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Abstract

Many methods in Multi-Criteria Decision Analysis for choice problems rely
on eliciting pairwise preference information in their attempt to efficiently
identify the most preferred solution out of a larger set of solutions. That is,
they repeatedly ask the decision maker which of two solutions is preferred,
and then use this information to reduce the number of possibly preferred
solutions until only one remains. However, if the solutions have a very similar
value to the decision maker, he/she may not be able to accurately decide
which solution is preferred. This paper makes two main contributions. First,
it extends Robust Ordinal Regression to allow a user to declare indifference in
case the values of the two solutions do not differ by more than some personal
threshold. Second, we propose and compare several heuristics to pick pairs of
solutions to be shown to the decision maker in order to minimize the number
of interactions necessary.

Keywords: Multi-Criteria Decision Analysis, pairwise preference
elicitation, indifference, efficient information collection, robust ordinal
regression

1. Introduction

Identifying the most preferred solution out of a given set of alternatives
may be a challenging task for a decision maker (DM) if there are many
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alternatives and criteria. Multi-Criteria Decision Analysis (MCDA) supports
users in this task, and a variety of methods have been proposed. Robust
Ordinal Regression (ROR) [24] elicits pairwise preference information from
the DM, and uses this information together with an assumed underlying
preference model to derive additional preference relations and thereby enrich
the preference ordering. A key advantage of ROR is that it simultaneously
takes into account all value functions compatible with the DM’s preference
information.

In practice, it may be difficult for a DM to specify which of two solutions is
more preferred if these solutions have a very similar value (note that they may
be quite different, but have different strengths and weaknesses so that overall,
they constitute a similar value to the DM). In such cases, forcing a DM to
make a choice is likely to lead to errors, which can then lead to inconsistencies
in the preference information such as intransitivity of preferences (the user
may state that a is preferred over b, b is preferred over c, but c is preferred
over a). This, in turn, may lead to an empty set of compatible value functions
and abortion of the method. A few papers have proposed mechanisms to deal
with inconsistent preference information, and usually suggest to discard the
oldest preference information (e.g., [35]).

In our paper, we extend ROR to allow the DM to declare indifference
between two solutions in case the values of the two solutions are similar. In
particular, we assume that the DM has a personal internal (unknown to our
method) “precision threshold” δT , and will declare indifference if the differ-
ence in value between the two solutions is within δT , i.e., |U(a)−U(b)| ≤ δT ,
where U(a) denotes the utility or value of alternative a. This means that we
are supposing that the preference relation % over the set of considered alter-
natives is a semiorder, that is, % is strongly complete, Ferrers transitive and
semitransitive (see [16]). Our extended version of ROR will attempt to learn
the DM’s precision threshold along with their value function. This approach
is easier on the DM and avoids the complications of forcing the DM to specify
a preference even if the alternatives have very similar values.
Let us underline that the meaning of the threshold δT used in the paper is
completely different from that one mentioned in Roy et al. [40]. Indeed,
in the mentioned paper, the thresholds are used to represent arbitrariness,
imprecision, uncertainty and ill-determination on the performances of the
considered alternatives on the criteria at hand. In our context, the threshold
is related to the nature of the preference relation % that is supposed to be a
semiorder permitting to represent the indecisiveness of the DM in choosing
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between two alternatives [33].
We propose two basic algorithms for this scenario, one that attempts to
identify all solutions acceptable to the DM (note that because of the DM’s
indifference threshold, it may happen that there are several solutions that
are equally acceptable to the DM), and one that attempts to identify at least
one acceptable solution.

Furthermore, in this paper we propose several heuristics to pick the pairs
of solutions to be shown to the DM with the goal to minimize the expected
number of interactions necessary to identify the most preferred solution. To
test ROR with indifference information and these heuristics, we propose a
configurable benchmark generator that allows to generate a wide range of
artificial benchmark problems.

The paper is structured as follows. We start in Section 2 with an overview
on related work. Section 3 defines some fundamental concepts when allowing
for indifference information. The actual algorithms implementing a version
of ROR that allows for indifference information can be found in Section 4.
The heuristics to speed up convergence are explained in Section 5, followed
by empirical evaluation in Section 6. The paper concludes with a summary
and some ideas for future work in Section 7.

2. Related work

2.1. Multi-Criteria Decision Analysis and value functions

MCDA (see [15, 23]) is a methodology to support complex decisions in
which a plurality of criteria have to be taken into consideration. In the
MCDA perspective, the basic elements of a decision problem are the set of
alternatives A = {a, b, ...}, that can be either finite or infinite (in this paper
we consider finite set A, only), and the set of criteria G = {g1, . . . , gm} by
which the alternatives from A are evaluated [38]. Without loss of generality,
each criterion gj ∈ G can be considered as a real-valued function gj : A →
Ij ⊆ R, such that for all a, b ∈ A, gj(a) ≥ gj(b) if and only if a is at least as
good as b on criterion gj and Ij = {gj(a) : a ∈ A}1. In the following, for the
sake of simplicity, sometimes we identify the criteria gj with their indices j.
MCDA deals with the following three basic decision problems [39]:

1Therefore, Ij is the set of performances of alternatives in A with respect to criterion
gj ∈ G.
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• the choice problem, in case the best alternative or a small set composed
of the best alternatives have to be selected;

• the sorting problem, in case each alternative has to be assigned to some
pre-defined and ordered categories;

• the ranking problem, in case the alternatives have to be ordered from the
best to the worst.

In this paper we shall consider only the choice problem. When for a and b
from A, gj(a) ≥ gj(b) for all criteria gj ∈ G one says that a (weakly) domi-
nates b, and in this case, there is no doubt that a is comprehensively at least
as good as b. However, in practical problems, dominance is rarely observed
and, therefore, to compare at a comprehensive level alternatives from A it is
necessary to aggregate the evaluations assigned to the alternatives by criteria
from G. Very often a value function representing the overall desirability of
alternatives a ∈ A by means of a synthesis of their evaluations on criteria
gj ∈ G is considered. Formally a value function U :

∏m
j=1 Ij → R, assigns a

value to each alternative from A such that for any a, b ∈ A, a is at least as
good as b (a % b) if and only if U(g1(a), . . . , gm(a)) ≥ U(g1(b), . . . , gm(b)).

Very often the value function U is assumed to be additive [30, 49], that
is, for all a ∈ A

U(g1(a), . . . , gm(a)) =
m∑
j=1

uj(gj(a)), (1)

with uj(gj(a)) non-decreasing for all gj ∈ G.
A special case of the additive form of the value function U , very widely

used in the literature and in the applications, is the weighted sum, that is

U(g1(a), . . . , gm(a)) =
m∑
j=1

wjgj(a), (2)

with wj ≥ 0 for all gj ∈ G and
∑m

j=1wj = 1.
In some decision problems it seems reasonable to consider interaction

between criteria. Suppose that evaluations of different criteria are expressed
on a common scale (several methods have been proposed for this, see e.g.
[3, 14]). In this case, we can apply a value function expressed as a weighted
sum (2). Consider a decision problem related to a choice of a car taken from
[2]. If the DM is interested in a sports car, the criteria maximum speed and
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acceleration have surely a relevant weight. However, in general cars with a
high maximum speed have also a good acceleration and there is therefore
the risk of an over-evaluation of those cars. Thus, we can say that there is
redundancy between the criteria of maximum speed and acceleration. This
can be explained by saying that the weight of the two criteria maximum
speed and acceleration considered together is smaller than the sum of the
weight of the two criteria considered separately. On the other hand, still
for a DM interested in sports cars, price is not a criterion as relevant as
maximum speed. However, since in general a car with a good maximum speed
is expensive, a car having both a good maximum speed and a good price is
particularly appreciated. Thus we can say that there is synergy between the
criteria of maximum speed and price. This can be explained by saying that
the weight of the two criteria maximum speed and price considered together
is greater than the sum of the weight of the two criteria considered separately.
To model redundancy and synergy between criteria a widely used model is
the Choquet integral [10]. It is based on a representation of weight of criteria
in terms of a capacity, which assigns to each subset of criteria T ⊆ G, the
value µ(T ) corresponding to the total weight of criteria from T . The weights
µ(T ), T ⊆ G, are not required to be additive, which means that for any
S,R ⊆ G such that S ∩ R = ∅, one can have µ(S ∪ T ) = µ(S) + µ(T )
in case there is neither redundancy nor synergy between S and T , but also
µ(S ∪ T ) < µ(S) + µ(T ) in case of redundancy, and µ(S ∪ T ) > µ(S) + µ(T )
in case of synergy. Formally, denoting by 2G the power set of G being the
set of all subsets of G, the capacity µ is a set function µ : 2G → [0, 1] that
satisfies the following properties:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ S ⊆ T ⊆ G, µ(S) ≤ µ(T ) (monotonicity condition).

Given a ∈ A and a capacity µ on 2G, the Choquet integral (for application of
Choquet integral to MCDA see [21]), as above explained, gives the analogous
of the weighted sum in case of additive weights, and it is defined as follows:

Cµ(a) =
m∑
i=1

[
g(i)(a)− g(i−1)(a)

]
µ
(
{gj ∈ G : gj(a) ≥ g(i)(a)}

)
, (3)
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where g(·) reorders the criteria so that g(1)(a) ≤ . . . ≤ g(m)(a), and g(0)(a) = 0.
A useful concept dealing with the Choquet integral is the Möbius represen-
tation of the capacity µ being the function m : 2G → R [37, 43] such that,
for all S ⊆ G

µ(S) =
∑
T⊆S

m(T ). (4)

Equation (4) is equivalent to

m(S) =
∑
T⊆S

(−1)|S−T |µ(T ) (5)

which permits to easily compute the Möbius representation.
The properties 1a) and 2a) can be reformulated also in terms of the Möbius
representation [9] as follows:

1b) m(∅) = 0,
∑
T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} , m({i}) +
∑
T⊆R

m(T ∪ {i}) ≥ 0.

The Möbius representation permits to express the Choquet integral in a
linear form as a weighted sum of minimum values given to the considered
alternative a ∈ A by all subsets of criteria T from G [20],

Cµ(a) =
∑
T⊆G

m(T ) min
i∈T

gi (a) . (6)

Observe that the terms m(T ) min
i∈T

gi(a) in (6) can be interpreted as repre-

senting the contribution of the interaction between criteria from T ⊆ G to
the overall evaluation Cµ(a) of alternative a ∈ A. In order to handle a sim-
pler decision model, in many applications it seems reasonable to take into
account interactions between no more than k criteria. This is obtained by
putting m(T ) = 0 if |T | > k and the corresponding capacities are called
k-additive [22]. Very frequently 2-additive capacities are used so that the
Möbius representation and the corresponding Choquet integral become

µ(S) =
∑
i∈S

m ({i}) +
∑
{i,j}⊆S

m ({i, j}) , ∀S ⊆ G (7)
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Cµ(a) =
∑
i∈G

m({i})gi(a) +
∑
{i,j}⊆G

m({i, j})min{gi(a), gj(a)}. (8)

Moreover, properties 1b) and 2b) reduce to

1c) m (∅) = 0,
∑
i∈G

m ({i}) +
∑
{i,j}⊆G

m ({i, j}) = 1,

2c)


m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑
j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

2.2. Ordinal Regression and Robust Ordinal Regression

Each decision model requires specification of some parameters. For ex-
ample, if one adopts the additive value function (1), it is necessary to define
the parameters related to the formulation of the marginal value functions
uj(gj(a)), j = 1, . . . ,m. Eliciting directly the parameters of the adopted de-
cision model from the DM in real-world decision making situations requires
a technical background from the DM that in general is not reasonable to
expect. Moreover, even in the case that the DM has such a background, a
high cognitive effort is required so that, in any case, the preference informa-
tion elicited in this way is not reliable enough. Consequently, within MCDA,
many methods have been proposed to determine the parameters characteriz-
ing the considered decision model in an indirect way, i.e., inducing the values
of parameters in the adopted decision model, from some holistic preference
comparisons of alternatives given by the DM. This indirect preference elici-
tation does not require any technical background and requires a quite mild
cognitive effort. The use of such an indirect preference information is the
basis of the ordinal regression paradigm.

The ordinal regression methodology (for a survey see [44]) was proposed
by Jacquet-Lagrèze and Siskos [27] that introduced the UTA (UTilités Addi-
tives) method which aims at inferring one or more additive value functions in
the form (1) from some preference information expressed by the DM in terms
of pairwise comparisons of some from alternatives A, so that, for a, b ∈ A :

• a %DM b if for the DM alternative a is at least as good as alternative b,
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• a �DM b if for the DM alternative a is preferred to alternative b (that is
a %DM b and not(b %DM a)),

• a ∼DM b if for the DM alternative a is indifferent to alternative b (that is
a %DM b and b %DM a).

Technically, ordinal regression requires to solve an optimization problem of
the type:

max ε, s.t.

U(a) ≥ U(b) if a %DM b, with a, b ∈ A,
U(a) ≥ U(b) + ε if a �DM b, with a, b ∈ A,
U(a) = U(b) if a ∼DM b, with a, b ∈ A,

EHPC

constraints related to the analytical form of the
adopted value function

}
EAF


EOR

(9)

The nature of the optimization problem (9) depends on the form of the
value function. Generally it is a linear programming problem. This is the
case of additive value functions (1), weighted sum value functions (2) and of
the value function in the form of the Choquet integral (3).

If the set of constraints EOR is feasible and ε∗ > 0, with ε∗ = max ε, then
there exists at least one value function of the considered form that is compat-
ible with the preference information supplied by the DM. On the contrary,
if there is no compatible value function, one can select the value function
U on the considered class that minimizes the sum of deviation errors or the
number of ranking errors in the sense of Kendall or Spearman distance [27].
When there is a compatible value function, in general, there is a plurality of
value functions of the selected class (e.g. weighted sum, additive value func-
tion, Choquet integral) that permits to represent the preference information
supplied by the DM. The methods proposed within the ordinal regression
paradigm select one of these value functions according to some predefined
principle. One has to admit that to take into consideration only one of the
many compatible value functions is always arbitrary to some extent. Because
of this observation, Greco et al. [24] proposed to take into account the whole
set U of value functions compatible with the preference information supplied
by the DM through a methodology called Robust Ordinal Regression (for
some surveys see [12, 13, 25]) that is based on the necessary and possible
preference relations %N and %P defined as follows:

• a %N b iff U(a) ≥ U(b) for all U ∈ U , with a, b ∈ A,
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• a %P b iff U(a) ≥ U(b) for at least one U ∈ U , with a, b ∈ A.

Necessary and possible preferences %N and %P on A are characterized by
the following properties [19]:

• %N is a partial preorder on A,

• %N⊆%P ,

• a %N b and b %P c ⇒ a %P c, ∀a, b, c ∈ A,

• a %P b and b %N c ⇒ a %P c, ∀a, b, c ∈ A,

• a %N b or b %P a, ∀a, b ∈ A.

To compute the necessary and possible preference relations one has to con-
sider the following sets of constraints,

U(b) ≥ U(a) + ε

EOR,

}
EN(a, b)

U(a) ≥ U(b)

EOR.

}
EP (a, b)

We have that:

• a %N b if EN(a, b) is infeasible or if εN ≤ 0 where εN = max ε subject to
EN(a, b),

• a %P b if EP (a, b) is feasible and εP > 0 where εP = max ε subject to
EP (a, b).

Another methodology that takes into consideration the whole set of value
functions compatible with the preference expressed by the DM is a recent
development of Stochastic Multiattribute Acceptability Analysis (SMAA,
[31, 32]) proposed in [29], where for each pair of alternatives a, b ∈ A one
computes the probability that a is preferred to b measured in terms of the hy-
pervolume of the set of compatible value functions U such that U(a) > U(b),
taking the hypervolume of U equal to 1. With the same approach one can
compute also the probability that each alternative a ∈ A attains a given
ranking position. The hypervolumes considered in this extension of SMAA
are approximated by means of a sampling procedure in the polyhedron of
the value functions compatible with the preference information supplied by
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the DM based on the Hit-And-Run procedure (HAR; [45, 46]). For an ex-
tension of this SMAA methodology to the case of value functions expressed
as Choquet integral see [3].

In case of a value function expressed as a Choquet integral with respect
to a 2-additive capacity, the linear programming problem related to ordinal
regression becomes [34]:

max ε, s.t.

Cµ(a) ≥ Cµ(b) if a %DM b,

Cµ(a) ≥ Cµ(b) + ε if a �DM b,

Cµ(a) = Cµ(b) if a ∼DM b,

EHPC

m ({∅}) = 0,
∑
i∈G
m ({i}) +

∑
{i,j}⊆G

m ({i, j}) = 1,

m ({i}) ≥ 0, ∀i ∈ G,
m ({i}) +

∑
j∈T

m ({i, j}) ≥ 0,∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

EAF


EOR

According to [8], indifference information can be formulated using an
indifference threshold, so that a minimal difference between the evaluations
of alternatives a and b based on the adopted value function U does not result
in a preference, but an indifference between the two alternatives. Formally,
the following constraint transformations are performed:

U(a)− U(b) = 0 ⇒ |U(a)− U(b)| ≤ δT , if a ∼DM b,

U(a) > U(b) ⇒ U(a) > U(b) + δT , if a �DM b,

U(a) ≥ U(b) ⇒ U(a) ≥ U(b)− δT , if a %DM b,

with δT > 0 being a predefined indifference threshold and a, b ∈ A. The in-
difference threshold δT increases the soundness of the preference information
supplied by the DM, because it avoids to force a choice between alternatives
a and b when the DM perceives only a negligible advantage of one alternative
over the other. Let us also remember that preference structures with indif-
ference thresholds, called semiorders, have been proposed in [33] and largely
investigated in the literature (e.g. [17, 36]), so that it appears quite natural
to use them also in the ordinal regression approach.

2.3. Impact of indifference threshold

The following experiment helps us to better understand the relationship
between the value of the indifference threshold and the percentage of pairs
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of alternatives being indifferent. We considered 100 alternatives evaluated
on three and five criteria and assumed the preferences of the DM are rep-
resentable by a value function expressed as a weighted sum. We randomly
sampled

• the evaluations of 100 alternatives on the considered criteria in the interval
[0, 100],

• the weights assigned to the considered criteria.

Then we could compute the minimal value and the maximal value of the
threshold corresponding to some given number of pairs of alternatives being
indifferent. We repeated this 1000 times based on different random numbers,
for the case of three and five objectives. The results are summarized in Ta-
ble 1. As can be seen, already for relatively small values of the threshold, a
relatively large number of pairs of solutions become indifferent. For example,
with three criteria, on average, a value of the threshold just slightly greater
than 1% of the scale length is enough to have 150 indifferent pairs of alter-
natives, and with five criteria, again on average, already a threshold slightly
greater than 0.8% is sufficient. This demonstrates the importance of taking
indifference into account, because otherwise, there is the risk to misrepre-
sent a DM’s preference statements of pairs of alternatives for which there is
no clear advantage of one over the other. Further evidence in this sense is
given by Figure 1 showing for each number of pairs of indifferent alternatives
the corresponding average threshold obtained in the same sequence of 1000
random data sets used for Table 1.

Table 1: Average values and standard deviations of the minimal and maximal threshold
δ corresponding to ci couples of indifferent alternatives in case of 100 alternatives, with 3
criteria and 5 criteria (the values are expressed in percentage of the scale length)

ci 20 ci 80 ci 100 ci 150 ci 200 ci 300 ci 400 ci 500
min δ max δ min δ max δ min δ max δ min δ max δ min δ max δ min δ max δ min δ max δ min δ max δ

3 criteria
mean 0.139 0.034 0.559 0.086 0.699 0.104 1.053 0.146 1.410 0.188 2.119 0.27 2.827 0.352 3.537 0.43
std 0.146 0.035 0.566 0.087 0.706 0.105 1.060 0.147 1.417 0.189 2.116 0.271 2.834 0.353 3.543 0.43

5 criteria
mean 0.109 0.028 0.438 0.065 0.549 0.078 0.822 0.11 1.095 0.139 1.642 0.195 2.192 0.258 2.743 0.316
std 0.114 0.029 0.443 0.066 0.555 0.079 0.827 0.11 1.101 0.139 1.648 0.196 2.198 0.258 2.748 0.317

2.4. Procedures for optimizing preference elicitation

Several approaches have been proposed in the literature to optimize the
procedure of preference elicitation. Some approaches suggest specific deci-
sion rules to rank alternatives on the basis of an incomplete ordinal infor-
mation. For example [5] proposes to consider the ranking corresponding to
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Figure 1: Average value of the indifference threshold δ on the y axis; given number of
pairs of indifferent alternatives on x axis; 100 alternatives with 1000 random data sets.
The scale for value function U is [0, 100].

the weighted sum with equal weights or rank ordered centroid, showing that
the latter gives a good approximation of the DM’s preferences. Other rules
based on the use of incomplete information are discussed in [28, 41, 42].
Other procedures try to propose the DM queries that permit to cut max-
imally the space of the parameters in the selected preference model (very
often weights of a value function expressed in terms of a weighted sum (2)
(see e.g. [18, 26, 47])). Other approaches try to propose queries for which it
is maximal the expected reduction of the entropy in the space of the value
functions compatible with the preferences expressed by the DM [1, 48]. Other
procedures propose questions based on the minimization of the maximum re-
gret being the worst-case loss when recommending an alternative a instead
of another alternative b ([7, 50]; for an application of this approach to a
value function expressed as a Choquet integral see [6]). Finally, another
approach recently proposed, considers heuristics based on necessary prefer-
ences obtained by robust ordinal regression and pairwise preference indices
and ranking acceptability indices obtained by SMAA [11]. Our contribution
is in the same spirit of this last approach, with an important difference being
that we focus on choice problem rather than on ranking problem.

3. Robust Ordinal Regression allowing for indifference

As pointed out in Section 2.2, in practice, DMs are not able to make arbi-
trarily precise judgements when comparing pairs of solutions. Thus, we need
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to assume that every DM has a personal, unknown “precision threshold” δT ,
and is indifferent between two alternatives if and only if |U(x)−U(y)| ≤ δT .
We want to extend ROR to allow the DM to actually declare indifference in
such cases, avoiding errors from a forced preference decision. Since δT is not
known, the new ROR approach allowing for indifference, that we call RORi,
has to learn the possible δT along with the possible utility functions U .

In the following, we define a number of concepts that will be helpful in
characterizing solutions under the RORi framework. We also, where possible,
explain how these characteristics may be checked. For certain classes of
user preference models, the mathematical programs that we provide below
are simple Linear Programs and can be evaluated efficiently. This is true
for example for linear preference models, the two-additive Choquet integral,
the Cobb-Douglas utility model or the monotonic additive utility model. If
not stated otherwise, we shall assume this situation and will therefore call
our mathematical programs “LPs” even if they can be generalized to the
nonlinear case.

Let A denote the set of available alternatives and P the set of pairwise
preferences and indifferences elicited from the DM so far, where a relation
(a � b) ∈ P means the DM has stated that a is preferred over b, and
(a ∼ b) ∈ P represents an indifference statement. We assume A to be finite.

Definition 1 (Possibly acceptable). A solution x is called possibly ac-
ceptable if there is at least one (U, δ) compatible with user preference infor-
mation P such that ∀y ∈ A \ {x} : U(x) ≥ U(y)− δ.

A solution x is possibly acceptable if and only if the following mathemat-
ical program LP1(x) returns a solution value ε > 0:

max ε, s.t.

U(x) ≥ U(y)− δ ∀y ∈ A \ {x}
U(a) ≥ U(b) + δ + ε ∀(a � b) ∈ P
|U(a)− U(b)| ≤ δ ∀(a ∼ b) ∈ P
δ ≥ 0

EAF


Therein, the decision variables are the parameters defining the utility U ,
plus the variables δ and ε. Note that the third constraint is equivalent to
−δ ≤ U(a) − U(b) ≤ δ. Hence, by the assumption that the user preference
model can be linearized, we get an LP problem.
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Definition 2 (Necessarily acceptable). A solution x is called necessarily
acceptable if for all (U, δ) compatible with user preference information P and
∀y ∈ A \ {x} : U(x) ≥ U(y)− δ.

It is not so easy to determine whether a solution x is necessarily accept-
able. We have to make sure that there does not exist any triple (U, δ, y)
such that U(x) < U(y) − δ. But for this, we have to compare x with each
y ∈ A \ {x} individually using a separate LP. For specifying how this can be
done, we start by defining the following binary relation: Solution x is called
possibly preferred over y if and only if there is a (U, δ) compatible with user
preference information such that U(x) > U(y) + δ. This is the case if and
only if the following LP2(x, y) returns a solution value ε > 0:

max ε, s.t.

U(x) ≥ U(y) + δ + ε

U(a) ≥ U(b) + δ + ε ∀(a � b) ∈ P
|U(a)− U(b)| ≤ δ ∀(a ∼ b) ∈ P
δ ≥ 0

EAF


For abbreviation, let us write LP2(x, y) > 0 if LP2(x, y) returns a solution

value ε > 0, and LP2(x, y) ≤ 0 if it returns a solution value ε ≤ 0 or is
infeasible. Obviously, a solution x is necessarily acceptable if and only if for
each y ∈ A \ {x}, solution y is not possibly preferred over x. This is the case
if and only if LP2(y, x) ≤ 0 for all y ∈ A \ {x} (there is no compatible utility
function that strictly prefers y).

Of course it can happen that neither x is possibly preferred over y nor
vice versa which brings to the following definition:

Definition 3 (Necessarily indistinguishable). Two solutions x and y are
necessarily indistinguishable if and only if for all (U, δ) compatible with user
preference information P it holds that |U(x)− U(y)| ≤ δ.

This can again be checked by using the above LP2: x and y are necessarily
indistinguishable if and only if both LP2(x, y) ≤ 0 and LP2(y, x) ≤ 0.

Definition 4 (Possibly best). A solution x is called possibly best if there
is at least one (U, δ) compatible with user preference information P such that
∀y ∈ A \ {x} : U(x) ≥ U(y).

14



In other words, solution x is possibly best if the following mathematical
program LP3(x) returns a solution value ε > 0:

max ε, s.t.

U(x) ≥ U(y) ∀y ∈ A \ {x}
U(a) ≥ U(b) + δ + ε ∀(a � b) ∈ P
|U(a)− U(b)| ≤ δ ∀(a ∼ b) ∈ P
δ ≥ 0

EAF


Definition 5 (Necessarily best). A solution x is called necessarily best if
for all (U, δ) compatible with user preference information P and ∀y ∈ A\{x} :
U(x) ≥ U(y).

Similarly to necessarily acceptable, determining whether a solution x is nec-
essarily best is computationally demanding.

Definition 6 (Possibly globally preferred). A solution x is called pos-
sibly globally preferred if there is at least one (U, δ) compatible with user
preference information P such that ∀y ∈ A \ {x} : U(x) > U(y) + δ.

The following LP4(x) determines whether a solution x is possibly globally
preferred, which is the case if and only if LP4(x) returns a solution value
ε > 0:

max ε, s.t.

U(x) ≥ U(y) + δ + ε ∀y ∈ A \ {x}
U(a) ≥ U(b) + δ + ε ∀(a � b) ∈ P
|U(a)− U(b)| ≤ δ ∀(a ∼ b) ∈ P
δ ≥ 0

EAF


Definition 7 (Necessarily globally preferred). A solution x is called nec-
essarily globally preferred if for all (U, δ) compatible with user preference
information P and ∀y ∈ A \ {x} : U(x) > U(y) + δ.

Again, checking whether x is necessarily globally preferred requires sep-
arate comparisons with each y ∈ A \ {x}.
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To define our goal, we assume the DM has an underlying true utility
function UT and true precision threshold δT (please note that we do not
assume the DM is aware of it, only that it exists). Then, the above definitions
can be adapted and a solution x is considered

• (truly) acceptable, if UT (x) ≥ UT (y)− δT for all y ∈ A,

• (truly) best, if UT (x) ≥ UT (y) for all y ∈ A.

Two solutions x, y are called (truly) indistinguishable, if |UT (x)−UT (y)| ≤ δT .
The selection problem addressed in this paper may then have two possible

goals:

• Goal A: Identify all solutions truly acceptable to the DM, i.e., all x such
that there is no y with UT (y) > UT (x) + δT . This gives the DM the
maximal choice of solutions to choose from, which is particularly useful if
there are other, secondary criteria that are not explicitly modelled.

• Goal B: Identify at least one solution truly acceptable to the DM, i.e.,
at least one x such that there is no y with UT (y) > UT (x)+δT . While this
may generate a smaller set of acceptable solutions compared to Goal A, it
is expected to converge faster since it can discard solutions more quickly
as long as at least one acceptable solution remains.

In the following, we will present ways to reach those goals efficiently.

4. Algorithms

RORi iteratively presents pairs of alternatives (x, y) to the DM and asks
whether the DM prefers x, prefers y, or is indifferent. At any point in time,
the algorithm maintains a list S ⊆ A of candidate solutions which is guar-
anteed to include a solution acceptable to the DM based on the information
elicited so far. By eliciting more and more information, the size of this set
reduces until there is only one solution left or it is clear that all remaining
solutions are necessarily indistinguishable, and the algorithm terminates.

In the following, we present two general algorithmic frameworks that iter-
atively elicit preference information and guarantee that they will terminate
with an identification of exactly the set of all acceptable solutions (Algo-
rithm 1) or a subset of the acceptable solutions including the best alternative
(Algorithm 2), corresponding to the above two goals.
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Obviously, the size of S in each iteration and the number of preference
elicitations required before the algorithm terminates depend on the pairs of
solutions shown to the DM. So, the natural question arises exactly which
pair of solutions should be shown to the DM in each iteration such that the
expected number of required preference elicitations is minimized. This will
be discussed in Section 5.

4.1. Identifying all truly acceptable solutions

Algorithm 1 shows the general algorithmic framework that will identify
all solutions that are acceptable to the DM, i.e., all x such that there is no y
with UT (y) > UT (x) + δT .

Algorithm 1 Finding all truly acceptable solutions

1: Identify the set of possibly acceptable solutions S using LP1 for each
solution.

2: Search for a pair (x, y) (x, y ∈ S) of solutions that have not yet been
shown to the DM and that are not necessarily indistinguishable (tested
by LP2).

3: If such a pair is found, show it to the DM, update the constraints ac-
cordingly, and go to Step 1.

4: Otherwise stop and return set S.

Proposition 4.1. If the true utility function UT is contained in the set U
of utility functions defined by the preference model EAF , then Algorithm 1
terminates with the set of all truly acceptable solutions.

Proof. Let U (k) denote the set of all pairs (U, δ) such that (U, δ) is compatible
with the preference information P (k) present at the beginning of the k-th
iteration of the algorithm: (U, δ) ∈ U (k) if and only if U(a) > U(b) + δ
∀(a � b) ∈ P (k) and |U(a) − U(b)| ≤ δ ∀(a ∼ b) ∈ P (k). We always have
(UT , δT ) ∈ U (k), since the DM never declares a preference information that
is inconsistent with his true (U, δ). Let now x be acceptable, i.e., UT (x) ≥
UT (y) − δT for all y ∈ A. Then, because (UT , δT ) ∈ U (t), x is possibly
acceptable in any iteration k = 1, . . . , t and thus passes the test in Step 1
of Algorithm 1 in all iterations. So, in particular, x is contained in the final
solution set S(t).
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Conversely, assume that y ∈ A is not acceptable, i.e., there is a w ∈ A
such that UT (w) > UT (y) + δT . Let x denote a truly best solution (which
must exist in view of the finiteness of A), i.e. a solution with UT (x) ≥ UT (z)
for all z ∈ A. In particular,

UT (x) ≥ UT (w) > UT (y) + δT . (10)

Equation (10) implies together with

UT (a) > UT (b) + δ ∀(a � b) ∈ P (k)

|UT (a)− UT (b)| ≤ δ ∀(a ∼ b) ∈ P (k)

}
that the constraints of LP2(x, y) are satisfied for some ε > 0, and so we have
LP2(x, y) > 0. The termination condition of Algorithm 1 entails that in the
last iteration t, either (i) (x, y) has already been shown to the DM before, or
(ii) LP2(x, y) ≤ 0 and LP2(y, x) ≤ 0.
Since LP2(x, y) > 0 as demonstrated above, (x, y) must have been shown to
the DM in a previous iteration k < t. In view of (10), the DM has stated
x � y, so the constraint U(x) > U(y) + δ must have been added to the set
of constraints. As a consequence, y is not possibly acceptable in iteration t
anymore and is therefore not contained in the final solution set. �

4.2. Identifying at least one truly acceptable solution

Identifying all acceptable solutions as described in the previous subsection
provides the DM with some choice. However, we may be able to converge
quicker and to a smaller set if we aim at identifying the true best rather
than all acceptable solutions. Unfortunately, identifying the DM’s true best
solution may not always be possible. If there are other solutions that are
within the DM’s precision threshold, then we may not be able to conclude
which solution is best, simply because the DM would not be able to rank
these solutions. The following Algorithm 2 thus finds a subset of acceptable
solutions that is guaranteed to include the true best solution. The only
difference between Algorithm 2 and Algorithm 1 is that in each iteration,
the current set S is determined to include all possibly best solutions rather
than all possibly acceptable solutions.

Proposition 4.2. If the true utility function UT is contained in the set U
of utility functions defined by the preference model EAF , then Algorithm 2
terminates with a set of solutions S with the following properties:
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Algorithm 2 Finding at least one acceptable solution

1: Identify the set of possibly best solutions S using LP3 for each solution.
2: Search for a pair (x, y) (x, y ∈ S) of solutions that have not yet been

shown to the DM and that are not necessarily indistinguishable (tested
by LP2).

3: If such a pair is found, show it to the DM, update the constraints ac-
cordingly, and go to Step 1.

4: Otherwise stop and return set S.

(a) Each truly best solution is contained in S.

(b) The solutions in S are pairwise truly indistinguishable:
|UT (x)− UT (y)| ≤ δT for all x, y ∈ S.

Proof. To show (a), let x be truly best. With U (t) defined analogously
to the proof of Proposition 1, we have again (UT , δT ) ∈ U (t) in the final
iteration t. Therefore, solution x is possibly best in iteration t and thus
passes the test in Step 1 of Algorithm 2 in this iteration. As a consequence,
x is contained in the final set S. To show (b), let us consider two different
solutions x, y ∈ S. According to the termination condition of Algorithm 2,
either (x, y) has already been shown to the DM before, or

LP2(x, y) ≤ 0 and LP2(y, x) ≤ 0. (11)

In the first case where (x, y) has already been shown in some previous itera-
tion k < t, the DM can only have stated indifference, since if he/she would
have stated (say) x � y, then the constraint U(x) > U(y) + δ would have
been added to the set of constraints, with the consequence that y would not
have passed the test in Step 1 of iteration t, being not possibly best anymore.
So there remains only the case that iteration t produces (11). In this case,
however, x and y are necessarily indistinguishable based on the information
present in iteration t, i.e., |U(x) − U(y)| ≤ δ ∀(U, δ) ∈ U (t). In particular,
because of (UT , δT ) ∈ U (t), this implies |UT (x)− UT (y)| ≤ δT . �

In the call of LP3 by Algorithm 2, the constraints of the first type,
U(x) ≥ U(y) ∀y ∈ A \ {x}, have to be satisfied for each solution y dif-
ferent from x. A natural question is whether in the subsequent iterations k,
we can successively restrict the set of solutions y against which this constraint
has to be checked to those solutions y ∈ A \ {x} that have remained in the
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solution set in the previous iteration k − 1. The following result provides a
positive answer to this question.

Proposition 4.3. If in the call of LP3 by the k-th iteration of Algorithm 2,
the constraint U(x) ≥ U(y) ∀y ∈ A\{x} is replaced by the constraint U(x) ≥
U(y) ∀y ∈ S(k−1) \{x}, where S(`) denotes the set of solutions as produced in
iteration ` of the algorithm, then the feasible set of LP3 remains unchanged,
and therefore the same set of possibly best solutions x is produced in this
iteration.

Proof. Let A∗U denote the set of possibly best solutions with respect to
preference information U , and let U (k) be defined analogously to the proof of
Proposition 1. Then S(k−1) = A∗U(k−1) . First, we show that for each preference
information U on A, for each fixed (U, δ) ∈ U and for each fixed x ∈ A, the
condition

U(x) ≥ U(y) ∀y ∈ A∗U \ {x} (12)

implies
U(x) ≥ U(y) ∀y ∈ A \ {x}. (13)

Indeed, assume that (12) holds, but that (13) is violated for some y, i.e.,
U(x) < U(y). Let z∗ ∈ arg maxz∈A\{x} U(z). Then U(y) ≤ U(z∗), hence
U(x) < U(z∗), and z∗ is obviously possibly best with respect to U , that is,
z∗ ∈ A∗U \ {x}. This contradicts (12).

To show the statement of the Proposition, we consider now an iteration k
and some fixed x ∈ A. In iteration k, the constraints of LP3 restrict the
feasible set to (U, δ) ∈ U (k). Since the constraints are extended in each
iteration of Algorithm 2, we have U (k) ⊆ U (k−1). Thus, in the call of LP3 in
iteration k for the given x, each solution (U, δ) that is feasible with respect
to the second and the third type of constraints, also satisfies the condition
(U, δ) ∈ U (k−1). Consequently, if for such a pair (U, δ), the inequality

U(x) ≥ U(y) ∀y ∈ A∗U(k−1) \ {x} (14)

corresponding to (12) holds, we can apply the auxiliary result from above
with U = U (k−1) and conclude that (13) is valid, and therefore (U, δ) is feasible
for LP3. Conversely, each (U, δ) that is feasible for LP3 in iteration k to the
given x satisfies (13) and therefore also the weaker condition (14). Thus, the
feasible sets of the two LP variants are identical. �
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5. Heuristics to speed up convergence

In the above, we have simply restricted the questions (or pairs of solu-
tions) to be shown to the DM to those pairs that are guaranteed to provide
new information. In the following, we consider some heuristics to pick a pair
among all the “reasonable” pairs of solutions. Denote by S the set of pairs
of solutions in (S × S) that have not yet been shown to the DM and that
are not necessarily indistinguishable at any stage in the interaction process
(this set gets smaller and smaller over the course of the interaction, but we
use the same symbol in all iterations in order to simplify notation).

The benchmark will be the following simple approach H1.

H1 Pick a pair randomly among all the pairs in S.

The following heuristic H2 always maintains the solution c identified by
the DM as the best so far, and compares it to the solution in S that could
possibly be preferred over c by the largest margin across all compatible value
functions. This method has been proposed in [4].

H2 The first pair of solutions is picked randomly from S. Let us denote
by c the solution preferred by the DM (one at random in case of in-
difference). In subsequent iterations, present the pair (x, c) ∈ S with
x = argmax LP2(x, c). If the DM prefers x, the best so far solution c is
set to x.

H3 picks pairs of solutions that can have maximal contradiction in values
based on the set of compatible value functions.

H3 Pick the pair (x, y) ∈ S as (x, y) = argmax{LP2(x, y) + LP2(y, x)}.

H4 uses the most discriminative value function in the spirit of [35] as a best
guess of the DM’s true value function, and then shows the DM the presumed
best and second best solution. The hope is that if the DM confirms the
presumed ordering, it would also be possible to remove many other solutions
from S.

We define the most discriminative value function as the one that maxi-
mizes the following LP5, allowing for the maximum slack in each constraint:
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max ε, s.t.

U(a) ≥ U(b) + δ + ε ∀(a � b) ∈ P
|U(a)− U(b)| ≤ δ − ε ∀(a ∼ b) ∈ P
δ ≥ 0

EAF


H4 Identify the most discriminative value function (Ud, δd) by solving LP5

above. Then, show the DM the pair of solutions consisting of the best and
second best solution according to Ud.

The common idea behind H5, H6 and H7 is to look one step ahead. For
each possible pair (x, y) ∈ S, these heuristics consider the three possible
responses of the DM: x � y, x ≺ y, x ∼ y. H5 minimizes the number of
remaining possibly acceptable solutions in the worst case, whereas H6 min-
imizes the expected number of the remaining possibly acceptable solutions.
H7 looks at the expected resulting entropy, where entropy of a decision sit-
uation has been defined in [48] and can be calculated based on a number of
value functions (U, δ) compatible with preference information. In particular,
the entropy E given a set of solutions S and a finite sample set of utility
functions U is defined as

E(S,U) = −
∑
x∈S

px log px (15)

where px is the fraction of utility functions in U for which solution x is best.
To calculate the expected value in H6 and H7, it is necessary to assign

probabilities to the three possible responses of the DM. We do this by gener-
ating 10,000 random utility functions compatible with the elicited preference
information using the algorithm by [45, 46]. Then the probability that the
DM will select x � y, x ≺ y, or x ∼ y is estimated by the fraction of utility
functions that would result in the respective decision.

H5 For each pair (x, y) ∈ S

– P1 Add the constraint U(x) ≥ U(y) + δ + ε to LP1 and determine
the number of solutions that can be still possibly acceptable solutions,
denoted by PP�xy,
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– P2 Add the constraint U(y) ≥ U(x) + δ + ε to LP1 and determine
the number of solutions that can be still possibly acceptable solutions,
denoted by PP≺xy,

– P3 Add the constraint |U(y)−U(x)| ≤ δ to LP1 and determine the num-
ber of solutions that can be still possibly acceptable solutions, denoted
by PP∼xy.

Pick the pair (x, y) that minimizes the number of possibly acceptable so-
lutions in the worst case, i.e., (x, y) = argmin(x,y) max{PP�xy, PP≺xy, PP∼xy}

H6 For each pair (x, y) ∈ S

– P1 Add the constraint U(x) ≥ U(y)+δ+ε to LP1 and check how many
solutions can be still possibly best solutions, denoted by PP�xy,

– P2 Add the constraint U(y) ≥ U(x)+δ+ε to LP1 and check how many
solutions can be still possibly best solutions, denoted by PP≺xy,

– P3 Add the constraint |U(y)− U(x)| ≤ δ to LP1 and check how many
solutions can be still possibly best solutions, denoted by PP∼xy,

– P4 Generate a set of utility functions (U, δ) compatible with the pref-
erence information. Determine what fraction of those utility functions
would prefer x, prefer y, or be indifferent (p�xy, p

≺
xy, p

∼
xy).

Pick the pair (x, y) that minimizes the expected number of possibly best
solutions, i.e., (x, y) = argmin(x,y){p�xy · PP�xy + p≺xy · PP≺xy + p∼xy · PP∼xy}.

H7 For each pair (x, y) ∈ S

– P1 Add the constraint U(x) ≥ U(y)+δ+ε to LP3 and check how many
solutions can be still be possibly best solutions, denoted by PB�xy,

– P2 Add the constraint U(y) ≥ U(x)+δ+ε to LP3 and check how many
solutions can be still possibly best solutions, denoted by PB≺xy,

– P3 Add the constraint |U(y)− U(x)| ≤ δ to LP3 and check how many
solutions can be still possibly best solutions, denoted by PB∼xy,

– P4 Generate a set of utility functions (U, δ) ∈ U compatible with the
preference information. Determine what fraction of those utility func-
tions would prefer x, prefer y, or be indifferent, (p�xy, p

≺
xy, p

∼
xy). Also

calculate the entropy of the resulting decision situations
(E�xy, E

≺
xy, E

∼
xy).
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Pick the pair (x, y) that minimizes the expected entropy of the resulting
decision situation, i.e., (x, y) = argmin{p�xy · E�xy + p≺xy · E≺xy + p∼xy · E∼xy}.

Note that H5, H6 and H7 as described above require to solve 3 LPs for
every pair of solutions still in S that has not yet been shown to the DM,
which makes the algorithm rather slow. In the computational experiments
reported below, we have thus replaced the solution of the LPs by a numerical
approximation based on the 10,000 random compatible utility functions that
we require anyway to estimate probabilities in H6 and H7. In particular, for
each considered pair of solutions and possible DM preference (x � y, x ≺ y,
or x ∼ y), we remove the utility functions that are no longer compatible with
the presumed new preference information and simply check how many solu-
tions are still acceptable or best for at least one of the remaining preference
functions. A limited number of experiments indicated that this is computa-
tionally much faster and even works slightly better, presumably because it
ignores cases where a solution would only be acceptable or best by a tiny
fraction of compatible utility functions.

6. Empirical results

6.1. Experimental setup

For our experiments, we need an artificial decision maker, and we assume
the two-additive Choquet preference model as the DM’s internal model. Our
artificial decision maker answers to preference elicitations in terms of pair-
wise comparisons according to this underlying utility function (UT , δT ), that
is of course otherwise unknown to the elicitation algorithms. For every ex-
periment, we average over 50 problem instances, using the same problem
instances across algorithms. First, we generate random weights for the dif-
ferent attributes, resulting in a linear utility function of the artificial DM.
For each problem instance, we randomly generate the desired number of mu-
tually non-dominated alternatives in real-valued attribute space. Then, the
artificial DM’s discrimination threshold δT is determined such that we obtain
the desired percentage of possible pairwise comparisons that will result in an
indifference statement. For this, we start with δT = 0 and increase δT step
by step until we have the desired percentage of indifference statements. The
percentage of indifferences among all pairs of solutions is a parameter of the
benchmark problem and can be controlled.
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Table 2: Average number and standard error of required DM interactions until the al-
gorithm terminates with a subset of all acceptable solutions including the best one, for
N = 100 and P = {20, 80, 150} indifferent pairs and m = 3 criteria.

P H0 H1 H2 H3 H4 H5 H6 H7

20
99 13.98 16.64 13.94 16.78 12.28 10.96 18.0
±0 ±0.34 ±0.62 ±0.41 ±0.52 ±0.30 ±0.29 ±0.55

80
99 13.96 16.32 13.74 16.56 12.28 10.56 17.52
±0 ±0.34 ±0.63 ±0.43 ±0.52 ±0.31 ±0.31 ±0.61

150
99 13.5 16.3 13.66 16.56 12.08 10.54 17.16
±0 ±0.38 ±0.62 ±0.43 ±0.52 ±0.33 ±0.29 ±0.64

As an additional benchmark to demonstrate the benefit of using RORi
and our heuristics to pick pairs of solutions to show to the DM we also include
the following straightforward algorithm to determine at least one acceptable
solution: go through the solutions in a random sequence, initialise the first
solution as the current best and compare each solution in turn with the
current best, making the challenger the current best only if the challenger
is preferred. This simple algorithm is guaranteed to identify an acceptable
solution but obviously requires N − 1 pairwise comparisons, where N is the
number of alternatives to choose from. It is denoted as H0 in the tables
below.

6.2. Comparison of elicitation heuristics

For the baseline experiments reported in this section, we use Algorithm 2
as the general framework, N = 100 alternatives, m = 3 attributes and P =
{20, 80, 150} pairs of solutions being indifferent. The average number of
required DM interactions until the algorithm terminates is summarized in
Table 2.

Clearly, all methods are much more efficient than the above mentioned
simple approach that would require 99 pairwise comparisons.

Somewhat surprisingly, most of the heuristics tested perform worse than
the simple random selection of pairs of solutions (H1). This shows that the
use of RORi in the framework of Algorithm 2 is responsible for most of the
improvement, and that it is not easy to achieve further improvements by
clever heuristics on which pairs of solutions to show to the DM. The worst
are the attempt to guess the DM’s most likely value function by determin-
ing the most discriminatory value function (H4) and the rather sophisticated
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Table 3: Percentage of DM interactions that result in an indifference statement, for Algo-
rithm 2, N = 100, P = {20, 80, 150} indifferent pairs and m = 3 criteria.

P H0 H1 H2 H3 H4 H5 H6 H7
20 0.08% 0.29% 0.24% 0.00% 0.12% 0.33% 0.55% 0.00%
80 0.46% 2.01% 0.74% 1.75% 1.93% 1.95% 3.60% 0.57%
150 0.95% 4.15% 1.47% 3.37% 2.90% 4.80% 6.07% 1.63

heuristic H7 based on look-ahead and entropy calculation, presumably be-
cause minimizing entropy is not very well aligned with our goal of minimizing
the number of interactions.

Only two of the look-ahead heuristics, namely H5 and H6, are signifi-
cantly better than random selection. Of the two, the method that greedily
minimizes the expected number of remaining solution candidates (H6) works
much better than H5 which minimizes the number of remaining solution can-
didates in the worst case. Although H6 is computationally more expensive
to compute because it needs to estimate the probabilities for the DM’s re-
sponse, this extra effort seems to pay off. H6 requires between 21.6% and
24.3% less interactions than the random selection of pairs.

Table 3 reports on the percentage of interactions with the DM that result
in an indifference statement. This percentage is roughly in the ballpark of the
percentage of all possible pairwise comparisons for 20, 80 and 150 indifferent
pairs, which is 0.4%, 1.6%, 3.0% for 100 alternatives. H7 based on entropy
and H0 create the smallest percentage of indifference responses for P = 20,
and P = {80, 150}, respectively, whereas Random (H1), H5 and H6 create
relatively many indifference responses.

6.3. Identifying all acceptable solutions

Repeating the experiments of the previous section but this time using the
framework of Algorithm 1 rather than Algorithm 2 in order to identify all ac-
ceptable solutions yields the results reported in Table 4. As suspected, iden-
tifying all acceptable solutions requires slightly more preference elicitations
than identifying only one acceptable solution, independent of the heuristic
used. Moreover, comparing Tables 3 and 5, we observe that in most cases,
switching from Algorithm 1 to Algorithm 2 the percentage of indifference
statements increases, too.
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Table 4: Average number and standard error of required DM interactions until the algo-
rithm terminates with the set of all acceptable solutions, for N = 100, P = {20, 80, 150}
indifferent pairs and m = 3 criteria.

P H1 H2 H3 H4 H5 H6 H7

20
16.58 18.06 17.36 20.72 13.26 11.46 19.66
±0.45 ±0.65 ±0.57 ±0.88 ±0.29 ±0.31 ±0.63

80
16.74 18.08 17.96 21.14 13.5 11.44 19.2
±0.46 ±0.67 ±0.69 ±0.93 ±0.33 ±0.31 ±0.67

150
16.8 18.14 18.4 21.04 13.4 11.58 19.12
±0.46 ±0.67 ±0.70 ±0.93 ±0.34 ±0.30 ±0.71

Table 5: Percentage of DM interactions that result in an indifference statement, for Algo-
rithm 1, N = 100, P = {20, 80, 150} indifferent pairs and m = 3 criteria.

P H1 H2 H3 H4 H5 H6 H7
20 0.7% 0.2% 0.5% 0.3 % 0.5% 0.5% 0%
80 2.7% 0.9% 2.1% 1.6% 1.9% 5.2% 0%
150 5.2% 1.8% 3.9% 2.8% 3.9% 6.6% 1.8%

6.4. Influence of the number of alternatives

In this section, we examine the influence of the number of alternatives
on the required number of preference elicitations. In addition to N = 100,
we examine N = 50 and N = 200. The number of criteria is still 3, and
we choose δT in a way that results in 1.6% indifferences, i.e., 20, 80 and 320
indifferent pairs for 50, 100 or 200 alternatives, respectively. Because many of
the heuristics resulted in performances worse than random selection, we only
consider H1, H5, and H6 here in addition to the straightforward benchmark
H0 (see Table 6(a)).

The number of preference elicitations seems to be roughly linear. A linear
regression for the H6 heuristic results in 9.29 + 0.018N which means that
for each additional alternative, the number of expected required preference
elicitations only increases by about 0.02.

6.5. Influence of the number of criteria

So far, all experiments were based on problems with three criteria. Here
we examine whether the results still hold in the case of 5 criteria. For these
experiments, we use the base case of 100 alternatives, 80 indifference relations
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Table 6: Average number and standard error of required DM interactions until the algo-
rithm terminates with a set of acceptable solutions,...

(a) ...for different numbers of alterna-
tivesN , indifference in 1.6% of all pos-
sible pairs and m = 3 criteria.

N H0 H1 H5 H6

50
49 12.32 10.92 9.86
±0 ±0.27 ±0.26 ±0.24

100
99 13.96 12.28 10.56
±0 ±0.34 ±0.31 ±0.31

200
199 15.0 13.20 11.64
±0 ±0.37 ±0.34 ±0.30

(b) ...for different numbers of criteria
m and indifference in P = 80 pairs.

m H0 H1 H5 H6

3
99 13.96 12.28 10.56
±0 ±0.34 ±0.31 ±0.31

5
99 33.38 35.02 27.64
±0 ±0.60 ±0.73 ±0.53

and identification of the best solution. Again, we only consider the most
promising heuristics.

As can be seen from Table 6(b), the necessary number of pairwise compar-
isons increases sharply with the number of criteria. The reason is probably
that the preference model has more parameters, and requires more infor-
mation in terms of preference elicitations before it is accurate enough to be
helpful in pruning solutions from the set of possibly best solutions. The rel-
ative performance, however, remains similar, and H6 is still able to reduce
the number of preference elicitations by 17.2% compared to RORi with ran-
dom selection (24.4% for the 3 criteria case), and by 72.1% compared to the
default heuristic H0 (89.3% for the 3 criteria case).

7. Discussion and Conclusions

This paper proposes new methods to support a DM to identify his most
preferred solution out of a given set of solutions, based on pairwise preference
elicitations. The paper makes two main contributions. First, it extends the
Robust Ordinal Regression Framework to allow for indifference statements
from the DM if the utilities of the two solutions do not differ by more than
a user-specific threshold. Our new RORi method learns the user threshold
along with the parameters of the utility function. Second, it proposes and
compares a number of heuristics to guide the pairs of solutions to be shown to
the decision maker, to maximize the information gained from each elicitation.

An empirical analysis shows that RORi is able to appropriately generalize
the information collected, and drastically reduce the number of necessary
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comparisons compared to an algorithm that considers all alternatives in turn
and always keeps the best-so-far — even when the pairs of solutions shown
to the DM are picked randomly. The reduction is lower if the number of
criteria is higher, because the model then has more parameters and thus more
information is needed to derive meaningful parameter values. Similarly, the
reduction is higher with a higher number of alternatives, because the savings
are low initially but grow with the number of alternatives evaluated as the
model becomes more and more precise.

Regarding the proposed heuristics to decide which pair of solutions to
show to the DM, surprisingly, most heuristics, including those we took from
the literature, perform worse than random sampling when evaluated based
on the number of preference elicitations needed to complete the selection.
The best heuristic uses a sophisticated one-step look-ahead technique, which
on the problems considered further reduces the necessary number of samples
by about 20% compared to RORi with random selection of pairs. Together,
depending on the test problem, our method saves about 90% of the required
pair-wise preference elicitations compared to a simple algorithm that consid-
ers all alternatives in turn and always keeps the best-so-far.

There are various avenues for future work. While we have used the Cho-
quet integral as preference model in this paper, an extension to other pref-
erence models should be straightforward. More heuristics can be developed,
and should be tested on a wider range of benchmark problems. Finally, one
may consider showing the DM not only pairs of existing alternatives, but
also fictitious alternatives in order to speed up convergence.
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