
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/89715  

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/89715
mailto:wrap@warwick.ac.uk


Digital Image Forensics Based on Sensor Pattern Noise

by

Xufeng Lin

Thesis

Submitted to The University of Warwick

for the degree of

Doctor of Philosophy

Department of Computer Science

September 2016



Contents

Acknowledgements vi

Declarations vii

Publications viii

Abstract ix

Abbreviations xi

List of Figures xviii

List of Tables xix

1 Introduction 1

1.1 Digital Image Forensics . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Active Digital Image Forensics . . . . . . . . . . . . . . . . . 4

1.1.2 Passive Digital Image Forensics . . . . . . . . . . . . . . . . . 5

1.2 Sensor Pattern Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Source Camera Identification Based on SPN . . . . . . . . . . 9

1.2.2 Image Clustering Based on SPN . . . . . . . . . . . . . . . . 11

1.2.3 Image Forgery Detection Based on SPN . . . . . . . . . . . . 11

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review 16

2.1 Source Camera Identification . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Scene Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ii



CONTENTS

2.1.2 Demosaicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Periodic Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Image Clustering Based on SPN . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Markov Random Field Based Method . . . . . . . . . . . . . 32

2.2.2 Graph Clustering Based Method . . . . . . . . . . . . . . . . 33

2.2.3 Hierarchical Clustering Based Method . . . . . . . . . . . . . 34

2.2.4 Other Clustering Methods . . . . . . . . . . . . . . . . . . . . 35

2.3 Forgery Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Preliminary Method . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Constant False Acceptance Rate Method . . . . . . . . . . . 38

2.3.3 Bayesian-MRF Based Method . . . . . . . . . . . . . . . . . . 41

2.3.4 Image Segmentation Based Methods . . . . . . . . . . . . . . 42

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Spectrum Equalization Algorithm for Preprocessing Reference Sen-

sor Pattern Noise 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Reference SPN Preprocessing: A Case Study . . . . . . . . . . . . . 47

3.3 Spectrum Equalization Algorithm (SEA) . . . . . . . . . . . . . . . . 51

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Evaluation Statistics . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.4 General Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.5 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.6 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

iii



CONTENTS

4 Large-Scale Image Clustering Based on Camera Fingerprint 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Proposed Clustering Framework . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Coarse clustering . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Fine clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.4 Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.5 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Refining SPN-Based Image Forgery Detection 113

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Missing Detection Problem . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.2 Detecting Simulated Forgeries . . . . . . . . . . . . . . . . . . 124

5.4.3 Detecting Realistic Forgeries . . . . . . . . . . . . . . . . . . 127

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusions and Future Work 135

6.1 Preprocessing Reference SPN via Spectrum Equalization . . . . . . . 136

6.2 Large-Scale Image Clustering Based on Device Fingerprints . . . . . 137

6.3 Refining Image Forgery Detection Based on SPN . . . . . . . . . . . 138

iv



CONTENTS

6.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139

A Derivation of Correlation Distribution 142

A.0.1 Scenario 1: nx=ny=1, σ2
x 6= σ2

y . . . . . . . . . . . . . . . . 143

A.0.2 Scenario 2: nx > 1, ny > 1, σ2
x 6= σ2

y . . . . . . . . . . . . . 144

v



Acknowledgements

Foremost, I would like to express my sincere gratitude and utmost respect to my

supervisor, Prof. Chang-Tsun Li, for his tremendous academic support and valuable

career advice. I would like to thank him for providing me with so many opportunities

to shape me into a research scientist. Without his guidance and encouragement, this

PhD would not have been achievable. I am very grateful to my advisors, Dr. Victor

Sanchez and Dr. Nathan Griffiths, for their inspiring guidance and valuable advice

on my PhD progress.

I would like to thank my lab mates: Dr. Xingjie Wei, Dr. Yi Yao, Dr. Yu

Guan, Ning Jia, Ruizhe Li, Alaa Khadidos, Roberto Leyva, Xin Guan, Qiang Zhang,

Justin Chang, Shan Lin, Bo Wang, Bo Gao, Chao Chen, Huanzhou Zhu, Zhuoer

Gu, and Portos Portis. Completing this work would have been all the more difficult

were it not for the support and friendship provided by them.

Finally, I would like to express my deepest gratitude to my parents, sister,

grandaunt and her husband for their constant support and unconditional love. Re-

gardless of the ups and downs in life, they were always there to help me and stood

by my side.

vi



Declarations

I hereby declare that the work presented in this thesis entitled Digital Image Foren-

sics Based on Sensor Pattern Noise is my own work and has not been submitted to

any college, university or any other academic institution for the purpose of obtaining

an academic degree.

Xufeng Lin

Signature:

Date:

vii



Publications

[1] Xufeng Lin and Chang-Tsun Li, Large-Scale Image Clustering Based

on Camera Fingerprints, accepted for publication in IEEE Transactions

on Information Forensics and Security, 2016.

[2] Xufeng Lin and Chang-Tsun Li, Refining PRNU-Based Detection of

Image Forgeries, in Proceedings of IEEE Digital Media & Academic Forum,

Santorini, Greece, 4-6 July, 2016.

[3] Xufeng Lin and Chang-Tsun Li, Enhancing Sensor Pattern Noise via

Filtering Distortion Removal, IEEE Signal Processing Letters, 23(3):381-

385, 2016.

[4] Xufeng Lin and Chang-Tsun Li, Preprocessing Sensor Pattern Noise

via Spectrum Equalization, IEEE Transactions on Information Forensics

and Security, 11(1):126-140, 2016.

[5] Xufeng Lin and Chang-Tsun Li, Two Improved Forensic Methods of

Detecting Contrast Ehancement in Digital Images, in Proceedings of

SPIE International Conference on Media Watermarking, Security, and Foren-

sics, February 3-5, 2014, San Francisco, California, US.

[6] Xufeng Lin, Chang-Tsun Li, and Yongjian Hu, Exposing Image Forgery

through the Detection of Contrast Enhancement, in Proceedings of

IEEE International Conference on Image Processing, September 15-18, 2013,

Melbourne, Australia.

viii



Abstract

With the advent of low-cost and high-quality digital imaging devices and the avail-

ability of user-friendly and powerful image-editing software, digital images can be

easily manipulated without leaving obvious traces. The credibility of digital images

if often challenged when they are presented as crucial evidence for news photogra-

phy, scientific discovery, law enforcement, etc. In this context, digital image forensics

emerges as an essential approach for ensuring the credibility of digital images.

Sensor pattern noise mainly consists of the photo response non-uniformity

noise arising primarily from the manufacturing imperfections and the inhomogeneity

of silicon wafers during the manufacturing process. It has been proven to be an

effective and robust device fingerprint that can be used for a variety of important

digital image forensic tasks, such as source device identification, device linking, and

image forgery detection. The objective of this thesis is to design effective and robust

algorithms for better fulfilling the forensic tasks based on sensor pattern noise.

We found that the non-unique periodic artifacts, typically shared amongst

cameras subjected to the same or similar in-camera processing procedures, often give

rise to false positives. These periodic artifacts manifest themselves as salient peaks

in the magnitude spectrum of reference sensor pattern noise. We propose a spectrum

equalization algorithm to detect and suppress the salient peaks in the magnitude

spectrum of reference sensor pattern noise, aiming to improve the accuracy and

reliability of source camera identification based on sensor pattern noise. We also

propose a framework for large-scale image clustering based on device fingerprints

(sensor pattern noises). The proposed clustering framework deals with large-scale

and high-dimensional device fingerprint databases and is capable of overcoming the

NC � SC problem, i.e., the number of cameras is much higher than the average

number of images acquired by each camera. Additionally, for the task of image

ix



forgery detection based on sensor pattern noise, we propose a refining algorithm to

solve the missing detection problem along the boundary area between the forged

and non-forged regions.

The proposed algorithms are evaluated on either a public benchmarking

database and our own image databases. Experimental results, as well as the com-

parisons with state-of-the-art algorithms, confirm their effectiveness and robustness.

x
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CHAPTER 1
Introduction

1.1 Digital Image Forensics

Advances in digital imaging technologies have led to the development of low-cost

and high-quality digital imaging devices, such as camcorders, digital cameras, scan-

ners and built-in cameras of smartphones. The ever-increasing convenience of image

acquisition has facilitated the distribution and sharing of digital images, and bred

the pervasiveness of powerful image editing tools, allowing even unskilled persons

to easily manipulate digital images for malicious or criminal ends. Under the cir-

cumstances where digital images serve as critical evidence for news photography,

scientific discovery, law enforcement, etc., maliciously manipulated images may lead

to serious consequences.

(a) (b)

Figure 1.1: Misleading report on Luxor massacre by the Swiss tabloid Blick in 1997.
(a) Altered image. (b) Original image.

Fig. 1.1(a) shows a image posted by the Swiss tabloid Blick after 62 tourists

(including 36 Swiss tourists) were killed in a terrorist attack at the temple of Hat-

shepsut in Luxor Egypt1. A puddle of water in the original image (Fig. 1.1(b)) was

1http://pth.izitru.com/1997_11_00.html
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digitally altered to appear as blood flowing from the temple. Fig. 1.2(a) shows the

American astronaut Stephen Robinson on a spacewalk in front of the Canadarm22.

Unfortunately, The Economist pointed out that the Canadian logo visible on the

arm in the image was crudely composited, because the background color and tex-

ture of the logo clearly does not match the arm. In fact, it was discovered that the

original image (Fig. 1.2(b)) without any Canadian logo was captured by NASA.

The composite image was used by several Canadian government websites to pro-

mote Canada’s involvement with the International Space Station. Tampered image

presented as evidence in the law enforcement system can be used to frame innocent

people unjustly. Kanhaiya Kumar, a student leader at India’s Jawaharlal Nehru

University, was arrested on sedition charges in the midst of a variety of contested

images and video clips which claim to show him advocating for the disintegration of

India3. One image (Fig. 1.3(a)) that circulated widely on social media shows Kumar

speaking in front of a map showing a divided India, in which portions of Kashmir

and Gujarat were annexed to Pakistan. However, in the original, undoctored image

(Fig. 1.3(b)), Kumar is actually speaking in front of a blank background.

(a) (b)

Figure 1.2: An example of forged images used in the scientific discovery field.
(a) A composite image used by several Canadian government websites to promote
Canada’s involvement with the International Space Station and (b) the original
image.

As can be seen in the above examples, we are now living in a world of “seeing

2http://pth.izitru.com/2014_10_00.html
3http://pth.izitru.com/2016_02_01.html
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(a) (b)

Figure 1.3: An example of forged images used by law enforcement. (a) A doctored
image showing Kumar speaking in front of a map of a divided India and (b) the
original image.

is not believing”. Digital images can be easily forged with increasingly powerful and

user-friendly image editing software without leaving visible traces. The increasing

appearance of digitally altered forgeries on the Internet and in mainstream media

is casting doubt on the integrity of digital images. Untrustworthy images have

challenged the public credibility, judicial impartiality, academic morality, journal-

istic integrity, etc., therefore, it is important and necessary to carry out research

on forensic technologies that can verify the originality, integrity and authenticity of

digital images.

Digital image forensics research aims at revealing underlying facts about a

suspicious image [10]. It is not limited to exposing image forgeries, as shown in the

above examples, but involves a wide range of investigations. It is intended to answer

the questions including but not limited to:

• Which device among the candidates was used to capture the image in question?

• Which images among the candidates were captured by the same source device

X?

• Is this image an original image or has it been tampered with for ulterior

motives?

3
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• What parts of the image has been forged and up to what extent?

• What is the processing history of the image?

1.1.1 Active Digital Image Forensics

To determine the originality, integrity and authenticity of a digital image, a straight-

forward way is to insert extra digital watermark [11–17] or signature [18–21] into

the image when it is created. The changes in the image are then detected by re-

covering and checking the embedded digital signature or watermark. For example,

Fridrich and Goljan [13] proposed two techniques to embed an image in itself both

for protecting the image content and for authentication. In [14], a semi-fragile wa-

termarking method was proposed for the automatic authentication and restoration

of the image content using irregular sampling. In spite of the effectiveness of these

active techniques, they can only be applied when the image is protected at the ori-

gin. Nowadays, the majority of images do not contain a digital watermark/signature

mainly due to the following reasons:

• Camera manufacturers have to devise extra digital watermark/signature em-

bedding components in the camera, so only some high-end cameras have wa-

termark embedding features.

• The embedded watermark/signature may degrade the image quality and sig-

nificantly reduce the market value of cameras featuring watermark/signature

embedding capability.

• The successful implementation of watermark-based protection requires close

collaborations among publishers/manufaturers, investigators and potentially

trusted third-party organizations. This limits the adoption of digital water-

mark/signature based techniques.

4
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1.1.2 Passive Digital Image Forensics

Compared to the above active forensic technology, passive image forensic technolo-

gies require no collaboration of users and is based on the inherent patterns in the

image itself. Most image manipulations do not leave noticeable visual artifacts, but

they do inevitably change the statistical characteristics of the manipulated image.

Passive forensic technologies verify the originality, integrity and authenticity of im-

ages through detecting the changes of statistical image characteristics. It does not

need to insert extra information in the image and there is no special requirement on

the imaging hardware. Therefore, there has been growing interest in passive forensic

techniques. Over the past few years, the research on passive image forensics mainly

has focused on the following three directions [10]:

1. Image source identification to determine the data acquisition device that gen-

erates one image. It identifies the source device at four different accuracy

levels:

• Device type: For example, is the given image generated by a camera or

a scanner?

• Device brand: For example, is the given image taken by a Canon Camera

or a Nikon camera?

• Device model: For example, is the given image taken by Canon 450D or

Canon IXUS70?

• Individual device: For example, is the give image taken by this specific

camera or another camera?

2. Discrimination of synthetic images images from real images to identify computer-

generated images which do not depict a real-life occurrence. As computer

graphics technology develops, it becomes increasingly difficult to distinguish

photographic images from computer-generated ones by naked eyes. There has

5
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been a trend of presenting synthetic images as real images or augmenting the

computer-generated virtual scenes with real scenes to deceive the viewer.

3. Image forgery detection to determine whether or not an image has undergone

any form of modification or processing after it was originally captured. It also

uncovers the parts of the given image that have been altered and up to what

extent.

As shown in Fig. 1.4, passive image forensics can be divided into three

categories based on the characteristics of the used images:

1. Passive image forensics based on natural image statistics: For example, Lyn

and Farid [22] decomposed each color channel of a color image using the sep-

arable quadrature mirror filters (QMFs) [23, 24], then calculated the mean,

variance, skewness, and kurtosis of the subband coefficient histograms at each

orientation and scale. They also considered the linear prediction errors of co-

efficient magnitudes between adjacent pixels, scales, directions and color chan-

nels. These features were input into a linear discrimination analysis (LDA) or

a nonlinear support vector machine (SVM) classifier to differentiate between

photorealistic (computer-generated) and photographic images. In [25], Khar-

razi et al. proposed 34-dimensional image features, including the mean value

of the RGB channels (3 features), the correlation pairs between RGB channels

(3 features), neighbor distribution center of mass for each of the 3 channels (3

features), RGB pairs energy ratio (3 features), wavelet domain statistics for 3

sub-bands in 3 color channels (9 features) as well as 13 image quality metrics

features, to distinguish the images taken by different cameras.

2. Passive image forensics based on traces left by specific image manipulations:

A counterfeiter has to apply one or more image manipulations to forge an

image. A specific image manipulation will leave some specific patterns in

the forged image. The techniques of this category reveal the potential image

6
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forgeries by looking for the traces left by specific image manipulations such as

double JPEG compression [26, 27], resampling [28, 29], contrast enhancement

[30–34], etc. It also includes the methods that detect the duplicated image

regions [35–37] or the inconsistent lighting conditions [38, 39] introduced by

copy-and-paste image forgery.

3. Passive image forensics based on consistent characteristics introduced by var-

ious imaging devices or different hardware or software processing components

in the imaging pipeline: Shown in Fig. 1.5 is the simplified imaging pipeline in

digital camera. Each processing component in the pipeline will leave specific

and consistent characteristics in the resulting image. Therefore, by detecting

the presence of the consistent characteristics introduced by imaging device, we

can trace back to the image source. Likewise, we can also uncover the image

forgery by detecting the absence of those consistent characteristics. The con-

sistent characteristics include the characteristics left by lens distortion [40],

color filter array (CFA) interpolation (or demosaicing) [28, 41], camera re-

sponse function (CRF) [41–43], JPEG artifacts [44] and sensor pattern noise

(SPN) [1, 3, 9, 45].

Passive digital image 
forensics

Based on natural image 
statistics

Based on traces left by 
specific image 
manipulations

Based on consistent   
characteristics 

introduced by imaging 
device

Figure 1.4: Passive image forensics categories.
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Figure 1.5: Simplified imaging pipeline in a typical digital camera.

1.2 Sensor Pattern Noise

As one of the most promising passive image forensic approaches, methods based on

sensor pattern noise (SPN) have attracted increasing attention in recent years. As

shown in Fig. 1.6, sensor pattern noise consists of two main components. One is

the dark signal non-uniformity (DSNU) 4 (or dark current noise as it is more com-

monly referred to as), which is the pixel-to-pixel differences when the sensor array

is not exposed to light. The dominant component in SPN is the photo response

non-uniformity (PRNU) noise, which arises primarily from the manufacturing im-

perfections and the inhomogeneity of silicon wafers during the sensor manufacturing

process. It is a powerful forensic tool due to its 1) uniqueness to individual device,

2) stability against environmental conditions and 3) robustness to some common

image processing operations. Therefore, it can be considered as the fingerprint of

imaging devices and has been widely and successfully applied in the filed of digital

image forensics. In the following subsections, source camera identification, image

clustering and image forgery detection based on SPN will be introduced.

4https://en.wikipedia.org/wiki/Fixed-pattern_noise#cite_note-1
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Pattern noise

DSNU PRNU

Figure 1.6: Pattern noise of imaging sensors [1].

1.2.1 Source Camera Identification Based on SPN

One challenging problem of multimedia forensics is source camera identification

(SCI). The task of SCI is to reliably match a particular digital image with its source

device. SPN is considered as the fingerprint of source camera left in every image

taken by the source camera, so it can be used for tracing back to the source device

of an image. Shown in Fig. 1.7(a) is the process of SPN-based source camera

identification. Firstly, a reference SPN is constructed for every candidate camera by

averaging the noise residues extracted from a collection of images captured by the

candidate camera. The images used for constructing the reference SPN are usually

those with high intensity and low texture, e.g., blue sky images, because the SPN is

better preserved in them. To determine the source camera that has taken a query

image among all candidate cameras, the noise residue of the query image (or query

SPN) is extracted and compared with the reference SPN. If the highest similarity

is higher than a predefined threshold, the query image is deemed to be taken by

the camera with the highest similarity. Another forensic scenario is shown in Fig.

1.7(b), where SPN is used for identifying the image among candidate images taken

by a camera. Compared to the first scenario, it is the same in essence while differing

9
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(a)

(b)

Figure 1.7: Use of SPN in source camera identification. (a) Identifying the source
camera of a given image among candidate cameras and (b) Identifying the images
taken by a camera among candidate images.

10
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in minor points. In this scenario, as long as the similarity between the query SPN

and the reference SPN is high enough, the query image is considered to be captured

by the camera.

1.2.2 Image Clustering Based on SPN

In the above application of SPN in source camera identification, a set of images taken

by the same camera are required for the construction of the reference SPN. This

requirement can be easily fulfilled when the camera is available to the investigators.

However, in many real-world scenarios, only a set of images are available, but with-

out any information about the source cameras. In such circumstances, sometimes

it is still desirable to be able to cluster the images into a number of groups, each

including the images acquired by the same camera. Take Internet child pornography

for example, lots of illegal images can be confiscated from pornographic website, but

the cameras which have taken these images are not available to the forensic investi-

gators. If we can cluster these images into a number of groups, each including the

images acquired by the same camera, we are able to associate different crime scenes

and would be in a better position to link the evidence to the seized hardwares that

are owned by the suspects in the future. As shown in Fig. 1.8, this task can be

accomplished by resorting to the use of SPNs extracted from the images. By clus-

tering the SPNs, the corresponding images taken by the same camera are grouped

into the same group.

1.2.3 Image Forgery Detection Based on SPN

Sensor pattern noise (SPN) can be considered as a spread-spectrum watermark

embedded in every image taken by the source imaging device. Therefore, it can also

be used for localizing the forgeries in digital images. However, since SPN, by its

very nature, is a very weak noise-like signal, its reliable detection requires jointly

processing a large number of pixel samples, e.g., in a block-wise manner. As shown
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Figure 1.8: Use of SPN in image clustering.

in Fig. 1.9, the SPN extracted from the image in question is compared with the

reference SPN in a block-wise manner. If their similarity (usually normalized cross

correlation), which serves as a decision statistic, is below a pre-determined threshold

(e.g., by Neyman-Pearson criterion), the center pixel in the block is declared as

forged. This method exposes the image forgery by detecting the absence of SPN

irrespective of the specific type of forgery, it therefore arouses wide attention of the

researchers in the field of digital forensics.

1.3 Main Contributions

Digital image forensics is a broad area and includes research spanning a range of

directions. In this thesis, our research on digital image forensics is narrowed down

to the applications of sensor pattern noise in source camera identification, image

12
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Figure 1.9: Use of SPN in digital image forgery detection.

clustering and image forgery detection. The major contributions we have made are

summarized in detail as follows.

1. Although SPN has been proven to be an effective means to uniquely iden-

tify digital cameras, some non-unique artifacts, shared amongst cameras sub-

jected to the same or similar in-camera processing procedures, often give rise

to false identifications. We propose a novel preprocessing approach, i.e., spec-

trum equalization algorithm (SEA) in Chapter 3, that equalizes the magnitude

spectrum of the reference SPN through detecting and suppressing the peaks

according to the local characteristics. It aims at removing the interfering pe-

riodic artifacts and therefore reduces the false identification rate.

2. The challenges of clustering large-scale camera fingerprints come from the

large-scale and high-dimensional nature of the problem. The difficulties can

be further aggravated when the number of classes is much higher than the av-

eraged class size, which is not uncommon in many practical scenarios. We

propose an efficient clustering framework for large-scale device fingerprint

database in Chapter 4. The framework works in an iterative way and uti-

lizes both the dimension reduction technology and divide&conquer strategy

to reduce the time and space complexity. The proposed framework can be

13
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easily parallelized and adapted to very large-scale camera fingerprints cluster-

ing tasks.

3. As demonstrated in Fig. 1.9, the reliable detection of SPN for exposing image

forgery requires the algorithm to work in block-wise manner. However, when

the detection block falls near the boundary of the tampered and the non-

tampered regions, the decision statistic becomes a weighted average of two

different contributions and may lead to a high false acceptance rate (FAR)

(i.e., misidentifying a tampered block as non-tampered). We propose a re-

fining algorithm to alleviate the missing detection problem in Chapter 5. We

model how the decision statistic changes as the detection block is placed across

the boundary of two different regions (i.e., tampered and non-tampered) and

adjust the decision threshold accordingly to achieve a more satisfactory detec-

tion.

1.4 Outline of Thesis

This chapter briefly introduces the background of digital image forensics and how

sensor pattern noise can be used for identifying source camera, clustering images

and exposing image forgeries. The rest of this thesis is organized as follows.

Chapter 2 first categories the interferences introduced in the imaging pipeline

that affect the quality of the estimated SPN and introduces the approaches that

aim at alleviating or eliminating the effect of the interferences to improve the per-

formance of SPN based source camera identification. It then revisits the related

work on image clustering based on camera fingerprint and points out the challenges

of clustering large-scale image databases that have not yet been addressed by the

existing methods. Literature on SPN based image forgery detection will also be

reviewed in the last section of this chapter.

Chapter 3 starts with a case study to investigate the limitations of existing

14
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SPN preprocessing schemes. It then presents the details of a novel preprocessing

scheme, spectrum equalization algorithm (SEA), that overcomes the limitations of

existing approaches. Combined with 6 state-of-the-art SPN extraction methods, the

proposed preprocessing scheme is evaluated with comprehensive experimental results

and analysis on the Dresden image database for both the general and special cases.

Finally, it also gives the comparison of running times among different preprocessing

schemes and similarity measurements.

Chapter 4 introduces our proposed clustering framework for large-scale cam-

era fingerprint databases step by step, including data preparation, coarse clustering,

fine clustering, centroid attraction and post processing. It also discusses the param-

eter selection and time complexity. Finally, it validates the capability of clustering

large-scale databases and the advantage of the proposed framework over other state-

of-the-art clustering algorithms with extensive experimental results.

Chapter 5 first introduces the missing detection problem of SPN based image

forgery detection along the boundary between the forged and non-forged areas. It

then models the correlation distribution in the problematic area and proposes to

adjust the threshold accordingly to alleviate the missing detection problem. In this

chapter, the effectiveness of the algorithm is verified via three realistic image forgery

detection examples.

Chapter 6 summarizes this thesis. Several key challenges we are confronted

with and some possible future research directions will be also given in this chapter.
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CHAPTER 2
Literature Review

2.1 Source Camera Identification

Sensor Pattern Noise (SPN) has attracted much attention from researchers in the

area of digital forensics since it was proven to be an effective and robust device

fingerprint in [1]. One of the important applications of SPN is source camera iden-

tification (SCI), which is about identifying the source camera of a given image from

candidate cameras. The typical process of using SPN for SCI is as follows. A refer-

ence SPN R is first constructed by averaging the noise residual Wi extracted from

the ith image of the N images taken by the same camera:

R =
1

N

N∑
i=1

Wi. (2.1)

The similarity between the reference SPN R and the query noise residue W is

measured by the normalized correlation coefficient (NCC) ρ:

ρ(R,W) =

∑m
i=1

∑n
j=1(W [i, j]−W )(R[i, j]−R)

‖W −W‖ · ‖R−R‖ , (2.2)

where ‖ · ‖ is the L2 norm, R and W are of the same size m × n, and R and W

are the arithmetic mean of R and W, respectively. Suppose the reference SPN of

camera c is Rc, the task of SCI is then achieved by identifying camera c∗ with the

maximal NCC value that is greater than a predefined threshold τρ as the source

device of the query image, i.e.,

c∗ = argmax
c∈C

ρ(Rc,W), ρ(Rc∗ ,W) > τρ, (2.3)
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where C is the set of candidate cameras.

However, the correlation-based detection of SPN heavily relies upon the qual-

ity of the extracted SPN, which can be severely contaminated by different interfer-

ences. In the following subsections, the interferences that may degrade the quality

of SPN and the approaches used to alleviate or eliminate the interferences will be

discussed.

2.1.1 Scene Details

SPN is a weak noise-like signal, so its estimation is usually based on the the noise

residual W, where the image content is significantly suppressed. The noise residual

W of an image I is formulated as

W = I− F (I), (2.4)

where F (·) is a denoising filter. The widely used denoising filter for SPN extraction

is the wavelet-based technique proposed by Mihcak et al. [2]. As described in [1], it

works as follows

1. Calculate the four-level wavelet decomposition of the noisy image with the 8-

tap Daubechies QMF. Denote the horizontal, vertical, and diagonal subbands

as h[i, j], v[i, j] and d[i, j], where [i, j] runs through an index set J that depends

on the decomposition level. We only show the operations for h[i, j] in the

following two steps, because the operations on v[i, j] and d[i, j] are exactly the

same.

2. Estimate the local variance of the original noise-free image for each wavelet

coefficient using the maximum a posteriori (MAP) estimation for four sizes of
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a square w × w neighborhood Nw, i.e.,

σ̂2[i, j] = min
w∈{3,5,7,9}

[
max

(
0,

1

w2

∑
[k,l]∈Nw

h2[k, l]− σ2
0

)]
, (2.5)

where σ2
0 is the overall variance of additive Gaussian white noise to be removed

and is usually set to 4 or 9 for high-quality images.

3. The denoised wavelet coefficients are obtained suing the Wiener filter

ĥ[i, j] = h[i, j]
σ̂2[i, j]

σ̂2[i, j] + σ2
0

. (2.6)

4. Repeat above 3 steps for each level and apply the inverse wavelet transform

to the denoised wavelet coefficients to obtain the denoised image.

Shown in Fig. 2.1(a) and Fig. 2.1(b) are an image of natural scene and the

noise residual extracted with the Mihcak denoising filter [1, 2]. As can be seen, the

noise residual contains strong scene details, especially in the edge areas, because

scene details account for part of the components of I and their magnitude is far

greater than that of SPN [3].

Many efforts have been devoted to suppressing scene details in the noise

residual to obtain SPN of higher quality. In [3], Li proposed 5 models to attenuate

scene detail by assigning less significant weighting factors to the strong components

of SPN in the Digital Wavelet Transform (DWT) domain. The underlying rationale

is based on the hypothesis that the stronger a signal component in noise residual

W is, the more likely that it is associated with strong scene details, and thus the

less trustworthy the component should be. The enhanced noise residual of the image

(Fig. 2.1(a)) is shown in Fig. 2.1(c), where the magnitudes of strong edges have

been suppressed.

As mentioned in Section 1.2 of Chapter 1, the dominant component in SPN
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(a) (b) (c)

Figure 2.1: (a) A natural image, (b) noise residual obtained with the Mihcak de-
noising filter [1, 2], and (c) noise residual enhanced using Model 3 with parameter
6 proposed in [3]. Note that the noise residual is extracted only from the green
channel.

is the PRNU noise. So in [9], noise residual W is modeled as

W = IK + Ξ, (2.7)

where I is the observed image, K is the zero-mean like multiplicative factor responsi-

ble for PRNU, and Ξ stands for other noises including the interferences from image

content, dark current noise, shot noise, and the errors introduced by the denoising

filter. Equation (2.7) indicates that to obtain better estimation of SPN, the lumi-

nance I should be as high as possible but not saturated because saturated pixels

carry no information about the PRNU factor [9]. Another observation in Equation

(2.7) is that high variation in Ξ introduces strong interference to IK. Therefore,

SPN is better preserved in smooth areas (i.e., with lower variance). Based on the

two insights that stems from Equation (2.7), some works improve the performance

of source camera identification by taking into consideration pixel intensity and spa-

tial variation. For example, a weighting scheme based on the image gradient was

proposed in [46]. The weight w(p) for each pixel p is calculated as

w(p) = G(σ) ∗ 1

1 + ‖∇Ip‖
, (2.8)
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where G(σ) is a Gaussian kernel and ∇ denotes the gradient operator. While in

[47], both the image intensities and image textures were considered. The authors

classified the image pixels into four classes:

• Class 1: Low brightness, Low texture

• Class 2: Medium brightness, High texture

• Class 3: High brightness, Low texture

• Class 4: Saturated brightness, Medium texture.

They found that Class 3 is the best class in the sense of increasing the intra-

camera similarities and decreasing the inter-camera similarities. A more sophisti-

cated weighting scheme that formulates the relationship between the image features

(related with image intensity and texture) and the correlation values was proposed

in [48]. The image features are defined as


fbi =

1

|Bb|
∑
i∈Bb

Ip

fbt =
1

|Bb|
∑
i∈Bb

1

1 + var3(Ip)
,

(2.9)

where Bb is the image block, |Bb| is the cardinality of Bb, Ip is the intensity of

the image at pixel p, and var3(Ip) is the variance of Ip in a 3 × 3 neighborhood.

The 2-dimensional features are extracted from each of the M 128×128-pixel image

blocks cropped from a set of training images (100 training images for each camera

were used in [48]). Then the kernel principal component analysis (KPCA) [49] was

used to predict the correlations ρ between the reference SPN and the SPN extracted

from training blocks:

ρ̂ = Hθ, (2.10)

where H consists of the principal components of Φ(X), which defines the non-linear

transform from the original feature space X to a higher dimensional space. H can
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be considered as the projected data of X via KPCA, and θ can be estimated by

applying the lease square estimator (LSE)

θ =
(
HTH

)−1
HTρ. (2.11)

A low predicted correlation ρ̂ means a large amount of image content is left in the

noise residue. On the other hand, a large predicted correlation means that the

region does not suffer from image content effect. Hence, the predicted correlation

can be used to weight the center pixel of the extracted SPN [48]. While all the

afore-mentioned schemes aim at weighting the query SPN, a weighted averaging

scheme [50] was proposed for the estimation of the reference SPN. Specifically, the

equal weighting factor 1/N in Equation (2.1) is replaced with

wi =
1

σ2
i

( N∑
m=1

1

σ2
m

)−1
, i = 1, ..., N, (2.12)

where σ2
i is the variance of undesirable noise, i.e.,



σ2
i =

∑L
j=1 (ni[j]− ni)

2

L

ni = Wi −W

ni =

∑L
j=1 ni[j]

L

W =

∑N
i=1 Wi

N
.

(2.13)

Note that L is the length of samples (i.e., the image size). As reported in [50], sig-

nificant performance improvements can be achieved by adopting this new weighting

scheme.

Since the denoising filter F (·) in Equation (2.4) plays a key role in preventing

the scene details from propagating to W, a straightforward idea is to use more

advanced denoising filters. Chierchia et al. used a more effective denoising filter,
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(a) (b)

(c) (d)

Figure 2.2: (a) A natural image, (b) noise residual obtained with the Mihcak de-
noising filter [1, 2], (c) noise residual obtained with PCAI8 [4], and noise residual
extracted with the BM3D denoising filter [5]. Note that we only show the noise
residual extracted from the green channel, because there is no much difference for
the red and blue channels.

i.e., block matching and 3D filtering (BM3D), to obtained the noise residual from

images [5] BM3D works by grouping 2D image patches with similar structures into

3D arrays and collectively filtering the grouped image blocks. The sparseness of the

representation due to the similarity between the grouped blocks makes it capable of

better separating the true signal and noise. Compared to the noise residual obtained

with the Mihcak filter [2] (Fig. 2.2(b)), most of the image content-related structures
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2.1 Source Camera Identification

are removed in the noise residual obtained with BM3D [5]. Wu et al. [51] proposed

another SPN extractor, edge adaptive SPN predictor based on context adaptive

interpolation (PCAI), to suppress the effect of scenes and edges. Suppose Ip is the

pixel value to be predicted at pixel p, then the predicted pixel value is formulated

as

Î(p) =



mean(t), (max(t)−min(t) ≤ 20)

(n+ s)/2, (|e− w| − |n− s| > 20)

(e+ w)/2, (|n− s| − |e− w| > 20)

median(t), (otherwise),

(2.14)

where t = [n, s, e, w]T is the four-neighboring pixels of p, as shown in Fig. 2.3.

An extension of this method is to make use of all the eight neighboring pixels

t′ = [n, s, e, w, en, es, wn,ws]T, as proposed in [4], where Î(p) is formulated as

Î(p) =



mean(t′), (max(t′)−min(t′) ≤ 20)

(n+ s)/2, (|e− w| − |n− s| > 20)

(e+ w)/2, (|n− s| − |e− w| > 20)

(es+ wn)/2, (|en− ws| − |es− wn| > 20)

(en+ ws)/2, (|es− wn| − |en− ws| > 20)

median(t′), (otherwise).

(2.15)

Finally, a pixel-wise Wiener filter will be performed on the difference between the

original and the predicted image, D = I− Î, to obtain the noise residual

W [i, j] = D[i, j]
σ2

0

σ̂2[i, j] + σ2
0

, (2.16)

where

σ̂2[i, j] = max
(

0,
1

w2

∑
[k,l]∈Nw

D2[k, l]− σ2
0

)
. (2.17)
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Figure 2.3: Neighborhood of the center pixel to be predicted. This figure is excerpted
from [4].

σ2
0 and w have the same meanings as in Eq. 2.5. In both [51] and [4], the size w of the

local neighborhood and σ2
0 are set to 3 and 9, respectively. Throughout this thesis,

the method in [4] will be referred to as PCAI8 and used to represent this line of

work. The noise residual extracted with PCAI8 is shown in Fig. 2.2(d). Surprisingly,

although PCAI8 was declared to have better performance than the Mihcak filter and

BM3D in [4], the scene details are more pronounced in Fig. 2.2(d).

2.1.2 Demosaicing

In digital cameras, the imaging sensor is probably the most expensive component.

Therefore, to reduce the costs and increase the sales, most consumer digital cameras

are equipped with only one sensor and an associated color filter array (CFA) to

capture all necessary colors at the same time. Fig. 2.4 shows the simplified imaging

pipeline, where the most widely used Bayer CFA is placed on top of a CCD sensor.

For each pixel, only one color component passes through the CFA and consequently

forms a monochrome image. To recover the full-color image from the mosaic-like

monochrome image captured by the sensor, a demosaicing, or CFA interpolation,

process needs to be devised to estimate the missing color components. However,

the estimated color components are not directly acquired by physical hardware and

carry interpolation noises. We expect that the PRNU extracted from the physical

components, which are free from interpolation noise, should be more reliable than
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2.1 Source Camera Identification

that from the artificial channels, which carry interpolation noise. Therefore, it is

expected that the SPN extracted from the “physical” components, which are free

from interpolation noise, should be more reliable than that from the “artificial”

components.

CFA + CCD
Dem

osaicking

Lens Postprocessing
Scene

Figure 2.4: Simplified imaging pipeline of a typical digital camera.

To address this issue, Li and Li proposed a Color-Decoupled PRNU (CD-

PRNU) extraction method in [6], which first decomposes each color channel into 4

sub-images and then extracts the PRNU noise from each sub-image. The PRNU

noise patterns of the sub-images are then assembled to get the CD-PRNU. Fig.

2.5 shows the noise residual extraction process for the red color channel, similarly

for the green and the blue channels. This method can prevent the interpolation

noise from propagating into the physical components, thus improving the accuracy

of device identification and image content integrity verification [6]. In [7], Hu et

al. proposed to exploit the CFA structure to make better use of the information

from all the 3 color channels. The process is depicted in Fig. 2.6: First, the large

components in the noise residual of each color channel are selected based on their

work in [52] (the first column of Fig. 2.6). Second, only the physical components

(i.e., the components that are not in the interpolated positions) are kept, as shown

in the second column of Fig. 2.6. Finally, the remaining components in 3 color

channels are combined to acquire the camera fingerprint (the last column of Fig.

2.6). However, the CFA structure is usually unknown in practice, so they compared

each component in the second column of Fig. 2.6 with its counterparts at the same
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Figure 2.5: The color-decoupled noise residual extraction process for the red channel.
This figure is excerpted from [6].

position on other color channels. If it is the largest component, then it is kept,

otherwise it is set to 0. Taking the green channel as an example, for all pixels on
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W̃g,

W̃g =


W̃g, if g = argmax

x∈{r,g,b}
|W̃x|

0, otherwise.

(2.18)

In this way, the impact of demosaicing on the extracted noise residual has

been reduced.

Wr

Wg

Wb W̃b

W̃g

W̃r

W

Figure 2.6: The construction of SPN using information from 3 color channels. Block
with @ refers to the pixel with large magnitude. This figure is excerpted from [7].

2.1.3 Periodic Artifacts

For the task of source camera identification, some periodic artifacts, shared amongst

cameras subjected to the same or similar periodic in-camera processing procedures,

are not unique to the sensor. The SPN estimated from two different cameras may

thus be slightly correlated, which would give rise to false positives and decrease the
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2.1 Source Camera Identification

reliability of identification system. Non-unique periodic artifacts can be summarized

as follows:

• CFA interpolation artifacts: A typical CFA interpolation is accomplished

by estimating the missing components from spatially adjacent pixels according

to the component-location information indicated by a specific CFA pattern.

As CFA patterns form a periodic structure, measurable offset gains will result

in periodic biases in the interpolated image [9]. The periodic biases manifest

themselves as peaks in the DFT spectrum, and the locations of the peaks

depend on the configuration of the CFA pattern.

• JPEG blocky artifacts: In JPEG compression, non-overlapping 8× 8-pixel

blocks are coded with DCT independently. So high JPEG compression causes

blocky artifacts, which manifest themselves in the DFT spectrum as peaks in

the positions (U8 u,
V
8 v), where U and V are the sizes of the spectrum, and

u, v ∈ {0, 1, ..., 7}.

• Diagonal artifacts: As reported in [53], unexpected diagonal artifacts were

observed for the reference SPN of Nikon CoolPixS710. Although the cause is

yet to be investigated, the artifacts are reflected in the spectrum as peaks in

the positions corresponding to the row and column period introduced by the

diagonal artifacts.

Some works have been proposed to suppress these periodic artifacts. Chen et

al. preprocessed the reference SPN R by zero-meaning (ZM) operation and Wiener

filtering (WF) in the DFT domain in [9]. In the zero-meaning operation, column

averages of R are subtracted from each pixel in each column and then row averages

are subtracted from every pixel in the row to obtain the zero-meaned signal Rzm. In

the subsequent WF operation, Rzm is further processed in the DFT domain using

a Wiener filter:

Rwf = Real
(
F−1

(
D · |D| −W(|D|, σ2)

|D|
))
, (2.19)
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where Real(·) returns the real part of input, F(·) is the DFT, W(·) is the Wiener

Filter, D = F(Rzm), |D| is the magnitude of D, and σ2 = 1
MN

∑
i,j Rzm[i, j]. In [45],

Kang et al. only kept the phase component of the noise residual and constructed a

reference phase SPN to enhance the performance of SCI:

Rph = Real
(
F−1

(∑N
i=1 Wφi

N

))
, (2.20)

where F−1(·) is the inverse DFT and Wφi is phase-only component of noise residual

Wi, i.e.,

Wφi =
F(Wi)

|F(Wi)|
, i = 1, 2, ..., N. (2.21)

The underlying rationale is that the SPN (noise residue) is usually modeled as an

additive white Gaussian noise (AWGN) in its extraction process, it is reasonable

to assume the camera reference SPN to be a white noise signal with flat frequency

spectrum to remove the impact of the contamination in the frequency domain [45].

Only keeping the phase components whitens the noise residual in the frequency

domain and helps to remove the periodic artifacts.

The above-mentioned methods are claimed to be effective in suppressing the

periodic artifacts. We conducted experiments on one Olympus Mju 1050SW, which

suffers severely from the periodic artifacts, to see their performances on suppress-

ing the unwanted periodic artifacts. 50 flat field (i.e., intensities are approximately

constant) images were used for estimating the reference SPN. The size of reference

SPN is 256 × 256 pixels and each noise residual used for reference estimation was

extracted from the green channel using the Mihcak denoising filter [1]. The logarith-

mic magnitude spectrum of R, Rzm, Rwf, and Rph are shown in Fig. 2.7(a)-2.7(d).

As can be seen, compared to R, the DC components of Rzm are completely removed,

and Rwf and Rph are significantly whitened. However, the “white” points (peaks) in

the spectrum, which are related with the periodic artifacts, are clearly shown in the

processed reference SPN. This leaves space for improvement and will be discussed
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(a) (b)

(c) (d)

Figure 2.7: The logarithmic magnitude spectra of (a) R, (b) Rzm, (c) Rwf, and Rph.

in depth in Chapter 3.

Another set of approaches attempts to suppress the periodic artifacts through

the use of more sophisticated detection statistics or similarity measurements. Gol-

jan [54] proposed the peak-to-correlation energy (PCE) measure to attenuate the

influence of periodic noise contaminations

PCE(R,W) =
C2
RW[0, 0]

1
MN−|A|

∑
[k,l]/∈AC

2
RW[k, l]

, (2.22)

where R and W are of the same size M×N , CRW is the 2D circular cross correlation
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between R and W, A is a small area around (0, 0), and |A| is the cardinality of

the area. Later in [45], Kang et al. proposed to use the correlation over circular

cross-correlation norm (CCN) to further decrease the false-positive rate:

CCN(R,W) =
CRW[0, 0]√

1
MN−|A|

∑
[k,l]/∈AC

2
RW[k, l]

, (2.23)

where all the symbols have the same meanings as in Equation (2.22). Actually CCN

shares the same essence as the signed PCE (SPCE) [55, 56]

SPCE(R,W) =
sign(CRW[0, 0])C2

RW[0, 0]
1

MN−|A|
∑

[k,l]/∈AC
2
RW[k, l]

, (2.24)

where sign(·) is the sign function, and all the other symbols have the same meanings

as in Equation (2.22). Note that the above-mentioned approaches can be combined

for additional performance gains. For instance, one can apply ZM and WF opera-

tions on the reference SPN extracted with BM3D or PCAI algorithm, and enhance

the query noise residual with the help of Li’s models [3], and finally choose SPCE

or CCN as the similarity measurement to identify the source camera.

2.2 Image Clustering Based on SPN

As described in the last section, to determine the origin of a given image among

candidate cameras, a reference SPN is constructed for each candidate camera by

averaging the noise residues extracted from a set of images taken by the camera.

The given image is deemed to be taken by the camera associated with the detected

SPN in the image. In this case, a set of images taken by the same camera are

required for the construction of the reference SPN. This requirement can be easily

fulfilled when the camera is available to the investigators. However, in many real-

world scenarios, only a set of images are available, but without any information

about the source cameras. Taking child pornography as an example, illegal images
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are confiscated from pornographic websites, but the cameras which have been used

to take these images are not available to the forensic investigators. In some forensic

circumstances, it is necessary to cluster the images into a number of groups, each

including the images acquired by the same camera, so that the forensic investigators

are able to associate different crime scenes and would be in a better position to link

the evidence to the seized hardwares that are owned by the suspects. This task

can be accomplished by clustering the images based on the SPNs extracted from

the images. While several methods have been proposed for clustering the camera

fingerprints, their applicability is restricted to small datasets mainly due to the

large-scale and high-dimensional nature of the problem.

2.2.1 Markov Random Field Based Method

One of the first works dedicated to clustering camera fingerprints into a number of

classes was reported in [57], where each enhanced fingerprint is treated as a random

variable and Markov random field (MRF) is used to iteratively update the class

label of each fingerprint. A subset of images are randomly chosen from the entire

dataset to set up a training set and a pairwise similarity matrix is calculated for

the training set, based on which a reference similarity is determined using the k-

means (k = 2) clustering algorithm and a membership committee consisting of a

certain number of the most similar fingerprints is formed for each fingerprint. The

similarity values and class labels within the membership committee are used to

estimate the likelihood probability of assigning each class label to the corresponding

fingerprint. Then the class label with the highest probability in its membership

committee is assigned to the fingerprint in question. The clustering stops when

there are no label changes after two consecutive iterations. Finally, each fingerprint

in the rest of the dataset is classified to its closest cluster. This algorithm performs

well on small datasets, but it is very slow due to the calculation of the likelihood

probability, which involves all the members in the membership committee and needs
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to be calculated for every class label and every fingerprint. The time complexity is

nearly O(n3) in the first iteration, where n is the number fingerprints, so it becomes

obviously computationally prohibitive for large-scale datasets. Another limitation is

that when there are many classes in the dataset, the size of the training set has to be

large enough to ensure that all of the classes are present in the training set. These

two limitations make it computationally infeasible even for medium-sized datasets.

2.2.2 Graph Clustering Based Method

In [58], camera fingerprints clustering is formulated as a weighted undirected graph

partitioning problem. Each fingerprint is considered as a vertex in the graph, while

the weight of each edge is represented by the similarity between the two fingerprints

linked by the edge. To avoid the time-consuming pairwise similarity calculation,

a sparse graph is constructed instead. A vertex is randomly selected as the initial

center of the graph and the weights of its edges with all other vertices are calculated.

The (κ+1)th closest vertex to the first center is then selected as the second center and

its edge weights with all other vertices except the first center are calculated, where

κ is a parameter controlling the sparsity of the graph. The construction procedure

stops when the number of vertices that have not been considered as a center is not

larger than κ. A multi-class spectral clustering algorithm [59] is then employed on

the constructed graph to partition the vertices (fingerprints) into a number of clus-

ters. For every vertex being investigated, its similarities with all the other vertices

have to be calculated when constructing the sparse graph. It is fine if all fingerprints

can be fit into the memory at a time, but when it comes to large-scale datasets, the

algorithm becomes inefficient due to the high I/O overhead because one fingerprint

may need to be read from the disk many times for calculating its similarities with

the centers. The time complexity of the algorithm in [59] is O(n
3
2m+ nm2), where

m is the number of partitions. It is thus faster than Li’s algorithm [57]. However,

to determine the optimal number of partitions, the algorithm works in an iterative
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manner until the size of the smallest cluster equals 1. Putting aside the speed, the

aptness of the manner of finding the optimal partitions number is still an issue for

large-scale camera fingerprint datasets.

2.2.3 Hierarchical Clustering Based Method

Another algorithm based on the hierarchical clustering was proposed in [60]. Similar

to [57], the fingerprint is enhanced beforehand and only a random subset (training

set) of the whole dataset is used for clustering, followed by a classification stage

for the remaining fingerprints. Initially considering each fingerprint as one cluster,

the algorithm first calculates the pairwise similarity matrix of the training set. The

two most similar clusters are merged into one and the similarity matrix is updated

by replacing the corresponding two rows and columns with the similarities between

the merged cluster and all other clusters. After the update, a silhouette coefficient,

which measures the separation among clusters and the cohesion within each cluster,

is calculated for each fingerprint. A global measure of the silhouette coefficients is

calculated by taking the average value of the silhouette coefficients, and stored with

the current partition. When all fingerprints have been merged into a cluster, the

partition corresponding to the lowest silhouette coefficient is the optimal clustering.

In the end, the classification stage is the same as what has been described in [57].

Another similar hierarchical clustering based algorithm was proposed in [61], where

the only difference is that the calculation of the silhouette coefficient is performed for

each cluster rather than for each fingerprint and only the separation to the nearest

neighboring cluster is measured. As reported in [60], with comparable accuracy, the

hierarchical clustering based algorithm is faster than [57]. But the computational

cost of the hierarchical clustering is still very high and requires at least O(n2 log n)

operations. This therefore limits its applicability to large-scale databases.
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2.2.4 Other Clustering Methods

There are many other algorithms that have been proposed for clustering various

types of data. However, the challenges of clustering large-scale camera fingerprints

come from the large-scale and high-dimensional nature of the problem. The difficul-

ties can be further aggravated when the Number of Classes (i.e., number of cameras)

is much higher than the average Size of Class (i.e., number of images acquired by

each camera). We refer to this as the NC � SC problem, which is not uncommon

in many practical scenarios. The NC � SC problem makes it difficult, if not im-

possible, to form a training set at random that can sufficiently represent the entire

population. The characteristics of the camera fingerprints clustering problem also

make it difficult to employ most of the classic clustering algorithms. For example,

the partition clustering algorithms, as typified by K-means [62] and CLARANS

[63], require users to provide the desired partition number K, the determination

of which can be tricky in practice. Moreover, they may require several passes over

the database and thus do not scale well to large-scale camera fingerprint databases.

The density based approaches, such as DBSCAN [64], are directly performed on

the entire database. As a result, for large databases that cannot fit in the main

memory, it could incur substantial I/O cost [65]. Furthermore, its sensitiveness to

parameters and its inability to handle clusters with various densities make it hard

to produce satisfactory results on camera fingerprints, whose noise-like characteris-

tics can easily result in clusters with various densities. Some hierarchical clustering

algorithms using random sampling to reduce the input size for large databases, such

as [65] and [66], will suffer from the NC � SC problem. Other hierarchical clus-

tering algorithms designed for large-scale databases, as typified by BIRCH [67] and

CHAMELEON [68], do not perform well on camera fingerprint databases because of

either the sensitivity to outliers or the high I/O cost when constructing the κ-nearest

graph.
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2.3 Forgery Detection

Detecting image forgeries is an interesting while very challenging task due to the

variety of image manipulations a user can perform with increasingly powerful image

editing software. Active techniques, such as digital watermarking, are effective in

verifying the content of an image, but the requirement of originally embedding

into the protected image limits their widespread use in practice. Therefore, there

has been growing interest in passive techniques for image forgery detection. Many

passive image forgery detection techniques are designed for detecting one specific

form of image altering operations, such as contrast enhancement [31, 33, 34, 69] and

copy-move forgery [35, 70, 71], however, in most scenarios, the forensic investigators

do not have any prior information of the suspicious images and have to apply a large

set of forensic methods on the suspect images before making the final decisions.

Sensor pattern noise (SPN) can be considered as an intrinsic watermark embedded

in every image taken by the source device and therefore appears as a promising tool

for detecting image forgeries. When the camera reference SPN is available, image

forgeries can be exposed by detecting the absence of the SPN in targeted regions

irrespective of the specific type of forgery. Another merit of SPN is that it is robust

to some common image processing operations, such as JPEG compression, filtering,

or gamma correction [1, 9]. These two merits make SPN very attractive in many

practical applications.

2.3.1 Preliminary Method

To the best of our knowledge, the first work that uses SPN for image forgery detec-

tion was proposed in [8], where two different approaches were devised for verifying

the integrity of a selected Region of Interest (ROI) and for automatically identifying

forged areas. Specifically, the first approach aims to verify the integrity of a selected

area Ω in an image I. Firstly, a reference SPN R is constructed as in Equation

36



2.3 Forgery Detection

(2.1) for the source camera C that has taken I. To calculate the statistical evidence

that Ω has been tampered with, a large set of image regions Qk, k = 1, ..., N of the

same size and shape is collected either from the images taken by the same camera

C (but a different location within the images), or from the images taken by other

cameras. These image regions can be considered as “tampered” regions, and the

correlations ρ(RΩ,Wk), k = 1, ..., N are used to estimate a generalized Gaussian

distribution, where RΩ is the reference SPN in the position of Ω and Wk is the

SPN (i.e., noise residual) extracted from Qk. Using the correlation distribution

estimated from “tampered” regions, the probability that a generalized Gaussian

random variable will attain the value ρ(RΩ,WΩ) or larger is

p = 1−G(ρ(RΩ,WΩ)), (2.25)

where WΩ is the SPN in Ω and G(·) is the cumulative distribution function of the

estimated generalized Gaussian distribution. Ω has been forged if p > α = 10−3,

and not forged otherwise.

The second approach is capable of automatically identifying the forged area.

To detect forgeries of different shapes, twelve sliding blocks of different shapes and

sizes are prepared, as illustrated in Fig. 2.8. These blocks will be moved across

the entire image and the correlation at each location will be calculated for decision-

making. The details of the algorithm are given as follows [8]:

1. For each block type i ∈ {1, ..., N} illustrated in Fig. 2.8, compute the correla-

tion of the noise residual with the reference SPN in the sliding block moving

across the entire image (overlapping approximately 50% − 75%). This will

generate a number of correlations ρj , j = 1, ..., ni, where ni is the number of

correlations calculated for each block type i.

2. For each block type i, select m blocks {i1, ..., im} with the smallest correlations

ρk, k = 1, ...,m. There will be a total of m×N blocks Bk.
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3. Construct the mask B =
⋃m×N
k=1 Bk.

4. For each pixel q ∈ B, let t(q) = |{Bk|q ∈ Bk}| be the number of blocks

selected in Step 2 covering q.

5. The potentially forged region is R = {q|t(q) > t}, where t is the median value

of t(q) for q ∈ B.

The detected area output by the second approach can be further verified as in the

first approach for detection forgeries in user-selected ROIs.

Figure 2.8: Sliding block shapes used for automatic ROI detection. This figure is
excerpted from [8].

2.3.2 Constant False Acceptance Rate Method

The work in [8] was formally modeled and improved by Chen et al. in [9]. They

modeled the SPN detection problem as a binary hypothesis testing problem:


H0 : W = Ξ,

H1 : W = R + Ξ,

(2.26)

where W is the noise residual extracted from the image region in question, R is

the reference SPN (camera fingerprint), and Ξ is the combination of other indepen-

dent interferences. The forgery detection at each pixel is therefore formulated as
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a hypothesis testing problem applied to a block surrounding the pixel. But before

doing that both the correlation distribution under hypothesis H0, p(x|H0), and the

correlation distribution under hypothesis H1, p(x|H1) need to be estimated.

p(x|H0) can be estimated using the method described in Section 2.3.1, while

the estimation of p(x|H1) is difficult, because the correlation heavily depends on

image content and is most likely to be over-fitting to the available images. Therefore,

instead of explicitly estimating p(x|H1), a correlation predictor is constructed as a

mapping from the image feature space to the predicted correlation value. K image

blocks of 128 × 128 pixels are cropped from several images taken by the source

camera. These blocks may be overlapped with each other, so that one can extract

sufficient image blocks from one image. Four image features are extracted from

each image block: Image intensity feature fI , texture feature fT , signal flattening

feature fS , and texture-intensity feature fE . Let ρ be the correlations between the

noise residuals of the K image blocks and the reference SPN in the corresponding

positions, and f I , fT , fS , and fE be the corresponding K-dimensional feature

vectors. ρ is modeled as a linear combination of the features and their second-order

terms

ρ[k] = θ0 + θ1fI [k] + θ2fT [k] + θ3fS [k] + θ4fE [k]+

θ5fI [k]fI [k] + ...+ θ14fE [k]fE [k] + Ψ[k], (2.27)

where Ψ[k] is the modeling noise and θ is the coefficients to be determined. Equation

(2.27) can be rewritten into a matrix form θ = Hθ+Ψ, where H is a K×15 matrix

of features and their multiplications. By applying the least square estimator (LSE),

we can obtain the estimated parameters

θ̂ =
(
HTH

)−1
HTρ. (2.28)

Given an image block, its expected correlation ρ̂ can be predicted based on the
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image features extracted from it:

ρ̂ = [1, fI , fT , fS , fE , ..., fEfE ]θ̂. (2.29)

With the correlation predictor, p(x|H1) is modeled as the generalized Gaussian

distribution GG(ρ̂, σ1, α1), where the predicted correlation ρ̂ is the mean, while the

scale parameter σ1 and the shape parameter α1 can be estimated from the difference

between the real and predicted correlations, i.e., ρ− ρ̂.

To detect forgeries in an image, the algorithm proceeds by sliding a 128×128-

pixel detection block across the image and evaluates the test statistic ρi = ρ(Ri,Wi)

for each block, where Wi and Ri are the noise residual and the reference SPN in the

block centered at pixel qi. If ρi < t, pixel qi is deemed as forged. Here the threshold

t is related with a constant false acceptance rate (CFAR) 10−5:

∫ ∞
t

p(x|H0)dx = 10−5. (2.30)

That is why this method is usually referred to as the constant false acceptance rate

(CFAR) method. However, for a highly textured or saturated block, even it is not

forged, its correlation still tends to be low due to the absence of SPN. So to avoid

labeling non-tampered pixels as tampered, pixel qi will be labeled as non-tampered

if ∫ t

−∞
p(x|H1)dx > β, (2.31)

where β was set to 0.01 in [9]. The resulting binary map û ∈ {0, 1}M×N , which

indicates the forged pixels (1 for forgery and 0 for genuine pixel), is further dilated

with a square 20× 20 kernel to obtain the final result.
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2.3.3 Bayesian-MRF Based Method

The constant false acceptance rate (CFAR) method makes decisions independently

for each pixel, but it does not take into account the spatial dependencies exhibited by

natural images, which could generate fragmented and inconsistent binary map. To

penalize the isolated points or the small disjoint regions and provide smooth output,

Chierchia et al. adopted the Bayesian rule and Markov random field (MRF) model

to improve the detection results [72]. This Bayesian-MRF method is based on the

CFAR method but differs from it in both the formulation and the solution of the

problem. The forgery detection is formulated as a problem of finding the label

map û ∈ {0, 1}M×N that has the maximum probability to occur given the known

information:

û = argmax
u∈{0,1}M×N

p(ρ|u, ρ̂)p(u), (2.32)

where M×N is the image size, ρ is the actual correlations calculated in a block-wise

manner, and ρ̂ is the predicted (or expected) correlations given by the correlation

predictor described in last section. In the above equation, p(ρ|u, ρ̂) is the conditional

likelihood of observing ρ, and p(u) is the prior probability that takes into account

the spatial dependencies of the pixels by resorting to the Markov random field model:

p(u) =
1

Z
e−

∑
c∈C Vc(u), (2.33)

where Z is a normalizing constant, and Vc(u) is the potential defined on cliques

c (i.e., small groups of neighboring pixels). Only the single-site cliques {c′} and

4-connected two-site cliques {c′′} are considered:

Vc′(ui) =


−α
2

if ui = 0

α

2
if ui = 1

(2.34)
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Vc′′(ui, uj) =


β if ui 6= uj

0 otherwise

(2.35)

where α = log(p0/p1) is related to the prior probability of forged p0 and non-

forged p1, and β is the edge-penalty parameter indicating how strong the interaction

between pixels is. After replacing p(u) with Equation (2.33) and taking the negative

log, Equation (2.32) can be rewritten as

û = argmin
u∈{0,1}M×N

{
−
M×N∑
i=1

log p(ρi|ui, ρ̂i) + α
M×N∑
i=1

ui + βR(u)

}
, (2.36)

where the regularization term R(u) =
∑M×N

i=1

∑
j∈Ni |uj − ui|, with Ni the set of

4-connected neighbors of i, is the sum of all class transitions over all 4-connected

cliques of the image. By assuming the likelihood probability to be Gaussian under

both hypotheses, with zero mean and variance σ2
0 under hypothesis H0, and mean

ρ̂i and variance σ2
1 under hypothesis H1, Equation (2.36) becomes

û = argmin
u∈{0,1}M×N

{M×N∑
i=1

ui

[
(ρi − ρ̂i)2

2σ2
1

− ρ2
i

2σ2
0

− log
σ0

σ1
− log

p1

p0

]
+ βR(u)

}
. (2.37)

By resorting to the convex-optimization algorithm proposed in [73], the û that

gives the maximal probability can be obtained. This method incorporates the prior

information and spatial dependencies between pixels, and therefore produces a more

consistent and smooth binary map.

2.3.4 Image Segmentation Based Methods

Despite the good results on detecting large tampered regions (e.g., larger than 128×

128 pixels) given by the above CFAR and Bayesian-MRF method, there is still a

need to improve the spatial resolution, allowing for detecting smaller forgeries. As

can be observed in the detection results presented in [9], the falsely identified areas
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are generally located around the boundary of the forged area. The reason is that,

when the detection block falls near the boundary between two different regions (i.e.,

forged and non-forged regions), the test statistic ρ is a weighted average of two

different contributions and more likely to exceed the decision threshold [74]. As a

result, miss detection occurs along the boundary. In [74], this problem is solved

by first segmenting the image under investigation. However, this method heavily

depends on the performance of image segmentation, which itself is a very challenging

and unreliable process. In [75], an algorithm based on the guided filtering [76] was

proposed to avoid the ill-posed image segmentation problem. The basic idea is to

post-process the calculated correlation map ρ by resorting to a pilot image, which

can be a combination of the color bands of the original image or its denoised version,

or any suitable field of features extracted from images [75]. The pilot image bears

some valuable information, such as geometrical structures, of the image content and

can be viewed as the soft-segmented version of the original image. By incorporating

the structure information of the image, the guided filtering is helpful in making a

better decision. However, either the hard segmentation based method [74] or the

soft segmentation based method [76] will fail on the so called occlusive forgeries,

where part of the background is copied and pasted to hide objects of the original

scene, e.g., an airplane is covered by a patch of blue sky. Actually, as pointed out

in [74], the use of segmentation-based decision is at great risks in such scenarios,

because the forged region would be a relatively small part of a large region and

the statistics calculated on the overall large region would become irrelevant in the

average.

2.4 Summary

In this chapter, we first introduced the typical process of SPN-based source camera

identification and reviewed the approaches that aim at improving the performance
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from the perspective of suppressing interfering sources, namely scene details, de-

mosaicing artifacts and periodic artifacts. We then discussed the image clusterings

algorithms based on camera fingerprints (SPNs) and the difficulties of directly ap-

plying other classic clustering methods on large-scale camera fingerprint databases.

Finally, we revisited the SPN-based image forgery detection algorithms in detail.

After introducing the SPN-based algorithms for each of the three image forensic

tasks (i.e., source camera identification, image clustering, and image forgery detec-

tion), we also pointed out the limitations of existing methods. These limitations

will be addressed in the following three chapters, each corresponding to one of the

three image forensic tasks.
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CHAPTER 3
Spectrum Equalization Algorithm for Preprocessing Reference

Sensor Pattern Noise

As mentioned in Section 2.1 of Chapter 3, although pattern noise (SPN) has been

proven to be an effective means to uniquely identify digital cameras, some non-

unique artifacts, shared amongst cameras subjected to the same or similar in-camera

processing procedures, often give rise to false identifications. Therefore, it is de-

sirable and necessary to suppress these unwanted artifacts so as to improve the

accuracy and reliability.

In this chapter, we propose a novel preprocessing approach for attenuat-

ing the influence of the non-unique artifacts on the reference SPN to reduce the

false identification rate. Specifically, we equalize the magnitude spectrum of the

reference SPN through detecting and suppressing the peaks according to the lo-

cal characteristics, aiming at removing the interfering periodic artifacts. Combined

with six SPN extraction or enhancement methods, our proposed Spectrum Equal-

ization Algorithm (SEA) is evaluated on the Dresden image database as well as

our own database, and compared with the state-of-the-art preprocessing schemes.

Experimental results indicate that the proposed procedure outperforms, or at least

performs comparably to the existing methods in terms of the overall ROC curve and

kappa statistic computed from a confusion matrix, and tends to be more resistant

to JPEG compression for medium and small image blocks.

The reminder of this chapter is organized as follows. The next section gives

a brief overview of the background. In Section 3.2, we revisit the previous works

through a case study and point out the limitations of existing preprocessing ap-

proaches. The details of the proposed preprocessing scheme, SEA, are presented in
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Section 3.3. Comprehensive experimental results and analysis for both the general

and special cases are given in Section 3.4. Finally, Section 3.5 concludes the chapter.

3.1 Introduction

One challenging problem of multimedia forensics is source camera identification

(SCI), the task of which is to reliably match a particular digital image with its

source device. Despite the methods based on metadata, or watermarking embedded

in the image, are effective in proving the source of an image, unfortunately they

are infeasible under many circumstances. For example, the metadata might not be

available, and legacy images might not be watermarked at the time when they were

created. In view of the limitations, researchers have switched their attention to the

methods that search for the intrinsic characteristics of digital cameras left in the

image. Generally speaking, any inherent traces left in the image by the processing

components, either hardware or software, of the image acquisition pipeline, such

as defective pixels [77, 78], color filter array (CFA) interpolation artifacts [41, 79],

JPEG compression artifacts [80, 81], lens aberration [82, 83] or the combination of

several image intrinsic characteristics [25, 84], can be utilized to link the images to

the source camera. Apart from the above-mentioned techniques, the methods that

attract the most attention may be those based on SPN [1, 3, 9, 45, 51, 55, 85],

which mainly consists of the photo-response non-uniformity (PRNU) noise [1] aris-

ing primarily from the manufacturing imperfections and the inhomogeneity of silicon

wafers. The uniqueness to individual camera and stability against environmental

conditions make SPN a feasible fingerprint for identifying and linking source cam-

eras.

However, the correlation-based detection of SPN heavily relies upon the qual-

ity of the extracted SPN, which can be severely contaminated by image content,

color interpolation, JPEG compression and other non-unique artifacts. To achieve
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high accuracy and reliability of identification, the size of SPN has to be very large,

for example, 512 × 512 pixels or above. But the large size of SPN limits its ap-

plicability in some scenarios. One example is image or video forgery localization

[6, 9, 72, 74, 86–88], where there exists a trade-off between localization and accuracy.

Another scenario is digital camcorder identification [89], where the spatial resolution

of video frames is usually much smaller than that of typical still images. One more

example is camera fingerprints (SPNs) clustering [57, 58, 60]. The complexity of

clustering is usually very high and the high dimension of SPNs will further bring

difficulties to computation and storage. The clustering algorithm is expected to use

SPNs of small size but still able to deliver good performance. Therefore, exploring

the ways of improving the quality of SPNs extracted from small-sized image blocks

becomes of great significance for the above-mentioned SPN-based applications.

In this chapter, we propose a new preprocessing scheme, namely Spectrum

Equalization Algorithm (SEA), for the reference SPN to enhance the performance

of SCI. If the reference SPN is modeled as white Gaussian noise (WGN), the the-

oretical analysis of WGN would indicate that the reference SPN should have a flat

magnitude spectrum. Peaks appearing in the spectrum are probably originated from

the periodic artifacts and unlikely to be associated with the true SPN. Therefore,

by detecting and suppressing the peaks in the spectrum, we can obtain more clean

(noise-like) signals. We will start by studying the limitations of existing preprocess-

ing schemes, and then propose our SEA in detail to overcome the limitations.

3.2 Reference SPN Preprocessing: A Case Study

As can be found in Section 2.1 of Chapter 2, most works [9, 45, 52] focus on the

processing of the reference SPN, only Li’s enhancers [3] are applied on the query

noise residual. The reason is that, the noise residual extracted from a single image

can be severely contaminated by interfering artifacts arisen from scene details, CFA
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(a) (b)

(c) (d)

Figure 3.1: Filtering for the reference SPN of Canon PowerShot A400. (a) Spectrum
of the original reference SPN, (b) spectrum of the ZM filtered reference SPN, (c)
spectrum of the ZM + WF filtered reference SPN, (d) spectrum of white noise. For
visualization purposes, gamma correction with an exponent of 1.5 was applied to
the spectra.

interpolation, on-sensor signal transfer [90], JPEG compression and other image

processing operations. Therefore, it is extremely difficult to distinguish the true

SPN from the estimated SPN. While in the reference SPN, the random artifacts,

such as the shot noise, read-out noise and quantization noise have been averaged

out. Moreover, if the camera is available, we can take high-quality images, such as
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blue sky or flat field images, to better estimate the reference SPN. As a result, we

can easily incorporate our prior knowledge of SPN to refine the estimated reference

SPN. In [9], for example, Chen et al. proposed the zero-meaning (ZM) procedure

to remove the artifacts introduced by CFA interpolation, row-wise and column-wise

operations of sensors or processing circuits, as well as the Wiener filtering (WF)

procedure to suppress the the visually identifiable patterns in the ZM processed

signal. Specifically, row and column averages are deducted from every pixel in the

corresponding row and column of the reference SPN R to form the zero-meaned

reference SPN Rzm. The WF procedure is carried out by transforming Rzm into the

discrete Fourier transform (DFT) domain, Dzm, and applying the Wiener filter on

each frequency index [u, v]

Dwf [u, v] = Dzm[u, v]
σ2

0

σ̂2[u, v] + σ2
0

, (3.1)

where σ2
0 represents the overall variance of Rzm, and σ̂2[u, v] is the maximum a

posterior estimation of the local variance

σ̂2[u, v] = min
w∈{3,5,7,9}

[
max

(
0,

1

w2

∑
[k,l]∈Nw

D2
zm[k, l]− σ2

0

)]
, (3.2)

where Nw is a w×w local neighborhood centered at [u, v]. The final reference SPN

Rwf is obtained by applying the inverse discrete Fourier transform (IDFT) on Dwf .

We conducted experiments on a Canon PowerShot A400 to see how well ZM

and WF suppress the visually identifiable patterns in the DFT spectrum. The refer-

ence SPN was estimated from 50 blue sky images captured by the Canon PowerShot

A400 using BM3D [5]. Note that although we used the noise residues extracted us-

ing BM3D [5], similar results can be observed for the SPNs extracted using other

extraction methods [1, 4, 9]. The white noise is drawn from the normal distribution

with zero mean and the same variance as the original SPN. The DFT magnitude
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spectra of the original reference SPN and its counterparts processed by ZM and

ZM+WF are shown in Fig. 3.1(a), 3.1(b) and 3.1(c), respectively. For the purpose

of visualization, the zero-frequency component has been shifted to the center of the

spectrum. Unless otherwise specified in this chapter, we use the term “spectrum”

to refer to the DFT magnitude spectrum hereinafter. For comparison, the spectrum

of random white noise is also illustrated in Fig. 3.1(d). As can be seen, the peaks

resulted from the periodic artifacts can be easily identified in the DFT domain (Fig.

3.1(a)). As we know that the peaks associated with one signal with period T will

appear in the locations (UT u,
V
T v), where U and V are the dimensions of the spec-

trum, and u, v ∈ {0, 1, ..., T − 1}. Thus, what is striking in Fig. 3.1(a) is that most

of the peaks are resulted from the artifacts with period 8 (as indicated by the green

arrows), but some of them are brought about by the artifacts with period 16 (as

indicated by the red arrows). Due to the symmetry of the spectrum, only the peaks

in one quadrant are illustrated in Fig. 3.1(a). But as shown in Fig. 3.1(b), after

applying the ZM operation, the horizontal and vertical DC components are com-

pletely removed as hinted by the two “dark” intersecting lines passing through the

center of the spectrum. Though the magnitudes of other frequency components re-

main quantitatively unchanged, the remaining peaks become visually more distinct

as the peaks with dominating values have been removed. ZM removes all the DC

components in the spectrum, so any artifacts lying in the two central “dark” lines

will be also removed.

However, when comparing with the spectrum in Fig. 3.1(d), we found that

ZM seems overly aggressive in modifying the DC components. If the WF opera-

tion is further applied to the ZM filtered SPN in the DFT domain, we can get the

resultant spectrum as shown in 3.1(c). According to Equation (3.1), a magnitude

spectrum coefficient, Dzm[u, v], with a larger local variance, σ̂2[u, v], will be sup-

pressed more substantially than the one with a smaller local variance. Normally,

the variance in the low-frequency region is relatively larger than that in the high-
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frequency region. As shown in Fig. 3.1(c), most of the spectral energy concentrates

in the low-frequency region, and therefore is suppressed more significantly. As a

consequence, the spectrum in Fig. 3.1(c) looks “flatter” than that in Fig. 3.1(b).

So with the help of ZM and WF, three improvements have been made: 1) any

artifacts appearing in DC components are completely removed, 2) the spectrum is

more noise-like (flat) and 3) the peaks arisen from periodic artifacts are significantly

suppressed. Despite the peaks in the low-frequency region have been suppressed ef-

fectively, those in the high-frequency region are less affected, which can be clearly

seen from the “white” points in Fig. 3.1(c). Therefore, in view of the effects of ZM

and WF, ZM is overly aggressive in modifying the DC components and WF appears

to be too conservative in suppressing the peaks in the high-frequency band. These

shortcomings leave room for improving the quality of reference SPN.

3.3 Spectrum Equalization Algorithm (SEA)

As mentioned at the start of Section 3.2, the “purity” of the reference SPN makes

it more suitable to be modified by incorporating prior knowledge of SPN, such

as the fact that the true SPN signal is unlikely to be periodic and should have

a flat spectrum. But the key problem is how to incorporate the prior knowledge

appropriately and modify the reference SPN accordingly. When comparing the

spectra of the ZM and WF filtered SPN with that of white noise, we can see that

the horizontal and vertical DC components are completely removed and the peaks

in the high-frequency band are still visible. Besides, the low-frequency components

in the spectrum probably have been severely contaminated by scene details, so it

is difficult to distinguish the true SPN signal from other low-frequency artifacts.

So without enough information to ensure the global “flatness” (i.e., flatness across

the entire spectrum), can we just ensure the local “flatness” of the spectrum by

simply removing the salient peaks within a local neighborhood? Identifying the
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periodic artifacts responsible for the prominent peaks in the spectrum can help us

better understand the problem and find an appropriate solution. We summarize the

periodic artifacts as follows:

• CFA interpolation artifacts. A typical CFA interpolation is accomplished

by estimating the missing components from spatially adjacent pixels according

to the component-location information indicated by a specific CFA pattern.

As CFA patterns form a periodic structure, measurable offset gains will result

in periodic biases in the interpolated image [9]. The periodic biases manifest

themselves as peaks in the DFT spectrum, and the locations of the peaks

depend on the configuration of the CFA pattern.

• JPEG blockiness artifacts. In JPEG compression, non-overlapping 8 × 8

pixel blocks are coded with DCT independently. So aggressive JPEG compres-

sion causes blockiness artifacts, which manifest themselves in the U ×V -point

DFT spectrum as peaks in the positions (U8 u,
V
8 v), where u, v ∈ {0, 1, ..., 7}.

• Diagonal artifacts. As reported in [53], unexpected diagonal artifacts were

observed for the reference SPN of Nikon CoolPix. Although the cause is

yet to be investigated, the artifacts manifest themselves in the spectrum as

peaks in the frequency positions corresponding to the row and column period

introduced by the diagonal artifacts.

Given that the noise-like SPN should have a flat spectrum without salient

peaks, the rationale, which forms the basis of the proposed SEA for preprocessing

the reference SPN, is that the peaks present in the DFT spectrum are unlikely to

be associated with the true SPN, and the unnatural traces usually appear in the

form of periodic patterns, such as the 2 × 2 or 4 × 4 CFA patterns, 8 × 8 JPEG

blockiness and so on, which correspond to the peaks in fixed positions of spectrum.

By suppressing these peaks, SPN of better quality can be obtained.
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Procedure 1 Spectrum Peak Detection

R: original reference SPN of U × V pixels;
w: size of a local neighborhood;
τ1, τ2: two thresholds for peak detection, τ1 < τ2;
P: U × V binary map of detected peak locations;

1: Calculate the magnitude spectrum D = DFT(R);
2: Initialize two U × V binary maps P1 = P2 = 0;
3: Initialize two U × V mean matrices M1 = M2 = 0;
4: count = 0; u = 1 to U v = 1 to V

5: M1[u, v] =
∑

[k,l]∈Nw|D[k,l]|P̃1[k,l]∑
[k,l]∈Nw P̃1[k,l]

;

6: M2[u, v] =
∑

[k,l]∈Nw|D[k,l]|P̃2[k,l]∑
[k,l]∈Nw P̃2[k,l]

;

7: P1 = L
( |D|
M1
≥ τ1

)
;

8: P2 = L
( |D|
M2
≥ τ2

)
;

9: count = count+ 1; count > 2
10: Create a U × V binary matrix B, with 1s only at indices ( U16u,

V
16v), u, v =

0, 1, . . . , 15;
11: Screen out spurious peaks P = P1&B|P2;
12: P;

Procedure 2 Spectrum Peak Suppression

R: original reference SPN of U × V pixels;
P: U × V detected peak locations;
w: size of a local neighborhood;
RSEA: U × V spectrum equalized reference SPN;

1: D = DFT(R); u = 1 to U v = 1 to V

2: L[u, v] =
∑

[k,l]∈Nw|D[k,l]|P̃ [k,l]∑
[k,l]∈Nw P̃ [k,l]

;

3: RSEA = IDFT(LD|D| );
4: RSEA;
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SEA consists of peak detection and peak suppression, as detailed in Procedure

1 and Procedure 2, respectively. The peaks in the spectrum of the reference SPN are

detected by comparing the ratio of the spectrum to the local mean with a threshold,

as shown in Steps 12 and 13 of Procedure 1. When calculating the local mean within

a neighborhood w centered at [u, v] in Steps 8 and 9 of Procedure 1, the tilde sign

“∼” over P1 and P2 is the logical negation operator, which excludes the spectral

components indicated by the logical 0s in P1 and P2 from the calculation of the

local mean M. L(·) in Steps 12 and 13 labels any nonzero entry of input to logical ‘1’

and zero to logical ‘0’, so the peaks in the magnitude spectrum D will be disclosed

by the logical 1s stored in P1 and P2. The above steps are repeated 3 times to make

the peak detection more accurate. Finally in Step 17, ‘&’ and ‘|’ are the logical AND

and OR operator, respectively, so the potential spurious peaks not at the indices

( U16u,
V
16v), u = 0, 1, . . . , 15, and v = 0, 1, . . . , 15 are screened out. Having identified

the peak locations, the peaks are suppressed by simply replacing them with the

local mean intensities in the spectrum, as shown in Step 4 of Procedure 2. There

are several remarks need to be made for SEA:

• We use two thresholds τ1 and τ2, with τ1 < τ2, for peak detection in Steps

12 and 13 of Procedure 1. The underlying motivation for this particular con-

sideration is to detect peaks more liberally by using a smaller threshold τ1 in

Step 12 to avoid missing the peak positions signified in B (corresponding to

a period of 16 pixels) in Step 16 of Procedure 1, but more conservatively by

using a larger threshold τ2 in Step 13 in other positions to avoid distorting

the true SPN. Because spurious peaks are more likely to be detected with a

smaller threshold τ1, suppressing these spurious peaks will probably distort

the true SPN. But with a larger threshold τ2, the prominent peaks can be

detected without worrying about being excessively modified.

• We only consider the artifacts with a period of up to 16 pixels. Albeit the fact
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that the artifacts sometimes appear with different periods, such as the 3×3 or

6× 6 CFA pattern, and they may also contain components with period larger

than 16. The justification is twofold: 1) the 2 × 2 and 4 × 4 are the most

common CFA patterns; 2) peaks caused by the artifacts with other periods

may overlap in the peak locations hinted in B. For example, half of the peaks

caused by the 32 × 32 periodic signal will appear in the peak locations of B.

As a consequence, peaks in positions indicated by B account for the dominant

components caused by the majority of periodic artifacts, which is consistent

with our observation in Fig. 3.1 and the following experiments in Section 3.4.5.

Even if the prominent peaks are missed out by B, they will still be caught out

by P2.

• Although some similarity measurements, such as PCE, CCN or SPCE, also aim

at suppressing the periodic noise contamination, there are two fundamental

differences between our SEA and the aforementioned similarity measurements:

1. The calculation of the similarity measure involves the reference SPN and

the query noise residual. However, the query noise residual is likely to be

severely contaminated by other interfering artifacts. As a consequence,

even for the query noise residual extracted from a high-quality image, the

periodic patterns are very inconspicuous, making the peaks discovered by

the circular cross correlation in PCE, CCN and SPCE not so remarkable

as those found in the spectrum of the reference SPN.

2. The similarity measurements require extra computation for every SPN

pair, which will largely increase the computational complexity. However,

with the proposed SEA, we only need to apply it on the reference SPN

once for all, which will save a considerable amount of time for large

databases.
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3.4 Experiments

3.4.1 Experimental Setup

We first evaluated the performance of the proposed preprocessing scheme on the

Dresden Image Database [91]. The basic information of the used cameras can be

found in Table 3.1. 49 cameras, covering 15 models and 10 brands, that have

contributed 50 flatfield images were chosen. The 50 flatfield images were used to es-

timate the reference SPN for each camera, and another 150 natural images captured

by the same camera served as query images. As mentioned in [53], unexpected arti-

facts were observed in the estimated reference SPN of Nikon CoolPix S710, FujiFilm

FinePix J50 and Casio EX-Z150, so we will take special care for the 13 cameras of

these 3 models after analyzing the remaining 36 cameras as the general cases.

Apart from the effectiveness, the robustness of the proposed scheme against

JPEG compression was also investigated on our own uncompressed image database,

as detailed in Table 3.2. 600 natural images taken in BMP format by six cameras

were used in this experiment. The images contain a wide variety of natural indoor

and outdoor scenes taken during holidays, around campus and cities, in offices and

sports center, etc. Among the 100 images captured by each camera, 50 were ran-

domly chosen to estimate the reference SPN, and the other 50 were used as query

images. For each BMP image, compressed images were produced by libjpeg [92]

with quality factor of 100%, 90%, 80%, 70%, 60% and 50%. Therefore, 6 groups

JPEG images, i.e., 3, 600 in total, with different quality factors were generated.

We aim to compare the performances of different preprocessing schemes, but

with different SPN extraction techniques continue to appear, it would be interesting

to see how well the preprocessing schemes work in conjunction with existing SPN

extractors. What is more, comparing the performance of different algorithms on

real-world databases provides insight into the advantages and disadvantages of each

algorithm, and offers a valuable reference for practical applications. Bearing this in
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Camera Model Resolution Number of devices

Canon Ixus55 2, 592× 1, 944 1

Canon Ixus70 3, 072× 2, 304 3

Casio EX-Z150 3, 264× 2, 448 5

FujiFilm FinePix J50 3, 264× 2, 448 3

Nikon CoolPix S710 4, 352× 3, 264 5

Olympus Mju 1050SW 3, 648× 2, 736 5

Pentax OptioA40 4, 000× 3, 000 4

Pentax OptioW60 3, 648× 2, 736 1

Praktica DCZ5.9 2, 560× 1, 920 5

Rollei RCP-7325XS 3, 072× 2, 304 3

Samsung L74wide 3, 072× 2, 304 3

Samsung NV15 3, 648× 2, 736 3

Sony DSC-H50 3, 456× 2, 592 2

Sony DSC-T77 3, 648× 2, 736 4

Sony DSC-W170 3, 648× 2, 736 2

Table 3.1: 49 cameras involved in the creation of the images in the Dresden
database

mind, we incorporated six SPN extraction or enhance algorithms in the experiments.

For the sake of convenience, we refer to the technique in [1] as “Basic”, [9] as “MLE”,

[3] as “Enhancer”, [5] as “BM3D”, [45] as “Phase”, and [4] as “PCAI8”. Although

“Enhancer” only enhances the query noise residual and has nothing to do with the

noise extraction, hereinafter we refer to all these six algorithms as SPN extractors

for convenience. For the preprocessing schemes, we refer to zero-mean operation as

ZM, the Wiener filter in the DFT domain as WF, the combination of ZM and WF

operations as ZM+WF, and the proposed spectrum equalization algorithm as SEA.

3.4.2 Parameters Setting

For Basic [1], MLE [9] and Phase [45], we used the source codes published in [55, 56].

For Li’s Enhancers [3], we adopted Model 3 with α = 6 because it shows better

results than his other models. For BM3D [5], we downloaded the source codes from
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Camera Model Resolution Number of images

Canon 450D 4, 272× 2, 848 100

Canon Ixus870 1, 600× 1, 200 100

Nikon D90 4, 288× 2, 848 100

Nikon E3200 2, 048× 1, 536 100

Olympus C3100Z 2, 048× 1, 536 100

Panasonic DMC-LX2 3, 168× 2, 376 100

Table 3.2: 6 cameras involved in the creation of the images in our own database

[93] and simply used the default parameters. To facilitate fair comparison, we set

the noise variance σ2
0 = 4 for all the algorithms that use Mihcak filter [2], as well as

BM3D and PCAI8.

For SEA, the neighborhood size w and the thresholds τ1 and τ2 for peaks

detection depend on the strength of periodic artifacts and the spectrum distribution.

If the neighborhood size or threshold is too small, the peaks detector is too sensitive

to local variations. But if the neighborhood size or threshold is too large, it cannot

capture the local characteristics of the spectrum. We experimentally set w to 17

and 15 (selected from [8, 32]) for Procedures 1 and 2, respectively. The thresholds

τ1 and τ2 in Procedure 1 are set to 3.0 and 3.4 (selected from [2.0, 5.0]), respectively.

From the visual observation of the spectrum, the selected parameters work well for

the cameras we have tested in the Dresden database. For all the methods involved,

only the green channel of images is used. In addition, to better simulate the real-

world applications such as image or video forgery localization, the experiments were

performed on image blocks with different sizes cropped from the center of the full-

resolution images due to the vignetting effects [94]. When needed in the rest of this

chapter, we will use the terms “large”, “medium” and “small” to refer to the sizes

of 1024×1024, 256×256 and 64×64 pixels, respectively. It is worth noting that all

preprocessing schemes will only be applied on the reference SPN due to the reason

mentioned at the beginning of Section 3.2. In the following experiments, NCC, as
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defined in Equation (2.2), will be used as the similarity measurement between the

reference SPN and the query noise residual, but the results of SPCE, as defined in

Equation (2.24), will also be presented when necessary.

3.4.3 Evaluation Statistics

To demonstrate the performance of the proposed preprocessing scheme, we adopted

two evaluation statistics, namely the overall receiver operating characteristic (ROC)

curve [4, 45] and the kappa statistic [95] computed from a confusion matrix.

To obtain the overall ROC curve, for a given detection threshold, the true

positives and false positives are recorded for each camera, then these numbers are

summed up and used to calculate the True Positive Rate (TPR) and False Positive

Rate (FPR). Specifically, as the numbers of images captured by each camera are

exactly the same, we can simply calculate the TPR and FPR for a threshold as

follows: 
TPR =

∑C
i=1 Ti
T

FPR =

∑C
i=1Fi

(C − 1)T
,

(3.3)

where C is the number of cameras, T is the total number of query images, Ti and Fi
are the true positives and false positives of camera i, respectively. By varying the

detection threshold from the minimum to the maximum value as calculated using

Equation (2.2), we can obtain the overall ROC curve.

To obtain the confusion matrix M, we calculated the similarity between

the noise residue of one query image and the reference SPN of each camera, then

this image was deemed to be taken by the camera corresponding to the maximal

similarity. The value of each element M[i, j] in the confusion matrix indicates the

number of images taken by camera i that have been linked to camera j as the source

device. In other words, the values along the main diagonal indicate the numbers
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of correct identifications. Each confusion matrix can be reduced to a single value

metric, kappa statistic K [95]:

K =
o− e
T − e, (3.4)

where o is the number of observed correct identifications, i.e., the trace of confusion

matrix, T is the total number of query images, and e is the number of expected

correct identifications:

e =
C∑
c=1

∑C
i=1M[c, i]

∑C
j=1M[j, c]

T
, (3.5)

where C is the number of cameras. Kappa statistic measures the disagreement

between the observed results and random guess, therefore the larger the value of K,

the better the performance, with 1 indicating the perfect performance.

The reason why both the overall ROC curve and the kappa statistic are used

is that we want to properly evaluate the performances of two different SPN-based

real-world applications, SCI and forgery detection, which are the same in essence

while differing in minor points. Normally, in the task of forgery detection, the

similarity measurement, between the reference SPN and the noise residue extracted

from the image block in question, is directly compared with a threshold suggested

by some criterion, such as the Neyman-Pearson criterion, to determine whether

the image block has been tampered with or not. This process is equivalent to

the generation of one point in the ROC curve, therefore it is more appropriate to

evaluate the performance of forgery detection using the overall ROC curve. While in

the context of SCI, the query image is believed to be taken by the camera with the

maximal similarity which is greater than a predefined threshold at the same time.

It is more like the process of creating a confusion matrix. So the kappa statistic

computed from a confusion matrix is a preferable evaluation statistic for SCI.
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3.4.4 General Cases

Before delving into the details, let us first look at a straightforward comparison of the

effects of different preprocessing on the spectrum of the reference SPN. Fig. 3.2(a)-

3.2(c) are the corresponding 3D spectra of Fig. 3.1(a)-3.1(c), while Fig. 3.2(d) shows

the spectrum of the SEA filtered SPN. To reduce the dynamic range of magnitudes

and make the peaks more conspicuous, a 3 × 3 averaging filter is convolved with

the spectrum beforehand. As can be clearly seen in Fig. 3.2(d), when compared

with the spectrum processed by the ZM and ZM+WF, the “spiky” interferences

have been nicely smoothed out by SEA while the rest of the spectrum still remains

untouched. In this manner, the true SPN has been preserved as much as possible.

The advantages of SEA can also be observed in Fig. 3.3, where we show

the estimated inter-class (in light blue color) and intra-class (in light green color)

(a) (b)

(c) (d)

Figure 3.2: (a) Spectrum of the original reference SPN and the ones preprocessed
by (b) ZM, (c) ZM+WF and (d) SEA.
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Figure 3.3: Estimated inter-class and intra-class PDFs of ρ calculated from SPNs
extracted from 3 different sizes of image blocks using BM3D. From top to bottom,
the rows show the distributions for image blocks sized 1024 × 1024, 256 × 256 and
64× 64 pixels, respectively. From left to right, the distributions are resulting from
the original reference SPN and the ones preprocessed by ZM, ZM+WF and SEA,
respectively.

probability density functions (PDFs) of the correlation value ρ for the 36 cameras in

the Dresden database. The values outside the range of [−0.05, 0.1] are cut off to make

the figures look more compact. As shown in the first column, due to the long right-

hand tail of the inter-class distribution, there are a considerable amount of overlaps

between the inter-class and intra-class distributions if no preprocessing is applied.

After ZM and WF are applied sequentially, the long tail on the right-hand side

of the inter-class distribution is curtailed and the inter-class variances significantly

decrease from 2.46× 10−4, 3.49× 10−4 and 6.04× 10−4 to 1.44× 10−6, 2.65× 10−5

and 3.55 × 10−4 for large, medium and small image blocks, respectively. As a

result, the overlaps between the inter-class and intra-class correlation distribution

are reduced substantially. Compared with the inter-class distribution brought about

by ZM+WF, the resulting inter-class distribution of SEA looks even “thinner”,

with a smaller variance 1.89 × 10−5 and 2.95 × 10−4 for medium and small image
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blocks, respectively. The smaller variance of inter-class distribution makes the two

distributions more separable from each other, and therefore boosts the performance.

For the large size, 1024×1024 pixels, the variance of inter-class distribution for SEA

is 1.47× 10−6, which is slightly larger than that of ZM+WF, 1.44× 10−6. But the

intra-class mean for SEA, 0.05, is slightly larger than the 0.045 for ZM+WF. So

considering these two aspects, SEA and ZM+WF are comparable to each other in

the case of large image blocks, which will also be quantitatively reflected in Fig. 3.4

and 3.5. In addition, we can see that the inter-class distribution resulting from SEA

fits quite well to the theoretical distribution, which is a normal distribution with 0

mean and 1/d variance (in red dashed lines), where d is the length of SPNs.

We will reveal more details on the comparison of different combinations of

SPN extraction algorithms and preprocessing schemes in terms of the overall ROC

curve. Fig. 3.4 shows the overall ROC curves of the combinations of the six SPN ex-

traction algorithms and three preprocessing schemes on image blocks with different

sizes. As it is desirable to see the TPR at a low FPR, the ROC curves are plotted

in the logarithmic scale to show more details of the area where a FPR is low. The

curves for the original reference SPN and the ones filtered by ZM, ZM+WF and

SEA are highlighted in red, cyan, green and pink colors, respectively. With respect

to different preprocessing schemes, the pink lines keep standing over other lines in

Fig. 3.4 for different sizes and different extraction algorithms, indicating SEA stands

out at the top of the list. ZM+WF takes the second place, followed sequentially by

ZM and without preprocessing. In the case of large image size, the superiority of

SEA over ZM+WF is not apparent, but SEA is in a clearly advantageous position

especially for medium and small image blocks, i.e., 256 × 256 and 64 × 64 pixels.

In the case with large block size, except for the Phase method, SEA and ZM+WF

outperform the other two schemes by a wide TPR margin, more than 0.6 for a FPR

smaller than 1× 10−3.

Fig. 3.5 depicts the TPRs at a FPR as small as 1 × 10−3. The dark red
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Figure 3.4: Overall ROC curves of the combinations of different SPN extractors and
preprocessing schemes (different columns) on different image block sizes (different
rows). From left to right, the columns show the ROC curves for image blocks of
1024 × 1024, 256 × 256 and 64 × 64 pixels, respectively. Please refer to the last
column for the legend text, which is the same for the figures in the same row.

dotted line shows the average of each group corresponding to one preprocessing

scheme. Generally speaking, preprocessing can substantially increase the TPR at

a low FPR. Similar with the observation in Fig. 3.3, SEA is equally matched with

ZM+WF for large image size, but has higher TPRs than ZM+WF for medium and
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small sizes. With regard to different SPN extractors, Phase is stable against var-

ious preprocessing, resulting in its outstanding position when preprocessing is not

applied. The underlying reason is that Phase only retains the phase component but

ignores the magnitude components of each noise residual that are used to estimate

the reference SPN. In this way, the periodic artifacts have been suppressed consid-

erably but not completely removed. So preprocessing can further, although slightly,

improve the performance of Phase, as can be seen from the green bins in Fig. 3.5.

The performance of Basic, MLE and Enhancer are equivalent in many respects, but

Enhancer exceeds the other two when combined with SEA. Interestingly, BM3D and

PCAI8 perform worse than the other SPN extractors when no or little preprocessing

is applied, but they outperform other extractors with the help of ZM+WF or SEA.

By using the non-local information to get the better noise estimation [5], it is not

surprising that BM3D performs consistently the best among all six extractors in

case of being combined with SEA. It is also worth mentioning that PCAI8 performs

even worse than Phase when combined with ZM or ZM+WF. This is probably due

to insufficient images to create trustworthy reference SPN [4].
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Figure 3.5: TPRs at the FPR of 1× 10−3 for image blocks sized (a) 1024× 1024 (b)
256× 256 and (c) 64× 64 pixels.

Similar tendencies can be observed from the kappa statistics listed in Table

3.3-3.5. To clearly show which extraction methods and which preprocessing schemes

perform better, the maximal entry of each column is highlighted with a gray back-

ground, and the maximum value of each row is highlighted in bold. That is to say,
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a gray background in a column denotes the best extraction method when combined

with the preprocessing scheme corresponding to the column, while a bold value in a

row signifies the best preprocessing scheme for the corresponding extraction method

of the row. So the optimal combination of extraction method and preprocessing

scheme is the entry in both gray background and bold font style. As shown in the

three tables, most of the bold numbers appear in the last two columns, indicating the

effectiveness of ZM+WF and SEA. The most apparent example is PCAI8, of which

the kappa statistic increases by approximately 0.2 after preprocessed by ZM+WF or

SEA when the image block size is 256×256 pixels. For the case of 64×64 blocks, in

spite of the slight performance improvements, the reference SPNs extracted with the

Michak filter seem to be vulnerable to preprocessing. But for the other two extrac-

tors, BM3D and PCAI8, the performance gain is still noticeable. Special attention

should be paid to Table 3.3, where ZM+WF performs slightly better than SEA.

The average kappa statistic gap 0.0006, between SEA and ZM+WF, is negligible

when compared with the average kappa statistic gain 0.0162 and 0.02 in the cases

of medium and small image blocks, respectively. To understand it more intuitively,

we took a close look at the confusion matrix. We found that, for image blocks sized

1024×1024 pixels, ZM+WF has only about an average of 3 more correctly classified

images than SEA among the 5400 images from 36 cameras. But the average number

of correctly classified images by SEA is around 85 and 105 more than ZM+WF for

the medium and small image blocks, respectively. As for different extractors, Basic,

MLE and Enhancer perform comparably well in all conditions. This is consistent

with our observations in Fig. 3.4 and 3.5. As indicated by the gray backgrounds in

the 3 tables, BM3D shows a clear superiority over other extractors. Moreover, with

the help of SEA, BM3D exhibits the superior (or at least equivalent) performance

over other combinations for all block sizes. Therefore, the joint use of BM3D and

SEA is preferable for both forgery detection and SCI in practice.

JPEG is probably the most common image format used in digital cameras,
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Preprocessing

Original ZM ZM+WF SEA

Basic 0.9236 0.9644 0.9691 0.9684

MLE 0.9236 0.9646 0.9695 0.9682

Enhancer 0.9059 0.9623 0.9722 0.9701

Phase 0.9650 0.9632 0.9610 0.9629

BM3D 0.9192 0.9651 0.9718 0.9714

PCAI8 0.7366 0.9545 0.9701 0.9691

Table 3.3: Kappa statistics for 1024× 1024 image blocks

Preprocessing

Original ZM ZM+WF SEA

Basic 0.7943 0.8676 0.8697 0.8895

MLE 0.7943 0.8674 0.8697 0.8897

Enhancer 0.7922 0.8714 0.8785 0.8979

Phase 0.8770 0.8710 0.8573 0.8691

BM3D 0.8097 0.8912 0.8901 0.9242

PCAI8 0.6634 0.8269 0.8703 0.8621

Table 3.4: Kappa statistics for 256× 256 image blocks

so we compared the robustness of ZM+WF and SEA against JPEG compression.

The experiments were carried out for different image sizes and different SPN ex-

tractors. Sometimes the source devices are available to capture high-quality images

for reference SPN estimation. So under this scenario, we can use the reference SPN

estimated from images with a high quality factor 100% for each of the six cameras in

Table 3.2, and calculate the similarity between the high-quality reference SPN and

the query noise residual extracted from images with different quality factors. But

the more plausible scenario is that only the images rather than the source devices

are available. So we simulated this scenario by estimating the reference SPN using

the images with the same JPEG quality as the query images. The ratios of the

kappa statistics of SEA to that of ZM+WF for these two scenarios are shown in the

first and second column of Fig. 3.6, respectively. The dark red dotted lines show
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Preprocessing

Original ZM ZM+WF SEA

Basic 0.4116 0.4067 0.3962 0.4070

MLE 0.4122 0.4072 0.3952 0.4086

Enhancer 0.4061 0.4030 0.3907 0.4044

Phase 0.4055 0.3735 0.3724 0.3859

BM3D 0.4838 0.4865 0.4625 0.5046

PCAI8 0.3918 0.4166 0.4010 0.4276

Table 3.5: Kappa statistics for 64× 64 image blocks

the average of each group corresponding to one quality factor. A ratio greater than

1 indicates that SEA outplays ZM+WF. We adjusted the y-axis limits to accommo-

date bins with various heights. As indicated by the dotted lines, the generally higher

average ratios in the second column benefit from SEA’s high capability of removing

the more evident JPEG artifacts in the reference SPN estimated from more aggres-

sively compressed images. For the medium (Fig. 3.6(c) and 3.6(d)) and the small

(Fig. 3.6(e) and 3.6(f)) image sizes, most of the average kappa statistics are higher

than 1, indicating SEA’s superiority over ZM+WF. The growing preponderance of

the ratios as the images undergo more aggressive JPEG compression, especially in

the second column, indicates that SEA tends to be more robust against JPEG com-

pression for medium and small image blocks. But surprisingly, ZM+WF performs

better than SEA in the case of large image blocks. We carefully investigated the

spectra of the six cameras and found that unlike the peaks spreading out over the

spectrum, as shown in Fig. 3.1(a), all the prominent peaks appear in the borders

of the spectrum and the locations indicated by the two “dark” lines in Fig. 3.1(b),

which can be completely removed by ZM. But for large images, the components

overly modified by ZM are not so considerable as for small images. Therefore, it

introduces bias in favor of ZM+WF for large image size. Another cause comes from

the fact that by using larger image blocks, it is more likely to have a more enriched

and spread-out spectrum, and therefore make some of the peaks fade away into the
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background. It is also the reason why SEA limits the further improvement for large

blocks in Fig. 3.4 and Table 3.3.

We then measured the average signal-to-noise ratio (SNR) of noise residue

(extracted from the uncompressed BMP images) and JPEG quantization noises to

the uncompressed images for each of the six cameras. As shown in Fig. 3.7, when

the JPEG quality factor drops to 70%, the SNR of quantization noise is even higher

than that of noise residual for four of the six cameras. It indicates that the impact

of JPEG compression on the quality of SPN and thus the identification performance

can be significant. For example, with 256 × 256 blocks, when the quality factor of

the query images decreases from 100% to 70%, the average kappa statistic over six

extractors dramatically declines from 0.9433 to 0.6533 for SEA, and from 0.9460

to 0.6360 for ZM+WF in the first scenario, and even lower in the second scenario,

with an average kappa statistic of 0.5767 for SEA and 0.5487 for ZM+WF. But the

effects of JPEG compression appear to be much less severe for 1024× 1024 blocks.

Even for the 50% quality factor and the second scenario, the average kappa statistics

are still considerable, with 0.7680 for SEA and 0.7800 for ZM+WF. So with large

enough block size, even if the images undergo high JPEG compression, accurate SCI

is still possible.

3.4.5 Special Cases

As mentioned in [53], some unexpected artifacts, which might have stemmed from

the dependencies between sensor noise and special camera settings or some advanced

in-camera post-processing, were observed in the images taken by Nikon CoolPix

S710, FujiFilm FinePix J50 and Casio EX-150. More specifically, a diagonal pat-

tern can be clearly seen in the reference SPN of Nikon CoolPix S710 in the spatial

domain and manifests itself as peaks in the DFT domain (see Fig. 3.8(a) and 3.8(b)).

As the diagonal structures are only observed in images taken by CoolPix S710, it

is probably due to the special in-camera post-processing in CoolPix S710. For Fu-
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Figure 3.6: Ratios of the kappa statistic of SEA to that of ZM+WF for the cases
of estimating the reference SPN from JPEG images with a quality factor 100 (first
column) and JPEG images with the same quality factor as the query images (second
column). Bins are grouped according to the quality factor of the query images, and
each of the six bins in the same group shows the ratio for one of the six SPN
extractors. From top to bottom, the rows show the results for image blocks of
1024× 1024, 256× 256 and 64× 64 pixels.
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Figure 3.7: SNR for noise residual and the quantization noise introduced by JPEG
compression.

jiFilm FinePix J50, the identification results have a relationship with the difference

between the exposure times when capturing the images used for estimating the ref-

erence and the image used for extracting the query noise residual. It is possibly

that some exposure-time-dependent post-processing procedure is employed in Fuji-

Film FinePix J50, for instance to suppress the noise [53]. The experimental results

also confirm that SPNs of FujiFilm FinePix J50 at exposure times ≥ 1/60s exhibit

pixel shifts in horizontal direction. The worst case among the three models is Casio

EX-150, the identification performance of which is very poor for images taken at

different focal length settings. The image distortions become clear by showing the

p-maps [29] of images acquired by EX-150. The origin of the artifacts are still un-

known to us, but it reminds us to pay particular attention to these 3 models. Thus,

separate experiments have been conducted for the 13 cameras of these 3 special

models. We only conducted the experiments on blocks of 256 × 256 pixels, since

similar properties and trends were observed for other sizes. The kappa statistics

based on both NCC and SPCE are listed in Table 3.6-3.8 for a more comprehensive

comparison. Comparing the kappa statistics of different preprocessing schemes in
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Table 3.6-3.7, we found that SEA can improve the performance for Nikon CoolPix

S710 and FujiFilm FinePix J50. When taking a closer look at Table 3.6 for Nikon

CoolPix S710, the performances of all preprocessing methods are comparable in

terms of NCC and SPCE. But compared with ZM+WF, the advantage of SEA

becomes obvious in Table 3.7 for FujiFilm FinePix J50. For instance, the kappa

statistic of Enhancer increases from 0.7633 to 0.8100 in terms of NCC, and from

0.7700 to 0.8033 in terms of SPCE. However, for Casio EX-150, in spite of the slight

performance gain brought about by preprocessing, correct and reliable identifica-

tions are still impossible for the images captured by this model. Another important

observation is that the performances of ZM+WF+SPCE and SEA+NCC are com-

parable for Nikon CoolPix S710 and Casio EX-150, as shown in Table 3.6 and 3.8,

but SEA+NCC is significantly better than ZM+WF+SPCE for FujiFilm FinePix

J50, as shown in Table 3.7. Due to the reasons we mentioned in Section 3.3, it is

easier to detect the prominent peaks in the spectrum of the reference SPN using

SEA than SPCE, attributing to the better performance of SEA+NCC for FujiFilm

FinePix J50. Furthermore, we can see from the last column of Table 3.6-3.8 that

SPCE can not further improve the performance of the reference SPN filtered by

SEA, or only by a limited amount (for PCAI8). This is due to the fact that the

periodic artifacts have been mostly and effectively suppressed by SEA.

Further investigations with the spectra of the 3 camera models, as illustrated

in Fig. 3.8, may unveil the causes of the difference in performance. Because ZM only

deals with the DC components, the two peaks associated with the diagonal artifacts

reported in [53] are not removable by ZM, as shown in Fig. 3.8(b). The good news

is that the two peaks can be well suppressed by both WF and SEA. However, as

can be seen from Table 3.6, the effect of the suppression is not so significant as

expected because the energy of the peaks only takes up a small proportion of the

overall spectrum energy. For FujiFilm FinePix J50, although WF can effectively

suppress the peaks in the areas with a large local variance, it appears to be helpless
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in suppressing the peaks in the areas with a small local variance. When zooming

in on Fig. 3.8(g), one will find that peaks still exist in the high-frequency band.

Despite the much smaller magnitude of the peaks, the overall spectrum has also

been substantially reduced at the same time, so the suppression is not so effective

as it looks like. This can explain why SEA performs better than ZM+WF for

FujiFilm FinePix J50, as shown in Table 3.7. Although we are still unable to

provide convincing explanations for the poor performance of Casio EX-Z150, as

shown in the last row of Fig. 3.8, the ratio of the energy of low-frequency band to

that of high-frequency band seems much higher than those of the other two cameras

even in the equalized spectrum, suggesting that the true SPN has been seriously

contaminated and making reliable identification difficult. This is probably the reason

why the best performance for Casio EX-150 can be achieved by Li’s Enhancer [3],

which deals with the scene details lying largely in the central area of the spectrum.

Actually the performance on these 3 camera models provides a microcosm of the

overall performance: SEA and ZM+WF are comparable for the reference SPN with

a relatively smooth spectrum, but SEA is better than ZM+WF for the reference

SPNs with a spectrum full of peaks, especially in the high-frequency band. Yet,

there exist some unexpected artifacts that both ZM+WF and SEA cannot cope

with effectively.

3.4.6 Running Time

Finally, the running times of different preprocessing schemes and detection statistics

for different image sizes are listed in Table 3.9. We ran each configuration 1000

times and calculated the average running time. SEA spends extra time on finding

the peaks within local neighborhood in the spectrum, as shown in Procedure 1, so it

is reasonable to see that SEA requires more running time. But it takes less than half

a second even for 1024×1024 pixels sized image blocks and only needs to be applied

once on the reference SPN. In the scenario where only a few candidate cameras are
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Preprocessing

Original ZM ZM+WF SEA
N

C
C

Basic 0.9517 0.9500 0.9467 0.9583

MLE 0.9483 0.9483 0.9467 0.9583

Enhancer 0.9517 0.9517 0.9500 0.9583

Phase 0.9383 0.9317 0.9333 0.9350

BM3D 0.9600 0.9550 0.9550 0.9600

PCAI8 0.9550 0.9533 0.9600 0.9633

S
P

C
E

Basic 0.9500 0.9483 0.9483 0.9583

MLE 0.9500 0.9483 0.9483 0.9583

Enhancer 0.9517 0.9533 0.9500 0.9583

Phase 0.9383 0.9317 0.9333 0.9350

BM3D 0.9550 0.9600 0.9533 0.9600

PCAI8 0.9533 0.9617 0.9583 0.9633

Table 3.6: Kappa statistics for Nikon CoolPix on 256× 256 image blocks

Preprocessing

Original ZM ZM+WF SEA

N
C

C

Basic 0.7733 0.7767 0.7367 0.7933

MLE 0.7700 0.7833 0.7400 0.7967

Enhancer 0.7700 0.7900 0.7633 0.8100

Phase 0.7467 0.7633 0.7567 0.7533

BM3D 0.7267 0.7533 0.7200 0.7567

PCAI8 0.7733 0.7600 0.7700 0.7767

S
P

C
E

Basic 0.7700 0.7900 0.7500 0.7867

MLE 0.7733 0.7867 0.7433 0.7933

Enhancer 0.7833 0.7933 0.7700 0.8033

Phase 0.7500 0.7567 0.7533 0.7533

BM3D 0.7300 0.7600 0.7200 0.7567

PCAI8 0.6867 0.7667 0.7633 0.7833

Table 3.7: Kappa statistics for FujiFilm FinePix J50 on 256× 256 image blocks

involved, the running speed is probably not the biggest concern. In addition, as

can be seen in the last two rows of Table 3.9, NCC is faster than SPCE. So for
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Preprocessing

Original ZM ZM+WF SEA
N

C
C

Basic 0.3333 0.3367 0.3400 0.3400

MLE 0.3333 0.3400 0.3450 0.3383

Enhancer 0.3550 0.3517 0.3550 0.3617

Phase 0.3333 0.3283 0.3217 0.3367

BM3D 0.3300 0.3250 0.3367 0.3333

PCAI8 0.3350 0.3217 0.3300 0.3367

S
P

C
E

Basic 0.3333 0.3383 0.3400 0.3417

MLE 0.3333 0.3433 0.3450 0.3383

Enhancer 0.3567 0.3517 0.3533 0.3617

Phase 0.3333 0.3283 0.3217 0.3367

BM3D 0.3300 0.3267 0.3367 0.3333

PCAI8 0.3367 0.3217 0.3283 0.3383

Table 3.8: Kappa statistics for Casio EX-150 on 256× 256 image blocks

large-scale SCI tasks, the odds of SEA can be evened up by choosing SEA+CNN

rather than ZM+WF+SPCE.

Image sizes (pixels)

1024× 1024 256× 256 64× 64

ZM 39.7 2.5 0.6
ZM+WF 154.2 8.4 1.6
SEA 493.0 55.2 39.5
SPCE 61.5 2.6 0.6
NCC 29.7 1.5 0.1

Table 3.9: Running time comparison (ms)

3.5 Conclusion

We have developed a novel SPN preprocessing approach, namely Spectrum Equal-

ization Algorithm (SEA), for the task of SCI to overcome the limitations of existing

approaches. The spectrum of the reference SPN is equalized by detecting and sup-
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pressing the prominent peaks before calculating the similarity measurement with the

query noise residual. Experimental results on the Dresden image database and our

own database have confirmed the superiority of SEA in terms of both effectiveness

and robustness against JPEG compression for medium and small sized images. We

recognize that although only the task of SCI has been considered in this chapter,

our work can be extended to the task of SPN-based image forgery detection, which

is one of our future lines of investigation. As most existing methods dedicated to

improving the performance of SCI only consider the interference coming from one

particular source, such as the impact of the denoising filter, the periodic artifacts

introduced by CFA interpolation and JPEG compression, the contamination from

scene details, etc., an integrated approach for assembling the existing methods to

provide superior performance is still lacking. It is not a simple and trivial task due

to the possible interference among different methods, so this is another area to be

studied in the future.
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CHAPTER 4
Large-Scale Image Clustering Based on Camera Fingerprint

As discussed in Section 2.2 of Chapter 2, clustering large-scale device fingerprints is

very challening due to the large-scale and high-dimentional nature of the problem.

The difficulty can be further aggravated by the NC � SC problem. In this chapter,

we propose a novel clustering framework that is capable of addressing the NC � SC

issue without a training process. By reducing the dimensionality of camera finger-

prints and exploiting the inherent sparseness of the pairwise similarity matrix, the

original dataset is partitioned into a number of small batches using a fast graph

clustering algorithm. Fine clustering is then applied on each of the small batches

to produce a collection of sub-clusters, which will be further merged with the aid of

the proposed adaptive thresholding technique. The centroids of the merged clusters

serve as the attractors to attract the unclustered fingerprints to their closest cen-

troids. The above procedures are iteratively repeated until no more notable clusters

can be found. The proposed clustering framework is evaluated on the Dresden im-

age database and compared with the state-of-the-art camera fingerprints clustering

algorithms. Experimental results show that the proposed clustering framework is

much faster than the state-of-the-art algorithms while maintaining a high level of

clustering quality.

The remainder of this chapter is organized as follows. In the following Section

4.1, we will briefly introduce the limitations of existing device fingerprint clustering

algorithms. In Section 4.2, the details of the proposed clustering framework will be

given. Section 4.3 discusses the complexity of the algorithm as well as the parameter

settings . Comprehensive experimental results and analysis will be presented in

Section 4.4. Finally, Section 4.5 concludes the chapter.
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4.1 Introduction

It can be observed in Chapter 2 that existing methods either initially cluster on a

training set randomly sampled from the original dataset [57, 60, 61] or calculate a

small portion of the pairwise similarities [58] to generate a number of representative

clusters, the centroids of which will be used to classify the remaining fingerprints

by assigning each of them to the most similar centroid. The successful classification

requires that the whole dataset is well represented by the representative clusters.

However, sometimes we are confronted with the NC � SC problem, where the

number of classes within the training set is probably less than that of the original

dataset. The NC � SC problem makes it difficult, if not impossible, to form a

training set at random that can sufficiently represent the entire population. In con-

sequence, misclassifications happen when some of the remaining fingerprints do not

belong to any of the representative clusters. Li proposed in [57] that if the similarity

between one fingerprint and the most similar centroid is less than a threshold set by

the user, the fingerprint is treated as a new representative cluster. But not only the

reliability of the new singleton representative cluster is doubtful, but also there is a

probability that one fingerprint does not belong to any of the representative clusters

while its similarity with the closest representative cluster is higher than the preset

threshold. This usually happens when some fingerprints within one representative

cluster are not purely from the same camera. What is worse, such kind of misclas-

sification can be propagated in the succeeding classification process. Therefore, an

effective way of determining an appropriate threshold is urgently needed.

In this chapter, we propose a novel clustering framework capable of dealing

with large-scale camera fingerprint databases. It takes advantage of the dimension

reduction technique and the inherent sparseness of the pairwise similarity matrix

to reduce the computational cost. Based on the analysis of correlation distribution,

we also derive an adaptive threshold with regard to the size and the quality of
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clusters. It is the adaptive threshold that allows the clustering algorithm to work in

a divide-and-conquer manner and makes the clustering on large-scale datasets much

more efficient. Because the noise residue extracted from one image can be viewed

as the noisy version of SPN, unless otherwise stated, we will refer to the true SPN

components in the noise residue as the “true SPN” to distinguish it from the noise

residue, which will be simply referred to as the “camera fingerprint” or “fingerprint”

in the rest of this chapter. Additionally, to differentiate the ground truth and the

clustering results, we refer to the fingerprints of the same camera as a class, while

refer to those clustered into the same group by the clustering algorithm as a cluster.

4.2 Proposed Clustering Framework

Given the limitations of the existing methods reviewed in the previous section, we

propose a new clustering framework as shown in Fig. 4.1. The proposed framework

mainly consists of preparation, coarse clustering, fine clustering, attraction and post-

processing. In what follows, we will look into each of the five steps to provide a rough

picture of the proposed framework.

Step 1: Preparation

• Image preprocessing: Eliminate the images with saturation or low in-

tensities. Rotate the remaining images to ensure they are all horizontally

oriented.

• Fingerprint extraction and standardization: Suppose there are n

images left in the database after removing the dark or saturated images. A

d-dimensional fingerprint is extracted from the center of the green channel

of each image and standardized to zero mean and unit variance.

• Dimension reduction: Project each of the d-dimensional fingerprints

onto a k-dimensional subspace (k < d) using the very sparse random pro-
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jection proposed in [96].

• Fingerprint data storage: Store the full-length fingerprint, the corre-

sponding dimension-reduced fingerprint as well as the image name into a

single file for each image.

Step 2: Coarse clustering

• Correlation matrix approximation: To avoid calculating the n × n

pairwise correlation matrix M , the dimension-reduced fingerprints and the

potential-based eviction (to be discussed in Section 4.2.2) are used to reduce

the computational cost. In this way, M is replaced with a set of more

RAM-efficient lists L, of which each element Li records the indices of the

fingerprints that are similar enough to the ith fingerprint.

• Coarse partition: Based on the graph information recorded in L, the n

fingerprints are coarsely partitioned into nc coarse clusters using the fast

graph clustering algorithm in [97].

Step 3: Fine clustering

• Cluster splitting: For each of the nc coarse clusters, a correlation matrix

is calculated and binarized as in the coarse clustering stage, but using the d-

dimensional full-length fingerprints. Because the size of each coarse cluster

is small, the calculation of the correlation matrix is fast and efficient. Based

on the binary correlation matrix corresponding to one coarse cluster, the

cluster is naturally split into ns sub-clusters with variable sizes using the

flow simulation based graph clustering algorithm [98].

• Cluster merging: Each of the ns sub-clusters is represented by the cen-

troid averaged over the full-length member fingerprints. Based on the ns

centroids, a ns×ns pairwise correlation matrix is calculated and binarized

using an adaptive threshold matrix τ (the element τij depends on the sizes
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and the qualities of sub-cluster Si and sub-cluster Sj). Larger clusters are

therefore obtained by merging two or several sub-clusters. Meanwhile, the

centroids and the qualities of the merged clusters are updated accordingly.

Step 4: Attraction

• Centroid attraction: The centroids are used as “attractors” to attract

the unclustered fingerprints left in the database. Consequently, most of the

fingerprints belonging to the discovered clusters will be absorbed to form

larger clusters.

Step 5: Post-processing

• Cluster screening and storage: Place the fingerprints in the clusters

with a size smaller than a threshold η back into the database and store the

remaining clusters as the final clusters. The stored information includes

the centroid, the names of the corresponding images, and the quality of the

cluster.

• Termination or continuation: The algorithm ends if no more notable

clusters can be found. Otherwise, place the unclustered fingerprints, as well

as those in the clusters with a size smaller than η, back into the database

for the next round of clustering.

In the following subsections, we will provide more details on each of the above

steps.

4.2.1 Preparation

Since the fingerprint information is not present in the dark or saturated images [9],

involving these images into the clustering process not only entails high computa-

tional burden, but also makes the clustering results unreliable and unpredictable.
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Figure 4.1: Flow chart of the proposed framework.

Hence, those images with insufficient fingerprint information will be ignored. An-

other concern comes from the orientation of images. As we know, SPN is pixel-

dependent and images taken by the same camera can be in either the horizontal or

vertical orientation depending on how the camera is held. Inconsistent orientation

will desynchronize the pixel-to-pixel correspondence between images taken by the

same camera. For JPEG/TIFF images, the orientation information may have been

stored in the exchangeable image file format (EXIF) header of the image file, but

the EXIF information is untrustworthy and sometimes unavailable. We therefore

rotate the vertically oriented images clockwise by 90◦ to ensure all images are hor-

izontally oriented. Although this cannot completely solve the rotation problem, it

successfully limits the freedom of rotation.

After the above preprocessing, a camera fingerprint F is extracted from the

central block of the green channel of each image I, i.e.,

F = I − G(I), (4.1)

where G is the denoising filter. The normalized cross correlation (NCC) ρ is used as
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the similarity measurement between two fingerprints, X and Y :

ρ(X,Y ) =

∑d
i=1(X[i]−X)(Y [i]− Y )√∑d

i=1(X[i]−X)2

√∑d
i=1(Y [i]− Y )2

, (4.2)

where d is the length of the fingerprint, X and Y are the arithmetic mean of X

and Y , respectively. NCC is notorious for its high computational cost due to the

calculation of the variances in the denominator of Equation (4.2). To alleviate this,

each fingerprint is standardized to have zero mean and unit variance. After stan-

dardization, Equation (4.2) is simplified to the more efficient element-wise product:

ρ(X,Y ) =
1

d

d∑
i=1

X̂[i]Ŷ [i], (4.3)

where X̂ and Ŷ are the standardized version of X and Y , respectively.

Standardization also builds up the equivalence between NCC and other

commonly-used similarity measures such as the inner product1 and the Euclidean

distance [99]. It reminds us that many similarity-preserving dimension reduction

methods are potentially suited for use in reducing the computational cost. Unfor-

tunately, dimension reduction techniques based on the discrete Fourier transform

(DFT) [100], singular value decomposition (SVD) [101], discrete wavelets transform

(DWT) [102] and piecewise aggregate approximation (PAA) [103] are not applicable

to our application due to the nature of noise-like camera fingerprints. More advanced

methods, such as principal components analysis (PCA) [104], isometry mapping

[105], maximal variance unfolding [106] and locally linear embedding [107] are com-

putationally infeasible for large-scale camera fingerprints due to the mutual depen-

dencies of data. We therefore resort to another more efficient solution — very sparse

random projection [96, 108] due to its appealing properties of Euclidean distance-

preserving, computational efficiency and data independence. Let d×n matrix D be

1ρ(X,Y ) = 〈 X̂√
d
, Ŷ√

d
〉
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the set of n camera fingerprints in the d-dimensional space Rd, and R be the k × d

random projection matrix with R(i, j)=rij , where {rij |1 ≤ i ≤ k, 1 ≤ j ≤ d} are

independent and identically distributed (i.i.d.) random variables drawn from the

following probability distribution:

rij =

√
s

k
×



+1 with probability 1/2s,

0 with probability 1− 1/s,

−1 with probability 1/2s,

(4.4)

where s=
√
d according to [96]. The dimension reduction of the n fingerprints from

Rd to Rk is achieved by a matrix multiplication:

E = RD, (4.5)

where E is a k × n matrix, with its columns representing the dimension-reduced

camera fingerprints.

Finally, the standardized fingerprint, the dimension-reduced counterpart,

along with the image name are stored in a file with an unique filename. The

dimension-reduced and the full-length fingerprint will be used for the following

coarse clustering and fine clustering, respectively.

4.2.2 Coarse clustering

One of the key challenges of clustering large-scale and high-dimensional camera

fingerprints is to discover the potentially correlated fingerprint pairs. Calculating

the complete, exhaustive set of similarities in the n× n pairwise correlation matrix

M requires at least n(n− 1)/2 comparisons, which becomes clearly prohibitive for

large databases. Even if we have the oracle to know all of the entries of M , it is still

an issue to cache them in RAM. Practically speaking, the correlation matrix is very
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likely to be sparse because only the fingerprints of the same camera are correlated

with each other. So instead of keeping all the correlations in the RAM, we use a

threshold tb to binarize the similarities (correlations). Since the intrinsic quality of

fingerprints depends on many complex factors, the average similarities for different

cameras may vary substantially. But in the sense of clustering, one class with a

higher average intra-class similarity should be equivalent to another class with a

lower average similarity. In this regard, binarization is an effective way to eliminate

the divergences in different classes and make the clustering more resilient against

the interferences in the fingerprints.

Another optimization is to calculate a small portion of the n(n−1)/2 matrix

entries, then the key issue becomes what heuristics or criteria can be used to select

the matrix entries for calculation. One such work was proposed in [58], but, as

mentioned in Section 2.2.2, the expensive I/O cost makes it unaffordable for large-

scale databases. Given n dimension-reduced fingerprints, we randomly partition

them into batches of equal size q, where q can be customized so that the RAM is

sufficient for simultaneously accommodating two batches and the extra space for

calculating the inter-batch correlations. Two batches are firstly brought into the

RAM, and the correlations of the fingerprints in the two batches are calculated and

binarized for updating a set of lists L, of which each element Li is a list recording

the indices of the vertices adjacent to the ith fingerprint. All remaining batches are

sequentially loaded from the disk one at a time. To proceed with the next batch, at

least q fingerprints have to be evicted from the RAM. We consider each dimension-

reduced fingerprint as a vertex vi, i = 1, 2, ..., n in a graph G, and define a potential

measurement pi characterizing its potential connectivities with other vertices:

pi =
deg(vi)

Ai
, (4.6)

where deg(vi) is the degree of vertex vi (i.e., the length of Li) and Ai is the accumu-
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lated number of vertices whose connectivities with vertex vi have been investigated

up to the latest batch. pi ∈ [0, 1] is initialized as 0 at the beginning. To accommo-

date the new incoming batch, the q vertices with the lowest potentials are evicted

from the RAM. We refer to this strategy as the potential-based eviction. The un-

derlying motivation is that the more fingerprints a camera fingerprint is connected

with among those that have been investigated, the more likely that it will be con-

nected with more fingerprints among the ones that have not been investigated yet.

By taking advantage of the asymmetry of the class distribution, the potential-based

eviction allows for discovering more correlated fingerprint pairs based on the limited

number of correlation calculations. Meanwhile, the I/O cost is minimized because

every dimension-reduced fingerprint is loaded only once. It is worth noting that we

use pi instead of deg(vi) because the number of pairwise comparisons for the vertices

in the posterior batches is less than that for the vertices in the previous batches.

As a consequence, the vertices loaded earlier tend to have a higher degree than the

ones loaded later.

After obtaining the potentially correlated fingerprint pairs, we aim to roughly

but efficiently partition the database into groups. Many graph partitioning algo-

rithms [97, 109–111] are feasible for the task. In our work, we chose a highly scalable

and open-source2 algorithm, GRACLUS [97], which works by repeatedly coarsening

the original graph (corresponding to L) to a point where very few vertices remain

in the graph, then a spectral clustering method [112] is applied on the coarsest

graph, the clustering result of which will be refined level by level up to the original

graph. By empirically specifying the cluster number nc = dn 1
4 e, where d·e is a ceil-

ing operator, GRACLUS partitions the n fingerprints into nc coarse clusters with

various sizes, among which some large coarse clusters will be recursively bisected

into small clusters to ensure that each of them can be fit into the RAM at a time.

The purpose of coarse clustering is to gather potentially correlated fingerprints into

2The source code can be downloaded from http://www.cs.utexas.edu/users/dml/Software/

graclus.html
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the same batch and therefore increase the probability of forming reliable clusters in

the following fine clustering stage.

4.2.3 Fine clustering

After coarsely partitioning the whole database, the coarse clusters will be further

split and merged in the fine clustering stage. Specifically, for each of the resultant

coarse clusters, an accurate correlation matrix is calculated and binarized as in the

coarse clustering stage, but using the full-length (d-dimensional) rather than the

dimension-reduced (k-dimensional) fingerprints. Because the number of fingerprints

in each coarse cluster is small, the processing of each coarse cluster can be quite

efficient. The binarized correlation matrix is input to the Markov cluster algorithm

(MCL) [98], which iteratively applies the expansion (matrix multiplication) and

inflation (entry-wise matrix product) operators until it converges to a steady state.

Finally, the clusters are discovered by interpreting the resultant matrix. Given

a small enough coarse cluster, many alternative algorithms, such as [57, 58, 60,

61, 113], are feasible for the clustering task. But the following merits make MCL

preferable to other methods:

1. MCL can be significantly sped up by taking advantage of the sparseness of the

correlation matrix and pruning the small matrix entries during each iteration.

2. MCL tends to result in small cluster granularity but high precision rate. Given

a large volume of fingerprints, it is difficult to achieve high recall rate and high

precision rate simultaneously. Mixing the fingerprints of different cameras in

the same cluster (low precision rate) can lead to error propagation in the

ensuing clustering process. However, dispersing the fingerprints of the same

camera into several clusters (low recall rate) still ensures high correctness and

reliability of the clustering despite the extra computational cost. Therefore, if

we have to sacrifice in one aspect to gain in the other, we would usually prefer
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the high precision rate to the high recall rate in practice.

The split of coarse clusters may produce many small or even singleton sub-clusters,

but only the sub-clusters with a score ξ greater than a predefined threshold ts are

collected for further use:

ξ =
√
|C|
∑

vi∈C
∑

vj∈C eij

|C|(|C| − 1)
> ts, (4.7)

where |C| is the size of cluster C, eij is a binary variable with 1 signifying that

vi is connected with vj . But due to the limited RAM size, sub-clusters are sorted

according to the score ξ and only the H sub-clusters with the highest scores are

retained in RAM, where H is adaptive to the RAM size. We refer to this strategy

as score sorting. In such a manner, we can make better use of the limited RAM and

guarantee that the larger classes (usually related to the sub-clusters with a higher

score) will be clustered preferentially.

In the coarse clustering stage, the fingerprints of the same camera are likely

to be partitioned into different coarse clusters. Even if those fingerprints are grouped

into the same coarse cluster, they may still be split into different sub-clusters in the

ensuing splitting stage, so it is desirable to merge the sub-clusters of the same camera

for both efficiency and accuracy reasons before proceeding further. Hereafter, we

will refer to the correlation between the centroids of two clusters from the same

camera as the intra-class correlation, and the correlation between the centroids of

two clusters from different cameras as the inter-class correlation. Intuitively, the

intra-class correlation increases with the cluster size because the random noises in

the centroid of a larger cluster have been suppressed more significantly, while the

inter-class correlation remains the same. If we know how the correlation between two

centroids changes with the sizes of clusters, an adaptive threshold can be adopted

to determine whether they are from the same camera. The adaptive thresholding

problem for camera fingerprint clusters merging has been studied in [114] and [115]
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by estimating the parameters of a prescribed function, but both of them do not

generalize well across different cameras. According to the Central Limit Theorem

(CLT), the NCC ρ between two d-dimensional centroids, X and Y , from different

cameras conforms to a normal distribution with zero mean and 1/d variance, i.e.,

ρ(X,Y )∼N (0, 1/d). If X and Y are the centroids of two sub-clusters Sx and Sy

from the same camera, we can derive that the distribution approaches to a normal

distribution when d→∞ (please refer to the Derivation of Correlation Distribution

in the Appendix), i.e.,

ρ(X,Y )
d−→ N (µ,Σ), (4.8)

where 
µ =

√
nxnyσ2

xσ
2
y

[(nx−1)σ2
x+1][(ny−1)σ2

y+1]

Σ =
nxnyσ2

xσ
2
y+[(nx−1)σ2

x+1][(ny−1)σ2
y+1]

[(nx−1)σ2
x+1][(ny−1)σ2

y+1]d
.

(4.9)

Here, d is the length of fingerprints. nx and ny are the sizes (i.e., numbers of member

fingerprints) of cluster Sx and Sy, respectively. σ2
x and σ2

y are the average qualities of

the true SPN in each member fingerprint in Sx and Sy. When there is no ambiguity,

the average quality of the true SPN in each member fingerprint of one cluster will

be simply referred to as the quality of the cluster. For large clusters, the mean

of the intra-class distribution is normally far from the zero mean of the inter-class

distribution, so the threshold can be safely increased to reduce the false positives.

An adaptive threshold τ characterizing the change in the intra-class distribution is

therefore proposed as

τ = max
(
tb,

ω
√
nxnyσ2

xσ
2
y√

[(nx − 1)σ2
x + 1][(ny − 1)σ2

y + 1]

)
, (4.10)

where tb is the threshold used for binarizing the similarity matrix in the fine clus-

tering stage, ω is a predefined scaling factor. Two sub-clusters with a correlation

between their centroids higher than τ are considered to be from the same camera.
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In Equation (4.10), τ is related to the dynamic intra-class distribution rather than

the constant inter-class distribution, so it is more reliable than the threshold deter-

mined by the Neyman-Pearson criterion when the cluster size keeps increasing. In

such a way, τ effectively prevents the cluster merging from propagating errors into

the merged clusters. σ2
x and σ2

y in Equation (4.10) can be estimated by calculating

the mean of correlations (please refer to µ1 in Equation (A.6) with λ=1 in the Ap-

pendix). Therefore, when coarse clusters are split into ns sub-clusters, the quality

of each sub-cluster is initially estimated as

σ2
i =

1

qi

qi∑
k=1

ρk, i = 1, 2, . . . , ns, (4.11)

where qi is the number of the calculated correlations within Si. Following the

analysis in Scenario 2 in the Appendix, if Sx and Sy are merged into Ŝ in the

cluster merging stage, we update the quality of Ŝ as

σ̂2 =
nxσ

2
x + nyσ

2
y

nx + ny
. (4.12)

In particular, when σ2
x=σ2

y=σ
2, σ̂2 of the merged cluster Ŝ is the same as that

of Sx or Sy, i.e., σ̂2=σ2. Equation (4.12) can be easily generalized for merging c

sub-clusters:

σ̂2 =

∑c
i=1 niσ

2
i∑c

i=1 ni
, (4.13)

where ni and σ2
i are the size and the quality of Si, respectively.

4.2.4 Attraction

The following stage is the centroid attraction, where the centroids of the merged

clusters are used as the “attractors” to attract the fingerprints remaining in the

database, so that the fingerprints belonging to the same cluster will be absorbed

into the corresponding attractor. Specifically, one fingerprint F belongs to attractor
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A∗ if

A∗ = argmax
Ai∈A

ρ(Ai,F ), ρ(A∗,F ) > τρ, (4.14)

where A is the set of attractors and τρ is calculated from Equation (4.10). Finally,

the attracted fingerprints belonging to the same cluster are merged into the cor-

responding cluster and the quality of the merged cluster is updated accordingly.

Suppose an attractor Ax is averaged over nx fingerprints with an average quality

σ2
x of the true SPN in each fingerprint, then according to µ in Equation (4.9), the

average quality σ2
y of the ny attracted fingerprints can be estimated as

σ2
y =

[(nx − 1)σ2
x + 1]

∑ny
k=1 ρ

2
k

nxnyσ2
x

. (4.15)

The set of fingerprints corresponding to Ax and the set of ny attracted fingerprints

can be viewed as two clusters with a quality of σ2
x and σ2

y , respectively. So according

to Equation (4.12), the quality of the attractor Ax and the number of member

fingerprints are updated as


σ2
x ←

n2
xσ

4
x + [(nx − 1)σ2

x + 1]
∑ny

k=1 ρ
2
k

nx(nx + ny)σ2
x

nx ← nx + ny.

(4.16)

4.2.5 Post-processing

Up until now, the clustering process has formed a certain number of clusters, each

of which is presented by a centroid, the names of the corresponding images, and

the quality of the cluster. Notable clusters with a size no smaller than η are stored

as the final clusters. While those clusters with a size less than η, as well as the

remaining unclustered fingerprints, are placed back to the database for the next

round of iteration starting from the coarse clustering stage. Due to the nature
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of the potential-based eviction in the coarse clustering stage and the score sorting

in the fine clustering stage, the classes with a larger size are more likely to form

notable clusters, so the majority of the fingerprints can be clustered in the first

few iterations. During the coarse clustering stage of the next iteration, we put the

unclustered fingerprints from the same batch in the previous iteration into different

batches so as to increase the chance of discovering correlated fingerprint pairs. The

algorithm terminates when no more notable clusters can be discovered.

4.3 Discussion

After presenting the algorithm as above, the reasons why the proposed clustering

framework can cope with large-scale camera fingerprint databases become clear.

By taking advantage of the dimension reduction technique and the sparseness of

the pairwise similarity matrix, the clustering problem of a large database is broken

down into the clustering of several smaller databases with the help of the fast, but

approximate, graph partition algorithm. The adaptive thresholding significantly re-

duces the computational complexity and allows the clustering results of the smaller

databases to be combined to give the solution to the NC � SC problem. The

ability of spotting small classes is conferred by the iterative clustering manner and

the adaptive value of coarse cluster number nc = dn 1
4 e. On one hand, the itera-

tive manner (thanks to the potential-based eviction and the score sorting strategy)

ensures that most of the larger classes will be clustered in the first few iterations

and the smaller classes will be more focused on in the ensuing iterations. On the

other hand, with the decreasing number of coarse clusters, the probability that more

fingerprints from smaller classes fall into the same coarse cluster increases, making

them more easily to be discovered in the fine clustering stage.

The time complexity of the proposed framework depends on a complex in-

terplay between the number of fingerprints n, the length of the fingerprints, the
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class distribution in the dataset, the number of edges |E|, and the parameter set-

tings. In the coarse clustering stage, it involves nqk multiplications to calculate the

sparse approximate correlation matrix, where q is the size of one batch and k is the

reduced dimension. The fast graph partitioning algorithm GRACLUS [97] approx-

imately has a time complexity O(q|E|/n). In the fine clustering stage, it involves

around nbd multiplications to calculate the accurate correlation matrix, where b is

the average size of the coarse clusters and usually much smaller than q, and d is the

length of the full-length fingerprint. The MCL has a time complexity of O(nK2)

in the worst case [98], where K is the maximal number of nonzero entries in one

column of the binarized correlation matrix. Finally, the attraction stage involves at

most ncdθ multiplications, where θ ∈ (0, 1] is a factor accounting for the percentage

of the c classes that have been discovered. Considering the very high dimension of

the fingerprints, the time complexity O(q|E|/n) of GRACLUS is negligible because

even for an extremely tight and dense graph, O(q|E|/n) = O(nq) is trivial when

compared with the time complexity O(nqk + nbd). So the overall time complexity

of the proposed clustering framework is approximately O(nqk+ nbd+ nK2 + ncdθ)

in one iteration. q and b can be fixed or made adapted to the RAM size, while K,

c and θ depend on the class distribution of the dataset. With regard to the I/O

cost of loading fingerprints from disk, it is O(2nd + nk) in the worst case. At the

first glance, it is about two times as high as the minimal I/O cost O(nd). But given

that one fingerprint needs to be loaded more than once to calculate the pairwise

correlations for large datasets due to the limited size of RAM, O(2nd+ nk) is still

at an acceptable level and a considerable speedup can be expected by using a faster

storage medium, such as Solid State Drive (SSD).
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4.4 Experiments

4.4.1 Experimental setup

The proposed clustering framework was evaluated on the Dresden image database

[53, 91]. After the removal of the dark and saturated images, involved in the exper-

iments are 15, 840 images taken by 74 cameras, covering 27 models and 14 brands.

The number of images taken by each camera varies from 154 to 460. All experiments

were conducted on a PC with windows 7 OS, 3.2 GHz Intel Quad Core Processor, 16

GB RAM and 1 TB Hard Disk Drive (HDD). To alleviate the vignetting effects [94]

and ensure a consistent size for all fingerprints, camera fingerprints were extracted

from the central 1024×1024 block of the green channel of the full resolution images

(i.e., d=1, 048, 576). The method proposed in [1] was used to extract the camera

fingerprints, which were further preprocessed by two operations, zero-meaning (ZM)

and Wiener filtering (WF) in the DFT domain [9], to suppress the non-unique arti-

facts. Note that we did not use the spectrum equalization algorithm (SEA) proposed

in Chapter 3. The reason is that SEA suppresses the periodic artifacts by removing

the peaks in the spectrum. However, unlike in the spectrum of the reference SPN

(i.e., the average of multiple fingerprints), the peaks caused by periodic artifacts are

not conspicuous in the spectrum of a single fingerprint.

The proposed framework is designed for clustering large-scale image database,

but we are also interested in its performance on small datasets. Therefore, based on

the Dresden database, we set up four different small datasets. As we know, images

taken by different devices of the same model undergo the same or similar in-camera

processing procedures, so it is more challenging to correctly cluster the fingerprints

of the devices of the same model. We categorize the clustering difficulties into model-

and device- levels. In the model-level, images in different classes are acquired by de-

vices of different models, while in the device-level, some images are taken by devices

of the same model. Moreover, it is common in practical applications that the num-
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bers of images captured by different devices vary widely, which results in different

class distributions within the dataset. We, therefore, categorize the distributions of

images in different classes into symmetric and asymmetric. Finally, we set up the

following four datasets for the experiments:

• D1: Model-level symmetric dataset. It consists of 1, 000 images taken by 25

cameras (each responsible for 40 images). The 25 cameras are of different

models and cover nearly all of the popular camera brands, such as Canon,

Nikon, Olympus, Pentax, Samsung and Sony.

• D2: Model-level asymmetric dataset. 20, 30, 40, 50 and 60 images were alter-

natively chosen from the images taken by the same 25 cameras as in D1.

• D3: Device-level symmetric dataset. It consists of 1, 000 images taken by

50 cameras (each responsible for 20 images). The 50 cameras only cover 12

popular models, so some of them are from the same model.

• D4: Device-level asymmetric dataset. 10, 15, 20, 25 and 30 images were

alternatively chosen from the images taken by the same 50 cameras as in D3.

Notice that the size of each dataset was fixed to 1, 000, while the number of classes,

as well as the ratio of the number of classes to the average size of classes, was

raised in D3 and D4. These four datasets will be used for investigating parameters,

evaluating the capability of the proposed framework in conquering the NC � SC

problem, and comparing the performances of different clustering algorithms on small

datasets. The results on the entire Dresden database can be found in the last part

of Section 4.4.3.

The quality of clustering is characterized in terms of the F1-measure

F = 2 · P · RP +R , (4.17)
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where the average precision rate P and the average recall rate R are calculated as


P =

∑
i |oi|∑
i |ci|

R =

∑
i |oi|∑
i |ψi|

,

(4.18)

where |ci| is the size of cluster ci, |ψi| is the size of the most frequent class ψi in

cluster ci, and |oi| is the size of the overlap between cluster ci and class ψi.

4.4.2 Parameter settings

There are a few parameters that need to be set for our proposed framework. We

will investigate the impact of these parameters on performance and discuss how to

determine the appropriate parameter settings.

The first parameter is the dimension k of the subspace of random projection.

As remarked in [96], we can apply, with a high level of accuracy, the results of con-

ventional random projection, i.e., the i.i.d. entries of R are drawn from the standard

normal distribution N (0, 1), to very sparse random projection. For example, we can

determine the minimum k that achieves an embedding error ε in pairwise correlation

preservation using Theorem 4 3 in [116]. But this gives a very conservative estima-

tion of the minimum k. We drew the distributions of ε for different k using the

camera fingerprints in dataset D1 (n = 1, 000) and D3 (n = 1, 000), as shown in Fig.

4.2(a) and Fig. 4.2(b), respectively. According to Theorem 4 in [116], if we want

to preserve 80% of the pairwise correlations with an error less than ε = 0.005 for a

dataset consisting of n = 1, 000 points, the required minimum k has to be higher

than 2.8 × 106. But as can be seen in Fig. 4.2, the same level of accuracy can be

achieved using k = 65, 536, which is used in all of our experiments.

The second parameter is the binarization threshold tb. For binarizing the

accurate correlation matrix in the fine clustering stage, we set tb = 0.005 to give a

3It states that let Q be a set of n unit-normal points in Rd and R be a random matrix with i.i.d.

entries drawn from N (0, 1). Then for all u,v ∈ Q, Pr(|〈u,v〉 − 〈Ru,Rv〉| ≥ ε) ≤ n2e(2−(ε2−ε3) k
4

).
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Figure 4.2: Probability density functions of the embedding error ε in pairwise
correlations of D1 (a) and D3 (b).

theoretical false positive rate Q(d ∗ tb) ≈ 1.5× 10−7, where Q is the complementary

cumulative density function of the standard normal distribution N (0, 1). However,

the actual false positive rate can be much higher due to the presence of non-unique

artifacts. To see this, we obtained the ROC curves by varying a threshold from −1

to 1 and comparing it with the pairwise correlations of camera fingerprints in D1

and D3, as shown in Fig. 4.3(a) and Fig. 4.3(b), respectively. The false positive rate

is approximately 1 × 10−4 for the model-level dataset D1 and can be even higher

for the device-level dataset D3. To compensate for the errors introduced by random

projection, we increased tb to 0.008 for binarizing the entries of the approximate

correlation matrix in the coarse clustering stage. As shown in Fig. 4.3, tb = 0.008

gives a false positive rate around 2.5×10−2. Note that the much larger false positive

rate in the coarse clustering does not necessarily result in a low precision rate of

the final clustering result, because the coarse clustering is followed by the accurate

fine clustering. To give a practical reference, the curves corresponding to thresholds

in [0.004, 0.006] for the original fingerprint and thresholds in [0.006, 0.01] for the

dimension-reduced fingerprint are highlighted in yellow.

The third parameter is the scaling factor ω of the adaptive threshold τ in

Equation (4.10). It actually determines a point that lies between the means of intra-
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Figure 4.3: ROC curves obtained by varying a threshold from −1 to 1 and
comparing it to the pairwise correlations of camera fingerprints in dataset D1 (a)
and D3 (b).

class and inter-class distributions. To see how ω affects the clustering results, we

conduct experiments on dataset D1. As shown in Fig. 4.4(a), a high ω reduces

the false attribution error, and therefore gives rise to the precision rate. But the

drawback of a high ω is that it produces many small clusters with a size less than

η, which excludes a large amount of images from the final results. As can be seen in

Fig. 4.4(b), the number of clustered images (i.e., the images in clusters with a size

larger than η) decreases as ω goes up. We found that an ω in the range of [0.3, 0.5]

strikes a good balance between the performance and the number of clustered images.

ω is set to 0.45 in our experiments.

The fourth parameter is the score threshold ts in Equation (4.7). Only the

sub-clusters with a score larger than ts are collected for further use in the merge and

attraction stages. Since the score ξ is a function of the cluster size, ts is therefore

closely related with the minimal cluster size η. The effect of these two parameters

on the performance will be investigated jointly. As could be expected, these two

parameters are more sensitive to datasets with small average class size. Therefore,

we clustered the challenging dataset D3 (with a small average class size of 20) using

different combinations of ts ∈ [1, 3] and η ∈ [2, 10]. As can be seen in Fig. 4.5, the

99



4.4 Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Scaling Factor ω

P
er

fo
rm

an
ce

 

 

Precision Rate

Recall Rate

F1−Measure

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

600

700

800

900

1000

Scaling Factor ω

#
 o

f 
cl

u
st

er
ed

 i
m

ag
es

(b)

Figure 4.4: Impact of ω on (a) the clustering performance and (b) the number of
images included in the final results.

larger ts, the better clustering performance. But the trade-off is that a higher ts

makes small sub-clusters less likely to be collected for further investigation, which

limits the capability of discovering small classes and excludes the majority of the

images in the final results, as can be seen in Fig. 4.5(d). ts is therefore set to
√

2 in our experiments to ensure a good capability of discovering small classes. If

applicable, η can be set according to the prior information, such as the average class

size, of the dataset. Otherwise, it is advised to set it to a value that is large enough

for constructing a reliable cluster centroid. We set η = 5 in our experiments.

4.4.3 Analyses

We conduct a series of experiments to investigate: 1) the superiority of the potential-

based eviction over the random eviction, 2) the effectiveness of the adaptive thresh-

old τ , 3) the capability of conquering the NC � SC problem, and 4) the comparison

with other clustering algorithms on both small and large-scale datasets.

Superiority of the potential-based eviction

To demonstrate the advantages of the potential-based eviction (please refer to Equa-

tion (4.6)), we compared it with the random eviction, which is exactly the same as
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Figure 4.5: How the score threshold ts and the size η of the minimal cluster affect
the clustering results. (a) Precision rates. (b) Recall rates. (c) F1-Measures. (d)
Number of clustered images.

the potential-based eviction except that all fingerprints in the previous batch, rather

than those with lower potentials, will be evicted from RAM before loading the next

batch. Suppose n = 5, 000 fingerprints were equally divided into 10 batches (batch

size q = 500), which will be sequentially loaded into RAM. Two synthetic experi-

ments were conducted: in the first experiment, the class number c was fixed to 20 to

simulate the scenario where the NC � SC problem is absent. 1, 000 class distribu-

tions were randomly generated under the constraint that the sum of the class sizes

equals 5, 000. Based on the limited correlation calculations and I/O operations, a

good eviction strategy can well explore the connectivity information of the graph

consisting of fingerprints. Therefore, we used Rd, defined as the ratio of the number
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of discovered edges to the total number of edges of the fingerprint graph, to mea-

sure the effectiveness of eviction strategies. Since the entropy is a good indicator

of the symmetry of one distribution, we used the ratio of the entropy of the class

distribution to that of the uniform distribution as the symmetry measurement Ms.

Specifically,

Ms =
−1

n log2 c

c∑
i=1

ni log2

ni
n
, (4.19)

where ni is the number of fingerprints in the ith class, n is the total number of

fingerprints, and c is the number of classes. The higher the Ms, the more symmetric

the distribution, with 1 indicating the uniform distribution. In the second exper-

iment, the same procedure was repeated with a different c = 500 to simulate the

scenario where the number of classes is higher than the average class size (i.e., the

NC � SC problem is present).

Results of the two experiments are shown in Fig. 4.6(a) and 4.6(b), respec-

tively. As can be seen, Rd of the random eviction stays around the theoretical

value (3nq − 2q2 − n)/(n2 − n) ≈ 0.28, while Rd of the potential-based eviction

are consistently higher than those of the random eviction. As Ms decreases, the

class distribution becomes more unbalanced and the fingerprints from larger classes

tend to have higher potentials. As a result, the edges connecting the fingerprints

from larger classes are more likely to be discovered. Therefore, the advantage of

the potential-based eviction grows as Ms decreases, as more clearly shown in Fig.

4.6(b).

Effectiveness of the adaptive threshold

To investigate the effectiveness of the adaptive threshold τ in Equation (4.10), we

randomly chose 900 images taken by three cameras (each responsible for 300 images),

namely one Agfa DC-830i (referred as Cam 1 ) and two Kodak M1063s (referred as

Cam 2 and Cam 3 ), to simulate the inter-class and intra-class correlation distribu-

102



4.4 Experiments

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
s

R
d

 

 

0.65 0.75 0.85 0.95

Random eviction

Potential−based eviction

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
s

R
d

 

 

0.94 0.95 0.96 0.97

Random eviction

Potential−based eviction

(b)

Figure 4.6: Superiority of the potential-based eviction over the random eviction.
(a) c = 20. (b) c = 500.

tions. Three sets of values of nx and ny, i.e., (nx = 1, ny = 10), (nx = 10, ny = 30)

and (nx = 30, ny = 50), were tested. We first excluded the 300 images acquired

by Cam 3 to simulate the case that two cameras are of different models. The

NCC ρ between two centroids averaged over nx and ny camera fingerprints, which

were randomly selected from the 300 images of Cam 1 and the other 300 images of

Cam 2, respectively, was calculated as one inter-class correlation. To prevent the

same fingerprint from contributing to both centroids, the 300 images of Cam 2 were

equally divided into two groups. nx and ny images were randomly selected from

the two groups and the correlation ρ between the corresponding two centroids was

calculated as one intra-class correlation. As indicated in Equation (4.11), σ2
x and

σ2
y were estimated from the pairwise correlations of the camera fingerprints that

were used to estimate the two centroids, respectively. We repeated the above pro-

cedure 2, 000 times to generate 2, 000 inter-class correlations and 2, 000 intra-class

correlations, which were used to draw the inter-class distribution and intra-class

distribution, respectively. To simulate the case where two cameras are of the same

model, we replaced the images of Cam 1 with those of Cam 3 and repeated the

above procedure again. Comparison with the other two adaptive thresholds pro-
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posed in [114] and [115] were also performed. For the threshold proposed in [114],

we set n = max(nx, ny) to make it applicable to more general cases.
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Figure 4.7: Comparison of the effectiveness of thresholds. The first and second
rows show the results for two cases, i.e., cameras are of different models or the
same model, respectively. From left to right, the columns show the results for four
sets of values, i.e., (nx = 1, ny = 10), (nx = 10, ny = 30) and (nx = 30, ny = 50),
respectively.

As illustrated in the first row of Fig. 4.7, the inter-class distribution remains

unchanged with regard to the increasing nx and ny, while the intra-class distribution

keeps shifting towards the right. The threshold proposed in [114] seems to be working

well for large n, but closer inspection reveals that it almost stays the same with

regard to the increasing n. As a consequence, it is either too conservative for large n

or overly aggressive for small n. Although the threshold proposed in [115] also shifts

to the right, its shift is too aggressively, making some of the intra-class correlations

misclassified as inter-class correlations. In fact, the unsatisfactory performance of

the thresholds in [114] and [115] is to be expected because they only consider the

number of fingerprints and ignore the fact that the correlation also heavily depends

on the quality of fingerprints. That is the key reason why the threshold τ in Equation

(4.10) is capable of adaptively finding a suitable breaking point between the inter-
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class distribution and the intra-class distribution.

Similar results can be observed in the second row of Fig. 4.7, but the inter-

class distribution moves to the right as nx and ny increase due to the non-unique

artifacts shared by devices of the same model. What is worse, in practice it is

possible that the fingerprints used to calculate the centroid are not solely from the

same class due to the potential errors, which probably lengthens the right tail of

the inter-class distribution and the left tail of the intra-class distribution. These

two phenomenons make the two distributions more likely to overlap and therefore

complicate the situation. A threshold indicated in Equation (4.10) approximately

divides the margin evenly between the inter-class distribution and the intra-class

distribution, so it can be expected to deliver a good performance in practice.

Capability of conquering the NC � SC problem

To simulate the NC � SC problem, we cropped 50 image blocks sized 1024× 1024

at 50 different locations from each image in D1, D2, D3 and D4. Since the SPN

is location-based, such a simple and efficient way of image cropping simulates the

process of generating images acquired by different sensors. For example, cropping

50 image blocks at different locations from each of the 40 images taken by one

camera results in 2, 000 image blocks taken by 50 cameras (each accounting for 40

image blocks). Notice that the images blocks cropped from the same image undergo

the same in-camera processing procedures, which possibly introduces non-unique

artifacts and therefore makes the clustering task on the generated datasets even

more challenging. The datasets generated from D1, D2, D3 and D4 are referred to

as D′1, D′2, D′3 and D′4, respectively, each of which consists of 50, 000 image blocks.

The clustering results are presented in Table 4.1, where ng is the ground-truth

class number, nd is the number of the discovered unique classes with a size no smaller

than η in the final clustering results, and the remaining columns show the numbers

of the discovered unique classes in each iteration. As can be seen, the clustering is
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Dataset ng nd
Iteration

1 2 3 4 5

D′1 1, 250 1, 145 586 445 253 58 −
D′2 1, 250 1, 157 601 451 216 67 −
D′3 2, 500 1, 982 637 532 606 304 108
D′4 2, 500 1, 912 638 529 568 279 146

Table 4.1: Clustering results on the generated datasets

finished in a few iterations and the number of the discovered unique classes decreases

significantly after the first few iterations. For the model-level datasets D′1 and D′2,

about 92%∼93% of the classes can be discovered and the clustering can be finished in

less iterations. But for the two more challenging datasets D′3 and D′4, only 76%∼79%

of the classes are discovered mainly due to the small classes in them. Certainly, the

number of the discovered unique classes can be increased by specifying a smaller

η, but given the results in the first column of Fig. 4.7, if the cluster size is small,

it is more likely that the two distributions are overlapped, which gives rise to false

positives or false negatives even an appropriate threshold is chosen. Therefore, if the

discovered clusters are about to be used for further merging or query (e.g., retrieving

the similar clusters for the new incoming fingerprints), it is advisable to specify a

reasonable high η so as to improve the reliability of the system. So it is important to

investigate the performance of the proposed framework when η is set to a relatively

high value.

Further investigations reveal that at least three reasons account for the dif-

ficulties of discovering small classes:

(a) Although the images are rotated to ensure the same horizontal orientation,

they may still be incorrectly rotated (e.g., supposed to be rotated clockwise

but rotated anti-clockwise). As a result, images from the same class are split

into two classes, making small classes even more difficult to be identified.

(b) A threshold tb is specified to binarize the correlations. To achieve high pre-
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cision rate of the clusters, tb should be large enough. But the side effect is

that some fingerprints of the same class will be considered as unrelated due to

the insufficiently large correlations, which has a more severe impact on small

classes due to the limited number of intra-class correlations.

(c) Smaller classes are more sensitive to misclassification. Considering two classes,

one consisting of five fingerprints and the other consisting of ten fingerprints,

if four fingerprints in both the first class and the second class are wrongly

classified, the first class will disappear from the final clustering results, while

there is still a chance to form clusters for the second class.

It is the interplay of these reasons that makes discovering small classes in large-scale

databases very challenging. Considering the fact that the size of classes in D′3 and

D′4 can be as small as 10 or 20, and η is set to a relatively high value 5, 76%∼79%

is a very promising result.

Comparison with other clustering algorithms

In this section, we will compare the proposed clustering framework with other cam-

era fingerprints clustering algorithms. Apart from P, R and F as explained in

Equations (4.17) and (4.18), we will also show the ratio of the number of discovered

unique clusters to the ground-truth class number, i.e., nd/ng. It was observed in our

experiments that the algorithm in [61] performs better and slightly faster than that

in [60], so we will use [61] to represent the hierarchical clustering based algorithms.

For the sake of convenience, we refer to Li’s Markov random field based algorithm

[57] as MRF, Liu’s multi-class spectral clustering based algorithm [58] as SC, and

Villalba’s hierarchical clustering based algorithm [61] as HC. It is worth mention-

ing that 1/5 of the entire dataset is used as the membership committee in the first

iteration of MRF to reduce the computational cost. For the proposed algorithm,

the whole dataset is randomly partitioned into batches of equal size in the coarse
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Quality
Clustering algorithms

MRF [57] SC [58] HC [61] Proposed

P 0.9756 0.2367 0.5080 0.9980
R 0.8205 0.9833 0.8467 0.7320
F 0.8914 0.3816 0.6350 0.8442

nd/ng 25/25 6/25 13/25 25/25

a

Quality
Clustering algorithms

MRF [57] SC [58] HC [61] Proposed

P 0.9533 0.2605 0.5577 0.9879
R 0.8500 1.0000 0.8424 0.7382
F 0.8987 0.4134 0.6711 0.8446

nd/ng 25/25 5/25 15/25 25/25

b

Quality
Clustering algorithms

MRF [57] SC [58] HC [61] Proposed

P 0.8099 0.0600 0.8262 0.9940
R 0.7538 1.0000 0.6681 0.6023
F 0.7809 0.1132 0.7388 0.7499

nd/ng 42/50 3/50 45/50 43.3/50

c

Quality
Clustering algorithms

MRF [57] SC [58] HC [61] Proposed

P 0.7027 0.0301 0.9478 0.9941
R 0.7942 1.0000 0.7236 0.6853
F 0.7456 0.0584 0.8207 0.8111

nd/ng 31/50 1/50 46/50 42.2/50

d

Table 4.2: Comparison of 4 different clustering algorithms on 4 different datasets:
(a) D1, (b) D2, (c) D3, and (d) D4.

clustering stage, so as to give convincing results, we repeated the experiments 10

times and showed the average results for the proposed algorithm.

In the first experiment, four clustering algorithms were tested on the four
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fixed-size small datasets, namely D1, D2, D3 and D4. Results are shown in Table

4.2, where the highest value in each row is highlighted in bold. As can be seen,

SC performs worst among the four algorithms in terms of the F1-measure. The

underlying reasons is that SC terminates when the size of the smallest cluster equals

1. Due to the intrinsic characteristics of the fingerprint, if one camera fingerprint is

severely contaminated, it can easily be regarded as unrelated to all other fingerprints

and result in a singleton cluster. Such premature termination happens more often

when the size of class is small. As a consequence, the number of unique clusters nd

discovered by SC is significantly lower than that of the other three algorithms. MRF

has the best performance on the model-level datasets, but its performance degrades

on the device-level datasets, where the fingerprints of the cameras of the same model

are more ambiguous and misleading for the clustering algorithm. Surprisingly, HC

performs worse on the model-level datasets than on the device-level datasets. We

looked into the clusters generated on the two model-level datasets and found that

there are several large clusters containing the fingerprints from several cameras. So

the rather contradictory results are caused by the incorrect agglomeration at an

earlier stage, which will mislead and spoil the succeeding agglomerations. For the

proposed clustering algorithm, the overall performance is balanced and stable across

different datasets. The precision rate of the proposed algorithm keeps staying at

98%∼100% at the expense of a slightly lower recall rate, around 61%∼73%. This

consequently retains the F1-measure of the proposed algorithm at a favorable level.

But because of the reasons mentioned in Section 4.4.3, some classes in D3 and D4

are missing in the final results.

In the second experiment, we compare the time complexities and the clus-

tering qualities of the four algorithms on various-size datasets. To generate datasets

of various sizes, we incrementally added 1, 000 images captured by 10 cameras (100

images per camera) to an empty dataset until all the 74 cameras in the Dresden

database had been covered. The four algorithms were run and evaluated on each of
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these datasets. For the sake of completeness, we also evaluated the algorithms on

the whole Dresden database, i.e., 15, 840 images.

The running time (in seconds) is shown in Fig. 4.8(a). Since MRF, SC and

HC require the calculation of pairwise correlations before clustering, the time used to

load fingerprints from the disk and calculate the pairwise correlations is highlighted

in green in the stacked bar. For the proposed clustering framework, the time used

to load the projection matrix and calculate random projection is highlighted in pink

in the stacked bar. What can be observed in Fig. 4.8(a) is that MRF is most

time-consuming, followed by HC and SC. One interesting observation comes from

MRF, for which the running time significantly increases by almost 100% when the

image number slightly increases from 7, 000 to 7, 400. It was found that the required

iteration number for the algorithm to converge becomes much higher for the slightly

larger dataset, so the running time of MRF not only depends on the size but also

the characteristics of the dataset, such as the quality of fingerprint and the class

distribution. By applying the dimension reduction technique and the divide-and-

conquer strategy, the running time of the proposed clustering framework is much

lower than those of all the other three algorithms. For example, it only requires

about 45 minutes to cluster the whole Dresden database on our ordinary desktop

machine.

The precision rates, recall rates, F1-measures, and the ratios nd/ng are il-

lustrated in Fig. 4.8(b), 4.8(c), 4.8(d), and 4.8(e), respectively. Compared with the

results given in Table 4.2, the performance of SC becomes better on the datasets

containing large classes, because with more fingerprints in each class, it has a lower

chance to trigger the premature termination. But compared with the other three

algorithms, SC is still the worst algorithm and far from satisfactory. MRF is quite

stable in terms of the recall rate, but the precision rate witnesses a remarkable and

steady decrease as the image number increases, making it unsuitable for large-scale

databases. For HC, both the number of discovered unique clusters and the precision
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Figure 4.8: Running times and clustering qualities of different clustering
algorithms on datasets with various sizes. (a) Running time (in seconds). (b)
Precision rates. (c) Recall rates. (d) F1-Measures. (e) nd/ng.

rate stay at a high level, but its low recall rate indicates that it tends to produce

small-size clusters. Moreover, the sudden increase of the precision rate of HC also

indicates its instability across different datasets. While for the proposed algorithm,

as the size of dataset increases, it not only achieves high and stable performance,

but also discovers all the classes in the database. The high precision rate and the

good capability of discovering classes makes the proposed algorithm attractive in

many practical scenarios.

4.5 Conclusion

In this chapter, a novel clustering framework, without a training process, has been

developed to address the NC � SC problem commonly encountered when clus-
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tering large-scale images based on camera fingerprint. By continually updating the

qualities of clusters and applying the adaptive thresholding, the proposed frame-

work works in a divide-and-conquer manner, and thus can be adopted to large-scale

camera fingerprint databases. In comparison with the state-of-the-art camera fin-

gerprints clustering algorithms, the proposed algorithm is much faster and delivers

good clustering quality, especially for large databases. The high precision rate makes

the proposed framework attractive in many practical applications such as informa-

tion searching and retrieval. However, given the results in Table 4.1 and 4.2, some

small classes cannot be discovered by the proposed algorithm due to the improper

binarization and the potential misclassification errors. In fact, because of the na-

ture of the noise-like camera fingerprints, it is hard to solve this issue especially in

large-scale databases and further studies are needed to work around it. Another line

of our future work will be the parallelization of the proposed framework. Different

stages of the proposed framework, such as the calculation of the approximate corre-

lation matrix, the fine clustering of the coarse clusters, and the centroid attraction

can be processed in parallel. We believe that our research will serve as the effective

tool for clustering large-scale camera fingerprints.

112



CHAPTER 5
Refining SPN-Based Image Forgery Detection

Sensor pattern noise (SPN) can be considered as a spread-spectrum watermark

embedded in every image taken by the source imaging device. It has been effectively

used for localizing forgeries in digital images. The noise residual extracted from the

image in question is compared with the reference SPN in a block-wise manner. If

their normalized cross correlation, which servers as a decision statistic, is below a

pre-determined threshold (e.g., by the Neyman-Pearson criterion), the center pixel

of the window is declared as forged. However, as mentioned in Chapter 2, the

decision statistic is calculated over the forged and the non-forged regions when the

detection block falls near the boundary of the two different regions. As a result, the

pixels of the forged region near the boundary area are likely to be wrongly identified

as genuine ones. To alleviate this problem, in this chapter, we propose an algorithm

to refine the initial detection result along the boundary. We analyze the correlation

distribution in the problematic region and refine the detection by weighting the

decision threshold based on the altered correlation distribution. The effectiveness

of the proposed refining algorithm is validated through the detection results on

simulated image forgeries and three different kinds of realistic image forgeries.

The rest of this chapter is organized as follows. In Section 5.1, we will

revisit the constant false acceptance rate (CFAR) method. In Section 5.2, we will

introduce the missing detection problem arising from the CFAR method. Section 5.3

presents the proposed algorithm and Section 5.4 validates the proposed algorithm by

detecting both simulated and realistic image forgeries. Finally, Section 5.5 concludes

this chapter.
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5.1 Background

Detecting image forgeries is an interesting while very challenging task due to the

variety of image manipulations a user can perform with increasingly powerful image

editing softwares. As mentioned in Chapter 1, active techniques, such as digital

watermarking, are effective in verifying the authenticity of an image, but the re-

quirement of originally embedding into the protected image limits their widespread

use in practice. Therefore, there has been growing interest in passive techniques. As

one of the most promising passive techniques, SPN has been proven to be a powerful

and robust tool for exposing image forgery [6, 8, 9, 72, 75, 117]. Its capability of

detecting image forgeries irrespective of the specific type of forgery arouses wide

attention of the researchers in the field of digital image forensics. In [9], an image

forgery detection technique based on SPN was proposed. In what follows, we will

revisit this algorithm in detail and explain how the missing problem arises from the

constant false acceptance rate (CFAR) criterion it applies.

Like in [9], we formulate the problem of detecting SPN signal in noise residual

w as a binary hypothesis test


h0 : w = v

h1 : w = r + v,

(5.1)

where r is the signal of interest (i.e., the reference SPN) and v is the SPN-irrelevant

noise. If an image region has been tampered with, the SPN signal in noise residual

w of that region is lost. Therefore, image forgeries can be exposed by identifying

the image regions where the SPN signal is absent. Since SPN, by its very nature, is

a very weak noise-like signal, its reliable detection requires jointly processing a large

number of pixel samples, typically in a block-wise manner. For a target pixel qi, a

decision statistic ρi is calculated based on the normalized cross correlation (NCC)
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between wNi and rNi :

ρi =

∑
j∈Ni (wj − w̄)(rj − r̄)√∑

j∈Ni (wj − w̄)2
√∑

j∈Ni(rj − r̄)2
, (5.2)

where Ni is the pixel indices within a n × n sliding detection block centered at qi.

To reveal the forgery, ρi is then compared with a threshold γ:

ûi =


1, ρi < γ

0, otherwise

(5.3)

where ûi ∈ {0, 1} is a binary value indicating the forgery (1 for forgery and 0 for

genuine pixel). γ is usually selected according to the Neyman-Person criterion to

ensure a small false acceptance rate (FAR), i.e., Pr(ûi = 0|ui = 1), with ui ∈ {0, 1}

the ground truth. However, even for the non-forged pixels, the NCC coefficients

might happen to be very low in the image areas of dark, saturated or highly tex-

tured. Based on the correlation predictor proposed in [9] (please refer to Section

2.3.2 for more details), this problem is addressed by predicting the correlation dis-

tribution p(x|h1) and correcting the tampered pixels for which the false rejection
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Figure 5.1: How to determine the thresholds for given inter-camera and intra-camera
correlation distributions.
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rate (misidentifying non-tampered as tampered) higher than a threshold θ, i.e.,

∫ γ

−∞
p(x|h1)dx > θ, (5.4)

to non-tampered. Fig. 5.1 shows how to determine the thresholds γ and θ when

p(x|h0) and p(x|h1) are given.

We would like to spend more words on the estimation of the correlation dis-

tribution under hypothesis h0 and h1 (i.e., p(x|h0) and p(x|h1)). It was observed in

our experiments that if the reference SPN r, is preprocessed by the Wiener Filtering

in DFT domain (WF) [9] or our recently proposed spectrum equalization algorithm

(SEA) [118], p(x|h0) fits quite well with the Gaussian distribution N (0, 1/d), where

d = n × n is the number of pixels within the square detection block. One example

for d = 128×128 is shown in Fig. 5.2, where p(x|h0) is estimated using 19200 im-

age blocks cropped from images taken by other cameras, and p(x|h1) is estimated

using 15360 image blocks cropped from images taken by the same camera. For the

estimation of p(x|h1), we use a Gaussian model rather than the generalized Gaus-

sian model in [9] due to its simplicity. With the help of the correlation predictor
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Figure 5.2: How preprocessing affects the correlation distribution p(x|h0) and
p(x|h1).
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Figure 5.3: Predicted correlations obtained with the correlation predictor proposed
in [9] using 20480 image blocks of size d = 128× 128 pixels for (a) a Canon IXY500
and (b) a Canon IXUS 850IS.

described in Section 2.3.2, the mean and the variance of the Gaussian distribution

are the predicted correlation and the variance of prediction errors, respectively. To

see how well the correlation predictor performs, we showed the predicted and actual

correlations for two cameras, a Canon IXY500 and a Canon IXUS 850IS, in Fig.

5.3(a) and 5.3(b), respectively. As can be seen, most of the points scatter along

the line y = x, which means the predicted correlations agree well with the actual

correlations. However, we have two remarks to make for the correlation predictor:

1. As illustrated in Fig. 5.3(a), the variance at the low end tends to be smaller

than that at the high end. The lower variance is not due to the insufficient

image blocks with correlations at the low end, because the correlations lower

than 0.05 takes up more than 1/3 of the entire population. The result shown

in Fig. 5.3(a) indicates that the prediction error given by the correlation

predictor does depend on the predicted correlation, which is opposite to the

conclusion in [9].

2. In Fig. 5.3(b), there are a small number of outliers lying along the line corre-

sponding to the actual correlation ρ = 0. Further investigation reveals that the

outliers result from the image blocks with low intensities or saturation. These
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outliers are also responsible for the inaccurate variance estimation for p(x|h1),

because the variance is calculated over the entire population of training data.

5.2 Missing Detection Problem

The algorithm proposed in [9] applies the constant false acceptance rate (CFAR)

(i.e., misidentifying a tampered block as non-tampered) method to determine a fixed

threshold. However, as pointed out in [75, 117], when the detection block falls near

the boundary of the tampered and the non-tampered regions, the decision statistic

becomes a weighted average of two different contributions and may lead to a high

false acceptance rate (FAR), as illustrated in Fig. 5.5. This problem can be allevi-

ated by means of hard [117] or soft [75] image segmentation to obtain the boundary

information before detection. These two algorithms share the same essence of mak-

ing use of the extra structure information of the image content, but their drawbacks

are twofold: Firstly, the detection result heavily depends on the quality of image

segmentation or the pilot image [76], but an accurate image segmentation or high-

quality pilot image is not easy to obtain. The second and most critical drawback

is that they are incapable of detecting the occlusive forgery, where objects in the

original scene are hidden by placing a homogeneous background on them, or the

image forgeries based on image inpainting [119, 120] or texture synthesis [121–123].

One example of image inpainting is shown in Fig. 5.4(b), where there is no structure

information in the forged area that can be used for image segmentation.

5.3 Proposed Method

The proposed algorithm aims at improving the resolution of SPN-based image

forgery detection. But unlike the algorithms based on image segmentation, it ap-

proaches the missing detection problem from a different perspective. Starting from

an initial detection, we model how the decision statistic changes as the detection
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(a) (b)

Figure 5.4: An example of image inpainting. (a) Original image (b) Forged image.

block moves across the boundary of two different regions (i.e., tampered and non-

tampered) and adjust the decision threshold accordingly to achieve a more satis-

factory detection. We assume that the d-dimensional signal within the detection

block, either for the estimated rNi or wNi , is standardized to have zero mean and

unit variance, which means each element, rj or wj (j ∈ Ni), is independently drawn

from the identical normal distribution N (0, 1). Presumably, each element in the

standardized signal can be modeled as the sum of the true SPN signal and other

irrelevant interferences: 
wj = xj + αj

rj = yj + βj ,

(5.5)

where xj follows a Gaussian distribution N (0, σ2) and αj conforms to N (0, 1− σ2).

Likewise, yj ∼ N (0, λσ2) and βj ∼ N (0, 1−λσ2). Here, σ2 and λσ2 can be viewed as

the quality of the true SPN signal in wNi and rNi , respectively. Note that λ accounts

for the different qualities of the SPN signal in wNi and rNi . With the standardized

signal, the decision statistic ρi in Equation (5.2) is simplified as

ρi =
1

d

∑
j∈Ni

(xjyj + αjyj + βjxj + αjβj). (5.6)
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If x and y are from two different cameras (i.e., under hypothesis h0), using the

Central Limit Theorem (CLT), ρi follows a Gaussian distribution N (µh0
, σ2

h0
), where

µh0
= 0 and σ2

h0
= 1/d. While under hypothesis h1, we have yi =

√
λxi. Therefore,

Equation (5.6) can be rewritten as

ρi =
1

d

∑
j∈Ni

(
√
λx2

j +
√
λαjxj + βjxj + αjβj). (5.7)

It is known that x2
j/σ

2 follows the Chi-square distribution with 1 degree of freedom,

χ2(1). So based on the assumption that xj , αj and βj are mutually independent,

we can easily arrive at

ρi ∼ N (µh1
, σ2

h1
), (5.8)

where 
µh1

=
√
λσ2

σ2
h1

= (1 + λσ4)/d.

(5.9)

Figure 5.5: The square detection block across the non-tampered region Ω
h1
i and the

tampered region Ω
h0
i .

Equation (5.8) is the decision statistic distribution if the detection block

falls completely on the non-tampered region. To see how the problematic region

is incompatible with the distribution, let us look at Fig. 5.5, which shows a de-

tection block sliding across the non-tampered region the tampered region Ω
h0
i (in

120
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yellow background) and Ω
h1
i (in green background). The decision statistic therefore

becomes a weighted average of two different contributions:

ρi =
1

n
h0
i

∑
j∈Ω

h0
i

(xjyj + αjyj + βjxj + αjβj)

+
1

n
h1
i

∑
j∈Ω

h1
i

(
√
λx2

j +
√
λαjxj + βjxj + αjβj), (5.10)

where n
h0
i and n

h1
i are the number of pixels in Ω

h0
i and Ω

h1
i that surrounds pixel qi,

respectively. xj and yj are independent in the second summation term for region

Ω
h0
i . Therefore,

ρi ∼ N (µ,Σ) (5.11)

where 
µi =

√
λσ2n

h1
i /d

σ2
i = 1/d+ λn

h1
i σ

4/d2,

(5.12)

To drop the unknown λ and σ2, we finally rewrite Equation (5.12) as the form of

weighting µh1
and σ2

h1 
µi = n

h1
i µh1

/d

σ2
i = (n

h1
i dΣ1 + d− nh1

i )/d2,

(5.13)

where d = n
h0
i + n

h1
i . This is the final expression of the distribution of the decision

statistic in the boundary region. As shown in Fig. 5.6, if n
h1
i = 0, which means

the detection block entirely falls in the tampered region, i.e., n
h1
i = d, the decision

statistic ρi conforms to N (µh0
, σ2

h0
). As the block moves away and completely falls

in the non-tampered region, ρi follows the distribution N (µh1
, σ2

h1
). Note that in

Equation 5.13, we only concern about the number of non-tampered pixels, so we

will drop the superscript “h1” for “n
h1
i ” afterwards. After analyzing the correlation

distribution in the problematic area near the boundary of the tampered and the
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non-tampered regions, we therefore propose an algorithm to alleviate the missing

detection problem as follows:

1. Calculate the correlation ρi between the noise residual wNi and the estimated

reference SPN signal rNi within the detection block Ni centered at pixel qi.

2. Estimate the expected correlation ρ̄i and the variance σ2
h1

of the NCC coeffi-

cients under hypothesis h1 using the correlation predictor proposed in [9];

3. Select two thresholds γ and θ to obtain an initial detection result ûi using

Equation (5.3) and (5.4).

4. Obtain the number ni of pixels in the detection block centered at pixel qi that

belong to the non-tampered region by convoluting a n×n matrix of ones with

the initial detection result.

5. Calculate a new threshold γi for each pixel by solving the following equation

1

σi

∫ γi

−∞
e
− (t−µi)

2

2σ2
i dt =

∫ γ

−∞
e−

t2

2 dt, (5.14)

where 
µi = ρ̄ini/d

σ2
i = (σ2

h1
dni + d− ni)/d2.

(5.15)

The purpose of Equation (5.14) is to guarantee the same desired FAR along

the boundary as in other regions according to the altered distribution as for-

mulated in Equation (5.13).

6. Label a pixel qi as tampered (ûi = 1) if ρi < γi.

7. Label a tampered pixel (ûi = 1) as non-tampered if

1√
2πσh1

∫ γ

−∞
e
− (t−ρ̄i)

2

2σ2
h1 dt > θ. (5.16)

122



5.4 Experiments

−0.05 0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

ρ

N (µ0,⌃0)

N (µ1,⌃1)

N (µ,⌃)

N (µh0
, �2

h0
)

N (µh1
, �2

h1
)

N (µ, �2)

Figure 5.6: How the correlation distribution changes as the detection block moves
across the boundary region.

5.4 Experiments

5.4.1 Experimental Setup

In this section, we will report some preliminary experiments meant to support the

idea of weighting the threshold accordingly along the boundary to improve the

detection resolution. Our experiments were carried out on images taken by six

cameras, a Canon IXUS 850IS, a Canon PowerShot A400, a Canon IXY500, a

FujiFilm FinePix S602, a FujiFilm FinePix A920, and a Olympus C730UZ. The

images contain a wide variety of natural indoor and outdoor scenes taken during

holidays, around campus and cities, in offices and laboratories, etc. For each camera,

80 randomly selected natural images were used for training the correlation predictor,

and another 50 blue sky images were used for constructing the reference SPN, which

is further preprocessed by the algorithm proposed in [118] to make the correlation

distribution under hypothesis h0 fit better to the theoretical distribution N (0, 1/d).

Another 100 testing images from each camera (i.e., 600 images in total) will be used

for evaluating the performance of the proposed algorithm. All images have the same

123



5.4 Experiments

size of 1024× 1024 pixels, and were cropped from the central region of the original

images of size 1536 × 2048 pixels. To improve the quality of the noise residual,

the nonlocal denoising filter BM3D [5] was used as the SPN extractor. Note that,

only the green channel of images was considered in our experiments, but better

performance can be expected by combining the results on other two color channels.

5.4.2 Detecting Simulated Forgeries

In the first experiment, we will evaluate the proposed algorithm by detecting sim-

ulated image forgeries. To generate the forged images, we randomly and equally

partitioned the 100 testing images of each camera into 5 groups. Denoted by

Gji [k], i = 1, ..., 6, j = 1, ..., 5, k = 1, ..., 20 is the kth image in the jth group of camera

i. Each of the 5 groups of one camera is paired with one group from other 5 cameras.

In this way, we can obtain 15 paired groups, i.e., {G1
1, G

1
2}, {G2

1, G
1
3}, ..., {G5

5, G
5
6},

as shown in Fig. 5.7. In the paired groups, there is a one-to-one correspondence

between the 20 images in one group and the 20 images in the other group. An im-

age, say G1
1[k], is forged by swapping the central image block with its corresponding

image, i.e., G1
2[k]. By doing so, the images of one camera are forged with the images

from all the other 5 cameras. To study how performance depends on forgery size,

we used forgeries of three sizes (i.e., the size of the swapped central image block),

384 × 384, 256 × 256, and 128 × 128 pixels, creating thus three test subsets of 100

images each. We also used detection blocks of three sizes, 256× 256, 128× 128, and

64 × 64 pixels. The performance is characterized by the ROC (receiver operating

characteristic) curve and the area under ROC curve (AUC). Like in [72], each ROC

is computed by varying γ from −1 to 1 and θ from 0 to 1, and then taking the upper

envelope of the resulting (FPR,TPR) points.

ROC curves obtained with different detection block sizes for different forgery

sizes, as well as the comparisons with the CFAR method [9], are shown in Fig.

5.8. The AUCs for forgeries of size 384 × 384, 256 × 256, and 128 × 128 pixels
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Figure 5.7: 15 paired groups for generating simulated image forgeries.

are presented in Table 5.1, 5.2, and 5.3, respectively. By refining the detection

results along the boundary, the proposed algorithm performs uniformly better than

the CFAR method. But the improvement varies from different forgery sizes and

detection block sizes. Generally speaking, the larger the forgery is, the easier it

can be detected. So it is not surprising to see that both the most significant AUC

improvement 6.99% and the best AUC performance 94.38% are achieved on images

with a forgery size 384 × 384 pixels. What may be rather contradictory to our

expectation is that, a larger detection block does not necessarily result in a better

performance. For example, if a 256 × 256 detection block is used to detect the

forgeries of size 128×128 pixels, the AUC can be as low as around 60%, but a much

higher AUC 88.5% can be obtained with a 64× 64 detection block. Actually, when

a large detection block is used to detect much smaller forgeries, the detectability of

the forgery will be dramatically reduced, because the forged region only accounts

for a small part of the area within the detection block, and the calculated statistics

would become irrelevant. For a reasonably large forgery, say larger than 128× 128

pixels, we found that a detection block of size 128×128 pixels delivers a satisfactory

performance.
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Figure 5.8: ROC curves obtained with different detection block sizes for different
forgery sizes. (a) Forgery size: 384×384, d=256×256. (b) Forgery size: 256×256,
d=256×256. (c) Forgery size: 128×128, d=256×256. (d) Forgery size: 384×384,
d=128×128. (e) Forgery size: 256×256, d=128×128. (f) Forgery size: 128×128,
d=128×128. (g) Forgery size: 384×384, d=64×64. (h) Forgery size: 256×256,
d=64×64. (i) Forgery size: 128×128, d=64×64.

AUCs
Detection block size d

256×256 128×128 64×64

CFAR 0.8393 0.8933 0.9006
Refined 0.9052 0.9438 0.9376

Table 5.1: AUCs for forgeries of size 384× 384 pixels.

126



5.4 Experiments

AUCs
Detection block size d

256×256 128×128 64×64

CFAR 0.7803 0.8709 0.8678
Refined 0.8425 0.9219 0.9235

Table 5.2: AUCs for forgeries of size 256× 256 pixels.

AUCs
Detection block size d

256×256 128×128 64×64

CFAR 0.6078 0.7727 0.8358
Refined 0.6101 0.8321 0.8850

Table 5.3: AUCs for forgeries of size 128× 128 pixels.

5.4.3 Detecting Realistic Forgeries

Apart from detecting the simulated image forgeries, it would be interesting to see the

performance of the proposed algorithm on detecting realistic image forgeries. To this

end, we generated three forged images using different types of forgery techniques.

As shown in Fig. 5.9-5.11, three different types of forgeries were involved:

• Scaling forgery (image 1): A direction board in an image taken by FujiFilm

FinePix A920 is enlarged.

• Cut-and-paste forgery (image 2): A car in an image is cut and pasted onto

another image. The two images are both taken by Olympus C730UZ.

• Copy-and-move forgery (image 3): A computer in an image taken by Canon

IXY500 is copied and moved to a new location in the same image.

All the three forged images have the same size of 1536× 2048 pixels.

We attempt to compare the proposed algorithm, which weights the threshold

controlling the FAR in boundary region, with the method based on the constant false

acceptance rate (CFAR) decision rule in [9]. The detection results shown in Fig.

5.9, 5.10 and 5.11, were obtained with detection blocks of sizes 256× 256, 128× 128
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and 64× 64 pixels. γ and θ were set to 0.01 and 0.05, respectively. The forged area

is highlighted in white, the correctly detected area is highlighted in green, while the

area falsely labeled as tampered is highlighted in red. The AUCs for image 1, image

2, and image 3 are shown in Table 5.4, 5.5, and 5.6, respectively.

The first image is a simple case, where an enlarged direction board is placed

on a smooth and bright wall. It is not surprising to see both the proposed algorithm

and CFAR can accurately detect the forged area even using a detection block as small

as 64 × 64 pixels. But the proposed refining algorithm clearly does a better job in

the upper and the bottom boundary of the forged direction board. Furthermore,

most of the “holes” in the middle of the forged area are filled up by the proposed

refining algorithm. The second columns of Fig 5.9-5.11 show the detection results of

the cut-and-paste forgery. As can be seen, the false positives are hard to avoid due

to the dark area of the traffic lights and the complex background, e.g., trees and

grass. In spite of the slightly more false positives, most of the forged car is reliably

detected. Similar result can be observed in detecting smaller tampered area, as

shown in the third columns of Fig. 5.9-5.11. The refined detection result reveals

part of the forgery in the stand of the monitor, which is almost ignored by CFAR.

Given the detection results in Fig. 5.9, we would like to point out the funda-

mental differences between our proposed refining algorithm and the image dilation

operation used as a post-processing step in [9]. If we compare the detection results

of image 2 given by the CFAR method and the proposed refining algorithm in Fig.

5.9, we will find that the refining algorithm extends the detected areas in the bot-

tom and the right part of the forged car, but it does not further extend the false

positive area on the upper-left corner of the forged car. In other words, the proposed

algorithm refines the boundary area by considering the neighboring information. It

is fundamentally different from the isotropic image dilation operation, which indis-

criminately enlarges the boundaries of forged regions and heavily depends on the

shape and size of the applied structuring kernel.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.9: Forgery detection results for scaling (the first column), copy-and-move
(the second column) and cut-and-paste (the third row) forgery using a detection
block of 256 × 256 pixels. (a) Original image. (b) Forged image. (c) Predicted
correlation field. (d) Actual correlation field. (e) Detection result by CFAR. (f)
Refined detection result by our proposed algorithm.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.10: Forgery detection results for scaling (the first column), copy-and-move
(the second column) and cut-and-paste (the third row) forgery using a detection
block of 128 × 128 pixels. (a) Original image. (b) Forged image. (c) Predicted
correlation field. (d) Actual correlation field. (e) Detection result by CFAR. (f)
Refined detection result by our proposed algorithm.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.11: Forgery detection results for scaling (the first column), copy-and-move
(the second column) and cut-and-paste (the third row) forgery using a detection
block of 64 × 64 pixels. (a) Original image. (b) Forged image. (c) Predicted
correlation field. (d) Actual correlation field. (e) Detection result by CFAR. (f)
Refined detection result by our proposed algorithm.
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We also show the ROC curves obtained with detection blocks of different

sizes in Fig. 5.12 and report the AUCs in Table 5.4-5.6. By revealing more possible

forgeries along the boundary, the refined detection result apparently fits more closely

to the actual shape of the tampered area, which can potentially provide the forensic

investigator with more detailed information. What can be seen in Fig. 5.12 is that

the superiority of the refining algorithm seems more evident in the more challenging

detection tasks. The AUC improvement on image 1 is very limited, but on more

challenging image 2 and 3, the AUC improvement can be as high as 4.4%. It is

worth mentioning that when a small detection block of size 64×64 pixels is used, the

performance drops dramatically on image 2 due to its complex image background.

AUCs
Detection block size d

256×256 128×128 64×64

CFAR 0.9977 0.9985 0.9974
Refined 0.9989 0.9995 0.9992

Table 5.4: AUCs on image 1.

AUCs
Detection block size d

256×256 128×128 64×64

CFAR 0.9831 0.9563 0.8651
Refined 0.9944 0.9802 0.9092

Table 5.5: AUCs on image 2.

AUCs
Detection block size d

256×256 128×128 64×64

CFAR 0.9587 0.9522 0.9412
Refined 0.9882 0.9765 0.9604

Table 5.6: AUCs on image 3.
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Figure 5.12: ROC curves for three forged images obtained with different detection
block sizes. (a) Image 1, d=256×256. (b) Image 2, d=256×256. (c) Image 3,
d=256×256. (d) Image 1, d=128×128. (e) Image 2, d=128×128. (f) Image 3,
d=128×128. (g) Image 1, d=64×64. (h) Image 2, d=64×64. (i) Image 3, d=64×64.

5.5 Conclusion

In this chapter, we have proposed a refining scheme for SPN-based detection of

image forgeries. We model the correlation distribution near the boundary across

the tampered and non-tampered regions and weight the threshold accordingly to

achieve the desired false acceptance rate. Despite some possible false positives (e.g.,

γ is set too small), the overall better performance has been verified in the tasks

of detecting both large-scale simulated image forgeries and three different types
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of realistic image forgeries. We believe that the proposed refining algorithm will

facilitate forensic investigators to get a more accurate detection result.
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CHAPTER 6
Conclusions and Future Work

The work presented in this thesis has been concerned with digital image forensic

techniques based on sensor pattern noise (SPN). Since SPN has been proven to be an

effective and robust form of device fingerprint, it has attracted considerable attention

due to its attractive characteristics such as uniqueness to individual devices, stability

over environmental conditions, and robustness against common image processing

operations. It has been successfully used for identifying the source device, linking

devices, and image forgery detection. In this thesis, a novel preprocessing algorithm

that suppresses the non-unique artifacts, shared amongst cameras subjected to the

same or similar in-camera processing procedures, has been proposed in Chapter 3 to

reduce the false positives for SPN-based source camera identification. A clustering

framework that deals with large-scale device fingerprint databases was also proposed

in Chapter 4. It is capable of addressing the NC � SC problem without a training

process and delivers a good clustering performance. Finally, for the task of image

forgery detection based on SPN, a refining algorithm was presented in Chapter 5 to

overcome the missing detection problem along the boundary area of the forged and

non-forged regions. The following three sections summarize the key contributions

and draw conclusions with regard to the three proposed algorithms. The directions

for future research will be given in the last section of this chapter.
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6.1 Preprocessing Reference SPN via Spectrum Equal-

ization

The performance of SPN-based source camera identification heavily relies on the

quality of SPN, which might be severely contaminated by image content, dark cur-

rent noise, shot noise, and periodic artifacts introduced by periodic in-camera pro-

cessing procedures, such as periodic sensor operations, color interpolation and JPEG

compression. These non-unique periodic artifacts are usually shared among the cam-

eras of the same model or brand, and often give rise to false identifications. There

are existing approaches aiming at suppressing these undesired periodic artifacts, but

we found that these approaches only suppress part of the periodic artifacts and leave

room for improvement.

Since the periodic artifacts manifest themselves as salient peaks in the DFT

spectrum of the reference SPN, we, therefore, proposed a spectrum equalization

algorithm (SEA) in Chapter 3 to detect and suppress the peaks in the spectrum.

Combined with six SPN extraction methods, the effectiveness of the proposed algo-

rithm was evaluated on the Dresden image database [53, 91] and compared to the

state-of-the-art preprocessing schemes in terms of both overall ROC curve and the

kappa statistic computed from a confusion matrix. The experimental results [118]

showed that the proposed algorithm can significantly improve the performance de-

pending on the size of image blocks. For example, the true positive rate at the false

positive rate of 1×10−3 can be improved by 10% ∼ 20% when the image block is

small (e.g., 256 × 256 pixels). Apart from the effectiveness of the proposed algo-

rithm, we also investigated its robustness against JPEG compression on our own

uncompressed image database. We found that SEA tends to be more robust against

JPEG compression for medium (256×256 pixels) and small (128×128 pixels) image

blocks, but ZM+WF outperforms SEA in the case of large image blocks (1024×1024

pixels).
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As mentioned in [53], some unexpected artifacts, which may stem from the

dependencies between sensor noise and special camera settings or some advanced in-

camera post-processing, were observed in the images taken by Nikon CoolPix S710,

FujiFilm FinePix J50 and Casio EX-150. So we conducted independent experiments

and presented detailed analyses for these three cameras. Despite no performance

improvement on large image blocks, the significantly better performance on medium

and small image blocks makes the proposed algorithm still favorable in digital cam-

corder identification and image/video forgery localization.

6.2 Large-Scale Image Clustering Based on Device Fin-

gerprints

In some forensic circumstances, it is desirable to cluster images into a number of

groups, each including the images captured by the same device, so that the foren-

sic investigators can link different crime scenes and evidence. This task can be

accomplished by resorting to the use of the SPNs (camera fingerprints) extracted

from images. Several approaches have been proposed to cluster device fingerprints,

but all of them are performed on the pairwise similarity matrix, which could be

computationally expensive to obtain for large-scale and high-dimensional camera

fingerprint databases. The difficulties of clustering large-scale camera fingerprint

databases can be further aggravated when the Number of Classes (i.e., the number

of cameras) is much higher than the average Size of Class (i.e., the number of images

acquired by each camera). We refer to this as the NC � SC problem, which is not

uncommon in many practical scenarios.

In view of the limitations of existing clustering algorithms, we proposed a

clustering framework for large-scale camera fingerprint databases that is capable

of addressing the NC � SC problem in Chapter 4. By taking advantage of the

dimension reduction and the sparseness of the similarity matrix, we first coarsely
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partitioned the entire database into small batches while keeping most of the fin-

gerprints of the same camera in the same batch. When calculating the similarities

between fingerprints, we applied the potential-based eviction strategy to guarantee

that larger classes will be clustered preferentially. Accurate clustering is then per-

formed on each of the small batches to produce a number of sub-clusters, which

will be merged based on an adaptive threshold calculated according to the quality

and size of the sub-clusters. The centroids of the merged clusters will be used as

“attractors” to classify the remaining fingerprints in the database based on their

similarities to the “attractors”. The above procedures will be repeated until all

fingerprints have been clustered.

The results on the Dresden image database showed that it exhibits high ca-

pability of conquering the NC � SC problem. For a challenging dataset consisting

of 50000 fingerprints with NC = 2500 and SC = 20, around 80% classes can be

identified. Compared to other camera fingerprint clustering algorithms, it has a

comparable performance on small datasets, but it is much faster and achieves a

better clustering quality than other clustering algorithms. Furthermore, it outputs

clusters with high purity, which make it attractive in many practical applications,

such as information searching and retrieval.

6.3 Refining Image Forgery Detection Based on SPN

SPN serves as the fingerprint of a camera, so image forgeries in the images taken

by the camera can be revealed by detecting the absence of the SPN signal. Because

SPN is a very weak signal, its reliable detection requires the joint process of a large

number of pixels. Therefore, SPN-based image forgery detection usually works in a

block-wise manner. The center pixel of a detection block is deemed to be forged if the

test statistic calculated on all the pixels within the detection block is smaller than

a predefined threshold. However, when the detection block falls near the boundary
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between the forged and non-forged regions, the test statistic is a weighting average

of two different contributions, which results in missing detection along the boundary.

Image level segmentation can be used to alleviate this problem, but it is helpless in

the scenario where the “occlusive” forgeries present.

In Chapter 5, we proposed a refining algorithm to address the missing detec-

tion problem along the boundary between the forged and non-forged regions. We

first detected the image forgeries using the constant false acceptance rate (CFAR)

method described in Section 2.3.2. With the initial guess of the boundary between

the forged and non-forged regions given by CFAR method, we analyzed how the test

statistic changes when the detection block moves across the boundary and adjusted

the decision threshold accordingly to correct the falsely identified pixels.

The improvement brought about by the proposed refining algorithm has been

confirmed by a large set of random forged images and three realistic forgery exam-

ples. We found that the improvement in terms of area under ROC curve (AUC)

can be as high as 5.4% depending on the size of detection block and the difficulty of

detection. Furthermore, the refined detection result apparently fits more closely to

the actual shape of the tampered area, which can potentially provide the forensic

investigator with more detailed information.

6.4 Future Research Directions

This thesis focuses on three tasks of digital image forensics, namely source cam-

era identification, source-oriented image clustering and image forgery detection, by

resorting to the use of SPN. Actually, digital image forensics is only a branch of mul-

timedia forensics, which is a much more broad and diverse discipline encompassing

the recovery and investigation of multimedia signals (audio, images and videos). A

multitude of directions for future work are opening up in front of us. Some possible

lines of investigations are as follows.
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1. In the SPN-based forensic tasks, a threshold has to be determined for decision-

making. This is usually done by applying the Neyman-Pearson criterion based

on the inter-class distribution. The problem is that the Neyman-Pearson cri-

terion only concerns about the inter-class distribution but without considering

the intra-class distribution. As a result, the threshold given by the Neyman-

Pearson criterion is not “optimal” in most cases. Taking SPN-based image

forgery detection as an example, the threshold determined by the Neyman-

Pearson criterion only guarantees that the false positive rate does not exceed

a user-defined value, but it might not be the threshold that “optimally” sep-

arates the forged and non-forged regions. A good threshold should be the

one concerns both the inter-class and inter-class distribution, the latter of

which heavily depends on the quality of SPN. However, this is very challeng-

ing because the quality of SPN is affected by many forms of interferences. We

presented a method to roughly estimate the quality of SPN in [124] and will

continue to improve it.

2. In [124], we modeled the true SPN signal as independent and identically dis-

tributed (i.i.d.) White Gaussian Noise in very noisy background and developed

an ad-hoc clustering algorithm to address the NC � SC problem (i.e., the

Number of Classes is much higher than the average Size of Class) in large-scale

source oriented image clustering. We may have found a special case for a more

generic problem (e.g., when the i.i.d. assumption does not hold), which can

be applied to other modality of large-scale datasets and therefore is worthy of

further study.

3. As mentioned in Chapter 4, small classes may disappear in the final results due

to the inappropriate binarization. The difficulty of determining an appropriate

binarization threshold comes from the varying quality of SPN. In [57], K-

means (K = 2) was used to adaptively determine the reference similarity that
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separates the inter-class and intra-class distribution. We also found that this

problem is also closely related with the problem of clustering data with various

densities. We will carry out further investigations to solve this problem.

4. Chen et al. proposed a correlation predictor in [9] to estimate the intra-class

distribution. They assumed that there is a linear relationship between the

correlations and the extracted image features and their second-order terms

(for more details, please refer to Section 2.3.2). However, we found in our

experiments that they do not strictly conform to a linear relationship, which

is largely responsible for the prediction errors. Therefore, another line of our

future research is to design a better and more robust correlation predictor.
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APPENDIX A
Derivation of Correlation Distribution

To simplify the derivation of the correlation distribution, some assumptions have to

be made. Following the assumptions in [125], we assume that each d-dimensional

fingerprint has the same quality and is standardized to have zero mean and unit vari-

ance before calculating the correlation. Presumably, each standardized fingerprint

can be modeled as the sum of the true SPN fi and other interferences αi:

F [i] = fi + αi, i = 1, 2, 3, ..., d, (A.1)

where d is the length of the estimated fingerprint, fi follows a normal distribution

N (0, σ2) and αi∼N (0, 1 − σ2) is White Gaussian Noise (WGN). For convenience,

σ2 will be referred to as the quality of the true SPN, while 1−σ2 will be referred to

as the level of the interferences in the standardized fingerprint. We further assume

that the fingerprints of two different cameras are independent. The normalized cross

correlation (NCC) ρ between two fingerprints or centroids, X and Y , is given in

Equation (4.3), where X̂[i]=xi + αi, Ŷ [i]=yi + βi, xi∼N (0, σ2
x), αi∼N (0, 1 − σ2

x),

yi∼N (0, σ2
y), and βi∼N (0, 1− σ2

y). Therefore, we can rewrite Equation (4.3) as

ρ(X,Y ) =
1

d

d∑
i=1

(xiyi + αiyi + βixi + αiβi). (A.2)

When it comes to the situation of determining whether to merge two clusters, we will

consider the two centroids averaged over the nx fingerprints in one cluster and the ny

fingerprints in the other cluster, respectively. Next, we will derive the distribution

of inter-class correlation and intra-class correlation in different scenarios.
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A.0.1 Scenario 1: nx=ny=1, σ2
x 6= σ2

y

In this scenario, we assume the qualities of the true SPN in X and Y are different.

Notice that it does not conflict with the assumption that the true SPNs of the

same class are of the same quality. Because even the qualities of the true SPN in

all individual fingerprints are the same, when different numbers of fingerprints are

averaged to estimate the centroids, the qualities of the true SPN in the resultant

centroids may vary significantly. In this scenario, although X and Y are referred

to as two fingerprints with different qualities, they can actually be viewed as two

centroids averaged over two clusters with different numbers of fingerprints. Under

this circumstance, we assume xi∼N (0, σ2), αi∼N (0, 1 − σ2), yi∼N (0, λσ2) and

βi∼N (0, 1 − λσ2). For two fingerprints of different cameras, using the Central

Limit Theorem (CLT), ρ(X,Y ) approaches to a normal distributionN (0, 1/d) when

d → ∞. But if X and Y are of the same camera, we have yi=
√
λxi. Therefore,

Equation (A.2) can be rewritten as

ρ(X,Y ) =
1

d

d∑
i=1

(
√
λx2

i +
√
λαixi + βixi + αiβi). (A.3)

It is known that xi∼N (0, σ2), therefore x2
i /σ

2 follows the Chi-squared distribution

with 1 degree of freedom χ2(1). We can easily obtain the mean and variance for x2
i :

E[x2
i ]=σ

2, V ar[x2
i ]=2σ4. Based on the assumption that xi, αi, and βi are mutually

independent, we can easily derive the mean and variance of the ith element as


E[
√
λx2

i +
√
λαixi + βixi + αiβi] =

√
λσ2

V ar[
√
λx2

i +
√
λαixi + βixi + αiβi] = 1 + λσ4.

(A.4)

According to CLT, when d→∞,

ρ(X,Y )
d−→ N (µ1,Σ1), (A.5)
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where 
µ1 =

√
λσ2

Σ1 = (1 + λσ4)/d.

(A.6)

A.0.2 Scenario 2: nx > 1, ny > 1, σ2
x 6= σ2

y

Suppose X and Y are two centroids generated by averaging nx fingerprints and

ny fingerprints, respectively. In this more complicated and general scenario, if we

can figure out the qualities of the true SPN in X and Y , then we can use the

conclusion of Scenario 1 to determine the distribution of the correlation between X

and Y . For the centroids from two different classes, we still have the same conclusion

ρ(X,Y )
d−→ N (0, 1/d). For two centroids from the same class, we assume that the

qualities of the true SPN in all individual fingerprints in the same cluster are the

same, σ2. If n such fingerprints are averaged before standardization, the quality

of the true SPN, σ2, remains unchanged, but the level of interferences declines to

(1 − σ2)/n. So after standardization, the quality of the true SPN in the centroid

becomes

σ2

σ2 + (1− σ2)/n
=

nσ2

(n− 1)σ2 + 1
. (A.7)

Replacing n in Equation (A.7) with nx and ny, σ
2 with σ2

x and σ2
y yields the distri-

butions for the ith element of the two centroids:
xi ∼ N (0, nxσ

2
x/[(nx − 1)σ2

x + 1])

αi ∼ N (0, (1− σ2
x)/[(nx − 1)σ2

x + 1])

(A.8)

and 
yi ∼ N (0, nyσ

2
y/[(ny − 1)σ2

y + 1])

βi ∼ N (0, (1− σ2
y)/[(ny − 1)σ2

y + 1]).

(A.9)

144



Following the conclusion of Scenario 1, when d→∞, the distribution of ρ between

two centroids of the same class approaches to a normal distribution

ρ(X,Y )
d−→ N (µ2,Σ2), (A.10)

where 
µ2 =

√
nxnyσ2

xσ
2
y

[(nx−1)σ2
x+1][(ny−1)σ2

y+1]

Σ2 =
nxnyσ2

xσ
2
y+[(nx−1)σ2

x+1][(ny−1)σ2
y+1]

[(nx−1)σ2
x+1][(ny−1)σ2

y+1]d
.

(A.11)

By setting nx=ny=1, Equation (A.11) becomes Equation (A.6). But in practice, λ

varies from different fingerprints, making the intra-class correlation distribution a

Gaussian mixture distribution rather than a unimodal Gaussian distribution. The

mean indicated in Equation (A.11) indicates where most of the correlations are

scattered around.
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