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ABSTRACT 

In the drive for lightweighting in many industries, optimum material selection is 

at the forefront of research. Many solutions are being investigated, including the 

fabrication of multi-material components. Following a state of the art review of the 

literature, it has been shown that there is an opportunity to improve basic knowledge 

and understanding of the characteristics of hybrid steel-FRP materials for 

lightweight applications. This dissertation explores the potential for designing 

lightweight automotive steel structures through novel use of lower gauges combined 

with local reinforcement by fibre-reinforced plastics to achieve desired stiffness 

performances. The main focus of the work is to provide underpinning research to 

enable the further understanding of the stiffness performance of hybrid steel-FRP 

materials, both experimentally and in simulation.  

This thesis focuses on the characterisation of high strength automotive grade 

steel (DP600) reinforced with a fibre reinforced polyamide (PA6 GF60) laminate, 

however, the results are readily applicable for other combinations. The project was 

achieved through two main phases; each phase consisting of an iteration loop 

between experimentation and simulation validations. Initial characterisation was 

achieved using coupon samples in quasi-static three-point bend, cross-validated in 

simulation providing a trusted material model. Correlating experimental and 

simulated results showed a potential lightweighting of up to 30 % of a hybrid DP600-

GFRP over a DP600 counterpart with a matched stiffness performance. Further 

characterisation was performed using an idealised automotive component in flexure, 

confirming a potential lightweighting of up to 30 %. The simulation investigation 

demonstrated the effect of localised hybrid reinforcements, and identified difficulties 

in predicting the local geometrical effects of plastic hinging. For an overall 

application to an automotive body-in-white, these would require further 

investigating.  

This thesis has proven that downgauging steel whilst locally reinforcing 

(intelligent deployment) with FRP patches provides a significant lightweight 

solution with a matched stiffness performance. A hybrid material model has been 

validated and the application to an automotive component investigated. This work 

provides the basic understanding for a direct application in lightweight automotive 

designs using computer aided engineering (CAE). 
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1 INTRODUCTION 

Promoted by a number of worldwide and European treaties and directives, the 

automotive industry is taking a (forced) stand on the future of automotive design, 

shifting towards perceived “greener” solutions.  

In the automotive market, the use of fibre reinforced plastics, also known as FRP, 

was historically limited to the predominantly niche market of sports cars, primarily 

due to the costs associated with those materials [1]. Recent developments in high-

end consumer vehicles show a slow emergence of composite materials in automotive 

structures, with an industry-wide drive for lighter, more efficient and recyclable 

vehicles [2]. 

This ever increasing demand for automotive body lightweighting drives the idea 

of combining the strength provided by advanced high strength steel (AHSS) together 

with the comparatively light weight of FRP. Together, these hybrid materials can 

potentially achieve the desired mass reduction whilst maintaining performance – 

here specifically stiffness – and ideally minimising cost.  

This thesis will research the material properties of a combined FRP and low-

gauge high strength steel hybrid material focussing on stiffness performance (but 

lower weight), and investigate the required input data for appropriate finite element 

simulations.  Using the experimental data acquired and a validated simulation model, 

further work will investigate the “intelligent deployment” of the FRP patches or 

reinforcements in specific structures representative of “real life” automotive body 

applications. This project is specifically interested in “higher-strength” steels used 

in automotive structures as shown in in Figure 1-1 [3]. However, the approach and 

method is valid for any steel. Due to the large variety of FRP materials, the approach 

and method for the FRP can be expanded to different materials, with modifications 

on a case per case basis.  
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Figure 1-1: Body-in-white (BIW) representation with steel grades used for different 

applications [3]. 

Body-in-white (BIW) stiffness is well known to affect the handling and 

performance of any vehicle, therefore a focussed study on maintaining stiffness 

performance whilst providing a weight save would be of value to an automotive 

manufacturer. Additionally, maintaining the pre-existing steel structure and locally 

reinforcing it presents manufacturing and cost advantages. This dissertation explores 

the potential for designing lightweight automotive steel structures through novel use 

of lower gauges combined with local reinforcement by fibre-reinforced plastics to 

achieve desired stiffness performances. The main focus of the work is to provide 

underpinning research to enable the further understanding of the stiffness 

performance of hybrid steel-FRP materials, both experimentally and in simulation. 

This project can conceptually be split into several research objectives. The first 

is to perform a concise, exhaustive and relevant literature review on the subject of 

lightweight material solutions, FRP reinforcing of steel, joining of dissimilar 

materials, testing and simulation therefore identifying the research opportunity in 

this field. 
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The second objective is to design and manufacture a range of parts for stiffness 

testing in order to characterise the material. This preliminary material performance 

data is used in the development of a hybrid material simulation model. Using 

iterative steps between experimental results and simulation results, the next objective 

is to validate the simulation model, first at coupon and then at component level. The 

coupon work focuses on determining the inherent stiffness properties of the hybrid 

material. The selected component work concentrates on the application of FRP to an 

automotive top-hat geometry with an application to the BIW. 

This chapter introduces the driving factors in the lightweighting trend, including 

the potential solutions relevant to the automotive industry. The costs associated with 

the raw materials are discussed and the changes in design mentality that the industry 

demands are investigated.  The scope of the project is also presented in detail, along 

with the formal thesis structure.  

 

 Drivers of the lightweighting trend 

The creation and signing of the United Nations Framework Convention on 

Climate Change (UNFCCC) [4] in 1992 signalled the start to the writing and 

implementation of government policies and regulations relating to the emission of 

greenhouse gases (GHG), namely carbon dioxide, methane, nitrous oxide, sulphur 

hexafluoride and chlorofluorocarbons (CFC). The Kyoto Protocol (2008-2012) [5], 

on reversing and reducing greenhouse gas emissions, is one of the most commonly 

known protocols to have come out of the UNFCCC treaty. Despite its only relative 

success, it has been largely instrumental in bringing the issue of the environmental 

impact of industrialisation to the general public. It has since been followed by the 

signing of the Paris Agreement, which took effect on November 4th 2016 and “brings 

all nations into a common cause to undertake ambitious efforts to combat climate 

change and adapt to its effects, with enhanced support to assist developing countries 
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to do so” [6]. Both the Kyoto Protocol and the Paris agreement have and will be 

drivers behind individual government policies and regulations regarding greenhouse 

gas emissions. One such example is the U.S. Environmental Protection Agency’s 

(EPA’s) regulation of GHG emissions under the Clean Air Act (CAA) [7]. In the 

USA again, and running in parallel to treaties focused on environmental impact, the 

Corporate Average Fuel Economy (CAFE) regulations aim to improve fuel economy 

of vehicles. Starting at 8.0 mpg in 1978, the standard is 27.5 mpg today and is aiming 

for 35.0 mpg in 2020 [8]. In the UK, the Society of Motor Manufacturers and 

Traders, the SMMT, reports European CO2 emission targets of 130 g/km in 2015 

and 95 g/km in 2020 [9]. In the automotive industry, these goals translate in part into 

weight reducing targets, as approximately every 10 % weight reduction can result in 

5 to 10 % greater fuel efficiency [10]. Individual automotive companies have also 

started setting in-house goals for improved fuel economy. For example, Ford Motor 

Company has indicated that weight reduction is a key part of its strategy. Plans are 

to improve fuel economy by 40 % by the year 2020 by reducing vehicle weight by 

as much as 340 kg [11]. 

These are just examples of the regulations applied to the automotive industries 

that all have the same goals: improvement of fuel economy, reduction of emission 

of polluting gases as well as weight saving targets for light, long-range electric 

vehicles. They highlight the need within the industry to design and manufacture 

lighter weight, efficient and optimised vehicles. 

 

 Automotive lightweighting context 

There are now recognised solutions to lightweighting a BIW, which include the 

downgauging of the original material, tailor welded blanks where multi materials are 

combined, lightweight material substitution such as aluminium or composites, and a 

BIW redesign [10]. However, despite its high density, there are a number of 
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advantages to steel as a BIW material, including raw cost, manufacturing ease, 

recyclability and knowledge-base. This project is specifically investigating the 

possibility of maintaining the steel BIW base, due to these benefits, whilst 

downgauging it to reduce mass, and locally reinforcing it with FRP.  

In the mid-1990s Messler [12] remarked that metallics and composites are often 

considered as competitive and unable to “coexist”. In his opinion, researchers are 

likely to “pick a side” and refuse to consider the hybrid options available. He also 

highlights that multi-material joining processes are lagging behind in terms of 

knowledge, performance characterisation and manufacturability compared to 

monolithic materials. Since then, trends show that FRPs are growingly being 

recognised as legitimate ways to reinforce metallic structures. Studies show that it is 

possible, through optimisation and the development of performance indices, to create 

lightweight multi-material automotive bodies without significant cost increase [13, 

14].  

There is however a pressing need to develop the knowledge-base surrounding 

these hybrid materials, ranging from their manufacturing, performance, 

optimisation, failure modes and range of application. 

Work has been done in terms of potential application (see Chapter 2, Literature 

review), however little work has been carried out towards the understanding of the 

fundamental properties of steel-FRP hybrid materials. There is a gap in knowledge 

concerning the basic properties of this material, its performance in stiffness, strength 

and crash. This thesis will focus on understanding specifically the stiffness of the 

material, and its potential in terms of replacing steel in a structure whilst ensuring 

there is no loss in performance. 
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1.2.1 Raw material costs 

Despite the economic downturn of 2008, global trends in raw material costs 

(metals, composites, fuel) show an average increase in prices over the last two 

decades. In 2001, the U.S. Department of Energy commissioned a review on “the 

cost of automotive polymer composites” [15]. It concluded that on a $/lb basis, the 

cost of polymer composites is about 2-3 times higher than steel. However, because 

of the higher weight reduction potential of these composite materials, the value of 

carbon fibre reinforced plastic (CFRP) weight savings lies in the range of $1.00 - 

$4.00/lb [15]. 

In addition to this, in 2008, in part due to the global recession, Autodata Corp 

reported a drop of 18.0 % in new vehicle car and light truck sales in the US compared 

to 2007 levels. In Europe, 2008 was the worst year for auto sales in 15 years; Spain 

recorded the highest drop at 28.1 %, and the UK a 11.3 % drop according to the 

European Automobile Manufacturers Association [16]. These factors combined are 

drivers in the lightweighting trend [11]. Consumers associate a lighter vehicle with 

lower start-up costs such as the purchase, taxes and insurance as well as lower 

running costs; reinforcing the industry’s need to lightweight its fleets. 

 

1.2.2 Change in design mentality 

There is a shift in design mentality happening alongside the drive to 

lightweighting. Optimisation is becoming prominent at every design stage and the 

use of Life Cycle Analysis points towards a move from empirical based design to a 

design methodology based on risk and performance.  

Companies and universities are building relationships towards working together 

to educate and train future engineers in the knowledge and skills required to 

understand and implement optimisation in the automotive industry. It can be applied 
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at every level of automotive design, from the material characteristics and usage to 

the overall design. Kelvin Lake, of the University of Wales Trinity Saint David, is, 

in the UK, pioneering the task of involving industrials in this process and raising 

awareness as to the gap the current education system leaves as to efficient optimised 

design in engineering [17]. Research centres, such as the UK’s Catapult or 

Germany’s Fraunhofer centres, are also providing a key link between industrials and 

academics [18]. 

A recent emphasis on Life Cycle Analysis as a feature of the design process has 

also influenced the design mentality. This stems partly from government and 

organisation standards on environmental “friendliness” such as the EU’s End-of-Life 

Vehicles Directive [16] which since 2006 requires that a minimum of 85 % by weight 

of an end-of-life vehicle is reused or recovered (including 5 % energy recovery) and 

a minimum of 80 % is reused or recycled. By 2015, reuse and recovery was forecast 

to increase to 95 % with a 10 % energy recovery and reuse and recycling to increase 

to 85 % [16]. Life Cycle Analysis is also a tool promoting optimisation, when 

thought about as a more efficient usage of materials [19]. 

 

 Scope of the project and novel contribution 

Chapter 2 will highlight the gap in published knowledge relating to the stiffness 

performance and weight save potential offered by the local patching reinforcement 

of steels using FRPs over their pure steel counterparts. It is intended that this project 

will seek to answer some of these questions, by focusing specifically on the stiffness 

and elastic performance of hybrid steel-FRP materials as well as pure steel and pure 

composite materials. Other characteristics will be noted throughout and discussed 

however the focus will remain on the elastic behaviour.  
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The aim of this project is to study the possibility of achieving an enhanced 

stiffness of low gauge advanced high strength steel structures using fibre reinforced 

polymers as patches, focusing on the automotive industry but consideration is given 

to other sectors.  

Explicitly not covered within the scope are the detailed study of the material 

under any other loading than quasi-static three-point bend, manufacturability, cost, 

recyclability, adhesive bond properties outside of an effective bond under elastic 

loading. 

 

 Layout of the document 

Chapter 1 has presented the context of the project, including the drivers and 

justifications behind it. Figure 1-2 presents an overview of the project. 

Chapter 2 presents the literature review and state of the art review of the use of 

steel FRP hybrid materials and shows the opportunity for this work, highlighting the 

current knowledge gap where hybrid material performance is concerned. 

Chapter 3 details the materials and methods used throughout the work. The steel, 

composite and adhesive are introduced, as well as the hybrid fabrication method for 

all samples. The instrumentation used in production and physical testing of the 

samples is also discussed, as well as the standards that guided the work. The finite 

element simulation software packages are also presented. 

Chapter 4 focuses on the coupon work. It discusses coupon manufacture in 

greater depth and the test regime operated. The physical testing was used in an 

iterative loop to create a simulation of the material behaviour, which was validated 

against further testing. From the results, the specific bending stiffness was calculated 

as well as the potential weight save for an identical performance in stiffness.  
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Chapter 5 presents the component work, where the knowledge from Chapter 4 

was applied to an idealised automotive component. It presents and discusses the 

experimental testing performed on the component sections and presents the final 

results in terms of performance and weight improvement comparisons.  

Chapter 6 describes the application of the simulation assumptions from Chapter 

4 to the component section. It discusses the difficulties encountered and proposes a 

solution.  

Chapter 7 discusses the overall learning outcomes from the research, as well as 

the wider implications for this work in terms of application to the automotive 

industry and the further research in hybrid material characterisation. It finalises the 

work, with a discussion of the results and observations, a definition of the perceived 

contribution to knowledge, and final conclusions for the thesis. 
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Figure 1-2: An overview of the project 
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2 LITERATURE REVIEW 

This chapter will focus on a literature review and summary of the state of the art 

research relevant to this thesis. It will start with the introduction of lightweight 

material options, as currently being researched and published, followed by a 

presentation of FRP-hybrid materials as an entity, focusing on the current 

applications and uses, moving on to the challenges of joining dissimilar materials 

and the methods for simulating this hybrid. Finally, this chapter will identify the 

opportunities for research and define the perceived contribution to knowledge. 

Due to their material characteristics (light, strong, durable) FRPs are increasingly 

popular as a lightweight solution to repairing or strengthening ageing metallic 

structures. A large proportion of the research concentrating on the use of 

FRP/metallic hybrids has been carried out with retrospective reinforcement in mind. 

However, increasingly stringent demands for lightweight solutions are pushing many 

designers towards the use of FRP-steel hybrid materials at the design stage. The 

following sections detail the most relevant research currently on-going in the field 

of FRP-steel hybrids. 

 

 A focus on the automotive industry 

Important design attributes for the vehicle body structure are its static stiffness 

and frequency response. The static stiffness is determined in both bending and 

torsion, and depends on the structural configuration, stiffness of the primary 

components of the body structure, joint design, as well as the joining method. The 

frequency response is determined using dynamic tests at the engine idling speed 

(typically 600 to 700 rpm), and depends on both the static stiffness and the mass 

distribution in the structure. For vibration–free operation, the first natural 

frequencies for the bending and torsional modes of the BIW must lie within a specific 
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range. Depending on the vehicle class, each vehicle manufacturer sets target values 

for the static stiffness and frequency response at the initial design stage and 

determines them using FEA and laboratory tests as the BIW is developed [20]. The 

stiffness of the primary components in the body structure depends on their shape and 

dimensions as well as the material characteristics. 

As mentioned previously, a 10 % reduction in vehicle mass leads to fuel savings 

from 5 to 10 % [10]. The body-in-white (BIW) is typically 20 to 25 % of the vehicle 

weight. There are recognised solutions to lightweighting an automotive steel 

structure, which include the downgauging of the original material, tailor welded 

blanks where multi materials are combined, lightweight material substitution such 

as aluminium or composites, and a BIW redesign [10]. A brief overview of their 

advantaged and disadvantages follows. 

Material downgauging is commonly defined as reducing the thickness of the 

material making a part, usually associated with an increase in material properties 

(different material grade). Advantages: Higher grade of material; Disadvantages: 

Can lead to decreases in stiffness, as the values of Young’s modulus E are 

unchanged. 

Tailor welded blanks use multiple thicknesses and grades of steel joined together 

(welded or brazed) then pressed into shape. Advantages: Progressive energy 

absorption; Disadvantages: Welding different grades of steel, ductility, formability, 

deflection response depending on weld location. 

Lightweight material substitutions use aluminium alloys, FRPs, magnesium 

alloys, titanium alloys, foams, etc. These include alternatives to monolithic sheet 

materials such as composite materials and sandwich materials. Advantages: Low 

density materials implies thicker parts which can match the bending stiffness for a 

lower mass; Disadvantages: Formability, reduction in strength, stiffness and 

hardness, difficulties relating to joining.  
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Finally, BIW redesign consists of redesigning the BIW structure or components 

of it, for example making space frame structures such as the Audi A2 or the Jaguar 

X351 and finally the BMW i-series. Advantages: Full control, no restrictions; 

Disadvantages: Cost. 

Steel has historically been the material of choice in automotive structures 

however, multi-material body-in-white solutions are becoming increasingly 

prominent. Multi-material cars make up approximately 2 % of production volume 

worldwide, though public awareness perception is skewed through advertising etc. 

[1]. Within multi-material cars, hybrid materials, consisting of two (or more) 

materials can be used in parallel.  

The pursuit of a comprehensive lightweight design implies the development of 

advanced structures that have undergone topological optimisations to fit all the 

loading requirements making use of the advantages of advanced materials such as 

composites. Using hybrid steel-FRP materials, it could be possible to find 

lightweight solutions to a complex set of requirements, taking advantage of the 

features of both the steel and the FRP that make-up the material. The FRP can be 

optimised to align its strengths with the load-paths in the structure, the steel can 

provide the underlying required properties.  

 

 Steel-FRP hybrid automotive applications 

It is worth noting from the onset that the studies published in the literature on 

steel-FRP hybrid materials are generally industry-funded and driven. They show a 

concern for manufacturability and “integrative potential” in existing structures, as 

well as a desire to minimise cost. There is very little focus on the fundamental 

properties of the materials used. There are a number of notable examples in which 

composite materials and metallic coexist in the design and manufacture of cars [1, 



  

14 

10]. The Ford Focus C170 is one high volume manufactured example. A hybrid front 

end structure was produced using FRP injection moulded ribs to reinforce sheet steel, 

as shown in  Figure 2-1 [21, 22]. 

 

Figure 2-1: Profile cross-section of a hybrid structure with special structural parts 

labelled [21] 

 

Figure 2-2: Load-deformation curve of the various profile sections tested in flexure 

[21] 
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Figure 2-2 shows an improved performance over an open sheet metal profile, and 

a slightly lower performance compared to a closed pure steel sheet metal profile. The 

studies on the part suggest a lightweighting for a given strength and stiffness, 

although they do not specify a value. They also suggest good recyclability. Lanxess 

[23] has additionally carried out further studies on plastic overmoulding of steel 

components. Their main findings are summarised in Figure 2-3. The thin, open, 

steel-only “U” section buckles under load, whereas the same profile stiffened with 

plastic ribbing has a performance approaching that of the theoretical steel 

performance.  

 

Figure 2-3: Load-deflection diagrams comparing an open “U” profile without and 

with plastic stiffeners [23] 

RWTH Aachen University in conjunction with VW and Daimler AG and funded 

by the Forschungsvereinigung Automobiltechnik (FAT) have researched a 

lightweight approach in which the sheet thickness of metals is reduced and local 

reinforcements of FRP (both glass fibre (GFRP) and CFRP) are added to compensate 

for the weakening of the structure [24]. The analysis is carried out on the floor 

structure of a representative middle class vehicle, specifically the rear tunnel bridge, 

the seat crossmembers, and the front and rear supports, as well as the floor long 

members. The materials used are PA 6.6 CFRP and PA 6 GFRP for composites and 

micro alloyed galvannealed high strength steels (minimum yield strength from 260 
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to 340 MPa). Using the simulation model available from the SuperLightCar program 

[25], the reference behaviour of the structure was obtained. Using Optistruct and LS-

DYNA (MAT_058) as simulation software, “the analysis of 120 variations with 

adaption and optimisation of the parameter sheet thickness, laminate thickness of 

the FRP elements as well as number, position and length of the reinforcing elements, 

lead to a lightweight floor structure, where through the use of 1 kg CFRP/GFRP a 

total weight reduction of 2 kg was achieved. This corresponds to a weight reduction 

of 22 %.” [24]. This research does not present the fundamental and basic mechanical 

characterisation of the stiffness performance of the materials.  

Universitat Paderborn investigated in 2010 a steel-composite hybrid structural 

component for cars, using specifically carbon fibres in a thermosetting resin. An 

epoxy-resin was used in conjunction with a nine-layer carbon fibre bi-directional 

scrim. The steel was a 22MnB5 alloy. They investigated primarily the 

manufacturability as the theoretical gain appears evident and claimed an overall 

potential 15 to 20 % weight save using an optimised steel-CFRP hybrid structure 

[26, 27]. They tested the application of a composite reinforcement in the inside of a 

top hat representative of an automotive pillar, in both quasi-static testing and crash. 

The geometry and application of the reinforcement can be seen in Figure 2-4.  

 

Figure 2-4: Geometry and location of composite reinforcement [27] 
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They noted a similar or improved performance from the hybrid material in all 

cases, as well as a potential lightweighting, which justified their research into the 

manufacturing techniques of steel-FRP hybrids for a high-volume application. Their 

work does not present the basic mechanical characterisation of the metallic-

composite hybrid materials. Additionally, it does not show the lightweighting 

potential at a material level compared to the presented results of system application. 

There is also no simulation presented or discussed.   

A number of studies using similar hybrid materials are present in the literature. 

However, the underlying focus was on the impact absorption and crashworthiness of 

hybrid structures. In the context of an ever increasing complexity of requirements 

for engineering structures, especially in crash applications, the latest developments 

in research focusing on lightweight materials have identified hybrid systems as one 

very promising way to realise advanced lightweight structures rather than one single 

“ideal” material [28]. Dlugosch [28], is the first to present the fundamental material 

properties of steel FRP hybrids, however his work is limited to a focus on energy 

absorption, and disregards any potential lightweighting application. The specimens 

used throughout his study are presented in Table 2-1. The fibre angle 0° indicates 

the specimen’s length axis. The steel sheets used in his research are of 1.5 mm 

constant thickness. The steel and composite are adhesively bonded together. His 

work, and its relevance to this project, is discussed in detail in later chapters as it was 

felt to be most beneficial. The samples were 190 mm in length, and 15 mm in width. 

The fibres were angled at 0°, 45°, 90° and 135°. 

Table 2-1: Specimen dimensions in study by Dlugosch [28] 

Number of plies GFRP CFRP 

4 2.8 mm 3.1 mm 

8 3.6 mm 4.6 mm 

16 5.9 mm 6.8 mm 
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Bambach [29-31] has also focused on FRP reinforcement for both square and 

tubular beams in crash applications, noting that the presence of FRP modifies the 

overall failure mechanism and increases energy absorption.  

As is highlighted from previous research, the main research focus appears to be 

on application to “complex engineering systems” rather than an investigation into 

the fundamental material characteristics. Dong [32] studied the strengthening of steel 

structures with FRP through flat coupons under tension, however limited his 

comparison to other steel-FRP hybrids rather than a comparison to steel structures 

only. Uriayer [33] tested steel-FRP coupons also under tension. He noted a response 

split into two main sections, one dominated by the performance of the composite (to 

failure) then a second dominated by the performance of the metal. 

Sadighi [34] presented a review of the impact resistance of fibre-metal laminates 

(FMLs), studying flat coupons under tension and flexure (impact loading). He noted 

a global increase in performance and overall superior characteristics. His study was 

limited to the aerospace sector and applications relevant within; however, his 

findings are applicable to this study.  

Dlugosch [28] additionally reports that a rather comprehensive study of hybrid 

materials on a coupon level was conducted by Mildner [35]. The title of this thesis 

indicates a focus of the work on crash behaviour of steel-FRP hybrid materials. 

Unfortunately, it has not been possible to source a copy of this work in English. 

Dlugosch reports: “Specimens composed of aluminium or steel adhesively bonded to 

GFRP- or CFRP-laminates of different fibre layups were tested under quasistatic 

tension and 3-point-bending conditions. Although the vast majority of tension tests 

had to be aborted directly after the laminate fracture due to the failure of the 

clamping mechanism, several interesting observations were made. According to 

predictions based on rule-of-mixture calculations for non-unidirectional fibre 

orientations in the laminates the stiffness of hybrid specimens did not reach the levels 
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of pure steel. The hybrids’ stress-strain-curve also showed a bilinear behaviour 

except for unidirectional CFRP-steel specimens, which reached laminate fracture 

before reaching the yield stress of the steel. Hybrid specimens with laminates with 

mostly longitudinal (0°) fibre orientations outperformed pure steel specimens in 

terms of strength while predominantly transversally reinforced hybrid specimens did 

not.” As stated by Dlugosch, Mildner’s work appears to have been hampered by the 

specimen clamping mechanism and results and conclusions primarily drawn from 

performance predictions rather than experimental results. However, the predicted 

performance presents and correlates with the bilinear response also witnessed by 

Dlugosch is his work. The results showing a better performance in samples with a 

longitudinal fibre predominance over samples with a transversal fibre predominance 

additionally correlate with work supervised within WMG [36]. 

Hybrid composites, constructed of two or more types of fibres of different nature 

(such as a combination of carbon and glass fibres), are beginning to be used more 

regularly in the automotive industry, for applications to structural components. 

Hybridising composites based on fibre nature is a means to achieving a similar 

performance as a single natured composite for a lower cost, and also of reducing 

weight compared to the traditional steel materials used. Aston Martin used the Gurit 

Car Body Sheet material – CBS 96 – to manufacture the DBS body panels [37, 38]. 

CBS 96 is a sandwich construction with four layers, saving weight relative to steel.  

 

Figure 2-5: CBS 96, 1 – in-mould surface film, 2 – first fibre layer, 3 – resin core, 

4 – second fibre layer [39] 
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The 2003 Dodge Viper used unidirectional carbon fibre sheet moulding 

compound (SMC) combined with glass fibre SMC in the windscreen surround [11]. 

The surround consists of two panels bonded together, both containing the two types 

of reinforcement in different places. The new design had 45 % less deflection 

compared to its previous design whilst also having only one edge requiring hand 

finishing rather than eight. The design also features in the 2013 SRT Viper [36, 39-

41]. Research has been undertaken comparing hybrid composites to monolithic 

composites, with many of the largest benefits occurring when testing the flexural 

properties. Subagia [42]  tested woven carbon/basalt hybrids as a sandwich in three-

point bending. They found that the hybrids showed a drop in flexural modulus and 

flexural strength of 16 % and 14 % respectively compared to monolithic carbon fibre.  

The literature shows industrial and research interests in the topic of metallic-FRP 

hybrid materials applications, for lightweighting purposes or otherwise. However, 

there has been no published evidence of a direct stiffness performance comparison 

of hybrid steel-FRP materials with their pure steel counterparts, specifically with a 

lightweighting focus. This work will focus primarily on quantifying the lightweight 

potential of a steel-FRP hybrid material over a pure steel material for a matched 

stiffness performance.  

 

 Other hybrid applications 

Lightweighting, and local reinforcement of structures using composite materials, 

is not confined to the automotive industry. Using FRP to reinforce structures was 

initially used in the aeronautical engineering industry. Here, the structures are not 

necessarily steel ones.  

Notably, as early as 1987, research pioneered by the Aeronautical Research 

Laboratories (Australia) presented examples of practical applications using 
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composite patches to repair damaged aircraft. These examples use boron/epoxy 

patches with epoxy nitride structural film adhesives curing at about 120 °C, 

graphite/epoxy (cloth) patches with epoxy paste adhesives curing at ambient 

temperatures and boron/epoxy patches with modified acrylic adhesives curing at 

ambient temperature. The paper puts forward relevant material, mechanical and 

physical properties: modulus, shear modulus, critical strain, specific gravity and 

thermal expansion coefficient [43]. One of the primary advantages of the use of a 

thin patch of composite to patch and repair cracks is that the patches are 

approximately half to a third of the thickness of an equivalent aluminium alloy 

repair. The patching also minimises stress concentrations, corrosion and fretting. It 

causes no damage to the structure and minimises undesirable structural changes by 

tailoring the patch to suit the stress field. The patches are also easily formed to 

complex contours. 

Meier, [44], highlights that the learning and technology used in aeronautical 

engineering can easily be applied to other areas of engineering such as civil 

engineering. Most research towards the application of steel-FRP materials focuses 

on the global reinforcement of steel beams using FRP materials, either pre-emptively 

through design or retrospectively. The DE-LIGHT Transport project run by the 

European Commission of research and innovation (Transport) highlights that other 

industries such as the marine and rail industries are investing in lightweighting 

research [45]. In the marine industry for example, Cao focuses on hybrid ship hulls, 

where steel beams are joined to composite beams [46-48]. 

Within civil engineering, research is split between applications to bridge 

structures, and applications to buildings. Indeed, a number of studies have been 

conducted investigating the use of composites as structural reinforcements to 

dissipate energy in seismic scenarios [49, 50]. The composite reinforcement 

properties are shown to have a positive effect on overall performance. 
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In the context of civil engineering, a number of review papers and books exist 

[51-53]. The use of composite reinforcements on structures is quasi-exclusively 

retrospective. Zhao in FRP-Strengthened Metallic Structures [51] gives an overview 

of the most prominent and relevant work performed in the civil engineering field in 

terms of FRP use in retrospective reinforcement. He highlights the milestone state-

of-the-art papers published and provides a summary and an insight into the gaps in 

knowledge. There is also substantial literature on the use of FRP in reinforcing 

concrete. [54-68] all present different aspects of the on-going civil engineering 

research into this topic.  

In addition to showing the positive outcomes of the local reinforcement, Schnerch 

et al, [54], discuss the durability of the CFRP-steel bond in environmental conditions 

including exposure to moisture and temperature fluctuations, galvanic corrosion and 

osmosis. The first two have an effect on the nature and performance of the bond and 

the third leads to debonding. The size and shape of the bonded patch is also studied, 

as the size of the reinforcement affects the stress and strain concentrations 

throughout the materials. 

 

 Joining mechanisms for dissimilar materials 

There are several obstacles to the joining of dissimilar materials which include 

high interfacial stresses, corrosion, heat, cold and differences in coefficients of 

thermal expansion. The use of joining can be structural, where the joint is load-

bearing, or non-structural. In brief, these techniques are: 

 Mechanical joining (bolts, rivets, etc.) - interlocking 

 Welding (ultra-sonic, induction, laser) [69] 

 Adhesive – chemical 
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Studies [70] have shown that adhesive bonds outperform spot-welded ones in 

three-point bend scenarios. However, adhesive methods can present issues with the 

manufacturing process (use of vacuum bagging, epoxy bleeding problems, shim 

cloth usage [71]) as well as present varying failure modes (peel, debonding) that can 

be complicated to predict. The AMRC Integrated Manufacturing group [72] has 

written a study on the current state of the art FRP surface preparation technology 

which examines these preparation techniques for their advantages and 

disadvantages. These have been described in the following bullet points: 

 Cleaning/Degreasing: Removal of loose solids can be accomplished 

with a clean brush or blast of clean, dry air. Organic solvent or alkaline 

aqueous solution removes organic materials such as grease, oil and wax 

from adherend surfaces. This can be accomplished by wiping, dipping or 

spraying. 

 Surface Roughening: The use of abrasive materials to remove unwanted 

layers and generate a roughened surface texture [72, 73]. 

 Chemical Treatments: Immersion of the adherend in an active solution 

which has the power to etch or dissolve a part of the adherend surface or 

change it in such a way that the free surface energy increases on the 

treated surface. An electrochemical reaction can also be included where 

current is transferred through an electrolyte between an auxiliary 

electrode and the adherend surface, e.g. anodising. This process 

introduces several additional factors to be controlled. 

 Physical Treatments: Techniques where the adherend surface is cleaned 

and chemically modified by exposure to excited charges or species. 

Techniques such as corona discharge, plasma, flame or exposure to 

ultraviolet and ozone are examples in this group. 
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 Primers: Alternative surface treatments, often simpler than chemical or 

physical methods, applied by dipping, brush or spray. They can 

chemically alter the surface (e.g. silane coupling agents, chromate 

conversion coatings), or protect the preferred surface already generated 

by another method (e.g. aerospace primers after anodising). 

 Cold metal transfer: small spikes are welded onto the surface of the 

steel which the fibres use as a fixation point during cure [74]. This can 

also be called z-pinning or 3-D weaving. 

 

 Theoretical analysis of the materials 

There are a number of theoretical methods to expressing the stiffness 

performance of a hybrid material. An explanation of the rule of mixtures and Halpin-

Tsai can be found in the Gurit Guide to Composites [71]. This is primarily used for 

pure composite structures however can be extended to a steel-FRP hybrid in 

situations where the steel is reinforced over its whole surface. The elastic material 

property calculations set forward by these two methods are based on the following 

assumptions: 

 The matrix and fibres each behave as linear elastic materials. The non-

linearity of the resin barely affects the material properties. 

 The interface between the matrix and the fibres is infinitesimally thin 

 The bond between the matrix and the fibres is perfect, thus the strains in 

each are identical. This implies the fibres are not slipping through the 

matrix, which close to failure is an invalid assumption. 

 The matrix material close to the fibres has the same properties as the 

material in bulk form, implying no chemical interactions between the 

fibre and the matrix.  
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 The fibres are arranged in a regular array, which relies on high quality 

manufacturing.  

The use of these assumptions, albeit flawed, provides reasonable predictions for 

stress and strain calculations in FRP structures, allowing the prediction of the elastic 

properties of the structure.  

The main equations of the rule of mixtures are: 

E1= EfVf+EmVm Equation 2-1 

E2= 
EfVf

EfVm+EfVm
 Equation 2-2 

Where E1is the elastic modulus in the direction of the fibres, and E2 is the elastic 

modulus across the samples. Ef and Em are the elastic modulus of the fibres and 

matrix respectively, and Vf and Vm the volume fraction of the fibres and matrix 

respectively. 

The main Halpin-Tsai Equations calculates E2 differently: 

E2= Ef

1 + αφVf

1 −  φVf
 Equation 2-3 

φ = 
Ef Em⁄ − 1

Ef Em⁄ + 𝛼
 Equation 2-4 

The coefficient α is determined empirically by fitting curves to experimental data, 

and depends on the characteristics of the fibres and loading conditions. It is generally 

taken as a value of 2 for calculations of E2. 

Bruno Ludke [75], BMW Body Design specialist, identifies four areas for critical 

consideration: structural dynamics, static stiffness, crashworthiness, weight 

optimization. He developed a lightweight design material criterion for bending 

stiffness √𝐸
3

𝜌⁄   [10] where E is Young’s modulus and ρ is the density of the material. 

This expresses the relative bending stiffness of the sheets. As discussed in detail in 

Chapter 4, these rules have their limitations, as they are based on values of Young’s 
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modulus, and limited when the reinforcement is a “patch” not covering the entire 

surface area. 

Dong [76-80] uses the ASTM standard for a simply supported beam where 

𝐸𝑓 =
𝑘𝐿3

4𝑏ℎ3
 Equation 2-5 

In which k is the slope of the load extension curve, L is the span length, b the 

width and h the thickness. This is also used by Dlugosch [28] in the context of his 

preliminary work on steel-FRP hybrid materials for crash applications. Research 

[57]  highlights and studies the gap that the standards leave when evaluating the 

stiffness and strength of a composite/metal adhesive joint. It concludes that, in terms 

of stiffness and strength, the highest impacting criteria is the overlap length, as 

adhesive thickness and stiffness ratio are negligible in comparison.  

It was found, however, in the context of this work that using “k”, the gradient of 

the load-extension curve, was the most appropriate means of expressing the stiffness 

of the coupon and component parts tested, as it enabled a direct comparison of the 

“engineering” performance of the samples tested, rather than an expression of the 

material performance. These are discussed within the context of their applications in 

Chapters 3, 4 and 5.  

 

 Purpose of this research 

This chapter has highlighted the gap in published knowledge relating to the 

stiffness performance and weight save potential offered by the local patching 

reinforcement of steels using FRPs over their pure steel counterparts. It is recognised 

in the literature that the lightweight and anisotropic properties of composite materials 

make them a viable solution for a lightweight retrospective reinforcement as they 

lend themselves to a “tailored” patch. There are emerging trends that promote the 
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use of “the right material at the right place, at the right time”. In part, automotive 

manufacturers have shown their interest in using multi-material combinations in 

their designs. Primarily, current research shows the use of hybrid materials where 

the composite is a global reinforcement, whereas this project focuses on global 

downgauging with a local patch reinforcement. However, there is a lack of 

fundamental research and supporting knowledge of the effect of the composite 

material on the steel.  

 It is intended that this project will seek to answer some of these questions, by 

focusing specifically on the stiffness and elastic performance of hybrid steel-FRP 

materials as well as pure steel and pure composite materials. Other characteristics 

will be noted throughout and discussed however the focus will remain on the elastic 

behaviour. As stiffness is defined by both the intrinsic material property and 

geometric aspect of the part, only the elastic region was studied so as to limit 

geometric interactions.  

There are advantages to using composite materials, as, due to their anisotropic 

nature, they can be tailored to situation specific needs. Using a hybrid steel-FRP 

material enables the harnessing of both these materials’ advantages and properties 

towards an end benefit. 

In other words, the purpose of this research is to quantify the lightweighting 

potential offered by the intelligent deployment of composite materials on steel parts, 

for a matched stiffness performance. The lightweighting potential of a hybrid steel-

FRP material compared to a pure steel material will be investigated at both coupon 

and automotive component level. A systematic comparison of hybrid material 

samples with benchmark steel samples will be conducted, based on their stiffness 

performance and lightweighting potential. 

The main focus of the work is to provide underpinning research to enable the 

further understanding of the opportunity of the stiffness performance of hybrid steel-
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FRP materials, both experimentally and in simulation compared to their pure steel 

counterparts, and taking into account the lightweighting potential. 

Hybrid specimens are fabricated from bonded DP600 and PA6 GF60 composite 

materials. Both flat coupon samples and automotive component samples are 

investigated – enabling an isolation of the material effects in the case of the coupon 

samples, and showing a global geometrical interaction in the case of the components. 

These samples are tested in quasi-static three-point bending to investigate 

lightweighting potential through matched stiffness performances.  
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3 MATERIALS AND METHODS 

This chapter will discuss the materials and methods used to carry out the 

experimental aspects of this research. This includes the materials studied, their 

relevant properties and the experimental and simulation programs carried out. It is 

intended that the reader, with a basic scientific knowledge, should be able to recreate 

the acquisition of data. 

 

 Steel DP600 

As discussed in Chapter 1, “Drivers of the lightweighting trend”, advanced high 

stength steels or ultra high strength steels are increasingly in use alongside formable 

steel grades in the design and manufacture of BIW. This makes them a direct target 

for lightweighting efforts.  This  research concentrates on the automotive grade 

advanced high strength steel HTC600X (Euronorm – now known as CR3304590-

DP), commonly known as DP600, a cold rolled Dual Phase (DP) steel with 

martensitic dispersion in a soft ferrite matrix [81].  

Figure 3-1 shows the relative performance of the DP steels compared to their 

alternatives.  
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Figure 3-1: Strength - elongation graph of the different types of steel produced by 

Tata Steel [81]  

 

3.1.1 DP600 properties 

The DP600, provided by industrial sponsor Tata Steel, has been studied 

extensively and its properties, summarised (and normalised) in Table 3-1, are well 

known [82].  

Table 3-1: DP600 properties obtained from tensile tests following standard BS EN 

ISO 6892-1 (2009) [83] 

Engineering constant Units Values 

Stiffness [MPa] 205000 

Poisson’s ratio – 0.3 

Yield Strength [MPa] 355 

UTS [MPa] 600+ 

ρ [kg/m3] 7850 

Coefficient of Thermal Expansion [10-6 m/(m K)] 11 

 

The rolling direction is known [84, 85] to affect the performance of steels as it 

alters the crystal alignment. Personal communications with A. Carrado [100], 

indicate the rolling direction has a greatest affect when at 45 ° to the loading 
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direction. A full study of the effect of the rolling direction on the sample performance 

is suggested for further study, however, here, variations in results are considered to 

be small enough to be ignored in this research.  

The thicknesses of DP600 used range from 0.5 mm to 1.6 mm. In the context of 

the coupon work (Chapter 4), the thicknesses used were 0.5 mm and 0.8 mm. In the 

context of the component work (Chapter 5), the thicknesses used in physical testing 

were 0.5 mm, 0.8 mm, 1.0 mm and 1.6 mm.  

The chemical composition of the steel is guaranteed by the manufacturer as 

follows in Table 3-2. 

Table 3-2: Chemical composition of DP 600 as guaranteed by manufacturer [82] 

Product 

C Si Mn P S Altot 
Cr + 

Mo1 

Nb + 

Ti2 
V B 

Max 

 

Max 

 

Max 

 

Max 

 

Max 

 

Max 

 

Max 

 

Max 

 

Max 

 

Max 

 

DP 600 0.17 0.80 2.20 0.080 0.015 ≤2.00 1.00 0.15 0.20 0.005 
 

 

3.1.2 DP600 coating 

The steel used in these experiments was uncoated as the coating of the steel 

affects it’s surface energy and therefore the bonding potential. It was considered that 

various surface treatments, such as galvanisation, zinc coating, etc. could provide a 

higher performing bond between the steel and FRP, however this investigation was 

deemed outside of the scope of the project. Results in Chapter 4 provide the 

observations and discussion supporting the use of uncoated steels. These concluded 

that the elastic region of the load extension curves was not affected by the nature of 

the bond, and when failure did occur, which was also considered outside the scope 

of this research, it was either by delamination of the composite or cohesively within 
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the adhesive layer. The nature of the coating of the steel was therefore excluded, and 

uncoated DP600 used throughout.  

It was preseved from rust with an oil-based layer which was easily removed in 

surface preparation with the use of a solvent. The surface of the steel was 

mechanically roughened and cleaned in preparation for the adhesive bonding. A 

number of trials and literature studies [60, 61] showed this to provide the best bond. 

The abrasion is done manually using 180p emery cloth in circular motions to keep 

the abrasion regular over the whole surface. The steel was also lightly heated to 

approximately 60 °C to facilitate the spreading of the adhesive. 

These techniques are discussed further in Chapter 4, Coupon program and 

Chapter 5, Component program. 

 

 Composite 

The choice of thermoplastic versus thermoset for the composite matrix was 

influenced by a number of factors, including life cycle analysis and recyclability, 

material procurement, ease of manufacturing, etc. It was also considered important 

that the fibres of the composite should run in a single direction, as that enables for a 

freedom of layup, where a woven composite would restrict the possible layup 

options. Unidirectional fabrics are generally in a pre-impregnated format, as this 

keeps the fibres in order. In terms of the nature of the fibre, glass is considered in a 

first measure, due to the lesser cost of manufacturing, with carbon being used in a 

second stage. 

The final selection of thermoplastic composite PA6 GF60 and PA6 CF60 was 

supported at the most recent International Conference on Composite Materials 2015 

which highlighted the industry’s interest in the use and study of thermoplastic 

composite materials [86]. 
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3.2.1 PA6 GF60 – Glass Fibre 

The thermoplastic used in testing is a PA6 GF60 purchased from Ticona, the 

engineering polymer business of Celanese Corporation. This is a pre-impregnated 

polyamide 6 matrix with continuous glass fibres at Vf = 60 %, Tm = 235 °C; 

additional properties summarised in Table 3-3. The fibre volume fraction of 60 % is 

the highest fabricated by the producer Ticona, and provides higher material 

performance characteristics compared to lower fibre volume fractions. Additionally, 

it has the lowest coefficient of thermal expansion, due to the higher percentage of 

fibres. In order to best improve the stiffness performance of the hybrid material, this 

high-performing composite was selected.  

 

As discussed previously, a thermoplastic composite is deemed most interesting 

to investigate. The current thermoplastic composite used is specifically selected due 

to the extensive research that it had already undergone within the WMG group and 

the corresponding knowledge base [87, 88]. It has also been the subject of previous 

automotive research. The material properties were established and rigorously tested 

over the course of the Low Carbon Vehicle Technology Programme (LCVTP) [88]. 

In that context, it was chosen for its combination of cost, performance, 

processability, and recyclability. An equivalent PA6 CF60 (carbon fibre) is 

commercially available, however it was not included in the experimental part of this 

study as its high cost (5 times higher than E-glass) was prohibitive.  
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Table 3-3: PA6 GF60 properties obtained from tensile and flexure testing [88, 89] 

 Engineering Constant Units 
Unidirectional (single 

ply) 

Stiffness 

E11 [MPa] 28650 

E22 ≈ E33 [MPa] 6800 

G12 [MPa] 200 

G13 ≈ G23 [MPa] 100 

Poisson's ratio υ12 - 0.36 

Density ρ [kg/m3] 1720 

Thickness T [mm] 0.23- 0.26 

Coefficient of Thermal expansion [10-6 m/(m K)] 26.5 

 

The composite is layed-up and consolidated by being heated to 240 °C. Heating 

the composite to 5 °C above the melting temperature ensures that the polyamide 

matrix reaches liquid state and all the layers merge. The surface finish to which the 

adhesive bonds to is achieved using a peel-ply fabric. Figure 3-2 is a micrograph of 

the adhesive-composite bond, and shows the surface well. From left to right, steel 

DP600, adhesive SAS 272, [0,90][90,0] PA6 GF60.  

 

Figure 3-2: Micrograph image showing the layup of DP600, SAS 272 and 

[0,90][90,0] PA6 GF60 

The micrograph highlights how the surface finish of the peel ply increases the 

surface energy and allows for an “interlocking” of the adhesive into the composite 

layer.  

The following micrographs in Figure 3-3 shows the surface preparation of the 

PA6 GF60 which is the imprint of the peel-ply fabric in the matrix that occurs when 
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the matrix is heated past its melting temperature. The peel-ply moulds the matrix to 

it’s shape, leaving a roughened surface with varying heights that enables the adhesive 

to interlock with the surface and create a high quality bond. The two images in Figure 

3-3 show the variation in height across the surface which allows for adhesive “lock-

in”.  

 

a) Top layer of peel-ply surface 

preparation 

 

b) Bottom layer of peel-ply surface 

preparation 

Figure 3-3: Micrographs showing the depth of peel-ply surface preparation a) top 

layer of peel-ply surface preparation, b) bottom layer of peel-ply surface 

preparation 

The difference in focus in the two images highlights the difference in depth 

provided by the peel ply.  

 

3.2.2 PA6 CF60 – Carbon Fibre 

As well as the PA6 GF60, a pre-impregnated polyamide 6 matrix with continuous 

carbon fibres (PA6 CF60) is used in the simulations. This is also a Ticona product, 

with relevant properties presented in Table 3-4 [90]. Due to the incurred costs of this 

material, it is used only in the simulation. A PA6 CF70 was available from the 

manufacturer, however, for continuity purposes a PA6 CF60 was also used.  
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Table 3-4: PA6 CF60 properties obtained from tensile and flexure testing 

Engineering Constant Units Unidirectional (single ply) 

Stiffness 

E11 [GPa] 100 

E22 ≈ E33 [GPa] 5.7 

G12 [GPa] 2.5 

G13 ≈ G23 [GPa] 2.9 

Poisson's ratio υ12  0.37 

Density ρ [kg/m3] 1472 

Thickness T [mm] 0.16 

 

 Adhesive 

As the hybrid material performance was only considered within the elastic region, 

the adhesive simply needed to provide characteristics by which it would not fail 

within the elastic behaviour of the steel and the composite. In testing, none of the 

adhesives presented failure in the elastic regions of the tests. It is recognised that 

there could be a “sandwich” effect due to the presence of adhesive between the steel 

and the composite, however this is deemed outside the scope of the project. Three 

different adhesives were used in the sample preparation. Originally, S10, an Alpha 

Adhesive one-part epoxy based resin was used. The following iteration of adhesive 

was also an Alpha Adhesive one-part epoxy SAS 272. Initially, Alpha Adhesives 

were the manufacturer of choice due to their adhesive having been used in previous 

automotive studies. Additionally, they present an excellent working relationship 

with WMG and an ability to manufacture adhesives “on demand”. However, a 

change in their internal structure meant the supply of adhesive was discontinued and 

a Sika adhesive was used instead. The final adhesive used was a two-part Sika epoxy 

490 C. This is one of the adhesives being considered for manufacturing with 

composites by Jaguar Land Rover, specifically in crash applications. All three 

adhesives present performances that are deemed suitable for the application. Lap 

shear test results for the SAS 272 adhesive and Sika 490 C adhesive (identical 

substrates) are presented and their performances compared as follows.  
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3.3.1 Alpha Adhesives S10 and SAS 272 

Due to the product shelf life and slight iterations within the manufacturing 

company, Alpha Adhesive, the initial adhesive used was an S10, followed by an SAS 

272. SAS 272 is an iteration of S10, with a lower viscosity to facilitate the handling 

performance in the fabrication phase. The performance as an adhesive is guaranteed 

by the company, therefore both are treated as having the same characteristics. 

However, some checks are run based on lap-shear tests and show a consistency in 

performance. The S10 was black in colour, the S272 was white.  

Figure 3-4 shows the heat flow curve from the DSC  [91]. It highlights the 

exothermic chemical reaction that occurs during cross-linking. When the curve 

stabilises, the chemical cross-linking is over. At 150 oC, the adhesive will be fully 

cured after 600 seconds.  

 

 

Figure 3-4: Heat flow curves for S10 adhesive [91] 

This S10 adhesive was used for the first series of material testing, but was out of 

production for the remainder of the research. The SAS 272 one-part epoxy based 

resin is also dependant on heat to cure. The inclusions present in the micrograph 
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shown in Figure 3-2 were investigated. Results are presented in Appendix A. The 

adhesive contains aluminium tri-hydrate. A full chemical breakdown was not 

available from the manufacturer. 

In addition to determining the nature of the adhesive at the micro-scale, some data 

is collected at the macro-scale enabling the comparison of the Alpha Adhesive with 

the Sika using lap-shear tests. 

Lap shear tests for the SAS 272 adhesive between a CF MTM57 and AC600 E 

coated aluminium show a maximum shear strength of approximately 18 MPa, for a 

“stiffness” of 13 MPa/mm.  

 

Figure 3-5: Lap Shear strength extension curve for the SAS 272 adhesive between 

a carbon fibre MTM57 and AC600 E coated aluminium [92] 

 

3.3.2 Sika 490 C 

The final adhesive used is the Sika 490C two-part epoxy. This adhesive cures at 

room temperature over 24 hours, however, for ease and rapidity in sample fabrication 

it is heated to 80 °C for 30 minutes. The Sika 490C is pink in colour, and contains 
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glass beads of 0.3 mm in diameter that ensure a constant thickness throughout the 

adhesive layer when spread. The datasheet is available in Appendix C. 

The following graph shows the lap-shear curves to allow for a direct comparison 

with the SAS 272.  

 

Figure 3-6: Lap Shear strength extension curve for the Sika 490 C adhesive 

between carbon fibre MTM57 and AC600 E coated aluminium [92] 

The Sika 490 C shows a significantly greater performance to the SAS 272 in 

terms of strength, the Sika 490 C has a maximum lap shear strength of approximately 

27 MPa, compared to approximately 18 MPa in the SAS 272. Both adhesives present 

a similar stiffness, approximately 13 MPa/mm.  

The change in the adhesive was deemed acceptable as the performance of the 

adhesive in stiffness were comparable, and the Sika 490 C presented a higher bond 

strength compared to the SAS 272. 
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 Testing 

This section discusses the equipment and methods used to cut, bend and test the 

materials and specimens. It also gives a brief overview of the standards used as 

guides through the experimental work. 

 

3.4.1 Equipment 

3.4.1.1 Cutting the specimens 

Cutting of the specimens is done using either a guillotine, water jet cutting or a 

CNC milling machine.  

A guillotine was used to cut the steel sheets and the composite pre-preg tape to 

the required sizes. This is a rough cutting technique. Water jet cutting was used in 

cases where large samples, for example the components, needed to be cut to within 

1 mm of a set shape. It can be a more damaging cutting technique for the steel as it 

removes the oil coating and allows the steel to rust. It offers the cutting of more 

complicated shapes compared to the guillotine, which can only handle flat sheets and 

straight cuts.  

The CNC milling machine was used to cut out small sized specimens, where a 

high degree of precision is required. In the case of the coupon specimens, sheets of 

hybrid steel-composite of 500 mm x 500 mm in dimension were assembled and the 

specimens were cut using a Datron M7HP 3-axis high speed milling machine. The 

cutting technique was iteratively selected as initial samples had poor size consistency 

and surface finish. The final method required a spindle speed of 17000 rpm, using 

two 1.8 mm diameter diamond finished steel cutters, 2 or 3 flutes. The first cutter 

was used for the initial rough cut, and the second for the finishing cut. Pass depth on 

the rough cut were set to 0.5 mm and through the entire thickness on the final cut. 

The allowance between the rough and finishing cut was set at 0.05 mm. The samples 
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were cut with the composite face down so the cutters penetrated the steel first. This 

increased the quality of surface finish.  

 

3.4.1.2 Shaping the specimens 

The component sections required pressing into shape. The equipment used for 

this task was the Interlaken SP 225 hydraulic 1000 kN press, using a final pressure 

of 800 kN, a rate of 100 kN/s holding for 30 seconds. The tooling used for the 

pressing was designed for 1.6 mm thick material, so in order to press the 0.5, 0.8, 1.0 

mm thick steels, spacers were used. Appropriate thicknesses of steel were used to 

offset the samples to ensure the final geometry was correct. The geometry profile in 

all samples was of the female part of the press, to ensure all samples were identical. 

This was reflected in the simulations. 

A brief springback investigation was carried out on 1.6 mm thick samples in order 

to determine the most successful forming method. A number of combinations of 

pressure, speed and hold time were attempted (presented in Table 3-5) and the spring 

back of the material comparatively quantified.  

Table 3-5: Variations of hold time, pressure and rate attempted to press samples 

Hold time Option 1 10 s 
 Option 2 30 s 

Pressure Option 1 100 kN 
 Option 2 800 kN 

Rate Option 1 100 kN/s 
 Option 2 800 kN/s 

 

The samples were scanned by Dr. Abhishek Das, a member of WMG, to provide 

the following data points, indicating levels of springback (presented in Table 3-6). 

Full scans of the samples are available in Appendix B. He followed the following 

steps [93]: 
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 Data collection: Surface based measurement was necessary which 

provided large data points in terms of 3D Cloud-of-Points (CoPs). In this 

case, a laser scanner was used to capture surface data of the stamped 

parts. The scanner was attached as an end effector with one commercial 

measurement system, Romer (by Hexagon).   

 Data processing: The captured data was processed with post-processing 

software PolyWorks (by InnovMatric) which had the following three 

steps: 

o Data Import: Nominal CAD model and CoP data were imported 

in the post processing platform. 

o Data Cleaning: The noisy data was removed with a data removal 

tool and the captured data was subsampled for faster 

computations. 

o  Data Alignment: The cleaned part surface based data (i.e. CoP) 

was aligned with the CAD model for further analysis.  

  Surface Deviation Computation: The surface deviation was computed at 

mesh node points. The surface colour map was generated for visual 

inspection 

The samples scanned were all 1.6 mm in thickness, pressed at the rate of 800 

kN/s; as this had provided the best results prior to the study of the effect of Pressure 

and Hold Time.  

Table 3-6: Maximum deflection from scans of samples after forming at varying 

pressures and hold times 

Rate, Pressure, Hold Time Springback side profile 

R: 800 kN/s, P: 100 kN; HT: 10 s Max deflection ~14 mm 

R: 800 kN/s, P: 100 kN; HT: 30 s Max deflection ~14 mm 

R: 800 kN/s, P: 800 kN; HT: 10 s Max deflection ~13 mm 

R: 800 kN/s, P: 800 kN; HT: 30 s Max deflection ~11 mm 
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3.4.1.3 Three-point bend equipment 

To investigate the stiffness of the hybrid material chosen, quasi-static three-point 

bend tests are undertaken. These are analogous to a side-impact automotive load 

case, where stiffness and energy absorption must be balanced to minimize intrusion 

and occupant accelerations. In the context of this work, stiffness will be the primary 

focus. The quasi-static testing was done using the 100 kN Instron Universal Tensile 

Testing machine in compression with a three-point bend fixture. Figure 3-7 shows 

an image of the set-up, where the top section is fixed and the bottom section moves 

along the red arrow (screw driven). 

 

Figure 3-7: Three-point bend test rig and fixture 

The speed was set according to the standards, at vcoupon = vcomponent = 1 mm/min 

for both the coupon and component testing.  

The data was recorded then exported to Microsoft Excel for post processing and 

analysis. 
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3.4.2 Standards 

There are no specific standards for the testing of hybrid materials. The closest 

standards available are used as the guideline for the testing of the material. The 

British Standards and ASTM standards are: 

 BS EN ISO 14130:1998 – Fibre-reinforced plastic composites – 

Determination of apparent interlaminar shear strength by short beam 

method [94] 

 BS EN ISO 14125:1998– Fibre-reinforced plastic composites – 

Determination of flexural properties [95] 

 ASTM D7264/D7264M – 07 Flexural properties of polymer matrix 

composite material [96] 

These state that at least five specimens shall be tested and set the size and aspect 

ratio of the samples based on their thickness. It was decided that the aspect ratio of 

the samples would remain the same for all tests regardless of the thickness. This 

simplifies the testing process and enables a direct comparison of performance.  

The standards also give precisions as to the acceptable failure mode, defined as 

shear failure but this is considered outside the scope.  

 

 Simulation program 

Finite Element Analysis (FEA) is the widely accepted method to predict the 

performance of a known material under specific circumstances and perform a 

sensitivity or parametric analysis on the variables. It is used to predict the behaviour 

of large components, relying on a series of assumptions and known properties. The 

properties of the materials are incorporated into the FE model to simulate loading in 

bending of the samples. Once validated against the test results, this FE model is used 

to simulate, predict and evaluate coupon and component designs.  
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This chapter discusses the software packages used, with their advantages and 

limitations. 

Initial simulation is performed using LS-DYNA, software developed by the 

Livermore Software Technology Corporation (LSTC). Following that the composite 

tailored software Genesis (Design Studio interface), developed by Vanderplaats 

R&D is used. 

 

3.5.1 Element Selection and Meshing 

There are large number of mesh density analysis studies in the literature [84, 85]. 

These show the convergence of the predicted results as the mesh gets finer, as well 

as an increase in computational time.  

As a result, only brief mesh density analysis was performed as part of this 

research, as the element size is small compared to the obtained deflections. 

Increasing the mesh density increases the detail and precision of the simulated part, 

at a computational cost. Here, the mesh density is “medium-high” and the 

computational time in the order of seconds. The overall deformed shape resembles a 

continuous curve and does not present the “discontinuous” aspect of a large element 

mesh. In both the case of the coupon simulation the mesh density “check” consisted 

of halving the size of the mesh to investigate possible changes in outputs. The results 

were found to be identical to the ones generated by the initial larger and less time 

consuming mesh. The original element size was deemed suitable and used 

throughout. The element size varied between the coupon and the component 

simulations. 

There are two types of elements that could be used to model the geometries 

investigated: solid elements and shell elements. The choice of element type depends 

on the geometry analysed, expected stress state, software used, and theories 
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followed. Some material cards will also restrict the nature of the elements. Shell 

elements are essentially 2-dimensional elements and solid elements are 3-

dimensional. Shell elements are comparatively thin to the length of the sample, and 

generally require a shorter computational time than solid elements.  

In the case of composite modelling, most material cards require the elements 

defining them to be shells. Shell elements are also the easiest to apply, geometrically 

most accurate as there is little to no through thickness consideration.  

There are two time integration scheme control methods that can be used to run a 

simulation, implicit and explicit. The support for LS-DYNA software users online 

explains it best as follows  [97]: “Explicit methods calculate the state of the system 

at a later time from the state of the system at the current time. Implicit methods solve 

an equation involving the state of the system at both the current and later times. In 

nonlinear implicit analysis, solution of each step requires a series of trial solutions 

(iterations) to establish equilibrium within a certain tolerance. In explicit analysis, 

no iteration is required as the nodal accelerations are solved directly”. Due to the 

implicit methods using two state of system time factors, the calculations are 

computationally expensive compared to the explicit method. Static analysis, which 

presents smaller variable numbers than a dynamic analysis, is generally performed 

using an implicit solver. Dynamic analysis of a system can use either an implicit or 

an explicit solver. 

 Where it concerns time steps, explicit and implicit solvers vary. “The time step 

in explicit analysis [takes the minimum] Courrant time step (time it takes a sound 

wave to travel across an element). Implicit transient analysis has no inherent limit 

on the size of the time step. As such, implicit time steps are generally several orders 

of magnitude larger than explicit time steps” [97].   

Implicit analysis requires a numerical solver to invert the stiffness matrix once or 

even several times over the course of a load or time step. This matrix inversion is an 
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expensive operation, particularly for large models. Explicit solvers do not follow 

these steps. Explicit analysis handles nonlinearities with relative ease as compared 

to implicit analysis. This would include treatment of contact and material 

nonlinearities. 

LS-DYNA support explains furthermore  [97]: “In explicit dynamic analysis, 

nodal accelerations are solved directly, as opposed to iteratively. These are 

calculated as a multiplication of the inverse of the diagonal mass matrix by the net 

nodal force vector. The net nodal force includes contributions from exterior sources 

(body forces, applied pressure, contact, etc.), element stress, damping, bulk 

viscosity, and hourglass control. Once accelerations are known at time n, velocities 

are calculated at time n+1/2, and displacements at time n+1. Once the 

displacements are known, strain and stresses can be calculated, and the cycle 

repeated”. 

The material properties are defined using the experimental data as presented 

earlier in Chapter 3. 

 

3.5.2 LS-DYNA 

The geometries modelled are broken down into parts, which contain the elements 

inherent to that section, and have assigned material characteristics and constraints. 

In LS-DYNA, the most straightforward way of modelling a multi-layered material 

is to use PART_COMPOSITE. As explained in the user manual, 

PART_COMPOSITE “provides a simplified method of defining a composite 

material model for shell elements and thick shell elements that eliminates the need 

for user defined integration rules and part ID’s for each composite layer.” [98].   

LS-DYNA boasts nearly 300 material models of which 25 can be applied to the 

simulation of composite materials. These were all developed for different 
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applications. A material model is picked based on the availability of parameters and 

data from the experimental work that will fit into the mathematical model of the 

material card. The most suited to the modelling of this material and behaviour is 

MAT_58 Laminated Composite Fabric [91]. 

Based on the assumption that the adhesive bond between the PA6GF60 and the 

DP600 is perfect in the elastic region, the simulations were performed in the LS-

DYNA solver, using PART_COMPOSITE, MAT_58 Laminated Composite Fabric 

for the PA6GF60 and MAT_2 Orthotropic Elastic for the DP600. MAT_2 

Orthotropic Elastic is a relatively simple material card, with limitations, however in 

the elastic simulation circumstances is appropriate. In more complex scenarios, 

MAT_24 Piecewise Linear Plasticity should be used. 

The detail of the simulation of the coupon and component systems are discussed 

in Chapters 4 and 6 respectively. 

 

3.5.3 Genesis  

This software developed by VanderPlaats R&D is well suited for the elastic 

simulation of bodies and tailored for use with composite materials. It does not cater 

for dynamic analysis however is provided with an add-on which links it to LS-

DYNA and allows for the simulations to run.  

Similar assumptions were used here, P_COMP was used as the equivalent to 

PART_COMPOSITE, and the materials are defined within the software bounds. 

This can be used in conjunction with the Reinforcement Derivation Method and 

other optimisation add-in [99] for the optimisation placement of the composite 

reinforcing patches. The details are discussed in Chapters 4 and 6. 
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3.5.4 Optimisation Concept 

A model of the static stiffness and frequency response of a BIW could be used in 

further to assess potential locations for reinforcement. The focus should be on global 

stiffness behaviour.  

 Areas where there is stress concentration and the direction of the stress 

is known 

 Areas where the current gauge of steels allows for down gauging of steel: 

the overall thickness may increase but there is an opportunity for weight 

saving 
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4 COUPON PROGRAM 

This chapter discusses the initial experimental and simulation study, where the 

principle aim was to characterise the hybrid material stiffness performance and 

establish the viability of the concept for lightweighting. Using a coupon shape in 

quasi-static bending, the material was investigated and the data analysed. The 

manufacturing of the samples and the testing is discussed in detail. The assumptions 

and set-ups used to create the simulated FE model are also presented, as well as a 

validation of the model against experimental data.  

The appellation “hybrid” refers to samples of DP600 reinforced with composite 

material. “Pure steel” refers to the un-reinforced DP600 samples. “0.5 mm hybrid” 

refer to hybrid samples with a 0.5 mm DP600 layer, and “0.8 mm hybrid” refer to 

hybrid samples with a 0.8 mm DP600 layer.  

 

 Testing 

This section concerns the production and testing of the benchmark pure steel and 

the hybrid samples. All aspects are covered in order to make the process as 

reproducible as possible by the reader. 

 

4.1.1 Sample production and hybrid preparation 

The optimised manufacturing of the hybrid and its applicability in an industrial 

context was considered outside the scope of this project. A simple, straightforward 

and repeatable preparation method was the aim and final outcome. The experimental 

approach to sample preparation was none-the-less an iterative process, until 

satisfactory samples were produced. 
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All hybrid coupon samples were produced using a vacuum bagging technique and 

cured at temperature in a Royce Industrial Oven. 

Initially, a one-step technique was used. The composite pre-preg was prepared 

following the lay-up technique presented in Chapter 3. The steel was also prepared 

following the process described in Chapter 3 and the unconsolidated pre-preg, 

adhesive and steel placed in a vacuum bag. This was then cured at 240° C (the 

consolidation temperature of the PA6 GF60) for 10 minutes. This technique was 

discarded as, when tested, these samples disintegrated at the interface. It was 

believed that the consolidation temperature of the composite damaged the adhesive, 

causing a degradation and loss of properties. These samples provided a useful 

learning step towards the manufacturing, cutting and testing of the final specimens. 

As the first method was unsatisfactory, a multi-step process was attempted. The 

steel surface was prepared for adhesion through manual abrasion. This increases the 

surface energy of the steel and is known to improve the bond strength [73]. In 

parallel, the composite was layed-up and consolidated under vacuum at 240 °C, 

using a removable peel ply fabric applied to one side as the surface preparation for 

adhesion. In the final step, the steel and consolidated composite were bonded 

together using a one-part epoxy (recommended in-house and from Alpha Adhesives) 

cured under vacuum at 150 °C for 3 hours. This finalised process provided 

satisfactory results discussed in Chapter 4, Results and Discussion. Detailed below 

are the material specific preparation steps. 

 

4.1.1.1 Steel preparation 

No specific attention was paid to the rolling direction as it is known to have 

negligible effects on performance, as discussed in Chapter 3. The steel was handled 
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in sheets of 500 mm2. This allowed for batch sample production and increased 

repeatability. 

Multiple methods of surface preparation are possible. The Handbook of 

Adhesives and Surface Preparation [73] suggests that primers may be desirable if the 

bonds were subjected to rigid environmental exposure so as to prevent the bond from 

degrading. It also concludes that mechanical roughening techniques are preferred 

over chemical treatments. The adhesive manufacturer Sika also recommends the 

following surface preparation “The surface to be bonded must be free of oil, grease 

and other impurities. The bonding area must be cleaned with a lint free towel and n-

Heptane. It is advised to grind the bonding surface followed by cleaning with n-

Heptane.” Further instructions from the manufacturer can be found in the attached 

document in Appendix C. It is acknowledged that the bonding interface greatly 

affects the stability of the results, however the results generated in the context of this 

work have shown to be repeatable and provide confidence in the surface preparation. 

Additionally, surface preparations such as plasma or corona treatments can provide 

an equally high performing bond [100]. Here, it is speculated that the bonding is a 

combination of mechanical interlocking and covalent bonding. A full adhesive study 

is suggested in further work. 

The steel surface was degreased using a generic multi surface cleaning agent and 

hot water. Care was taken to dry the sheet thoroughly (using either blue towel or a 

hot air dryer) after cleaning to avoid rapid corrosion. The steel sheet was then bathed 

in acetone to remove any soap residue then in isopropyl alcohol to remove acetone 

residue. The surface was then sanded manually as described in Chapter 3 using P180 

sanding disk. This disk grain size provides a roughening neither too fine nor too 

coarse, shown to be adequate for adhesive bonding to steel [84]. 
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Two thicknesses of steel were used in the hybrid coupon samples, 0.5 mm and 

0.8 mm. Both were prepared following the same steps. The steel used in 

benchmarking tests did not require surface preparation. 

 

4.1.1.2 Adhesive preparation 

The hybrid coupon samples were produced using the Alpha Adhesive one-part 

epoxies, shown in Chapter 3 to be recommended for similar materials and applicable 

to PA based composites [101]. These were stored at 5 °C in order to prolong shelf 

life and were taken out approximately an hour before use to increase temperature 

and lower viscosity, making it easier to handle. 

Additionally, it was found that heating of the steel allowed better flow of the 

adhesive on the surface, giving better coverage. When applied to the warm steel, the 

viscosity of the adhesive decreased. As can be seen from Section 3.3 “Adhesive”, at 

60 °C, this does not significantly accelerate the curing cycle and enables a more 

consistent thickness throughout the adhesive layer. The roller pin used to spread the 

adhesive was also pre-heated, aiding the spreading.  

The final hybrid was heated for 60 minutes at 150 °C, the curing temperature of 

the adhesive. This was to ensure that the heat has fully penetrated the sheet and that 

curing had occurred. This produced a hybrid plaque, where cutting at different angles 

provided the given lay-ups. 

 

4.1.1.3 Composite Preparation 

Throughout the experimental section of this coupon study, the composite used 

was the PA6 GF60 presented in Chapter 3. 



  

54 

A hand lay-up technique was used to produce the composite laminates. A 4-ply 

symmetrical laminate, [0,90][90,0], was layed-up, where the individual 

unidirectional layers were tacked together using a soldering iron at 240 °C. The stack 

was then cured under vacuum bagging condition at 240 °C for 10 minutes. The peel-

ply cloth spread over the top surface of the composite has a dual action, as detailed 

in Section 3.2 “Composite”, page 32. It prevents the matrix from attaching to the 

vacuum bag and when removed provides the ideal surface condition for the adhesive 

bonding.  

Figure 4-1 shows the fibre direction convention used throughout this study. In the 

figure, the top layer, in grey, depicts the fibres running at 45° to the length of the 

sample. The middle layer, was pale blue, depicts the fibres running at 90°. The 

bottom layer, in pink, depicts the fibres running at 0° to the length. 

 

 

Figure 4-1: Sketch defining fibre directionality in the three-point bending samples 

(not to scale); from top to bottom 45° (grey), 90° (blue) and 0° (pink). 
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4.1.1.4 Hybrid preparation 

In the finalised production of hybrid three-point bending samples, three different 

balanced composite layups were considered, [0,90][90,0], [45,-45][-45,45] and 

[90,0][0,90]. These shall be referred to here on as [0,90]s, [45,-45]s and [90,0]s. The 

standard ply directionality used for this work is depicted in Figure 4-1. These lay-

ups were selected as they are symmetrical and balanced, less affected by mismatches 

of coefficients of thermal expansion during production that leave residual stresses 

through-thickness, and can manifest by a warping of the samples. They are also non-

isotropic, meaning the fibre directionality effect can be studied.  

Table 4-1 presents the different fibre layups considered for the experimental 

coupon testing. 

Table 4-1: Fibre layups considered in study 

Steel Composite 

 [0,90]s 

DP600 [45,-45]s 

 [90,0]s 

 

The coupon samples were cut from the bonded hybrid plaques using a Datron 

M7HP high speed milling machine. The cutting technique is presented in Chapter 3, 

3.4.1.1 Cutting the specimens. 

The sample dimensions for three-point bending were based on the 

recommendations given by the relevant ISO and ASTM standards [95, 96]. Note that 

all samples, regardless of their thickness, present the same geometry. This enables a 

direct physical comparison of the global bending stiffness. Table 4-2 and Table 4-3 

present the sizing characteristics for the two batches of hybrid samples, based on the 

use of 0.8 mm DP600 and 0.5 mm DP600.  Figure 4-2, Figure 4-3 and Figure 4-4 

depict the hybrid composite lay-up, including fibre orientation based on the 

convention established above. 
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Given that the composite layer is 4-ply in every case, and that the only thickness 

variable is the thickness of the steel, hybrid samples using 0.8 mm DP600 will be 

referred to as 0.8 mm hybrid samples, and hybrid samples using 0.5 mm DP600 will 

be referred to as 0.5 mm hybrid samples.  

Table 4-2: Sizing of 0.8 mm hybrid samples for flexure tests 

Engineering constant Units Values Uncertainty 

Width mm 15.00 ±0.01 

Length mm 60.02 ±0.01 

Thickness mm 2.20 ±0.03 

Weight g 7.70 ±0.03 

 

Table 4-3: Sizing of 0.5 mm hybrid samples for flexure tests 

Engineering constant Units Values Uncertainty 

Width mm 15.02 ±0.01 

Length mm 60.02 ±0.01 

Thickness mm 1.85 ±0.04 

Weight g 5.53 ±0.05 
 

 

Figure 4-2. Hybrid Composite/Steel [0,90]s ply directionality – not to scale  

Figure 4-2 depicts the composite-over-steel situation of the [0,90]s layup, where 

the fibres on the outer layers of composite run parallel to the length of the specimens. 

DP600 

PA6 GF60 layers 
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Figure 4-3: Hybrid Composite/Steel [90,0]s ply directionality – not to scale 

Figure 4-3 depicts the composite-over-steel situation on the [90,0]s layup, where 

the fibres on the outer layers of the composite run perpendicular to the length of the 

specimens. 

 

Figure 4-4: Hybrid Composite/Steel [45,-45]s ply directionality – not to scale 

Figure 4-4 depicts the hybrid composite-over-steel situation on the [45,-45]s 

layup, where the fibres on the outer layers of the composite run at 45° to the specimen 

length. 
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As the samples were manually manufactured, a check of the fibre orientation 

under a microscope was used to ensure reliability of the results and ensure the 

coherence between the tested and simulated samples. Figure 4-5 shows the cross 

section of a hybrid sample, highlighting the layer breakdown. The composite fibres 

are arranged in [0,90]s, and seen as circular and “needle-like” shapes. The surface 

roughening provided by the removal of the peel-ply to the composite surface at the 

composite/adhesive interface, is also visible. As seen in Figure 4-5, the sample was 

mounted in a resin, to allow for micrograph images to be taken.  

   DP600   Adhesive        PA6 GF60 [0,90]s 

 

 

Resin                Resin 

Figure 4-5: Micrograph cross section of the hybrid sample DP600 and [0,90]s PA6 

GF60 

 

4.1.2 Three-point bend instrumentation 

The principal aim of this study was to understand the stiffness performance of the 

hybrid material in relation to the benchmark steel. The testing used to that effect was 

quasi-static three-point bend, following the methodology set out by standard BS EN 

ISO 14125:1998 [95]. 

The tests were performed using an Instron 5800R universal testing machine, with 

a maximum load rating of 100 KN, grip faces of 25 mm or 50 mm for tensile tests 

and a three-point bend compressive fixture for bending. The rollers of the three-point 

bend fixture were sized at 5 mm according to standard [95], the span was constant 
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throughout, at 40 mm. The cross-head speed was set according to the standards, at 

ν=1 mm/min. The samples were pre-loaded to 20 N.  

Figure 4-6 shows the fixture set-up in situ. The red arrow indicates the direction 

of travel of the screw driven platform, relative to the fixed middle roller. 

 

Figure 4-6: Three-point flexure fixture set up – span length is 40 mm 

Three samples of each specimen type were tested as a trial run to establish 

confidence in the method set up in the Instron software and produce some initial data 

to outline the following steps. Once confidence was achieved in the method, and in 

order to establish the repeatability of the tests and ensure confidence in the results, 

five samples were tested for each condition, i.e. 60 hybrid samples in total, and 30 

benchmarking samples (15 pure steel and 15 pure composite).  Table 4-4 contains 

the overall summary of the family of tests. 

 

4.1.3 Benchmarking 

In order to quantify the performance of the hybrid, the performance of the 

individual materials must be assessed separately. In benchmarking the steel, multiple 

thicknesses were used to create a broad coverage of data. PA6 GF60 balanced 

samples were also tested, [0,90]s, [90,0]s,[45,-45]s. Table 4-4 includes a summary of 

100 kN load cell + adaptor 

Adjustable diameter rollers 

Adjustable support 

Fixture secured to crosshead 
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all the samples tested, both in benchmarking and hybrid scenarios. Note that 0.5 mm 

DP600 was not used in the benchmarking, as it is the thinnest material used, and 

considered “downgauged” and therefore reinforced with composite.  

Interestingly, it was noted that the [45,-45]s pure composite samples were slipping 

sideways as the load increased during the test. This is believed to be due to the 

sample rotating to align the fibre directionality away from the load path. As the fibres 

on the outer layer of composite are at an angle with the load path, it is believed that 

they rotate so as to create least resistance to the bending motion, and therefore the 

loads measured were sub-optimal. In further work, it would be recommended to 

repeat these tests and constrain the samples to prevent rotation or slip along the 

rollers. In the context of this study, despite the effect being minimal in the elastic 

region, the [45,-45]s composite benchmarking results are treated with caution, and 

not used as a primary source of experimental validation. 

 

4.1.4 Hybrid 

As shown in Figure 4-7 and Figure 4-8, the samples were tested both in a situation 

of steel-over-composite (steel/composite – S/C) and composite-over-steel 

(composite/steel – C/S), where the loading path in the material is different, 

specifically in the fibres, either in tension or in compression. Table 4-4 summarises 

all samples tested in the context of the flexural work on coupon samples. 
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Figure 4-7: Quasi-static three-point bend set up with composite face down (S/C) – 

sample length 60 mm, span 40 mm, width 15 mm 

 

Figure 4-8: Quasi-static three-point bend set up with steel face down (C/S) – 

sample length 60 mm, span 40 mm, width 15 mm 
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Table 4-4. Summary of the coupon samples tested, five repeats each. C/S refers to 

composite/steel, and S/C to steel/composite 

Type of test Material and Orientation 

 DP600 steel PA6 GF60 Composite 

Benchmarking 

(60 mm by 15 mm) 

- [0,90]s - 

- [45,-45]s - 

- [90,0]s - 

0.8 mm - - 

1.0 mm - - 

1.6 mm - - 

Hybrid 

(60 mm by 15 mm) 

0.5 mm 

[0,90]s 

C/S [45,-45]s 

[90,0]s 

[0,90]s 

S/C [45,-45]s 

[90,0]s 

0.8 mm 

[0,90]s 

C/S [45,-45]s 

[90,0]s 

[0,90]s 

S/C [45,-45]s 

[90,0]s 
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 Simulation 

This section presents the campaign to create finite element models created to 

support and cross-validate against the experimental results. The modelling steps and 

consequent results are not presented here in their totality but discussed in small part 

to explain and justify certain choices.  

At coupon level, the simulation was achieved in two parts. Two separate software 

packages, LS-DYNA and Genesis, presented in Chapter 3, were used. Initially, LS-

DYNA was chosen as the software for the simulation, as it is also well documented 

within the literature for its use in modelling steel and composite structures [84, 85, 

88, 98, 102, 103]. It is also widely supported within the home institution, WMG and 

it is extensively used within Tata Steel who provided guidance as a supervisorial 

role. The coupon experimental work and simulations were therefore validated 

against each other, in a two-step process using LS-DYNA.  

A later stage of this research was due to include composite optimisations which 

could be computationally expensive in LS-DYNA. A more detailed analysis, and a 

refining of the implicit LS-DYNA run could potentially mitigate this effect. 

However, an alternative was found in Genesis. Genesis, based on the MSC Nastran 

software, is more suited to this purpose and tailored to composite design and static-

elastic composite optimisation. In Genesis, the computational time is a fraction of 

that required by LS-DYNA for the same model as Genesis is a purely linear software. 

LS-DYNA is not as readily prepared for a composite optimisation as Genesis. A 

primary application for LS-DYNA is automotive simulation [104] as is it a highly 

non-linear, transient dynamic FEA using explicit time integration. Genesis [105] is 

predominantly used for static, normal modes, direct and modal frequency analysis 

and system buckling and it presents a structural optimisation code.  

Following initial studies, the nature of the part and coupon simulation indicated 

Genesis would be better suited to coupon simulations.  
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Having switched to Genesis, it was important to prove that the assumptions made 

in LS-DYNA were valid and could be carried forward. The validation iteration 

between the experimental and simulation results was therefore repeated. Both 

softwares present data that correlates closely with the experimental results (see later 

in Chapter 4), giving confidence not only in the results themselves but also in the 

assumptions made in creating the models.  

Discussed below are the various models created in both software packages and 

indications of their correlations with the experimental work. All models were built 

around identical initial assumptions. The coordinate system for the modelled 

samples is defined as x running along the length of the sample, y running across the 

width and z through thickness. It is used consistently throughout all the simulations, 

in LS-DYNA and Genesis.  

Figure 4-9 and Figure 4-10 show the directionality of the vectors normal to the 

shell element surface. This directionality is important, as it controls the direction in 

which the layers grow, either in thickness or within P_COMPOSITE and PCOMP. 

Specifically, the “integration points data should be given sequentially starting with 

the bottommost integration point” [98]. This means that the shell elements pictured 

are the lowest in a composite stack. The colours and arrows indicate in which 

direction, in a “right hand” coordinate system, the vectors normal to the shell surface 

are pointing. 
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Figure 4-9: LS-DYNA Model showing the directionality of the vectors normal to 

the shell elements from Primer  

 

Figure 4-10: Genesis model showing the directionality of the vectors normal to the 

shell elements 

Additionally, all theta vectors defining the longitudinal direction of the elements 

are aligned with the coordinate system, to ensure consistency in material orientation 

definitions.  

The full results, experimental and simulated are discussed later in this chapter. 

 

4.2.1 FEA Model Creation in LS-DYNA 

The model of the coupon was drawn and meshed using Altair HyperMesh. The 

mesh size was 0.3 mm, or 200 elements along the 60 mm length of the samples, and 

50 elements along the 15 mm width of the samples. This was set up using shell 

elements as they are compatible with all the material models and representative of 

the slender beam shape of the sample.  
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As the solver used in this simulation was LS-DYNA, the rollers of the three-point 

bend fixture were also modelled and meshed in HyperMesh. Figure 4-11 shows the 

initial model set up. The roller faces in contact with the sample were modelled. 

 

 

Figure 4-11: HyperMesh model of the three-point bend test 

 

To model a hybrid material in a quasi-static bending situation, several models, 

theories and assumptions are possible. These all have inherent advantages and 

disadvantages. Three different models were investigated in this specific context. The 

first model included the steel and the composite in the same part. The second model 

assumed the steel and the composite in separate parts. The final model assumed all 

individual layers, be it steel or composite, to be in separate parts. The model with the 

highest correlation of results with the experimental work was taken forward to the 

later stages of modelling. In all models, constraints, initial state and required outputs 

were defined; as well as the material characteristics.  

 

  

Bottom  rollers 

Top roller 

Coupon sample 
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Assumption 1: Steel and Composite in the same part 

 

Figure 4-12: LS-DYNA model of the three-point bend test, with a single layer 

of shell elements 

The overruling assumption for this model is that the adhesive bond behaviour 

between the composite to the steel is perfect, i.e. displays no failure in the elastic 

region and therefore does not require separate modelling. The steel and the 

composite are modelled together in an overall PART_COMPOSITE, as in Figure 

4-12. As explained in Chapter 3, the material cards used are MAT_02 and MAT_58 

respectively. This material model is also used in the modelling of the benchmark 

materials, pure steel or composite alike. An underlying restrictive feature of 

PART_COMPOSITE is the assumption that the interface between its layers to be 

perfect, implying a perfect interface between the steel and the composite material. It 

does not recognise incompatibilities between material interfaces, and therefore won’t 

show true delamination failure modes. 

Based on the vector directionality discussed previously, it is possible to define all 

six hybrid experimental cases separately and produce results. The layers are defined 

in the correct order and grown so that each sample can be represented.  

Results for this type of model were within a 10% correlation to the experimental 

results, showing a high level of confidence in the model. Figure 4-13 shows the 

simulated and experimental load-extension graphs of the 0.8 mm hybrid samples. 

These are seen to present a high correlation, and provide confidence in the model 

set-up. The [0,90]s and [90,0]s hybrid samples show good agreement. The larger 
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difference in the [45,-45]s hybrid samples is likely due to the slippage discussed 

earlier.  

 

Figure 4-13: Representation of correlation between the experimental (solid lines) 

and simulated (dotted line) for the hybrid 0.8 mm DP600 GFRP samples 

The two other assumptions were tested, however it was shown that Assumption 

1 was the scenario that presented the highest level of correlation with the 

experimental model and the assumption taken forward through the simulations in 

LS-DYNA. The results are presented and discussed in detail in Chapter 4, Results. 

Once this assumption was selected it was then further verified through a second 

round of testing, where the results were predicted using the model and then checked 

experimentally. The correlation, as represented in Figure 4-13, was still found to be 

within 10 %, and the assumption carried forward to further simulations. The 

correlation is based on the values of stiffness gradient k calculated from the curves 

shown previously. The further two simulation set-ups tested are briefly presented 

and discussed as follows.  
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Assumption 2: Steel and Composite in separate parts 

 

Figure 4-14: LS-DYNA model with two layers of shell elements: Steel and 

composite model 

Two layers of shell elements were defined, one was given the properties of the 

steel and one was treated as a PART_COMPOSITE with four layers of composite. 

A contact was created between the two layers to simulate the presence of the 

adhesive and avoid layer penetrations. This contact was either simulated as a contact 

card or using a layer of solid elements with basic adhesive properties. 

In both cases, the model results did not correlate closely enough (over 15 %) with 

the experimental results, the stiffness of the overall structure was overestimated, and 

computational time increased.  

 

Assumption 3: Five different shell layers 

 

Figure 4-15: Layers modelled individually 

Five layers of shell elements were defined, one was given the property of the steel 

and four were given individual composite properties. The fibre orientation was 

defined at a material property level and separate materials cards were created for 
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each fibre direction. Contacts were created between the layers simulating the 

presence of the adhesive and the nature of the matrix bond. This model had a high 

level of complication added to it, and inherent assumptions with every layer. This 

was also the most computationally expensive model. The results were the least 

convincing, the error was over 20 %. Additionally, this model did not profit from 

using MAT_58 and PART_COMPOSITE, as it did not use the in-built laminate 

function.  

 

4.2.2 FEA Model Creation in GENESIS 

The same Altair HyperMesh model as used in LS-DYNA was imported into 

Genesis as the software runs its models using shell elements. The rollers were not 

modelled or meshed, instead represented by a motion restriction and load in the 

location of the bottom rollers and impactor respectively. The nodes corresponding 

to support roller locations were given restricted degrees of freedom. On one end, the 

nodes were restricted in the x, y and z directions (1, 2, 3 as seen in Figure 4-16). This 

allowed for a rotation in alignment with test observations and simple beam theory. 

On the other end the nodes were restricted in the y and z directions (2, 3 as seen in 

Figure 4-16). 

 



  

71 

 

Figure 4-16: Support and loading conditions on the coupon sample in Genesis – 

showing displacement (mm) 

  

This allows for rotation but also for the sample to “slip” over the roller in 

accordance with simple beam theory assumptions. It is also possible to restrict both 

sets of nodes simply in y and z; in the simulation of 1.6 mm DP600, hybrid 0.5 mm 

DP600 [0,90]s and hybrid 0.8 mm DP600 [0,90]s, the difference in deflection 

prediction was minimal – 0.01 %, 0.04 % and 0.09 % respectively. The difference 

was deemed small enough to be ignored, and Figure 4-16 shows the location of the 

rollers and load. Either roller constraint set up ([x, y, z and y, z] or [y, z and y, z]) 

may be used, so long as it is done consistently, throughout the modelling.  

Genesis presents the option to represent the thickness of its materials, seemingly 

as solids, rather than the defined shell elements. This can be seen in Figure 4-17.  

 

translational x, y, z (1, 2, 3)   translational y, z, (2, 3) 
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Figure 4-17: Screenshot of the deflected 0.5 mm DP600 [0,90]s specimen – 

magnitude of deflection (mm) 

 

To ensure that the assumption carried in LS-DYNA that the adhesive bond 

behaves perfectly and that the materials can be modelled together within the same 

composite part was valid, the two first scenarios were reconsidered within Genesis. 

These are presented and discussed below. 

 

Assumption 1: Steel and Composite in the same part 

 

 

Figure 4-18: Genesis model of the three-point bend test, with a single layer of shell 

elements 

The steel and the composite were modelled together in an overall PCOMP as in 

Figure 4-18. The material cards used were Isotropic MAT1 and PCOMP Orthotropic 
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MAT8 respectively. PCOMP suffers from the same flaws as PART_COMPOSITE, 

as discussed in Section 654.2.1. In modelling the benchmark materials, pure steel 

and composite, this model was also used. The results for this model correlate to 

within 11 % of the experimental results. These results can be found in Table 4-5. 

Again, the largest discrepancy was seen in the [45,-45]s hybrid coupons. 

Table 4-5: Correlation of tested and Genesis simulated load-displacements for the 

benchmark DP600 material and both hybrids 

Material 

Tested Simulated 
Correlation 

% 
Load 

(N) 

Disp 

(mm) 

Load (N) Disp 

(mm) Overall Per Node 

1.6 mm DP600 380 0.50 380 7.2 0.48 -3.1 

0.5 mm 

DP600 

[0,90]s 139.2 0.50 139.2 2.6 0.55 9.3 

[45,-45]s 72.0 0.50 72.0 1.3 0.56 11.2 

[90,0]s 113.3 0.50 113.3 2.1 0.50 0.2 

0.8 mm 

DP600 

[0,90]s 229.3 0.50 229.3 4.3 0.52 4.5 

[45,-45]s 143.3 0.50 143.3 2.7 0.55 10.1 

[90,0]s 198.7 0.50 198.7 3.7 0.48 -3.5 

 

Using the loads from the tested specimens, node-specific loads for the simulation 

were calculated. Due to the mesh size, there were 51 nodes across the width of the 

specimens. A single point load was applied to every node individually, with the 

overall load corresponding to that measured in testing. This simulated the action of 

the uniformly distributed loading of the roller against the specimen in testing. A brief 

investigation into the effect of the loading on the edge nodes was also run. The edge 

nodes only affect 2 elements where the centre nodes affect 4. The loading in the edge 

nodes should therefore logically be half that of a centre node. There was no 

difference in overall deflection between cases where the edge node carries half the 

loading of the central nodes and cases where all the nodes carry the same loading. 

In the 0.5 mm hybrid simulations, thicknesses were set as 0.32 and 0.55 mm for 

the composite and steel layers respectively. In the 0.8 mm hybrid simulations 

thicknesses were set as 0.32 and 0.88 mm for the composite layers and steel 

respectively – this was done to incorporate the thickness of the adhesive in the 
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overall thickness. The thicknesses including the adhesive was 10 % higher than 

without, so the layers individually have seen their thicknesses increased by 10 % 

approximately to compensate.  

Due to its correlation, this method was the one taken forward for the entirety of 

the Genesis based simulations. The alternative method investigated is described 

below. 

 

Assumption 2: Steel and Composite in separate parts 

 

Figure 4-19: Genesis model with two layers of shell elements joined by rigid body 

elements (RBE) – layer thickness shown 

 

 

Figure 4-20: Genesis model with two layers of shell elements – focus on RBEs 
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The two layers of shell elements were given the properties of steel and composite 

separately. Bonding in Genesis was achieved using rigid body elements (RBE), 

which link the coincident nodes on each layer of shell elements together. The RBEs 

were given the option to move and rotate in all directions. This step was shown to 

not predict the stiffness behaviour of the coupon as accurately as the Assumption 1 

method. This is due most likely to the inherent stiffness of the RBE bonds between 

the two layers and definitions of the location of z0, the artificial “neutral axis” of the 

composite, around which the composite is bending. The results were outside the 

acceptable 10 % bracket of the experimental results, and deemed to be unacceptable.  
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 Results and Discussion 

In the following sections, the results of the experimental and simulated scenarios 

are presented. The validity of the results and their implications are discussed. Table 

4-4 (page 62) presents the summary of all the physical tests run. Table 4-7 (page 85) 

presents a summary of all the results obtained. 

 

4.3.1 Expressing the results 

The results obtained from the physical testing are a series of data points for the 

displacement of the screw driven platform and the load read by the load cell. These 

can be translated into load-extension curves which in turn can be interpreted to 

calculate values of the slope of the load-extension curve k, the values of Young’s 

modulus E, as well as the normalised specific bending stiffness according to Ludke’s 

lightweight design material criterion √E
3

ρ⁄  [75]. There is also data available from the 

simulation software, either in the format of a load-extension curve in the case of the 

LS-DYNA models or as a single output value of extension for a given load in 

Genesis. Indeed, Genesis generates deflection values (x, y and z) for a specific 

loadcase, calculating the stiffness matrix of the parts prior to the application of load.  

Depending on the context of the research, the different expressions of the results 

are best applicable to different situations.  

Ludke’s lightweight design material criterion [10, 75] is best suited to a material 

scientist investigating the performance of the global material. This criterion does not 

lend itself to the concept of “patching”, as the values of Young’s modulus E and 

density ρ are “rule of mixtures” type adaptations with an inherent assumption that 

the hybrid material is constant over the geometry tested. This criterion is not 

dependent on the thickness aspect of the geometry. All DP600 steels for example, 

regardless of their thickness in the coupon three-point bend situation should have a 
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Ludke criterion of 0.78. Figure 4-21 shows the relative performance of various 

materials according to the Ludke criterion, the Specific bending stiffness. The x-axis 

shows the performance of the specific strength of the materials, the y-axis shows the 

specific bending stiffness. The carbon fibre laminates have the highest specific 

bending stiffness, over twice that of steels. Sheet moulding compound composites 

(SMC) perform at a similar level to metals. PA6 GF60 has a specific bending 

stiffness over twice that of DP 600. 

 

Figure 4-21: Specific stiffness diagram for various benchmark materials [87] 

Young’s modulus values, based on “rule of mixture” type approximations, and 

calculated from the coupon testing, also do not readily lend themselves to a 

comparison of the performance of patched specimens. A single value of Young’s 

modulus cannot be used to express an overall stiffness in a scenario where only a 

section of the total geometry studied is a hybrid material. 

In an engineering context, and with the patching application in mind, using the 

slope of the load-extension curve k gives a better insight and understanding of the 

situation. “k” expresses the in-situ stiffness of the material regardless of the nature 

of the material or of the geometrical arrangements such as patching. For a 
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lightweighting study, this is most important as the weights can be compared directly 

in situations of where stiffness performance is matched.  

The results of the coupon work have been expressed both in terms of the Ludke 

criterion and based on the slope k. Ludke’s criterion and the slope k complement 

each other and provide a complete picture towards the lightweight potential of this 

hybrid material. These show the difference between investigating the material 

performance and the performance of the object in a situation specific context.  

 

4.3.2 Full Results and Discussion 

Table 4-4 presents the summary of all the experimental tests. As every sample set 

has five curves from the test repeats, there are 95 load-extension graphs for all the 

experimental tests completed. Of these, a selection of the 0.8 mm DP600 GFRP 

hybrid “average” curves for each situation are represented as shown below. Figure 

4-22 below is a representative complete load-extension graph as it shows hybrid 

performance to failure.  

 

Figure 4-22: Load-extension diagram for the 0.8 mm hybrid coupon samples tested 

to failure 
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Figure 4-22, as it shows the coupons tested to failure, also includes notable 

information: 

 stepwise failure of both the [0,90]s and [90,0]s hybrid samples 

 [0,90]s has the highest stress to failure (outer layer of fibres has the 

greater effect) 

 high strain to failure and low UTS in the case of the [45,-45]s hybrid 

samples 

 C/S presents a higher load in all cases 

Of this data, only the section where both materials are known to be performing 

elastically is relevant to this study as we are interested in matching stiffness. This 

region is an extension of 0 mm to approximately 0.5 mm. The information contained 

within these full load-extension graphs on energy absorption and failure modes is 

discussed briefly in Appendix D. They are deemed out of the main scope of the 

current investigation.  

 

Figure 4-23: Elastic region relevant to the project, all 0.8 mm hybrid samples 
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Figure 4-23 shows the same samples within the elastic region. This is the section 

of data that the project is specifically interested in, adjusted to these tests from the 

suggested region from standards [95, 96], as it presents an elastic behaviour. All 

values of k and Ludke’s criterion are calculated based on this elastic region of the 

data only. Figure 4-24 shows the specific bending stiffness of the materials, 

according to Ludke’s criterion. The standard deviation for each value is small, 

highlighting the repeatability of the tests. In view of this repeatability, the results will 

be treated from here onwards as a single representative mean value of the full five 

tests.  

 

Figure 4-24: Specific bending stiffness for all 0.8 mm DP600 GFRP hybrids and 

steel 

Figure 4-24 also highlights that despite the scenarios of steel-over-composite and 

composite-over-steel being tested separately, their performance in the elastic region 

is very similar for a given composite lay-up. To simplify matters in the context of 

the Ludke criterion analysis, samples are presented based only on their lay-up and 

all performance differences have been included in the standard deviation.  
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Figure 4-25 shows the load-extension graph for both the representative 0.8 mm 

hybrid samples presented previously, combined with the representative 0.5 mm 

hybrid samples. From these, the Ludke criterion is calculated, and Figure 4-26 shows 

the normalised performance (based on the Ludke criterion) of the hybrid GFRP 

materials to the performance of steel. It is worth noting that the [0,90]s 0.5 mm hybrid 

samples can be seen to outperform the [45,-45]s 0.8 mm hybrid samples. 

 

Figure 4-25: Graphical representation of all the hybrid samples 
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Figure 4-26: Ludke’s criterion for the steel and GFRP samples, normalised to pure 

DP600 steel only 

Based on the Ludke criterion, the potential weight save can be calculated using 

elastic analysis beam bending theory applied to the results. 

E =
Force

Deflection
  

L3

48 I
 Equation 4-1 

E =
1

4
 k 

L3

bd
3
 Equation 4-2 

where k is the slope of the elastic region of the force – deflection curve, L is the 

span, b is the breadth and d is the depth. This is based on an identical performance, 

ie, k is constant. These results are displayed in Table 4-6 below, and show the definite 

potential of lightweighting using FRP to reinforce steel. 

To calculate the potential weight save, the same equations are used in reverse. 

The stiffness performance of the steel is set as a target for the hybrid samples and 

thickness decreased until the target is met. The weight of these samples is then 

calculated, and potential weight save estimated.  
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Table 4-6: Percentage increase in specific bending stiffness and percentage weight 

save for the equivalent performance in steel only 

Material 
% Increase in 

specific stiffness 

% weight save for 

equivalent performance 

Steel DP600 0 0 

 [0,90]s 44 30 

0.5 mm DP600 [45,-45]s 15 13 

 [90,0]s 33 25 

 [0,90]s 26 20 

0.8 mm DP600 [45,-45]s 8 8 

 [90,0]s 20 17 

 

In addition to the results provided by the experimental tests, simulation data is 

available. At coupon level, it was most important to prove the concepts and 

assumptions behind the simulation and carry this knowledge forward to the 

component levels. Nevertheless, the simulation data is presented briefly as follows, 

and summarised in Table 4-7. 

 

Figure 4-13 – Representation of correlation between the experimental and 

simulated for the hybrid 0.8 mm DP600 GFRP samples – reshown 

Figure 4-13 shows the correlation between the tested and LS-DYNA simulated 

flexure for the case of the 0.8 mm DP600 with all three ply combinations PA6 GF60 
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in LS-DYNA. The slopes of the corresponding test-FE curves are well matched for 

the [0,90]s and [90,0]s composite layup situations. In the case of the [45,-45]s, the 

small discrepancy seen are related to a shift of the specimen in the test environment. 

This could also be related to the small anisotropy in properties that arises at 45 ° to 

the rolling direction of the steel. The samples were consistently observed to rotate in 

alignment to the matrix direction, causing the stiffness to decrease. 

Comparing the sample performance in terms of gradient of the load-extension 

curve k, means that a direct comparison can be achieved by simply analysing the 

graphs.  

 

Figure 4-27: Load-extension graph showing the 0.5 and 0.8 mm hybrid samples 

and the benchmarked 0.8 and 1.6 mm pure steel sample 

It can be seen from Figure 4-27 that the hybrids occasionally outperform each 

other (specifically here, the [0,90]s 0.5 mm hybrid outperforms the [45,-45]s 0.8 mm 

hybrid) due to the added performance of the composite material. The benchmarked 

0.8 and 1.6 mm pure steel samples present the “envelope” within which the hybrid 

performances are contained.  
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The full results are presented in their “raw” form in Table 4-7. Table 4-8 presents 

the results obtained from simulations run on identical samples with a carbon fibre 

reinforcement. The carbon layers are 0.16 mm in thickness. Due to material cost 

constraints, the carbon samples performance was simulated only. The material 

properties were obtained from in-house testing on the PA6 CF60 pre-preg tape [90]. 

These were applied in Genesis so as to give an indication of the expected 

performance of a higher performance composite. The full GFRP and CFRP results 

from Table 4-7 and Table 4-8 are processed and presented in Table 4-9, Table 4-10, 

Table 4-12 and Table 4-13 as the performance of the hybrids relative to all samples. 

The dashed boxes represent the untested samples. These samples are all 60 mm in 

length, and 15 mm in width.  

Table 4-7: Summary of all the results obtained in testing and associated simulation 

Type of test Material and Orientation Weight 

(g) 

Experimental 

k 

Simulation 

k 

 Steel GFRP LS_DYNA Genesis 

Benchmarking 

- [0,90]s  

1.98 

51.1 - 49.9 

- [45,-45]s  10.4 - 14.0 

- [90,0]s  12.5 - 18.5 

0.8 mm -  5.73 97.6 - 97.2 

1.0 mm -  7.11 185.2 - 194.2 

1.1 mm -  7.82 - - 261.7 

1.2 mm -  8.55 - - 337.6 

1.6 mm -  11.38 768.7 - 787.6 

GFRP 

Hybrid 

0.5 mm  

DP600 

[0,90]s 

C/S 

5.53 

302.8 323.0 253.8 

[45,-45]s 153.6 155.9 128.9 

[90,0]s 208.0 323.0 225.4 

[0,90]s 

S/C 

289.2 330.6 254.6 

[45,-45]s 134.9 153.1 129.5 

[90,0]s 232.0 330.6 226.2 

0.8 mm  

DP600 

[0,90]s 

C/S 

7.70 

461.3 454.2 443.6 

[45,-45]s 286.3 210.1 261.4 

[90,0]s 410.0 450.8 404.8 

[0,90]s 

S/C 

465.3 450.8 438.8 

[45,-45]s 278.6 205.5 260.4 

[90,0]s 394.0 454.2 411.9 
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Table 4-8: Summary of simulated CFRP results 

Type of test Material and Orientation Weight 

(g) 

Experimental 

k 

Simulation 

k 

 Steel CFRP LS_DYNA Genesis 

Benchmarking 

- [0,90]s  

0.84 

- - 50.9 

- [45,-45]s  - - 4.4 

- [90,0]s  - - 8.6 

CFRP 

Hybrid 

0.5 mm  

DP600 

[0,90]s  

4.74 

- - 259.8 

[45,-45]s  - - 78.5 

[90,0]s  - - 220.5 

0.8 mm  

DP600 

[0,90]s  

7.07 

- - 524.8 

[45,-45]s  - - 218.0 

[90,0]s  - - 485.1 

As the [0,90]s hybrid samples are seen to perform best in all tests, these are used 

throughout the analysis. This is reflected in Table 4-9 through to Table 4-13.  

Table 4-9: Normalised performance of the GFRP 0.5 mm hybrid coupon samples 

relative to other samples 

   Percentage difference % 

Type of test Material and Orientation Weight 

(g) 
Experimental k 

Simulation k 

 Steel GFRP Genesis 

Benchmarking 

0.8 mm -  -3.5 203.3 161.5 

1.0 mm -  -22.2 59.8 30.9 

1.1 mm -  -29.3 - -2.9 

1.2 mm -  -35.3 - -24.7 

1.6 mm -  -51.4 -61.5 -67.7 

GFRP  

Hybrid 

0.5 mm [0,90]s  0.0 0.0 0.0 

0.8 mm [0,90]s  -28.2 -36.1 -42.4 

 Steel CFRP      

CFRP  

Hybrid 

0.5 mm [0,90]s  16.7 - -2.2 

0.8 mm [0,90]s  -21.8 - -51.6 

 

Table 4-9 shows the normalised performance of the GFRP 0.5 mm hybrid coupon 

samples relative to other samples using the values of weight and stiffness k presented 

in Table 4-7. These were calculated individually as  

% difference= 
0.5 mm hybrid coupon performance - Compared sample

Compared sample
 

Equation 4-3 
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So that the performance of the 0.5 mm hybrid sample is expressed relative to the 

benchmarked sample performances individually. 

The samples highlighted in green show an improved performance, either in 

weight or in stiffness k values. The ones bordered in red show a marked increase in 

performance, for the relative weight save. The results bordered in blue, comparing 

the performance of the 0.5 mm hybrid samples to the 1.1 mm pure steel samples are 

particularly interesting as they show a near identical stiffness performance for a 29.3 

% weight save, i.e., a 0.5 mm hybrid sample is able to match the elastic stiffness of 

a 1.1 mm pure steel sample but at a weight saving of nearly 30 %. 

Table 4-10: Normalised performance of the GFRP 0.8 mm hybrid coupon samples 

relative to other samples 

   Percentage difference % 

Type of test Material and Orientation Weight 

(g) 
Experimental k 

Simulation k 

 Steel GFRP Genesis 

Benchmarking 

0.8 mm -  34.4 374.7 353.9 

1.0 mm -  8.3 150.2 127.2 

1.1 mm -  -1.5 - 68.6 

1.2 mm -  -9.9 - 30.7 

1.6 mm -  -32.3 -39.7 -44.0 

GFRP 

Hybrid 

0.5 mm [0,90]s  39.2 56.5 73.6 

0.8 mm [0,90]s  0.0 0.0 0.0 

 Steel CFRP      

CFRP 

Hybrid 

0.5 mm [0,90]s  62.4 - 69.8 

0.8 mm [0,90]s  8.9 - -15.9 

 

Table 4-10 shows the normalised performance of the GFRP 0.8 mm hybrid 

coupon samples relative to other samples using the values of weight and stiffness k 

presented in Table 4-7. These were calculated as per Table 4-9. The highlighted 

results are those indicating improved performance, either in weight or in stiffness. 

Again, results bordered in red indicate a weight save and a stiffness performance 

increase; here, over the 1.2 mm pure steel. The hybrid is shown to be nearly 10 % 

lighter and performing 30.7 % better. The results bordered in blue, indicate a like for 



  

88 

like weight performance between the 1.1 mm pure steel sample and the 0.8 mm 

hybrid. In this situation, the hybrid performs 68.6 % better. I.e., the 0.8 mm hybrid 

sample provides nearly a 70 % increase in stiffness performance for a matched 

weight.  

Table 4-11: Further simulated comparison of coupon samples 

   Percentage difference % 

Type of test Material and Orientation Weight 

(g) 
Experimental k 

Simulation k 

 Steel GFRP Genesis 

Benchmarking 

1.2 mm -  -9.9 - 30.7 

1.3 mm -  -16.3 - 4.1 

1.6 mm -  -32.3 -39.7 -44.0 

Hybrid 0.8 mm [0,90]s  0.0 0.0 0.0 

 

It was found through further simulation, that the closest pure steel sample to the 

0.8 mm hybrid would be a 1.3 mm sample. These would perform comparatively as 

indicated Table 4-11, where the 0.8 mm hybrid sample would present a weight save 

of 16.3 % for a near identical performance (hybrid performs 4 % better). 

In a comparison of the GFRP hybrid coupons, it is worth noting that for an 

equivalent stiffness performance over steel, the 0.5 mm hybrid samples present a 

weight saving potential of approximately 30 %, where the 0.8 mm hybrid samples 

present a weight saving potential of approximately 17 %. This highlights the partial 

and hybrid effect of the composite on the steel’s performance. The composite has 

impacted on the performance of the thinner steel to a larger extent.  
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Table 4-12: Normalised performance of the simulated CFRP 0.5 mm hybrid 

coupon samples relative to other samples 

   Percentage difference % 

Type of test Material and Orientation Weight 

(g) 
Experimental k 

Simulation k 

 Steel GFRP Genesis 

Benchmarking 

0.8 mm -  -17.3 - 167.3 

1.0 mm -  -33.3 - 33.8 

1.1 mm -  -39.4 - -0.7 

1.2 mm -  -44.6 - -23.0 

1.6 mm -  -58.3 - -67.0 

GFRP 

Hybrid 

0.5 mm [0,90]s C/S -14.3 - 2.2 

0.8 mm [0,90]s C/S -38.4 - -41.1 

 Steel CFRP      

CFRP 

Hybrid 

0.5 mm [0,90]s  0.0 - 0.0 

0.8 mm [0,90]s  -33.0 - -50.5 
 

Table 4-12 shows the normalised performance of the CFRP 0.5 mm hybrid 

coupon samples relative to other samples using the values of weight and stiffness k 

presented in Table 4-7 and Table 4-8. These were calculated as per Table 4-9. The 

highlighted results are those indicating improved performance, either in weight or in 

stiffness. Here, results bordered in red indicate a weight save and a stiffness 

performance increase; here, over the 0.8 and 1.0 mm pure steel. The hybrid is shown 

to be 17.3 and 33.3 % lighter and performing 167.3 and 33.8 % better respectively. 

The results bordered in blue, indicate a like for like stiffness performance between 

the 1.1 mm pure steel sample and the 0.5 mm CFRP hybrid. In this situation, the 

hybrid weighs nearly 40% less. The CFRP hybrid also presents a similar 

performance to the GFRP 0.5 mm hybrid, weighing 14.3 % less.   
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Table 4-13: Normalised performance of the simulated CFRP 0.8 mm hybrid 

coupon samples relative to other samples 

   Percentage difference % 

Type of test Material and Orientation Weight 

(g) 
Experimental k 

Simulation k 

 Steel GFRP Genesis 

Benchmarking 

0.8 mm -  23.4 - 439.9 

1.0 mm -  -0.6 - 170.2 

1.1 mm -  -9.6 - 100.5 

1.2 mm -  -17.3 - 55.5 

1.6 mm -  -37.9 - -33.4 

Hybrid 
0.5 mm [0,90]s  27.8 - 106.5 

0.8 mm [0,90]s  -8.2 - 18.9 

 Steel CFRP      

Hybrid 
0.5 mm [0,90]s  49.2 - 102.0 

0.8 mm [0,90]s  0.0 - 0.0 
 

Table 4-13 shows the normalised performance of the CFRP 0.8 mm hybrid 

coupon samples relative to other samples using the values of weight and stiffness k 

presented in Table 4-7 and Table 4-8. These were calculated as per Table 4-9. The 

highlighted results are those indicating improved performance, either in weight or in 

stiffness. Once again, results bordered in red indicate a weight save and a stiffness 

performance increase; here, over the 1.1 and 1.2 mm pure steel samples. The hybrid 

is shown to be nearly 10 and 20 % lighter and performing approximately 100 and 56 

% better respectively. The results bordered in blue, indicate a like for like weight 

between the 1.0 mm pure steel sample and the 0.8 mm CFRP hybrid. In this situation, 

the hybrid performs 170 % better. The CFRP hybrid also presents a stiffness 

performance increase of 19 % on the GFRP 0.8 mm hybrid, weighing 8 % less.   

Figure 4-28, Figure 4-29 and Figure 4-30 show a graphical representation of the 

tables discussed above. These figures show the optimal zone in which the hybrid 

samples perform better than the pure steel samples (positive stiffness k performance 

improvement % and positive weight improvement %). These graphs also show 

clearly the situations in which the hybrid samples vastly outperform the performance 
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of the pure steel samples but present no weight save, and situations in which the 

hybrid samples do not present a performance benefit over the pure steel samples.  

Figure 4-28 shows the performance and weight improvement for the simulated 

GFRP samples. The 0.5 mm hybrid coupon presents a similar performance to a 1.1 

mm pure steel counterpart, at approximately 30 % weight save and the 0.8 mm 

hybrid sample presents a similar performance to a 1.3 mm pure steel counterpart at 

an approximate 17 % weight save.  
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Figure 4-28: The performance and weight “improvements” of the GFRP hybrid 

samples compared to the pure steel ones 
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Figure 4-29: The performance and weight “improvements” of the CFRP hybrid 

samples compared to the pure steel ones 
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Figure 4-29 shows the performance and weight improvement for the simulated 

CFRP samples. The 0.5 mm hybrid coupon presents a similar performance to a 1.1 

mm pure steel counterpart, at approximately 40 % weight save and the 0.8 mm 

hybrid sample presents an estimated similar performance to a 1.4 mm pure steel 

counterpart at an approximate 30 % weight save.  

Figure 4-30 is the combination of both Figure 4-28 and Figure 4-29. From left to 

right, the 0.5 mm CFRP and GFRP and the 0.8 mm CFRP (red, blue and green) 

curves are from the comparative performance to the 1.6, 1.2, 1.1, 1.0 and 0.8 mm 

pure steel samples. The 0.8 mm GFRP curve (purple) is from the comparative 

performance to the 1.6, 1.3, 1.2, 1.1, 1.0 and 0.8 mm pure steel samples. 
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Figure 4-30: Comparative performance improvements between the GFRP and 

CFRP hybrids – combination of Figure 4-28 and Figure 4-29 
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This highlights the comparative performance of the Carbon reinforcements 

compared to the Glass reinforcements, showing that the 0.5 mm GFRP hybrid 

performs similarly to the 0.8 mm CFRP hybrid.  

 

 Conclusions 

The variations in hybrid results between the different lay-ups confirm that the 

orientation of the outer layer of composite fibres affects the performance of the 

specimens in bending. Considering the samples with a composite lay-up of [0, 90]s, 

in which the outer layer of fibres runs in the direction of loading, the fibres are either 

in tension or in compression along their length. This is depending on whether the 

hybrid is being tested with the composite face up (compression) or the composite 

face down (tension). The performance of the [45,-45]s shows the highest strain to 

failure, and lowest UTS. The difference in performance based on the fibre 

directionality indicates opportunity available due to fibre orientation effect, where 

the composite can be tailored to the situation due to its anisotropic nature. Tailored 

composite patches are an option when dealing with a structure in need of 

lightweighting. Indeed, the simulation can be taken further into an optimization 

context, and expanded to composite materials that have a higher Young’s modulus, 

as these are likely to present a higher weight saving potential overall. 

Set up as an iteration loop the testing and simulation results were used to counter-

validate each other. Using two different thicknesses of steel and six different fibre 

orientations and layups, and repeatable results in the experimental section, it was 

possible to create a model with a high degree of confidence. 

There is a good agreement between the results from the experimental and 

simulation program, providing confidence in the material model and assumptions 

made and allowing for the development and analysis of non-experimentally tested 

situations. The simulation results are consistent in LS-DYNA to within 10 % of the 
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experimental results, in every case an over-prediction (the [45,-45]s samples present 

the highest discrepancy in results). The analytical model in Gensis supports and 

correlates with these results, and they are within an acceptable 11 % correlation 

bracket of each other (again, the [45,-45]s present a higher discrepancy). This is 

attributed to the experimental uncertainty (machine lag) and approximations made 

in the extraction of the test data from the testing machine. 

This high degree of correlation between the simulation and the testing reinforces 

the confidence in the validation and opens the possibility of using this model for a 

purpose filling application.  

The greatest increase in specific bending stiffness in terms of Ludke criterion is 

44 % (for the [0,90]s 0.5 mm hybrid samples), translating to a maximum weight 

saving potential of 30 %. This is a large enough potential for the concept to be 

investigated on a larger scale, as this weight save is expected to be lessened/diluted 

when applied in a situation where reinforced sections cohabit with unreinforced 

sections.  

These results confirm that there is a potential for hybrid reinforcements in the 

lightweighting of steel. Indeed, as shown in the state of the art review Chapter 2, 

very little work has been done on the pre-design of structures using FRP with 

lightweighting in mind. The existing research concentrates mainly on a retrospective 

tensile reinforcement (bonding and strength effects) whereas this research 

investigates stiffness and location specific patching reinforcement. 

As such, the coupon based results and analysis lead to the following conclusions: 

1. There is potential for using FRP to reinforce steel in an intelligent 

deployment of composite material implying the structure can be 

optimised and lightweighted 

2. Calculated using Ludke’s criterion, the stiffness performance of the 
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hybrid can be improved by up to 44 % when reinforcing with a balanced 

4 layer GF60 PA6 

3. Additionally, for an identical stiffness performance, there is a potential 

30 % weight save 

4. The stiffness performance k, shows that for a matched stiffness 

performance, GFRP hybrid coupons can present a weight save of up to 

30 % in tested samples 

5. The orientation of the outer layer of fibres affects the stiffness greatly 

6. The simulation and material model assumptions are acceptable for the 

modelling of the elastic region of hybrid steel composite coupons 
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CHAPTERS 5 AND 6; A BRIEF INTRODUCTION 

In order to assess the applicability of choices from the coupon program phase of 

the study, a demonstrator part was needed that could be subjected to a realistic 

performance evaluation. These results are compared against the performance of the 

benchmark materials (varying thicknesses of automotive-grade steel). These 

chapters discuss the application of the knowledge gained from the coupon testing 

presented in Chapter 4 on a larger and life-like realistic geometry. Using an idealised 

automotive top hat component from an OEM, the principal aim was to obtain an 

equally performing lightweighted part using a local intelligent deployment of 

composite patches in combination with a downgauging of the steel. The pillar design 

selected requires a combination of bending stiffness and strength. The focus here is 

on the bending performance. Although the structure chosen is a simplified design, 

similar sections are seen in other areas of vehicles including A and B pillars, sill 

structures and front longitudinal sections.  

Using the material model that was validated in the previous chapter, samples are 

simulated in two parts: one which was mimicked experimentally and one where the 

application of composite reinforcement patches is evaluated in the loading scenario. 

The first set of simulations is validated experimentally to ensure a high degree of 

confidence in the model. The manufacturing of the samples is presented and the 

results and lightweighting opportunities discussed.  
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5 COMPONENT PROGRAM – EXPERIMENTAL APPROACH 

This chapter presents the experimental approach to the component testing.  

 

 Geometry and dimensions 

A scaled (×0.6) top hat section with a closure plate (backplate) joined in a 

secondary operation, representative of the A, B, C/D pillars of a car was selected for 

the component level trials. This geometry was also used in studies found in the 

literature, such as those discussed earlier by Lanxess and Universitat Paderborn [23, 

26, 27]. The final geometry selected is a top hat section and was provided by an 

automotive OEM, as shown in Figure 5-1. The overall length was modified to fit 

fabrication and test equipment and fixtures available. The final beam section design 

was approximately 43 mm tall, 132 mm wide, and 450 mm long.  

 

Figure 5-1: Selected top-hat geometry from an automotive OEM without backplate 

The tops hat geometry has two flanges, 26 mm in width each. The “top” section 

of the reinforcement is 68 mm in width, and the sides are at an angle enabling for the 

material to be cold pressed in the tool and removed post shaping. The corners have 

a radius of 7 mm, and the height of the top hat section from flanges to top is 43 mm. 

This cross section is constant throughout the length of the samples.  

Flat sheets of DP 600 steel of 450 mm by 250 mm were delivered by Tata Steel. 

They were pressed into shape using the tools and methods described in Chapter 3. 
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Each top-hat section was then adhesively bonded to the backplate along the flanges 

after appropriate surface preparation, also discussed in Chapter 3. Finally, some of 

the samples were reinforced along the top section using a balanced [0,90]s PA6 GF60 

laminate as in Figure 5-2 below. The location of the reinforcement is discussed later 

in this chapter.  

This geometry was recreated in Solidworks and HyperMesh to generate the 

model used throughout the simulations presented in Chapter 6, Section 6.1 “The 

basic model”. As can be seen from Figure 5-2, the flanges present some localised 

rust. This was due to the flanges being waterjet cut post shaping. The rust did not 

affect the bonding as it was removed in surface preparation.  

 

Figure 5-2: Top hat showing local PA6 GF60 reinforcement on the top of the top-

hat – sample is 450 mm in length, 132 mm in width, height ~ 43 mm 

 

 Testing 

The simulation was used to predict the performance of the top hat specimens 

under varying reinforcement conditions. Some of these conditions were selected and 

the simulated model was validated using mechanical testing. Benchmarking tests 

were executed on pure steel samples. Due to practicality of manufacture, only hybrid 

samples with a top reinforcement were fabricated. 
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5.2.1 Sample production 

Individually, the steel, composite and adhesive were prepared in a similar manner 

to that used for the coupon manufacturing.  

The steel was provided by Tata Steel as industrial sponsor and cut to approximate 

sized sheets. The sheets were then cold pressed to shape in an Interlaken press at 

WMG following brief trials on time and pressure as presented in Chapter 3. These 

were run as there was an awareness that the material springback would be different 

in the varying thicknesses. 

The tool set used to cold press the samples into shape was originally designed for 

sheets 1.6 mm thick. Due to the different thicknesses of the samples prepared within 

the scope of this project, a spacer was used to ensure the overall thickness was 

consistent with the designed thickness of the tool. The samples were all created to 

have matching inner geometries, growing outward from the inner-plane. This was 

reflected in the simulation. 

As stated previously, once formed, the top hats were cut down to size along the 

flanges using a waterjet cutting technique. This also removed the oil-coatings and 

lead to a small amount of rust formation in time. In preparation for the joining, the 

samples were manually abraded, removing the localised surface rust. The thickness 

of the samples was not affected by this process.  

The steel was abraded using a manual rotational sander, with a grit of 180P, and 

the sanded areas were measured pre and post-preparation to ensure there was no loss 

of thickness. Following abrasion, the steel was cleaned thoroughly using acetone and 

iso-propyl alcohol (IPA).  

The Sika 490C adhesive was applied to the flanges and spread using a spatula. 

The adhesive contained glass beads (0.3 mm diameter) that ensured a constant bond 

thickness. The closure plates, cut to size, abraded and cleaned, were applied onto the 
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top-hat sections and secured into position using G-clamps. The overall beam product 

was then heated at 80 °C for 30 minutes in order to cure the adhesive. 

Samples requiring reinforcement underwent a similar process. The finished beam 

was prepared (abraded and cleaned), as well as strips of [0,90]s PA6 GF60 cut to size 

(lay-up, consolidated, peel-ply surface preparation). Adhesive was applied on the top 

section of the hat, then the composite was applied and secured into place using 

clamps. The overall product was heated at 80 °C for 30 minutes in order to cure the 

adhesive. This curing time and temperature is known to not affect the composite (see 

Chapter 3). Figure 5-2 shows a finished sample with composite reinforcement.  

 

5.2.2 Instrumentation set up 

The experiments were conducted using a similar set-up to that used for the coupon 

testing, described in Chapter 4. The fixture was a specifically made fixture for three-

point bending of component sections such as top-hats. The span used for all samples 

was 350 mm. The rollers were 50 mm in diameter. Figure 5-3 shows the fixture set 

up with a sample in place. The quasi-static tests were run at a rate of 1 mm/min. The 

samples were pre-loaded to approximately 20 N, and the displacements used at 

baseline for result comparisons. The sample in Figure 5-3 is 450 mm in length, the 

top is reinforced with composite, and the presence of adhesive can be noted as the 

pink “line” along the length of the edge top face of the sample and along the flange. 

Figure 5-4 shows a schematic drawing of the three point bend experimental set-up 

with dimensions for the sample length, height, span and roller dimensions.  
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Figure 5-3: Three-point bend fixture set-up for the top-up static bending – sample 

length 450 mm, width 132 mm and height ~43 mm 

 

Figure 5-4: Schematic drawing showing the dimensions of the rollers and test set-

up 
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5.2.3 Samples 

The data was benchmarked experimentally using 0.5, 0.8, 1.0 and 1.6 mm pure 

steel top hats. Guided by a simultaneous simulation (FE) program, explained in 

Chapter 6, the samples tested experimentally are presented in Table 5-1. The dashed 

lines represent samples where that material is not present. All samples were 450 mm 

in length, 132 mm in width and approximately 45 mm in height.  

Table 5-1: Summary of samples tested experimentally and their weights 

Type of test 
Materials and Orientation Weight (g) 

DP600 PA6 GF60 

Benchmarking 

(450 mm in length, 

130 mm in width) 

0.5 mm - 651.3 

0.8 mm - 983.7 

1.0 mm - 1243.7 

1.6 mm - 1963.3 

Hybrid 
0.5 mm [0,90]s 689.7 

0.8 mm [0,90]s 1060.7 

 

The samples were tested so that the geometry was top-hat side up, and top-hat 

side down. The set-ups are shown in Figure 5-3 and Figure 5-5, top-hat side up 

scenario and top-hat side down scenario respectively. Figure 5-6 shows the samples 

post-testing where a) shows the top-hat side up scenario and b) shows the top-hat 

side down scenario. Samples are 450 mm in length. 
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Figure 5-5: Sample with composite reinforcement in test rig; scenario with top-hat 

side down 

 

 

a) Tested sample with composite reinforcement, top-hat side up scenario 

 

b) Tested sample with composite reinforcement, top-hat side down scenario 

Figure 5-6: Top-hat samples as tested, with composite reinforcement; a) scenario 

with top-hat side up; b) scenario with top-hat side down 

From here on, the top-hat side up scenario will be referred to as “topside up” and 

the top-hat side down scenario will be referred to as “topside down”.  
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 Results 

The results presented as follows have been split into two parts. Initially, the 

samples are examined through photographical evidence, post testing, in both the 

topside up and down scenarios. In a second section, the load-displacement curves 

are presented and the values of effective bending stiffness calculated. 

 

5.3.1 Topside up 

The samples considered in this section are the topside up samples. The images 

presented below are those of the 0.5 and 0.8 mm DP600 non reinforced (referred to 

as “pure steel”) and the 0.5 and 0.8 mm DP600 [0,90]s PA6 GF60 reinforced samples 

(referred to as “hybrid”). These were chosen as a direct comparison of sample 

deformations can be made. The 1.0 and 1.6 mm pure steel samples are not presented 

photographically as they do not add any additional information to that provided by 

the 0.5 and 0.8 mm pure steel samples.  

Figure 5-7 shows the samples in a top view. The samples are 450 mm in overall 

length. The images show the impactor location, and associated deflections. a) and b) 

show the 0.5 mm samples, whilst c) and d) show the 0.8 mm samples.  

From these images, the impactor site appears to be subjected to plastic 

deformation and a “widening” effect on the samples, due to the local buckling of the 

side walls. Literature indicates that narrow beams in bending tend to be subjected to 

a “plastic hinging” effect [70, 106, 107]. Additionally, this view indicates that the 

deflections in the samples seem unaffected by the presence of the composite 

reinforcement, there is no distinctive or drastic change in deformation mechanism. 
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a) 0.5 mm pure steel sample 

 

b) 0.5 mm hybrid sample 

 

c) 0.8 mm pure steel sample 

 

d) 0.8 mm hybrid sample 

Figure 5-7: 0.5 mm DP600, pure steel (a), hybrid (b); 0.8 mm DP600, pure steel 

(c), hybrid (d) – samples are 450 mm long 

Figure 5-8 shows the ISO view of the same samples. Here, some differences are 

notable. Comparing the pure steel and hybrid samples at the impactor site shows that 
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the presence of the composite material reduces the severity of the plastic 

deformation. Additionally, the hybrid samples show a plastic hinge deformation that 

is “flatter” towards the base. The “hinge” is less pronounced and sharp, and extends 

over a longer area across the length of the samples. The impactor site is 

approximately 75 to 80 mm in length in the case of the pure steel samples, and 

approximately 100 mm in the case of the hybrid samples. The length varied between 

samples, however, in all cases the hybrid site was larger than the equivalent pure 

steel site. This is visible in both the 0.5 and 0.8 mm samples. Figure 5-9 shows the 

side view of the affected area for the 0.8 mm pure and hybrid samples. This confirms 

the previous statements.  

It is postulated that the composite serves to spread the loading across the top layer 

of the sample, therefore reducing the local plastic buckling effect in the side-walls.  

 

 

 

 

 

 

 

 

 



  

110 

 

a) 0.5 mm pure steel sample 

 

b) 0.5 mm hybrid sample 

 

c) 0.8 mm pure steel sample 

 

d) 0.8 mm hybrid sample 

Figure 5-8: ISO view of the deflection region of 0.5 mm DP600 pure (a) and hybrid 

(b); and 0.8 mm DP600 pure (c) and hybrid (d) 

 

 

a) 0.8 mm pure steel sample 

 

b) 0.8 mm hybrid sample 

Figure 5-9: Comparison of plastic hinge area in a) 0.8 mm DP600 pure steel 

sample and b) 0.8 mm DP600 hybrid sample 

Following on from the analysis of the images of the samples, the data was 

collected and is summarised graphically in Figure 5-10. The samples are referenced 

as: 0.5_1, 0.5_2, 0.5_3 for the three repeats of the 0.5 mm pure steel samples; 0.8_1, 
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0.8_2, 0.8_3 for the three repeats of the 0.8 mm pure steel samples; 1.0_1, 1.0_2 for 

the two repeats of the 1.0 mm pure steel sample; 1.6_1 for the single 16 mm sample 

tested. Samples 14_1 and 14_4 stem are included for completeness and they were 

from testing related to the LCVTP project [87, 88]. These samples are 1.6 mm DP600 

top hats of matching cold formed geometry. The backplate is attached using a 

combination of adhesive and self-piercing rivets. The samples were tested in 

comparable scenarios. These samples are discussed in Chapter 6. H0.5_1, H0.5_2, 

H0.5_3 represent the tested 0.5 mm hybrid samples, and H0.8_1, H0.8_2, H0.8_3 

represent the 0.8 mm hybrid samples. 

 

Figure 5-10: Summary of the load-extension curves for all samples tested in the 

topside up scenario 

1.6 mm  

0.5 mm  

1.0 mm  

H0.8 mm 

0.8 mm  

H0.5 mm  
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Figure 5-11: Load-extension curves for pure steel samples only 

 

Figure 5-12: Load-extension graphs for hybrid samples only 

Figure 5-11 and Figure 5-12 show the same samples, separated in pure steel and 

hybrid sample graphs.  

 

 

0.5 mm  

0.8 mm  

1.0 mm  

1.6 mm  

H0.8 mm 

H0.5 mm  
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The graphs show that the repeats of the tests are less consistent and more varied 

than at coupon level, which is to be expected as the samples are significantly larger. 

They also show however that the correlation levels are generally good, (especially 

over the elastic region) and sufficient for the data to be considered valid. In certain 

cases, however, such as the 0.5 mm pure steel samples, and the 0.5 mm hybrid 

samples, two of the samples correlate extremely well and the third presents a varying 

behaviour. In further studies, it would be interesting to determine the cause of this 

change, whether due to fabrication technique or otherwise.  

The k values were calculated from the linear elastic sections of the curve, shown 

in Table 5-2. It is interesting to note that the 0.8 mm hybrid has an elastic behaviour 

that exceeds that of the 1.0 mm pure sample. The 0.5 mm hybrid sample presents a 

behaviour that exceeds that of the 0.8 mm sample, and when considering the values 

of k also exceeds the performance of the 1.0 mm sample and is 1.1 kg lighter. 

Table 5-2: Summary of topside up stiffness values and sample weights 

Type of test 
Material 

Value of k 

(N/mm) 

Standard 

Deviation 

Weight (g) 

Steel Composite Topside up 

Benchmarking 

0.5 mm - 648.6 54.1 651.3 

0.8 mm - 1198.9 30.5 983.7 

1.0 mm - 1828.0 388.6 1243.7 

1.6 mm - 3861.5 -  1963.3 

Hybrid 
0.5 mm [0,90]s 2106.9 134.1 689.7 

0.8 mm [0,90]s 3062.5 120.2 1060.7 

 

The complete data, to sample failure, although not analysed in the context of this 

thesis, also provides information on the energy absorption of the hybrid samples 

comparatively with the pure steel samples. This will be discussed in the further work 

section of Chapter 7. It is additionally worth noting the marked increase in beam 

yield values in the hybrid beams compared to their pure counterparts.  
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5.3.2 Topside down 

The samples considered in this section are the topside down samples. The images 

presented below are those of the 0.8 mm DP600 non-reinforced (referred to as “pure 

steel”) and the 0.8 mm DP600 [0,90]s PA6 GF60 reinforced samples (referred to as 

“hybrid”). These were chosen as a direct comparison of the sample deformation can 

be made. The 0.5, 1.0 and 1.6 mm pure steel samples and 0.5 mm hybrid sample are 

not presented photographically as they do not add any additional information to that 

provided by the 0.8 mm samples. 

Figure 5-13 shows the samples in a top view. This shows the impactor location, 

and associated deflections. a) shows the pure steel sample, b) shows the hybrid 

sample. 

 

a) 0.8 mm pure steel sample 

 

b) 0.8 mm hybrid sample 

Figure 5-13: Topside down 0.8 mm pure steel a) and hybrid samples b) 

Here again, the presence of composite does not appear to affect the overall 

performance or deflection pattern. A pinching effect is visible on the flanges at the 

location of the plastic hinge. The hybrid sample does not appear to display any 
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localised damage at the location of the lower rollers where the pure steel sample 

displays a small localised crushing. This was displayed on all pure steel samples, and 

in-situ of the test was only present after the onset of overall beam plasticity.  

Figure 5-14 shows the detail of the plastic hinging in the two 0.8 mm samples; 

photos a), c) and e) referring to the pure steel sample, and b), d) and f) to the hybrid 

sample. 

 

a) Impactor deformation on 

backplate of 0.8 mm pure steel 

sample 

 

b) Impactor deformation on 

backplate of 0.8 mm hybrid 

sample 

 

c) Impactor deformation top 

view, pure steel sample 

 

d) Impactor deformation top 

view, hybrid sample 
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e) ISO view of impactor 

deformation, pure steel sample 

 

f) ISO view of impactor 

deformation, hybrid sample 

Figure 5-14: Detail of plastic hinging zone on 0.8 mm DP600 pure steel and 

hybrid samples for topside down 

The images suggest that the composite has a lesser effect on the plastic damage 

on these samples than the topside up ones, as expected as the impactor is on the steel 

backplate. A lessening of the plastic damage and severity of the hinge effect can be 

seen in images e) and f). Images a) and b) display a stretching of the backplate, 

however do not appear affected by the presence of composite.  Figure 5-15 shows a 

summary of the load-extension graphs. This is again broken down into two separate 

graphs, presented in Figure 5-16 and Figure 5-17. The legend system used to refer 

to the samples and their repeats is the same as that used for the topside up scenario. 

The stiffness of the 0.8 mm samples is improved compared to its pure steel 

equivalent, however, past the yield point, both beams display a very similar 

behaviour.  
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Figure 5-15: Load-extension graph for all samples tested topside down 

 

Figure 5-16: Load-extension graphs for pure steel samples only 
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Figure 5-17:Load-extension graphs for hybrid samples only 

Table 5-3 summarises the values of k and weight of the topside down samples. 

The 0.5 mm hybrid sample presents a behaviour that matches that of the 0.8 mm 

sample (in “k”), and the 0.8 mm hybrid sample is seen to not quite achieve the same 

stiffness as the 1.0 mm pure steel sample. Dashes show samples not tested.  

Table 5-3: Summary of topside down stiffness values and sample weights 

Type of test 

Material 
Value of k 

(N/mm) Standard 

Deviation 
Weight (g) 

Steel Composite 
Topside 

down 

Benchmarking 

0.5 mm - - - 651.3 

0.8 mm - 1651.1 117.0 983.7 

1.0 mm - 3595.9 173.0 1243.7 

1.6 mm - 5641.6 444.1 1963.3 

Hybrid 
0.5 mm [0,90]s 1686.6 203.2 689.7 

0.8 mm [0,90]s 3194.8 754.6 1060.7 

 

 

 

 

H0.8 mm  

H0.5 mm  
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5.3.3 Discussion 

The beams exhibited a failure mode of progressive localised crushing and plastic 

hinging under the central loading point of the impactor in both topside up and topside 

down scenarios. The local crushing and hinging effect began at moderately low 

loads, indicating that beam stiffness data is a measure of resistance both to global 

bending and to local crushing. All samples, both in pure steel and hybrid, provided 

similar performance in terms of this mixed-mode, flexure / crush.  

The results presented previously are indicative of some very promising 

behavioural responses. Table 5-4 summarises the results from both the topside up 

and topside down series of tests. It is worth noting all values were calculated as 

averages of the performances of all the samples tested. As can be seen from the 

graphs above, the variance on all samples is small enough to be deemed acceptable.  

Table 5-4: Summary of topside up and topside down k values, as well as sample 

weights 

Type of test 
Material Value of k (N/mm) 

Weight (g) 
Steel Composite Topside up Topside down 

Benchmarking 

0.5 mm  648.6 - 651.3 

0.8 mm  1198.9 1651.1 983.7 

1.0 mm  1828.0 3595.9 1243.7 

1.6 mm  3861.5 5641.6 1963.3 

Hybrid 
0.5 mm [0,90]s 2106.9 1686.6 689.7 

0.8 mm [0,90]s 3062.5 3194.8 1060.7 

 

In the topside down experiments, the effect of the composite on the value of k is 

smaller, which is believed to be due to the geometrical dominance of the backplate. 

The backplate is the loaded surface, where the area of loading is nearly double that 

of the composite or steel surface in the topside up experiment. This also explains the 

overall increase in stiffness in the pure steel samples. 

To calculate the bending stiffness of a quasi-static three-point bend set up the 

following Equation 5-1 can be used [96]: 
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Ebend =  
L3 k

48 I
 Equation 5-1 

 

Where Ebend is the modulus of elasticity in bending (MPa), L the support span 

(mm), k the slope of the tangent to the initial straight-line portion of the load-

deflection curve (N/mm) and I the second moment of area (mm4). 

This bending stiffness is not truly representative of the performance of the 

material and beams however, but can be used to compare samples from different 

tests. As all the samples were tested in identical conditions throughout, the stiffness 

value k, gradient of the elastic section of the load-extension curve, is a better measure 

of the performance.  

Table 5-5 and Table 5-6 present the comparative performances of the samples 

with respect to the 0.5 mm hybrid and the 0.8 mm hybrid respectively. 

These were calculated individually as  

% difference= 
Hybrid coupon performance - Compared sample

Compared sample
 

Equation 5-2 

So that the performance of the hybrid sample is expressed relative to the 

benchmarked sample performances individually. 

Table 5-5: Comparative figures of the performance of the 0.5 mm hybrid samples 

to the benchmarked pure steel samples and 0.8 mm hybrid samples 

  Percentage difference % 

Type of test Material Value of k (N/mm) Weight (g) 

 Steel Composite Topside up Topside down  

Benchmarking 

0.5 mm  224.8 - 5.9 

0.8 mm  75.7 2.2 -29.9 

1.0 mm  15.3 -53.1 -44.5 

1.6 mm  -45.4 -70.1 -64.9 

Hybrid 
0.5 mm [0,90]s 0.0 0.0 0.0 

0.8 mm [0,90]s -31.2 -47.2 -35.0 
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When considering the topside up scenario; the 0.5 mm hybrid beam presents an 

increased performance over three samples shown in green. These are the 0.5, 0.8 and 

1.0 mm pure steel samples. When comparing their weight, two of these show the 

hybrid to be an improvement: the 0.8 and 1.0 mm pure steel samples, shown in red. 

In the topside down scenario, the 0.5 mm hybrid presents an improvement over only 

one sample, the 0.8 mm pure steel. The samples present near identical performances; 

however, the hybrid sample is nearly 30 % lighter. 

Table 5-6: Comparative figures of the performance of the 0.8 mm hybrid samples 

to the benchmarked pure steel samples and 0.5 mm hybrid samples 

  Percentage difference % 

Type of test Material Value of k (N/mm) Weight (g) 

 Steel Composite Topside up Topside down  

Benchmarking 

0.5 mm  372.2 - 62.9 

0.8 mm  155.4 93.5 7.8 

1.0 mm  67.5 -11.2 -14.7 

1.6 mm  -20.7 -43.4 -46.0 

Hybrid 
0.5 mm [0,90]s 45.4 89.4 53.8 

0.8 mm [0,90]s 0.0 0.0 0.0 

 

When considering the topside up scenario; the 0.8 mm hybrid beam presents an 

increased performance over four samples. These are the 0.5, 0.8 and 1.0 mm pure 

steel samples and the 0.5 mm hybrid sample, highlighted in green. When comparing 

their weight, one of these shows the hybrid to be an improvement: the 1.0 mm pure 

steel sample, highlighted in red. In the topside down scenario, none of the samples 

are shown to be improved on by the addition of composite. The 0.8 mm hybrid seems 

to not be presenting as many solutions as the 0.5 mm hybrid, however it is important 

to highlight that this is most likely due to the sample batch tested. The 0.8 mm hybrid 

is expected to show improvements on the 1.2 mm and 1.4 mm pure steel samples, as 

shown Figure 5-18.  
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Figure 5-18: The performance and weight “improvements” of the hybrid samples 

compared to the pure steel ones, topside up 
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Figure 5-18 plots both the percentage weight and k benefit for the 0.5 and 0.8 mm 

hybrids compared to the pure steel. It indicates that for a given composite 

reinforcement, there is a near linearity in sample benefit, and a matching trend 

between the 0.5 mm hybrid benefits and the 0.8 mm hybrid ones. This graph also 

shows the “cut-off” areas. All samples falling in the quarter zone [positive weight, 

positive performance] are considered beneficial. For the 0.5 mm hybrid sample, this 

shows that matched stiffness is achieved for an approximate 1.2 mm pure steel 

sample with a weight save of nearly 50 %. Reading off the graph, for a 0.8 mm hybrid 

sample, matched stiffness can be achieved to an approximate 1.4 mm pure steel 

sample, saving nearly 40 % in weight.  

It is worth noting that the samples do not improve linearly in their thickness. The 

trendline is parabolic, and showing a decreasing impact on performance per 0.1 mm 

thickness increase. This trendline is expected to plateau, as the hybrid samples only 

provide a given improvement on their pure steel counterparts. It is speculated that 

the nature of the composite reinforcement (lay-up, orientation, nature of fibres, etc.) 

would be able to further improve the performance effects. 

The topside up experimental results show that in the comparison of the 0.5 mm 

hybrid and the 1.0 mm pure steel there is an increase in performance of 15.3 % and 

a lightweighting of 44 %. This proves that by downgauging the steel and adding a 

patch of composite to the load-bearing surface, it is possible not only to provide a 

lightweight solution but also to improve on the existing performance.  

The topside up scenario is one which is most analogous to a side-impact 

automotive load case where stiffness and energy absorption must be balanced to 

minimise intrusion and occupant accelerations. As a result of this, only this scenario 

is investigated in the simulation program, with the aim to recreate the results and 

benefits shown here and engage in an optimisation of the patch location so as to 

further extend the benefits of the intelligent deployment of composite materials. 
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 Conclusions 

The GFRP local reinforcement of downgauged top-hat DP600 sections has shown 

in experimental testing the following conclusions: 

1. There is potential for using FRP to reinforce steel in an intelligent 

deployment of composite material implying the structure can be 

optimised and lightweighted. An example of this, demonstrated in this 

Chapter, is that the 0.5 mm hybrid sample provides a 15 % increase in 

performance k over the 1.0 mm pure steel sample, whilst also providing 

a 44 % weight save. 

2. For a given composite reinforcement, it is possible to create graphs 

indicating the “cut-off” areas of performance benefit. 

3. The effect of the composite is larger in thinner samples, and in the current 

reinforcement is seen to have a lesser effect on the 0.8 mm steel than on 

the 0.5 mm steel. In further work, this could lead to the investigation of 

different lay-up, orientation or fibre reinforcements.  
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6 COMPONENT PROGRAM – SIMULATION APPROACH 

This chapter will focus on the simulation work relating to the top-hat experiments 

discussed in Chapter 5. It will present the story and development of the simulation 

models, discuss the results, restrictions and learning outcomes.  

 

 The basic model 

Chapter 4, Coupon Level simulation showed that both LS-DYNA and Genesis 

provide suitable results in the modelling of coupon hybrid steel-composite. Genesis 

provides its answers at a lower computational cost than LS-DYNA and is hence the 

primary software package used in the modelling of the top-hat section.  

This initial simulation study was run prior to the experimental work, on all 

benchmark steel materials, and included a focus of the effect of the composite patch 

location on the performance. This was done in order to determine where best to 

locate the composite patches, and the varying effects of the composite patch 

locations and size. This justified the decision to test the top-reinforced hybrid 

samples so as to validate the simulated results, and ensure the accuracy of the 

simulated results.  

 

Figure 6-1: Genesis FE model of the beams used in testing 
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Figure 6-1 shows the model used for the simulation. The model was designed in 

Solidworks and meshed using HyperMesh. A number of studies [58, 102, 108, 109] 

show similar experiments and modelling using the axis of symmetry to reduce the 

size of the sample to ½ or ¼ of the full model. These methods have the benefit of 

presenting smaller models that are less computationally, and therefore time, 

expensive. In the context of this work, it was felt that this would be more likely to 

induce errors than gain substantial time.  The elements used were shell elements, and 

the mesh size was 5 mm. A mesh sensitivity analysis was briefly investigated, where 

the mesh size was decreased (increasing the mesh density), and concluded that the 

mesh size was not responsible for any variations in results. The hybrid material was 

simulated using PCOMP, the part composite within which both materials are 

defined. This will also be used in the context of top-hat modelling. 

The coordinate system used throughout is defined as in Figure 6-1, by which the 

x-axis runs along the length of the sample, the y-axis is through the height of the 

sample and the z-axis runs along the width of the sample. This coordinate system 

was used in all simulations. The theta vectors (determining element directionality) 

were defined within this coordinate system to ensure that all composite fibre 

orientations match, both between the elements and along the overall component.  

The backplate and top-hat sections were modelled separately. There are two 

primary options for joining the backplate to the flanges of the top-hat section without 

modelling the adhesive. One is to join every corresponding node using RBE’s, the 

other is to take advantage of the Genesis defined “Glue Contact”. Figure 6-2 shows 

a visual representation for the RBE connections used; a) and b) show the thickness 

representation in Genesis. 
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a) RBE2 connections with no layer thickness representation 

 

b) RBE2 connections with layer thickness representation 

Figure 6-2: Showing the RBE2 links representing the adhesive bond between the 

top hat shape and the backplate; a) and b) with and without thickness 

representation 

In the coupon program, it was found that the inherent stiffness in the RBEs was 

sufficient to affect the overall stiffness of the material, although the behaviour is 

dominated by the steel. It was decided therefore to use the “glue contact” to go 

forward. 

The top hat was initially modelled both topside up and topside down, however, 

following the results in the experimental tests showing a greater effect on the topside 

up samples, only these were modelled throughout. The loading is representative of 

the quasi-static three-point bend geometry used in the testing. Literature studies [88, 

102, 107] imply that the loading conditions are not as straightforward as in the case 

of the coupon samples, as such, the variations were studied. 
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 Study of the loading constraints 

It is possible to use nodal forces, element pressures or a roller with one single 

force applied. In all cases, the bottom rollers were represented using nodal motion 

constraints that prevent the sample from behaviour non representative of the physical 

testing, such as a rotation around the z-axis. Two rows of nodes (one row at each 

support) were restricted in directions 2, 4 and 5; which in the context of this model 

was equivalent to a constraint in translational y and rotational x and y directions.  

The forces simulated the top roller, and were applied as point loads to specific 

nodes. In testing, as the bending progresses, the centre section of the top hat 

experienced local deformation inwards, which lead to the forces only being applied 

to the outer section of the top hat top face and directly into the sides.  

In order to accurately model this, a few variations of force locations were tested: 

1) Nodal forces 

Loadcase 1 saw forces applied on every node, equally distributed. This leads to a 

very large deformation of the sample top face. Figure 6-3 shows the deflection 

pattern, which is not an accurate representation of the experiment in terms of 

significant deflection in the central area of the top-hat. Following that, a series of 

different conditions were tested, where the forces were distributed to a number of 

nodes only (Loadcases 2 through 5).  The force was equally distributed and 

equivalent to the total force, but limited to a specific area. A number of variations of 

these were trialled, as described in Table 6-1.  
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Figure 6-3: Deflection of beam under full nodal force distribution 

 

Table 6-1: Description of loading conditions trialled 

 

a) Loadcase 1 – All nodes – total number of nodes used: 16 
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b) Loadcase 2 – 4 nodes on each side – total number of nodes used: 8 

 

c) Loadcase 3 – 3 nodes on each side – total number of nodes used: 6 
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d) Loadcase 4 – 3 nodes on each side – total number of nodes used: 6 

 

e) Loadcase 5 – 2 nodes on each corner – total number of nodes used: 4 

 

2) Pressures 

An identical trial was run using pressures on the centre of the elements instead of 

nodal forces.  
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3) Roller 

In the coupon work, the application of nodal forces was a valid approximation of 

the effect of the impactor as the sample cross section is constant and the geometry is 

not affected by the bending (the only effect not considered is the anticlastic bending 

of the beam). Here the forces applied were not solely or evenly applied across the 

top surface as there was interaction between the side walls and top surface, as well 

as local geometrical effects. 

 

Figure 6-4: Roller loading condition 

Figure 6-4 shows the roller loading condition. A centre force was applied to the 

roller, and motion is restricted through a combination of RBE’s and degree of 

freedom constraints to ensure that the roller was rigid and replicated the motion of 

the test impactor. A contact was set-up between the roller and the top surface of the 

top-hat shape to avoid penetrations.  

Figure 6-5 presents a graphical representation of the load-deflection curves for 

the different attempts, including the roller. The pressures are not included, as they 

gave a near identical response to the nodal loading.  
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Figure 6-5: Graphical representation of the effect of the loading conditions 

of the load-extension performance 

The LCVTP program [88] which studied a similar geometry beam used nodal 

forces on the corners only (loadcase 4) of their samples, and it was possible to obtain 

an identical reaction to their published results. However, as a solely localised nodal 

force had such a large number of variable possibilities, it was felt that the nodal 

forces were an approximation that could be incorrect, therefore the decision to use a 

roller, a closer representation of the experimental testing.  

It is worth noting that the deformations measured in testing on all the samples 

were measured at the edge of the top-surface. Using the roller in simulation was 

additionally regarded as more accurate as, during the experimental tests, the 

extension/deflection measured was the motion of the impactor (contacting at the 

edges) rather than the maximum deflection of the beam.  

Following the decision to simulate using the roller and nodal constraints as the 

impactor and supports, the local reinforcement effects were investigated.  
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 Local reinforcement 

The concept of hybrid steel composite automotive beams is not a new one, and 

BMW is but the latest in a series of manufacturers to use a combination of materials 

to produce light weight, high end cars [2, 28]. Simply using composites to reinforce 

either concrete or steel beams in the civil engineering world is also not a 

breakthrough [51-53]. However, no studies have been published on the effect of 

localised composite reinforcement with regards to the stiffness performance of the 

overall beam. An initial approach to this is presented as follows.  

Local reinforcements of [0,90]s and their effects were studied in the context of 

the pure elastic bending set-up, as summarised in Figure 6-6 and Table 6-2 below. 

The reinforcements are split in terms of location (top, sides, corner – see Figure 6-6). 

These reinforcement locations were used alone and also combined to study the effect 

of reinforcement location on the overall performance. Table 6-2 summarises the 

reinforcement location and combinations applied. 

Table 6-2: Summary of local reinforcement and combinations thereof 

 Reinforcement Location and Combination 

0.5 or 0.8 mm DP600 

None 

Top 

Corners 

Sides 

Top + Corners 

Corners + Sides 

Top + Sides 

Top + Corners + Sides 
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a) Beam with top reinforcement (as used in testing) 

 

b) Beam with side reinforcement 

 

c) Beam with corner reinforcement 

Figure 6-6: Shows the reinforcement locations; a) shows the top reinforcement, b) 

shows the side reinforcement, c) shows the corner reinforcement 

 

Reinforcement [0,90]s 

Reinforcement [0,90]s 

Reinforcement [0,90]s 
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 Results 

As a preliminary check to ensure the simulations were not incorrect, the sample 

weights were checked. As the simulations includes the use of the PCOMP card, and 

a simple glue contact to join the top hat to the backplate, the adhesive weight is not 

accounted for, and the experimental samples are expected to weight only slightly 

more than the simulated one. Using the 0.5 and 0.8 mm hybrid samples and their 

pure steel counterparts, it is possible to calculate the weight of the composite patch 

+ adhesive on the top surface, as in Figure 6-6. An adhesive weight was estimated 

for the flanges (they show approximately the same surface area), and the weights 

output by the simulation were adjusted for comparison to the experimental ones. 

Table 6-3 shows that the simulated samples correlate well, to within 3.7% of the 

experimental ones. This gives a primary indication that the model can be trusted. 

Table 6-3: Summary of the weights of the samples, the “adjusted simulated” 

weights take into account the estimated weight of adhesive per sample. 

Sample Type 
Weight (g) Correlation 

% Experimental Simulated Adjusted Simulated 

0.8 mm DP600 983.67 923.8 957.81 2.6 

1.0 mm DP600 1243.67 1154.7 1217.81 2.1 

1.6 mm DP600 1963.33 1684.4 1937.48 1.3 

0.5 mm DP600 [0,90]s 689.67 632.0 663.81 3.7 

0.8 mm DP600 [0,90]s 1060.67 978.5 1034.81 2.4 

 

Table 6-2 presents the summary of the simulated reinforcements initially run 

within this investigation. Table 6-4 presents the stiffness results of these simulations, 

in term both of stiffness and un-adjusted simulated weights. Figure 6-7 and Figure 

6-8 give a graphical representation of the data from Table 6-4. 
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Table 6-4: Summary of stiffness values K based on samples make-up – pure DP600 

or DP600 with specific reinforcements 

Sample make-up 
Stiffness K 

(N/mm) 
Weight (g) 

DP 600 FRP   

0.5 mm - 870.8 577.4 

0.8 mm - 2560.8 923.8 

1.0 mm - 4152.1 1154.7 

1.6 mm - 10590.1 1684.4 

0.5 mm 

 

Top 1601.2 632.0 

Corners 1047.8 604.8 

Sides 1343.0 641.0 

Top + Corners 1579.0 641.1 

Corners + Sides 1597.6 650.1 

Top + Sides 2174.4 695.5 

Top + Corners + Sides 2271.1 704.6 

0.8 mm 

Top 3616.6 978.5 

Corners 2415.8 920.1 

Sides 3236.2 987.5 

Top + Corners 3502.3 987.6 

Corners + Sides 3296.7 996.6 

Top + Sides 4299.7 1042.0 

Top + Corners + Sides 4262.3 1051.1 
 

 

Figure 6-7: Bar chart showing the beam stiffness k based on steel thickness and 

composite reinforcement location, topside up 
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Figure 6-8: Bar chart showing the sample weights based on steel thickness and 

composite reinforcement location, topside up 

A number of observations can be drawn from Figure 6-7 and Figure 6-8: 

 The reinforcement with the largest effect on performance is the 

reinforcement of the top and sides. In the case of the 0.5 mm hybrid it 

more than doubles (2.6 times) the performance of its pure steel 

counterpart, and in the case of the 0.8 mm it multiples it by approximately 

1.6 although the mass increases by 118 g. 

 Of the three individual options – top, corner, sides – the top has the 

greatest effect on performance, followed by the sides. 

 Reinforcing the corner has no notable effect on the stiffness performance. 

It has a slightly more pronounced effect in the 0.5 mm samples compared 

to the 0.8 mm samples, however, this effect is too small to be considered 

beneficial.  

 At the highest level of reinforcement (top + corners + sides) the weight 

of the samples only increases by 127.3 g. This corresponds to an increase 

in weight of 22 % and 13.8 % on the 0.5 and 0.8 mm pure steel samples 
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respectively. This is comparatively small increase in weight for the 

substantial stiffness gain (160 % and 64 % respectively). 

Following the learning outcomes of the reinforcement location study, the results 

were compared to the experimental results from Chapter 5. Figure 6-9 shows the 

experimental and simulated stiffness performance for varying thicknesses in pure 

steel samples. It also shows the experimental and simulated performance of the 

hybrid samples.  The simulation results appear to be consistently over-performing 

compared to the experimental results. The simulation results under-predict the 

performance of the 0.5 mm hybrid beams, and over-predict the results of the 0.8 mm 

beams. In the experimental results, the 0.5 and 0.8 mm hybrids improve the stiffness 

performance (disregarding weight) by 224.8 and 155.4 % over their respective pure 

steel counterparts. In the simulation results, the 0.5 and 0.8 mm hybrids improve by 

160.8 and 66.4 % over their respective pure steel counterparts.  

 

Figure 6-9: Pure steel and hybrid sample stiffness values in experimental and 

simulated cases 
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These discrepancies need some consideration. The software package Genesis 

assumes a complete elastic behaviour and response, and calculates its stiffness values 

at the onset of a problem, without taking into account the stiffness changes due to 

geometrical changes throughout a test. In this context, this was considered to be one 

of the main explanations of the lack of correlation between the tests and FEA. 

Indeed, Genesis is a software dedicated primarily to the modelling of composite 

structures, which are less prone to significant local plastic behaviour. Genesis 

provides an idealised stiffness performance which does not account for geometrical 

modifications throughout the test. The tests show samples with localised as well as 

globalised deflections, which the software does not take into account. As such, 

Genesis over-predicts the globalised stiffness performance of the samples, as they 

change geometrically through the tests.  

Additionally, from a close observation of the samples in experimental testing, and 

comparison with the deflected simulated samples, it was hypothesised that the plastic 

localised deflections occur under the impactor of the three-point bend test and cause 

a weakening of the sample not taken into account by the linear bending. Literature 

studies support this hypothesis as a plastic-elastic thin walled structure, showing 

plastic hinges, buckling and crimping occur [70, 106, 107]. There was additionally 

a small concern over the validity of the samples measured, as experimental set-up 

errors could have been committed, and as such a means to verify those results was 

sought.  

These concerns lead to an investigation of the simulation in the plastically-

enabled LS-DYNA.  

A number of hypotheses were made, and explained in the following steps: 

1. If the experimental data can be verified, the error must lie with the simulation 

2. If the plastic simulations in LS-DYNA can be correlated to the experimental 

data, the error lies with the use of the elastic-specific Genesis 
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3. If a study of the load concentrations in Genesis compared to the LS-DYNA 

simulations shows correlation, the previous work in Genesis has validity and 

presents an insight into full plastic composite optimisation behaviour 

 

6.4.1 Correlating the 1.6 mm DP600 samples 

An initial concern was that samples tested were possibly tested incorrectly, giving 

unsuitable results, and a solution was sought to check them. The sample results were 

compared to the results from the LCVTP program [87, 88]. The samples were 

produced using the same tooling as the LCVTP ones, ensuring that the geometries 

match. The material used in both studies includes cold-formed 1.6 mm DP600. The 

only notable difference between the two is the bonding method between the top-hat 

and backplate. Where the current study uses an adhesive, the LCVTP samples were 

bonded using a combination of adhesive and rivets where the adhesive is load-

bearing.  Figure 6-10 shows the load-extension graph for the topside up samples. 

Tests 14_1 and 14_4 are the LCVTP results, and Els 1 is the test corresponding to 

this research, see Figure 6-10. These are seen to correlate on the linear sections of 

the curve, between deflections of 1.5 and 2.5 mm, where the slopes of the curves 

seem comparable. The global performance of the curves are comparable, despite 

discrepancies seen in initial loading, and plastic deformation patterns. The whole 

sample behaviour was also compared in photographs, and correlates well. This gives 

confidence in the testing undergone in the context of this study, and suggests that the 

simulation results are over-predicting performance due to software restrictions.   
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Figure 6-10: Correlation of experimental testing from this work (Els 1) and 

LCVTP sources (14_1 and 14_4) 

The simulation work run in the context of the LCVTP program used a 

combination of both Genesis and LS-DYNA. It was possible to acquire the LS-

DYNA models, and modify them to fit the assumptions of this study.  

In total, three LS-DYNA models were run, one directly from LCVTP as a quarter 

beam model, and two modified to full beam samples.  

 

LCVTP model – Quarter Beam model 

Figure 6-11 shows the model as used in LCVTP. The beam is constrained at the 

“imaginary” open edges created by the symmetry. The flanges are connected through 

coincident nodes. The model was run through a displacement of 15 mm, and the 

load-extension graph analysed.  
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Figure 6-11: Quarter-beam model as used in LCVTP 

 

Figure 6-12 and Figure 6-13 respectively show the Von Mises stress and plastic 

strain at the onset of beam deformation. They show that in areas the Von Mises stress 

exceeds yield stress (approximately 360 MPa for DP600) and additionally plastic 

strain is present in the corner of the beam. They confirm the previous assumption 

that plasticity is reached very early in the beam deformation causing a localised 

crushing and the formation of a plastic hinge. 

 

Figure 6-12: Von Mises stress values at onset of displacement – when impactor 

first connects with beam 
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Figure 6-13: Plastic strain values at onset of displacement – when impactor first 

connects with beam 

 

 

Full Beam 1 

Two full beam models were also run, as it was felt that they would best represent 

the experimental procedure, and remove uncertainties due to assumptions and 

constraints that due to time-restrictions, could not be evaluated in detail. 

Figure 6-14 and Figure 6-15 shows the Von Mises stress values and plastic strain 

values at the onset of displacement. 
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Figure 6-14: Von Mises stress values at onset of displacement 

 

Figure 6-15: Plastic strain values at onset of displacement 

 

The plots again indicate plasticity at the onset, and the Von Mises values exceed 

yield stress values. Again, these reinforce the conclusions from the experimental 

testing observations and differences to the simulation indicating the early onset of 

plasticity and its effect on the overall beam stiffness.  

 

 

 



  

146 

Full Beam 2 

This model presented a higher level of geometrical detail in both the beam and 

the supports. The visual results are similar to the previous two, and also confirm 

early onset of plasticity under the impactor.  

 

Results 

Figure 6-16 and Figure 6-17 show the results of the simulated LS-DYNA tests 

presented above, overlain with the experimental results. The overall results show a 

likeness in both shape and order of magnitude. They fit within the envelope of the 

experimental samples.  

 

Figure 6-16: Load-extension graph showing the correlation of the experimental 

and simulated results 
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Figure 6-17: Load-extension graph of the simulated results only 

 

It can be seen that the experimental results present a smooth response, where the 

simulated response, shown in Figure 6-17, presents some fluctuation of the sample 

in the response. The motion is confirmed by a close inspection (every timestep) of 

the D3PLOT results. This could be due to a number of factors including the implicit 

run, velocity of impactor, etc. Ramaswamy [102] noted in his work that the 

fluctuation was a difficult aspect to manage and noted that the predictions were still 

indicative of the expected behaviour. This was the only work relating to simulation 

of parts of an identical geometry found within the literature review. The work was 

conducted within the context of the LCVTP work conducted at WMG, and used 

comparable processes for sample production. Discussions with the industrial leads 

of the LCVTP program also indicated that the fluctuations were a flaw of the 

simulation, due to the presence of a spring system measuring the displacement 

response of the samples. 
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Figure 6-17 also shows that the quarter beam model presents a smoother response 

to the two full beam models. However, the full beam model 1 shows an initial 

deformation pattern, from 0 to 1 mm, most resembling that of the experimental 

results.  

A case study was run on the 0.8 mm hybrid models to determine whether the 

experimental results could be recreated in LS-DYNA. This was also to ensure that 

the hybrid experimental results were offset in Genesis due to the early onset of 

plasticity. The two models used were a full beam model (simulation 1) and a quarter 

beam model (simulation 2). Figure 6-18 shows the graphical results. The models 

correlate well in the elastic region, however show an under prediction of the overall 

performance. The models also display the “bouncing” phenomenon observed in the 

pure steel models, to a lesser extent.  

 

Figure 6-18: Load-extension graph of the hybrid experimental and simulated 

results 
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The results, as presented, stand to demonstrate that the early onset of plasticity 

and continued presence throughout caused the lack of correlation between the initial 

Genesis simulated results and the experimental results. The Genesis models present 

the correct deflection patterns, localised stress and strain concentrations but simply 

do not account for the decrease in load bearing capability due to the plastic behaviour 

in the materials and geometry. It is acknowledged however that further time should 

be spent on the LS-DYNA models to optimise them and obtain closer correlation 

between the tested and simulated load-extension curves.  

 

 A manual localisation optimisation – pure elastic bending 

In light of all the simulation challenges, a short manual optimisation of the 

reinforcement location was run. From the deflection and stress plots of the previous 

samples, it can be seen that there are localised areas of high stress. These simulations 

are based on the original three point bend simulations, as seen page 125, and are an 

intelligent deployment of composite materials, where the location and size of the 

patches was picked based on areas of high stress concentration, and deformations.  

It was speculated that even in the pure geometrical bending, it would be possible 

to show that a small addition of composite material on these areas of high stress 

would alter the performance significantly. As a result, the following model, as seen 

in Figure 6-19, was proposed to be studied. The patches on the sides are 40 mm in 

height and 30 mm across, and the top patch is 80 mm along the width of the top hat 

beam, and 30 mm across. 
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Figure 6-19: Localised reinforcement using patches of composite material 

 

Table 6-5: Stiffness performance of the hybrid samples with local reinforcements 

compared to the previously tested ones 

Sample make-up Stiffness K 

(N/mm) 
Weight (g) 

DP600 FRP 

0.5 mm - 870.8 577.4 

0.5 mm Top (full strip) 1601.2 632.0 

0.5 mm Local Reinforcement 1691.6 592.6 

0.8 mm - 2560.8 923.8 

0.8 mm Top (full strip) 3616.6 978.5 

0.8 mm Local Reinforcement 3852.3 939.1 

 

Table 6-5 shows the performance results. These highlight that with a simple, 

intelligent deployment of composite material it is possible to out-perform a large 

reinforcement patch, as well as lowering the overall weight. Not only do the samples 

with local reinforcement have an increased stiffness compared with the hybrid top 

reinforcement ones, but the composite also covers a smaller surface area, meaning 

the samples weight less.  
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Figure 6-20: Deflection plot for 0.8 mm samples at identical load; a) pure steel, b) 

top reinforcement, c) local reinforcement – deflections not to scale 

a) 

b) 

c) 
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Figure 6-20, showing the deflection of the beam with no plastic hinging, also 

shows that the presence of composite as a localised patch affects the overall localised 

deflection of the beam.  

The pure steel beam displays a maximum deflection 30 % larger than that of the 

beam with a top reinforcement and 40 % larger than that displayed by the locally 

reinforced beam. The presence of localised reinforcement allows a spreading of the 

loading and smaller localised deflections. These deflections are not to scale.  
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 Limitations, Conclusions and Further work 

From the results in Chapter 5, a clear benefit is found in terms of stiffness k in 

downgauging a steel part and adding a local reinforcement of composite material to 

the top surface. This also agrees with the findings of Chapter 4. 

In light of these experiments, the difficulties in obtaining pure bending in the 

chosen experimental case without the localised effects of plasticity appear 

prominent. It is suggested that in further work a detailed investigation of the pure 

bending in experimental circumstances of this specific geometry would be carried 

out. It would be interesting for example to study experimental cases that suppress 

the plastic deformation, either by four-point bend, which provides a section of pure 

bending between the two impactors, or by creating an impactor with an altered 

geometry capable of constraining the beam and preventing the plastic hinging. It 

could be additionally feasible to use a localised composite reinforcement with the 

same goals. The case tested relates to an intrusion case, which was not the case 

envisaged by the project in terms of stiffness performance and pure elastic behaviour.  

Chapter 6 has highlighted the issues and unforeseen difficulties of creating a 

model that can accurately predict the performance of the beams given the chosen 

experiments. The simulation trials and manual optimisation run in Genesis provide 

vital information as to the effect of the composite patching on the overall beam 

performance. However, there are limitations inherent to the software which have 

proven difficult to circumvent, as Genesis is ideal for composite optimisation but 

proves inadequate for plasticity modelling, and LS-DYNA has the capabilities to 

model the plasticity problem but does not lend itself as directly to a composite 

optimisation in terms of topological optimisation as well as layer orientation and 

thickness.  

However, the simulation has shown that the behaviour can be predicted, all-be-it 

here in a “rough” and slightly unstable manner, giving confidence in both the 
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material model assumptions from Chapter 4 and the experimental results showing 

the lightweighting potentials discussed on both the coupon work in Chapter 4 and 

the component work in Chapter 5.  
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7 SUMMARY 

This chapter discusses and summarises the learning outcomes from this body of 

work.  

 

 Discussion of outcomes and limitations to the research 

There is a recognised lack of knowledge concerning the fundamental stiffness 

performance of downgauged steel structures locally reinforced with FRP. Much of 

research in the field of localised steel FRP reinforced hybrid materials is focused on 

the retrospective reinforcing of civil engineering structures. Major OEM’s in the 

automotive industry, BMW, JLR, VW to name but a few [2], have shown to use 

composite and steel combinations in their vehicles. Published research however, 

either does not provide the overall insight into material performance or focuses on 

energy absorption and crash scenarios.  

This thesis has sought to help fill this gap in knowledge. The aim of this project 

was to perform fundamental research into the stiffness performance of hybrid metal-

FRP materials and quantify the potential for lightweighting through an initial coupon 

program, followed by a component program, all the while supported by FE. With the 

trend in the automotive industry towards lightweighting and the effective reducing 

of vehicle mass, this research is applicable and relevant to both academic and 

industrial circles, providing under-pinning knowledge and allowing the uptake of 

hybrid materials in a different form and application.  

In the context of this study specifically, an advanced high strength steel DP600 

was used. The hybrid samples were made up of 0.5 and 0.8 mm DP600 with a 

composite reinforcement. The composite reinforcement was a polyamide 6, at 60 % 

weight fraction (PA6 GF60) of varying lay-ups [0,90]s, [45,-45]s and [90,0]s. 
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The following are a summary of the overall outcomes and contributions to 

knowledge. Additionally, points of interest and further work are discussed. The 

manufacturing of the samples is presented first, followed by a discussion relevant to 

the expression of the results followed by a focus on the coupon and component work. 

This chapter finishes on the outcomes of the simulation and the relevant further 

work. 

 

7.1.1 Manufacture of the hybrid materials 

The manufacturing methods for the hybrid materials were detailed in Chapter 3. 

Chapters 4 and 5 presented the work specific to the coupon and component samples 

respectively. The DP600 used in the testing was uncoated, so as to avoid 

complications relating to bonding. The samples were prepared in the following steps: 

both materials were prepared for bonding, the steel surface was manually abraded 

whereas the PA6 GF60 composite used the peel-ply as a surface preparation. All 

materials were joined using adhesive bonding, three different adhesives were used, 

all providing satisfactory results. In the context of the component structures, the steel 

sheets were press-formed prior to the composite reinforcement being added. 

Monolithic steel samples, referred throughout the thesis as “pure steel samples”, 

were also produced for benchmarking purposes. Samples produced are summarised 

Table 7-1 for both the component and coupon test programmes.  

The samples produced repeatable results in testing, giving confidence in the 

techniques used. The process, however, was manually intensive and time consuming, 

and would not be applicable to a high volume manufacturing environment. A similar 

process would need to be trialled and optimised for such an application, although 

this was out of scope for this project. 
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Type of test Material Orientation Coupon Component 

 DP600 steel PA6 GF60   

Benchmarking 

- [0,90]s   

- [45,-45]s   

- [90,0]s   

0.8 mm -   

1.0 mm -   

1.6 mm -   

Hybrid 

0.5 mm 

[0,90]s   

[45,-45]s   

[90,0]s   

0.8 mm 

[0,90]s   

[45,-45]s   

[90,0]s   

Table 7-1: Summary of all fabricated samples 

All testing was undertaken following adapted standard procedures [95, 96], at 

quasi-static speeds of ν = 1 mm/min in three-point bend fixtures tailored to the 

samples.  

 

7.1.2 Expressing the stiffness performance 

The results were difficult to express consistently throughout the thesis, not only 

to ensure a direct comparison of results amongst themselves but to provide a useful 

tool to both the reader and industrial partners. There are subtleties associated with 

expressing the stiffness of the parts tested as there is a double stiffness effect due to 

the sample hybridisation. The samples present both a material stiffness and a 

geometric stiffness. As such, the stiffness is either a material property, expressed 

well by the Ludke criterion √E
3

ρ⁄  or by the bending modulus Ebend =  L
3 k

48 I
⁄ ; or 

a geometrical (and material) property, expressed well by k, the gradient of the elastic 

region of the load-extension curve of such samples, and the measure of the sample’s 

ability to resist deformation.  

Neither Ludke’s criterion or the bending modulus are particularly adapted to the 

expressing of stiffness of a locally reinforced part as Ludke’s criterion depends on a 
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value of Young’s modulus and density averaged over the component, the bending 

modulus is dependent on the span, modulus and value of I.  Ludke’s criterion, when 

normalised to steel, enables the expression of the material performance from a 

characteristic perspective. It shows a comparative performance of the materials. It is 

applicable only to materials with a constant cross-section. The bending modulus Ebend 

presents itself with the same issue, and required the materials used to be of a constant 

cross-section. The gradient of the load-extension curve k, presents itself throughout 

as the best expression of stiffness. In identical test environments, it gives an accurate 

understanding of the hybrid sample performance, and provides data applicable to 

industrial needs.  

Regarding industrial applications of this knowledge, in a scenario where size and 

geometry are likely to be primary considerations, a combination of all three stiffness 

expressions would provide thorough information regarding the selection of 

materials.  

In further work, it would be interesting to investigate the creation of a 

mathematical concept or graph expressing the stiffness of a complex geometry in 

terms of its gradient k, the “engineering” stiffness, as well as the weight of the 

samples, and the nature of the reinforcement patch (thickness, orientation, etc). 

 

7.1.3 Quasi-static coupon testing 

Hybrid coupon samples were produced, from 0.5 and 0.8 mm DP600 and 

composite lay-ups of [0,90]s, [45,-45]s and [90,0]s orientation. These were tested in 

quasi-static three-point bend to assess the performances of the material in stiffness. 

The results were expressed both in terms of Ludke’s criterion (showing the stiffness 

performance of the steel can be improved by up to 44 % when reinforcing with a 

balanced 4 layer GF60 PA6) and engineering stiffness k (showing that for a matched 
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stiffness performance, GFRP hybrid coupons can present a weight save of up to 30 

% in tested samples).  

Simulation was done in both LS-DYNA and Genesis, giving a generally 

trustworthy prediction of the performance, always within 11 % of the experimental 

data. This predicted data is shown in Figure 7-1. 
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Figure 7-1: The performance and weight “improvements” of the GFRP hybrid 

samples compared to the pure steel ones (reshown Figure 4-28) 
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Figure 7-1 highlights the main conclusions from the GFRP coupon stage testing 

(1.6 and 0.8 mm pure steel samples) and simulation (1.3, 1.2, 1.1 and 1.0 mm pure 

steel samples), explained as follows. Every data point on the curve represents the 

performance of the hybrid sample compared to the performance of the labelled 

thickness of pure steel sample. The values used for 1.6 and 0.8 mm pure steel samples 

were obtained experimentally, and the values used for 1.3, 1.2, 1.1, 1.0 mm pure 

steel samples were obtained through simulation. The 0.5 mm hybrid coupon presents 

a similar stiffness performance to a 1.1 mm pure steel counterpart, at approximately 

30 % weight save and the 0.8 mm hybrid sample presents a similar performance to 

a 1.3 mm pure steel counterpart at an approximate 17 % weight save. 

Additionally, it was noted that the orientation of the outer layer of fibres has a 

large effect on the stiffness and on the energy absorption mechanism and failure of 

the samples. The [0,90]s hybrid samples out-performed the [90,0]s and [45,-45]s. The 

[45,-45]s presented the lowest yield strength, no sharp fibre failure and were 

observed in tests to rotate so as to present a lower resistance to the deflection (lower 

energy state).  

The simulation and material model assumptions were deemed acceptable for the 

modelling of the elastic region of hybrid steel composite coupons as they presented 

a satisfactory level of correlation.  

From the literature review, Michael Dlugosch presents work closest related to 

that presented here. His work [28], in partnership with BMW, focuses mainly on the 

energy absorption of hybrid materials for front impact. He presents initial coupon 

work which is comparable to that performed here, although never focuses on the 

lightweighting potential, only on the increase in energy absorbed. His tests use a dual 

phased steel and a hardened boron steel as well as glass and carbon fibre pre-pregs. 

His samples were 1.5 mm steel and varying thicknesses and lay-ups of composite. 

His work correlated with results presented here on a number of points: 
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 the orientation of the composite affects the performance of the coupons 

 the hybridisation of a sample increases the UTS load and extension to 

failure of both the steel and the composite when combined 

 a stepwise laminate fracture is observed through failure, in the composite 

layers 

 the coupons in steel-over-composite and composite-over-steel scenarios 

present very similar responses 

 

His work noted the gap in literature when considering fundamental 

understandings of hybrid steel-FRP materials, as well as a lack of standardised means 

of expressing stiffness, although he picked the use of Ebend to express his results in 

the context of his coupon-only work. 

His work included useful notes to the extended and further work on coupon 

samples where “the overall stiffness decreases with a rising cross-sectional share of 

the less stiff FRP-phase”. It would be suggested that in further work to this thesis 

both the 0.5 mm and 0.8 mm hybrids be tested with varying thicknesses of 

composites, to replicate this finding and further quantify this effect with reference to 

lightweighting. His results also indicate that the hybrid performance difference 

between GFRP and CFRP reinforced samples is minimal, as the behaviour is 

dominated by the steel. This is also noted in the context of this thesis, where the 

samples perform similarly, however the CFRP samples are notably lighter (0.5 mm 

hybrids 14.3 % lighter CFRP compared to GFRP and 0.8 mm hybrids 19 % better 

performance for 8 % lighter CFRP compared to GFRP – See Tables 4-11 and 4-12). 

This differing performance between fibres of varying nature highlights another area 

needing further investigation contributing to the thorough understanding of the 

lightweighting potential in a stiffness critical performance of hybrid steel-FRP 

materials. However, the work in this thesis has shown, for the first time, a 
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quantification of the lightweighting potential associated with the use of FRP 

combined with a downgauged steel whilst matching the stiffness performance of the 

pure steel equivalent. It has also provided an associated material simulation for the 

use of FRP composites reinforcing a downgauged steel coupon. It has been noted 

that other literature focuses on the hybridisation of coupon shaped composites, using 

glass and carbon in conjunction, focusing on stiffness for energy absorption and cost 

[76-80]. In further studies, these hybrid composites could be used in conjuction with 

the steel in a global hybrid study.  

 

7.1.4 Quasi-static component testing 

Using an idealised automotive component geometry, hybrid component samples 

were produced. These were from 0.5 and 0.8 mm DP600, and [0,90]s PA6 GF60 

GFRP reinforcement along the top section of the component. The components were 

tested in quasi-static three-point bend to assess overall performance. This component 

geometry and test method is also used in published literature, providing benchmark 

data and adding confidence in the results [87, 88]. There has however been no 

literature found directly studying the stiffness performance of hybrid steel-FRP 

beams. There have been studies investigating both the pure steel and pure composite 

equivalents, as well as other materials [87, 88]. 

In the context of component testing, the results were analysed and compared 

based on the value of stiffness k. The samples were tested in identical conditions so 

that the results could be directly compared. The component is seen to plastically 

deform around the impactor site, causing a plastic hinge to form. The bending 

stiffness as expressed by k is a reflection of both the material stiffness and 

geometrical stiffness. 
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The samples were not tested to global failure; however, the deformation patterns 

were observed as well as the effect of the hybridisation. The presence of composite 

reinforcement is seen to alleviate some of the plastic hinging damage that the beams 

incur during the tests. The areas affected are larger, however the damage is less 

severe. [70, 88, 106, 108] are but a few to have noted this plastic-elastic kinking 

hinge effect appearing on thin walled structures during deformation.  
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Figure 7-2: The performance and weight “improvements” of the hybrid samples 

compared to the pure steel ones – reshown Figure 5-18 
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Figure 7-2 plots both percentage weight gain and stiffness k benefit for the 0.5 

and 0.8 mm hybrid samples compared to the pure steel ones. It shows that there is a 

distinct potential for using FRP to reinforce steel in an intelligent deployment of 

composite material implying the structure can be optimised and lightweighted. 

Indeed, the 0.5 mm hybrid sample provides a 15 % (y-axis reading) increase in 

performance over the 1.0 mm pure steel sample, whilst also providing a 44 % (x-

axis reading) weight save. It is estimated from Figure 7-2 that a 1.1 mm pure steel 

sample would provide an identical stiffness response as the 0.5 mm hybrid, where 

the hybrid would weigh up to 50 % less.  

The data collected has shown that for a given composite reinforcement, it is 

possible to create graphs indicating the “cut-off” areas of performance benefit, 

Figure 7-2 being such an example.  

In further work, it would be interesting to investigate the nature of the composite 

reinforcement in terms of thickness, as the comparative effect of a 1.2 mm FRP patch 

would be more notable on a 0.5 mm steel than on a 0.8 mm steel. There are a range 

of scenarios where the hybrids would be dominated by a specific material, and 

establishing the boundary between material effect domination (either steel or 

composite) and geometrical domination would be a valuable area of further research 

leading towards an application to manufacturing.  

 

7.1.5 FEA predictions 

Finite element modelling was used to simulate the stiffness behaviour of the 

tested models and to predict the performance of the hybrid and monolithic materials. 

Two software packages were used, LS-DYNA and Genesis.  

In the coupon stage of the simulation, the material model was shown in both LS-

DYNA and Genesis to predict the results with reasonable confidence (within 11 %). 
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Several assumptions were trialled, with the most successful being the assumption to 

model both materials inside a singular part (P_COMP and PART_COMPOSITE), 

ignoring the presence of adhesive and taking advantage of the inbuilt function of the 

software. As it presented the highest level of correlation, the model created following 

this assumption was carried forward and used to model the elastic region of the 

hybrid steel composite coupons. Additionally, as it provided the most accurate and 

least computationally expensive results, the simulation was carried forward in 

Genesis. 

At component level, geometric interactions proved the idealised pure elastic 

Genesis model to be insufficient. The purely elastic model run by the software over-

predicted the performance. Additionally, Genesis does not include an ongoing 

calculation of stiffness as it is calculated at the start of the simulation and does not 

consider any later changes in geometry. In LS-DYNA, it was shown to be possible 

to create a model that considers the early onset of plasticity. Literature [102] has 

shown that the FE modelling of a quasi-static component in terms of  geometry, 

contacts, etc. is a complex process. Achieving a stable and accurate model is possible 

through a lengthy iterative process. The models used in the context of this work show 

the prediction of the plasticity to be unstable but within the envelope spread of the 

experimental results. 

In light of these experiments, the difficulties in obtaining experimental pure 

bending without the localised effects of plasticity were prominent. In further work, 

a detailed investigation of experimental pure bending scenarios is recommended. 

This could involve for example four-point bend scenarios, a modification of the 

impactor or a geometrical alteration in the sample allowing for pure bending in 

testing. It would be interesting to study experimental cases that suppress the plastic 

deformation, either by four-point bend, which provides a section of pure bending 

between the two impactors, or by creating an impactor with an altered geometry 
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capable of constraining the beam and preventing the plastic hinging. It could be 

additionally feasible to use a localised composite reinforcement with the same goals. 

It is worth noting that a material model has been proven to be effective at the 

prediction of the hybrid material performance, but that further simulations were 

hampered by the software limitations and unforeseen geometrical effects. This is 

additionally an indication of the potential application of this intelligent deployment 

of composite materials, as by downgauging the steel, the structure is more vulnerable 

to intrusions, therefore the application would need to be to a structure in global 

bending with limited localised effects.  
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8 CONCLUSIONS AND PERCEIVED CONTRIBUTION TO 

KNOWLEDGE 

This thesis has examined the potential for lightweighting provided by the 

intelligent deployment of composite materials on steel parts for matched stiffness 

performance. This is previously undescribed in the literature.  

The results show that hybrid materials can provide a matched stiffness 

performance to their pure steel counterparts whilst being lighter. This lightweighting 

potential was shown both at coupon level as well as applied to an idealised 

automotive part. Simulation models for the hybrid material proved performance to 

be predictable when deformations were entirely constrained to an elastic behaviour. 

However, despite the hybrid material being accurately predicted, geometrical effects 

presented additional complications, and the hybrid effects on the global performance 

are indicative only.  

The thesis, in combination with the literature review shows that this is an 

industry-relevant topic, and with potential to find its application in future optimised 

lightweight vehicles.  

For the materials studied, DP600 and PA6 GF60, it was shown that: 

 The intelligent deployment of FRP offers significant lightweighting 

potential compared to steel-only structures 

 It is possible to downgauge a steel component and then locally reinforce 

with FRP patches to achieve matched stiffness at 30 % overall weight 

save 

 It has been shown that a 30 % weight save is valid for both coupon and 

component level tests 

 Coupon and component simulation has been developed which cross-

validates experimental tests 
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 The simulated material model could be exploited by CAE automotive 

design for lightweight vehicles 

The lightweight potential of 30 % would be expected to rise when reinforcing 

with other materials, such as CFRP. Early investigations indicate a 40 % 

lightweighting potential. 
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9 WIDER IMPLICATIONS OF FRP STEEL HYBRID UPTAKE IN 

BIW 

Uptake of steel-FRP hybrids, in the form of patches, in BIW application as well 

as other automotive parts would also need to undertake the following testing and 

investigations. Note these are only a representation of the research that could be 

applied to the topic, and are a reflection of the feedback and discussions that arose 

throughout the duration of the thesis.  

 Full material properties – all samples were investigated purely in stiffness, 

a full characterisation would be necessary prior to industrial uptake. 

 Bond strength – the bonds would need evaluating to establish performance 

and optimise their nature (UTS and fatigue). A full study of the adhesive 

bonding to both the steel and composite substrates would be needed 

(mechanical locking vs covalent bonding) as well as a surface preparation 

study. 

 Noise and vibration – the used of specially designed composite patches 

could not only provide a stiffness reinforcement but also a noise and 

vibration damper. 

 Fatigue – the fatigue life of a composite material is different to that of steel, 

and self-healing nano-composites could be a viable solution – a full life 

cycle assessment would be needed. Additionally, composite materials and 

steel have differing degradations of their properties through their lifetimes.  

 Corrosion – the presence of both glass and carbon fibres near a steel surface 

could cause additional corrosion issues that would need further investigating 

and mitigating. 

 Thermal mismatch – the composite and steel have varying coefficients of 

thermal expansion, and although those have not been an issue through the 

tests performed here, they could become problematic in an automotive build 
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cycle, where the BIW undergoes heating and cooling (paint cycle for 

example). 

 Varying fibres – varying the nature of the fibres and the matrix would 

provide further knowledge towards the optimal choice of material, as well 

as location, size and nature. An Ashby-type diagram of all hybrid 

performance would be invaluable.  

 Varying metallic substrate - the effect of gauge changes on the “thin walled 

effect” [110] and their vulnerability to intrusion and localised damage must 

be taken into consideration, showing that the weight advantage of 

aluminium over steel can be decreased by properly locating reinforcements 

on downgauged steel sections. Again, an Ashby-type diagram of all hybrid 

performance would be invaluable. 

 Cost analysis – an investigation into the cost benefit of the application of 

hybrid materials to BIW structures over the lifetime of the vehicle.  

 Recycling – an environmental impact assessment would provide the 

knowledge towards the end-of-life aspect of hybrid applications. 

 Risk Based Design – approaching the design of the vehicle from a risk-based 

and probabilistic approach rather than the current empirical one would yield 

interesting results, and potentially show areas where hybrid materials are at 

their most effective.  

 Manufacturing aspects – a study into the implementation and applicability 

of the knowledge to a high volume manufacturing environment. 

A third year Master’s thesis study is proposed on the effect of rolling direction 

and fibre direction on the stiffness and strength performance of geometrically 

identical samples. In addition to the fibre directions presented in this work, the 

rolling direction would vary in each case, at 0°, 45° and 90° to the sample length. 
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Additionally, a study into the surface preparation and conditioning for adhesive 

bonding would contribute to the understanding of the hybrid bond.  
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APPENDIX A 

Study of the nature of the adhesive S10 – Chapter 3, Section 3.3 “Adhesive” 

Microscopy images, as shown in Figure 3-2 and reshown in Figure A-1 of the 

coupon specimen from testing in Chapter 4 were used to confirm layup ahead of 

simulation runs and offer the opportunity to investigate the nature of the adhesive 

further. The cross sectional image of the final material shows inclusions in the 

adhesive. The manufacturer’s formulation indicates that the adhesive contains 

aluminium tri-hydrate. This was verified using Scanning Electron Microscopy 

(Energy-dispersive X-ray spectroscopy – EDS) methods. The SEM used is a Philips 

xl30 FEG SEM with Oxford Inca software.  

 

Figure A-1: Optical microscopy image of the cross section of a hybrid DP600 PA6 

GF60 specimen showing the adhesive (top) and composite (bottom) layers – scale 

>500 µm 
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The following are a series of SEM images used to identify the inclusions in the 

adhesive. 

 

Image A-1: SEM image of the adhesive 

 

 

Figure A-2: EDS graph showing the elements present in the adhesive 

Image A-1 highlights the presence of inclusions in the cured adhesive. The 

scanning reveals the presence of carbon, oxygen, calcium, aluminium, titanium, 
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chlorine and iron. Table A-1 summarises the element weight distribution as 

calculated by the SEM. 

 

Table A-1: Element weight distribution in the adhesive layer SAS 272 

Element Weight % 

C 41.2 

O 28.3 

Ca 16.3 

Al 10.9 

Ti 1.8 

Cl 1.2 

Fe 0.4 

 

The presence of gold on the spectrum, as shown in Figure A-2, is explained by 

the coating applied to the specimen in order to carry out the scanning. Without the 

coating, the beam damages the specimen and does not provide readings. The element 

distribution images show that the nuggets are composed either of a combination of 

aluminium and oxygen or calcium.  

These results confirm the presence of aluminium tri-hydroxide, as stated by the 

manufacturer.  
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Figure A-3: Scans showing presence of elements in inclusions 
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APPENDIX B 

Springback study, Chapter 3, 3.4.1.2 “Shaping the specimens” 

Table B-1 shows the scans produced in the springback study.  

Table B-1: Scans of springback samples, with associated rate, pressure and hold 

time information 

Rate, Pressure, Hold Time 

Top view of samples 

Rate, Pressure, Hold Time 

Springback side profile (mm) 

R: 800 kN/s, P: 100 kN; HT: 10 s 

 

800_100_10 

 

Max deflection ~14 mm 

R: 800 kN/s, P: 100 kN; HT: 30 s 

 

800_100_30 

 

Max deflection ~14 mm 
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R: 800 kN/s, P: 800 kN; HT:10 s 

 

800_800_10 

 

Max deflection ~13 mm 

R: 800 kN/s, P: 800 kN; HT: 30 s 

 

800_800_30 

 

Max deflection ~11 mm 
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APPENDIX C 

Sika Adhesive Data Sheet 
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APPENDIX D 

Additional notes on coupon performance, Chapter 4 

During the coupon tests, the samples were monitored throughout, leading to the 

observation that there was no delamination or failure of the composite and adhesive 

layers in the elastic region of the test i.e. a deformation of up to 0.5 mm. 

 

Figure D-1: Load-extension diagram for the 0.8 mm hybrid coupon samples tested 

to failure - reshown 

In the reshown Figure D-1, it is apparent that the samples where the composite is 

in compression outperform the samples where the composite is in tension. They also 

show variations in failure modes.  

An initial observation (Table D-1) of the samples provided information on the 

failure modes; additionally, highlighting the tensile versus compressive nature of the 

loading through the composite layer. 
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Table D-1: Notes on sample failure patterns 

Sample Notes 

Steel/Composite 

[0,90]s 

tensile fibre failure, delamination from adhesive 

Steel/Composite 

[45,-45]s 

matrix failure in shear, tensile fibre failure, strain “pinching” of the 

composite layer (slight anticlastic bending), adhesive failure 

Steel/Composite 

[90,0]s 

matrix failure in the outer layers, adhesive failure at matrix failure 

Composite/Steel 

[0,90]s 

compressive fibre failure, delamination on 3 samples only 

Composite/Steel 

[45,-45]s 

matrix failure in shear, compressive fibre failure, “expansion” of the 

composite layer 

Composite/Steel 

[90,0]s: 

delamination between layers, composite compressive failure 

 

Images in Table D-2, representative of the Steel/Composite failure modes for 

[0,90]s, [90,0]s and [45,-45]s respectively confirm the observations above. The 

background grid seen in the images is 10 mm by 10 mm. 

Table D-2: Representative failure (photographic documentation) 

Steel/Composite, [0,90]s Steel/Composite, [90,0]s Steel/Composite, [45,-45]s 
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Further assessments would be possible if failure was a major focus of the research 

where digital image correlation, acoustic emissions, optical microscopy techniques 

and specialist resins could be used in parallel to provide detailed information as to 

the nature of the failure and propagation patterns within the samples.  

During the analysis of the results, it was also noted that samples tested in 

composite-over-steel set-ups presented a higher load at failure than the samples 

tested in steel-over-composite.  In the C/S tests, the fibres in the composite are 

mainly in compression, whereas in S/C tests, the fibres are primarily in tension. This 

was also witnessed by Dlugosch [28]. It is speculated that the failure mechanism and 

presence of the impactor plays a role in this. Indeed, considering only the outer layer 

of composite fibres in tension, once failure occurs, there is minimal load transfer 

from the surrounding material. In compression however, careful examination of the 

samples shows that although there is complete fibre failure, the failure surfaces are 

still in contact, compressed together as the samples bend.  

Table D-3 shows images of the samples in composite compression. The broken 

fibres are seen to overlap which implies that even though the fibres are now 

discontinuous, the load can still be carried through the layers. There is also 

possibility that the presence of the roller from the testing rig delays the failure as it 

prevents sample disintegration. The geometrical cross section of the samples also 

increases, which would increase the stiffness of the overall sample.  
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Table D-3: Image captures of the compressive zone of the samples – fibre overlap 

show 

 
a) Full sample in composite/steel – composite compression top view – sample is 60 

mm in length 

 
b) Full sample in composite/steel – composite compression iso view – sample is 60 

mm in length 

 
c) Compression zone on sample – fibre overlaps 

 


