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Abstract 

This thesis examines whether strong exogenous shocks to the sentiment of 

sophisticated financial agents can influence their decision-making. To capture any 

sentiment changes, we use extreme negative events such as terrorist attacks and mass 

shootings. Specifically, we conjecture that financial agents that are local to these 

events during the period of the attacks should experience strong negative feelings 

related to fear and anxiety, which in turn would affect their decisions. 

In the first chapter, we examine whether terrorist attacks and mass shootings 

tend to affect the earnings forecasts of sell-side equity analysts. Our findings suggest 

that analysts located near these events are more likely to issue pessimistic forecasts. 

This effect becomes stronger when the distance between the analyst and the event 

decreases, when fewer days separate the event and the forecast, and when the analyst 

resides in a region with low murder rate. Interestingly, pessimistic analyst forecasts 

are more accurate since the negative sentiment induced by terrorist events partially 

mitigates the well-documented optimism bias among equity analysts.   

In the second chapter, we focus on corporate managers and examine whether 

they apply different firm policies when they are exposed to such negative events. Our 

results show that local firms around attack periods increase cash holdings, and reduce 

R&D expenditure and long-term leverage. These effects are temporary, and become 

weaker as the firm-event distance increases. Further, we show that these effects are 

mainly concentrated in firms managed by younger CEOs, and tend to be larger for 

events with greater media coverage.  

In the third chapter, we show that institutional investors located near these 

terrorist events tend to increase their selling propensity around that time period. 

Similar to previous chapters, we find that this effect becomes stronger as the 

geographical proximity of investors to the location of the attacks increases, and when 

investors trade near the date of the attacks. However, these effects are less 

pronounced for firms which entail higher transaction costs such as small-sized firms, 

illiquid firms, and firms with volatile and skewed stock returns. Such trading 
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behavior has a negative impact on the quarterly trading performance of institutional 

investors and on stock returns. 

Overall, our findings are consistent with the view that strong negative shocks to 

sentiment, induced by extreme negative events, can significantly affect the decision-

making of sophisticated financial agents such as sell-side analysts, corporate 

managers and institutional investors. 
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Overview 

A number of studies in psychology suggest that individuals who experience a strong 

negative shock to their sentiment alter their risk assessment and in turn their decision-

making (e.g., Johnson and Tversky, 1983; Slovic, Finucane, Peters and MacGregor, 

2002). Despite the common belief about the sophistication of financial agents, several 

studies document that these agents are also susceptible to cognitive biases that affect 

their beliefs, and influence their financial decisions (Barberis and Thaler, 2002; Baker 

and Wurgler, 2012). Motivated by this evidence, this thesis examines whether 

sophisticated financial agents, such as sell-side analysts, corporate managers and 

institutional investors, tend to change their financial decisions as a result of strong 

exogenous negative shocks to their sentiment. 

Since sentiment is unobservable, we focus on the decisions of financial agents 

located near terrorist attacks and mass shootings in the U.S. Such events can cultivate 

strong negative sentiment in population, because their random nature highlights that 

anyone is potentially vulnerable. Further, this effect will be particularly intense for 

local agents, because they are more likely to interact with (or hear about) people 

directly affected by the event (Galea, Ahern, Resnick, Kilpatrick, Bucuvalas, Gold 

and Vlahov, 2002; Hughes, Brymer, Chiu, Fairbank, Jones, Pynoos, Rothwell, 

Steinberg and Kessler, 2011). Following this evidence, we conjecture that financial 

agents located near terrorist attacks and mass shootings will experience stronger 

negative sentiment around the time period of the attacks, which in turn will affect 

their financial decisions. 

In the first chapter of this thesis, we focus on the earnings forecasts of sell-side 

equity analysts. Sell-side analysts tend to have an important monitoring role on firms 

(Jensen and Meckling, 1976), while their forecasts can significantly influence the 

investment decisions of both retail and institutional investors (Malmendier and 

Shanthikumar, 2007).  

Specifically, a number of studies show that sell-side analysts incorporate past 

released public information and new information in their forecasts, acting as 



xii 

information intermediaries (Asquith, Mikhail. and Au, 2005; Frankel, Kothari, and 

Weber, 2006; Lui, Markov, and Tamayo, 2012). Analysts with high forecast accuracy 

tend to have better career prospects (Hong and Kubik, 2003), make bolder forecasts 

(Clement and Tse, 2005), increase their customer base and enhance their reputation 

(Stickel, 1992; Hilary and Hsu, 2013). However, their accuracy is subject to several 

personal characteristics related to experience (Clement, 1999; Clement, Koonce, and 

Lopez, 2007), expertise (Boni and Womack, 2006; Kadan, Madureira, Wang, and 

Zach, 2012), locality (Malloy, 2005; Bae, Stulz, and Tan, 2008), gender (Kumar, 

2010) and interpersonal relations (Cohen, Frazzini, and Malloy, 2010).  

Further, several studies support that sell-side analysts often provide biased 

forecasts, which are driven from psychological traits and cognitive factors. More 

specifically, Hilary and Menzly (2006) examine whether analysts become 

overconfident when they predict past earnings more accurately than the median 

analyst. Their findings suggest that analysts with short-lived success often 

overestimate their ability to forecast future earnings. Easterwood and Nutt (1999) find 

that analysts underreact to negative information and overreact to positive, while Cen, 

Hilary, and Wei (2013) support that analyst forecasts suffer from the anchoring bias 

since they are driven by the industry norm. This chapter contributes to this literature 

by providing new evidence which support that sell-side analysts who are exposed to 

terrorist events and experience strong negative sentiment, tend to issue more 

pessimistic earnings forecasts. 

In the second chapter, we examine the impact of terrorist attacks and mass 

shootings on the decision-making of corporate managers. We focus on corporate 

managers due to their direct association with the prospects of the firms, and in turn 

with shareholder value (Bertrand and Schoar, 2003; Adams, Almeida, and Ferreira, 

2005; Kaplan, Klebanov, and Sorensen, 2012).  

As a consequence, several studies in finance literature examine how behavioral 

biases can cause variation in corporate policies across firms. In particular, 

Malmendier and Tate (2005) show that overconfident managers tend to overinvest 

when they have abundant internal funds, while Malmendier and Tate (2008) argue 
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that overconfident managers engage in value-destroying mergers and acquisitions. 

Landier and Thesmar (2009) and Hirshleifer, Low, and Teoh (2012) show that 

overconfidence affects decisions related to capital structure and R&D expenditure, 

respectively. Further, Dessaint and Matray (2016) and Hutton, Jiang, and Kumar 

(2014) show that corporate policies are affected by the availability heuristic and 

managerial conservatism, respectively. Other related research shows that CEOs’ 

personality traits affect choices related to capital structure and acquisition activity 

(Malmendier, Tate, and Yan, 2011; Cain and McKeon, 2016).  

The second chapter of this thesis contributes to this literature by showing that 

strong negative sentiment cultivated from proximity to terrorist events can also affect 

corporate policies. Further, the main advantage of our framework reduces concerns 

for potential endogeneity since terrorist attacks and mass shootings occur at random 

locations and time periods (Meyer, 1995; Roberts and Whited, 2012), while at the 

same time they do not illustrate any direct linkage to the economic fundamentals of 

firms. 

In the third chapter of this thesis, we examine whether sophisticated market 

participants such as institutional investors, who are exposed to terrorist attacks and 

mass shootings tend to alter their trading decisions. Institutional investors play a key 

role in the price formation process, since they are thought as rational arbitragers that 

tend to eliminate any price distortions. Therefore, if institutional investors are prone 

to extreme sentiment, we will observe changes in their trading decisions which can 

affect daily stock returns, while price distortions will continue to exist (Nagel, 2005). 

A number of recent studies use several proxies in order to capture fluctuations 

in the sentiment of investors. More specifically, Saunders (1993) and Hirshleifer and 

Shumway (2003) use weather as proxy for investors’ sentiment and show that stock 

returns increase more often in sunny days. A recent study by Goetzmann, Kim, 

Kumar, and Wang (2015) finds that weather can also affect the trading decisions of 

more sophisticated market participants such as institutional investors. Further 

evidence in favor of the existence of mood-related biases is given by Edmans, García, 

and Norli (2007), who employ international soccer results as mood variable and argue 
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that there is a significant decline on stock prices after soccer losses. Accordingly, 

Kaplanski and Levy (2010) focus on aviation disasters in order to capture bad mood, 

anxiety and fear, and find evidence which support that these events can cause a 

decrease on stock prices.  

In comparison to previous studies, the third chapter of this thesis provides a 

new proxy to capture negative shocks in the sentiment of institutional investors. Since 

terrorist attacks and mass shootings occur at random times and locations, this proxy 

allows us to minimize any potential self-selection bias that would be related with the 

location preferences of institutional investors, and potentially with their trading 

activity. Further, in this chapter we contribute to the literature by providing additional 

evidence which suggest that institutional investors are not immune to cognitive 

biases. 

The rest of the thesis is organized as follows. Chapter 1 presents the paper 

regarding the impact of terrorist events on the earnings forecasts of sell-side equity 

analysts. Chapter 2 focuses on corporate managers and provides a detailed analysis 

regarding the effect of terrorist attacks and mass shootings on their corporate 

decision-making. In Chapter 3, we examine whether institutional investors change 

their trading decisions when they experience strong negative sentiment induced from 

terrorist events. Chapter 4 concludes. 
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Chapter 1 
 

Terrorist Attacks, Analyst 

Sentiment, and Earnings Forecasts  

 

1.1. Introduction 

Evidence from psychology suggests that terrorist attacks and mass shootings 

(henceforth, “terrorist attacks”) generate feelings of fear, anxiety and depression 

among the affected people (e.g., Lerner and Keltner, 2001; Lerner, Gonzalez, Small 

and Fischhoff, 2003; Galea, Ahern, Resnick, Kilpatrick, Bucuvalas, Gold and 

Vlahov, 2002; Hughes, Brymer, Chiu, Fairbank, Jones, Pynoos, Rothwell, Steinberg 

and Kessler, 2011).1 Consequently, the “sentiment” and the decisions of individuals 

exposed to such extreme shocks are affected. In particular, people directly exposed to 

extreme negative events are likely to become more pessimistic in their risk 

assessments in unrelated domains (e.g., Lerner and Keltner, 2001; Lerner, et al. 

2003).2  

                                                           
1 For more information on the effects of terrorist attacks and mass shootings, see http://www.apa.org/ 
helpcenter/terrorism.aspx and http://www.apa.org/helpcenter/mass-shooting.aspx. 
2 The key finding from this literature is that people who experience a negative shock to their sentiment 
become more pessimistic in their assessments of risk, and vice-versa (e.g., Johnson and Tversky, 1983; 
Finucane, Alhakami, Slovic, and Johnson, 2000; Slovic, Finucane, Peters and MacGregor, 2002; 
Kuhnen and Knutson, 2011).   

http://www.apa.org/helpcenter/terrorism.aspx
http://www.apa.org/helpcenter/terrorism.aspx
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Motivated by this literature in psychology, we investigate whether equity 

analysts exposed to extreme negative events such as mass shootings and terrorist 

attacks issue relatively more pessimistic earnings forecasts. We focus on the behavior 

of sell-side analysts as they are sophisticated information intermediaries and their 

earnings forecasts significantly influence the investment decisions of both retail and 

institutional investors. Analyst forecasts also affect the speed with which security 

prices incorporate new information.   

Previous studies have examined whether analyst forecasts are affected by 

various behavioral biases and whether those potentially biased analyst forecasts have 

any effect on asset prices (e.g., DeBondt and Thaler 1990; Hilary and Menzly, 2006; 

DeHaan, Madsen and Piotroski, 2015). Our study adds to this literature by examining 

whether extreme negative events that are exogenous to corporate earnings influence 

analyst sentiment and, consequently, their earnings forecasts. This unique economic 

setup allows us to examine whether psychological factors can affect the behavior of 

sophisticated market participants who are more likely to influence asset prices. If 

equity analysts are unbiased aggregators of information, exogenous shocks generated 

by terrorist attacks that are unlikely to affect firm performance should not influence 

their forecasts of corporate earnings.            

We identify analysts who are more likely to be affected by the terrorist attacks 

by measuring the distance between the locations of all analysts and the locations of 

extreme negative events. Our conjecture is that analysts who are located closer to 

terrorist attacks are likely to perceive these events as more salient as they are more 

likely to interact with (or hear about) people who are more directly affected. This can 

create a more “personal” connection between “local” analysts and the event and may 

generate a stronger negative shock to their sentiment. This conjecture is motivated by 

previous studies in psychology, which show that terrorism events generate a larger 

shock to the sentiment of the local community (Vlahov, Galea, Resnick, Ahern, 
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Boscarino, Bucuvalas, Gold and Kilpatrick, 2002; Galea et al., 2002; Hughes et al., 

2011).3 

To test the hypothesis that proximity to terrorist attacks affects analysts’ 

earnings forecasts more strongly, our econometric models compare the forecasts of 

local analysts and analysts who are located farther away. Specifically, we compare 

the local and non-local analyst forecasts for the same firm within a window around 

the terrorist attacks. We expect the forecasts of local analysts to be relatively more 

pessimistic. This empirical framework allows for a relatively accurate test of our 

main hypothesis since we can capture differences in the forecasts of the affected 

group (analysts who are local to terrorist attacks) and the unaffected group (analysts 

who are non-local to the attacks). The two groups are exposed to the same 

fundamental information about firm earnings but only differ in their exposure to the 

terrorist attacks, and, therefore, the shock to their sentiment.4  

In our empirical analysis, we use Thomson Reuters’ Institutional Brokers 

Estimate System (I/B/E/S) and analyze a large sample of quarterly earnings forecasts 

for the 1994-2013 period. We collect information on the dates and locations of 

terrorist attacks from the Global Terrorism Database (GTD), and for mass shootings 

from The Washington Post list (WP), which provides details on the deadliest 

shootings in U.S. history. After applying several filters to ensure that we focus on 

major events that are likely to affect analyst sentiment, we end up with a sample of 28 

extreme events.5 To identify local analysts, we use hand-collected data to measure the 

distance between the location of the attacks and the location of the brokerage house 

where analysts are employed. In our baseline models, analysts who are employed by 
                                                           
3

 An article published by Daily Mail in the U.K. (http://www.dailymail.co.uk/news/article-2870512/In-
Newtown-mental-health-problems-emerging.html) discussed the mental health issues faced by 
residents in Newtown, Connecticut two years after the terrorist attacks in Sandy Hook elementary 
school. Such anecdotal evidence further supports the notion that terrorist attacks and mass shootings 
are likely to exert a stronger impact on the sentiment of the local community.   
4 Kothari (2001) suggests that “apparent” biases in analyst forecasts may arise artificially due to 
different data definitions and treatments across databases, a general survivorship bias, or the effect of 
firm characteristics on the proclivity of analysts to revise their forecasts. We can rule out such 
concerns because our tests compare the forecasts of affected and unaffected analysts for the same 
company at the same time.    
5 In our robustness tests, we also consider a larger sample of negative events identified using less 
stringent criteria for inclusion in the event sample. As expected, our results are similar but weaker. 
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brokerage firms located within a 100-mile radius of the attack are identified as local 

or affected.   

The empirical results are consistent with our broad conjecture. Using logit 

models we find that affected analysts who are local to terrorist attacks are 2.93% 

more likely to issue forecasts that are below the consensus during the 90-day period 

after the attacks. This effect is large compared to other attributes that affect the 

likelihood of a pessimistic forecast. Specifically, among the eight variables in our 

regression model that significantly affect the likelihood of a pessimistic forecast, the 

economic impact of terrorism on affected analysts ranks third, only behind forecast 

horizon and lagged accuracy. We obtain similar findings when we use continuous 

measures of pessimism in ordinary least squares regressions. These results are highly 

statistically significant, supporting our conjecture that proximity to terrorist attacks 

increase analyst pessimism. 

Further, we find that affected analysts are more likely to issue bold pessimistic 

forecasts (i.e., forecasts that are below their last forecast and the consensus) and less 

likely to issue bold optimistic forecasts (i.e., forecasts that are above their last 

forecast and the consensus), as compared to their propensity to issue herding 

forecasts. Since herding forecasts tend to reflect corrections to analysts’ previous 

opinions, whereas bold forecasts reflect analysts’ efforts to bring new information 

into the market, this finding shows that exposure to terrorist attacks and mass 

shootings has a negative impact on the earnings expectations of affected analysts.   

In additional tests that examine the role of geography and timing of forecasts, 

we find that the distance between analysts and attacks is negatively related to the 

likelihood of a pessimistic forecast. The marginal effect associated with the issuance 

of a pessimistic forecast for analysts located within a radius of 0-50 miles from the 

attacks is 2.97%, and the effect decreases to 2.46% (0.84%) for analysts within a 51-

100 mile (101-150 miles) radius. The timing of forecasts has a similar effect, as we 

find that the forecasts by local analysts issued between 0-30 days after the attacks 

have a 4.83% chance of being more pessimistic, which decreases to 2.07% (-0.01%) 

for forecasts issued between 31-90 (91-180) days after the attacks. These effects are 
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consistent with our hypothesis, since attacks that are geographically and temporally 

closer to analysts are more salient, and they are likely to induce a larger adverse 

shock to analyst sentiment.   

Our next set of geography-based tests are motivated by the evidence in 

psychology, which finds that individuals exhibit a stronger emotional reaction to 

violence if they have previously been less exposed to such stimuli (e.g., Anderson 

and Dill, 2000; Krahé, Möller, Huesmann, Kirwil, Felber, and Berger, 2011). 

Specifically, we conjecture that affected analysts who are located in states with lower 

murder rates are likely to issue more pessimistic forecasts than affected analysts who 

reside in states with higher murder rates. The shock element generated by the extreme 

negative events is likely to be higher among analysts in states with low murder rates. 

Our results support this conjecture, as we find that affected analysts in low murder-

rate states are 3.54% more likely to issue pessimistic forecasts. In contrast, affected 

analysts in high murder-rate states are not significantly affected by terrorist attacks. 

Next, we examine whether terrorist attacks influence the forecast accuracy of 

affected analysts in absolute terms, while controlling for various analyst-related 

characteristics and additional fixed effects. Our results show that affected analysts 

issue more accurate forecasts, which is perhaps not surprising since exposure to 

terrorist attacks encourages pessimistic forecasts and therefore counterbalances the 

known tendency of analysts to issue inaccurate forecasts due to optimism related to 

their career concerns (Lin and McNichols, 1998; Michaely and Womack, 1999; Hong 

and Kubik, 2003).  

To further ensure that our results reflect the impact of terrorist attacks on 

analyst sentiment, we examine the behavior of analysts around anniversaries of 

terrorist attacks. Ceremonies are typically held at the location of terrorist attacks to 

commemorate the victims, and those events that remind local individuals of past 

negative experiences are likely to trigger further emotional reactions. To test this 

possibility, we examine whether affected analysts become more pessimistic relative 

to non-affected analysts around the anniversaries of terrorist attacks.  
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Our results show that there is a significant one-year anniversary effect among 

analysts who are geographically as well as temporally closer to an attack and reside in 

states with low murder rates. The anniversary effect is roughly one-half of the effect 

associated with the occurrence of the terrorist attack. This finding suggests that the 

impact of extreme negative events on analyst sentiment is not entirely transitory. In 

addition, these results indicate that our results are unlikely to reflect the effect of 

other factors correlated with the occurrence of terrorist attacks. 

Even though our models control for several variables that are known to affect 

the propensity of analysts to be pessimistic, we conduct several checks to ensure that 

our findings are robust. To control for potential fundamental effects, we test whether 

the pessimism we document only exists around attack periods, or whether it reflects 

pre-existing (and confounding) trends. We do not find any evidence that affected and 

non-affected analysts differ in their forecasts prior to the attacks. We also repeat our 

analysis using a state-level macroeconomic index as an additional control variable, 

which should capture any potential impact of the local macro-economy on the 

forecasting behavior of affected analysts. The inclusion of this index does not change 

any of our findings. Further, we find that our results are robust when we consider 

alternative sample specifications or estimate models that account for unobserved 

heterogeneity through additional fixed effects.   

These results contribute to the accounting and finance literature that examines 

whether analyst forecasts are affected by various behavioral biases. DeBondt and 

Thaler (1990) demonstrate that analysts are influenced by the representativeness 

heuristic and overreact to past earnings information, while Easterwood and Nutt 

(1999) find that analysts underreact to negative information and overreact to positive 

information. We contribute to this literature by showing that analysts 

overreact/underreact not only to corporate news but also to events, such as terrorism 

attacks, which are exogenous to the economic fundamentals of firms. 

More recently, Hilary and Menzly (2006) show that analyst forecasts are 

affected by overconfidence generated by biased self-attribution, and Cen, Hilary and 

Wei (2013) show that analyst forecasts exhibit an industry-related anchoring bias (see 
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also Jiang, Kumar and Law, 2016). In addition, DeHaan, Madsen and Piotroski 

(2015) show that variations in sunlight, which can affect attitude toward risk, affect 

the speed with which analysts incorporate earnings-related information in their 

forecasts. We contribute to this literature by using unpredictable events that tend to 

occur at random locations and time periods provides, such as terrorist attacks, to test 

directly whether an exogenous stimuli to the sentiment of sell-side analysts can affect 

their earnings forecasts. This framework allows us to minimize any self-selection bias 

related to the location preferences of sell-side analysts. 

We also contribute to the broader literature that analyzes the economic impact 

of terrorist attacks and mass shootings. Ahern (2012) shows that terrorist attacks 

influence various psychological indicators of well-being and macroeconomic activity. 

Di Tella and Schargrodsky (2004) and Gould and Stecklov (2009) show that terrorist 

attacks alter government policies, while Gould and Klor (2010) and Montalvo (2011) 

demonstrate that terrorism-related events influence political views and election 

outcomes, respectively. Most recently, Antoniou, Kumar and Maligkris (2016a) show 

that terrorist attacks and mass shootings, through their adverse effect on managerial 

sentiment, influence the riskiness of publicly-traded firms. Our study contributes to 

this literature by showing that terrorist attacks and mass shootings influence analyst 

forecasts and the information dissemination process in financial markets.  

The rest of the paper is organized as follows. We define our data sources and 

the main measures in Section 1.2. The main empirical results are presented in Section 

1.3. In Section 1.4, we present results from various robustness tests and examine 

alternative explanations for our findings. We conclude in Section 1.5 with a brief 

summary. 
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1.2. Data and Methods 

1.2.1. Terrorist Attacks and Mass Shootings Data 

We obtain data on terrorist attacks and mass shootings from the Global Terrorism 

Database (GTD)6 and The Washington Post list (WP),7 respectively. GTD is an open-

source database that contains systematic data on terrorist attacks (START, 2013),8 

while WP illustrates information regarding the deadliest shootings in U.S. history. 

We obtain data regarding the location and the date of each event, covering the period 

1994-2013. Since GTD includes information on terrorist attacks around the world, we 

eliminate any events that have occurred outside the U.S. Further, we consider only 

events that caused human casualties and were covered in newspaper articles,9 since 

these events are more likely to affect sentiment. From the resulting list, we eliminate 

3 duplicate events, 2 events that involved robberies,10 12 events for which we could 

not validate an exact location or the motive for the attack, and 10 events for which 

there are no local analysts around the period of the attacks.11  

                                                           
6 The data are available at http://www.start.umd.edu/gtd/.  
7 The data are available at http://www.washingtonpost.com/wp-srv/special/nation/deadliest-us-
shootings/. 
8 To consider an event as terrorist attack and distinguish it from common criminal activities, we apply 
the following filters as they appear in GTD: Firstly, “The act must be aimed at attaining a political, 
economic, religious, or social goal”; Secondly, “There must be evidence of an intention to coerce, 
intimidate, or convey some other message to a larger audience (or audiences) than the immediate 
victims”; And thirdly, “The action must be outside the context of legitimate warfare activities, i.e. the 
act must be outside the parameters permitted by international humanitarian law (particularly the 
admonition against deliberately targeting civilians or non-combatants)”. 
9 We consider all events covered in at least one major U.S. outlet (The Los Angeles Daily News, The 
NY Daily News, The NY Post, The NY Times, The Wall Street Journal-US edition, The Washington 
Post and USA Today) during the next 7 days after the event.  
10 Since we aim to examine the impact of unpredictable and salient events, we exclude robberies, 
which reflect common criminal activity. 
11 In Chapter 3 of this Thesis, I use Google Trends to validate whether terrorist attacks and mass 
shootings are able to capture the attention of local population during the sample period 2004-2010. 
Since in both Chapters, I used the same filters for the events (i.e. occurred in the US, had at least one 
human casualty, and were covered in major national outlets), we can infer that the events included in 
the sample of this Chapter during the 2004-2010 period are also able to draw the attention of 
individuals around that period. 
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Table 1.1 lists the 28 events during the 1994-2013 period that are included in 

our final sample. Figure 1.1 shows their geographical dispersion. These attacks are 

spread all across the country, and do not exhibit any obvious regional clustering. 

 

1.2.2. Analyst Forecasts 

We obtain information on quarterly analyst forecasts for U.S. firms traded on the 

NYSE, Amex or NASDAQ from Thomson Reuters’ Institutional Brokers Estimate 

System (I/B/E/S). We delete from our sample forecasts for firms where the 

corresponding stock price information in the Center for Research in Security Prices 

(CRSP) database is missing. We also exclude forecasts made by unidentified analysts 

(i.e., analyst identifier equal to 0) and forecasts for stocks with reported earnings 

measured in a currency other than U.S. dollars. Similar to Easton and Sommers 

(2007), Malmendier and Shanthikumar (2014) and Jiang et al. (2016), our sample 

period starts in 1994 where I/B/E/S data accuracy improves, and extends until 2013. 

As is common in the analyst literature, we retain only the last forecast made by 

each analyst for each company and each quarter (Hong and Kubik, 2003; Jegadeesh, 

Kim, Krische and Lee, 2004; Clement and Tse, 2005). Similar to Lim (2001) and 

Bernhardt, Campello and Kutsoati (2006), we filter for potential entry errors by 

deleting any forecast with an absolute forecast error (forecast minus actual earnings, 

scaled by the previous month-end stock price) greater than 10. To mitigate the 

influence of outliers, we keep only forecasts for firms with average share price higher 

than 5 dollars (Chen and Jiang, 2006; Cen et al., 2013; Malmendier and 

Shanthikumar, 2014). Similar to Hilary and Hsu (2013), we eliminate all forecasts for 

firms that are covered by fewer than five analysts. Finally, we retain forecasts with 

maximum (minimum) horizon of 100 (2) days from the earnings announcement to 

minimize the effect of stale forecasts and information leakage (Jegadeesh et al., 2004; 

Jackson, 2005).  

Our final sample consists of 486,186 forecasts issued by 4,674 analysts for 

3,299 firms during the 1994-2013 period. Figure 1.2 illustrates the distribution of 
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these forecasts across different states. Consistent with the findings in Malloy (2005) 

51.50% of analysts are located in the state of New York and their forecasts make up 

56.32% of the total number of forecasts.  

 

1.2.3. Variable Definitions and Econometric Models  

To capture the likelihood of affected analysts issuing pessimistic earnings forecasts 

following a terrorist attack, we use the following logit estimator: 

                                 P ( Pessimismi,j,t | Zi,j,t ) = F(Zi,j,t)                            (1) 

where i indexes analyst, j indexes firm, and t indexes time (quarter). 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡 

is a dummy variable equal to one if the forecast of analyst i is less than the consensus 

forecast of analysts who cover the same firm j at the same quarter. As in Hong, 

Kubik, and Solomon (2000), the consensus forecast is equal to F�−i,j,t =  1
N−i,j,t

 ∑ F−i,j,t  

where 𝑁𝑁−𝑖𝑖,𝑗𝑗,𝑡𝑡 is the set of all analysts excluding analyst i, ∑𝐹𝐹−𝑖𝑖,𝑗𝑗,𝑡𝑡 is the summation of 

earnings forecast values of all analysts except analyst i who cover firm j in time t, and 

𝐹𝐹�−𝑖𝑖,𝑗𝑗,𝑡𝑡 is the average forecast value of all analysts except analyst i. Additionally, this 

model uses the cumulative standard logistic distribution F, and 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡 takes the 

following form: 

Zi,j,t = c + αstate + δtime + β × Impacti,t + γ × Xi,j,t + εi,j,t             (2) 

Our main variable of interest is 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡 which is a dummy variable that 

equals one if the distance between the location of the analyst and the location of the 

attack is less than 100 miles, and the forecast is issued during the 90-day period 

following the terrorist attack. To calculate the distance between the analyst and the 

event locations, we use hand-collected data on the coordinates of these locations and 

follow the procedure in Vincenty (1975).12 We obtain the coordinates of terrorist 

                                                           
12 Malloy (2005) uses a similar procedure to identify analysts that are local to a firm.   
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attacks using their address and the service called “GPS Geoplaner”.13 To find the 

coordinates of each analyst’s location (measured at the city center where the branch 

office is located),14 we use Gazetteer Files from the U.S. Census Bureau.  

Our models control for a number of forecast, analyst and broker characteristics 

that may be associated with analyst forecasts, indicated in equation (2) as 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡. 

Specifically, we control for the Horizon (the days that separate the forecast from 

analyst i for company j at time t with the corresponding earnings announcement date 

for company j), Brokerage Size (the number of analysts employed in the brokerage of 

analyst i at time t), Lagged Accuracy (measured as the lagged value of Accuracy for 

analyst i’s forecast for company j at time t-1 ), analyst’s general experience (i.e., 

ExperienceGeneral, measured as the number of years since analyst i’s forecast for 

company j at time t and the first forecast by analyst i for any company in the IBES 

database), firm-specific experience (i.e., ExperienceFirm, measured as the number of 

years analyst i covers firm j), and the number of industries that an analyst follows 

(i.e., Industries, defined as the number of two-digit SIC codes analyst i covers at time 

t) (Clement and Tse, 2005; Cohen, Frazzini and Malloy, 2010; Walther and Willis, 

2013).  

Malloy (2005) finds that analysts who work near the firms they cover are more 

accurate, which may affect their propensity to issue pessimistic forecasts. To control 

for such effects, we include the variable Local in our regression specification, which 

is the distance between analyst and firm locations.15 Following the findings in Kumar 

(2010) that analysts’ gender affects their forecasts, we include the dummy variable 

Female. Finally, to further control for analysts’ ability and reputation, we include in 

the regression specification the All-Star dummy variable, which equals to one if the 

                                                           
13 “GPS Geoplaner” is available at http://www.geoplaner.com/. 
14 To retrieve the city of location for each branch, we expand an initial dataset used in Jiang et al. 
(2016).  
15 We obtain the coordinates of firms by matching their ZIP codes with the Gazetteer Files from the 
U.S. Census Bureau. We drop from our sample firms with missing ZIP codes. To calculate the distance 
between the firms and the analysts, we follow the same procedure as described before in relation to 
analysts and attacks.  
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analyst is ranked as first, second, third, or runner-up in the Institutional Investor 

Magazine in the previous year.16  

In addition to these control variables, our specifications include analyst location 

(state) and time (year-quarter) fixed effects, indicated in equation (2) with 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and 

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, respectively. State fixed effects capture systematic variation in analyst 

behavior across states,17 whereas time fixed effects capture systematic variation 

related to macroeconomic shocks. Furthermore, we cluster the error term at the 

analyst location level (state) to further account for potential dependencies in analyst 

behavior that is related to their location. 

We additionally conduct analysis with continuous measures of pessimism, 

using the following model estimated with ordinary least squares: 

          Yi,j,t = c + αstate + δtime + β × Impacti,t + γ × Xi,j,t + εi,j,t.            (3) 

In equation (3) 𝑌𝑌𝑖𝑖,𝑗𝑗,𝑡𝑡 is a continuous measure of pessimism for analyst i’s forecast for 

firm j at time t. We construct two such measures, namely Relative Pessimism and 

Rank Pessimism. Relative Pessimism is equal to the difference between the consensus 

forecast for firm j at time t minus the forecast of analyst i. Increases in Relative 

Pessimism indicate that analyst i is more pessimistic relative to his peers in his 

forecast for firm j at time t. 

Following Clement and Tse (2005), we scale each of the continuous variables 

in our models to a range from 0 to 1 to make their coefficients comparable. This 

transformation preserves the relative distances in each forecast characteristic and 

takes the following form: 

                                             Xi,j,t = Xi,j,t−Xminj,t
Xmaxj,t−Xminj,t

,                                              (4) 

                                                           
16 The data on analysts’ gender and all-star status are from Kumar (2010) and Jiang et al. (2016). We 
update these databases for our sample period by hand-collecting data following their method.  
17 The macroeconomic environment in analysts’ home state is likely to be correlated with their income, 
and thus can affect their propensity to take risk through their forecasts.  
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where 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑗𝑗,𝑡𝑡 and 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑗𝑗,𝑡𝑡 are the maximum and the minimum values of 𝑋𝑋 for each 

firm j at time t. As in Clement and Tse (2005), we define Accuracy as: 

                                     Accuracyi,j,t = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗,𝑡𝑡 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗,𝑡𝑡 − 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝐴𝐴𝐴𝐴)𝑗𝑗,𝑡𝑡

,                               (5) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 is equal to the absolute value of FE, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗,𝑡𝑡 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗,𝑡𝑡 

are the maximum and minimum FE’s for firm j at time t, respectively. 

The third measure we construct, Rank Pessimism, is defined similarly to Hong 

and Kubik (2003), and is constructed on the basis of how analyst i’s pessimism for 

firm j at time t ranks in the distribution of all forecasts for this particular firm and 

quarter. The advantage of this measure is that it is less sensitive to outliers, since it is 

based on rankings. To calculate Rank Pessimism we first compute the forecast error 

(FE) for analyst i for firm j at time t,18 and then sort all forecasts for firm j at time t 

based on this value. Rank Pessimism is equal to the ranking minus one, divided by the 

number of analysts covering firm j at time t minus one. A higher ranking value 

reflects that analyst i is relatively more pessimistic.19 The specification in equation 

(3) contains the same set of control variables as the regression specification in 

equation (2), which are standardized according to the scheme shown in (4) and (5).  

 

1.3. Main Empirical Results 

In this section, we present our main empirical results. We begin our analysis by 

examining whether affected analysts issue more pessimistic earnings forecasts around 

terrorist attack periods. In addition, we test whether more salient events have a 

stronger impact on the forecasting behavior of affected analysts, and finally whether 

                                                           
18 The forecast error FE is defined as 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗,𝑡𝑡
. The stock price is 

measured at the end of the previous month in which the forecast is issued. 
19 If two or more analysts were equally pessimistic, we assign the midpoint value of the ranks to all 
those analysts. 
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any variation in the forecasting behavior of affected analysts has a significant effect 

on their forecast accuracy. 

 

1.3.1. Descriptive Statistics 

To begin, Table 1.2 presents the descriptive statistics for our sample. Panel A 

contains information on the number of forecasts, analysts, brokers and stocks that we 

include in our sample each year. We observe an increase in the number of analysts 

and the number of covered firms over time. Also, the results in Panel A indicate that 

the proportion of affected forecasts is significantly lower during the 2004-2013 

period.  

This table also shows the descriptive statistics for the variables we consider in 

the main specifications. More specifically, in Panel B of Table 1.2, we observe that 

the average forecast error (FE) across the whole sample is positive, which suggests 

that analysts are on average optimistic. The average number of analysts following a 

firm at a specific quarter is approximately 11.  Affected analysts provide 2% of the 

total forecasts in our sample. Finally, Female and All-Star analysts correspond to 

12% and 19% of our sample, respectively. 

Figure 1.3 shows preliminary evidence that affected stock analysts tend to 

provide on average more pessimistic forecasts. The increase in the level of pessimism 

is statistically significant over the entire 1994 to 2013 period, and robust to all three 

proxies we use to capture pessimism. These results are consistent with our 

hypothesis, which we formally test in the next section. 

 

1.3.2. Terrorist Attacks and Analyst Pessimism  

We present our main empirical results in Table 1.3. We report the marginal effects 

from logit models in columns (1) to (3), and results from OLS regressions using the 

continuous measures of pessimism (i.e., Relative Pessimism and Rank Pessimism) in 
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columns (4) to (9). In each specification, we add the control variables sequentially. 

Throughout the paper, we discuss the results from models that include all the control 

variables, which are shown in columns (3), (6) and (9) of Table 1.3.  

Consistent with our hypothesis, we find that affected analysts (i.e., analysts who 

are local to terrorist attacks and issue forecasts during the 90-day period following the 

event) are more likely to be pessimistic. Specifically, as shown in column (3), 

affected analysts are 2.93% more likely to issue a forecast below the consensus, 

relative to non-affected analysts. This effect is statistically significant at the 1% level 

and ranks third in terms of economic impact among all the control variables in the 

model. Only Horizon and Lagged accuracy variables, with marginal effects of  

-3.60% and -8.18% respectively, have stronger economic impact. 

Our hypothesis is also supported by the results in columns (6) and (9), where 

we consider the two continuous measures of pessimism: Relative Pessimism and 

Rank Pessimism. Impact has the expected positive sign and is statistically significant 

at 1% level. Moreover, in these specifications, Impact ranks third among all variables 

in terms of the magnitude of the coefficient estimate, behind Horizon, and Lagged 

Accuracy.   

Examining the estimates of control variables, we find that in all three 

specifications, our results are comparable to those reported in previous studies. 

Specifically, in line with the results in Malloy (2005), Cowen, Groysberg and Healy 

(2006), and Walther and Willis (2013), Horizon is negatively related to pessimism. 

Further, Lagged Accuracy and ExperienceFirm are negatively related to pessimism, 

while ExperienceGeneral is positively related to pessimism. Consistent with Lim (2001) 

and Walther and Willis (2013), we find that analysts who work in larger brokerage 

houses tend to be more pessimistic. Finally, our results show that female analysts 

tend to be more pessimistic, while All-Star analysts are somewhat less pessimistic. 
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1.3.3. Analyst Pessimism and Bold Forecasts  

In the next set of tests, we examine whether affected analysts exhibit a greater 

propensity to issue bold forecasts, as opposed to herding forecasts. A bold pessimistic 

(optimistic) forecast is below (above) the analyst’s previous forecast for the same 

period and the same company, and below (above) the consensus analyst forecast. 

Given our key hypothesis, we expect that affected analysts will be more pessimistic 

than the consensus. Therefore, those analysts are more likely to issue pessimistic bold 

forecasts and less likely to issue optimistic bold forecasts. 

To test this conjecture, we use a multinomial logit model, where the dependent 

variable takes the following three values: one, zero and minus one for bold 

pessimistic, herding, and bold optimistic forecasts, respectively. In our estimation, we 

treat herding forecasts as the reference category. We report the regression estimates in 

columns (1) and (2) of Table 1.4 where Forecast Type takes the value of one in 

column (1) and minus one in column (2). Our findings show that affected analysts are 

2.76% more likely to issue bold pessimistic forecasts and 1.70% less likely to issue 

bold optimistic forecasts, compared to their propensity to issue herding forecasts.20  

In column (3) of Table 1.4, we estimate a binary logit model where the 

dependent variable, Bold Pes, is a dummy variable that equals one for bold 

pessimistic forecasts. In this specification, the reference category is all the non-bold 

pessimistic forecasts, which includes herding and bold optimistic forecasts. The 

results in column (3) show that affected analysts are 2.77% more likely to issue bold 

pessimistic forecasts. 

Overall, using various measures of pessimism, we show that affected analysts 

who reside near terrorist attacks issue more pessimistic forecasts around attack 

periods, relative to analysts who are situated farther away.  

 

                                                           
20 Our results are robust when we loose the IIA assumption and use a multinomial probit model. 
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1.3.4. Event Salience and Analyst Pessimism 

Our key conjecture is that analysts who are affected by terrorist attacks will perceive 

these events as more salient, which will negatively impact their sentiment and induce 

them to issue more pessimistic forecasts. In this section, we characterize the saliency 

of terrorist attacks using different proxies, and test whether forecasts associated with 

more salient events are more pessimistic.  

First, the geographical distance between an analyst and the location of the 

terrorist attacks should be related to perceived saliency, since analysts who are closer 

to an event are likely to have a more “personal” experience of the event (e.g., see 

Galea et al., 2002). Temporal proximity to the attack is likely to have a similar effect, 

as recent events are likely to be perceived as more salient than events farther back in 

time. In Table 1.5, we test these conjectures by allowing for different coefficient 

estimates of Impact for various distance (Table 1.5, Panel A) and time (Table 1.5, 

Panel B) specifications.  

In Panel A, we examine whether the coefficient on Impact changes for analysts 

who reside within a 0-50 mile radius (and 51-100 or 101-200 mile radius) around the 

event. In line with our hypothesis, the results from the logit model in column (1) 

show that analysts who reside within 0-50 mile radius from an event have a 2.97% 

probability of issuing a more pessimistic forecast. This probability decreases to 

2.46% (0.84%) for analysts who reside in a radius of 51-100 (101-200) miles. Similar 

conclusions hold in columns (2) and (3), where the dependent variable is a continuous 

measure of pessimism (i.e., Relative Pessimism and Rank Pessimism). Although the 

test statistics shown in the last row of Panel A indicate that the difference in the 

coefficients for the farthest and closest analysts is not statistically significant, the 

monotonic pattern obtained for the different distance specifications is in the direction 

predicted by our hypothesis.  

Panel B of Table 1.5 shows the results related to temporal proximity, which are 

also in line with our hypothesis. The logit model in column (1) shows that affected 

analysts (100-mile radius) are 4.83% more likely to issue a pessimistic forecast in the 

30-day period after the attack. This effect decreases to 2.07% in the 31-90 day period 
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after the attack, decreasing further to an insignificant -0.01% in the 91-180 day period 

after the attack. Similar conclusions hold in columns (2) and (3), where the dependent 

variable is a continuous measure of pessimism (Relative Pessimism and Rank 

Pessimism, respectively). The test statistics shown in the last row of Panel B indicate 

a significant difference in the coefficients of Impact between recent and older 

forecasts.   

People are known to exhibit a stronger emotional reaction when they 

experience a highly unexpected event (Mellers, Schwartz and Ritov, 1999; Wilson, 

Centerbar, Kermer and Gilbert, 2005). In line with this view, several studies have 

shown that people tend to be desensitized to repeated violent stimuli (Averill, 

Malstrom, Koriat and Lazarus, 1972; Anderson and Dill, 2000; Krahé et al., 2011). 

Based on this evidence, we conjecture that affected analysts located in states with low 

murder rates will perceive terrorist attacks and mass shootings as more salient and 

issue more pessimistic forecasts. In comparison, affected analysts who resided in 

states with high murder rates will exhibit a relatively lower degree of pessimism. 

To test our hypothesis, we obtain information on the murder rates of each state 

from FBI’s Uniform Crime Reporting (UCR).21 We divide the number of murders 

with the population of the state to measure the level of murder activity in each state, 

and to compare the murder activity between states, we compute the average murder 

rate for each year. We define a dummy variable Murderh, which is equal to one if the 

state of analyst’s location has a higher murder rate than the average rate across U.S. 

states in a given year. Accordingly, Murderl is a dummy variable equal to one if 

Murderh is equal to zero. 

Table 1.6 reports the results. Consistent with our hypothesis, the logit model in 

column (1), shows that affected analysts who are located in states with low murder 

rates are 3.54% more likely to issue pessimistic forecasts, whereas affected analysts 

who reside in states with high murder states are 0.62% more likely to issue 

pessimistic forecasts. Similar conclusions hold in columns (2) and (3), where the 
                                                           
21 UCR defines as murder “the willful (non-negligent) killing of one human being by another”. For 
further information, refer to https://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2013/crime-in-the-
u.s.-2013/violent-crime/murder-topic-page/murdermain_final. 
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dependent variable is a continuous measure of pessimism (Relative Pessimism and 

Rank Pessimism, respectively). The test statistics shown at the last row of Table 1.6 

indicate that affected analysts who reside in states with low murder rates are 

significantly more pessimistic than affected analysts who reside in states with high 

murder rates. 

Overall, the results in this section provide additional support for our main 

hypothesis and show that events that are likely to be perceived as more salient 

generate more pessimistic earnings forecasts. 

 

1.3.5. Terrorist Attacks and Forecast Accuracy 

In this section, we examine the accuracy of forecasts issued by affected analysts in 

absolute value. If affected analysts become too pessimistic, their forecasts may 

become less accurate. However, if terrorist attacks only generate a moderate degree 

of pessimism among affected analysts, their forecasts may be more accurate since 

analysts are known to be optimistic due to issues related to career-concerns (Hong 

and Kubik, 2003). The results from forecast accuracy regressions in Table 1.7 

indicate that affected analysts are more accurate than non-affected analysts, thus 

support the latter view. This finding is robust to different model specifications with 

analyst and forecast related control variables and various fixed-effect controls.  

Examining the estimates of the control variables, we find that analyst forecasts 

with longer horizon, and forecasts from analysts who cover more industries are less 

accurate. On the contrary, Brokerage size, Lagged accuracy, and All-Star exhibit a 

positive correlation with the level of Accuracy. These results are in line with the 

findings in the previous literature (e.g., Malloy, 2005; Clement and Tse, 2005; 

Kumar, 2010; Jiang et al., 2016). 
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1.3.6. Anniversaries of Terrorist Attacks and Analyst Pessimism 

During the anniversaries of terrorist attacks various memorial services are held at the 

attack locations to commemorate the victims.22 Such events will to some extent evoke 

recollection of the negative experience associated with the attack, and may exert a 

negative shock on the sentiment of the local community.23 In this section, we 

examine whether local analysts issue more pessimistic forecasts around the 

anniversaries of terrorist attacks.  

Table 1.8 Panel A reports the results related to the first anniversary. In Panel 

A1, we define affected forecasts as those issued by analysts those who reside within a 

100-mile radius of the attack and issued in the 90-day window after the first 

anniversary of the attack. In Panel A2, we define affected forecasts as those that are 

issued by analysts who are both geographically and temporally closer to the 

anniversary of the attacks (50-mile radius and 30-days after the anniversary). Our 

results in Table 1.5 already show that events that are closer to analysts are more 

salient and thus associated with more pessimistic earnings forecasts. 

The results in Panel A1 indicate that anniversaries of negative events typically 

do not influence the pessimism of local analysts. However, the results in Panel A2 for 

the sample of more salient events show a significant anniversary effect. In this set, 

affected analysts are 2.51% more likely to issue a pessimistic forecast around the 

anniversary of the attack. This effect is roughly half of the effect associated with the 

actual terrorist attack, which is expected since the shock to the sentiment of the 

analyst around the anniversary of the event is likely to be weaker.24 The analysis with 

Relative Pessimism as the dependent variable also reveals a significant effect in the 

                                                           
22 See, for example, http://edition.cnn.com/2002/US/09/11/ar911.memorial.newyork/, http://edition. 
cnn.com/2010/US/11/05/texas.fort.hood.anniversary/, http://www.usatoday.com/story/news/nation/201 
3/12/14/newtown-sandy-hook-shooting-anniversary/4022649/, http://edition.cnn.com/2014/04/15/us/ 
boston-marathon-bombing-anniversary/.  
23 For a review of the psychological literature on the retrieval of emotional memories see Buchanan 
(2007). 
24 For all the tests we conduct in this section, we perform a Wald test to examine whether the 
coefficients on Impact and Impact(anniversary) are statistically different. In all cases, we find that they are, 
with Impact having a coefficient roughly twice as large. 

http://www.usatoday.com/story/news/nation/201
http://edition.cnn.com/2014/04/15/us/boston
http://edition.cnn.com/2014/04/15/us/boston
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expected direction. In Panel B, we conduct the same analysis for the second 

anniversary, and find that it has no effect on analyst pessimism. 

In Panel C, we conduct the same analysis, but further account for event salience 

using the murder rate in the state of the analyst, similar to the analysis in Table 1.6. 

For this subsample, we find even stronger results for anniversaries for analysts who 

reside in states with low murder rates. In all models, affected analysts are more 

pessimistic than non-affected analysts around anniversaries, and this effect is about 

half of the effect associated with the actual terrorist attacks. Consistent with our 

findings in Table 1.6, terrorist attacks do not influence the forecasts by affected 

analysts who reside in states with high murder rates where the sensitivity to terrorist 

events are likely to be lower.  

Overall, the results in this section shows that anniversary effects are significant 

for terrorist attacks that are more salient (i.e., Panels A1, C1 and C2), and suggests 

that such extreme sentiment events can exert an impact on analyst behavior that is not 

entirely transitory. 

 

1.4. Robustness Checks and Alternative Explanations 

Our empirical results could neglect systematic differences between affected and non-

affected analysts other than exposure to terrorist attacks and mass shootings. In this 

section, we present results from a series of tests to ensure that our findings are robust, 

and also rule out alternative explanations for our findings.  

 

1.4.1. Pre-Existing Effects 

In the first test, we examine whether the differences between affected and non-

affected analysts exist only around terrorist attack periods, or reflect some pre-

existing trends. Ruling out the existence of such trends is important since our 
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hypothesis states that differences in analyst forecasts are due to the exposure of 

affected analysts to terrorist attacks which affect their sentiment. To examine this 

possibility, we include additional control variables in the model that capture the 

lagged values for Impact. The results in Panel A of Table 1.9 show that the lagged 

variables are all insignificant, while Impact(0 to 90 days) remains similar in magnitude as 

in Table 1.3 and significant at the 1% level. These results suggest that the differences 

in forecasts only exist following the terrorist attacks, and are relatively short-lived (as 

indicated in Table 1.5). 

 

1.4.2. Analyst Pessimism or Macroeconomic Factors? 

Another potential concern may be that terrorist events are related to the 

macroeconomic environment of the state in which they occur, which could 

subsequently affect the compensation of affected analysts, and thus their risk 

attitudes. Such shifts in risk attitudes could influence the pessimism in their forecasts. 

To control for the macroeconomic conditions in the home state, we repeat our 

baseline analysis after including the quarterly, state-level macroeconomic index at 

time t, proposed by Korniotis and Kumar (2013), as an additional control variable.25 

Panel B of Table 1.9 presents the results. We find that the estimate of Impact remains 

statistically significant at the 1% level across all model specifications. In contrast, the 

Macro-state index variable is statistically insignificant.26  

 

1.4.3. Analyst Pessimism or Unobservable Factors? 

To control for any systematic variation in pessimism due to factors related to analyst, 

brokerage houses, firms, or industry characteristics that our models omit, we repeat 

                                                           
25 Macro-state index is available for a sample period extending from 1994 to 2012. 
26 For further robustness, in unreported analysis, we also control for the Macro-state index at time t-1. 
Similar to the reported results, we find that the coefficient estimate of Impact is highly significant, 
while the lagged Macro-state index remains insignificant.  
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our baseline analysis using various fixed-effect controls at these levels. As shown in 

Table 1.10, the inclusion of these fixed effects does not greatly influence the 

coefficient on Impact. For example, the results from the logit model, columns (1) to 

(4), show that the marginal effect associated with Impact ranges from 2.92% to 

3.02% depending on the combination of fixed effects used, and is always statistically 

significant at the 1% level. Similar findings are shown in columns (5)-(12) where the 

dependent variable is Relative Pessimism and Rank Pessimism.  

 

1.4.4. Other Empirical Specifications 

Our next set of robustness checks examines whether our results are robust to different 

model specifications. In our main analysis, we follow prior studies and keep the last 

forecast of each analyst (Hong and Kubik, 2003; Jegadeesh et al., 2004; Clement and 

Tse, 2005). This allows us to compare the forecasts between affected and unaffected 

analysts for the same company and around the same time period. However, our 

hypothesis should also hold for other forecasts as well. To examine whether this is 

the case we perform an additional robustness test using the first forecast of each 

analyst for each company and quarter. The results are shown in Panel A of Table 

1.11, and remain consistent with our hypothesis in these alternative specifications.  

 

1.4.5. Sensitivity to 9/11 Attacks 

To ensure that our findings are not driven only by the 9/11 attacks (by far the most 

significant events in our sample), we re-estimate our main specifications after 

excluding these events from our sample. The results in Panel B of Table 1.11 show 

that Impact, although somewhat reduced, remains highly statistically significant in all 

regression specifications.  
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1.4.6. Excluding New York Analysts 

Analysts located in the state of New York provide the majority of our forecast sample 

(56.32%). To ensure that our results are not driven by the forecasts of analysts located 

in the state of New York or from attacks that occur in this area, we exclude from our 

sample all these forecasts and repeat our analysis. The results in Panel C of Table 

1.11 show that Impact remains highly statistically significant even in the sample that 

excludes NY analysts. 

 

1.4.7. Alternative Mass Shooting Sample 

Our initial event sample includes mass shootings from the WP list, which contains the 

deadliest events in U.S. history (average of 12 casualties). We choose to focus on this 

sample because these events are the most likely to be perceived as salient by analysts. 

In this section, we examine the sensitivity of our results to increasing our sample to 

include less salient events with a smaller number of casualties.  

To increase our mass shooting sample, we use data from Stanford’s Mass 

Shootings in America database (MSA) and consider events with a minimum of four 

casualties during the 1994-2013 period. From the resulting list, we eliminate 21 

events for which there are no local analysts around the period of the events. 

Panel A of Table 1.12 lists the 38 additional events that are included in our 

sample. In Panel B, we examine whether our baseline results change when we include 

these less salient terrorist attacks. The results in Panel B show that our coefficient 

estimates are comparable to our baseline results when we include in our sample mass 

shootings with equal or more than eight human casualties. When we additionally 

include events with less human casualties, the magnitude of the coefficients and their 

statistical significance decreases, which is expected since these events are less salient.  

Overall, the results from this analysis show that our baseline findings continue 

to hold when we expand our mass shootings sample, but get progressively weaker as 

we add events that are likely to be perceived as less salient. 
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1.5. Summary and Conclusions 

This paper examines the effect of terrorist attacks and mass shootings on the earnings 

forecasts of sell-side equity analysts. We conjecture that analysts who are located 

near such events will experience a negative shock to their sentiment, which will 

induce a pessimistic bias in their earnings expectations. Our models test this 

hypothesis comparing the forecasts of affected analysts and non-affected analysts for 

the same company and time period. This method allows us to account for the 

fundamental information about earnings that is common to all analysts. 

Consistent with our hypothesis, we find that sell-side equity analysts who are 

located near major terrorist attacks and mass shootings in the U.S. tend to issue more 

pessimistic forecasts than analysts who are located farther away during the period 

following the attacks. Specifically, we show that affected analysts are significantly 

more likely to issue a forecast that is below the consensus in comparison to non-

affected analysts. Further, we find that these effects are stronger when the forecasts 

are associated with more salient events. We also find that the one-year anniversary of 

salient events is associated with increased pessimism among local analysts. The 

increase in analyst pessimism is associated with higher accuracy, since it partially 

mitigates the well-documented optimism bias among analysts.  

Collectively, these findings complement the evidence from previous literature 

on analysts’ behavioral biases. Our key contribution is to demonstrate that increased 

pessimism bias among local analysts following terrorist attacks and mass shootings 

influence their forecasts and the information dissemination process in financial 

markets. Future research could examine whether the decisions of other market 

participants, including buy-side analysts, are affected by exposure to these types of 

extreme negative events.   
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Table 1.1. Sample of Terrorist Events 
This table shows our event sample during 1994-2013. We consider only events that took place in the 
U.S., resulted to at least one human casualty and were displayed in newspapers. Furthermore, we 
restrict our sample to only those attacks that appear to have analysts located in a 100 miles radius. 

No          Event      Date       Location 

1 Brooklyn Bridge 01 Mar 1994 New York City, NY 
2 Unabomber - Thomas Mosser 10 Dec 1994 North Caldwell, NJ  

3 Planned Parenthood Clinic 30 Dec 1994 Brookline, MA 

4 Unabomber - Gilbert Murray  24 Apr 1995 Sacramento, CA 

5 Olympic Park Bombing 27 Jul 1996 Atlanta, GA 

6 Empire State Building 23 Feb 1997 New York City, NY  

7 U.S. Capitol 24 Jul 1998 Washington, DC 

8 Columbine High School 20 Apr 1999 Littleton, CO  

9 Korean Methodist Church 04 Jul 1999 Bloomington, IN 

10 9/11 Attacks: World Trade Center  11 Sep 2001 New York City, NY 

11 9/11 Attacks: Hijacked Plane Crashed 11 Sep 2001 Alexandria, VA 

12 9/11 Attacks: Hijacked Plane Crashed 11 Sep 2001 Somerset County, 

 13 Bank of America 05 Jan 2002 Tampa, FL 

14 LA International Airport 04 Jul 2002 Los Angeles, CA  

15 Seattle Jewish Federation  28 Jul 2006 Seattle, WA 

16 Little Rock  01 Jun 2009 Little Rock, AR 

17 Holocaust Museum  10 Jun 2009 Washington, DC 

18 Fort Hood 05 Nov 2009 Killeen, TX 

19 IRS Building 18 Feb 2010 Austin, TX 

20 Pentagon 04 Mar 2010 Arlington, VA 

21 Discovery Communications 01 Sep 2010 Silver Springs, MD 

22 Aurora 20 Jul 2012 Aurora, CO  

23 Sikh Temple  05 Aug 2012 Oak Creek, WI  

24 Sandy Hook School 14 Dec 2012 Sandy Hook, CT  

25 Boston Marathon Bombing 15 Apr 2013 Boston, MA 

26 MIT Shooting 18 Apr 2013 Cambridge, MA 

27 Navy Yard 16 Sep 2013 Washington, DC 

28 Los Angeles Airport 01 Nov 2013 Los Angeles, CA 
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Table 1.2. Descriptive Statistics 
This table presents statistics for the main variables used in the empirical analysis. The sample includes 
forecasts for stocks included in CRSP from the 1st quarter of 1994 to the 4th quarter of 2013. We 
consider only forecasts for firms located in the U.S.. Panel A provides sample information for each 
year of our sample. Panel B presents statistics of all the variables we consider in our specifications. To 
improve readability, we multiply Forecast Error by 100 and report the statistics. 

Panel A: Distribution of Sample Across Years 

Year Forecasts Analysts 
Brokerage 

Houses Stocks 
Affected 
Forecasts 

Affected 
Analysts 

 (1) (2) (3)   (4) (5) (6) 

1994 5,428 672 83 374 1,093 324 

1995 10,636 960 97 584 1,246 388 

1996 12,658 1,193 111 683 40 11 

1997 16,010 1,564 142 834 2,714 634 

1998 19,953 1,900 162 1,036 165 67 

1999 22,483 2,058 160 1,136 26 12 

2000 20,375 2,079 153 1,037 0 0 

2001 23,431 2,104 137 1,060 4,261 967 

2002 27,893 2,085 147 1,187 141 45 

2003 32,060 2,045 182 1,278 0 0 

2004 37,483 2,138 201 1,402 0 0 

2005 39,549 2,153 205 1,505 0 0 

2006 39,057 2,018 187 1,551 30 8 

2007 36,730 1,828 180 1,544 0 0 

2008 35,229 1,598 175 1,443 0 0 

2009 31,382 1,272 149 1,260 583 87 

2010 26,740 1,086 137 1,161 611 67 

2011 21,005 917 119 980 0 0 

2012 16,490 750 101 812 310 117 

2013 11,594 610 89 680 2,065 337 
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Table 1.2—Continued 

Panel B: Summary Statistics 

Variable Obs. Mean Std. Dev. 10th Pctl. Median 90th Pctl. 

Pessimism 358,885 0.50 0.50 0.00 1.00 1.00 

Relative Pessimism 358,885 0.50 0.36 0.00 0.50 1.00 

Rank Pessimism 358,885 0.50 0.31 0.07 0.50 0.93 

Forecast Error 358,885 0.01 10.36 -0.39 -0.03 0.19 

No. of Analysts 358,885 10.64 4.55 6.00 10.00 17.00 

Impact 358,885 0.02 0.15 0.00 0.00 0.00 

Horizon 358,885 0.61 0.42 0.00 0.86 1.00 

Brokerage size 358,885 0.46 0.34 0.00 0.44 1.00 

Lagged accuracy 358,885 0.58 0.36 0.00 0.67 1.00 

Experience General 358,885 0.52 0.36 0.00 0.50 1.00 

Experience Firm 358,885 0.52 0.38 0.00 0.50 1.00 

Industries 358,885 0.38 0.39 0.00 0.33 1.00 

Local 358,885 0.52 0.43 0.00 0.55 1.00 

Female 358,885 0.12 0.32 0.00 0.00 1.00 

All-Star 358,885 0.19 0.40 0.00 0.00 1.00 
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Table 1.3. Terrorist Events and Analyst Pessimism: Baseline Estimation 

This table presents the results from regressions examining the impact of attacks on forecast pessimism. The sample includes forecasts for U.S. 
stocks included in CRSP from 1994 to 2013. Impact is a dummy variable equal to one if the analyst who provided the forecast is inside a 100 miles 
radius from an attack, and the forecast took place during the next 90 days after the attack. To examine the effect of attacks on analysts’ sentiment 
we construct three measures. Pessimism is equal to one if the forecast is less than the consensus forecast for firm j at time t, where the consensus 
forecast is equal to the average value of forecasts for firm j at time t without considering the forecasts of the current analyst i. Relative Pessimism is 
equal to the difference of consensus forecast for firm j at time t minus the actual forecast of analyst i. To construct Rank Pessimism, we first 
compute the forecast error (FE) for each analyst i for firm j at time t, where the FE is equal to the difference of the value of the forecast minus the 
actual earnings, scaled by the lagged monthly price of the firm. Then, we sort them such as a higher ranking value reflects a more pessimistic 
forecast. Rank Pessimism is equal to the ranking minus one, divided by the number of analysts covering firm j at time t minus one. Horizon is the 
number of days until the actual earnings announcement. Brokerage size is equal to the number of analysts who work in a brokerage house each 
quarter. We define Accuracy as the difference between the maximum absolute forecast error for each firm-quarter and the absolute forecast error of 
analyst divided by maximum absolute forecast error minus the minimum absolute forecast error, where the absolute forecast error is equal to the 
absolute difference of earnings forecast and earnings announcement scaled by the lagged monthly stock price. Lagged accuracy is the lag values of 
this measurement. ExperienceGeneral is the number of years since an analyst first appeared in I/B/E/S. ExperienceFirm is the number of years an 
analyst covers a specific firm. Industries illustrate the number of two-digit SIC codes an analyst covers each quarter. Local is equal to the distance 
between the analysts and the firms they cover. Female is a dummy variable equal to one when the analyst is female. All-Star is equal to one if the 
analyst is ranked as first, second, third, or runner-up in the Institutional Investor Magazine in the previous year. To allow comparisons we scale all 
continuous variables to range from 0 to 1. All regressions include year-quarter and state fixed effects. The coefficient estimates in columns (1), (2) 
and (3) illustrate the marginal probabilities. Standard errors, shown in parentheses, are clustered at the level of analyst’s home state. All coefficients 
and standard errors are multiplied by 100. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively.  

                Pessimism         Relative Pessimism            Rank Pessimism 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Impact 2.49*** 2.94*** 2.93*** 1.63*** 2.16*** 2.15*** 1.51*** 1.94*** 1.94*** 

 
(0.60) (0.62) (0.62) (0.32) (0.30) (0.30) (0.29) (0.29) (0.29) 

Horizon  -3.63*** -3.60***  -3.30*** -3.28***  -1.59*** -1.57*** 
  (0.25) (0.26)  (0.22) (0.22)  (0.14) (0.14) 
Brokerage size  2.42*** 2.53***  2.08*** 2.13***  1.84*** 1.95*** 
  (0.74) (0.77)  (0.56) (0.60)  (0.46) (0.50) 
Lagged accuracy  -8.18*** -8.18***  -6.66*** -6.66***  -5.25*** -5.25*** 
  (0.28) (0.28)  (0.18) (0.19)  (0.12) (0.12) 
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Table 1.3—Continued 

                 Pessimism         Relative Pessimism                 Rank Pessimism 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Experience General  1.22** 1.28**  0.60 0.63  0.86** 0.91** 
  (0.53) (0.56)  (0.46) (0.48)  (0.40) (0.43) 
Experience Firm  -0.53*** -0.50***  -0.26** -0.23*  -0.54*** -0.51*** 
  (0.18) (0.18)  (0.12) (0.12)  (0.14) (0.13) 
Industries  -0.36 -0.32  -0.09 -0.06  -0.33 -0.29 
  (0.29) (0.29)  (0.20) (0.20)  (0.24) (0.25) 
Local  -0.24 -0.23  -0.21 -0.20  -0.03 -0.02 
  (0.28) (0.28)  (0.22) (0.22)  (0.20) (0.21) 
Female   1.33***   1.16***   1.38*** 
   (0.44)   (0.34)   (0.31) 
All-Star   -0.34*   -0.19   -0.35** 
   (0.18)   (0.15)   (0.16) 

 
         

Constant Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
N 480,209 358,883 358,883 480,209 358,885 358,885 480,209 358,885 358,885 
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Table 1.4. Terrorist Events and Bold Forecasts 
This table examines whether affected analysts provide bold forecasts after being exposed to a terrorist 
attack. In columns (1) and (2), we consider the variable Forecast Type to examine whether analysts 
tend to upgrade or downgrade their forecasts after a terrorist attack. Forecast Type is equal to one if the 
analyst provides a forecast below the consensus forecast and his/her prior forecast for firm j at time t; 
Forecast Type is equal to minus one if the analyst issues a forecast above the consensus and above 
his/her prior forecast; Forecast Type is equal to zero for the rest of the forecasts. In column (1), 
Forecast Type takes the value of one and in column (2) Forecast Type is equal to minus one. The 
category of Forecast Type equal to zero is considered as the base outcome to estimate the 
specifications in columns (1) and (2). In column (3), we examine whether the affected forecasts are 
more likely to issue bold pessimistic forecasts. Bold Pes is a dummy variable equal to one if the 
analyst issues a forecast for firm j at time t below the consensus forecast and his/her prior forecast. All 
regressions include year-quarter fixed effects, state fixed effects and similar control variables as in 
Table 1.3. All coefficient estimates illustrate the marginal probabilities. Standard errors, shown in 
parentheses, are clustered at the level of analyst’s home state. All regression coefficients and standard 
errors are multiplied by 100. *, ** and *** measure significance at the 10%, 5%, and 1% level, 
respectively. 

        Forecast Type Bold Pes 
 (1) (2) (3) 
Impact 2.76*** -1.70* 2.77*** 
 (0.71) (0.94) (0.70) 
Horizon -8.61*** -7.27*** -8.98*** 
 (0.76) (0.19) (0.74) 
Brokerage size 2.74*** -0.43 2.73*** 
 (0.50) (0.54) (0.50) 
Lagged accuracy -1.06*** 3.29*** -1.03*** 
 (0.14) (0.16) (0.15) 
Experience General -0.14 -1.06*** -0.13 
 (0.84) (0.30) (0.85) 
Experience Firm 0.91*** -0.00 0.91*** 
 (0.32) (0.18) (0.32) 
Industries -0.53* 0.19 -0.53* 
 (0.27) (0.35) (0.27) 
Local -1.08* 0.78 -1.07* 
 (0.56) (0.96) (0.55) 
Female -1.59*** 1.08** -1.62*** 
 (0.45) (0.49) (0.46) 
All-Star -0.43 0.56*** -0.43 
 (0.47) (0.20) (0.48) 
Constant Yes Yes Yes 
State Fixed Effects Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 
N 142,115 142,115 142,109 
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Table 1.5. Geographical and Temporal Proximity to Terrorist Events 
This table examines how different geographical and temporal proximity to the terrorist attacks affects 
the forecast pessimism of affected analysts. In Panel A, we examine how the distance between the 
attacks and the analysts affect the pessimism in their forecasts during the next 90 days after the attacks. 
In our baseline model, we define as local analysts those located in a 100 miles radius from the attacks. 
In this Panel, we allow the distance to vary. To examine the association of distance with the magnitude 
of the effect, we include in our baseline model the variables Impact(0 to 50 miles), Impact(51 to 100 miles) and 
Impact(101 to 200 miles) which are dummy variables equal to one if a forecast is issued from an analyst 
located less than 50 miles, 51-100 miles, and 101-200 miles from an attack, respectively. In Panel B, 
we examine how the time after the attacks can affect the forecasting behavior of affected analysts. In 
our baseline model, we consider as affected analysts those who are located in a 100 miles radius from 
the attacks and issue a forecast 90 days after the attacks. In this Panel, we allow the time gap between 
the attacks and the issued forecasts from local analysts to vary. In particular, we include in our baseline 
model the variables Impact(0 to 30 days), Impact(31 to 90 days) and Impact(91 to 180 days) which are dummy 
variables equal to one if a forecast is issued from a local analyst 0-30 days, 31-90 days, and 91-180 
days from the date of an attack, respectively. All regressions include year-quarter fixed effects, state 
fixed effects and similar control variables as in Table 1.3. All coefficient estimates in the first column 
illustrate the marginal probabilities. In both Panels, we perform a Wald test in each specification to 
examine the difference between the highest and lowest category. Standard errors, shown in 
parentheses, are clustered at the level of analyst’s home state and χ2/F-statistics are reported in square 
brackets. All regression coefficients and standard errors are multiplied by 100. *, ** and *** measure 
significance at the 10%, 5%, and 1% level, respectively.  

Panel A: Geographical Proximity 

 Pessimism Relative Pessimism Rank Pessimism 
 (1) (2) (3) 

Impact(0 to 50 miles) 2.97** 2.20** 2.20** 

 (1.45) (1.06) (0.85) 

Impact(51 to 100 miles) 2.46** 1.44 1.29 

  (1.07) (1.07) (1.20) 

Impact(101 to 200 miles) 0.84 0.47 0.50 
 (1.11) (0.71) (0.73) 
Control Variables Yes Yes Yes 
State Fixed Effects  Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 

Impact(0 to 50 miles) - Impact(101 to 200 miles) 2.13 1.73 1.70 

χ2/F-statistic [0.96] [1.19] [1.63] 
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Table 1.5—Continued 

Panel B: Temporal Proximity 

 Pessimism Relative Pessimism Rank Pessimism 
 (1) (2) (3) 
Impact(0 to 30 days) 4.83*** 3.20*** 2.97*** 

 (1.38) (0.92) (0.81) 
Impact(31 to 90 days) 2.07*** 1.58*** 1.45*** 
  (0.52) (0.23) (0.31) 

Impact(91 to 180 days) -0.01 -0.25 -0.03 

 (0.60) (0.27) (0.49) 
Control Variables Yes Yes Yes 

State Fixed Effects  Yes Yes Yes 

Time Fixed Effects Yes Yes Yes 
Impact(0 to 30 days) - Impact(91 to 180 days) 4.84*** 3.45*** 3.00*** 
χ2/F-statistic [27.28] [20.85] [30.36] 
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Table 1.6. Analyst Pessimism and State’s Murder Activity 
This table examines whether the general murder activity in affected analysts home state affects their 
pessimism around attack periods. To measure the level of murder activity, we divide the number of 
murders (available from the FBI and reported in the Uniform Crime Reporting Program) with the 
population of the state, and we compute the average murder rate across states for each year. Murderh is 
a dummy variable equal to one if the state of analyst’s location has a higher murder rate than the 
average murder rate of states in a given year. Murderl is a dummy variable equal to one if Murderh is 
equal to zero. All regressions include year-quarter fixed effects, state fixed effects and similar control 
variables as in Table 1.3 We perform a Wald test in each specification to examine the difference of 
forecasts between the analysts who live in a state with low and high murder rates. The coefficient 
estimates in column (1) illustrate the marginal probabilities. Standard errors, shown in parentheses, are 
clustered at the level of analyst’s home state and χ2/F-statistics are reported in square brackets. All 
regression coefficients and standard errors are multiplied by 100. *, ** and *** measure significance at 
the 10%, 5%, and 1% level, respectively. 

 Pessimism Relative Pessimism Rank Pessimism 

 (1) (2) (3) 
Impact × Murderl 3.54*** 2.42*** 2.23*** 

 (0.43) (0.25) (0.29) 

Impact × Murderh 0.62 1.15** 0.83 

 (0.99) (0.52) (0.59) 

Murderl -0.23 -0.14 -0.31 

 (0.65) (0.48) (0.44) 

Control Variables Yes Yes Yes 

State Fixed Effects Yes Yes Yes 

Time Fixed Effects Yes Yes Yes 

Impact × Murderl - Impact × Murderh  2.92*** 1.27** 1.40* 

χ2/F-statistic [8.63] [5.08] [3.96] 
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Table 1.7. Terrorist Events and Forecast Accuracy 
This table examines whether exposure to terrorist attacks and mass shootings affect accuracy of 
analysts’ forecasts. We define Accuracy as the absolute value of the difference between the maximum 
forecast error for firm j at time t and the forecast error of analyst i for firm j at time t divided by 
maximum forecast error for firm j at time t minus the minimum forecast error for firm j at time t, 
where the forecast error is equal to the difference of earnings forecast and actual earnings, scaled by 
the lagged monthly stock price. All regressions include year-quarter fixed effects and state fixed 
effects. We also control for firm and industry (2-digit SIC classification) fixed effects. All regressions 
include year-quarter fixed effects, state fixed effects and similar control variables as in Table 1.3. 
Standard errors, shown in parentheses, are clustered at the level of analyst’s home state. All regression 
coefficients and standard errors are multiplied by 100. *, ** and *** measure significance at the 10%, 
5%, and 1% level, respectively. 

                                 Accuracy 
 (1) (2) (3) (4) 
Impact 0.63* 0.62* 0.67* 0.65** 
 (0.31) (0.31) (0.33) (0.32) 
Horizon -10.94*** -10.94*** -11.01*** -10.96*** 
 (0.22) (0.22) (0.27) (0.26) 
Brokerage size 0.93** 0.81* 1.15*** 0.89** 
 (0.43) (0.41) (0.37) (0.40) 
Lagged accuracy 7.99*** 7.98*** 6.67*** 7.81*** 
 (0.17) (0.17) (0.21) (0.16) 
Experience General -0.38 -0.43 -0.75*** -0.46* 
 (0.26) (0.27) (0.24) (0.27) 
Experience Firm 0.06 0.05 0.66*** 0.10 
 (0.19) (0.18) (0.20) (0.21) 
Industries -0.67*** -0.68*** -0.19 -0.48** 
 (0.17) (0.18) (0.18) (0.18) 
Local 0.15 0.15 -0.15 0.11 
 (0.28) (0.28) (0.18) (0.22) 
Female  -0.33 -0.59 -0.57* 
  (0.31) (0.38) (0.33) 
All-Star  0.31* 0.47*** 0.47*** 
  (0.16) (0.11) (0.13) 
Constant Yes Yes Yes Yes 
Firm Fixed Effects No No Yes No 
Industry Fixed Effects No No No Yes 
State Fixed Effects Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes 
N 358,630 358,630 358,630 358,630 
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Table 1.8. Terrorist Attacks, Anniversaries and Analyst Pessimism 
This table examines whether the first and second anniversary of terrorist attacks can affect the forecast pessimism of affected analysts. Panel A 
reports the results from regressions examining the effect of the first anniversary of terrorist attacks on the forecast pessimism of affected analysts. 
Impact(First Anniversary) is equal to one if an analyst is local to an attack and issues a forecast around the period of the first anniversary. To have a 
valid comparison between the effect of the attacks and their anniversaries, we consider all the events occurred the 1994-2012 period since we lack 
of analyst location data for the 2014 year. In Panel B, we examine the effect of the second anniversary of terrorist attacks. Impact(Second Anniversary) is 
equal to one if an analyst is local to an attack and issues a forecast around the period of the second anniversary. Similar to Panel A, we consider a 
reduced event sample for the 1994-2011 period, since we lack of analyst location data for the 2014-2015 period. In Panel C, we examine whether 
the general murder activity in affected analysts home state affects their pessimism around first anniversary periods. Similar to Table 1.6, Murderh is 
a dummy variable equal to one if the state of analyst’s location has a higher murder rate than the average murder rate of states in a given year. 
Murderl is a dummy variable equal to one if Murderh is equal to zero. In each panel, we allow for distance and time to vary and we perform a Wald 
test to compare coefficient estimates. All regressions include year-quarter fixed effects, state fixed effects and similar control variables as in Table 
1.3. The coefficient estimates in columns (1) and (4) show the marginal probabilities. Standard errors, shown in parentheses, are clustered at the 
level of analyst’s home state and χ2/F-statistics are reported in square brackets. All regression coefficients and standard errors are multiplied by 100. 
*, ** and *** measure significance at the 10%, 5%, and 1% level, respectively. 

Panel A: First Anniversary of Terrorist Attacks 

  
Pessimism 

Relative 
Pessimism 

Rank  
Pessimism 

 
Pessimism 

Relative 
Pessimism 

Rank  
Pessimism 

      A1: (<100 miles, <=90 days)       A2: (<50 miles, <=30 days) 

 (1) (2) (3) (4) (5) (6) 

Impact(First Anniversary) 0.47 0.24 0.48 2.51* 1.98** 0.85 

 
(0.76) (0.38) (0.35) (1.44) (0.96) (0.79) 

Impact 3.10*** 2.27*** 2.05*** 5.52*** 4.03*** 3.65*** 
 (0.58) (0.24) (0.27) (1.48) (1.00) (0.94) 
Control Variables Yes Yes Yes Yes Yes Yes 
State Fixed Effects Yes Yes Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes Yes Yes 
Impact(First Anniversary)- Impact -2.63*** -2.03*** -1.57*** -3.01*** -2.05*** 2.8*** 
χ2/F-statistic [30.01] [41.17] [28.17] [11.74] [12.28] [23.30] 
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Table 1.8—Continued 

Panel B: Second Anniversary of Terrorist Events 

  
Pessimism 

Relative 
Pessimism 

Rank  
Pessimism 

 
Pessimism 

Relative 
Pessimism 

Rank  
Pessimism 

      B1: (<100 miles, <=90 days)         B2: (<50 miles, <=30 days) 

 (1) (2) (3) (4) (5) (6) 

Impact(Second Anniversary) 0.16 -0.35 0.05 -0.76 -0.18 -0.43 
 (0.42) (0.35) (0.34) (0.46) (0.42) (0.39) 
Impact 3.53*** 2.76*** 2.61*** 5.51*** 4.08*** 3.68*** 
 (0.79) (0.42) (0.42) (1.45) (0.94) (0.90) 
Control Variables Yes Yes Yes Yes Yes Yes 
State Fixed Effects Yes Yes Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes Yes Yes 
Impact(Second Anniversary)- Impact -3.37*** -3.11*** -2.56*** -6.27*** -4.26*** -4.11*** 
χ2/F-statistic [23.39] [93.34] [48.39] [16.57] [20.80] [26.18] 
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Table 1.8—Continued 

Panel C: First Anniversary of Terrorist Events and State’s Murder Activity 

  
Pessimism 

Relative 
Pessimism 

Rank  
Pessimism 

Pessimism 
Relative 
Pessimism 

Rank  
Pessimism 

 C1: (<100 miles, <=90 days) C2: (<50 miles, <=30 days) 

 (1) (2) (3) (4) (5) (6) 

Impact(First Anniversary) × Murderl  1.12** 0.58* 0.69*** 3.22*** 2.46*** 1.16** 
 (0.50) (0.33) (0.22) (1.07) (0.78) (0.55) 
Impact(First Anniversary) × Murderh  -1.86 -0.99 -0.29 0.15 0.34 -0.25 
 (1.31) (0.73) (0.98) (2.44) (1.35) (1.71) 
Impact× Murderl 3.74*** 2.52*** 2.34*** 6.38*** 4.79*** 4.29*** 
 (0.43) (0.24) (0.30) (0.98) (0.71) (0.74) 
Impact× Murderh 0.58 1.23** 0.92 1.18 0.05 0.27 
 (0.96) (0.56) (0.62) (3.20) (1.42) (1.39) 
Murderl -0.33 -0.19 -0.34 -0.21 -0.14 -0.30 
 (0.64) (0.47) (0.44) (0.66) (0.49) (0.45) 
Control Variables Yes Yes Yes Yes Yes Yes 
State Fixed Effects Yes Yes Yes Yes Yes Yes 
Time Fixed Effects Yes Yes Yes Yes Yes Yes 
Impact(First Anniversary) × Murderl - Impact(First 

Anniversary) × Murderh 
2.98*** 1.57** 0.98 3.07* 2.12** 1.41 

χ2/F-statistic [6.77] [4.27] [1.02] [3.18] [6.68] [0.99] 
Impact(First Anniversary) × Murderl - Impact× 
Murderl 

-2.62*** -1.94*** -1.65*** -3.16*** -2.33*** 3.13*** 

χ2/F-statistic [32.20] [31.88] [22.99] [17.02] [21.02] [25.50] 
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Table 1.9. Robustness Tests: Pre-Existing Trends and Macroeconomic 
Conditions  

In this table, we perform various robustness tests to examine whether alternative hypotheses could 
justify our main results. In Panel A, we include lag values of Impact to test whether there are any 
potential pre-existing shocks that could affect our estimations. In Panel B, we examine whether our 
results are robust when we control for the economic climate of the state where the analyst is located. 
To control for economic conditions we create the index Macro-state index. To define Macro-state 
index we sum the collateral ratio and the income growth rate, subtract the relative state unemployment 
rate and divide them by three. The state-level housing collateral ratio is the log ratio of state-level 
housing equity to state labor income. The relative state unemployment rate depicts the fraction of the 
current rate to the moving 16 quarter-average of past rates. The growth rate of labor income captures 
the state-level changes in labor income. In Panel B, our sample period extends from 1994-2012 due to 
unavailability of Macro-state index for 2013. All regressions include year-quarter fixed effects, state 
fixed effects and similar control variables as in Table 1.3. All coefficient estimates in the first column 
illustrate the marginal probabilities. Standard errors, shown in parentheses, are clustered at the level of 
analyst’s home state. All regression coefficients and standard errors are multiplied by 100. *, ** and 
*** measure significance at the 10%, 5%, and 1% level, respectively.  

Panel A: Pre-Existing Effects 

 Pessimism Relative Pessimism Rank Pessimism 
 (1) (2) (3) 
Impact(0 to 90 days) 2.98*** 2.28*** 1.92*** 

 
(0.56) (0.33) (0.28) 

Impact(-90 to -1 days) 0.17 0.66 -0.20 
  (0.85) (0.40) (0.51) 
Impact(-180 to -91 days) 0.44 0.46 0.54 
 (0.97) (0.61) (0.39) 
Impact(-270 to -181 days) -0.34 0.18 -0.33 
 (0.90) (0.94) (0.74) 
Impact(-365 to -271 days) 0.04 0.09 0.03 

 
(0.45) (0.48) (0.27) 

Control Variables Yes Yes Yes 
State Fixed Effects  Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 
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Table 1.9—Continued 

Panel B: Controlling for State-level Macroeconomic Conditions  

 Pessimism Relative Pessimism Rank Pessimism 
 (1) (2) (3) 
Impact 3.53*** 2.77*** 2.44*** 
 (0.78) (0.37) (0.43) 
Macro-state index 0.25 0.16 -0.04 
 (0.23) (0.14) (0.13) 
Control Variables Yes Yes Yes 
State Fixed Effects  Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 
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Table 1.10. Terrorist Events, Pessimism and Unobservable Characteristics 

This table presents the results from regressions examining the impact of attacks on forecast pessimism while including various fixed effects to control for unobservable 
characteristics. We consider analyst, brokerage firm, firm and industry (2-digit SIC classification) fixed effects additionally to state and year-quarter fixed effects. The 
sample includes forecasts for U.S. stocks included in CRSP from the 1st quarter of 1994 to the 4th quarter of 2013. Impact is a dummy variable equal to one if the 
analyst who provided the forecast is inside a 100 miles from an attack, and the forecast took place during the next 90 days after the attack. To allow comparisons we 
scale all continuous variables to range from 0 to 1. All regressions include year-quarter fixed effects, state fixed effects and similar control variables as in Table 1.3. In 
columns (1), (2), (3), and (4) we use Pessimism as dependent variable, in columns (5), (6), (7), and (8) we examine the effect of attacks on Relative Pessimism, and in 
the rest of the columns we examine the changes on Rank Pessimism. Standard errors, shown in parentheses, are clustered at the level of analyst’s home state. All 
regression coefficients and standard errors are multiplied by 100. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively. 
                     Pessimism              Relative Pessimism                  Rank Pessimism 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
Impact 2.97*** 3.02*** 3.02*** 2.92*** 2.10*** 2.22*** 2.27*** 2.15*** 1.95*** 2.02*** 1.94*** 1.94*** 

 
(0.60) (0.59) (0.54) (0.61) (0.28) (0.28) (0.25) (0.28) (0.27) (0.26) (0.27) (0.28) 

Horizon -4.39*** -3.71*** -3.63*** -3.63*** -3.89*** -3.37*** -3.37*** -3.32*** -2.08*** -1.65*** -1.64*** -1.62*** 
 (0.26) (0.25) (0.25) (0.25) (0.25) (0.22) (0.20) (0.21) (0.12) (0.13) (0.15) (0.15) 
Brok. size 0.71 -0.11 2.64*** 2.52*** 0.67 0.09 2.23*** 2.10*** 0.63 0.33 2.03*** 1.96*** 
 (0.61) (0.64) (0.74) (0.78) (0.45) (0.44) (0.59) (0.61) (0.40) (0.40) (0.50) (0.49) 
Lag. accuracy -6.17*** -7.96*** -7.86*** -8.11*** -5.05*** -6.49*** -6.18*** -6.58*** -3.85*** -5.08*** -5.34*** -5.25*** 
 (0.22) (0.20) (0.25) (0.29) (0.13) (0.14) (0.18) (0.19) (0.10) (0.12) (0.13) (0.12) 
ExperenceGen. 1.07* 1.09*** 1.49** 1.28** 0.70 0.47 0.90* 0.68 0.56 0.80*** 0.97** 0.94** 
 (0.54) (0.38) (0.57) (0.55) (0.49) (0.35) (0.47) (0.48) (0.38) (0.28) (0.43) (0.41) 
ExperienceFirm -0.54*** -0.59** -0.69*** -0.51** -0.31** -0.31** -0.48*** -0.26* -0.49*** -0.58*** -0.54*** -0.51*** 
 (0.18) (0.23) (0.20) (0.20) (0.14) (0.15) (0.15) (0.13) (0.12) (0.17) (0.14) (0.14) 
Industries -0.60*** -0.34 -0.54* -0.47 -0.29 -0.08 -0.30 -0.21 -0.22 -0.29 -0.29 -0.28 
 (0.21) (0.27) (0.28) (0.29) (0.19) (0.17) (0.20) (0.20) (0.19) (0.24) (0.22) (0.24) 
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Table 1.10—Continued 

                     Pessimism              Relative Pessimism                  Rank Pessimism 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Local -0.35** -0.22 -0.19 -0.27 -0.35** -0.18 -0.12 -0.29 -0.09 -0.01 -0.04 -0.02 
 (0.16) (0.26) (0.32) (0.28) (0.17) (0.19) (0.22) (0.20) (0.13) (0.20) (0.22) (0.22) 

Female  1.36*** 1.78*** 1.58***  1.16*** 1.54*** 1.47***  1.42*** 1.55*** 1.46*** 

  (0.42) (0.46) (0.48)  (0.32) (0.36) (0.36)  (0.29) (0.34) (0.34) 

All-Star 0.45** 0.13 -0.51* -0.45* 0.35*** 0.14 -0.36 -0.26 0.48*** 0.10 -0.38* -0.36* 

 (0.18) (0.31) (0.26) (0.23) (0.11) (0.30) (0.22) (0.19) (0.05) (0.26) (0.22) (0.18) 

Constant Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Analyst F.E. Yes No No No Yes No No No Yes No No No 

Brokerage F.E. No Yes No No No Yes No No No Yes No No 
Firm F.E. No No Yes No No No Yes No No No Yes No 
Industry F.E. No No No Yes No No No Yes No No No Yes 

State F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 358,885 358,885 358,885 358,885 358,885 358,885 358,885 358,885 358,885 358,885 358,885 358,885 
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Table 1.11. Robustness Tests: Different Sample Specifications  
In this table, we perform additional robustness tests. In Panel A, we examine the robustness of our 
results, by focusing on different forecast samples. In particular, in our main analysis we keep the 
last forecast of each analyst i for each firm j at time t. In this Panel, we examine whether our 
results are robust when we keep the first forecast of each analyst i for firm j at time t. In Panel B, 
we examine whether our results are robust to the exclusion of 9/11 attacks. In Panel C, we exclude 
from our sample all the analysts that live in the NY state and we repeat our main analysis. All 
regressions include year-quarter fixed effects, state fixed effects and similar control variables as in 
Table 1.3. All coefficient estimates in the first column illustrate the marginal probabilities. 
Standard errors, shown in parentheses, are clustered at the level of analyst’s home state. All 
regression coefficients and standard errors are multiplied by 100. *, ** and *** measure 
significance at the 10%, 5%, and 1% level, respectively.  

Panel A: First Forecast Sample 

 Pessimism  Relative Pessimism Rank Pessimism 
 (1) (2) (3) 
Impact 2.33** 1.54** 1.55** 

 
(0.94) (0.73) (0.65) 

Control Variables Yes Yes Yes 
State Fixed Effects  Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 

Panel B: Sensitivity to 9/11 Attacks 

 Pessimism  Relative Pessimism Rank Pessimism 
 (1) (2) (3) 
Impact(Excluding 9/11 Attacks)  1.56*** 0.69** 0.86** 
 (0.37) (0.32) (0.40) 
Control Variables Yes Yes Yes 
State Fixed Effects  Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 

Panel C: Excluding New York Analysts 

 Pessimism  Relative Pessimism Rank Pessimism 
 (1) (2) (3) 
Impact(Excluding  NY analysts)  2.58*** 2.72*** 2.22*** 
 (0.93) (0.61) (0.56) 
Control Variables Yes Yes Yes 
State Fixed Effects  Yes Yes Yes 
Time Fixed Effects Yes Yes Yes 
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Table 1.12. Robustness Tests: Alternative Mass Shooting Sample  
In this table, we increase the sample of mass shootings by including events with at least four human casualties. 
We get data from MSA Stanford database for the 1994-2013 period. In Panel A, we show the additional event 
sample. In Panel B, we examine the robustness of our results when we include mass shootings with less human 
casualties in comparison to our initial event sample. All regressions include year-quarter fixed effects, state fixed 
effects and similar control variables as in Table 1.3. All coefficient estimates in column (1) of Panel B illustrate 
the marginal probabilities. Standard errors, shown in parentheses, are clustered at the level of analyst’s home 
state. All regression coefficients and standard errors are multiplied by 100. *, ** and *** measure significance at 
the 10%, 5%, and 1% level, respectively.  

Panel A: Description of Additional Mass Shooting Events 

          Event 
 

Date Location 
Mass shootings with equal or more than 8 casualties   
 All-Tech I.G. / Momentum Securities 29 Jul 1999 Atlanta, GA 

 Wedgwood Baptist Church 15 Sep 1999 Fort Worth, TX 

 Living Church of God 12 Mar 2005 Brookfield, WI 

 Goleta Post Office 30 Jan 2006 Goleta, CA 

 Covina Shootings 24 Dec 2008 Covina, CA 

 Hartford Beer Distributors  03 Aug 2010 Manchester, CT 

 Salon Meritage 12 Oct 2011 Seal Beach, CA 

Mass shootings with 6 or 7 casualties   

 Fort Lauderdale City Parks Office 09 Feb 1996 Fort Lauderdale, FL 

 Edgewater Technology 26 Dec 2000 Wakefield, MA 

 Navistar International 05 Feb 2001 Melrose Park, IL 

 Windy City Core Supply Warehouse 27 Aug 2003 Chicago, IL 

 Birchwood Shootings 21 Nov 2004 Birchwood, WI 

 Party in Capitol Hill 25 Mar 2006 Seattle, WA 

 West Nickel Mines Amish School 02 Oct 2006 Nickel Mines, PA 

 Carnation Shootings 24 Dec 2007 Carnation, WA 

 Kirkwood City Hall 07 Feb 2008 Kirkwood, MO 

 Northern Illinois University 14 Feb 2008 DeKalb, IL 

 Rivermark 29 Mar 2009 Santa Clara, CA 

 Oikos University 02 Apr 2012 Oakland, CA 

 Cafe Shootings 30 May 2012 Seattle, WA 

 Accent Signage Systems 27 Sep 2012 Minneapolis, MN 

 Village of Manchester 24 Apr 2013 Manchester, IL 

 Santa Monica College 07 Jun 2013 Santa Monica, CA 

Mass shootings with 4 or 5 casualties   

 Residence in Union 26 May 1994 Union, KY 

 Montclair Post Office 21 Mar 1995 Montclair, NJ 
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Table 1.12—Continued 

 Event Date Location 

 Caltrans Maintenance Yard 18 Dec 1997 Orange, CA 
 Connecticut State Lottery Headquarters 06 Mar 1998 Newington, CT 

 Westside Middle School 24 Mar 1998 Jonesboro, AR 

 Radisson Bay Harbor Inn 30 Dec 1999 Tampa, FL 

 Youth With A Mission / New Life Church 09 Dec 2007 Arvada, CO 

 Parkland Coffee Shop 29 Nov 2009 Lakewood, WA 

 Ensley Shootings 29 Jan 2012 Birmingham, AL 

 Su Jung Health Sauna 22 Feb 2012 Norcross, GA 

 Azana Spa   21 Oct 2012 Brookfield, WI 

 Los Angeles Police Department 03 Feb 2013 Irvine, CA 

 Ladera Ranch Shootings 19 Feb 2013 Ladera Ranch, CA 

 Mohawk Shootings 13 Mar 2013 Mohawk, NY 

 Pinewood Village Apartments 21 Apr 2013 Federal Way, WA 

Panel B: Model Estimates with Alternative Mass Shooting Sample 

            Pessimism      Relative Pessimism                 Rank Pessimism 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Impact(Initial Sam. + 

MSA Sam.>=8 Casualties) 
2.84***   2.23***   1.84***   

 (0.71)   (0.39)   (0.42)   
Impact(Initial Sam. + 

MSA Sam.>=6 Casualties) 
 1.75*   1.33**   1.19**  

  (1.00)   (0.64)   (0.55)  
Impact(Initial Sam.+ 

MSA Sam.>=4 Casualties) 
  1.04   0.79   0.75* 

   (0.78)   (0.48)   (0.42) 
Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State F.E.  Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Time F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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Figure 1.1. Terrorist Attacks and Locations. This figure shows the states where the terrorist 
attacks and mass shootings took place. 
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Figure 1.2. Forecasts and Locations. This figure shows the distribution of forecasts across 
different states. States with no forecasts are highlighted with white. 
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Figure 1.3. Pessimism, Attacks and Different Sample Periods. This figure shows the average 
pessimism of analysts during different sample periods between the affected and non-affected 
analysts. Each column represents a different period and each row illustrates different variables. 
The red spikes show the upper and lower bound of each variable in a 95% confidence interval. 
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Chapter 2 
 

Terrorist Attacks, Managerial 

Sentiment, and Corporate 

Policies 

 

2.1 Introduction 

An established literature in psychology demonstrates that extremely negative 

events adversely affect people’s sentiment. Consequently, they become more 

pessimistic in their assessments of risk in other unrelated domains.1 Recent 

studies in finance have shown that such sentiment-related biases influence 

portfolio choice and stock returns.2 We extend this literature by examining 

whether such events also influence the sentiment of corporate managers, and, 

consequently, their corporate policies.  

We focus on two types of extreme negative events: terrorist attacks and 

mass shootings (henceforth, “terrorist attacks”). We focus on these types of events 

because research in psychology shows that such extreme events generate strong 

feelings of fear, anxiety and depression among affected people, and induce a 
                                                           
1 See, for example, Johnson and Tversky (1983), Finucane, Alhakami, Slovic, and Johnson (2000), 
Slovic, Finucane, Peters and MacGregor (2002), Kuhnen and Knutson (2011).   
2 These studies show that economically irrelevant events generate strong emotional reactions 
influence stock returns. See, for example, Hirshleifer and Shumway (2003), Kamstra, Kramer and 
Levi (2003), Edmans, García and Norli (2007), Kaplanski and Levy (2010). 
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degree of pessimism in their risk assessments (e.g., Lerner and Keltner, 2001; 

Lerner, Gonzalez, Small and Fischhoff, 2003).3 In addition, such events are 

unlikely to be tied to economic fundamentals since they occur at random times 

and locations, and they are usually not induced by economic factors.  

We assume that the adverse shock to sentiment would be more pronounced 

among “local” managers, i.e., managers who are located close to these events. 

This assumption is based on the premise that local managers are more likely to 

have a more “personal experience” with the event, as they are more likely to 

interact with or hear about people who are more directly affected. Such direct 

exposure would make the event significantly more salient to managers, and affect 

their sentiment more strongly.  

Our view that terrorist attacks influence the sentiment of the local 

community more strongly is motivated by studies in psychology (e.g., Vlahov, 

Galea, Resnick, Ahern, Boscarino, Bucuvalas, Gold and Kilpatrick, 2002; Galea 

et al., 2002; Hughes et al., 2011).4 Specifically, we conjecture that managers of 

local firms located near terrorist attacks will become more pessimistic and adopt 

more prudent corporate policies than managers of firms who are located far away 

from the location of these events.  

We test our hypothesis using data on terrorist attacks and mass shootings 

obtained from the Global Terrorism Database (GTD) and the Washington Post 

(WP). Due to various filters and data requirements that are aimed to identify the 

more important and salient events, which are more likely to affect managerial 

sentiment, our final sample contains 25 major events during the 1997 to 2012 

period.5  

Our econometric models compare financial decisions of local firms and 

non-local firms around the period of the attacks in a difference-in-difference 
                                                           
3 For additional evidence, see Galea, Ahern, Resnick, Kilpatrick, Bucuvalas, Gold and Vlahov 
(2002) and Hughes, Brymer, Chiu, Fairbank, Jones, Pynoos, Rothwell, Steinberg and Kessler 
(2011). For more information on the effects of terrorist attacks and mass shootings, see 
http://www.apa.org/helpcenter/terrorism.aspx and http://www.apa.org/helpcenter/mass-shooting. 
4 Anecdotal evidence also support this view. For example, an article published by Daily Mail in 
the U.K. discussed the mental health issues faced by residents in Newtown, Connecticut two years 
after the terrorist attacks in Sandy Hook elementary school (http://www.dailymail.co.uk/ 
news/article-2870512/In-Newtownmental-health-problems-emerging.html). 
5 In our robustness tests, we also consider a larger sample of negative events identified using less 
stringent criteria for inclusion in the event sample. As expected, when we consider events that are 
likely to be perceived as less salient, our results are similar but weaker. 
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setting. Specifically, we test for systematic differences in corporate cash holdings, 

research and development (R&D), and long-term leverage. In all our tests, we 

control for several variables that capture the potential impact of economic 

variables on corporate policies.6  

Previous research indicates that higher levels of cash help firms cope with 

potential liquidity shocks and mitigate any refinancing problems when capital 

markets become too costly (Opler, Pinkowitz, Stulz and Williamson, 1999; 

Almeida, Campello and Weisbach, 2004; Bates, Kahle and Stulz, 2009; Harford, 

Klasa and Maxwell, 2014). R&D expenditure is related to firm risk, since 

innovative projects are considered to be riskier (Hilary and Hui, 2009; Hutton, 

Jiang and Kumar, 2014). Finally, corporate leverage levels can significantly affect 

firm’s risk exposure, since higher corporate leverage can increase firm’s stock 

volatility and financial distress (Lewellen, 2006; Hackbarth, 2008).7  

Motivated by these findings, we posit that, adverse shocks to managerial 

sentiment generated by negative local events would induce local firms to adopt 

more prudent corporate policies. In particular, they would increase their corporate 

cash holdings and decrease their R&D expenditure as well as their corporate 

leverage.  

Our empirical results support this key hypothesis. We find that around the 

period of the attack, relative to non-local firms, local firms on average increase 

their cash holdings by 1.67%, and decrease their R&D expenditure and long-term 

leverage by 0.17% and 0.87%, respectively. These results are statistically 

significant and robust. We also find that these policy adjustments are temporary 

and last for only one quarter. This finding is reasonable as the negative shock to 

sentiment is likely to be short-lived. Collectively, these findings are consistent 

with our view that transient, emotion-related biases induced by proximity to 

terrorist attacks affect managerial sentiment and corporate policies.   

Next, we investigate whether events that are likely to be perceived as more 

salient cause even larger adjustments to corporate policies. To define our first 

                                                           
6 In our baseline analysis, firms that have their headquarters within a radius of 50 miles from an 
attack are identified as local. In our robustness section, we conduct sensitivity analysis using 
different distance cut-offs to identify local firms.   
7 Higher firm leverage is also associated with a higher level of risk-taking (Coles, Daniel and 
Naveen, 2006). 
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salience proxy, we consider the geographical distance of a firm to an attack, since 

proximity is likely to increase an event’s saliency. In line with our hypothesis, we 

find that the adjustments to corporate policies become larger as the event-firm 

distance decreases.  

We also examine whether events that are covered in the media more 

prominently, and are thus more salient, are associated with larger changes to 

corporate policies.8 To conduct this test, we use hand-collected newspaper articles 

from important national outlets that are related to the attacks and form three 

salience proxies. First, we measure article length, since events that are covered 

with longer articles are likely to be more prominent. Second, we identify whether 

the event is covered in a leading story on the first page of a newspaper. Third, we 

measure whether the event is a leading newspaper story for multiple days. Our 

results across all three salience proxies show that changes in cash holdings, R&D 

expenditure, and leverage are larger when the attack is featured more prominently 

in the media, and is likely to be more salient. 

Next, we examine whether adjustments to corporate policies are larger for 

local managers who are more likely to exhibit stronger emotional reactions to 

terrorist attacks. This test is motivated by studies in psychology, which document 

that younger people exhibit stronger emotional reaction (Carstensen, Pasupathi, 

Mayr and Nesselroade, 2000; Blanchard-Fields, Mienaltowski and Seay, 2007; 

Scheibe and Blanchard-Fields, 2009). Younger people are also likely to be less 

experienced, and lack of experience may generate stronger behavioral biases (e.g., 

List, 2003; Dhar and Zhu, 2006). In line with the findings in this literature, we 

observe that changes to corporate policies around terrorist attacks are mainly 

concentrated among firms that are managed by younger CEOs. 

We conduct several additional tests to ensure that our results reflect the 

effects of managerial sentiment and not adjustments to economic shocks. To 

begin, we use a direct measure of managerial sentiment to examine the impact of 

negative events on sentiment. Specifically, we examine whether exposure to 

terrorist attacks influences the linguistic tone used by managers in the 

                                                           
8 Several studies in finance show that the media is a major propagator and amplifier of sentiment, 
i.e., Tetlock, (2007), Tetlock, Saar-Tsechansky and Macskassy (2008), Barber and Odean (2008), 
Da, Engelberg and Gao (2011), and García (2013). 
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Management Discussion and Analysis (MD&A) section of quarterly financial 

statements (Feldman, Govindaraj, Livnat and Segal, 2010; Li, 2010; Loughran 

and McDonald, 2011; Bochkay and Dimitrov, 2014). We find that managers who 

are local to terrorist attacks adopt a more pessimistic tone in their MD&A 

corporate disclosure. This result provides direct evidence that exposure to terrorist 

attacks adversely influence managerial sentiment, which consequently influence 

corporate policies. 

The remaining tests examine whether attack periods coincide with periods 

of known economic shocks. First, in an aggregate setting, we show that terrorist 

attacks are not related to state-level macroeconomic variables, which provides 

support to the claim that shocks generated by terrorist attacks are exogenous. 

Next, we examine whether local firms are exposed to economic conditions that 

may merit adjustments to corporate policies. Specifically, we check whether the 

differences we document between the corporate policies of local and non-local 

firms subsequent to attack periods are also found in the quarters prior to these 

events. We find that, prior to the attacks, there is no difference in the corporate 

policies of local and non-local firms. This evidence suggests that differences in 

economic environment across local and non-local firms are unlikely to explain our 

findings. 

Although this evidence is re-assuring since it precludes the existence of pre-

existing and confounding “parallel trends”, it is still possible that attack periods 

experience economic shocks that are not captured appropriately by our control 

variables. To examine this possibility, we investigate whether local firms around 

event periods experience noticeable shifts to corporate credit ratings, analyst 

recommendations, stock return volatility, and firm sales. These firm-level 

indicators would affect the underlying company fundamentals, and firms that 

experience economic distress should experience changes in at least some of these 

measures. Our results show that there is no significant change in any of these 

indicators among local firms around negative events, which suggests that our 

results are unlikely to reflect the impact of economic shocks during the attack 

periods. To account for the potential misspecification of the control group, we 

also use a propensity score matching method to identify a control group of non-
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local firms that share similar characteristics as the local firms. We find that our 

results remain very similar in this setting where we use several different 

specifications for defining the control group.  

We conduct several additional tests to ensure that our results our robust. 

First, we conduct placebo tests where we randomize the time or the location of the 

negative events and find no significant effects. Our results are robust to 

eliminating the 9/11 attacks from the sample (the most economically significant 

event in our sample), and to eliminating firms with missing R&D values (as 

opposed to setting their R&D’s to zero). Finally, our results remain similar when 

we consider a larger terrorist attack sample, constructed using less stringent 

criteria for selecting negative events.  

Several studies in this literature demonstrate that corporate decisions are 

affected by managerial overconfidence (e.g., Malmendier and Tate, 2005, 2008; 

Landier and Thesmar, 2009; Hirshleifer, Low and Teoh, 2012), context-related 

heuristics (Baker, Pan, and Wurgler, 2012; Dougal, Engelberg, Parsons and 

Wesep, 2015, Dessaint and Matray, 2016), and personality traits of CEOs 

(Malmendier, Tate and Yan, 2011; Cain and McKeon, 2016; Bernile, Bhagwat, 

and Rau, 2016).9 Our findings contribute to the behavioral corporate finance 

literature that examines the impact of managerial biases on corporate decisions, 

since this is the first study that examines the effect of managerial sentiment on 

corporate policies. Additionally, our study contributes to this literature by 

showing that managerial emotions, induced by exogenous and economically 

irrelevant events, can be a significant source of variation in corporate policies 

across firms. 

Additionally, several studies show that investors’ trading behavior is 

correlated with local weather (Hirshleifer and Shumway, 2003; Goetzmann et al. 

2015). In related research, Kaplanski and Levy (2010) show that stock prices 

decrease after aviation disasters, while Edmans, García, and Norli (2007) find that 

variation in stock returns is also associated with the outcomes of international 

soccer tournaments. In this Chapter, we contribute to the growing literature that 

associates sentiment with the decision-making of sophisticated financial agents. 

                                                           
9 For a review of the behavioral corporate finance literature, see Baker and Wurgler (2012).  
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Further, we provide a new proxy to capture negative sentiment shocks to 

sophisticated financial agents such as corporate managers. 

We also contribute to the broader finance and economics literature that 

analyzes the implications of terrorism. Ahern (2012) presents causal evidence that 

terrorist attacks adversely influence various psychological indicators. Di Tella and 

Schargrodsky (2004) and Gould and Stecklov (2009) show that terrorist attacks 

have an indirect economic effect as they could alter government policies. Other 

studies show that terrorist attacks influence political views (Gould and Klor, 

2010), and election outcomes (Montalvo, 2011). More recently, Antoniou, Kumar 

and Maligkris (2016b) show that terrorist attacks influence the earnings forecasts 

of sell-side analysts and the process of information dissemination in financial 

markets. Our study complements this line of research by presenting new evidence 

that terrorist attacks and mass shootings affect the behavior of local corporate 

managers and induce them to adopt more prudent corporate policies. 

The rest of the paper is organized as follows. In the next section, we 

describe the data and the empirical model. The main empirical results are reported 

in Section 2.3. We examine the robustness of our results in Section 2.4. We 

conclude in Section 2.5 with a brief summary. 

 

2.2 Data and Methods 

2.2.1 Econometric Model 

Our empirical models test for changes in corporate policies in the quarter after the 

occurrence of an attack. We make this methodological choice because corporate 

policies are fairly “slow-moving”, and, therefore require time to reflect 

managerial sentiment. Further, in a behavioral sense, temporary emotions can 

have a relatively long-lasting impact on decision making, since they can influence 

the core decisions that become the basis for subsequent decisions (i.e., Andrade 

and Ariely, 2009).  

Specifically, following Bertrand and Mullainathan (2003), we use a 

difference-in-difference model (DiD) to capture the impact of attacks on the 
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corporate policies of local firms. This methodology controls for fixed differences 

between the control and treatment groups via firm and time fixed effects. Similar 

to Bertrand and Mullainathan (2003), our treatment group includes all firms that 

are local to terrorist attacks that occur at time t. The control group includes all the 

remaining firms. In our baseline analysis, firms that are that are headquartered 

within 50 miles radius from the location of events are identified as local firms.10  

The empirical model has the following structure: 

Yi,s,t+1 = c + αi + δt + β × Impacts,t + γ × Xi,s,t + εi,s,t+1           (1) 

In equation (1), i indexes firms, t indexes time (quarter) and s indexes 

location. Yi,s,t+1 is the corporate policy (i.e., cash holdings, R&D expenditure or 

long-term-leverage) of firm i at time t+1, αi is firm fixed effects, and δt is time 

fixed effects. Our main variable of interest is Impacts,t , which is a dummy 

variable that equals one for firms that are local to an attack at time t. 

Our empirical models include several control variables that have been 

shown in the previous literature to affect corporate policies. These variables are 

indexed in equation (1) with Xi,s,t, and include firm size (i.e., log(assets)), return 

on assets (ROA), market-to-book ratio (MB), growth of sales, and firm age 

(Hilary and Hui, 2009; Hirshleifer et al., 2012; Gao, Harford and Li, 2013; Hutton 

et al., 2014).11 To control for the possibility that terrorist attacks and mass 

shootings are influenced by the local macroeconomic environment, we include the 

state-level macroeconomic index defined in Korniotis and Kumar (2013) as an 

additional control variable. An increase in the value of this index indicates 

improvements in the local macroeconomic conditions. The appendix provides a 

description of all variables.  

 

                                                           
10 To determine the coordinates of the firms’ headquarters and the location of the attacks, we use 
the services of Google Geocoding API V3 and GPS Geoplaner, respectively, which use Google 
maps and GPS data to produce the latitude and longitude of any given address or ZIP code. We 
follow the procedure in Vincenty (1975) to calculate the distance between these coordinates.  
11 Firm size and MB can relate to risks associated with distress (Fama and French, 1993); Firm age 
with risks associated to information uncertainty (Zhang, 2006); ROA and growth of sales with 
risks associated with expected growth rates (Johnson, 2002).  
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2.2.2 Data and Summary Statistics 

The sample period for our baseline tests is from 1997 to 2012. The data on 

terrorist attacks and mass shootings come from the Global Terrorism Database 

(GTD)12 and The Washington Post list (WP),13 respectively. GTD is an open-

source database that contains systematic data on terrorist attacks (START, 2012), 

while WP captures the deadliest shootings in U.S. history. Based on these 

databases, we collect information regarding the date, location, and the type of 

each event. We use the following filters to identify our list of extreme negative 

events: first, we retain events that occur in the U.S. Second, to ensure that our 

sample includes high-impact and salient events that are likely to generate negative 

sentiment, we only retain events that involve human casualties, and are covered in 

newspaper articles.14 From the resulting sample, we eliminate 7 events for which 

we could not validate an exact location, and 2 events that involve robberies.15 

Table 2.1 lists the 25 events during the 1997-2012 period that are included in our 

final sample, and Figure 2.1 shows their geographical locations.  

We obtain quarterly firm-level financial variables from Compustat. We 

exclude from our sample all firms that are not headquartered in the U.S. We also 

exclude utility and financial firms with SIC codes between 4910 to 4939 and 6000 

to 6999, respectively. All firm-level variables are winsorized at the 1st and 99th 

percentile levels. Our sample includes only firms with non-missing zip codes from 

the first quarter of 1997 until the fourth quarter of 2012.  

Table 2.2 presents the descriptive statistics for the variables included in our 

models, for the whole sample and when the sample is split between firms that 

were affected by an event (Impacts,t=1) and those they were not (Impacts,t=0). 

From Table 2.2, we observe some early evidence in support of our hypothesis as 

                                                           
12 For more information, please see http://www.start.umd.edu/gtd/. 
13 This list contains the deadliest shootings in the U.S. See http://www.washingtonpost.com/wp-
srv/special/nation/deadliest-us-shootings/. 
14 To find whether an event appeared in the media, we use Factiva to search all articles published 
in major U.S. newspapers (The Los Angeles Daily News, The NY Daily News, The NY Post, The 
NY Times, The Wall Street Journal-US edition, The Washington Post and USA Today) for a period 
of 7 days after the event. The keywords in this search are the name and type of the event, or the 
name of the place that the attack took place. In the robustness section, we conduct additional tests 
with an alternative sample of terrorist attacks, created using less stringent selection criteria. 
15 Since our aim is to examine the impact of unpredictable and salient events, we exclude 
robberies, which reflect common criminal activity. 
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affected firms exhibit higher levels of cash holdings, lower R&D expenditure, and 

long-term leverage in period t+1.  

 

2.3 Empirical Results 

2.3.1 Baseline Estimates 

Our baseline results are presented in Table 2.3. We find that terrorist attacks and 

mass shootings affect the corporate policies of local firms. More specifically, 

local firms increase their cash holdings by 1.67% (t-statistic= 4.06) relative to 

non-local firms. In addition, local firms decrease their R&D expenditure by  

-0.17% (t-statistic= -2.99), and decrease their long-term leverage by -0.87%  

(t-statistic= -2.93). These results are economically meaningful and consistent with 

our conjecture that local firms would adopt more prudent policies around terrorist 

attacks, relative to firms that are headquartered away from the location of the 

events. 

Examining the estimates of the control variables, we find that smaller and 

growth oriented firms have higher cash holdings, in line with the findings in Bates 

et al. (2009) and Dessaint and Matray (2016). Further, similar to Hilary and Hui 

(2009) and Hirshleifer et al. (2012), we find that larger firms and firms with 

higher ROA have lower R&D expenditure. Our results also show that firms with 

higher profits exhibit lower levels of long-term leverage, in line with the findings 

in Hutton et al. (2014). Last, we find that increase in the local macroeconomic 

index is associated with higher cash holdings, but there is no significant impact on 

R&D expenditure or long-term leverage.  

 

2.3.2 Effect of Distance 

We next examine the sensitivity of our findings to event-firm distance. According 

to our hypothesis, the impact of terrorist attacks on firm decisions should be more 

intense among firms that are closer to the event location. Therefore, we expect 

that, as we progressively expand our definition of “local” to include firms located 
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farther away from the location of the negative event, the magnitude and statistical 

significance of Impacts,t would decrease.  

To test this conjecture, we re-estimate equation (1) using different definition 

of “local”. We define local firms as those firms with headquarters within 30, 50, 

70, 90, 110, 130, and 150 miles from the location of negative events. We 

summarize the key results in Figure 2.2, where we report the coefficient estimates 

of Impacts,t for cash holdings, R&D expenditure, and long-term leverage for these 

different subsamples.  

In line with our hypothesis, the results show that as we expand the definition 

of “local” to include more geographically distant firms, the coefficient estimates 

on Impacts,t decrease and become statistically insignificant as we move beyond a 

radius of 70-90 miles. This finding is consistent with our hypothesis, and suggests 

that the impact of terrorist attacks on corporate policies is stronger when a firm is 

headquartered closer to the location of the event. 

 

2.3.3 Effect of Time 

The impact of terrorist events on managerial sentiment is likely to be relatively 

short-lived, which implies that the observed changes to corporate policies would 

be temporary. To test this conjecture, we examine whether the observed changes 

to corporate policies of local firms last for more than one quarter after the events. 

Table 2.4 shows the results. Consistent with a temporary sentiment effect, 

we find that the observed changes to corporate policies last only for one quarter 

after the events. Specifically, while local firms increase their one quarter ahead 

cash holdings by 1.67%, they do not significantly increase their two and three 

quarter ahead cash holdings. Similarly, local firms decrease their one quarter 

ahead R&D expenditure, and long-term leverage by 0.17% and 0.87%, 

respectively, but these changes become smaller and insignificant during the 

following two quarters. Even though this effect is significant only for period t+1, 

we observe a reversal in the effect during the periods t+2 and t+3 for the R&D 

expenditure and long-term leverage of local firms. This finding is consistent with 

Kaplanski and Levy (2010) who support that if the decision-making of decision-
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making agents is indeed driven by sentiment shocks instead of rational 

expectation, impact of sentiment shocks is not likely to be “permanent” and 

subsequent reversals may be observed. Overall, these findings suggest that the 

sentiment effects following terrorist events are economically meaningful, but they 

are short-lived. 

 

2.3.4 Impact of Salience 

In this section, we examine whether more salient events, which are likely to 

generate stronger negative sentiment among managers, lead to larger changes in 

corporate policies. To quantify the saliency of the negative events, we construct 

proxies based on news coverage, which has been shown to have a strong influence 

on behavior in different domains (Shiller, 2000; Tetlock, 2007; Tetlock et al., 

2008; Barber and Odean, 2008; Da et al., 2011; García, 2013; Liu and McConnell, 

2013). Our conjecture is that events that are featured more prominently in the 

media will affect managerial sentiment more strongly, and thus would have a 

larger impact on corporate policies. To test this conjecture, we use newspaper 

articles to identify whether an event is high or low in saliency, and then we re-

estimate the model in equation (1) by interacting Impacts,t with dummy variables 

that correspond to these different cases. 

To construct the media-based saliency proxies, we use Factiva to search for 

articles published in major media outlets in the seven-day period after each attack 

in our sample. The keywords for the search are the name and type of the event, or 

the name of the place that the event occurred. We examine articles from the 

following major outlets: The Los Angeles Daily News, The NY Daily News, The 

NY Post, The NY Times, The Wall Street Journal-US edition, The Washington 

Post and USA Today. We read all the articles to ensure that their main focus is the 

event in question. Using this procedure, we obtain 372 articles, which amounts to 

an average of 14.88 articles per attack.  

Our first saliency proxy measures the length of articles by counting the 

number of words. To construct this proxy, we first gather all the articles 

corresponding to a specific attack, count the number of words in each article, 
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noting the median of this distribution. We do this for every event, which results in 

an overall distribution of medians. If any event specific median is higher or equal 

to the median of this overall distribution, the dummy variable Article-Sizeh is 

equal to one, or else, it is set equal to zero. Similarly, Article-Sizel is equal to one 

if the attack-specific median is less than the median of the overall distribution. 

The second news coverage proxy is a dummy variable, which indicates whether 

an article is a leading story presented in the first page of a newspaper. Since 

leading stories are more salient, we expect that such events will exert a stronger 

impact on managerial sentiment and corporate policies. From our total sample of 

372 articles, 76 of them are displayed on the first page of the newspaper outlets 

we consider. First PageDummy is a dummy variable, which is equal to one if an 

event is presented on the first page of at least one newspaper.  

We also consider a variation of this dummy variable by examining whether 

an attack featured as leading story on multiple days. Our conjecture is that attacks 

that are covered as leading stories on multiple days should exert a stronger 

influence on managerial sentiment and corporate policies. To construct this proxy, 

we gather all articles related to a specific event and count the number of days that 

this event was displayed as a cover story of a newspaper.16 Among the 25 events 

in our sample, we find that the median number of days that they were presented 

on the first page of newspapers is two days. We compare the event-specific 

duration with the median duration of all the events in our sample. If the event-

specific duration is greater or equal to the median duration of all events, the First 

Page(Long Duration) dummy variable is equal to one, or else, it is set to zero. 

Similarly, First Page(Short Duration) dummy variable is set to one if the event-specific 

duration is less than the overall median duration. 

Table 2.5 presents the results, where the effect of Impacts,t on corporate 

policies is estimated separately for high and low salience events. In Panel A, 

salience is captured by the length of the article. Consistent with our hypothesis, 

we find that, across all three measures of corporate policies, the effect of terrorist 

attack is stronger for longer articles. Specifically, in relation to low salience 

events, high salience events are associated with an additional increase in cash 

                                                           
16 If an event was never displayed on the first page, we consider it as zero duration. 
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holdings of 1.38%, and an additional decrease in R&D expenditure and long-term 

leverage by 0.22% and 2.01%, respectively.  

In Panel B, salience is captured by coverage of terrorist attacks in a leading 

story. The results show that, relative to low salience events, local firms near high 

salience events increase their cash holdings by an additional 0.88%, and decrease 

their R&D expenditure and long-term leverage by an additional 0.26% and 1.57%, 

respectively. Last, in Panel C, event salience is captured by coverage as a leading 

story for multiple days. The results show that, relative to low salience events, 

local firms near high salience events increase their cash holdings by an additional 

1.39%, and decrease their R&D expenditure and long-term leverage by an 

additional 0.17% and 1.50%, respectively.  

In all Panels of Table 2.5, the row difference presents the difference 

between the coefficients on Impacts,t for the two groups (high vs. low saliency). 

We also report whether the difference is significant using a Wald test. We find 

that across all different corporate policy measures and salience proxies, the 

differences are statistically significant.   

Overall, the results in Table 2.5 support our key hypothesis, and 

demonstrate that corporate policies are affected more strongly by more salient 

events that are more likely to adversely influence managerial sentiment. 

 

2.3.5 Role of Demographics 

Several studies in psychology show that younger people are less able to control 

their emotions, and are thus more prone to make emotionally-driven decisions 

(Carstensen et al., 2000; Blanchard-Fields et al., 2007; Scheibe and Blanchard-

Fields, 2009). In addition, younger people are likely to be less experienced, and 

several studies have shown that lack of experience can lead to stronger behavioral 

biases (List, 2003; Dhar and Zhu, 2006).  Motivated by this evidence, we examine 

whether the changes in corporate policies among firms local to terrorist attacks are 

particularly pronounced among firms with younger CEOs.  

To test this conjecture, we obtain the age of CEOs from Execucomp, and 

define the Age(Low) (Age(High)) dummy. The variable equals one if the CEO’s age 
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falls in the bottom (top) third of the age distribution for that particular industry, 

where we use the Fama and French (1997) 48 industry classification 

(correspondingly Age(Mid) dummy variable equals one if the CEO’s age falls in the 

middle third of the age distribution).17 The classifications of CEOs used here 

capture material differences in their characteristics. The average age for CEOs in 

the low age group is 46 years, whereas the average age for CEOs in the high age 

group is 63 years. In addition, CEOs in the low age group have an average of 17 

quarters of company-specific CEO experience, while the corresponding number 

for CEOs in the high age group is 23 quarters (p-value of difference≈ 0.000).  

We estimate the model in equation (1) by interacting these age-related 

dummies with Impacts,t. In this model, in addition to the controls used in the 

baseline model in Table 2.3, we also control for the CEO’s gender since 

experimental evidence show that males are less risk averse than females 

(Antoniou, Harrison, Lau and Read, 2016). Due to limited data availability in 

Execucomp, the sample used for this test is significantly smaller, containing 

roughly 30% of the observations used in the baseline analysis (Table 2.3).18 

The results are presented in Table 2.6. In columns 1, 3 and 5 we estimate 

our baseline model for this smaller sample without accounting for CEO age. We 

find that our baseline results continue to hold in this smaller sample. The 

coefficient on Impacts,t has the expected sign across all three corporate policy 

measures and is statistically significant in all cases.  

In columns 2, 4 and 6 of Table 2.6, we consider CEO age and estimate the 

regression model for cash holdings, R&D expenditure, and long-term leverage 

variable, respectively. The results show that younger CEOs increase cash holdings 

by 4.08%, and decrease R&D and leverage by 0.26% and 2.52%, respectively. 

These changes to corporate policies by younger CEOs are statistically significant. 

The corresponding changes for older CEOs are 1.98%, -0.04%, and -2.00%, and 

are statistically insignificant. The difference in the coefficient of Impacts,t for low 

and high age CEOs is statistically significant only for R&D expenditure. For the 

                                                           
17 We consider industry-adjusted benchmarks, since CEO age varies systematically between 
certain types of firms (e.g., Acemoglu, Akcigit, and Celik, 2014).  
18 Further, the sample period of cash holdings starts from 2002 to 2012 and is based on 15 negative 
events instead of 25. 



64 

remaining two variables, the difference is in the predicted direction but it is 

statistically insignificant, perhaps due to reduced sample size. Overall, the results 

in this section show that changes to corporate policies in response to terrorist 

attacks are mainly concentrated among firms managed by younger CEOs. 

 

2.4 Robustness Tests and Alternative Explanations 

Our main hypothesis posits that changes to corporate policies among firms close 

to terrorist attacks reflect the impact of emotions. These changes are unlikely to 

reflect adjustments to economic shocks. In this section, we conduct several tests to 

examine whether attacks indeed influence managerial sentiment, and whether 

local firms experience economic shocks during event periods. 

2.4.1 Terrorist Attacks and Managerial Sentiment: A Direct Test 

We first analyze the linguistic tone in the MD&A section of financial reports to 

investigate whether terrorist attacks adversely influence managerial sentiment.19 

Recent studies show that linguistic tone in the MD&A section reflects managerial 

sentiment (Feldman, Govindaraj, Livnat and Segal, 2010; Li, 2010; Loughran and 

McDonald, 2011; Bochkay and Dimitrov, 2014).20 In our economic setting, we 

expect that managers who are local to terrorist attacks will be relatively more 

pessimistic in their communication. 

We use the dictionary for extreme positive and negative words developed in 

Bochkay, Chava and Hales (2016) to analyze the tone of the MD&A section using 

the Bochkay and Dimitrov (2014) procedure.21 Specifically, we analyze three 

                                                           
19 According to the SEC, the objective of the MD&A according is to provide a narrative 
explanation of a company’s financial statements, as well as to communicate information related to 
potential variability of earnings and cash flows. Thus, through linguistic analysis of tone, the 
sentiment of managers at the time of writing can be identified. 
20 For example, Bochkay and Dimitrov (2014) show that an aggregate index of managerial 
sentiment constructed using linguistic analysis of tone in MD&A’s is strongly correlated to the 
Baker and Wurgler (2006) investor sentiment index. They also find that optimistic (pessimistic) 
tone predicts a deterioration in firm performance, which is consistent with the view that tone in 
MD&A captures managerial sentiment that is unrelated to firm fundamentals. 
21 This dictionary captures tone more precisely as it rates words according to their tone. It is more 
general than the standard binary dictionary developed in Loughran and McDonald (2011), which 
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variables: Extreme Pos, Extreme Neg and Pessimistic Tone. The Extreme Pos 

(Neg) variable is equal to the number of extreme positive (negative) words (i.e., 

NPos and NNeg, respectively) scaled by the total number of words in the MD&A 

section. Since MD&A section may include both extreme positive and extreme 

negative words, we set the Pessimistic Tone variable equal to the logarithm of 

(1+NNeg)/(1+NPos) to capture the negative to positive linguistic tone imbalance.22   

Panel A of Table 2.7 presents the summary statistics for our linguistic 

measures, and Panel B presents the results from OLS regressions.23 We find a 

negative and significant relation between Extreme Pos and Impacts,t, and a 

positive and significant relation (at the 10% level) between Pessimistic Tone and 

Impacts,t. These estimates provide direct evidence of an impact of local negative 

events on managerial sentiment. 

One caveat with this analysis is that the MD&A section provides a low 

frequency snapshot of managerial sentiment, and it is also partly contaminated by 

the influence of other agents such as legal teams and auditors. Clearly, it would be 

preferable to analyze more direct proxies of managerial sentiment at higher 

frequencies. Nevertheless, the results in this section suggest that exposure to 

terrorist attacks affect managerial mood and sentiment. 

 

2.4.2 Emotional or Economic Impact? 

We continue our analysis with tests that examine whether terrorist attacks relate to 

firm fundamentals. The first test examines whether terrorist attacks tend to occur 

when the state-level macro-economic conditions are worse. We regress state level 

GDP growth at time t on dummy that equals to 1 if an attack has occurred in that 

state at time t, and also include time and state fixed effects.24 In untabulated 

results, we find that the terrorist attack dummy is insignificant in this regression, 
                                                                                                                                                               
only classifies words into positive or negative. For more details on the dictionary, see Bochkay et 
al. (2016). 
22 Pessimistic Tone captures negative to positive word imbalance, and is used in a similar manner 
in Tetlock et al. (2008). 
23 We continue to use the difference-in-difference specification with controls, as outlined in the 
previous section. However, we examine whether tone is affected in the same quarter as the attack. 
We choose this specification because the MD&A section is considerably more “fast-moving” than 
corporate policies, and is therefore more likely to respond to attacks. 
24 The state-level GDP data are obtained from the Bureau of Economic Analysis. 
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which suggests that attacks are not related to the local macro-economic 

environment.25 

Next, we conduct firm-level tests to examine whether local companies 

experience economic shocks that may justify changes to corporate policies. First, 

we test the parallel trends assumption, where we estimate our model in equation 

(1) after including lagged values of the treatment variable, Impacts,t-1 and  

Impacts,t-2. Our goal is to examine whether changes to the corporate policies we 

document are related to any pre-existing shocks that are unrelated to the attacks. 

Panel A in Table 2.8 reports the results, and shows that the coefficient estimates 

on Impacts,t-1 and Impacts,t-2 are insignificant, whereas the estimate on Impacts,t 

remains highly significant. This evidence suggests that changes to corporate 

policies only occur around the period of the events, and are temporary (as shown 

in Table 2.4). 

In our next test, we examine whether firm-level indicators of fundamentals, 

which are set externally to the firm by other agents or the market, change around 

the period of the events. Specifically, we estimate four different versions of our 

models, using one of the following four variables as the dependent variable: the 

firms’ credit ratings from Standard and Poor’s (S&P), their average analyst 

recommendation from the Institutional Brokers’ Estimate System (I/B/E/S), their 

stock price volatility calculated from daily return data from the Center of 

Research in Security Prices (CRSP), and their sales obtained from Compustat.26 

These variables are important indicators of the state of firms’ fundamentals, as it 

is likely that companies that experience economic shocks will experience changes 

in at least some of these measures. In addition, because the agents responsible for 

producing these indicators are largely external to the firm (credit risk experts, sell-

side analysts, investors and consumers, respectively), any changes in them among 

local firms during attack periods would suggest that agents, whose sentiment is 

                                                           
25 This regression is conducted using annual data. In similar analysis, we use as the state-level 
macroeconomic index developed in Korniotis and Kumar (2013) as the dependent variable and re-
run a similar model on quarterly frequency. Again, the coefficient on the terrorist attack dummy is 
insignificant.  
26 Table 2A.2 and Table 2A.3 in the Appendix provide descriptive statistics on credit rating and 
recommendation data used in our analysis. 
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unlikely to be affected by the attacks, are adjusting their behavior toward these 

firms due to an economic shock.27  

The results are shown in Table 2.8, Panel B. In each case, for robustness, we 

present results from two separate models, where the dependent variable is 

measured at time t or t+1. Across all four indicators, we find that the coefficient 

on Impacts,t is indistinguishable from zero. This evidence suggests that local firms 

around attack periods do not experience any changes to their credit ratings, 

analyst recommendations, stock price volatility, or sales. Collectively, these 

results suggest that local firms around attack periods do not experience significant 

economic shocks.  

One potential concern in our analysis is that the control group (i.e., the 

entire set of non-local firms) is too coarse and may fail to capture fundamental 

shifts in corporate policies among treated firms. To address these potential 

concerns, we create alternative control groups with firms that have similar 

characteristics as the firms in our treatment group along firm-specific (i.e., 

Log(assets), MB ratio, Sales growth) and aggregate dimensions (Industry, Macro-

state index). To construct the matched sample, we use the nearest neighbor 

matching estimator, which allows us to match firms with similar propensity scores 

and thus similar characteristics. We then drop all firms from the sample that are 

not matched, and re-estimate the baseline model.  

Panel C in Table 2.8 presents our results and shows that our main findings 

are robust when we use different matched control groups, with coefficient 

estimates similar in magnitude with those presented in Table 2.3. 

 

2.4.3 Additional Robustness Tests 

We perform additional tests to examine the robustness of our findings. First, we 

conduct placebo tests, which examine whether our findings arise mechanically, 

perhaps due to some methodological flaw. In the first placebo test, we randomly 

assign a new date to each of the terrorist events in our sample during the period 

1997-2012, and create the dummy variable Impact(Random time). This dummy 
                                                           
27 If these agents are local, they may adjust their behavior due to attack-induced sentiment. 
However, these agents are not likely to be local to treated firms, at least not on average. 
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variable takes the value of one if firms are local to the attacks at these random 

times, and zero otherwise. Then, we estimate our baseline model in equation (1), 

recording the coefficient, the standard error, and the p-value of this variable. We 

repeat this procedure 1000 times. In Panel A of Table 2.9, we report the average 

coefficient, the standard error, and the p-value of Impact(Random time). The results 

show that, across all three corporate policy proxies, the average coefficient of 

Impact(Random time) is indistinguishable from zero, with an average p-value of at 

least 0.37.  

In the second placebo test, we randomize the location of each event in our 

sample,28 forming the variable Impact(Random location). This dummy variable takes 

the value of one if firms are local to the random locations at the time of the attack, 

and zero otherwise. We estimate the baseline model in equation (1), and record 

the coefficient, the standard error, and the p-value of this variable. We repeat this 

procedure 1000 times. In Panel B of Table 2.9, we report the average coefficient, 

the standard error, and the p-value of Impact(Random location). Again, across all three 

corporate policy proxies, we find that the average coefficient of Impact(Random 

location) is indistinguishable from zero. Overall, the evidence from the two placebo 

tests suggests that the changes to the corporate policies we document only occur 

at the time of the attacks among local firms.  

In the next test, we examine the sensitivity of our results to our assumption 

about missing R&D data. In the analysis in Table 2.3, we treat missing values for 

R&D expenditure as zero expenses. However, missing values of these expenses 

do not necessarily mean that firms have zero R&D costs (Hilary and Hui, 2009). 

In the next test, we drop observations with missing R&D values. Table 2.9, Panel 

C reports our findings. The first column of Panel C shows results when we 

estimate the model shown in equation (1) for the reduced sample. The second 

column presents the baseline results from Table 2.3 to facilitate comparisons. Our 

baseline results remain robust when we consider the reduced sample. 

Next, we establish that our results are not driven by the economic effects 

associated with the 9/11 attacks. The 9/11 terrorist attacks are by far the most 

                                                           
28 Since terrorist attacks and mass shootings do not occur in uninhabitable locations such as deserts 
and lakes, we use U.S. Census Bureau’s files to collect the coordinates of all habitable locations in 
the U.S.  
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economically impactful events in our sample, as evidenced by the sharp decline in 

the global stock market during that period. We repeat the analysis in equation (1) 

after excluding the three 9/11-related events from the sample. Panel D of Table 

2.9 shows the results. Our results are robust and remain consistent with the 

baseline findings in Table 2.3. 

The next robustness test uses a larger sample of events. In our initial event 

sample, we obtain mass shootings data from the WP list, which contains only the 

important events with the large number of human casualties.29 Further, we only 

considered events that are featured in important media outlets. We focus on these 

events because they are high-profile negative events, which are more likely to 

have a significant effect on the sentiment of corporate managers. In the robustness 

test, we use an alternative mass shooting sample, in which we include events with 

fewer human casualties. This sample is obtained from Stanford’s Mass Shootings 

in America database (MSA). We complement our sample with events from this 

database that caused at least 6 human casualties. Stanford’s MSA provides the 

date and the location of each event. We obtain data on the location and the date of 

each event for the 1997-2012 period. From the resulting list, we eliminate 5 

events as there are no local firms around the period of those events. For this 

sample, we also do not require that the events be featured in the national media 

outlets. 

Panel A of Table 2.10 lists the 25 events that we additionally include in our 

initial event sample, broken down into sub-categories based on the casualties 

associated with each event. In Panel B, we re-estimate equation (1) using this 

expanded sample. We estimate several models, gradually expanding the sample to 

include mass shootings with less human casualties. We find that our results 

continue to hold in this alternative sample, but as expected, they get progressively 

weaker as we expand the sample to include events with fewer casualties. This 

finding is reasonable as we consider events that are less salient (fewer casualties 

and potentially lower media coverage) and, therefore, they are likely to be 

associated with weaker shocks to the sentiment of local managers.  

 

                                                           
29 WP list contains all the mass shooting events with 12 or more casualties. 
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2.5 Summary and Conclusion 

This paper shows that terrorist attacks and mass shootings, events that are known 

to induce negative emotions, affect the corporate decisions of managers who are 

located near these events. Using textual analysis of the MD&A section of 

financial reports, we first show directly that exposure to terrorist attacks adversely 

influences managerial sentiment. Further, we demonstrate that, in comparison to 

non-local firms, local firms around attack periods increase the level of their cash 

holdings and decrease their R&D expenditure as well as long-term leverage. 

These effects are mainly concentrated among firms managed by younger CEOs, 

and are stronger when the negative event is salient. We use media coverage of an 

event and its distance from firm headquarters to quantify salience. Local firms do 

not experience changes to their credit ratings, analyst recommendations, stock 

price volatility, or firm sales during the attack periods. This evidence suggests that 

shifts in corporate policies are unlikely to reflect impact of local economic shocks.  

Collectively, these results suggest that exogenous and economically 

irrelevant negative events influence managerial sentiment. Consequently, 

corporate managers adopt more prudent and conservative corporate policies. In 

future work, it would be interesting to examine whether corporate managers 

exhibit weaker or stronger emotional reaction to extreme negative events 

compared to other market participants such as investors and equity analysts. It 

would also be useful to examine whether managers learn to control their 

emotional reaction to exogenous events as they are exposed to multiple negative 

events. In particular, corporate managers who are exposed to similar events early 

in their lives may exhibit weaker emotional reaction and may also learn faster. 
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Table 2.1. Sample of Terrorist Events 
This table shows the event sample during the 1997-2012 period. All events took place in the U.S., 
resulted in at least one human casualty, and were covered in newspapers. 

No Events Date Location 

1  Empire State Building 23 Feb 1997  New York City, NY  

2  Abortion Clinic Bombing 29 Jan 1998 Birmingham, AL 

3  U.S. Capitol 24 Jul 1998 Washington, DC 

4  Barnett Slepian Murder 23 Oct 1998 Amherst, NY 

5  Columbine High School 20 Apr 1999 Littleton, CO  

6  Korean Methodist Church 04 Jul 1999 Bloomington, IN 

7  9/11 Attacks: World Trade Center  11 Sep 2001 New York City, NY 

8  9/11 Attacks: Hijacked Plane Crashed 11 Sep 2001 Alexandria, VA 

9  9/11 Attacks: Hijacked Plane Crashed 11 Sep 2001 Somerset County, PA 

10  Bank of America 05 Jan 2002 Tampa, FL 

11  LA International Airport 04 Jul 2002 Los Angeles, CA  

12  Seattle Jewish Federation  28 Jul 2006 Seattle, WA 

13  Virginia Tech 16 Apr 2007 Blacksburg, VA 

14  Knoxville Church 27 Jul 2008 Knoxville, TN  

15  Immigration Centre  03 Apr 2009 Binghamton, NY  

16  George Tiller Murder  31 May 2009 Wichita, KS 

17  Little Rock  01 Jun 2009 Little Rock, AR 

18  Holocaust Museum  10 Jun 2009 Washington, DC 

19  Fort Hood 05 Nov 2009 Killeen, TX 

20  IRS Building 18 Feb 2010 Austin, TX 

21  Pentagon 04 Mar 2010 Arlington, VA 

22  Discovery Communications 01 Sep 2010 Silver Springs, MD 

23  Aurora 20 Jul 2012 Aurora, CO  

24  Sikh Temple  05 Aug 2012 Oak Creek, WI  

25  Sandy Hook School 14 Dec 2012 Sandy Hook, CT  
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Table 2.2. Summary Statistics 
This table presents the summary statistics for all the variables. The sample includes all the 
nonutility and nonfinancial firms from the 1st quarter of 1997 to the 4th quarter of 2012. All 
sample firms are located in the U.S. The samples of the dependent variables are unbalanced due to 
the limited availability of certain variables in Compustat. We define as affected firms those with 
headquarters within a 50 miles radius from an attack at time t. Accordingly, unaffected firms 
represent the rest of the firms in the sample.  

Panel A: Descriptive Statistics 

Variable Obs. Mean Std. Dev. 25th Pctl. Median 75th Pctl. 

Cash holdingst+1 39,032 0.17 0.18 0.04 0.11 0.24 

R&D expendituret+1 143,311 0.02 0.05 0.00 0.00 0.03 

Long-term leveraget+1 135,002 0.24 0.35 0.00 0.08 0.38 

Impacts,t 143,311 0.01 0.10 0.00 0.00 0.00 

Log(assets) 143,311 4.86 2.00 3.55 4.90 6.24 

ROA 143,311 -0.04 0.18 -0.04 0.00 0.02 

MB ratio 143,311 2.94 6.84 0.97 1.89 3.61 

Sales growth 143,311 0.27 1.27 -0.30 0.11 0.77 

Firm age 143,311 8.17 5.50 4.00 7.00 12.00 

Macro-state index 143,311 -0.01 0.56 -0.35 -0.04 0.34 

Panel B: Affected and Unaffected Firms 

 Affected Firms Unaffected Firms 

Variable Obs. Mean Std. Dev. Obs. Mean Std. Dev. 

Cash holdingst+1 314 0.20 0.19 38,718 0.17 0.18 

R&D expendituret+1 1,483 0.02 0.04 141,828 0.02 0.05 

Long-term leveraget+1 1,368 0.23 0.34 133,634 0.24 0.35 

Log(assets) 1,483 4.59 2.13 141,828 4.87 2.00 

ROA 1,483 -0.04 0.15 141,828 -0.04 0.18 

MB ratio 1,483 2.78 6.66 141,828 2.94 6.84 

Sales growth 1,483 0.14 1.30 141,828 0.27 1.27 

Firm age 1,483 7.07 5.28 141,828 8.18 5.50 

Macro-state index 1,483 -0.24 0.56 141,828 -0.01 0.56 
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Table 2.3. Terrorist Events and Corporate Policies: Baseline Estimates 

This table presents the results from regressions that examine the impact of terrorist attacks on firm policies. The sample includes all the nonutility and 
nonfinancial firms from the 1st quarter of 1997 to the 4th quarter of 2012, which are located in the U.S. We define as local firms those that have their 
headquarters inside a 50 miles radius from an event. The dependent variables are one quarter ahead cash holdings, R&D expenditure, and long-term leverage. 
All regressions include year-quarter fixed effects and firm fixed effects. Standard errors, shown in parentheses, are clustered at the local level. All regression 
coefficients and standard errors are multiplied by 100. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively. 

             Cash Holdingst+1         R&D Expendituret+1       Long-term Leveraget+1 

 [1] [2] [3] [4] [5] [6] [7] [8] [9] 
Impacts,t  1.54***  1.66***  1.67*** -0.21*** -0.17*** -0.17*** -0.97*** -0.87*** -0.87*** 

 (0.41) (0.41) (0.41) (0.05) (0.06) (0.06) (0.29) (0.30) (0.30) 
Log(assets)  -3.25*** -3.26***  -0.79*** -0.79***  -0.23 -0.23 

  (0.21) (0.21)  (0.03) (0.03)  (0.25) (0.25) 
ROA    2.92***  2.92***  -3.11*** -3.11***  -7.54*** -7.54*** 

  (0.61) (0.61)  (0.24) (0.24)  (1.10) (1.10) 
MB ratio   0.06***  0.05***   0.01***  0.01***  -0.28*** -0.28*** 
   (0.01) (0.01)  (0.00) (0.00)  (0.02) (0.02) 
Sales growth  -0.28*** -0.27***   0.02*  0.02*   0.44***  0.44*** 

  (0.03) (0.03)  (0.01) (0.01)  (0.06) (0.06) 
Firm age  -0.25 -0.26  -0.03* -0.03*   1.37***  1.38*** 

  (0.46) (0.47)  (0.02) (0.02)  (0.46) (0.46) 
Macro-state index    0.25*    0.02    0.03 
    (0.13)   (0.02)   (0.25) 
Constant 27.40*** 29.90*** 30.10***  2.31***  5.69***  5.69*** 18.90*** 18.60*** 18.60*** 

 (0.39) (0.96) (0.98) (0.09) (0.14) (0.15) (0.33) (1.32) (1.31) 
Firm F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Time F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes 
N 39,032 39,032 39,032 143,311 143,311 143,311 135,002 135,002 135,002 
Adjusted R2 0.73 0.73 0.73 0.59 0.61 0.61 0.59 0.59 0.59 
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Table 2.4. Duration of Changes in Corporate Policies 
This table presents the results from regressions that examine the impact of attacks on firm policies 
during the following quarters. The sample includes all the nonutility and nonfinancial U.S. firms from 
the 1st quarter of 1997 to the 4th quarter of 2012. We define as local firms those that have their 
headquarters within a 50 miles radius from an attack. To examine the impact of attacks on the corporate 
policies of local firms, we use the following model: Yi,s,t+i = c + αi + δt + β Impacts,t0 +
γ Xi,s,t+i−1 + εi,s,t+i. The dependent variables are defined as the one, two and three quarters ahead cash 
holdings, R&D expenditure, and long-term leverage. Impacts,t0 is a dummy equal to 1 if firm’s 
headquarters, at quarter t0, is local to attacks occurred at time t0. We also include all control variables as 
in Table 2.3. We run one regression for each i=1, 2 and 3, and report the coefficient and standard error 
on Impacts,t0. All regressions include year-quarter fixed effects and firm fixed effects. Standard errors, 
shown in parentheses, are clustered at the local level. All regression coefficients and standard errors are 
multiplied by 100. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively.  

Dependent Variable Independent Variable Control Variables Firm F.E. Time F.E. 

 Impacts,t0    

Cash Holdingst+1               1.67*** Yes Yes Yes  (0.41) 
Cash Holdingst+2 0.59 Yes Yes Yes  (1.12) 
Cash Holdingst+3 1.00 Yes Yes Yes  (0.86) 

R&D Expendituret+1              -0.17*** Yes Yes Yes  (0.06) 
R&D Expendituret+2 0.10 Yes Yes Yes  (0.06) 
R&D Expendituret+3 0.08 Yes Yes Yes  (0.06) 

Long-term Leveraget+1              -0.87*** Yes Yes Yes  (0.30) 
Long-term Leveraget+2 -0.29 Yes Yes Yes  (0.25) 
Long-term Leveraget+3 0.39 Yes Yes Yes  (0.42) 
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Table 2.5. Terrorist Events, Saliency and Corporate Policies 
This table presents the results from regressions that examine the impact of attack saliency on the corporate 
policies of local firms. In Panel A, we test whether events that are presented in longer articles are more 
salient. If the median size of articles for an attack is greater or equal to the median length of articles from 
all the attacks in our sample, the dummy variable Article-Sizeh is set equal to one, or else Article-Sizel is 
equal to one. In Panel B, we examine whether first page articles exert a stronger impact on corporate 
policies. First Page(Dummy=1) is a dummy variable equal to one if an event is presented on the first page of at 
least one newspaper. In Panel C, we test whether attacks that are covered on the first page for multiple days 
have a stronger influence on corporate policies. First Page(Long Duration) is equal to one if the attack-specific 
duration of articles placed in the first page is higher or equal to 2 days, while First Page(Short Duration) is equal 
to one if the duration is less than 2 days. In each specification, the row difference measures the difference 
between the coefficients on Impacts,t for the two groups (high vs. low saliency). We use a Wald test to 
examine if this difference is statistically significant. We include all control variables, year-quarter fixed 
effects and firm fixed effects as in Table 2.3. Standard errors, shown in parentheses, are clustered at the 
local level. All regression coefficients and standard errors are multiplied by 100. *, ** and *** measure 
significance at the 10%, 5%, and 1% level, respectively. 

Panel A: Events and Article Size 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 
Impacts,t × Article-Sizeh       2.07***     -0.21***     -1.26*** 
 (0.42) (0.05) (0.43) 
Impacts,t × Article-Sizel 0.69 0.01 0.75 
 (0.61) (0.09) (0.51) 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 
Difference        1.38**     -0.22**       -2.01*** 

Panel B: Events and First Page 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 
Impacts,t × First Page(Dummy=1)       1.68***     -0.21***   -1.12** 
 (0.41) (0.05) (0.40) 
Impacts,t × First Page(Dummy=0)       0.80*** 0.05 0.45 
 (0.28) (0.12) (0.56) 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 
Difference      0.88*   -0.26*    -1.57** 
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Table 2.5—Continued 

Panel C: Events and First Page Duration 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 
Impacts,t × First Page(Long Duration)      2.06***     -0.21***   -1.21** 
 (0.41) (0.05) (0.45) 
Impacts,t × First Page(Short Duration) 0.67 -0.04 0.29 
 (0.65)  (0.07) (0.48) 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 
Difference       1.39**   -0.17*     -1.50** 
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Table 2.6. Terrorist Events, CEO Age and Corporate Policies 
This table presents results from regressions that examine how terrorist attacks affect the policies of 
local firms, conditioned upon whether these firms are managed by young, middle-aged, or older CEOs. 
To capture the effect on different age groups, we create three dummy variables: Age(Low), Age(Middle) and 
Age(High), which correspond to young, middle-aged and older CEOs, respectively. Age(Low) is equal to 
one if CEOs’ age is equal to or below the 33th percentile in their industry using the Fama-French 48 
industry classification, and zero otherwise. Accordingly, Age(High) is equal to one if the age is equal to 
or above the 67th percentile. Age(Middle) is equal to one if both Age(Low) and Age(High) are equal to zero. 
The sample for the specification of cash holdings includes all nonutility and nonfinancial U.S. firms 
from the 2nd quarter of 2002 to the 4th quarter of 2012. The sample for R&D expenditure and long-
term leverage specifications is from the 1st quarter of 1997 to the 4th quarter of 2012. In each 
specification, we measure the difference of the interaction terms between the two groups (low vs. high 
age), and we perform a Wald test to test whether the coefficients are statistically different. All 
regressions include similar control variables as in Table 2.3, plus year-quarter fixed effects and firm 
fixed effects. Standard errors, shown in parentheses, are clustered at the local level. All regression 
coefficients and standard errors are multiplied by 100. *, ** and *** measure significance at the 10%, 
5%, and 1% level, respectively. 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 

    [1]     [2]     [3]     [4]     [5]     [6] 

Impacts,t  2.24***  -0.14*  -2.50***  
 (0.41)  (0.07)  (0.83)  
Impacts,t × Age(Low)   4.08***  -0.26***  -2.52*** 
  (1.06)  (0.07)  (0.82) 
Impacts,t × Age(Middle)   1.19   0.03  -4.97** 
  (0.69)  (0.18)  (2.26) 
Impacts,t × Age(High)   1.98   0.04  -2.00 
  (1.90)  (0.12)  (1.18) 
Age(Low)  -0.12   0.05***   0.54 
  (0.48)  (0.02)  (0.84) 
Age(High)  -0.98**  -0.01   1.45** 
  (0.35)  (0.02)  (0.59) 
CEO gender(Male)  -0.18   0.15***  -1.39 
  (0.59)  (0.04)  (1.66) 
Constant 42.40*** 42.00***  4.94***  4.67*** 20.10*** 24.10*** 
  (1.58)  (2.04) (0.35) (0.39)  (5.91)  (8.02) 

Control Variables   Yes   Yes   Yes   Yes   Yes   Yes 
Firm F.E.   Yes   Yes   Yes   Yes   Yes   Yes 
Time F.E.   Yes   Yes   Yes   Yes   Yes   Yes 

Difference    2.1   -0.3***   -0.52 

N 15,051 14,854 39,433 35,306 37,896 33,942 
Adjusted R2 0.75 0.75 0.65 0.67 0.65 0.67 
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Table 2.7. Terrorist Events and Managerial Tone in MD&A Section 
In this table, we examine the effect of terrorist events on the linguistic tone of the Managerial 
Discussion and Analysis (MD&A) section of companies’ quarterly financial statements. 
Following Bockay et al. (2016), we define Extreme Pos (Neg) as the number of extreme positive 
(negative) words divided by the total number of words in each MD&A section. Further, we 
consider Pessimistic Tone, which is equal to log((1+NNeg)/(1+Npos)), where NNeg and NPos are the 
number of extreme negative and positive words, respectively. To minimize the measurement 
error of these variables, we drop observations in the upper 1% of their distribution. In Panel A, 
we present the summary statistics of these variables. In Panel B, using an OLS, we examine 
whether local managers to terrorist events increase the number of extreme positive and negative 
words included in the MD&A section. All regressions include year-quarter fixed effects, firm 
fixed effects, and similar control variables as in Table 2.3. Standard errors, shown in 
parentheses, are clustered at the local level. Summary statistics presented in the Panel A are 
multiplied by 100. To improve the readability of the results in Panel B, we multiply the 
coefficient estimates and the standard errors with 1000. *, ** and *** measure significance at 
the 10%, 5%, and 1% level, respectively. 

Panel A: Descriptive Statistics 

 Obs. Mean Std. Dev. 

Extreme Positive 75,210 0.27 0.16 
Extreme Negative 75,210 0.11 0.10 
Pessimistic Tone 75,013 -89.68 84.11 

Panel B: Extreme Positive and Negative Tone 

 Extreme Pos Extreme Neg Pessimistic Tone 

Impacts,t -0.05** 0.03 46.66* 
 (0.02) (0.02) (25.59) 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 
N  75,210 75,210 75,013 
Adjusted R2 0.57 0.42 0.47 
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Table 2.8. Regression Estimates with Controls for Local Economic Shocks 
In this table, we report results that examine whether attacks are related to economic shocks. In Panel A, we 
include lag values of Impacts,t in our model to test the parallel trends assumption and re-estimate the model in 
equation (1). In Panel B, we examine whether terrorist events had an impact on the following economic 
indicators: credit ratings, analysts’ recommendations, stock return volatility, and sales of local firms. To 
measure the impact of terrorist events on the credit worthiness of local firms, we use as dependent variable the 
Credit Rating variable, which ranges from 22 for the highest rating (AAA) to 1 if the rating is equal to 
selective default. To examine potential effects of terrorist events on stock recommendations, we create the 
Average Recommendation variable, which is equal to the mean recommendations of all stock analysts for each 
firm during each quarter. Analysts’ recommendations can be equal to 5 (Strong Buy), 4 (Buy), 3 (Hold), 2 
(Underperform) and 1 (Sell). We also focus on the effects of terrorist events on stock return volatility. We 
measure Stock Return Volatility as the standard deviation of daily stock returns during each quarter. Finally, we 
examine potential changes in the sales of local firms. We measure firm sales as the fraction of quarterly sales 
divided by quarterly assets. In Panel C, we present the results from estimating our baseline specification for a 
sample of matched firms. To construct the matched sample, we use the nearest neighbor matching estimator, 
which allows us to match firms with similar propensity scores. Firms with comparable propensity scores 
correspond to firms with similar characteristics. To estimate the propensity scores, we use major attributes such 
as Log(assets), MB ratio, Sales growth, Macro-state index and firm’s Industry. We define Industry using the 
Fama-French 48 industry classification. We then re-estimate our baseline model using as control group only 
the matched firms. All regressions in this table include year-quarter fixed effects and firm fixed effects. 
Standard errors, shown in parentheses, are clustered at the local level. All regression coefficients and standard 
errors are multiplied by 100. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively. 

Panel A: Pre-Existing Shocks 

 Cash Holdingst+1 R&D Expendituret+1 
Long-term 
Leveraget+1 

Impacts,t        1.65***      -0.14***     -1.06*** 
 (0.40) (0.05) (0.28) 
Impacts,t-1  0.87 0.09 -0.15 
  (1.27) (0.06)  (0.29) 
Impacts,t-2  0.80 0.10 0.53 
  (0.86) (0.06)  (0.49) 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 
N  38,845 141,863 133,619 
Adjusted R2 0.73 0.62 0.59 

  



80 

Table 2.8—Continued 

Panel B: Attacks and Economic Indicators 

 Credit Rating Average 
Recommendation 

Stock Return 
Volatility Firm Sales 

 [t] [t+1] [t] [t+1] [t] [t+1] [t] [t+1] 
         
Impacts,t 5.75 0.15 4.92 -3.51 0.64 0.13 0.10 0.26 
 (5.41) (3.26) (4.42)  (5.00) (0.52) (0.76) (0.31) (0.34) 
         
Firm F.E. Yes Yes Yes Yes Yes Yes Yes Yes 

Time F.E. Yes Yes Yes Yes Yes Yes Yes Yes 

N 13,650 13,014 30,742 27,770 5,226 4,948 143,311 139,063 
Adjusted R2 0.86 0.85 0.20 0.18 0.16 0.16 0.78 0.77 

Panel C: Propensity Score Matching 

 
Matching Attributes Cash 

Holdingst+1 
R&D 
Expendituret+1 

Long-term 
Leveraget+1 

Control 
Variables 

Firm 
F.E. 

Time 
F.E. 

MB ratio, Industry 2.69*** -0.18* -1.10* 
Yes Yes Yes  (0.57) (0.09) (0.58) 

MB ratio, Macro-state index 1.19** -0.28** -2.29*** Yes Yes Yes 
 (0.47) (0.12) (0.52) 
Log(assets), Macro-state index 1.76* -0.26*** -1.87** Yes Yes Yes 
 (0.90) (0.07) (0.70) 
Log(assets), Industry 0.82* -0.21*** -1.25 Yes Yes Yes 
 (0.44) (0.07) (0.77) 
Log(assets), MB ratio, Industry 1.59** -0.19** -0.88** Yes Yes Yes 
 (0.63) (0.09) (0.42) 
Macro-state index, MB ratio, 
Log(assets), Sales growth 

1.11** 
(0.48) 

-0.22* 
(0.11) 

-1.33** 
(0.61) Yes Yes Yes 

    

Macro-state index, MB ratio, 
Log(assets), Sales growth, 
Industry 

3.68*** 
(0.92) 
 

-0.14** 
(0.06) 
 

-1.43** 
(0.55) 
 

Yes 
 
 

Yes 
 
 

Yes 
 
 

    

 
  



81 

Table 2.9. Robustness Test Results 
This table presents results from several robustness checks. In Panel A, we create random dates during 
1997-2012, and we randomly assign them in each event of our sample creating the dummy variable 
Impact(Random time). Then, we estimate the model in equation (1), recording the coefficient, standard 
error and p-value of this variable. We repeat this procedure 1000 times, and in Panel A we report the 
average of these values, average standard errors in parentheses, and average p-values in square 
brackets. In Panel B, we repeat the same procedure, randomizing however the locations while keeping 
unchanged the real dates of the events. Since terrorist attacks and mass shootings are exogenous 
events that can happen in any habitable location in the U.S., we use the files of U.S. Census Bureau to 
find all the coordinates of habitable locations. Afterwards, we assign to each attack a random location 
(specified by the exact coordinates) and measure the distances between random attacks and firms. In 
the first column of Panel C, we drop observations with missing R&D values and re-estimate the R&D 
model in equation (1). The second column of Panel C shows again the R&D result from Table 2.3 
(column 6). In Panel D, we examine the sensitivity of our findings to the 9/11 attacks by excluding 
them from the event sample. In all Panels, we include similar control variables, year-quarter fixed 
effects and firm fixed effects as in Table 2.3. Coefficients and standard errors are multiplied by 100 
and standard errors are clustered at the local level. *, ** and *** measure significance at the 10%, 5%, 
and 1% level, respectively.  

Panel A: Randomize Time 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 

Impact(Random time) -0.10 0.00 0.14 
   (0.49) (0.08) (0.55) 
   [0.37] [0.43] [0.42] 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 

Panel B: Randomize Location 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 

Impact(Random location) 0.04 -0.02 0.32 
 (0.69) (0.13) (1.10) 
 [0.39] [0.37] [0.42] 

Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 
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Table 2.9—Continued 

Panel C: Alternative Specification for R&D Expenditure 

 
       R&D Expendituret+1 

 

 [1] [2]  

Impacts,t  -0.21** -0.17***  

  (0.10) (0.06)  
Control Variables Yes Yes  
Firm F.E. Yes Yes  
Time F.E. Yes Yes  
N 80,300    143,311  
Adjusted R2 0.63    0.61  

Panel D: Sensitivity to 9/11 Attacks 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 

Impacts,t      1.68***    -0.09**    -1.16*** 

 (0.41) (0.04) (0.40) 
Control Variables Yes Yes Yes 
Firm F.E. Yes Yes Yes 
Time F.E. Yes Yes Yes 

N 39,032 143,311 135,002 
Adjusted R2 0.73 0.61 0.59 
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Table 2.10. Estimating Using an Alternative Mass Shooting Sample  
In this table, we increase the sample of mass shootings by including events with less human casualties, 
in comparison to those in the Washington Post list. We get data from the MSA Stanford database for 
the 1997-2012 period. In Panel A, we show the additional event sample. In Panel B, we re-estimate 
our baseline model when we consider mass shootings with different number of human casualties. We 
include similar control variables, year-quarter fixed effects and firm fixed effects as in Table 2.3. The 
coefficients and standard errors are multiplied by 100 and standard errors are clustered at the local 
level. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively. 

Panel A: Description of MSA Sample 

 Event Date Location 
Mass shootings with equal or more than 9 casualties   

 All-Tech I.G. / Momentum Securities 29 Jul 1999 Atlanta, GA 

 Covina Shootings 24 Dec 2008 Covina, CA 

 Westroads Mall 05 Dec 2007 Omaha, NE 

 Hartford Beer Distributors  03 Aug 2010 Manchester, CT 
Mass shootings with 8 casualties   
 Wedgwood Baptist Church 15 Sep 1999 Fort Worth, TX 

 Living Church of God 12 Mar 2005 Brookfield, WI 

 Goleta Post Office 30 Jan 2006 Goleta, CA 

 Pinelake Health and Rehab  29 Mar 2009 Carthage, NC 

 Residences Shootings 07 Jul 2011 Grand Rapids, MI 

 Salon Meritage 12 Oct 2011 Seal Beach, CA 
Mass shootings with 7 casualties   
 Edgewater Technology 26 Dec 2000 Wakefield, MA 

 Windy City Core Supply Warehouse 27 Aug 2003 Chicago, IL 

 Party in Capitol Hill 25 Mar 2006 Seattle, WA 

 Atlantis Plastics 25 Jun 2008 Henderson, KY 

 Oikos University 02 Apr 2012 Oakland, CA 

 Accent Signage Systems 27 Sep 2012 Minneapolis, MN 

Mass shootings with 6 casualties   

 Navistar International 05 Feb 2001 Melrose Park, IL 

 West Nickel Mines Amish School 02 Oct 2006 Nickel Mines, PA 

 Trolley Square 12 Feb 2007 Salt Lake City, UT 

 Carnation Shootings 24 Dec 2007 Carnation, WA 

 Kirkwood City Hall 07 Feb 2008 Kirkwood, MO 

 Northern Illinois University 14 Feb 2008 DeKalb, IL 

 Rivermark 29 Mar 2009 Santa Clara, CA 

 Tucson Shootings 08 Jan 2011 Tucson, AZ 

 Cafe Shootings 30 May 2012 Seattle, WA 
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Table 2.10—Continued 

Panel B: Estimation with MSA Sample 

 Cash Holdingst+1 R&D Expendituret+1 Long-term Leveraget+1 

 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] 
Impact(Initial + MSA 

Sample >=9 Casualties  
1.15**    -0.15**    -0.77*    
(0.54)    (0.06)    (0.41)    

Impact(Initial Sample + 

MSA >=8 Casualties) 
 0.98*    -0.11    -0.68*   
 (0.55)    (0.07)    (0.37)   

Impact(Initial Sample + 

MSA >=7 Casualties) 
  0.26    -0.10*    -0.44  
  (0.64)    (0.06)    (0.40)  

Impact(Initial Sample + 

MSA >=6 Casualties) 
   0.03    -0.07    -0.21 
   (0.48)    (0.05)    (0.46) 

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
State F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Time F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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Figure 2.1. Terrorist Events and Locations. This figure shows the states where the terrorist 
attacks and mass shootings took place. 
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Panel A: Distance and Change in Cash Holdings 

 

 

Panel B: Distance and Change in R&D Expenditure 
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Panel C: Distance and Change in Long-term Leverage 

 

Figure 2.2. Terrorist Events and Geographical Proximity. This figure shows 
how the distance between the location of the attacks and the headquarters of the 
firms affects the change in corporate policies. In our baseline model, we define as 
local firms those with headquarters within 50 miles from the area of the attacks. In 
this figure, we follow the regression specification from Table 2.3 and define as local 
firms those with headquarters closer than 30, 50, 70, 90, 110, 130 and 150 miles 
from the attacks, respectively. We include all control variables, year-quarter fixed 
effects and firm fixed effects, as in Table 2.3. Panel A shows the coefficient 
estimates for the Cash Holdingst+1. Panel B shows the coefficient estimates for the 
R&D Expendituret+1. Panel C shows the coefficient estimates for the Long-term 
Leveraget+1. All regression coefficients are multiplied by 100. *, ** and *** 
measure significance at the 10%, 5%, and 1% level, respectively. 
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Chapter 3 
 

Terrorist Events, Sentiment, and 

Institutional Investors 

 

3.1 Introduction 

A number of studies from psychology document that extreme violent events which 

occur at random times and locations such as terrorist attacks and mass shootings 

(henceforth, “terrorist events”), tend to adversely influence the sentiment1 of local 

community.2 Consequently, such intense sentiment shifts can affect the decisions of 

individuals and influence their risk assessment (Lerner and Keltner, 2001; Lerner, 

Gonzalez, Small and Fischhoff, 2003). These findings can be strongly associated with 

economic and market outcomes if market participants are also prone to such 

behavior.3 

                                                           
1 We use the term “sentiment” throughout the paper to refer to feelings, mood and emotional states.  
2 For example, Vlahov, Galea, Resnick, Ahern, Boscarino, Bucuvalas, Gold and Kilpatrick (2002) find 
a 17.5% increase in alcohol use in the aftermath of 9/11 terrorist attacks. Further, Galea, Ahern, 
Resnick, Kilpatrick, Bucuvalas, Gold and Vlahov (2002) show that 9.7% of people who lived in 
Manhattan suffered from severe depression. Additionally, Hughes, Brymer, Chiu, Fairbank, Jones, 
Pynoos, Rothwell, Steinberg and Kessler (2011) show that 15.4% of students and faculty involved in 
Virginia Tech shootings in 2007 experienced high levels of posttraumatic stress disorder. 
3 Previous studies suggest that market participants are susceptible to several biases which affect their 
trading decisions, and in turn affect asset prices and market outcomes (Odean, 1998; Coval and 
Shumway, 2005; Bailey, Kumar and Ng, 2011; Goetzmann, Kim, Kumar and Wang, 2015). 
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In this paper, we investigate whether extreme negative sentiment induced from 

terrorist attacks and mass shootings, would affect the trading decisions of institutional 

investors. We focus on institutional investors as they are sophisticated financial 

agents who play a significant role in the price formation process and liquidity of the 

market. Despite their sophistication, we expect that institutional investors would still 

be affected, since even sophisticated investors are susceptible to cognitive biases 

(Coval and Shumway, 2005; Frazzini, 2006).  

Motivated by this evidence, we conjecture that institutional investors who are 

affected by terrorist events would become more pessimistic, and in turn increase their 

selling propensity during the following days of the events. To measure the selling 

propensity of institutional investors, we match disaggregated daily trading data with 

hand-collected data about the location of each investor, which allows us to capture 

any direct effects on the trading activity of the affected investors after the dates of the 

attacks. Following previous studies in psychology which show that terrorist attacks 

and mass shootings have a significant impact on the sentiment of local population 

(Vlahov et al., 2002; Galea et al., 2002; Hughes et al., 2011), we identify as affected 

investors those who are geographical proximate to the location of the attacks around 

that time period. Specifically, institutional investors who are located closer to these 

attacks are more likely to be exposed to these events, hear about them, or interact 

with people who were involved. As a result, we expect these investors to experience 

stronger negative sentiment and in turn increase their selling propensity.  

In our empirical analysis, we obtain institutional daily trading data from 

ANcerno Ltd. for the 1999-2010 period. The main advantage of this dataset is that we 

are able to observe each trade direction (i.e., buy/sell), and consequently, construct a 

measure to capture the selling propensity of institutional investors. To obtain 

information about the dates and locations of terrorist attacks and mass shootings, we 

use the Global Terrorism Database (GTD) and the Stanford Mass Shootings in 

America database (MSA), respectively, which gather systematic data about these 

events. We apply several filters in our event sample in order to reduce the noise and 
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keep only the most salient events.4 To identify local investors, we match the trading 

dataset to hand-collected data about the distance between the locations of investors 

and the locations of the attacks. Initially, we define as local investors those who are 

located in a radius of 100 miles from the attacks, which we allow to vary in later 

sections of the analysis. 

To test our conjecture, first we use a specification which allows comparing the 

trading activity of local and non-local investors, while controlling for several time-

varying factors that could be associated with the selling propensity of investors. 

Additionally, we estimate a fixed effects model to limit the variation to within stock-

date pairs. This specification allows us to capture any unobservable factors for each 

particular stock at each point in time, and reduce potential bias in our estimates due to 

regression misspecification. The main advantage of this framework is that both 

groups of investors are exposed to the same public information about the stocks at 

each date and only differ in their exposure to the attacks.  

Our findings are consistent with our conjecture and can be described as follows. 

First, we find that local investors increase their selling propensity by 8% in 

comparison to non-local investors the following 7 days after the events. This result 

holds even after we control for several stock characteristics, seasonal effects and local 

macroeconomic conditions. Similarly, our results remain robust when we control for 

the well-known home-bias proposed by Coval and Moskowitz (1999). We observe a 

similar effect when we estimate a fixed effects model with stock-date pairs as an 

additional covariate. The magnitude of this effect increases when investors are 

located closer to these attacks, while this effect diminishes when investors are located 

farther away. Further, we find that the attacks are perceived as more salient when 

they occur closer in time, since investors tend to increase even more their selling 

propensity. These results are in accordance with Antoniou, Kumar and Maligkris 

(2016a) who show that geographical and temporal proximity to these attacks is 

strongly associated with the magnitude of the effect. Additionally, we observe that 

the selling propensity of local investors is less pronounced among types of firms 
                                                           
4 We describe these filters in detail in Section 3.2. 
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which entail higher transaction costs such as smaller sized firms, illiquid firms and 

firms with more volatile and skewed stock returns. 

Second, we examine whether investors who are exposed to these events tend to 

substitute the sold stocks with other stocks in order to rebalance their portfolio 

holdings. Our results reject this hypothesis since we do not observe any statistically 

significant fluctuations in their buying propensity around the period of the attacks. 

Third, we assess how the increase in the selling propensity of the affected 

investors relates to their performance. Following Puckett and Yan (2011), we 

construct an interim trading skill measure which captures the abnormal performance 

for all stocks that investors trade from the execution date until the end of the quarter. 

The main advantage of this performance measure is that it is not affected from 

potential disposition effects or rebalancing requirements. Using this measure, we find 

that investors underperform the market return by 2%. These findings are robust and 

remain highly significant when we use alternative specifications. 

Fourth, we assess how the selling propensity of the affected investors relates to 

individual stock returns during the days of the attacks. Our results imply that the 

trading behavior of institutional investors negatively impacts stock returns during 

these days. Additionally, we find evidence that this effect is more pronounced among 

stocks with smaller market capitalization.  

We perform several robustness checks to ensure the validity of our findings. 

First, we examine whether the events of our sample are able to draw the attention of 

local individuals since only those events would be likely to affect their sentiment. 

Following Da, Engelberg, and Gao (2011), we use the Search Volume Index (SVI) 

obtained from Google Trends, to capture the attention of local individuals. Consistent 

with our main conjecture, we find that during the first days following the attacks, 

there is a statistically significant increase in the SVI for words associated with the 

attacks. In further robustness checks, we examine whether the increased selling 

propensity is the result of a liquidity fluctuation, however we do not find any 

supportive evidence. In addition, we find that both terrorist attacks and mass 

shootings have similar effect on the trading activity of local investors. However, 
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when we include less salient mass shootings in our event sample, there is not a 

statistically significant impact on the selling propensity of local investors. Finally, we 

do not find any evidence that would suggest the existence of pre-existing effects that 

could drive our findings or that this effect is driven only from the 9/11 attacks or from 

investors who are located in the state of New York. 

These empirical findings contribute to the growing literature that associates 

sentiment with investors’ financial decisions and market outcomes. Specifically, 

several studies show that fluctuations in stock returns are associated with local 

weather (Saunders, 1993; Hirshleifer and Shumway, 2003; Goetzmann et al. 2015). 

Kamstra, Kramer, and Levi (2003) and Kamstra, Kramer, Levi, and Wermers (2016) 

provide additional evidence and find that stock returns and flows of capital into 

equity funds are affected by changes in risk attitude due to seasonal affective 

disorder. In related research, Kaplanski and Levy (2010) show that stock prices fall 

after aviation disasters, and that these losses are fully recouped within two weeks. 

Further, Edmans, García, and Norli (2007) show that the stock markets of countries 

which experience a loss in international soccer tournaments experience a decline. In 

comparison to previous studies, we provide a new proxy to capture strong adversely 

shock in the sentiment of investors. Due to the nature of terrorist attacks and mass 

shootings, these events can provide an unexpected negative shock to the sentiment of 

institutional investors since they occur at random location and time. As a 

consequence, this proxy allows us to minimize any potential self-selection location 

bias that might be associated with investors’ trading activity. 

Further, we contribute to the literature by showing that not only retail investors 

but sophisticated investors are also susceptible to cognitive biases.5 Coval and 

Shumway (2005) show that the traders of Chicago Board of Trade tend to exhibit 

highly loss aversion which causes fluctuations in the afternoon stock prices. 

Accordingly, Frazzini (2006) finds that mutual fund managers are susceptible to the 

disposition effect which can cause an adversely effect on stock returns. Additionally, 
                                                           
5 Several studies demonstrate that individual investors are susceptible to cognitive biases that affect 
their trading decisions (Barber and Odean, 2000; Benartzi and Thaler, 2001; Agnew, 2006; Kumar, 
2009). 
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Goetzmann et al. (2015) show that institutional investors’ trading activity is 

associated with the local weather, while it can also have a negative impact on returns 

of stocks with higher arbitrage costs. Our study contributes to this literature by 

showing that negative exogenous events such as terrorist attacks and mass shootings 

tend to affect the sentiment of institutional investors, and in turn their selling 

propensity and performance. 

This paper also contributes to the broader literature that associates terrorist 

attacks and mass shootings with the general economic activity. Specifically, several 

studies show that terrorist attacks can affect political views and election outcomes 

(Gould and Klor, 2010; Montalvo, 2011). Also, these events can alter the priority of 

governmental policies (Di Tella and Schargrodsky, 2004; Gould and Stecklov, 2009), 

and firm policies that are applied (Antoniou et al., 2016a). Motivated by these 

studies, we examine potential fluctuations of investors’ trading activity following 

these events. 

Taken as a whole, our findings provide strong evidence on how unexpected 

negative shocks in sentiment influence the trading decisions and performance of 

institutional investors. To our knowledge, our study is the first to directly test the 

effect of terrorist attacks and mass shootings on the trading activity of market 

participants and identify the channel through which these attacks are associated with 

financial and market outcomes. 

This paper is organized as follows: In Section 3.2, we describe our data sources, 

the event sample and the trading data we use in this paper. In Section 3.3, we present 

the methodology and the variable construction included in our analysis. In Section 

3.4, we present our main empirical results. In Section 3.5, we examine alternative 

explanations for our findings and we present results from various robustness checks. 

Section 3.6 concludes. 
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3.2 Data 

3.2.1  Terrorist Attacks and Mass Shootings Data 

We obtain data on terrorist attacks and mass shootings for the 1999-2010 period from 

the Global Terrorism Database (GTD)6 and the Stanford Mass Shootings in America 

database (MSA),7 respectively. GTD is an open-source database that includes 

systematic data on terrorist events around the world (START, 2013),8 while MSA is a 

data project9 that contains information about mass shootings in America, collected 

via online media sources. To reduce noise in our event sample, we consider only 

terrorist attacks that have caused human casualties and were covered in newspaper 

articles.10 Following the findings of Antoniou et al. (2016a), we consider only mass 

shootings which were displayed in newspapers and have caused at least 8 human 

casualties, since these events are more likely to influence sentiment. Further, we 

eliminate events that occurred outside the U.S. We obtain data about the date and the 

location of each of the remaining events. 

Table 3.1 shows the final event sample which includes 20 events for the 1999-

2010 period. Figure 3.1 illustrates the geographical dispersion of these events and 

shows that these attacks do not exhibit any obvious regional clustering. 

 

                                                           
6 The data are available at http://www.start.umd.edu/gtd/.  
7 The data are available at https://library.stanford.edu/projects/mass-shootings-america. 
8 To consider an event as terrorist attack, we apply the following filters as they appear in GTD: First, 
“The act must be aimed at attaining a political, economic, religious, or social goal”; Second, “There 
must be evidence of an intention to coerce, intimidate, or convey some other message to a larger 
audience (or audiences) than the immediate victims”; And third, “The action must be outside the 
context of legitimate warfare activities, i.e. the act must be outside the parameters permitted by 
international humanitarian law (particularly the admonition against deliberately targeting civilians or 
non-combatants)”. 
9 “Stanford Mass Shootings in America, courtesy of the Stanford Geospatial Center and Stanford 
Libraries”. 
10 We consider all events covered in at least one major U.S. outlet (The Los Angeles Daily News, The 
NY Daily News, The NY Post, The NY Times, The Wall Street Journal-US edition, The Washington 
Post and USA Today) during the next 7 days after the event.  
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3.2.2 Institutional Trading Data  

We obtain the institutional daily trading from ANcerno Ltd. for the 1999-2010 

sample period. ANcerno is a widely recognized firm that works with institutional 

investor trade data and monitors their equity trading costs. ANcerno’s clients include 

pension plan sponsors as well as money managers.11 ANcerno’s dataset shows the 

transaction history for institutions in the sample and includes among others the stock 

historical CUSIP number, the quantity and execution price of shares traded, the trade 

date and its trade direction (i.e., buy/sell).  

The main advantage of this dataset is that observing the trade direction for all 

executed trades allows us to construct measures that capture the selling and buying 

propensity of institutional investors. Further, since ANcerno provides information 

about the identities of institutional investors, we are able to find the ZIP codes of their 

headquarters using the Nelson’s Directory of Investment Managers, and calculate 

their distance from the terrorist attacks and mass shootings of our sample. 

Figure 3.2 depicts the geographical distribution of institutional investors across 

the United States. Consistent with the findings in Coval and Moskowitz (1999), while 

there is a fair degree of dispersion of investors across country, most of them are 

located in states with greater population and a large concentration firms.  

 

3.2.3 Other Data Sources 

Other datasets that we use in the analysis are from the Center for Research in Security 

Prices (CRSP), CRSP/Compustat Merged Database, U.S. Census Bureau, Bureau of 

Economic Analysis (BEA), Bureau of Labor Statistics (BLS) and Google Trends. 

Specifically, we collect stock data from CRSP to calculate the returns, the market 

capitalization and the inverse of price measure for each stock. To calculate the 

distance between the investors and the traded firms, we obtain firms’ ZIP codes from 

CRSP/Compustat Merged Database, and we use the Gazetteer Files from the U.S. 

                                                           
11 For example, some of ANcerno’s clients are California Public Employees' Retirement System 
(CalPERS), Commonwealth of Virginia, Putman Investments, and Lazard Asset Management. 
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Census Bureau to match the ZIP codes with their coordinates. To capture local 

macroeconomic conditions, we obtain the quarterly state-level labor income from 

BEA and the unemployment data from the BLS. Finally, we use Google Trends12 to 

collect the Search Volume Index (SVI) for terms that are associated with terrorist 

attacks and mass shootings. 
 

3.3 Methodology 

3.3.1 Investor Trade Measures 

To examine the selling and buying propensity of institutional investors, we 

distinguish all trades into sells and buys, and compare them separately. Specifically, 

we construct two measures based on institutional investors’ trade data. First, we 

construct a measure of selling propensity, Investor sell ratio, that aggregates all daily 

sell trades in each ZIP code for each stock and is equal to the daily total dollar sell 

volume for a particular stock within the same ZIP code divided by the daily total 

dollar sell volume for the same stock of investors located across all ZIP codes. This 

measure allows us to compare the differences in the selling propensity among 

institutional investors located in different ZIP codes, who are exposed to the same 

public information and trade the same stocks. Second, we construct an analogous 

measure using buy trades, Investor buy ratio, to examine the buying propensity of 

institutional investors. 

Since, idiosyncratic trading behavior may increase noise in the measures of 

Investor sell (buy) ratio, we restrict our sample to ZIP codes with at least two 

investors at each point in time. To minimize potential measurement error in the 

database and mitigate the influence of outliers, we aggregate daily trades at the stock 

level and we delete the top and bottom 1% of the total dollar sell (buy) volume. 

                                                           
12 The data are available at https://www.google.com/trends/.  
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Because we cannot observe daily institutional holdings in the ANcerno trading data, 

we only use dates where investors trade in the stock. 

 

3.3.2 Variable Construction and Regression Specification  

To examine whether terrorist attacks influence the selling (buying) propensity of 

institutional investors, we aggregate investor trades to the ZIP-stock-date code level. 

Using this three-level panel allows us to capture differences between the trading 

activity of local and non-local investors to terrorist events. These two groups are 

exposed to the same public information about stocks but only differ in their exposure 

to the terrorist events. Also, this setup allows us to account for stock level factors that 

may be systematically correlated with a subsample of institutional investors trading 

behavior. To account for potential dependencies in investor trading activity that is 

related to their locations, we cluster the error term at the ZIP code level in our 

specification. The model described above is specified as follows: 

Investor sell (buy) ratioz,j,t = c + β × Impact𝑧𝑧,t + Φ × Xz,j,t + εz,j,t             (1) 

where z indexes ZIP code, j indexes stock, and t indexes time (daily). To capture the 

effect of terrorist events, we construct the variable Impactz,t which is a dummy 

variable that equals one if the distance between the ZIP code of institutional investors 

and the location of the attack is less than 100 miles, and the trade took place during 

the following 7 days after the terrorist attack. Narrowing down the number of days 

allows us to capture any short-term effects that may vanish in subsequent days as 

investors rebalance their portfolios. Therefore, this variable allows us to capture 

short-term effects when they are still present. We collect the coordinates of terrorist 

events using their address and the service called “GPS Geoplaner”.13 To obtain the 

coordinates of investors, we match their ZIP codes with the Gazetteer Files from the 

U.S. Census Bureau. We calculate the distance between the investor and the locations 

of the attacks, following the procedure in Vincenty (1975). 
                                                           
13 “GPS Geoplaner” is available at http://www.geoplaner.com/. 
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𝑋𝑋𝑧𝑧,𝑗𝑗,𝑡𝑡 represents a set of other explanatory variables that may be associated with 

investors’ selling (buying) propensity. We proxy for stock related risks that could 

affect the trading activity of investors by controlling for individual stock 

characteristics such as market capitalization, inverse of price and lag value of stock 

return (Brennan and Subrahmanyam, 1996; Goetzmann et al. 2015). Market 

capitalization is equal to the natural logarithm of the stock’s market capitalization, 

Inverse of price is measured as the inverse of stock’s daily price, and Stock returnt-1 is 

the daily return of firm’s share at the end of the previous day. Further, we control for 

well-known seasonal effects such as the Monday and January effects. Specifically, we 

include in the model the dummy variable Monday which is equal to one if the 

investor traded on Monday, and zero otherwise. Accordingly, January is a dummy 

equal to one if the investor traded on January, and zero otherwise. Coval and 

Moskowitz (1999) document a strong preference in the investment choices of 

institutional investors for locally headquartered firms. To capture such effects, we 

include Ln(Distance Investor-Stock) in the model, measured as the natural logarithm of the 

distance between the ZIP code of the institutional investor and the ZIP code of the 

traded firm.14 Finally, local economic conditions may affect investors’ current 

investment opportunities and future prospects, which in turn can influence their 

selling (buying) propensity for stocks. Therefore, we proxy for local economic 

conditions following Korniotis and Kumar (2013), and include in the model 

explanatory variables such as Housing collateral, measured as the log ratio of state-

level housing equity divided by state’s labor income; Relative unemployment which is 

equal to the fraction of the current rate to the moving 16 quarter-average of past rates; 

and Income growth rate measured as the state-level changes in labor income.15 

To minimize any potential misspecification of our model, we also examine an 

additional specification in which we include fixed effects of stock-date pairs. This 

specification can capture any unobservable factors for each stock at each particular 

                                                           
14 We drop from our sample firms with missing ZIP codes. To calculate the distance between the 
investors and the firms, we follow the same procedure as described before.  
15 See Korniotis and Kumar (2013) for further details on the construction of these variables. 



99 
 

date, and thus minimize the estimation bias related to the regression misspecification. 

This fixed effect model is defined as follows: 

Investor sell (buy) ratioz,j,t = c + β × Impact𝑧𝑧,t + γ × Xz,j,t + δj,t + εz,j,t      (2) 

where δj,t represents the fixed effects of stock-date pairs. In this model, all the stock 

characteristics and time variables are subsumed by the fixed effects term. 

 

3.3.3 Descriptive Statistics 

Table 3.2 presents the summary statistics for our sample. Panel A contains 

information about the main variables of our regression specification when we include 

only sells in our sample. Specifically, we observe that the average market 

capitalization of our firm sample is 17.60$billions, while the average value of the 

inverse of price ratio is equal to 0.05. Also, we find that the average distance between 

the investors and the stock which they trade is 1215 miles, while the standard 

deviation is 995 miles. These statistics imply that investors tend to trade firms located 

near and farther away. During our sample period, we also observe that investors’ 

headquarters are concentrated in states with an increased relative unemployment rate 

and income growth rate. 

Panel B presents the statistics when we consider only buys. Even though, the 

average market capitalization of firms that investors buy is still quite high (i.e. 

16.60$billions), it is reduced in comparison to the market capitalization of firms that 

are sold from investors. We observe similar statistics as in Panel A for the rest of the 

control variables. 

 

3.4 Main Empirical Results 

In this section, we present our main empirical results. Our key findings suggest that 

institutional investors who are local to terrorist events increase their selling 
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propensity the days following the events. This effect is stronger among investors 

located even closer to the events, and investors who trade near the date of the attacks. 

However, the selling propensity of local investors is less pronounced for smaller 

sized firms, illiquid firms and for firms with more volatile and skewed stock returns. 

Finally, we demonstrate that the trading behavior of local investors is negatively 

associated with their performance, and it has an adversely impact on stock returns. 

 

3.4.1 Terrorist Events and Institutional Investor Trading 

3.4.1.1 Investors’ Selling Propensity and Terrorist Events 

We begin by examining whether terrorist events increase the selling propensity of 

local institutional investors during the days following the events. We present the 

results in columns (1) to (4) in Table 3.3.  

Consistent with our hypothesis, we find that local investors tend to increase 

their sells in comparison to non-local investors during the following 7 days after the 

events. Specifically, as shown in column (2), investors increase approximately 8% 

their sells in comparison to non-local investors around the date of the events. This 

result is statistically significant at 1% level. Further, this finding is robust when we 

control for a systematic variation across stocks in column (3).  

We also examine another specification in which we limit the variation of 

Impact to within stock-date pairs by including stock-date fixed effects. This 

specification allows us to compare the selling propensity of investors for the same 

stock at a particular date. Also, this specification can capture any unobservable 

factors associated with a particular stock at each point in time. Column (4) of Table 

3.3 presents the results which show that local investors increase their sells by 9% in 

comparison to non-local investors who sell the same stock during the same day. Since 

we limit the variation within stock-date pairs, stock characteristics and time variables 

are subsumed by the fixed effects term.  
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3.4.1.2 Investors’ buying propensity and terrorist events 

To examine whether investors substitute the stocks they sold with other stocks in 

order to rebalance their portfolio holdings, we focus on their buying propensity 

around the date of the attacks. Columns (5) to (8) of Table 3.3 show the results. 

In these columns, we show that investors do not change their buying propensity 

the days following the attacks. These results are highly insignificant and robust across 

different specifications. Also, in column (8) we observe similar results when we 

compare local and non-local investors who buy the same stock the days following the 

event. These findings suggest that investors who are located within 100 miles radius 

from terrorist events tend to sell stocks from their daily holdings which are not 

replaced in their portfolio from other stocks in the short-term. 

Examining the estimates of the control variables, we find that the market 

capitalization and the inverse of price ratio of the stock are negatively correlated with 

the selling propensity of investors, while the stock returns are positively correlated. 

On the contrary, we find a weak association between stock returns and the buying 

propensity of investors. Interestingly, we find that institutional investors show an 

increase in their selling and buying propensity on Monday, while on January they 

tend to trade fewer stocks. Because this dataset does not include the investor’s daily 

holdings, all the estimates are conditional on whether the investor trades a stock for a 

particular date. Therefore, we interpret the estimates of these variables as a 

fluctuation in the trading activity. Similarly, we find some mild evidence which show 

a negative correlation between the trading activity and the state’s macroeconomic 

environment related to the relative unemployment rate and the income growth rate. 

On the contrary, we do not find any strong relation between the investor-stock 

distance and the selling or buying propensity of investors. 

 

3.4.2 Geographical and Temporal Proximity to Terrorist Events  

According to our main hypothesis, investors who are located closer to terrorist events 

and trade during the following days should perceive these events as more salient. In 
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this section, we examine further this conjecture by allowing the geographical and 

temporal proximity to the attacks to vary. Specifically, we expect to find a strong 

association between the changes in the selling propensity of investors and the 

geographical and temporal proximity to the events, since as the distance and time 

between the investors and the attacks decrease, investors are more likely to suffer a 

negative shock to their sentiment (e.g., see Galea et al., 2002). 

First, we test whether investors who are located farther away from these events 

change their selling propensity around the date of the events. Specifically, we 

construct the dummy variables Impact(0 to 50 miles), Impact(0 to 150 miles) and Impact(0 to 250 

miles), which are dummy variables that are equal to one if an investor sold a stock 

within the following 7 days after an attack and is located in less than 50 miles, 150 

miles, and 250 miles, respectively. 

Panel A in Table 3.4 shows the results. In line with our hypothesis, we find an 

11% increase in the selling propensity of investors who are located in a radius of 50 

miles from the location of a terrorist attack. This coefficient estimate is higher than 

the estimate of column (4) in Table 3.3 (i.e. 9%) in which we define as local investors 

those who are located in a 100 miles radius from an attack. We also observe that 

when we increase the distance between the location of the institutional investors and 

the location of the attacks to 150 miles, the magnitude of the effect declines to 7% 

while the coefficient estimate is statistically significant only to 10% level. Finally, 

when we increase the distance further to 250 miles, the coefficient estimate becomes 

statistically insignificant. 

Second, we examine whether local investors who trade during the days 

following the events, increase more their selling propensity in comparison to those 

investors who trade several days after the events. Specifically, we construct the 

dummy variables Impact(0 to 5 days), Impact(0 to 10 days), and Impact(0 to 15 days) which are 

dummy variables equal to one if an investor is located in a radius of 100 miles from 

the attack and traded within the following 5 days, 10 days, and 15 days, respectively. 

We present the results in Panel B of Table 3.4. Our findings show that investors 

who trade during the next 15 days after the events do not illustrate any statistically 
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significant changes in their selling propensity. On the contrary, investors sell a bigger 

fraction of stocks during the following 5 and 10 days after the events. These results 

are in accordance with our hypothesis that recent events are likely to be perceived as 

more salient. 

In summary, consistent with our predictions, we find that the geographical and 

temporal proximity to terrorist events are strongly associated with the selling 

propensity of institutional investors, since only investors located near these events 

and investors who trade the following days after the events exhibit an increase in their 

selling propensity. 

 

3.4.3 Firm Characteristics, Selling Propensity, and Terrorist Events  

Next, we examine whether the increase in the selling propensity of institutional 

investors vary among stocks with different characteristics. Specifically, we examine 

whether the selling propensity of affected investors is less pronounced among smaller 

firms, illiquid stocks, volatile stock returns and skewed stock returns, since any 

trading activity on these types of stocks would entail higher transaction costs 

(Amihud, 2002; Chordia, Sarkar, and Subrahmanyam, 2005; Marshall, Nguyen, 

Visaltanachoti, 2012). To examine this conjecture, we estimate the following 

augmented models where we include an interaction of Impact with each of these firm 

characteristics: 

Sell ratioz,j,t = c + β × Impact𝑧𝑧,t × 𝐹𝐹𝐹𝐹z,j,t + γ × Impact𝑧𝑧,t + δ × 𝐹𝐹𝐹𝐹z,j,t + Φ ×

Xz,j,t + εz,j,t     (3) 

where z indexes ZIP code, j indexes stock, and t indexes time, while FC represents 

the firm characteristic considered in each regression specification. 

Table 3.5 reports the regression estimates. Consistent with our hypothesis, our 

results show that even though affected institutional investors increase their selling 

propensity for all types of firms, the magnitude of this increase is reduced for smaller 

firms, illiquid firms, and for firms with volatile and skewed stock returns. 



104 
 

Specifically, column (1) shows that local investors decrease their selling propensity 

for smaller firms by 7% in comparison to larger firms, during the following 7 days 

after the events. Accordingly, the results in columns (4), (7) and (10) imply that local 

investors decrease their propensity to sell illiquid stocks by 4%, volatile stocks by 6% 

and stocks with skewed returns by 6%. 

To examine the robustness of our findings, we additionally include several 

fixed effects in our specifications. Specifically, to minimize the possibility that our 

results are driven from economic shocks at particular dates which could affect the 

stock characteristics we consider, we include date fixed effects in columns (2), (5), 

(8) and (11). Our results remain consistent with our baseline estimates. Further, we 

include stock fixed effects in columns (3), (6), (9) and (12) to capture time-invariant 

stock characteristics that could be associated with the selling propensity of investors. 

Once again, our results remain robust. 

 

3.4.4 Terrorist Events and Interim Trading Skills 

In this section, we investigate whether the increased propensity of local investors to 

sell stocks around terrorist events can affect their performance. An increase in their 

selling propensity may have either a positive or negative impact on performance. 

Specifically, selling more stocks during these dates may offset other types of biases 

such as overconfidence, and thus have a positive effect on investors’ performance. On 

the other hand, if investors increase disproportionally their selling propensity, they 

will have a negative effect on their performance since they may sell stocks which are 

going to have a higher future value. 

To examine whether such trading behavior is positively or negatively 

associated with their performance, we follow Puckett and Yan (2011) and create an 

interim trading skill measure. This measure allows us to examine the within-quarter 

performance of local investors’ trading activity around the dates of the events. The 

main advantage of this measure is that it measures the abnormal performance for all 

stocks that investors trade from the execution date until the end of the quarter. 
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Therefore, this measure minimizes any biases that might exist in the short-term due to 

potential presence of a disposition effect in the trading activity of investors or any 

rebalancing requirements for investors’ portfolios. 

To construct this measure and examine whether the increased selling propensity 

is associated with changes in the interim performance of the affected investors, first 

we calculate the raw cumulative stock return from the current price until the end of 

the quarter. Then, we subtract the equally-weighted market index return over the 

same holding period to compute the Equal-weighted market adjusted return measure.  

Table 3.6 shows our findings. Panel A reports the results when investors sell 

stocks and shows that affected investors have a negative performance when they sell 

stocks around the dates of the events. Specifically, we find that these investors 

underperform the equal-weighted market return by approximately 2%. These results 

are highly significant at the 1% level. Further, they remain robust when we control 

for stock, date and ZIP code fixed effects to capture any systematic differences across 

these dimensions.  

In contrast to the findings of Antoniou, Kumar, and Maligkris (2016b) who 

show that such extreme negative events can have a positive impact on the 

performance of particular financial agents such as sell-side analysts, our findings 

suggest that institutional investors are negatively affected from such events. 

 

3.4.5 Stock Returns, Market Capitalization and Terrorist Events 

In previous sections, we demonstrate that extreme negative events such as terrorist 

attacks and mass shootings can affect the beliefs of institutional investors, and in turn 

their trading decisions. In this section, we examine whether this trading behavior is 

associated with stock market outcomes. Following Hirshleifer and Shumway (2003) 

and Goetzmann et al. (2015), we posit that any fluctuations in the sentiment of 

investors are more likely to impact the sign rather than the magnitude of stock 

returns. As a consequence, we conjecture that the increase in the selling propensity of 

local institutional investors can negatively affect the sign of stock prices for the 
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traded firms. Further, we conjecture that this effect should be more pronounced 

among stocks with smaller market capitalization, since even if local institutional 

investors sell a low absolute volume of a small-cap stock, of a low trading volume 

can have a large effect on stock prices. 

To examine this conjecture, we use as regressand the dummy variable NegRet 

which is equal to one if the daily return of the stock is negative, and zero otherwise. 

To reduce potential noise in our estimates due to rebalancing requirements, spillover 

effects and stock-specific economic shocks that may be present during that period, we 

examine the effect of investors’ trading activity during the actual day of the attacks. 

Panel A of Table 3.7 presents the results. Consistent with our hypothesis, 

column (1) shows that it is 18% more likely to obtain negative returns, when local 

investors sell stocks with small capitalization during the days of the events. Columns 

(3) and (5) show that this effect decreases as the market capitalization increases and 

becomes insignificant for firms with larger market capitalization. To capture any 

date-specific economic shocks that could have influenced our results, we additionally 

estimate fixed effect models in which we include time fixed effects. We present these 

results in columns (2), (4), (6) and (8), which are consistent with our baseline 

findings. Further, the results are statistically significant when we consider the whole 

sample. Overall, these results suggest that when institutional investors located near 

terrorist attacks trade at the day of the event, there is a higher probability that the 

traded stocks will have a negative return. 

To ensure that any fluctuations in stock prices are due to the selling propensity 

of local institutional investors rather than a random effect which occurred across 

stocks during these days, we estimate similar tests using as dependent variables the 

market-adjusted stock returns. Specifically, we construct the variable NegAdjRet, 

which is equal to one if the market-adjusted stock return is negative, and zero 

otherwise. According to our conjecture, we expect to find a statistically significant 

association between the market-adjusted stock returns and the trading activity of local 

institutional investors. 
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We present our results in Panel B of Table 3.7. The coefficient estimates in 

column (1) suggest that it is 13% more likely to obtain negative market-adjusted 

returns, when local investors sell stocks with small market capitalization during the 

days of the attacks. Similar to Panel A, the coefficient estimates decrease in 

magnitude, and finally become insignificant when we consider stocks with larger 

market capitalization. Once again, these results are robust when we estimate fixed 

effect models to capture any date-specific economic shocks. 

Overall, these findings suggest that institutional investors located near terrorist 

attacks increase their selling propensity around that time period and as a result the 

probability of obtaining a negative stock return is increased. 

 

3.5 Robustness Checks  

3.5.1 Salience, Attention and Terrorist Events 

3.5.1.1 Terrorist Events and National Search Volume Index 

In this paper, we conjecture that exogenous negative events such as terrorist attacks 

and mass shootings are salient enough to draw the attention of local investors and 

influence their sentiment. Following Da et al. (2011), we use as a measure of 

attention the Search Volume Index (SVI)16 to examine whether these events can 

capture the attention of individuals, and similarly induce an effect on financial agents 

such as institutional investors.17 

                                                           
16 Google Trends adjusts search data and scale them to range between 0 and 100 to make comparisons 
easier. Specifically, according to Google “each data point is divided by the total searches of the 
geography and time range it represents, to compare relative popularity”. As a result, an increase in the 
SVI of a search term indicates that people in a specific location and time period, searched this term 
more than they normally do. The data are available at https://www.google.com/trends/.  
17 Several papers have used proxies to capture investors’ attention such as news (Yuan, 2015), firm 
advertising expense (Lou, 2014), trading volume (Gervais, Kaniel, and Mingelgrin, 2001), company's 
Wikipedia page views (Focke, Ruenzi, and Ungeheuer, 2016), and extreme returns (Barber and Odean, 
2008). 
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We obtain SVI data for the following search terms: “shooting”, “shootings”, 

“mass shooting”, “terrorism” and “terrorist attack”. To confirm that these search 

terms are related to these events, we associate our event sample with the weekly 

changes of their SVI in the United States over the sample period of January 2004 to 

December 2010.18 We restrict the SVI measure to the United States, since our event 

sample includes only events from this region. 

Figure 3.3 shows that there is a positive weekly change in the SVI around the 

period of the majority of the events in our sample when we use these search terms. 

Specifically, we find that when we use as search terms words that are related to the 

mass shootings such as “shooting”, “shooting” and “mass shooting”, there is a 

positive weekly change in the SVI around the time periods of all the mass shooting 

events obtained from the MSA database. Further, we find that the Virginia Tech 

shootings draw the most attention in comparison to the other mass shooting events. 

When we focus on search terms related to terrorist events such as “terrorism” and 

“terrorist attack”, we find that there is a mild weekly change in the national SVI 

around the majority of terrorist events obtained from the GTD database. Overall, 

these results suggest that there is a national awareness for these events around their 

time period.  

 

3.5.1.2 Terrorist Events and State Search Volume Index 

According to our hypothesis, terrorist events will draw more the attention of local 

individuals instead of those individuals who are located farther away. Further, we 

expect that more attention will be paid to these events during the first days following 

the events.  

To examine these conjectures, we download the daily SVI for each state for the 

same list of search terms as before. Because SVI is not available at a ZIP level, and 

the data are sparse on a regional level, we obtain data on a state-level and examine the 

state-level awareness of these events. Further, since SVI does not represent the 
                                                           
18 Since SVI is available only from 2004, we restrict our sample period to start from this year. 
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absolute search volume, we scale each series by dividing it with its daily national 

SVI. Following Da, Engelberg, and Gao (2015), we create the variable ΔΑSVI which 

is a winsorized, deseasonalized, and standardized measure for each of the search 

terms. Specifically, first we construct the daily ΔSVI measured as the daily difference 

of the natural logarithm plus one for each of the scaled series.19 Second, we winsorize 

each of the series at the 1% level to mitigate potential outliers. Third, we regress the 

daily ΔSVI on weekdays and month dummies and keep the residuals to eliminate 

seasonality. Fourth, aiming to address heteroscedasticity, we standardize each of the 

time series by dividing each by its standard deviation. 

Next, we estimate the following model for each of the adjusted search series.  

ΔΑSVIs,t = c + β × Impact𝑠𝑠,t + αs + δt + εs,t             (4) 

where s indexes the state and t indexes the date. To capture the effect of terrorist 

events on the state’s adjusted daily change in search volume at the date of the attacks, 

we construct the variable Impacts,t. Impacts,t is a dummy variable equal to one for the 

state of each attack around the time period when the attack occurred. Further, we 

include state and time fixed effects, represented as αs and δt, respectively, to capture 

any systematic variation across states and time. We run this regression specification 

for each of the search terms.  

Figure 3.4 shows the results. In the first bar of each graph, Impacts,t is a dummy 

equal to one for each state where the attack occurred at the day of the attack (t0). In 

the rest of the bars, Impacts,t is equal to one if an attack occurred at the same state and 

took place during the next one day, two, three, four or five days after the attack, 

respectively. The results show that there is a steep and statistically significant 

increase in the search volume of the terms “shooting”, “shootings” and “mass 

shooting” when a terrorist event takes place in the same state during the day of the 

event. These events continue to draw the attention of local population also during the 

next few days, however this effect decreases until it becomes insignificant. When we 

                                                           
19 We add one to each of the scaled series to be able to take the natural logarithm of these numbers in 
case they are equal to zero. 
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use as search terms the words “terrorism” and “terrorist attack”, we observe much 

smaller effects on their search volume in comparison to the words associated with 

mass shootings. However, we still find that the effect of the terrorist events continues 

to decrease as the days following the events increase.  

Overall, these findings show that the events in our sample tend to be highly 

associated with the state’s Google search volume during the days following the 

events. Similar to Antoniou et al. (2016a), these results confirm that except of media 

attention, terrorist events can also capture the attention of local individuals, and 

therefore they are also likely to draw the attention of local financial agents such as 

institutional investors. 

 

3.5.2 Liquidity Shocks and Pension Plan Sponsors  

Until now, we interpret the changes in the selling propensity of the affected investors 

as the consequence of terrorist events. However, any change in the trading activity of 

institutional investors may also be associated with the trading activity of other market 

participants such as retail investors. For example, retail investors may actually trade 

systematically differently around the dates of terrorist events, which as a result can 

affect the liquidity of the stock market and institutions’ fund flows (e.g., see Frazzini 

and Lamont, 2008). As a response, institutional investors may have adjusted their 

trading strategy around these dates due to these conditions and not due to any changes 

in their sentiment.  

To examine this conjecture, we use additional information regarding the type of 

the institutional investors that made each trade. Our sample includes the trades from 

both pension plan sponsors and money manager. We distinguish these trades and 

keep only the trades from pension plan sponsors, since they are more likely to 

experience fewer short-term changes in the inflows and outflows of their capital 

(Puckett and Yan, 2008). 

Table 3.8 presents the results. Consistent with our main conjecture, we find that 

affected pension plan sponsors tend to increase their selling propensity around the 
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dates of the events. The magnitudes of the coefficient estimates are approximately 

similar to those in Table 3.3 and range between 4% and 9%. Further, these findings 

are highly statistically significant and remain robust when we include stock, date and 

ZIP code fixed effects in our specification.20  

 

3.5.3 Distinct Effects of Terrorist Attacks and Mass Shootings  

In this study, our event sample includes both terrorist attacks and mass shootings 

which we treat as exogenous events that can influence the sentiment of local 

institutional investors. To examine whether our findings are driven only from one 

event type, we distinguish our event sample to terrorist attacks and mass shootings 

and re-estimate our baseline specification as in Table 3.3.  

Specifically, to capture the distinct effect of terrorist attacks and mass 

shootings, we create the variables Impact(Terrorist attacks) and Impact(Mass shootings), 

respectively. Impact(Terrorist attacks) is a dummy variable that equals one if an investor is 

local to a terrorist attack and sells stocks during the following 7 days after the events. 

Accordingly, Impact(Mass shootings) is equal to one when an investor is local to a mass 

shooting and sells stocks during the following 7 days after the events.  

We present our findings in Panel A of Table 3.9. In columns (1) and (2), the 

results show that there are still statistically significant effects when we consider only 

terrorist attacks and mass shootings, respectively. In column (3), we include both 

Impact(Terrorist attacks) and Impact(Mass shootings) variables to capture the distinct effects of 

both event types. Our results show that the coefficient estimate for each variable 

remains similar to the estimate presented in columns (1) and (2), respectively. 

Further, we find that both event types produce a similar effect since their coefficient 

estimates are statistically similar.21 

                                                           
20 Table 3.7 does not report results after including stock-date fixed effects, since it is infeasible to 
estimate such a specification due to the large decrease of the sample size and the large number of these 
fixed effect factors. 
21 We perform a test between the two coefficients to examine whether their difference is statistically 
significant. The results show that their difference is statistically insignificant since we obtain an F-
statistic equal to 0.04. 
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3.5.4 Mass Shootings and Alternative Event Sample 

Our initial event sample includes mass shootings which contain at least 8 human 

casualties since these events are more likely to have a stronger impact on the 

sentiment of investors. In this section, we include mass shootings with a smaller 

number of human casualties in our event sample and examine whether such events 

can also have a similar effect on the selling propensity of the affected investors.  

Panel B of Table 3.9 lists the 18 additional events that we include in our event 

sample. To examine whether such events can similarly affect the trading activity of 

institutional investors, we construct the variables Impact(6-7 casualties) and Impact(3-7 

casualties). Impact(6-7 casualties) is a dummy variable equal to one when an investor is local 

to a mass shooting which involved 6 to 7 human casualties. Similarly, Impact(3-7 

casualties) equals one when the mass shooting involved 3 to 7 human casualties.  

Panel C of Table 3.9 presents the results. Our findings show that Impact(Mass 

shootings) remains highly statistically significant and similar in coefficient magnitude as 

in Panel A. When we include the variables Impact(6-7 casualties) and Impact(3-7 casualties), 

their coefficient estimates are highly statistically insignificant. Also, their coefficient 

estimates are lower than the estimate of Impact(Mass shootings). Consistent with our 

conjecture, these results suggest that only salient events can have a significant impact 

on the sentiment of the affected investors, which in turn can influence their trading 

activity. 

 

3.5.5 Pre-Existing Effects  

One concern with the estimates of Table 3.3 is that they may be driven from pre-

existing effects. In this case, our estimates would capture the spillover effects of some 

pre-existing events that are not related to terrorist events. To rule out this possibility, 

we examine whether there are any significant effects for the local investors a few 

days before the events take place. Particularly, we create the variables Impact(-2 to -1 
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days), Impact(-5 to -1 days) and Impact(-7 to -1 days) to capture potential pre-existing shocks 

that took place 2, 5 or 7 days before the actual dates of the events.  

Panel A of Table 3.10 presents our findings. These results show that all the lag 

variables of Impact are highly statistically insignificant. Also, they suggest that 

institutional investors change their selling propensity only as a result of the terrorist 

events and not due to potential pre-existing shocks. 

3.5.6 Sensitivity to 9/11 Attacks 

Since 9/11 attacks are the most important events in our sample and could potentially 

drive our main results, we re-estimate our main specification after excluding these 

events from our sample. We present our findings in column (1) of Panel B in Table 

3.10. Even though, we exclude the 9/11 attacks from our event sample, we still obtain 

statistically significant results. Further, the coefficient estimate is close to those 

displayed in Table 3.3. 

 

3.5.7 Excluding New York Investors 

Investors located in the state of New York provide the majority of trades in our 

sample (i.e. 28.59%). Following Coval and Moskowitz (1999), we exclude such 

investors from our sample and we re-estimate our main specification to ensure that 

our results are not driven only by the trading activity of these investors. Column (2) 

of Panel B in Table 3.10 shows our findings which remain robust to the exclusion of 

New York institutional investors.  

 

3.6 Conclusion 

Previous studies demonstrate that investors are susceptible to biases associated with 

their mood and sentiment, while other studies show that institutional investors are not 

immune to cognitive biases. This paper contributed to this literature by using terrorist 
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attacks and mass shootings as a new proxy to capture strong adversely shocks in the 

sentiment of institutional investors. These events occur at random location and time, 

and as a result they tend to minimize any potential self-selection bias associated with 

the location preference of investors. To our knowledge, this study is the first to 

identify the channel through which these attacks are associated with financial and 

market outcomes.  

In our analysis, we conjecture that institutional investors who are geographical 

proximate to the attacks and trade the following days should receive a strong negative 

shock in their sentiment, which in turn will affect their trading activity, and increase 

their selling propensity. We test this hypothesis by comparing the selling propensity 

of local and non-local investors around the period of the attacks, since both groups 

should be exposed to the same public information. Our results show that local 

institutional investors tend to increase their selling propensity during the following 

days after the attacks. The magnitude of this effect increases when investors are 

located closer to these attacks, and when the time proximity of the trades and the 

attacks increases. However, this effect is less pronounced when affected investors 

trade smaller firms, illiquid stocks, and stocks with volatile and skewed returns. 

Additionally, we find evidence which suggests that the trading activity of local 

investors affects their quarterly performance, since local investors tend to 

underperform the market return. The trading behavior of local institutional investors 

is also associated with stock market outcomes since the increase in their selling 

propensity has a negative impact on stock returns during the day of the attacks.  

Collectively, these findings highlight the impact of terrorist attacks and mass 

shootings on financial trading activity and stock market outcomes. Future research 

could examine whether less sophisticated market participants are also prone to 

extreme shifts in their sentiment which can affect their trading decisions.  
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Table 3.1. Sample of Terrorist Events 
This table shows our event sample during the period 1999-2010. All the events took place in the U.S. 
and were local to institutional investors. Also, they resulted to at least one human casualty and were 
displayed in major news outlets. 

N Events Date Location Database 

1  Columbine High School 20 Apr 1999 Littleton, CO  MSA 

2  Korean Methodist Church 04 Jul 1999 Bloomington, IN GTD 

3  All-Tech Group/Momentum Securities 29 Jul 1999 Atlanta, GA MSA 

4  Wedgwood Baptist Church 15 Sep 1999 Fort Worth, TX MSA 

5  9/11 Attacks: World Trade Center  11 Sep 2001 New York City, NY GTD 

6  9/11 Attacks: Hijacked Plane Crashed 11 Sep 2001 Alexandria, VA GTD 

7  9/11 Attacks: Hijacked Plane Crashed 11 Sep 2001 Somerset County, PA GTD 

8  Bank of America 05 Jan 2002 Tampa, FL GTD 

9  LA International Airport 04 Jul 2002 Los Angeles, CA  GTD 

10  Living Church of God 12 Mar 2005 Brookfield, WI MSA 

11  Goleta Post Office 30 Jan 2006 Goleta, CA MSA 

12  Seattle Jewish Federation  28 Jul 2006 Seattle, WA GTD 

13  Virginia Tech 16 Apr 2007 Blacksburg, VA MSA 

14  Covina Shooting 24 Dec 2008 Covina, CA MSA 

15  Pinelake Health and Rehab 29 Mar 2009 Carthage, NC MSA 

16  Immigration Centre  03 Apr 2009 Binghamton, NY  MSA 

17  Holocaust Museum  10 Jun 2009 Washington, DC GTD 

18  Pentagon 04 Mar 2010 Arlington, VA GTD 

19  Hartford Beer Distributors 03 Aug 2010 Manchester, CT MSA 

20  Discovery Communications 01 Sep 2010 Silver Springs, MD GTD 
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Table 3.2. Descriptive Statistics 
This table presents the descriptive statistics for the ANcerno trade data and the variables of our analysis. 
The sample includes daily trades of U.S. institutional investors on common U.S. stocks (share code of 
10 or 11) from January 1999 to December 2010. Panel A shows the descriptive statistics for the 
variables when we restrict our sample to sell trades. Panel B presents the descriptive statistics when we 
include in our sample only buy trades. Investor sell (buy) ratio is a variable equal to the daily total 
dollar sell (buy) volume for a particular stock within the same ZIP code divided by the daily total dollar 
sell (buy) volume across all ZIP codes for the same stock. Impact is a dummy variable equal to one if 
the investor who traded in the stock market is inside a 100 miles radius from an attack, and the trade 
took place during the next 7 days after the attack. We also obtain data from CRSP to control for stock 
characteristics. Particularly, Market cap. is equal to the natural logarithm of the stock’s market 
capitalization, where market capitalization is the number of shares outstanding multiplied with the price. 
Inverse of price is measured as the inverse of stock’s share price. Stock returnt-1 is the lag value of the 
daily stock return. Monday is a dummy variable equal to one if the investor traded on Monday and zero 
otherwise. January is a dummy equal to one if the investor traded on January and zero otherwise. 
Ln(Distance Investor-Stock) is equal to the natural logarithm of the distance, measured in miles, between the 
ZIP code of the institutional investor and the ZIP code of the traded firm. Housing collateral is the 
state-level housing collateral ratio which is equal to the log ratio of state-level housing equity divided 
by state’s labor income. Relative unemployment depicts the fraction of the current rate to the moving 16 
quarter-average of past rates. Income growth rate captures the state-level changes in labor income. 

Panel A: Descriptive Statistics – Sell 
Variable Obs. Mean Std. Dev. 25th Pctl. Median 75th Pctl. 
Investor sell ratio 5,810,704 0.49 0.43 0.03 0.41 1.00 
Impact 5,810,704 0.00 0.03 0.00 0.00 0.00 
Market cap. ($billions) 5,810,704 17.60 42.60 0.95 3.12 13.70 
Inverse of price 5,810,704 0.05 0.09 0.02 0.03 0.05 
Stock returnt-1 5,810,704 -0.00 0.07 -0.01 -0.00 0.01 
Monday 5,810,704 0.18 0.39 0.00 0.00 0.00 
January 5,810,704 0.09 0.28 0.00 0.00 0.00 
Distance Investor-Stock (miles) 5,810,704 1215.19 995.25 403.54 944.05 1962.13 
Housing collateral 5,810,704 -0.07 0.56 -0.12 0.06 0.17 
Relative unemployment 5,810,704 1.14 0.33 0.88 1.02 1.38 
Income growth rate 5,810,704 0.03 0.22 -0.01 0.00 0.02 
Panel B: Descriptive Statistics – Buy 
Variable Obs. Mean Std. Dev. 25th Pctl. Median 75th Pctl. 
Investor buy ratio 5,603,457 0.52 0.43 0.05 0.50 1.00 
Impact 5,603,457 0.00 0.04 0.00 0.00 0.00 
Market cap. ($billion) 5,603,457 16.60 41.30 0.91 2.87 12.40 
Inverse of price 5,603,457 0.05 0.06 0.02 0.03 0.05 
Stock returnt-1 5,603,457 -0.00 0.07 -0.01 0.00 0.01 
Monday 5,603,457 0.18 0.38 0.00 0.00 0.00 
January 5,603,457 0.09 0.28 0.00 0.00 0.00 
Distance Investor-Stock (miles) 5,603,457 1250.96 993.90 433.84 1016.02 2026.91 
Housing collateral 5,603,457 -0.06 0.55 -0.12 0.07 0.17 
Relative unemployment 5,603,457 1.13 0.33 0.87 1.01 1.36 
Income growth rate 5,603,457 0.03 0.21 -0.01 0.00 0.02 
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Table 3.3. Terrorist Events and Institutional Investors: Baseline Estimation 
This table presents the results from regressions examining the impact of attacks on institutional investors’ sell and buy ratio. In columns (1) to (4), 
we use Investor sell ratio as dependent variable while in columns (5) to (8) we use as dependent variable the Investor buy ratio. In columns (3) and 
(7), we include stock fixed effects, and in columns (4) and (8) we include fixed effects based on date-stock pairs. Standard errors, shown in 
parentheses, are clustered at the level of investors’ ZIP code. *, ** and *** measure significance at the 10%, 5%, and 1% levels, respectively. 

                    Investor sell ratio                     Investor buy ratio 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Impact 0.07*** 0.08*** 0.08*** 0.09*** 0.02 0.02 0.03 0.00 
 (0.03) (0.02) (0.02) (0.04) (0.03) (0.03) (0.03) (0.06) 
Ln(Market cap.) -0.11*** -0.11*** -0.17***  -0.11*** -0.11*** -0.18***  
 (0.00) (0.00) (0.01)  (0.00) (0.00) (0.01)  
Inverse of price -0.07*** -0.04* -0.27***  0.03 0.06* -0.32***  
 (0.02) (0.02) (0.04)  (0.03) (0.03) (0.07)  
Stock returnt-1 0.07*** 0.07*** 0.08***  0.01* 0.01 0.01  
 (0.03) (0.03) (0.03)  (0.01) (0.01) (0.01)  
Monday  0.01*** 0.01***   0.01*** 0.01***  
  (0.00) (0.00)   (0.00) (0.00)  
January  -0.03*** -0.03***   -0.03*** -0.03***  
  (0.01) (0.01)   (0.01) (0.01)  
Ln(Distance Investor-Stock)  -0.00 -0.00 0.00  -0.00 -0.01 -0.01 
  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.01) 
Housing collateral  -0.00 0.00 0.01  -0.01 -0.00 0.00 
  (0.02) (0.01) (0.02)  (0.01) (0.01) (0.02) 
Relative unemployment  -0.05** -0.04* 0.11  -0.04* -0.02 0.12 
  (0.02) (0.02) (0.20)  (0.02) (0.02) (0.23) 
Income growth rate  -0.07*** -0.07*** 0.00  -0.08*** -0.08*** -0.01 
  (0.02) (0.01) (0.01)  (0.02) (0.02) (0.01) 
Constant 2.17*** 2.23*** 3.10*** 0.36 2.15*** 2.22*** 3.25*** 0.43 
 (0.05) (0.05) (0.19) (0.23) (0.04) (0.05) (0.18) (0.26) 
Stock F.E.   Yes    Yes  
Date and Stock F.E.    Yes    Yes 
N  5,810,704 5,810,704 5,810,704 5,810,704 5,603,457 5,603,457 5,603,457 5,603,457 
Adj-R2 22.28% 22.64% 26.84% 23.98% 21.24% 21.56% 25.52% 18.94% 
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Table 3.4. Temporal and Geographical Proximity to Terrorist Events 
This table examines how different temporal and geographical proximity to the terrorist attacks affects 
investors’ sell ratio. In Panel A, we examine how the distance between the attacks and the investors 
affect Investor sell ratio. To examine the association of distance with the magnitude of the effect, we 
allow distance to vary. Specifically, we consider Impact(0 to 50 miles), Impact(0 to 150 miles) and Impact(0 to 250 

miles), which are dummy variables equal to one if an investor traded within the following 7 days from an 
attack and is located in less than 50 miles, 150 miles, and 250 miles, respectively. In Panel B, we 
examine how the time after the attacks is associated with the Investor sell ratio of the affected 
investors. Particularly, we include in our models the variables Impact(0 to 5 days), Impact(0 to 10 days), and 
Impact(0 to 15 days) which are dummy variables equal to one if an investor is located in a radius of 100 
miles from the attack and traded within the following 5 days, 10 days, and 15 days, respectively. All 
regressions include date-stock pair fixed effects, and similar control variables as in Table 3.3. Standard 
errors, shown in parentheses, are clustered at the level of investors’ ZIP code. *, ** and *** measure 
significance at the 10%, 5%, and 1% level, respectively.  

Panel A: Geographical Proximity 

 (1) (2) (3) 
Impact(0 to 50 miles) 0.11**   
 (0.05)   
Impact(0 to 150 miles)  0.07*  
  (0.04)  
Impact(0 to 250 miles)   0.04 
   (0.05) 
Control Variables Yes Yes Yes 
Date and Stock F.E. Yes Yes Yes 
N  5,810,704 5,810,704 5,810,704 
Adj-R2 23.98% 23.99% 23.98% 

Panel B: Temporal Proximity 

 (1) (2) (3) 
Impact(0 to 5 days) 0.09**   
 (0.04)   
Impact(0 to 10 days)  0.07*  
  (0.04)  
Impact(0 to 15 days)   0.06 
   (0.04) 
Control Variables Yes Yes Yes 
Date and Stock F.E. Yes Yes Yes 
N  5,810,704 5,810,704 5,810,704 
Adj-R2 23.98% 23.98% 23.98% 
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Table 3.5. Terrorist Events, Institutional Investors, and Firm Characteristics 

This table examines whether local institutional investors around the period of the attacks increase more or less their selling propensity for hard-to-value stocks. In all 
columns, we consider Investor sell ratio as dependent variable. In columns (1) to (3), we define Firm char. as an indicator variable equal to one for firms with market 
capitalization on the bottom quarter of our sample, and zero otherwise. In columns (4) to (6), we capture the illiquidity of firms using the Amihud (2002) illiquidity 
measure which is equal to the ratio of absolute return to the daily dollar trading volume, and we define Firm char. as an indicator variable equal to one for firms with 
an illiquidity measure which falls at the top quarter of the sample distribution, and zero otherwise. In columns (7) to (9), we define Firm char. as an indicator variable 
equal to one for firms with yearly volatility which falls at the top quarter of the sample distribution, and zero otherwise. Similarly, in columns (10) to (12) we define 
Firm char. as an indicator variable equal to one for firms with yearly skewness which falls at the top quarter of the sample distribution, and zero otherwise. In 
columns (2), (5), (8) and (11), we include date fixed effects and in columns (3), (6), (9) and (12) we include stock fixed effects in our specifications. Standard errors, 
shown in parentheses, are clustered at the level of investors’ ZIP code. *, ** and *** measure significance at the 10%, 5%, and 1% levels, respectively. 
               Small Firms              Illiquid Firms             Volatile Firms              Skewed Firms 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Impact×Firm 
char. 

-0.07*** 
(0.02) 

-0.05** 
(0.02) 

-0.07*** 
(0.02) 

-0.04** 
(0.02) 

-0.02 
(0.02) 

-0.04** 
(0.02) 

-0.06** 
(0.03) 

-0.02 
(0.02) 

-0.08*** 
(0.02) 

-0.06*** 
(0.02) 

-0.05*** 
(0.02) 

-0.06*** 
(0.02) 

             

Impact 0.09*** 0.05** 0.10*** 0.09*** 0.04* 0.10*** 0.10*** 0.04* 0.11*** 0.09*** 0.05** 0.10*** 

 (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) 

Firm char. 0.05*** 0.04*** 0.01** 0.09*** 0.06*** 0.05*** 0.05*** -0.01** 0.03*** 0.02*** 0.01*** 0.01** 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.00) (0.00) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Date F.E.  Yes   Yes   Yes   Yes  

Stock F.E.   Yes   Yes   Yes   Yes 

N  5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 5,810,704 

Adj-R2 22.78% 31.26% 26.85% 23.10% 31.41% 26.94% 22.84% 31.18% 26.92% 22.67% 31.18% 26.85% 
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Table 3.6. Terrorist Events and Interim Trading Skill 
This table examines the impact of attacks on the interim trading skill of institutional investors when 
they sell stocks. For each ZIP code, we calculate the raw cumulative stock return from the current price 
until the end of the quarter. Then, we subtract the equally-weighted market index return over the same 
holding period to compute the Equal-weighted market adjusted return measure. To construct the raw 
cumulative stock return, we subtract the price at the end of the quarter from the current price and 
divide by the current price. Columns (2), (3) and (4) include stock, date and ZIP code fixed effects, 
respectively. Standard errors, shown in parentheses, are clustered at the level of investor’s ZIP code. *, 
** and *** measure significance at the 10%, 5%, and 1% level, respectively. 

                                           Equal-weighted market adjusted return  
 (1) (2) (3) (4) 
Impact -0.02*** -0.02*** -0.01*** -0.02*** 
 (0.00) (0.00) (0.00) (0.00) 
Ln(Market cap.) 0.00 0.03*** 0.00 0.00 
 (0.00) (0.00) (0.00) (0.00) 
Inverse of price -0.15*** -0.20*** -0.16*** -0.16*** 
 (0.02) (0.02) (0.02) (0.02) 
Stock returnt-1 -0.08*** -0.00 -0.10*** -0.08*** 
 (0.03) (0.02) (0.03) (0.03) 
Monday -0.00 -0.00  0.00 
 (0.00) (0.00)  (0.00) 
January 0.01*** 0.01***  0.01*** 
 (0.00) (0.00)  (0.00) 
Ln(Distance Investor-Stock) 0.00 -0.00** 0.00 0.00 
 (0.00) (0.00) (0.00) (0.00) 
Housing collateral -0.01*** -0.00*** -0.00 -0.01*** 
 (0.00) (0.00) (0.00) (0.00) 
Relative unemployment 0.02*** 0.04*** 0.01 0.02*** 
 (0.00) (0.00) (0.01) (0.00) 
Income growth rate 0.01*** 0.02*** 0.00 0.02*** 
 (0.00) (0.00) (0.00) (0.00) 
Constant -0.00 -0.50*** 0.01 -0.01 
 (0.01) (0.03) (0.01) (0.01) 
Stock F.E.  Yes   
Date F.E.   Yes  
ZIP code F.E.    Yes 
N  5,810,704 5,810,704 5,810,704 5,810,704 
Adj-R2 1.08% 7.34% 2.85% 1.19% 
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Table 3.7. Terrorist Events, Stock Capitalization and Stock Returns 
This table examines whether the selling propensity of local institutional investors at the day of the attacks influence the stock returns. ImpactDay0 is a 
dummy variable equal to one if an investor is located in a 100 miles radius from an attack at the day of the event. The columns of this table present 
subsample estimates based on the market capitalization of stocks. Specifically, columns (1) and (2) present estimates when the market capitalization of 
the stock falls on the bottom quarter of the distribution. Accordingly, columns (3) and (4) present estimates the market capitalization of the stock is 
under the 50th percentile of the distribution, columns (5) and (6) show estimates when the market capitalization of the stock is equal or above the 50th 
percentile of the distribution, and columns (7) and (8) show estimates for the whole sample. Panel A examines whether at the day of the attacks it is 
more likely to obtain negative stock returns. In this panel, we use as regressand the indicator variable NegRet which is equal to one if the daily return of 
the stock is negative, and zero otherwise. In Panel B, we examine whether at the day of the attacks it is more likely to obtain negative market-adjusted 
stock returns. Therefore, we use as regressand the dummy variable NegAdjRet which is equal to one if the market-adjusted stock return is negative, and 
zero otherwise. In columns (1), (3), (5) and (7), we estimate logit regression models and their coefficient estimates illustrate marginal probabilities. In 
columns (2), (4), (6) and (8), we estimate fixed effect regression models to exploit the variation within each date. Standard errors, shown in parentheses, 
are clustered at the level of investors’ ZIP code. *, ** and *** measure significance at the 10%, 5%, and 1% levels, respectively. 
Panel A: Stock Returns, Stock Capitalization and Terrorist Events 

        [0-25%)    [0%-50%)    [50%-100%]           All 

 (1) (2) (3) (4) (5) (6) (7) (8) 
ImpactDay0 0.18*** 0.07* 0.17*** 0.06** 0.10 0.01 0.14** 0.04* 
 (0.06) (0.04) (0.06) (0.03) (0.07) (0.02) (0.05) (0.02) 
Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Date F.E.  Yes  Yes  Yes  Yes 
N  1,452,676 1,452,676 2,905,351 2,905,351 2,905,353 2,905,353 5,810,704 5,810,704 
Panel B: Market-Adjusted Stock Returns, Stock Capitalization and Terrorist Events 

        [0-25%)    [0%-50%)    [50%-100%]           All 

 (1) (2) (3) (4) (5) (6) (7) (8) 
ImpactDay0 0.13*** 0.09** 0.10** 0.06* 0.01 0.03 0.06* 0.04 
 (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) 
Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Date F.E.  Yes  Yes  Yes  Yes 
N  1,452,676 1,452,676 2,905,351 2,905,351 2,905,353 2,905,353 5,810,704 5,810,704 
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Table 3.8. Robustness Tests: Pension Plan Sponsors and Terrorist Events 
This table examines the impact of attacks on pension plan sponsors trading activity. Columns (3), (4) 
and (5) include stock, date and ZIP code fixed effects, respectively. Standard errors, shown in 
parentheses, are clustered at the level of investor’s ZIP code. *, ** and *** measure significance at the 
10%, 5%, and 1% level, respectively. 

                                                           Investor sell ratio  
 (1) (2) (3) (4) (5) 
Impact 0.08*** 0.09*** 0.09*** 0.04** 0.06*** 
 (0.02) (0.02) (0.02) (0.02) (0.01) 
Ln(Market cap.) -0.08*** -0.08*** -0.12*** -0.08*** -0.07*** 
 (0.01) (0.01) (0.01) (0.01) (0.00) 
Inverse of price -0.10*** -0.07*** -0.16*** -0.05*** -0.07*** 
 (0.01) (0.01) (0.02) (0.01) (0.01) 
Stock returnt-1 0.16*** 0.16*** 0.16*** 0.13*** 0.16*** 
 (0.02) (0.02) (0.02) (0.02) (0.02) 
Monday  0.01*** 0.01***  0.01*** 
  (0.00) (0.00)  (0.00) 
January  -0.00 -0.00  -0.00 
  (0.01) (0.01)  (0.01) 
Ln(Distance Investor-Stock)  -0.01*** -0.01*** -0.00*** -0.00 
  (0.00) (0.00) (0.00) (0.00) 
Housing collateral  0.01 0.01 0.02 -0.00 
  (0.01) (0.01) (0.01) (0.00) 
Relative unemployment  -0.10*** -0.10*** -0.24** -0.07*** 
  (0.02) (0.02) (0.11) (0.01) 
Income growth rate  -0.04** -0.04*** 0.00 -0.04*** 
  (0.02) (0.01) (0.01) (0.01) 
Constant 1.91*** 2.08*** 2.66*** 2.21*** 1.89*** 
 (0.09) (0.11) (0.16) (0.20) (0.06) 
Stock F.E.   Yes   
Date F.E.    Yes  
ZIP code F.E.     Yes 
N  1,777,352 1,777,352 1,777,352 1,777,352 1,777,352 
Adj-R2 12.77% 14.04% 17.08% 20.67% 18.91% 
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Table 3.9. Robustness Tests: Terrorist Attacks and Mass Shootings  
This table examines the distinct effects of terrorist attacks and mass shootings, and explores the effect 
of mass shooting with less human casualties. Panel A presents the results from regressions examining 
the distinct effects of terrorist attacks and mass shootings on Investor sell ratio. Impact(Terrorist attacks) is a 
dummy variable equal to one if an investor is local to a terrorist attack and sold stocks the following 7 
days. Accordingly, Impact(Mass shootings) is a dummy variable equal to one if an investor is local to a mass 
shooting attack and sold stocks the following 7 days. In Panel B, we obtain additional data from MSA 
Stanford database for the 1999-2010 period and we increase the sample of mass shootings events. In 
this Panel we show information on the additional event sample. In Panel C, we examine the robustness 
of our results when we include mass shootings with less human casualties in comparison to our initial 
event sample. Particularly, Impact(6-7 casualties) is a dummy equal to one when an investor is local to an 
attack which involved 6 or 7 human casualties and sold stocks the following 7 days. Accordingly, 
Impact(3-7 casualties) is a dummy equal to one when an investor is local to an attack which involved 
between 3 and 7 human casualties and sold stocks the following 7 days. All regressions include date-
stock pair fixed effects, and similar control variables as in Table 3.3. Standard errors, shown in 
parentheses, are clustered at the level of investor’s ZIP code. *, ** and *** measure significance at the 
10%, 5%, and 1% level, respectively.  

Panel A: Distinct Effects of Terrorist Attacks and Mass Shootings 

 (1) (2) (3) 
Impact(Terrorist attacks) 0.09**  0.09** 
 (0.04)  (0.04) 
Impact(Mass shootings)  0.10** 0.10** 
  (0.05) (0.05) 
Control Variables Yes Yes Yes 
Date and Stock F.E. Yes Yes Yes 
N  5,810,704 5,810,704 5,810,704 
Adj-R2 23.98% 23.98% 23.98% 
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Table 3.9—Continued 

Panel B: Description of Additional MSA Sample 

 
Events Date Location 

Mass shootings with 7 casualties   

 Edgewater Technology 26 Dec 2000 Wakefield, MA 

 Windy City Core Supply Warehouse 27 Aug 2003 Chicago, IL 

 Party in Capitol Hill 25 Mar 2006 Seattle, WA 

Mass shootings with 6 casualties   

 Navistar International 05 Feb 2001 Melrose Park, IL 

 Birchwood Shootings 21 Nov 2004 Birchwood, WI 

 West Nickel Mines Amish School 02 Oct 2006 Nickel Mines, PA 

 Trolley Square 12 Feb 2007 Salt Lake City, UT 

 Carnation Shootings 24 Dec 2007 Carnation, WA 

 Kirkwood City Hall 07 Feb 2008 Kirkwood, MO 

 Northern Illinois University 14 Feb 2008 DeKalb, IL 

 Rivermark Shootings 29 Mar 2009 Santa Clara, CA 

Mass shootings with 5 casualties   

 Radisson Bay Harbor Inn 30 Dec 1999 Tampa, FL 

 Alrosa Villa Nightclub 08 Dec 2004 Columbus, OH 

 Youth With A Mission / New Life Church 09 Dec 2007 Arvada, CO 

 Parkland Coffee Shop 29 Nov 2009 Lakewood, WA 

Mass shootings with 4 casualties   

 University of Arizona Shooting 28 Oct 2002 Tucson, AZ 

Mass shootings with 3 casualties   

 Appalachian School of Law 16 Jan 2002 Grundy, VA 

 Tyler Courthouse 24 Feb 2005 Tyler, TX 

Panel C: Model Estimates with Additional Mass Shooting Sample   
 (1) (2) 
Impact(Mass shootings) 0.10** 0.10** 
 (0.05) (0.05) 
Impact(6-7 casualties) 0.05  
 (0.05)  
Impact(3-7 casualties)  0.05 
  (0.04) 
Control Variables Yes Yes 
Date and Stock F.E. Yes Yes 
N  5,810,704 5,810,704 
Adj-R2 23.98% 23.98% 
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Table 3.10. Robustness Tests: Pre-Existing Effects and Different Sample 
Specifications 

In this table, we perform additional robustness tests. In Panel A, we include lag values of Impact to 
examine whether there are any potential pre-existing shocks that could affect our estimations. In Panel 
B, we examine whether our results are robust to the exclusion of 9/11 attacks and NY institutional 
investors. Particularly, in column (1) we exclude 9/11 attacks from our event sample and re-estimate 
our main model similar to Table 3.3. In column (2), we examine whether our estimations are robust to 
the exclusion of NY investors. All regressions include date-stock pair fixed effects, and similar control 
variables as in Table 3.3. Standard errors, shown in parentheses, are clustered at the level of investor’s 
ZIP code. *, ** and *** measure significance at the 10%, 5%, and 1% level, respectively. 

Panel A: Pre-Existing Effects 

 (1) (2) (3) 
Impact(-2 to -1 days) 0.02   

 
(0.07)   

Impact(-5 to -1 days)  -0.01  
  (0.04)  
Impact(-7 to -1 days)   0.01 
   (0.04) 
Control Variables Yes Yes Yes 
Date and Stock F.E. Yes Yes Yes 
N  5,810,704 5,810,704 5,810,704 
Adj-R2 23.98% 23.98% 23.98% 

Panel B: 9/11 Attacks and New York Investors 

 Excluding 9/11 attacks Excluding NY investors 
 (1) (2) 
Impact  0.10** 0.10** 
 (0.04) (0.04) 
Control Variables Yes Yes 
Date and Stock F.E. Yes Yes 
N  5,810,704 4,149,193 
Adj-R2 23.98% 29.36% 
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Figure 3.1. Geographical Distribution of Attacks. This figure shows the states where the terrorist 
attacks and mass shootings occurred. 
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Figure 3.2. Geographical Distribution of Institutional Investors. This figure shows the distribution 
of institutional investors across U.S. states. States with no institutional investors located in are 
highlighted with white. 
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Figure 3.3. Weekly Changes of SVI in U.S. and Terrorist Events. In this figure, we associate our 
event sample with the weekly changes of the U.S. SVI for the following search terms: “shooting”, 
“shootings”, “mass shooting”, “terrorism” and “terrorist attack”. The changes of the U.S. SVI are 
measured as the weekly difference of the natural logarithm plus one for each of these search terms. 
Our SVI sample spans from January 2004 until December 2010. 
 
  



129 
 

 

Figure 3.4. State’s Daily Changes in SVI and Terrorist Events. This figure shows how state daily 
adjusted changes of SVI (ΔΑSVI) variate when terrorist events take place in these states. Particularly, 
we measure the daily SVI for each state for the following search terms: “shooting”, “shootings”, “mass 
shooting”, “terrorism” and “terrorist attack”. To be comparable across states, we scale each series by 
dividing it with the daily national SVI for each of the terms. Then, we measure the daily ΔSVI as the 
daily difference of the natural logarithm plus one for each of these scaled series. We winsorize each of 
the series at the 1% level. To eliminate seasonality, we regress the daily ΔSVI on weekdays and month 
dummies and keep the residuals. To address heteroscedasticity, we standardize each of the time series 
by dividing each by its standard deviation, which leaves us with the ΔΑSVI. This figure shows the 
coefficient of Impact, when we regress ΔΑSVI on Impact and include time and state fixed effects. In 
the first bar of each graph, Impact is a dummy equal to one for each state where the attack occurred at 
the day of the attack t0. In the rest of the bars, Impact is equal to one if an attack occurred at a specific 
state and took place during the next one day, two, three, four or five days after the attack, respectively. 
Our sample spans from January 2004 until December 2010. 
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Concluding Remarks 

This thesis examines the effect of terrorist attacks and mass shootings on the 

decision-making of sophisticated financial agents such as sell-side analysts, corporate 

managers and institutional investors. Motivated from psychology literature, we 

conjecture that financial agents who are located near the location of the attacks would 

experience a strong negative sentiment which in turn would affect their financial 

decisions. Our models test this conjecture by comparing the financial decisions of 

local agents and non-local agents around the time period of the attacks. 

In the first chapter, we find strong evidence which support that sell-side analysts 

who are exposed to terrorist events tend to issue more pessimistic earnings forecasts. 

Consistent with our hypothesis, this effect is stronger for analysts that are located 

closer to the events and among analysts who issue forecasts during the following days 

after the attacks. Further, analysts who are located in states with low murder rates 

tend to issue more pessimistic forecasts around that period, since they perceive 

terrorist attacks and mass shootings as more salient. In this chapter, we also present 

evidence which show that affected analysts are more likely to issue bold pessimistic 

forecasts and less likely to issue bold optimistic forecasts. To minimize the possibility 

that our estimates capture some random effects, we examine whether local analysts 

issue more pessimistic forecasts around the anniversaries of terrorist events. 

According to our conjecture, such events exert a negative shock on the sentiment of 

the local analysts since they tend to evoke recollection of the negative experience 

associated with the attack. Consistent with this conjecture, our results show that 

around the time of the anniversaries the affected analysts tend to issue more 

pessimistic forecasts, however the magnitude of this effect is smaller in comparison 

to the effect of the original event. In this chapter, we also examine whether the 

forecasts of the affected analysts are more or less accurate in comparison to other 

forecasts which are issued for the same firm at the same quarter. Our findings suggest 

that the forecasts of the analysts who are exposed to the terrorist events tend to be 
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more accurate since they can mitigate the well-documented optimism bias among 

analysts. 

In the second chapter, we examine whether corporate managers tend to apply 

more risk averse firm policies when they are located near the location of terrorist 

events. Our findings show that managers who are located within a 50 miles radius 

from the attacks increase the corporate cash holdings and decrease the R&D 

expenditure and long-term leverage one quarter after the attacks have occurred. These 

effects become weaker as the distance between the firm and the attack increases. 

Further, these effects are present only for one quarter, suggesting that the shock to the 

sentiment of local managers can only cause temporary changes in the corporate 

policies of their firms. In this chapter, we also construct a newspaper measure to 

capture the saliency of the events. Our results show that the attacks that were covered 

by newspapers in longer articles, and the attacks that were displayed in the first page 

of newspapers exert a stronger effect on the local managers, who apply more prudent 

corporate policies in comparison to managers who are located farther away. Finally, 

we find evidence which suggest that the effects of terrorist events are mainly 

concentrated in firms managed by younger CEOs. 

In the last chapter of the thesis, we examine whether sophisticated market 

participants such as institutional investors tend to be susceptible to the effect induced 

by terrorist events. Using disaggregated daily institutional trade data and hand-

collected data about the location of investors, we find that institutional investors who 

are located near terrorist events tend to increase their selling propensity during the 

following 7 days after the events. Similar to previous chapters, we find that this effect 

increases as the geographical and temporal proximity to the attacks increase. Further, 

we find that this increase in the selling propensity of local institutional investors have 

a negative impact on stock returns and on the quarterly performance of investors. 

These findings are opposite to the findings presented in the first chapter where sell-

side equity analysts increase their forecast accuracy when they are exposed to 

terrorist events.  
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Overall, this thesis provides evidence which supports that terrorist events can 

cultivate strong negative sentiment among sophisticated financial agents, distort their 

beliefs and in turn affect their financial decisions. 
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Appendix 

Supporting Documentation: Chapter 2 

In this section, we provide additional information regarding the second chapter of this 

thesis. Specifically, Table 2A.1 describes the construction of the variables included in 

the main empirical analysis. Table2A.2 presents information about the average 

corporate credit ratings of firms from the 1st quarter of 1997 to the 4th quarter of 

2012. Table 2A.3 shows the analyst stock recommendations for firms included in our 

sample from the 1st quarter of 1997 to the 4th quarter of 2012. 
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Table 2A.1. Description of Variables 
This table describes the accounting and macroeconomic variables used in this study. All variables are 
in quarterly frequency and the firm data are retrieved from Compustat.  

Variables Description 

Dependent Variables  

Cash holdings Cash divided by total assets. 

R&D expenditure Research and development expenses divided by total 
assets. If R&D expenses are missing, we place zero 
instead, unless it is stated otherwise. 

Long-term leverage Long-term financial debt scaled by short-term financial 
debt plus long-term financial debt plus total common 
equity. 

Independent Variables  
Log (assets) Logarithm of assets. 

ROA ROA is defined as net income scaled by total assets. 

MB ratio Market value divided by stockholders’ equity plus 
deferred taxes and investment tax credit minus preferred 
stocks. 

Sales growth Sales growth is the logarithm of current net sales divided 
by last quarter’s net sales. 

Firm age Fiscal year minus the year of the Initial Public Offering.  

Macro-state index To construct the index we sum the collateral ratio and the 
income growth rate, subtract the relative state 
unemployment rate and divide them by three. The state-
level housing collateral ratio is the log ratio of state-level 
housing equity to state labor income. The relative state 
unemployment rate depicts the fraction of the current rate 
to the moving 16 quarter-average of past rates. The 
growth rate of labor income captures the state-level 
changes in labor income.  
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Table 2A.2. Corporate Credit Ratings 
This table presents the corporate credit ratings of firms from the 1st quarter of 1997 to the 4th quarter of 2012. To measure corporate credit ratings 
we use the Standard & Poor's Issuer Credit Rating scale which shows the overall creditworthiness of each firm. S&P’s ratings include 22 different 
scales, and range from AAA (very strong capacity to meet financial obligations) to SD (selective default). We do not consider credit ratings 
classifies as not meaningful (N.M.) and firms with no ratings. Panel A presents the definitions of ratings and the number of firms in each category. 
Panel B shows the distribution of corporate credit worthiness across years in our sample. The data are obtained from Compustat. 

Panel A: Definition of Credit Ratings 

Rating S&P Definition No. Firms Rating S&P Definition No. Firms 

AAA, 
AA(+,none,-) 

Very strong capacity to meet 
financial commitments 

61 B(+,none,-) Adverse financial conditions 
will likely deteriorate the 
obligor's capacity to meet its 
financial commitments 

4699 

A(+,none,-) Strong capacity to meet 
financial commitments 

610 CCC(+,none,-) Currently vulnerable and 
dependent upon favorable 
financial conditions to meet 
financial commitments 

243 

BBB(+,none,-) Adequate capacity to meet 
financial commitments 

2800 CC Currently highly vulnerable 24 

BB(+,none,-) Major uncertainties could lead 
to an inadequate capacity to 
meet financial commitments 

5162 D, SD Default, Selective Default 51 
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Table 2A.2—Continued 

Panel B: Average Credit Rating per Year 

Year Aver. Rating No. Firms Year Aver. Rating No. Firms 

1997 11.26 528 2005 10.95     877 
1998 11.15 619 2006 10.72     935 
1999 11.11 683 2007 10.64     932 
2000 10.86 762 2008 10.52     946 
2001 10.68 841 2009 10.22     933 
2002 10.62 880 2010 10.42     942 
2003 10.65 863 2011 10.50     981 
2004 10.80 906 2012 10.53    1022 
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Table 2A.3. Stock Recommendations 
This table presents the average analysts’ stock recommendations from the 1st quarter of 1997 to the 4th quarter of 2012. Analysts’ 
recommendations can be equal to 5 (Strong Buy), 4 (Buy), 3 (Hold), 2 (Underperform) and 1 (Sell). The data are obtained from I/B/E/S. 

Year Aver. Recommendation No. Firms Year Aver. Recommendation No. Firms 

1997 3.93 1569 2005 3.54     1958 

1998 3.90 1770 2006 3.49     2050 

1999 3.96 1838 2007 3.52     2040 

2000 3.99 1790 2008 3.46     2154 

2001 3.84 1756 2009 3.47     1945 

2002 3.58 2335 2010 3.61     1900 

2003 3.46 1955 2011 3.61     1890 

2004 3.51 2044 2012 3.52     1748 
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