. We have ad-
dressed this problem in the context of GP in-hours con-
sultation data used for daily syndromic surveillance in
England, and we have focused on methods to improve

Fig. 4 A comparison of the current trend given by each of the smoothing methods for the severe asthma indicator from the GP in-hours syndromic
surveillance system. This graph displays the data that is available 1 week after a Monday public holiday (public holidays indicated by grey vertical lines).
A smoothing method would be used to display the current trend (the area of interest inside the red box). Both the seven-day and working day moving
averages show a currently increasing trend. The extended working day moving average and, importantly, the data do not
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time series graphs used for daily risk assessments by
investigators.
The extended working day moving average was devel-

oped for the GP in-hours SSS coordinated by PHE. We
demonstrated the method applied to the gastroenteritis
and severe asthma indicators as examples. However, the
day of the week and public holiday effects observed in
these two indicators are also observed across the GP in-
hours SSS in a consistent way (see, for example, the
plots of data for a large number of indicators within the
PHE weekly bulletin [12]). It is therefore appropriate
and straightforward to apply the method to other
syndromic indicators from the GP in-hours SSS, and we
see the same results as discussed here. As a result of
this, the extended working day moving average is now in
use across the GP in-hours SSS.
Day of the week or public holiday effects are also seen

in attendance data from many other healthcare services.
This includes emergency departments [28], walk-in
clinics [29], military treatment facilities [15], sexual
health clinics [30], telehealth services [5], and internet
based symptom-checker services [31]. It is also seen in
the other syndromic surveillance systems operated by
PHE. This work has demonstrated the importance of
being aware of day of the week and public holiday effects
in analysis and interpretation of this type of data, includ-
ing the effect on days near to the public holiday itself.
We have shown how an inadequate treatment of these
effects can lead to potential confusion in the current
trend and delay decision making.
However, the extended working day moving average

described here was developed for use with just one par-
ticular syndromic surveillance system. Further work is
needed to investigate whether the extended working day
moving average could be applied to other surveillance
systems. In particular, whether it is valid for those which
monitor attendances at 7-day healthcare services.
Additionally, if the day of the week and public holiday
effects are not as large as those observed in the GP in-
hours SSS a simpler method could be sufficient. Further
work in this area will describe the extent of the day of
the week and public holiday effects across different
syndromic surveillance systems. This will also involve an
investigation of the public health aspects of these effects,
rather than purely the statistical approaches considered
during this analysis.
The main limitation of the extended working day moving

average is that historical data are needed to compute the
scaling factors. In particular, sufficient data are required to
learn how the number of consultations changes around
each public holiday. On the other hand, the working day
moving average and 7-day moving average do not require
historical data and therefore can be used immediately with
new syndromic surveillance systems.

Conclusions
Our results show that basic smoothing techniques are
not able to account fully for the public holiday effects ob-
served in the GP in-hours SSS. We have developed and
demonstrated an improved smoothing technique that
can make it easier for investigators to identify unusual ac-
tivity during daily surveillance of syndromic GP data.
This method is now in use in the GP in-hours SSS at
PHE. It has led to enhanced visualisations of this data
during the analysis phase and in weekly public health
bulletins [12].
Based on this study, it is recommended that analysis and

visualisation methods for syndromic data carefully take
both day of the week and public holiday effects into
account.
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