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ABSTRACT

This paper addresses the issue of selecting features from a
given wavelet packet subband decomposition that are most
useful for texture classification in an image. A functional
measure based on Kullback-Leibler distance is proposed as
a way to select most discriminant subbands. Experimental
results show a superior performance in terms of classifica-
tion error rates.

1. INTRODUCTION

Texture is an important regional characteristic that can be
employed in order to analyse an image. There does not ex-
ist a widely accepted definition of texture. However, for the
sake of simplicity, texture may be considered as a spatial
area consisting of an arrangement (regular or otherwise) of
primitives resembling eachother [1]. The classification of
image data into different classes of texture is a challenging
problem in image analysis [2]. Texture classification meth-
ods have been classified into five major categories based on
the types of features they associate with a texture: statis-
tical, structural, geometrical, model-based, and signal pro-
cessing [3]. Of the signal processing methods, perhaps the
most common approach is to decompose the input image
into frequency subbands [4], from which, it is hoped, the
features associated with textures present in the image can be
extracted. Discrete wavelet transform provides a tractable
way of decomposing an image into a number of frequency
subbands at different scales, a feature that has been associ-
ated with human visual system [5]. A conventional dyadic
wavelet transform [6], however, has a shortcoming in that
it does not benefit from possibly useful features that can be
obtained by further decomposing the high frequency sub-
bands. Adaptive wavelet decomposition [7], also known
as wavelet packetdecomposition, was developed to over-
come this limitation by providing better frequency localiza-
tion. For the purpose of classification of image data into

more than one texture classes, however, the selection of
best wavelet packet decomposition has to be done in such
a way that the feature images provide maximum discrimi-
nation [8]. The idea is similar to choosing a wavelet packet
basis that can be most efficiently encoded by certain quan-
tization scheme [9].

The task of a texture segmentation system is to assign
class labels to each of the image pixels, and to do so effi-
ciently and accurately. A general pattern recognition para-
digm achieves this task in two stages: feature extraction and
classification. In case of wavelet packet texture analysis, the
extraction of features from image subbands plays a crucial
role as it provides the useful information in the form of fea-
ture vectors. In this paper, following issues are addressed
in the context of a two-class texture classification problem:
(1) Can a few features associated with wavelet packet sub-
bands be sufficient for reasonably accurate classification?
(2) Given a wavelet packet subband decomposition consist-
ing of n subbands, how can we selectk (wherek < n) most
discriminant subbands to associate thebestfeatures with?
It is shown that texture classification with reasonably small
error rate is possible using only a few subbands. A discrim-
inant measure based on Kullback-Leibler distance between
the normalized energy of wavelet packet coefficients of two
classes in a subband is proposed in order to selectk most
discriminant subbands.

The organization of this paper is as follows. In the next
section, a brief review of both wavelet and wavelet packet
transforms and texture analysis methods based on them is
presented. The issue of texture classification using fewer
subbands than those present in a given wavelet packet ge-
ometry is addressed in Section 3, where a discriminant mea-
sure is proposed to describe the usefulness of a subband
from a classification viewpoint. Some experimental results
are presented in Section 4 and the paper concludes with
comments on the proposed discriminant measure and future
directions.



2. WAVELET TEXTURE ANALYSIS

2.1. Introduction

The principle behind wavelets is that shifts and dilations of
a prototype functionψ(t) are chosen as basis functions, de-
composing the signal into its components belonging to dif-
ferent frequencies while providing good localization in time
(space) at the same time. The discrete wavelet transform can
be computed with the help of filter banks that decompose
the signal (image) into low and high frequency subbands.
The low frequency subband is further decomposed in order
to go down the transform one more level. Wavelet based
texture classification methods use the wavelet subbands to
extract textural features – for a review of these methods,
please refer to [2, 4]. Each subband can be passed through a
nonlinearity followed by a smoothing function to compute
a feature image.

2.2. Wavelet Packet Decomposition

A more general form of the wavelet basis, known as the
wavelet packet basis[7] adaptively segments the frequency
axis as opposed to the adaptive segmentation of time axis in
case of local cosine basis (or cosine packet basis). The fre-
quency intervals of varying bandwidths are adaptively se-
lected to extract specific frequency contents present in the
given signal. This frequency segmentation is useful, for ex-
ample, to analyze a local phenomenon occurring in the sig-
nal and belonging to a specific frequency band. The discrete
wavelet packet transform of a1-d discrete signalx = xi,
i = 0, 1, . . . , N −1 can be computed as follows. The wave-
let packet coefficients are defined as

w0
0(l) = xl l = 0, . . . , N − 1

w2p
j (l) =

∑

k

gk−2l wn
j−1(k) l = 0, . . . , N2−j − 1

w2p+1
j (l) =

∑

k

hk−2l wn
j−1(k) l = 0, . . . , N2−j − 1

(1)
wherej = 1, 2, . . . , J ; J = log2 N , wp

j (l) is the trans-
form coefficient corresponding to the wavelet packet func-
tion which has relative support size2j , frequencyp2j and is
located atl2j . In other words,j, p andl can be regarded as
the scale, frequency and position indices of the correspond-
ing wavelet packet function respectively. The coefficients
{hn} and{gn} correspond to the lowpass and highpass fil-
ters respectively for a two-channel filter bank and the trans-
form is invertible if appropriate dual filters{h̃n}, {g̃n} are
used on the synthesis side. When comparing to the wave-
let decomposition, it can be regarded as a decomposition
which lifts the limit of only decomposing the lowpass fil-
tered signal so that all the highpass subbands can be further
decomposed as well. This results in a combinatorial explo-
sion of possible bases which to select a suitable basis from.

Since this library of available bases provides an overcom-
plete representation, a fast optimization algorithm such as
[10] is required to select a combination of bases from this
library which is well suited to the signal under considera-
tion.

2.3. Wavelet Packet Texture Analysis

In the case of general wavelet packet decomposition, a basis
needs to be selected which has the maximum discriminat-
ing power among all possible bases in the library of wavelet
packets. Apart from that, texture classification using wave-
let packet subbands may proceed in the same way a sys-
tem based on wavelet subbands, as in Section 2.1, works.
The issue of selection of features from subband decompo-
sition demands more scrutiny now due to a large number
of possible bases that can be used to represent the image.
To start with, it has to be made sure that the basis chosen
to represent the image is a suitable one and indeed an op-
timal one for the purpose of texture classification. Chang
and Kuo [11] suggested usingl1-norm as a cost function for
tree prunning in a top-down manner. A subband is further
decomposed only if itsl1-norm is larger than a factor of the
maximum norm value at the same resolution. This approach
leads to an adaptive tree-structured wavelet decomposition,
a term the authors of [11] used for wavelet packet decompo-
sition. Acharyya and Kundu [12] employ an energy based
cost function and a top-down search without any decimation
to compute the basis wavelet packet basis for texture seg-
mentation. Laine and Fan [13] used energies of subbands
from the full wavelet packet tree as a signature for images
belonging to certain texture class.

3. TOWARDS DISCRIMINANT SUBBANDS

3.1. Motivation

As mentioned above, a wavelet packet decomposition capa-
ble of providing maximum inter-class discrimination power
would be the most suitable representation for a given im-
age in a texture analysis framework. However, it cannot al-
ways be guaranteed that using more subbands directly trans-
lates to smaller classification error. Experiments demon-
strate that using only a few of the subbands instead of all
of the wavelet subbands can result in smaller error rates,
where error rate is the ratio of total number of misclassifi-
cations and total number of pixels with the ratio expressed
as a percentage. Table 1 gives results of such experiments
on six test images shown in Figure 1, while each of the im-
ages was obtained by combining two textures from the Bro-
datz collection. A two-level wavelet transform results in
seven features out of which three were selected. The sub-
bands were chosen by heuristical selection, whereby sub-
bands with apparent difference in magnitudes of the trans-



form coefficients for different texture regions are given pri-
ority over those which do not react very strongly to one tex-
ture or other.

There arenCk =
(

n
k

)
possible combinations ofk

subbands from a total ofn subbands. It is not practical
to employ a brute force approach which finds out the best
combination by trying out each of them. This is motiva-
tion enough for finding out an efficient way of determin-
ing which of these combinations of subbands is optimal in
terms of best discriminating different textures. Reduction in
dimensionality of the problem may result in not only more
accurate but also faster classification.

3.2. Discriminant Measure

Consider a wavelet packet subband nodeλp,q
d , whered is

the depth andp, q represent the location at depthd of the
wavelet packet tree. We use the convention that in case of
an image, a subbandλp,q

d is decomposed into four subbands
λ2p,2q

d+1 , λ2p+1,2q
d+1 , λ2p,2q+1

d+1 , λ2p+1,2q+1
d+1 andλ0,0

0 denotes the
root node (original image). Letfp,q

d andgp,q
d denote the

normalized energy distributions of wavelet packet coeffi-
cients corresponding to the subband nodenp,q

d associated
with classes1 and2 respectively given by

fp,q
d (x, y) =

(
wp,q

d (x, y)T c(1)
)2

‖c(1)‖2 (2)

and

gp,q
d (x, y) =

(
wp,q

d (x, y)T c(2)
)2

‖c(2)‖2 (3)

wherewp,q
d (x, y)T denotes the basis vector corresponding

to position(x, y) in the subbandnp,q
d andc(1) andc(2) de-

note texture images corresponding to classes1 and2 respec-
tively. A discriminant measureDp,q

d (f ,g) should be able to
measure how differentlyf andg are distributed thus relat-
ing it directly to the discrimination power of subbandnp,q

d .
Such a measure can then be used to determine which of the
nCk combinations of subbands to use in order to reduce the
classification error rate. The Kullback-Leibler distance, also
known as the relative entropy, betweenf andg is given by

Ip,q
d (f ,g) =

∑
x

∑
y

f(x, y) log
f(x, y)
g(x, y)

. (4)

A symmetric version of this distance measure, also known
as theJ-divergence, given by

Dp,q
d (f ,g) = Ip,q

d (f ,g) + Ip,q
d (g, f) (5)

is proposed to measure the discrimination power of a sub-
band.

Image Decomposition Features Error Rate
D9D19f Wavelet 7 1.7
D9D19f Selected Three 3 0.9
D9D19er Wavelet 7 3.2
D9D19er Selected Three 3 1.3

D15D9f Wavelet 7 42.7
D15D9f Selected Three 3 6.2
D15D9er Wavelet 7 49.0
D15D9er Selected Three 3 12.5

Table 1: Classification trials for test images

4. EXPERIMENTAL RESULTS

Orthonormal eight-tap filters of Daubechies [14] having four
vanishing moments were used for all our experiments. While
some researchers have reported that the choice of filters does
not have a noticeable effect on the classification error rate
[11, 15], others have disagreed [16]. The image was de-
composed into a two-level full wavelet packet (full-WP)
decomposition resulting in sixteen subbands. The discrimi-
nant measure of (5) was used to select four best discriminant
subbands. A feature image was formed for each of the sub-
bands by synthesising the subband and applying Gaussian
smoothing on the synthesised image. Feature vectors made
up of pixel values in all of the feature images were then used
to classify an image pixel using an unsupervisedk-means
classifier. Results presented in Table 2 show a compara-
ble performance by features based on the best discriminant
subbands. The error rate is improved by using only four
features instead of all sixteen.

Image Decomposition Features Error Rate
D9D19f Full-WP 16 1.9
D9D19f Best Four 4 1.5
D9D19er Full-WP 16 3.6
D9D19er Best Four 4 2.1

D15D9f Full-WP 16 42.8
D15D9f Best Four 4 10.4
D15D9er Full-WP 16 48.5
D15D9er Best Four 4 16.0

Table 2: Classification results for test images

5. CONCLUSIONS

In this paper, a texture classification method using most dis-
criminant wavelet packet subbands is presented. The sym-
metric version of relative entropy of normalized energy dis-
tributions of wavelet packet coefficients of textures is pro-
posed as a solution to the problem of feature selection in
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Figure 1: Test Images

the context of a two-class problem. Experimental results
show that better performance can be achieved by selecting
the most discriminant subbands. Natural extensions to this
solution are the use of a classifier more sophisticated than
ak-means classifier and the extension of discriminant mea-
sure to cater for more than two classes. The crucial issue
of selection of an optimal wavelet packet basis for texture
classification remains to be investigated.
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