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ABSTRACT 

The thermal diffusivity of RVO3 single crystals (R = Ce, Pr, Nd, Sm, Gd, and Er) 

has been measured with an ac photopyroelectric calorimetry in the region in which the 

G-type orbital ordering and C-type spin ordering take place. Detailed measurements in 

the close neighbourhood of the spin ordering temperature have allowed to extract the 

critical parameter α and the critical ratio A+/A- for this transition. While the samples 

containing Ce, Nd, Sm and Er belong to the 3D-XY universality class (showing that the 

spins have an easy plane anisotropy), the sample with Gd, which is known to present a 

clear easy axis, belongs to the 3D-Ising class. Finally, PrVO3 shows an effective 

isotropic behavior, as the critical parameters found agree with the 3D-Heisenberg class. 
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1. Introduction 

RVO3 family of vanadium oxides (R being a rare earth ion from La to Lu and Y) 

has been extensively studied along the last twenty years because of the very interesting 

magnetic and electronic properties they present due to spin-charge-orbital coupling. 

Everything started with the study of anomalous diamagnetism in LaVO3 [1] followed by 

the discovery of a magnetization reversal phenomena in several compounds of the 

family [2-4] and the more recent finding of multiferroic properties [5]. A wide variety 

of studies on the crystallographic and magnetic properties have been developed for 

samples with different rare earth ions showing the similarities and, specially, the variety 

of the interactions and their couplings depending on the particular ion. 

These orthovanadates have in common with manganites that they are both 

correlated electron systems, experiencing a Jahn-Teller interaction which is weaker in 

the first group (the orbital-active electrons belong to the t2g orbital in this case while in 

manganites it is eg). The relationship among spin, orbital and lattice degrees of freedom 

is more subtle and complex in the vanadates [6-7]. All members of the series RVO3 

crystallize in the Pbnm space group at room temperature and experience, on lowering 

the temperature, first an orbital ordering transition together with a lattice distorsion 

induced by the collective Jahn-Teller coupling (which leads to a monoclinic phase) and, 

below, a spin-ordering one, both of them continuous, with the exception of LaVO3 

where the spin ordering precedes the orbital ordering and for which the latter has a first 

order character [4, 8, 9]. A particular case is CeVO3, where, depending on the particular 

crystal used for the study, both situations can appear [8-11]. Different studies have 

made it clear that the orbital ordering is of the G-type while the spin ordering is of the 

C-type, which means that the V3+ spins are antiferromagnetically ordered in the ab 

plane while ferromagnetically aligned along the c axis. From DyVO3 to LuVO3 there is 

still another transition at a much lower temperature which is a concomitant orbital and 

spin ordering transition, with a first order character. The new spin ordering is now G-

type with an antiferromagnetic coupling between the V3+ spins in all directions while 

the new orbital ordering is C-type [9, 12, 13]. 

Besides the general picture presented above for all RVO3, more detailed studies 

have been undertaken for particular members of the family, showing that there are 

important differences in the details among them, starting with the position of the 
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different transitions, which is clearly shown in Figure 1 from reference [9]. In particular, 

the temperature of the first spin ordering transition is reduced as the atomic radius of the 

rare earth ion is decreased, possibly due to the increase of the exchange interaction, 

while the higher orbital ordering transition temperature reaches a maximum for an 

intermediate value of that radius, which has been suggested to be due to the competition 

between the increase of the orbital exchange interaction and the suppression of the Jahn-

Teller instability [15]. Other differences arise in the particular direction in which the V3+ 

spins are placed within the C-type spin ordered phase, which has not been studied for all 

ions yet. Literature results point to differences between the two big groups (La to Tb, 

Dy to Lu) [16], some cantings have been proposed [12, 17-19] and in some cases 

particular easy axes have been found for SmVO3 [20] or GdVO3 [21], while PrVO3 has 

been found to behave as a disordered antiferromagnet with random fields [22].  

The aim of this work is to shed some light on this last issue: how spins are 

displayed in the C-type spin ordered state of RVO3 (R = Ce, Pr, Nd, Sm, Gd, Er). An 

interesting support can be brought from the critical behavior theory and the universality 

classes theorized within the framework of renormalization group theory. In the critical 

region around a second order magnetic transition, several physical magnitudes behave 

critically after the following equations, where t is a reduced temperature t= (T-TC)/TC 

and TC the temperature of the transition [23]: 

-specific heat  cp(T)      ~  A± |t|-α (A- for  T < TC,  A+ for T > TC),  (1) 

-spontaneous magnetization   MS(T)    ~  |t|-β  (T < TC),  (2) 

-inverse of initial susceptibility χ0
−1(T)  ~  |t|γ  (T > TC),  (3) 

just to cite some of them. Different sets of values of the exponents (α, β, γ) correspond 

to different models (universality classes) which have been theoretically developed after 

a certain expression of the Hamiltonian describing the physical system. Table 1 contains 

the most relevant universality classes for magnetic systems, for which the values of the 

exponents have been found by different methods [24-27]. The mean field model is 

equivalent to the classical Landau model and is based on long-range interactions. The 

other three models describe the (anti)ferromagnetic phenomena on the basis of short 

range interactions among the spins: the Heisenberg model corresponds to an isotropic 

(anti)ferromagnetic material, XY model is of application when there is an easy plane for 

the magnetization and the Ising model is applicable when there is a uniaxial anisotropy. 

As can be seen from Table 1, in the case of the short range models, the specific heat is 
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the physical magnitude with which the discrimination among models is more precise as 

the values of β and γ (extracted from magnetic measurements) are too similar for the 

different classes. Thus, the purpose of this work is to study the thermal properties of 

RVO3 in the vicinity of the C-type spin ordering transition, extract the critical 

parameters α  and A+/A-, identify the universality class to which they belong and discuss 

the corresponding physical interpretation about the orientation of the spins. 

 

2. Samples and Experimental techniques 

Single crystals of RVO3 (R = Ce, Pr, Nd, Sm, Gd, and Er) were prepared and 

checked following the procedure that is thoroughly explained in [4]. Slabs of plane 

parallel faces were then prepared with thicknesses ranging between 500 and 535 µm for 

our measurements. The critical parameters related to specific heat can also be found 

from some other magnitudes which have the same critical behavior in the vicinity of the 

critical temperature. One of them is the inverse of thermal diffusivity D, related to 

specific heat by 

p
Kc
Dρ

=         (4) 

(K stands for thermal conductivity and ρ for density) provided that thermal conductivity 

does not present any singularity at the transition, which is the case, as will be justified 

later. What will be measured, then, is the through-thickness thermal diffusivity in all 

samples for this study. 

In order to perform a high resolution temperature sweep of thermal diffusivity in 

the region of interest for each RVO3, a combination of an ac photopyroelectric 

technique in the back-detection configuration with LiTaO3 as a sensor and a closed 

cycle He cryostat has been employed. The detailed methodology of the measurements 

performed can be found in [28] and references therein. The temperature rates used for 

the measurements have been chosen between the extreme ranges of 80 and 10 mK/min 

depending on the absence or presence of a phase transition and the need to check its first 

or second order character.  Low rates have been needed to ensure there was no 

hysteresis in particular phase transitions. The experimental curves shown in all graphs 

are the ones obtained experimentally, without any fitting or treatment.  In the 

continuous runs, the relative resolution of the points is ±0.0001 mm2/s in D and ±0.001 
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K in T, retrieving the precise shape of the thermal diffusivity as a function of 

temperature, especially around the phase transition point. 

 In the particular case of CeVO3, magnetization measurements have been carried 

out in a MPMS3 VSM-SQUID by Quantum Design in order to elucidate which of the 

two transitions found is the magnetic one, as there is some controversy in literature and 

it might depend on the particular stoichiometry of the sample or valence state of the Ce 

ions [7, 11]. 

 

3. Experimental results 

 Fig. 1 shows the thermal diffusivity of the six samples studied in the temperature 

region of interest (100-230K) where the two transitions for each sample are present as 

dips superimposed on the monotonous evolution of thermal diffusivity with 

temperature. It is perfectly settled in literature [9] that for R = Pr, Nd, Sm, Gd and Er the 

highest temperature transition belongs to the orbital order type while the lowest one 

corresponds to the ordering of the spins of the V3+ ions. As pointed out in the 

introduction, in the case of Ce some authors have attributed the same type of transitions, 

some others the opposite one. The relative position of our critical temperatures 

resembles very much those of [11], where the authors showed that the lowest one is a 

spin-ordering transition while the higher one is not. In order to be sure about it we have 

performed magnetization measurements (see Fig. 2) where it is clear that the spin 

ordering takes place only at the lowest transition. 

 Concerning the general shape of the curves shown in figure 1, they present a 

typical behavior of thermally insulating materials, where phonons are mainly 

responsible for heat conduction and the phonon mean free path is small at high 

temperatures. As the temperature is lowered from room temperature, there is a 

monotonous and very slow increase in thermal diffusivity, which is nearly constant till 

the orbital ordering takes place, which is manifested as a dip at the transition (as it 

happens for instance in manganites [29]). Concerning the character of these transitions, 

we have checked that in all six cases they are second order as no hysteresis is found 

when using low temperature rates, the curves perfectly superimpose on heating and 

cooling cycles. Going to lower temperatures, in all cases there is a quicker increase in 

the thermal diffusivity curve, due to the fact that the phonon mean free path starts to 

increase but the presence of the spin ordering transition interrupts this increase. The 

magnetic transition is signaled as a strong dip, whose sharpness depends on the 
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presence of one or other rare earth ion. This kind of dips is customarily found in 

magnetic transitions [30-33]. Again, we have carefully checked the character of the 

transitions using low temperature rates, finding a complete superposition of the curves 

in heating and cooling runs, confirming that they are all continuous. From then on, 

thermal diffusivity quickly increases as temperature keeps on being lowered due to the 

fast increase in phonon mean free paths. 

 One small additional comment about the character of the spin ordering transition 

in CeVO3. In literature, it is said to be first order [8, 9] but this is in the cases in which 

the orbital ordering transition appears below the spin ordering, as it happens with 

LaVO3 [9]. Goodenough et al. [12] have argued why when the orbital ordering 

transition is above the spin ordering, both transitions are second order. They affirm that 

a first-order transition at the Néel temperature TN is usually found where the spin order 

is coupled to a cooperative orbital ordering at TOO, for which TN must be very close to 

TOO. In our case, the separation seems to be enough to behave as the rest of the RVO3 

samples. 

 

4. Critical behavior: fittings and discussion 

As explained in the introduction, the critical behavior theory assess that, at a 

second order phase transition, specific heat fulfills equation (1). From Eq. (4) it follows 

that the specific heat and the inverse of thermal diffusivity will have the same critical 

behavior provided that the thermal conductivity does not present any singularity at the 

phase transition, which is the case in this family, as shown in [7]. This implies that we 

can use the curves shown in Fig. 1 to extract information about the universality class to 

which the spin ordering transitions might belong and thus obtain more information 

about the ordering of those spins.  

In particular, the equation that we are going to use to fit the inverse of the 

thermal diffusivity data presented in Fig. 1 will be the well known [32, 34-35] 

( )0.51 1B Ct A t E t
D

α−± ±= + + +      (5) 

where t is the reduced temperature, superscripts + and – stand for T >TC and T<TC 

respectively. The linear term represents the regular contribution to the inverse of the 

thermal diffusivity, while the last term represents the anomalous contribution at the 

second order phase transition; the term in parenthesis is a small correction term 

introduced based on experiments and theory [36, 37] but which is not always necessary. 
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Scaling laws require that there is a unique critical exponent α for both branches and 

rigorous application states that constant B needs also be the same. The experimental 

data were simultaneously fitted for T > TC and T < TC with a non-linear least square 

routine using a Levenberg-Marquardt method. The details of the fitting procedure can 

be found in [34, 35]. 

          Figs. 3 and 4 show the experimental curves, the fitted curves to Eq. (5), as well 

as the deviation curves, which show the difference between the experimental points and 

the fitted curves, in percentage. Table 2 contains the critical parameters obtained from 

the fittings for the six samples, together with the fitted range and the root mean square 

value. Comparing the critical parameters obtained from this analysis, four of the 

samples belong to the 3D-XY universality class (those with Ce, Nd, Sm and Er) while 

the one with Pr belongs to the Heisenberg class and with Gd is very close to the Ising 

class, revealing the different magnetic properties of  RVO3 containing a different rare 

earth ion. 

 If we simply take into account the C-type magnetic ordering which, as a rule, is 

assumed for the spin ordering transition above 100K in RVO3, the spins are 

antiferromagnetically aligned on the ab plane while these planes are ferromagnetically 

aligned along the c-axis. Hence, the only possible universality classes would be 3D-XY 

(easy plane magnetization) or 3D-Ising (if there were an easy axis on the ab plane). Any 

significant canting or the presence of coupling effects would deviate the critical 

parameters from the theoretical values as manifested in other magnetic transitions [33, 

35]. Four of the samples (R = Ce, Nd, Sm and Er) agree with the easy plane description, 

giving critical exponents very close to the theoretical ones for the 3D-XY plane (αtheor=-

0.014, A+/A-
theor=1.06), within a range -0.014 to -0.018, 1.02 to 1.08 (see Table 2). In all 

cases these were the best fittings and the possibility of finding better fittings for other 

models (such as 3D-Heisenberg, 3D-Ising or Mean Field universality classes) was 

checked and discarded. These results in CeVO3 are in agreement with the magnetic 

structure study developed by Reehuis et al [11]. On the other hand, Nguyen et al [38] 

suggested for this material a spin-canted ferromagnetic component superimposed to the 
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antiferromagnetic ordering, which is not revealed in our study. But then, that sample 

was a polycrystal where the orbital ordering transition was below the spin ordering 

transition, so the comparisons are not direct. 

Turning our attention to NdVO3, a neutron diffraction performed in [14] showed 

that the magnetic moments order on the ab plane without any canting, which is 

compatible with the 3D-XY result obtained here. In the case of SmVO3, there is a very 

interesting work where the magnetic susceptibility along the different axis has been 

measured [20] with the result that the a-axis is an easy axis, while for b the 

susceptibility is intermediate and c is the hard axis.  We have specially checked the 

pertinence of an Ising-model in the fitting of our experimental curve but no fitting could 

be found for that universality class, the 3D-XY was the only one found. This would 

mean that the difference in magnetization along a and b axis is not too strong. Lastly, in 

the case of ErVO3, in the work performed on its magnetic structure by Reehuis et al 

[39], they found that in the C-type magnetic structure, the spins were indeed on the ab 

plane, in agreement with our results. 

 But there are other two samples where the fitted results do not agree with the 

3D-XY universality class. In the case of PrVO3 they unambiguously correspond to the 

3D-Heisenberg model (the obtained parameters are the theoretical ones with very small 

errors and very good deviation curves), which is incompatible with the assumed 

common spin ordering in RVO3. But the magnetic properties of this particular member 

of the family have already been found to be very special when single crystals (as is our 

case) and not polycrystalline samples are studied [22]. The author in that work proposes 

that PrVO3 should be considered a disorder antiferromagnet with an effective random 

field, whose origin might be an orbital quantum fluctuation. There is no theorized 

universality class for magnetic transitions with these effects so we have not been able to 

check other models than the common ones. Our conclusion is that the Heisenberg model 

is an “effective” universality class, which means that the magnetic properties might be 

somewhat equivalent to an isotropic antiferromagnet.  
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 In the last case, GdVO3, the critical parameters obtained point to the 3D-Ising 

model (αtheor=+0.11, αfitted=+0.07, A+/A-
theor=0.53, A+/A-

fitted=0.70), which would 

indicate the presence of an easy axis. A complete work on the magnetic properties of 

this material [21] has showed that it presents magnetic properties which make it quite 

different from the rest of the series and that, in particular, the a axis is indeed an easy 

axis, in agreement with our results. 

 

 

5. Conclusions 

The critical behavior of the spin ordering transition for RVO3 (R = Ce, Pr, Nd, 

Sm, Gd, and Er) has been studied by means of ac photopyroelectric calorimetry, 

measuring with detail the thermal diffusivity in the close neighbourhood of the critical 

temperature and extracting the critical parameter α and the critical ratio A+/A-. The 

samples containing Ce, Nd, Sm and Er belong to the 3D-XY universality class, showing 

that the spins have an easy plane anisotropy. The sample with Gd belongs to the 3D-

Ising class, in agreement with an easy-axis anisotropy reported in literature. Finally, the 

sample with Pr shows an effective isotropic behavior, as the 3D-Heisenberg class is of 

application, surely due to the disordered antiferromagnetic properties that it displays. 

 

Acknowledgements 
 

This work has been supported by UPV/EHU (UFI11/55). The work at the 

University of Warwick was supported by a grant from the EPSRC, UK, EP/M028771/1. 

The authors thank for technical and human support provided by SGIker of UPV/EHU. 

V. Shvalya and V. Liubachko thank the Erasmus Mundus programme “ACTIVE” for 

their grants. 

  
  

9 
 



References 

[1]  N. Shirakawa, M. Ishikawa, Jpn. J. Appl. Phys. 30 (1991) L755. 

[2]  Y. Ren, T.T.M. Palstra, D.I. Khonskii, E. Pellegrin, A.A. Nugroho, A.A. 

Menovsky, G.A. Sawatzky, Nature 296 (1998) 441. 

[3]  J.Q. Yan. J. S. Zhou, J.B. Goodenough, Phys. Rev. 72 (2005) 094412. 

[4]  L. D. Tung, M.R. lees, G. Balakrishnan, D.McK. Paul, Phys. Rev. B 75 (2007) 

104404. 

[5]  Q. Zhang, K. Singh, C. Simon, L.D. Tung, G. Balakrishnan, V. Hardy, Phys. Rev. 

B 90 (2014) 024418. 

[6]   J. Fujioka, T. Yasue, S. Miyasaka, Y. Yamasaki, T. Arima. H. Sagayama, T. Inami, 

K. Ishii, Y. Tokura, Phys. Rev. B 82 (2010) 144425. 

[7]   J.Q. Yan. J. S. Zhou, J.B. Goodenough, Phys. Rev. Lett.  93 (2004) 235901. 

[8] Y. Ren, A.A. Nugroho, A.A. Menovsky, J. Strempfer, U. Rütt, F. Iga, T. 

Takabatake, C.W. Kimball, Phys. Rev. B 67  (2003) 011407. 

[9]  S. Miyasaka, Y. Okimoto, M. Iwama, Y. Tokura, Phys. Rev. B 68 (2003) 

100406(R). 

[10] A. Muñoz, J.A. Alonso, M.T. Casais, M.J. Martinez-Lope, J.L. Martinez, M.T. 

Fernandez-Diaz, Phys. Rev. B 68 (2003) 144429. 

[11] M. Reehuis, C. Ulrich, P.Pattison, M. Miyasaka, Y. Tokura, B. Keimer, Eur. Phys. 

J. B 64 (2008) 27. 

[12] J.B. Goodenough, J.S. Zhou, J. Mater. Chem. 17 (2007) 2394. 

[13] M.H. Sage, G.R. Blake, C. Marquina, T.T.M. Palstra, Phys. Rev. B 76 (2007) 

195102. 

[14] M. Reehuis, C. Ulrich, P.Pattison, B. Ouladdiaf, M.C. Rheinstädter, M. Ohl, L. P. 

Regnault, M. Miyasaka, Y. Tokura, B. Keimer, Phys. Rev. B 73 (2006) 094440. 

[15] S. Miyasaka,  J. Fujioka, M. Iwama, Y. Okimoto, Y. Tokura, Phys. Rev. B 73 

(2006) 224436. 

[16] R. V. Yusupov, D. Mihailovic, C.V. Colin, G.R. Blake, T.T.M. Plastra, Phys. Rev. 

B 81 (2010) 075103. 

[17] H.C. Nguyen, J.B. Goodenough, Phys. Rev. B 52 (1995) 324. 

[18] Y. Ren, T.T.M. Palstra, D.I. Khonskii, A.A. Nugroho, A.A. Menovsky, G.A. 

Sawatzky, Phys. Rev. B 62 (2000) 6577. 

[19] G. Ulrich, G. Khaliullin, J. Sirker, M. Reehuis, M. Ohl, M. Miyasaka, Y. Tokura, 

B. Keimer, Phys. Rew. Lett. 91 (2003) 257202. 

10 
 



[20] R.D. Jonhson, C.C. Tang, I.R. Evans, S.R. Bland, D.G. Free, T.A.W. Beale, P.D. 

Hatton, L. Bouchenoire, D. Prabhakaran, A.T. Boothroyd, Phys. Rev. B 85 (2012) 

224102. 

[21] L.D. Tung, Phys. Rev. B 73 (2006) 024428. 

[22] L.D. Tung, Phys. Rev. B 72 (2005) 054414. 

[23] H.E. Stanley, “Introduction to phase transitions and critical phenomena”, Oxford 

University Press (1971). 

[24] R. Guida, J. Zinn-Justin J, J. Phys. A: Math Gen. 31 (1998) 8103. 

[25] M. Campostrini, M. Hasenbusch, A. Pelisseto, P. Rossi, and E. Vicari, Phys. Rev. 

B 63 (2001) 214503. 

[26] M. Campostrini, M. Hasenbusch, A. Pelisseto, P. Rossi, and E. Vicari,  Phys. Rev. 

B 65 (2002) 144520. 

[27] M. Hasenbusch, Phys. Rev. B 82 (2010) 174434. 

[28] A. Oleaga, A. Salazar, A. Kohutych, Yu. Vysochanskii, J. Phys.: Condens. Matter 

23 (2011) 025902. 

[29] A. Salazar, A. Oleaga, D. Prabhakaran, Int. J. Thermophys. 25 (2004) 1269. 

[30] M. Marinelli, F. Mercuri, D.P. Belanger, Phys. Rev B 51 (1995) 8897. 

[31] M. Massot, A. Oleaga, A. Salazar, D. Prabhakaran, M. Martin, P. Berthet, G. 

Dhalenne, Phys. Rev. B 77 (2008) 134438. 

[32] A. Oleaga, A. Salazar, Yu. Bunkov, J. Phys.: Condens. Matter 26 (2014) 096001.  

[33] A. Oleaga, A. Salazar, D. Skrzypek, J. Alloys Compd. 629 (2015) 178. 

[34] A. Oleaga. V. Shvalya, A. Salazar, I. Stoika, Yu. M. Vysochanskii, J. Alloys 

Compd. 694 (2017) 808-814. 

[35] A. Oleaga, A. Salazar, D. Prabhakaran, J.G. Cheng , J.S. Zhou, Phys. Rev. B 85, 

184425 (2012). 

[36] M. Marinelli, F. Mercuri, U. Zammit, R. Pizzoferrato, F. Scudieri, D. Dadarlat  

Phys. Rev. B. 49 (1994) 9523. 

[37] A. Kornblit, G. Ahlers, Phys. Rev. B 11, 2678 (1975). 

[38] H.C. Nguyen, J.B. Goodenough, J. Solid State Chem. 119 (1999) 24. 

[39] M. Reehuis, C. Ulrich, K. prokes, S. Mat’as, J. Fujioka, S. miyasaka, Y. Tokura, B. 

Keimer, Phys. Rev. B 83 (2011) 064404. 

 

 

11 
 



Table 1. Main universality classes for magnetic systems [24-27] 

Universality class α β γ A+/A- 

Mean-field Model 0 0.5 1.0 - 

3D-Ising  0.11 0.3265 1.237 0.53 

3D-XY -0.014 0.34 1.30 1.06 

3D-Heisenberg -0.115 0.365 1.386 1.52 

 

Table 2. Critical parameters, fitting ranges, quality of the fittings (given by the root mean square value) and universality class to which the 

samples are attributed.  
R ion α A+/A- tmin-tmax T<TN tmin-tmax T>TN R2 Universality Class 

Ce -0.018± 0.011 1.02 6.3×10-2-8.3×10-3 4.3×10-3-5.6×10-2 0.99734 3D-XY 

Pr -0.11± 0.01 1.48 6.7×10-2-1.4×10-2 2.0×10-3-6.6×10-2 0.99811 3D-Heisenberg 

Nd -0.017± 0.002 1.05 6.4×10-2-1.2×10-2 2.8×10-3-6.2×10-2 0.99670 3D-XY 

Sm -0.016 ± 0.002 1.06 4.4×10-2-4.7×10-3 3.5×10-4-4.4×10-2 0.99370 3D-XY 

Gd 0.07 ± 0.01 0.70 4.1×10-2-2.3×10-3 1.6×10-4-3.3×10-2 0.99753 Close to 3D-Ising 

Er -0.014 ± 0.006 1.08 4.9×10-2-3.6×10-3 9×10-5-4.8×10-2 0.99761 3D-XY 
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Figure captions 

 

Fig. 1. Thermal diffusivity as a function of temperature for RVO3 (R = Ce, Pr, Nd, Sm, 
Gd, and Er) showing the orbital ordering transition at TOO and the spin ordering one at 
TSO. 

 

Fig 2. Magnetization as a function of temperature for CeVO3 measured in a  field-
cooled state using a magnetic field of 100 Oe. 

 

Fig. 3. Above: Inverse of thermal diffusivity as a function of the reduced temperature in 
the near vicinity of the critical temperature for CeVO3, PrVO3, and NdVO3. The points 
correspond to the experimental values while the continuous lines are the fit to equation 
(5). Below: Deviation curves (difference between the experimental and the fitted 
valued, in percentage). Crosses are for data above TN, dots for data below TN. 

  

Fig. 4. Above: Inverse of thermal diffusivity as a function of the reduced temperature in 
the near vicinity of the critical temperature for SmVO3, GdVO3, and ErVO3. The points 
correspond to the experimental values while the continuous lines are the fit to equation 
(5). Below: Deviation curves (difference between the experimental and the fitted 
valued, in percentage). Crosses are for data above TN, dots for data below TN. 
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