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Ce vieillard qui avait usé sa vie à

chercher une martingale, usait ses

derniers jours à la mettre en œuvre,

et ses dernières pièces à la voir

échouer. La martingale est

introuvable comme l’âme.

La Femme au collier de velours

Alexandre Dumas



Abstract

The practicality of the stochastic network calculus (SNC) is often questioned on

grounds of looseness of its performance bounds. The reason for its inaccuracy

lies in the usage of too elementary tools from probability theory, such as Boole’s

inequality, which is unable to account for correlations and thus inapropriate to

properly model arrival flows.

In this thesis, we propose an extension of stochastic network calculus that

characterizes its main objects, namely arrival and service processes, in terms of

martingales. This characterization allows to overcome the shortcomings of the

classical SNC by leveraging Doob’s inequality to provide more accurate per-

formance bounds. Additionally, the emerging stochastic network calculus with

martingales is quite versatile in the sense that queueing related operations like

multiplexing and scheduling directly translate into operations of the correspond-

ing martingales. Concretely, the framework is applied to analyze the per-flow

delay of various scheduling policies, the performance of random access protocols,

and queueing scenarios with a random number of parallel flows.

Moreover, we show our methodology is not only relevant within SNC

but can be useful also in related queueing systems. E.g., in the context of multi-

server systems, we provide a martingale-based analysis of fork-join queueing

systems and systems with replications.

Throughout, numerical comparisons against simulations show that the

Martingale bounds obtained with Doob’s inequality are not only remarkably

accurate, but they also improve the Standard SNC bounds by several orders of

magnitude.
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1
Introduction

Resource allocation is an old problem which perpetually reincarnates itself in

resource sharing systems such as the telephone network, the Internet, or data

centers. The first influential related analytical treatment was performed by Dan-

ish mathematician Agner Krarup Erlang who essentially looked at the problem

of dimensioning the telephone network. One of Erlang’s main results was a for-

mula for the computation of the blocking probability that some shared resource

is occupied; remarkably, amongst many applications, this formula has been used

for nearly a century to dimension telephone networks.

Erlang’s seminal work triggered the development of queueing theory,

which has become an indispensable mathematical framework for the performance

analysis of resource sharing systems. Over almost a century, this exact approach

1
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to queueing theory (a.k.a. the classical approach) has been generalized to cover a

broad class of networks, largely known by the product-form property (Baskett et

al. [14], Kelly [87]). Besides its large scope, the class of product-form queueing

networks is numerically tractable using convolution (Buzen [32]) or mean value

analysis algorithms (Reiser and Lavenberg [118]).

Several alternatives to queueing theory have been developed to avoid

the general limitation of Poisson arrivals of product-form networks. One is the

theory of effective bandwidth (Kelly [89], Mazumdar [108]), which emerged in the

1990s as a unified framework to analyze the queueing behavior of broader classes

of arrivals (e.g., deterministically regulated, Markovian, long-range dependent).

The effective bandwidth is associated to an arrival flow and is essentially a

number between the flow’s average and peak rates, depending on some predefined

Quality-of-Service constraint (e.g., margins on the buffer overflow probabilities).

Unlike the classical approach, the performance metrics provided by the theory of

effective bandwidth are typically given in large buffer asymptotics rather than in

exact results, e.g., for the delay distribution W of some flow, the corresponding

effective bandwidth approximation states that

P (W > d) ∼ αe−θd , (1.1)

where α is the asymptotic constant, θ is the asymptotic decay rate, and f(d) ∼

g(d) means that f(d)/g(d) → 1 as d → ∞.

Another alternative to the classical approach is the stochastic network

calculus (Chang [35], Jiang and Liu [81], Ciucu and Schmitt [48]), which can be

considered as an extension of the effective bandwidth theory. Besides its ability

to additionally deal with many scheduling algorithms and especially multi-queue

scenarios, a fundamental difference of SNC (compared to the effective bandwidth

theory) is that the results are provided as probabilistic bounds, e.g., for the delay

distribution holds

P (W > d) ≤ κe−θd . (1.2)
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for some constant κ > 0.

The major advantage of SNC lies in two key features: scheduling abstrac-

tion and convolution-form networks (see Ciucu and Schmitt [48]). The former

expresses the ability of SNC to compute per-flow (or per-class) queueing metrics

for a large class of scheduling algorithms, in a unified manner, by decoupling

scheduling from queueing analysis. Concretely, given an arrival flow A shar-

ing a queueing system with other flows, the characteristics of the scheduling

algorithm are first abstracted away in a so-called service process S; thereafter,

the derivation of queueing metrics for the flow A is scheduling independent,

i.e., independent of S. Furthermore, the per-flow results can be extended in a

straightforward manner from a single queue to a large class of queueing networks,

using convolution representations in a (min,+) algebra.

By relying on these two features, SNC could tackle several open queue-

ing networks problems. The typical scenario involves the computation of non-

asymptotic performance bounds of a single flow crossing a tandem network (i.e.,

a chain of queues which have to be traversed in order) and sharing the single

queues with some other flows. Such scenarios were solved for a large class of ar-

rival processes (see, e.g., Ciucu et al. [40, 29] and Fidler [59] for MMOO processes,

and Liebeherr et al. [100] for heavy-tailed and self-similar processes). Another

important solution was given for the delay distribution in a tandem (packet)

network with Poisson arrivals and exponential packet sizes, by circumventing

the so-called Kleinrock’s independence assumption, which (artificially) assumes

that the Poisson structure of the flows is immediately restored at each node in

the network, (see Burchard et al. [28]). Other fundamentally difficult problems

include the delay analysis of wireless channels under Markovian assumptions

(see Zheng et al. [162]), the delay analysis of multi-hop fading channels (see

Al-Zubaidy et al. [163]), bridging information theory and queueing theory by

accounting for the stochastic nature and delay-sensitivity of real sources (see

Lübben and Fidler [105]), or the computation of non-asymptotic per-flow capac-

ity in ad-hoc networks (see Ciucu et al. [41]).
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Based on its ability to solve some fundamentally hard queueing prob-

lems (in terms of bounds), SNC is justifiably proclaimed as a valuable alterna-

tive to the classical queueing theory (see Ciucu and Schmitt [48]). At the same

time, SNC is also justifiably questioned on the tightness of its bounds. While

the asymptotic tightness generally holds (see Chang [35, p. 291], and Ciucu et

al. [40]), doubts on the bounds’ numerical tightness shed skepticism on the prac-

tical relevance of SNC. This skepticism is supported by the fact that SNC largely

employs the same probability methods as the effective bandwidth theory, which

was argued to produce largely inaccurate results for non-Poisson arrival processes

(see Abate et al. [2], Shroff and Schwartz [130]): E.g., in Choudhury et al. [39] it

was convincingly conjectured through numerical experiments that delay bounds

behave like

P(W > d) ≈ κ#flowse−θd , (1.3)

for some 0 < κ < 1, whereas the corresponding constant α from Eq. (1.1) is

oblivious to the number of flows. Hence, the bounds are “missing” an additional

decay factor which is exponential in the number of flows.

From a technical point of view, the inaccuracy of the approximation from

Eq. (1.2) stems from applying Boole’s inequality, i.e.,

P

(

sup
n

Xn ≥ σ

)

≤
∑

n

P (Xn ≥ σ) . (1.4)

to bound the supremum of a stochastic process X. It is known that this inequal-

ity is very loose, especially in non-Poisson scenarios (see Talagrand [137]).

One possibility to improve the bounds’ accuracy, which was first under-

taken by Kingman [92] to derive his classical GI/GI/1 bounds, and more recently

extended by Duffield [55] to the analysis of Markov-Modulated On-Off (MMOO)

processes, is to replace Boole’s inequality (Eq. (1.4)) by Doob’s inequality

P

(

sup
n

Xn ≥ σ

)

≤ E[X0]σ
−1 , (1.5)

4



1 Introduction

which holds for the specific class of (super-)martingales. Besides the more tech-

nical advantage of providing a conceivably sharper inequality, there is also a

conceptual similarity between supermartingales and queueing systems: A super-

martingale roughly is a process such that for a given point in time any state

in the future is expected to be less than the current. The same is true for the

backlog- process in a queueing system: in order to guarantee finite performance

metrics, the average arrivals have to be strictly less than the capacity, so that

the increments are negative on average. This is typically ensured by a stability

condition, like the one of Loynes.

The goal of this thesis is to systematically develop Kingman’s martingale-

based approach within the framework of stochastic network calculus. Concretely,

the two key objects of SNC, i.e., the arrival- and the service processes A and S,

will be characterized by suitably chosen arrival- and service-martingales, respec-

tively. Whereas the arrival-martingales, enable the per-flow analysis of random

arrival flows of queueing systems under scheduling, the service-martingales allow

for the analysis of random service models, e.g., random access protocols. Con-

cretely, arrival-martingales will be constructed for different arrival models includ-

ing Markov-Modulated and autoregressive processes. In turn, service-martingale

will be employed to model random access protocols like Aloha and CSMA/CA.

By exploiting Doob’s inequality (Eq. (1.5)), we will see that the result-

ing performance metrics are throughout reasonably tight, hence revealing that

the looseness of the state-of-the-art SNC bounds is generally not inherent to

SNC itself, but due to the “temptatious” but “poisonous” elementary tools from

probability theory (especially Eq. (1.4)) leveraged in its application.

Moreover, we will show that martingale-based techniques are not only

useful in SNC but can be utilized in a more general queueing setup as well.

Concretely, the related concept of a submartingale will be deployed to model the

waiting- and response times of a multi-server queueing system where arriving

jobs are either split into multiple subtasks or replicated to multiple servers and

subsequently processed independently.
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The simplicity of the obtained bounds together with its numerical accu-

racy could help to make the usage of martingales a valuable tool for the stochastic

network calculus and related queueing theories.

1.1 Contributions

In this thesis, we provide the first sharp per-flow performance bounds for queue-

ing systems with i.i.d., Markovian, and autoregressive arrivals under “First In,

First Out” (FIFO), “Static Priority” (SP), and “Earliest Deadline First” (EDF)

scheduling. The accuracy of these bounds contrasts the state-of-the-art bounds

derived by the use of Boole’s inequality (Eq. (1.4)) which will be shown to be

off by several orders of magnitude; see Courcoubetis and Weber [49] for FIFO,

Berger and Whitt [16] and Wischik [155] for Static Priority (SP), and Sivaraman

and Chiussi [131] for Earliest-Deadline-First (EDF). Moreover, in our framework

Eq. (1.3) holds in great generality, at the per-flow level for all considered schedul-

ing policies. Hence, the bounds capture the exponential decay factor which was

pointed out by Choudhury et al. [39] and by Botvich and Duffield [23].

In terms of service modelling, this thesis provides the first rigorous and

accurate delay analysis in single-hop Aloha and CSMA/CA networks, subject to

Markovian arrivals. By relying on a simplified CSMA/CA model proposed by

Durvy et al. [56], which was argued to retain its key features, we extend a recent

system theoretic approach by Ciucu et al. [41] by overcoming the limitations

caused by the use of Boole’s inequality.

We further investigate the often neglected “dynamic” queueing scenario

with a random number of multiplexed flows. Assuming suitable independence

assumptions, we extend the “folk theorem” in queueing theory, stating that

determinism minimizes the queue size (see Rogozin [122], and Hajek [69]), to

dynamic queues. In contrast, assuming a more realistic Markovian setup, the

above folk theorem can fail. Concretely, we find that there is a phase transition in

the flows’ average lifetimes at which dynamic queue models yield (stochastically)

6
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larger queues than the corresponding static queue models.

In the setup of parallel, i.e., multi-server, systems, we provide the first

non-asymptotic and computable stochastic bounds on the waiting and response

time in a fork-join queueing system in the most relevant scenarios. Concretely,

we recover the O(logK) asymptotic behavior (K being the number of servers)

from Baccelli et al. [11], and Nelson and Tantawi [109]. Further, in the con-

text of a replication queueing system, we first challenge the commonly used

assumptions on statistical independence (see Gardner [65]) by providing some

analytical arguments, that the benefits of replication are highly dependent on

the corresponding correlation structure. Second, we develop a general analytical

framework to compute stochastic bounds on the response time distributions in

replication systems. In particular, our framework covers scenarios with Marko-

vian arrivals, general service time distributions, and a correlation model amongst

the original and replicated tasks.

1.2 Outline of the Thesis

In Chapter 2 the necessary background information for this thesis is provided:

after briefly stating the probabilistic tools and techniques that are utilized in the

sequel (Section 2.1), we give a short introduction to state-of-the-art stochastic

network calculus (Section 2.2), including an outline of its major ideas (Sub-

section 2.2.1) and its current limitations (Subsection 2.2.2). In Chapter 3, we

define the key object of this thesis, namely the arrival-martingale, as a novel

characterization of arrival flows, and derive per-flow bounds of queueing metrics

in systems under scheduling. In Chapter 4, we complement this setup with the

characterization of the service processes (service-martingale), and show how it

can be utilized to evaluate the performance of random access protocols like Aloha

or CSMA/CA. In Chapter 5, we deploy this powerful martingale-methodology

to investigate the impact of another source of randomness, namely the random

number of arrival flows. Chapters 6 and 7 are devoted to the martingale-based

7
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analysis of related queueing systems, namely fork-join queueing systems and

systems with replication, respectively. Finally, in Chapter 8 we first give a brief

discussion on the general quality of the bounds provided by the martingale-

approach (Section 8.1), and lastly conclude the thesis (Section 8.2).

8



2
Background

2.1 Probability Theory

In this section we briefly state the probabilistic definitions and Theorems re-

quired for the remainder of this thesis. We assume throughout that all proba-

bilistic objects are defined on a common probability space (Ω,A,P). As usual,

a random variable is a measurable function X : Ω → R, its expected value is

defined as

E [X] =

∫

Ω

XdP .

Lemma 2.1 (Jensen’s Inequality). Let X be a r.v., and ϕ : R → R a convex

9
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function. Then

E [ϕ(X)] ≥ ϕ(E[X])

Proof. See e.g. [19, Eq. (5.33)].

A stochastic process is a sequence of random variables (Xn)n∈I , where

I = N or I = Z.

Definition 2.2 (Stationarity). A stochastic process (Xn)n∈N
is stationary if

its distribution is invariant under time-shifting, i.e., if for each k ∈ N

(Xn)n∈N
=D (Xk+n)n∈N

.

Remark 2.3. As a consequence of Kolmogorov’s extension theorem (see e.g.

[19, Theorem 36.1]), every stationary process (Xn)n∈N
can be extended to a

stationary process (Xn)n∈Z
.

Definition 2.4 (Reversibility). For a stationary process (Xn)n∈Z
, the re-

versed process (Xr
n)n∈Z

is defined as

Xr
n := X−n .

A process (Xn)n∈Z
is reversible, if (Xr

n)n∈Z
=D (Xn)n∈Z

.

Definition 2.5 (Filtration). A filtration F := (Fn)n∈N
is a sequence of in-

creasing σ-algebras, i.e., Fn ⊆ Fm, for n ≤ m.

Definition 2.6 (Stopping Time). A random variable N : Ω → N is a stopping

time w.r.t. a filtration F , if for any n ∈ N

{N = n} ∈ Fn .

The notion of a martingale is central for this thesis:

Definition 2.7 (Martingale). A stochastic process (Xn)n is a martingale

10
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w.r.t. the filtration F if for each n ≥ 1

E [Xn | Fn−1] = Xn−1 . (2.1)

Further, (Xn)n is said to be a sub-(super-)martingale if in Eq. (2.1) we have ≥

(≤) instead of equality.

If the filtration is not explicitly mentioned, it is to be understood as the generated

filtration

Fn = σ {Xk | k ≤ n} .

Lemma 2.8 (Optional Stopping Theorem). Let (Xn)n be a martingale,

and N a bounded stopping time, i.e., N ≤ n a.s., for some n ≥ 0. Then

E [X0] = E [XN ] = E [Xn] . (2.2)

If X is only a sub-(super)-martingale, Eq. (2.2) is replaced by

E [X0] ≤ E [XN ] ≤ E [Xn] (submartingale), and

E [X0] ≥ E [XN ] ≥ E [Xn] (supermartingale),

respectively.

Proof. See e.g. [19, Theorem 35.2].

Note that for any (possibly unbounded) stopping time N , the stopping time

N ∧ n is always bounded.

Lemma 2.9. Let (Xn)n and (Yn)n be independent (sub/super)-martingales, then

the product (XnYn)n is a (sub/super)-martingale as well.

Proof. See e.g. [38, Theorem 2.1].

Although not a result of probability theory, the Perron-Frobenius theorem is

included here as it is applied frequently in this thesis:

11
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A(n)
C

D(n)

(a) single flow scenario

A′(n)

A(n)
C

D′(n)

D(n)

(b) multiplexed flow scenario

Figure 2.1: Two queueing scenarios: (a) consists of a single flow A, whereas (b)
has an additional cross-flow A′.

Lemma 2.10 (Perron-Frobenius Theorem). Let A ∈ R
n×n be a real n×n-

matrix with only positive entries. Then A’s maximal positive eigenvalue λ(A)

has a positive eigenvector, i.e., there is a vector −→v = (v1, . . . , vn) ∈ R
n such that

A−→v = λ(A)−→v ,

and v1, . . . , vn > 0.

Proof. See e.g. [77, Theorem 8.2.8].

We point out that Lemma 2.10 is only a special result of the classical Perron-

Frobenius Theorem, as it only covers the case of strictly positive matrices.

2.2 Stochastic Network Calculus

In this section we give a brief introduction to Stochastic Network Calculus. In

Subsection 2.2.1 we provide an overview of its general setup and its main ideas,

which will form the basis for the remainder of this thesis. In Subsection 2.2.2

we outline the major techniques used so far to derive performance metrics and

give an intuition why they lead to unsatisfactory results.

2.2.1 General Setup

We consider the queueing system from Figure 2.1: A data stream enters the

system as an arrival flow A. After being stored in its buffer, a server processes the

data with constant capacity C > 0 and the flow leaves the system as a departure

flow D. The flow A may be the only flow under consideration (Figure 2.1(a)) or

12
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A′(n)

A(n)
C

D′(n)

D(n)
⇒

A(n)
S

D(n)

Figure 2.2: Scheduling abstraction: the cross-flow A′ is encoded in the dynamic
service process S.

may share the resource with some other flow A′ (Figure 2.1(b)). In the latter

case, the server additionally implements a scheduling policy which determines

the priority allocated to the through-flow A and the cross-flow A′. This thesis

is concerned with the performance evaluation of such a system under various

assumption on its parameters; in particular, we are interested in estimating the

backlog, i.e., the amount of data in the system, or the delay, i.e., the time a data

unit stays in the system.

We assume a discrete-time scenario, the flows A and A′ are given as

bivariate stochastic processes

A(m,n) =
n
∑

k=m+1

ak , A′(m,n) =
n
∑

k=m+1

a′k , (2.3)

where m,n ∈ Z, m < n, and the ak and a′k are nonnegative random variables

describing the instantaneous arrivals at time k. Hence, A(m,n) is the amount

of data arriving at the system within the time interval (m,n], by convention

A(m,n) := 0, for m ≥ n. We will frequently use the short-hand notation

A(n) := A(0, n) (and A′(n) := A′(0, n)).

We assume throughout that the (an)n∈Z
and (a′n)n∈Z

are stationary

stochastic processes (see Definition 2.2) defined on the set of integers Z (see

Remark 2.3). Note that the definition of the reversed process (see Definition 2.4)

extends to the bivariate processes A and A′ by

Ar(m,n) := A(−n,−m) =
−m
∑

k=−n+1

ak , for m < n ,

and analogously for A′r.
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The network calculus approach to address queueing systems starts with

the scheduling abstraction (see Figure 2.2), i.e., with a transformation of the orig-

inal queueing system (from Figure 2.1(b)) into an equivalent, but more amenable

system, by encoding information about the capacity, the cross-flow, and the

scheduling policy into a single service process S(m,n). This service process S

links any arrival process A with its corresponding departure process D through

the inequality

D(n) ≥ (A ∗ S) (n) := inf
0≤m≤n

{A(0,m) + S(m,n)} . (2.4)

The service process S can be thought of as the departure process of a fictitious

saturated arrival flow, i.e., a process A with an = ∞, for all n ∈ Z. In some

sense, the service process S is intimately related to the impulse-response of a

linear and time invariant (LTI) system (for a discussion of this analogy see, e.g.,

[51, 24, 48]).

Service processes have been constructed for various scheduling policies,

like “Static Priority”, “First In, First Out”, “Earliest Deadline First”, etc. (see

Chapter 3). Further, in Chapter 4, service processes will be constructed for ran-

dom access protocols like Aloha and CSMA/CA. As for the arrival processes, we

assume that the service processes are stationary in the sense that the distribution

of (S(m+ k, n+ k))m<n is invariant to k ∈ Z.

Through the coupling of A and D by Eq. (2.4), SNC is able to estimate

the performance of the system. The performance metrics of interest are

1. the stationary queue size or backlog1 Q, and

2. the stationary virtual delay W .

Queue Size Q: The queue size Q(n) is defined as the amount of data within

the system at time n ∈ N, i.e.

Q(n) := A(n)−D(n) . (2.5)

1Throughout this thesis, the terms “queue size” and “backlog” are used interchangeably
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0 m

Q(m)

W(m)

time

d
a
ta

A(n)
D(n)

Figure 2.3: Queue size Q(m) and virtual delay W (m) as the vertical and hori-
zontal distances between the curves A and D, respectively.

Q(n) is the vertical distance between the curves A and D (see Figure 2.3).

Although the queue size in Eq. (2.5) depends on the specific time parameter

n ∈ N, the following argument shows that it is possible to dispense with such

temporal dependency: With the service process representation of the departure

process from Eq. (2.4), one obtains

Q(n) ≤ A(n)− (A ∗ S) (n)

= A(n)− inf
0≤m≤n

{A(0,m) + S(m,n)}

= sup
0≤m≤n

{A(m,n)− S(m,n)} .

By the stationarity of the processes A and S (see Definition 2.2), it is possible

to apply the time shift n 0, such that the last line becomes

Q(n) ≤ sup
0≤m≤n

{A(m− n, 0)− S(m− n, 0)}

= sup
0≤m≤n

{A(−m, 0)− S(−m, 0)}

= sup
0≤m≤n

{Ar(m)− Sr(m)} , (2.6)
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where in the last line we utilized the reversed process representation (see Defi-

nition 2.4). By letting n → ∞, one finally obtains (see also [35])

Q(n) ≤ Q := sup
m≥0

{Ar(m)− Sr(m)} . (2.7)

Assuming the stability condition E[a1] < E[S(1)], one can show that the sta-

tionary queue size Q is finite a.s. (see [35]). Throughout this thesis, the queue

size is employed in the form of Eq. (2.7). We point out that Q is only an upper

bound of the actual queue size of the system (at a certain point in time) as 1)

Q includes the bound from the service process representation (Eq. (2.4)), and

2) Q involves the limit n → ∞ between Eqs. (2.6) and (2.7).

Virtual Delay W: The virtual delay W (n) is defined as the number of time

steps a data unit would have stayed in the system had it departed at time n ∈ N,

i.e.,

W (n) := inf{k ∈ N | A(n− k) ≤ D(n)} . (2.8)

W (n) is the horizontal distance between the curves A and D (see Figure 2.3).

By monotonicity of the cumulative arrival process A one obtains with the service

process representation from Eq. (2.4)

W (n) ≤ inf {k ∈ N | A(n− k) ≤ (A ∗ S) (n)}

= inf

{

k ∈ N

∣

∣

∣

∣

A(n− k) ≤ inf
0≤m≤n

A(0,m) + S(m,n)

}

= inf

{

k ∈ N

∣

∣

∣

∣

sup
0≤m≤n

A(m,n− k)− S(m,n) ≤ 0

}

,

16



2 Background

(recall that by convention A(m,n − k) = 0 for m ≥ n − k. Applying the time

shift n 0 this leads to:

W (n) ≤ inf

{

k ∈ N

∣

∣

∣

∣

sup
0≤m≤n

A(m− n,−k)− S(m− n, 0) ≤ 0

}

= inf

{

k ∈ N

∣

∣

∣

∣

sup
0≤m≤n

A(−m,−k)− S(−m, 0) ≤ 0

}

= inf

{

k ∈ N

∣

∣

∣

∣

sup
0≤m≤n

Ar(k,m)− Sr(m) ≤ 0

}

.

By letting n → ∞, one obtains

W (n) ≤ W := inf

{

k ∈ N

∣

∣

∣

∣

sup
m≥0

Ar(k,m)− Sr(m) ≤ 0

}

,

such that the following implication of events holds:

{W ≥ k} =

{

∀k′ < k : sup
m≥0

Ar(k′,m)− Sr(m) > 0

}

⊆
{

sup
m≥0

Ar(k,m)− Sr(m) > 0

}

⊆
{

sup
m≥k

Ar(k,m)− Sr(m) ≥ 0

}

, (2.9)

where we used the monotonicity of A in the second and the positivity of Sr in the

third line. Throughout this thesis, the stationary virtual delay W is employed

in the form of Eq. (2.9).

2.2.2 Three Bounding Steps and One Pitfall

This section overviews the SNC approach to derive bounds for performance met-

rics. In addition to highlighting the underlying bounding steps, an elementary

example proves that careless bounding can lend itself to impractical results.

We consider the queueing system from Figure 2.2, i.e., the arrival process

A(n) shares a server with capacity C with some other flow A′(n). The informa-

tion about C and A′(n) is encoded in a service process S(m,n). For the sake of

simplicity, we confine ourselves to the case of the queue size Q, the derivations
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for the virtual delay W are similar.

Recall from Eq. (2.6) that the queue size has an upper bound

P(Q(n) ≥ σ) ≤ sup
0≤m≤n

{Ar(m)− Sr(m) ≥ σ} . (2.10)

SNC typically continues with Eq. (2.10) by invoking Boole’s inequality, i.e.,

Eq. (2.10) . . . ≤
n
∑

m=1

P (A(m)− S(m) ≥ σ) . (2.11)

The probability events can be further estimated by using the Chernoff bound

(i.e., P(X ≥ x) ≤ E[eθX ]e−θx, for a r.v. X and θ > 0):

Eq. (2.11) . . . ≤
n
∑

m=1

E

[

eθ(A(m)−S(m))
]

e−θσ , (2.12)

for some θ > 0. The expectation can be split into a product of expectations,

according to the statistical independence properties of A and S, and the sum

can be further reduced to some canonical form.

Eqs. (2.10)–(2.12) outline three major bounding steps. The first is “pro-

prietary” to SNC, in the sense that it involves the specific construction of a

“proprietary” service process S which decouples scheduling from analysis. The

next two follow general purpose methods in probability theory, which are applied

in the same form in the effective bandwidth theory.

In particular, the second step (i.e., Eq. (2.11)) reveals a convenient con-

tinuation of Eq. (2.10). The reason for this “temptatious” step to be consistently

invoked in SNC stems from the “freedom” of seeking for bounds rather than ex-

act results. As we will show, this “temptatious” step is also “poisonous” in the

sense that it can lead to very loose bounds.

As a simple and yet illustrative example, let us consider the stationary

process

A(n) = nX , (2.13)

for all n ≥ 0, where X is a Bernoulli random variable taking values in {0, 2},

18



2 Background

each with probabilities 1−ε > .5 and ε > 0. Assume also that S(m,n) = n−m,

i.e., a constant server with unit capacity. Clearly, for σ > 0, the backlog process

satisfies for sufficiently large n

P (Q(n) > σ) = ε .

In turn, the application of the bound from Eq. (2.11) lends itself to a trivial

bound, i.e.,

P (Q(n) > σ) ≤ nε ,

for σ < 1. The underlying reason behind this result is that Boole’s inequality

from Eq. (2.11) is agnostic to the statistical properties of the increments of the

arrival process A. The construction of A from Eq. (2.13) illustrates thus the

poor performance of Boole’s inequality for arrivals with correlated increments.

In the next chapter, we will develop a framework that replaces Boole’s

inequality by Doob’s inequality and show that, especially in correlated scenarios,

this leads to accurate bounds.
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3
Arrival Martingales

In this chapter we propose a novel representation of a queueing system’s ar-

rival flow by a suitable arrival-martingale and integrate it into the framework

of stochastic network calculus. The crucial insight enabling the performance

analysis is that typical queueing operations directly translate into operations of

the respective martingales:

1. Multiplexing of flows translates into multiplying the corresponding mar-

tingales.

2. Scheduling translates into time-shifting the martingales, corresponding to

the scheduled flows, at a specific shifting time parameter depending on the

scheduling algorithm itself.
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The second operation in particular highlights the instrumental role of the emerged

SNC martingale framework to deal with the difficult problem of scheduling in a

unified manner, roughly by decoupling scheduling through a shifting parameter ;

this shifting parameter can be tuned depending on scheduling, i.e., FIFO, SP,

and EDF.

We apply our unified framework to the class of Markovian arrivals, and

demonstrate for the first-time at the per-flow level that tail probabilities of

the delay distribution exhibit an exponential decay in the number of flows (see

Eq. (1.3)). Our results can be regarded as per-flow level extensions of the ag-

gregate level results by Duffield [55].

We will also consider p-order autoregressive processes which can approx-

imate the whole class of stationary processes (this property is typically referred

to as Wold’s decomposition, [26, p. 187]). Although autoregressive processes (of

order p = 1) are also Markovian, their particular representation allows for a

closed-form derivation of the performance bounds (the more general Markovian

processes are subject to bounds in terms of implicit eigenvalues/vectors equa-

tions). More remarkably, unlike the results from [35, p. 340], which yield trivial

(infinite) bounds when fitted for unbounded increment distributions, our results

provide numerically accurate bounds.

For the rest of the chapter we first develop the theory of arrival-martingales

in Section 3.1. Subsequently, in Section 3.2, we apply the emerging SNC frame-

work to several classes of processes (independent increments, general Markovian

arrivals, and p-order autoregressive processes).

3.1 A Calculus with Arrival-Martingales

We introduce our characterization of a queueing system by a certain super-

martingale:

Definition 3.1 (Arrival-Martingale). The flow A admits arrival-martingales

if for every θ ∈ (0, θmax) there is a Ka ≥ 0 and a function ha : rng(a) → R
+
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such that the process

M(n) := ha(an)e
θ(Ar(n)−nKa) , n ≥ 0 , (3.1)

is a supermartingale.

The constant θmax > 0 can be arbitrary, especially θmax = ∞ is permit-

ted. The index a, standing for “arrival”, is needed as the definition is later (see

Chapter 4) complemented with a similar definition for the service process. Note

that the constant Ka and function ha depend on θ > 0.

An intuition for the definition is the following: In order to keep a queue-

ing system in a stable regime, by Loynes’ condition (see [104]), the average arrival

rate has to be strictly less than the service rate. If one ignores the positivity

constraint on the buffer, its expected increment (drift) is negative and thus the

buffer content “resembles” a supermartingale. The conceptual reason for the

exponential transform is that its shape directly determines the decay rate of

queueing metrics (which for Markovian arrivals are exponential). From a tech-

nical point of view, the (convex) exponential transform assigns more weight to

larger arrivals, reducing the negative drift and consequently the gap between the

constructed supermartingale and a martingale. Moreover, since Doob’s inequal-

ity does not differentiate between a supermartingale and a martingale, one looks

to minimize the previous gap by maximizing the decay factor θ, which eventu-

ally determines the decay rate of the queueing metrics. Finally, the function h

compensates for potential correlations among the increments; in particular, for

i.i.d. increments, h is a constant.

Remark 3.2. If Eq. (3.1) is a supermartingale, then by stationarity the “time-

shifted” process

ha(an+k)e
θ(Ar(k,n+k)−nKa)

is a supermartingale as well, for some fixed k ≥ 0.

Let us now state an auxiliary definition which will become important in

the general proofs of the performance metrics Q and W (see Theorem 3.4):
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Definition 3.3 (Threshold). For ha as in Definition 3.1 define the threshold

Ha by

Ha := min {ha(x) | x > Ka} .

Ha is the smallest value of ha(x) such that the instantaneous arrival

is larger than the constant Ka. In many scenarios, the function ha will be

monotonically increasing such that we will have the simplification Ha = h(Ka).

The next theorems and corollaries are the central results of this chapter,

describing how arrival-martingales can be used to derive bounds on the perfor-

mance metrics Q (queue size) and W (virtual delay). We start with the first

scenario from Figure 2.1(a), i.e., considering the case of a single flow A, and a

server with constant capacity C > 0:

Theorem 3.4 (Single Flow Bound). Assume that the flow A admits arrival-

martingales, and let

θ∗ := sup {θ > 0 | Ka ≤ C} ,

then we have the following upper bound on the backlog and the virtual delay,

respectively:

P(Q ≥ σ) ≤ E[h(an)]

Ha
e−θ∗σ , P(W ≥ k) ≤ E[h(an)]

Ha
e−θ∗kC .

The proof of the theorem is basically a variant of Doob’s inequality (see Eq. (1.5)).

Adapted to the specific context, it will be used frequently in the sequel.

Proof. Consider first the queue size Q. Define the stopping time N by

N := inf{n ≥ 0 | Ar(n)− nC ≥ σ} . (3.2)

With the representation of the queue size Q from Eq. (2.7) (with S(m,n) :=

(n − m)C), it holds P(Q ≥ σ) = P(N < ∞). Applying the optional stopping

theorem (Lemma 2.8) to the arrival-martingale (Eq. (3.1)) with parameter θ∗,
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yields for every m ∈ N:

E[h(an)] = E[M(0)] ≥ E[M(N ∧m)] ≥ E[M(N ∧m)1N<m]

= E[h(aN )eθ
∗(Ar(N)−NKa)1N<m]

≥ E[h(aN )eθ
∗(Ar(N)−NC)1N<m]

≥ Hae
θ∗σ

P(N < m) .

In the last line we used the fact that by the inf-operator in Eq. (3.2), the last

increment aN −C must be positive, i.e., aN > C ≥ Ka, and hence ha(aN ) ≥ Ha,

a.s.. Now simply let m → ∞.

For the virtual delay, recall from Eq. (2.9) that

P (W ≥ k) = P

(

sup
n≥k

Ar(k, n)− nC ≥ 0

)

Now define the stopping time N by

N := inf{n ≥ k | Ar(k, n)− nC ≥ 0} , (3.3)

such that P(W ≥ k) = P(N < ∞). Let

M(n) := ha(an)e
θ∗(Ar(k,n)−(n−k)Ka) , n ≥ k

be the time-shifted supermartingale from Remark 3.2. Similarly as for Q, by the

optional stopping theorem for m ≥ k holds:

E[h(an)] = E[M(k)] ≥ E[M(N ∧m)] ≥ E[M(N ∧m)1N<m]

= E[h(aN )eθ
∗(Ar(k,N)−(N−k)Ka)1N<m]

≥ E[h(aN )eθ
∗(Ar(k,N)−(N−k)C)1N<m]

≥ Hae
θ∗kC

P(N < m) .

Now let m → ∞.
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A′(n)

A(n)
C

D′(n)

D(n)

Figure 3.1: Multiplexed queueing scenario with a through-flow A and a cross-
flow A′

Consider now the second scenario from Figure 3.1: two single flows A

and A′ with allocated capacities C1 and C2, respectively, are multiplexed into

one queueing system with a shared total capacity of C = C1+C2. The resulting

system can be analyzed in two different ways: Firstly, for the aggregate system,

both metrics Q and W can be estimated (aggregate analysis), and secondly, the

virtual delay W for a single flow in the multiplexed system can be analyzed for

several scheduling policies (per-flow analysis).

For both tasks, a technical definition is required:

Definition 3.5. For two functions h, h′ : B → R+ (B ⊆ R), define the (min,×)-

convolution by

(h⊗ h′)(t) := inf
0≤s≤t

h(s)h′(t− s) ,

for all t ∈ B.

Note that, by definition, for all a, b holds:

h⊗ h′(a+ b) ≤ h(a)h′(b) . (3.4)

3.1.1 Aggregate Analysis

We consider the queueing system as in Figure 3.1. The next theorem addresses

the aggregate analysis, i.e., the analysis of aggregate arrivals A+A′:

Theorem 3.6 (Aggregate Flow Bound). Assume two independent arrivals

A and A′ admit arrival-martingales with parameters (h,Ka) and (h′,K ′
a), respec-

tively. Then the aggregate flow A+A′ admits arrival-martingales with parameters

(h⊗ h′,Ka +K ′
a).
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Proof. Let an and a′n denote the respective increment processes. Clearly, Eq. (3.4)

implies for all n:

h⊗ h′(an + a′n)e
θ(A(n)+A′(n)−n(Ka+K′

a))

≤ h(an)e
θ(A(n)−nKa)h′(a′n)e

θ(A′(n)−nK′
a) ,

i.e., the product of the two arrival-martingales. By the independence assump-

tion, this product is a supermartingale as well (see Lemma 2.9), and the proof

is complete.

The advantage of this theorem is that an aggregate flow can be handled

in the same way as a single flow, e.g., for the constructed arrival-martingales,

Theorem 3.4 can be evoked to derive the bounds on the backlog Q and the

virtual delay W .

3.1.2 Per-Flow Analysis

We now turn to the per-flow analysis of flow A in the multiplexed queueing

system equipped with a scheduling policy that determines the priority allocated

to flows A, and A′, respectively (Figure 3.1). The key element is the following

technical lemma:

Lemma 3.7. Assume the same situation as in Theorem 3.6. Then for every

l ≥ 0 and σ > 0 the following bound holds:

P

(

sup
n≥l

{Ar(l, n) +A′r(0, n)− Cn} ≥ σ

)

≤ E[h(an)]E[h
′(a′n)]

Ha
e−θ(σ+lC1) ,

where Ha is the threshold from Definition 3.3 applied to the function h⊗ h′.

Proof. We proceed similarly as in the proof of Theorem 3.4. Consider the two

supermartingales

M1(n) = h(an)e
θ(Ar(l,n)−(n−l)Ka) , n ≥ l , and

M2(n) = h(a′n)e
θ(A′r(n)−nK′

a) , n ≥ 0
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from the definition of the arrival martingales. By the independence assumption,

the process

M̃(n) = M1(n)M2(n)

is a supermartingale in the time-shifted domain {l, l+1, l+2, . . . }. Let N denote

a stopping time similar to the one from Eq. (3.2):

N := inf{n ≥ l | Ar(l, n) +A′r(0, n)− nC ≥ σ} . (3.5)

Again, the desired probability is equal to P(N < ∞). By applying the optional

stopping theorem (see Lemma 2.8), one has for m ≥ l:

E[M̃(l)] ≥E[M̃(N ∧m)]

≥E[M̃(N ∧m)1N<m]

=E[h(an)h
′(a′n)e

θ(Ar(l,n)−(n−l)C1+A′r(n)−nC2)1N<m]

=E[h(an)h
′(a′n)e

θ(Ar(l,n)+A′r(n)−nC+lC1)1N<m]

≥Hae
θ(σ+lC1)P(N < m)

Now, by independence and the supermartingale property of M ′:

E[M̃(l)] =E[M1(l)M2(l)] = E[M1(l)]E[M2(l)]

≤E[h(an)]E[M2(0)] = E[h(an)]E[h
′(a′n)] .

As above, we finally let m → ∞ to complete the proof.

The crucial parameter in Lemma 3.7 is the parameter l, indicating how

many points in time the process A is delayed. This parameter can be adjusted

according to the scheduling policy under consideration, or more precisely to

the expression of the service process S depicted in Figure 2.2. We will next

apply Lemma 3.7 and properly tune the parameter l for SP, FIFO, and EDF

scheduling.
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Recall from Eq. (2.9) that for the virtual delay holds

P(W ≥ k) ≤ P

(

sup
n≥k

{Ar(k, n)− Sr(n)} ≥ 0

)

. (3.6)

Static Priority (SP) This scheduling policy always gives priority to the cross-

flow A′. The service process S(m,n) is given by (see [59]):

S(m,n) = [C(n−m)−A′(m,n)]+ . (3.7)

Corollary 3.8 (SP Per-Flow Bound). Consider the situation as in Theo-

rem 3.6, with SP as the scheduling policy. Then for the virtual delay W for flow

A holds:

P(W ≥ k) ≤ E[h(an)]E[h
′(a′n)]

Ha
e−θC1k .

Proof. In continuation of Eq. (3.6) with the service process as in Eq. (3.7):

P(W ≥ k) ≤ P

(

sup
n≥k

{Ar(k, n)− Sr(0, n)} ≥ 0

)

= P

(

sup
n≥k

{Ar(k, n)− [Cn−A′r(n)]+} ≥ 0

)

≤ P

(

sup
n≥k

{Ar(k, n) +A′r(n)− Cn ≥ 0}
)

.

Now simply plug in the parameters σ = 0 and l = k into Lemma 3.7.

First In, First Out (FIFO) For FIFO, the service process S(m,n) is given

by (see [50]):

S(m,n) = [C(n−m)−A′(m,n− x)]+1{n−m>x} , (3.8)

where x ≥ 0 is a parameter freely chosen, but fixed. Note that for the specific

choice of x := 0, one recovers the service process for SP from Eq. (3.7), corre-

sponding to the fact that the through-flow’s performance in a FIFO system is
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upper-bounded by its performance in a SP system.

Corollary 3.9 (FIFO Per-Flow Bound). Consider the situation as in The-

orem 3.6, with FIFO as the scheduling policy. Then for the virtual delay W

holds:

P(W ≥ k) ≤ E[h(an)]E[h
′(a′n)]

Ha
e−θCk .

Proof. For the free parameter in the service process from Eq. (3.8) choose x = k.

Then Eq. (3.6) continues to:

P(W ≥ k) ≤ P(sup
n≥k

{Ar(k, n)− Sr(0, n)} ≥ 0)

= P(sup
n≥k

{Ar(k, n)− [Cn−A′r(n− k)]+1{n>k}} ≥ 0)

≤ P(sup
n≥0

{Ar(n) +A′r(n)− C(n+ k)} ≥ 0) .

Now apply Lemma 3.7 with l = 0 and σ = Ck.

Note the difference in the decay rate: Whereas for SP it is the per-flow

capacity C1, for FIFO we have the total capacity C = C1 + C2.

Earliest Deadline First (EDF) Now consider the case of EDF scheduling.

An EDF server associates fixed relative deadlines d and d′ with the flows A

and A′, respectively. All data units are served in the order of their remaining

deadlines, even when they are negative (we do not consider data loss). Note

that in the extreme cases d′ < d = ∞ and d = d′, we recover the situation of SP

and FIFO scheduling, respectively. The service process S(m,n) is given by (see

[101]):

S(m,n) = [C(n−m)−A′(m,n− x+min{x, y})]+1{n−m>x} , (3.9)

where x ≥ 0 is again a free parameter, and y := d − d′ denotes the difference

between the respective deadlines. It is convenient to distinguish between the
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cases y ≥ 0 and y < 0.

Let us first consider the case y ≥ 0:

Corollary 3.10 (EDF Per-Flow Bound, y ≥ 0). Assume EDF is used as

scheduling policy, y ≥ 0, and consider the situation as in Theorem 3.6. Then

for the virtual delay W holds:

P(W ≥ k) ≤ E[h(an)]E[h
′(a′n)]

Ha
e−θ(Ck−C2 min{k,y}) .

Proof. Again, let x := k. Eq. (3.6) with the service process from Eq. (3.9) gives:

P (W ≥ k) ≤ P

(

sup
n≥k

{Ar(k, n) +A′r(n− k +min{k, y})− Cn} ≥ 0

)

≤ P

(

sup
ñ≥min{k,y}

{Ar(k, ñ+ k −min{k, y}) +A′r(ñ)

− C(ñ+ k −min{k, y}} ≥ 0

)

≤ P

(

sup
ñ≥min{k,y}

{Ar(min{k, y}, ñ) +A′r(ñ)− Cñ}

≥ C(k −min{k, y})
)

,

where we used the substitution

ñ = n− k +min{k, y}

in the third, and the stationarity of Ar in the fourth line. Now apply Lemma 3.7

with l = min{k, y}, and σ = C(k − min{k, y}); hereby note that l ≥ 0 and

σ − cl = Ck − c′ min{k, y}.

Consider now the case y = d − d′ < 0. This is more difficult as now

min{k, y} = y < 0, so that for

n0 ∈ B := {n ≥ k | n < k − y} ,

the argument n0 − k +min{k, y} is negative as well. By definition (again from
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[101]), for those n0 ∈ B:

A′r(n0 − k +min{k, y}) = 0 . (3.10)

Corollary 3.11 (EDF Per-Flow Bound, y < 0). Assuming EDF scheduling

with y < 0, for the virtual delay W holds:

P(W ≥ k) ≤ E[h(an)]E[h
′(an)]

Ha
e−θ(Ck−C2y) +

E[h(an)]

Ha
e−θ̃Ck ,

where θ̃ is the parameter such that the flow A admits an arrival-martingale with

Ka = C. Note that as C > C1, such a θ̃ exists and is greater than θ.

Proof. By splitting up the probability in Eq. (3.6) using the Boole’s inequality

P(W ≥ k) ≤P( sup
n≥k:n/∈B

{Ar(k, n)− Sr(0, n)} ≥ 0)

+ P( sup
n≥k:n∈B

{Ar(k, n)− Sr(0, n)} ≥ 0) ,

one has for the first probability:

P( sup
n≥k:n/∈B

{Ar(k, n)− Sr(0, n)} ≥ 0)

≤ P( sup
n≥k−y

{Ar(k, n) +A′r(n− k + y)− Cn} ≥ 0)

≤ P( sup
ñ≥−y

{Ar(ñ) +A′r(−y, ñ)− Cñ} ≥ Ck)

≤ E[h(an)]E[h
′(a′n)]

Ha
e−θ(Ck−C2y) .

In the third line, stationarity and the substitution ñ = n − k was used, and in

the fourth line Lemma 3.7 was applied with σ = Ck, l = −y, and the roles of A

and A′ were interchanged.
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For the second probability with Eq. (3.10):

P( sup
n≥k:n∈B

{Ar(k, n)− Sr(0, n)} ≥ 0)

≤ P( sup
k≤n<k−y

{Ar(k, n)− Cn} ≥ 0)

= P( sup
0≤ñ<−y

{Ar(ñ)− C(ñ+ k)} ≥ 0)

≤ P(sup
ñ≥0

{Ar(ñ)− Cñ} ≥ Ck)

≤ E[h(an)]

Ha
e−θ̃Ck ,

with the usual substitution ñ = n − k and the stationarity assumption in the

fourth line. In the last line, Theorem 3.4 with σ = Ck were used.

3.2 Applications

In this section we demonstrate the versatility of the proposed calculus with

arrival-martingales to address several classes of arrival processes: with inde-

pendent increments (Subsection 3.2.1), with Markovian increments (Subsec-

tion 3.2.2), and p-order autoregressive (Subsection 3.2.3).

3.2.1 Processes with Independent Increments

One of the simplest traffic model is given by a process with independent in-

crements, i.e., A(m,n) =
∑n

k=m+1 ak, where (ak)k is a sequence of i.i.d. ran-

dom variables with positive distribution. Although not realistic, this example

is included here because it provides a good intuition on how the calculus with

arrival-martingales works.

Lemma 3.12. In the situation above, the flow A admits arrival-martingales.

Proof. For θ > 0 let ha ≡ 1 and define Ka by

Ka = logE[eθa1 ]
/

θ . (3.11)
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According to the i.i.d. assumption we have:

E

[

h(an+1)e
θ(A(n+1)−(n+1)Ka)

∣

∣

∣ a1, . . . , an

]

= eθ(A(n)−nKa)E
[

eθan+1
]

e−θKa

= h(an)e
θ(A(n)−nKa) ,

proving the arrival-martingale.

Let the capacity C > 0 satisfy the two stability conditions

E[a1] < C < sup a1 , (3.12)

to avoid the trivial scenarios of no queueing at all and infinite queue size, respec-

tively. Combining the martingale-envelope from Lemma 3.12 with the general

theory from Section 3.1, the following bounds hold:

Corollary 3.13 (Bounds for i.i.d. Arrivals). Consider an i.i.d. arrival flow

(an)n, and a capacity C such that the condition from Eq. (3.12) holds. Then,

with

θ∗ := sup {θ ≥ 0 | Ka ≤ C}

for this single flow holds:

P(Q ≥ σ) ≤ e−θ∗σ , and P(W ≥ k) ≤ e−θ∗C1k .

In a scenario with flows A and A′ and capacity C = C1 + C2 (satisfying the

corresponding stability conditions), for flow A holds in the multiplexed queueing

system under scheduling:

FIFO: P(W ≥ k) ≤ e−θ∗Ck

SP: P(W ≥ k) ≤ e−θ∗C1k

EDF1: P(W ≥ k) ≤ e−θ∗(Ck−C2 min{k,y})

EDF2: P(W ≥ k) ≤ e−θ∗(Ck+C2y) + eθ̃C2k ,
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where y = d− d′, C = C1 + C2, and θ̃ is the parameter of flow A in the system

with total capacity C.

EDF1 and EDF2 correspond to the cases y ≥ 0 and y < 0, respectively (see

Corollaries 3.10 – 3.11).

Proof. Use the arrival-martingales from Lemma 3.12. For the first part, apply

Theorem 3.4. For the second apply Corollaries 3.8 – 3.11.

Note that the aggregate analysis of the whole system (as in Subsec-

tion 3.1.1) is contained in the first part of Corollary 3.13, as the resulting aggre-

gate flow (an + a′n)n is still i.i.d.

Remark 3.14. By definition, the parameter θ∗ can assume any nonnegative

value including 0, and ∞. Assuming the stability condition from Eq. (3.12), the

following argument shows that in fact 0 < θ∗ < ∞: Consider the two continuous

functions

ϕ1(θ) := E[eθa1 ] and ϕ2(θ) := eθC .

Due to the first stability condition from Eq. (3.12) we know that

d

dθ
ϕ1(θ)

∣

∣

∣

∣

θ=0

= E[a1] < C =
d

dθ
ϕ2(θ)

∣

∣

∣

∣

θ=0

,

i.e., (since ϕ1(0) = ϕ2(0) = 1) there is ε > 0 such that ϕ1 < ϕ2 on [0, ε]. Due

to the second stability condition, ϕ1 will eventually become larger than ϕ2, and

so by continuity there exists θ∗ > 0 such that ϕ1(θ
∗) = ϕ2(θ

∗).

In Figure 3.2 simulations of the i.i.d. scenario are displayed together

with the corresponding bounds for SP and EDF1. The Martingale bounds (from

Corollary 3.13) almost match the simulations, whereas the bounds computed

with Boole’s inequality are off by several orders of magnitude.

1For this figure (and remaining figures in this chapter), 100 independent simulations were
run, each consisting of 109 packets. To ensure a stationary regime, the first 108 packets in
each run were discarded. The resulting (empirical) CCDFs are presented as box-plots.
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Figure 3.2: CCDF of the virtual delay (i.i.d.-case): 10 + 10 exponentially dis-
tributed subflows with λ = 1, utilization ρ = 0.95, and, for EDF,
y = d− d′ = 4.

3.2.2 Processes with Markovian Increments

The previous independence assumption on the increments is now replaced by

a Markovian correlation structure, i.e., the process an := f(xn) is driven by a

Markov chain (xn)n∈N
with state space S = {1, 2, . . . , smax}. Here, f : S → R

+

is an injective and deterministic function. To ensure stationarity, we assume xn

to be in steady state.

Let π denote its stationary distribution, and T the smax×smax-transition

matrix of the reversed process, i.e.,

π(i) = P(xn = i) and T (i, j) = P (xn−1 = j | xn = i) .

In many cases, the Markov chain is reversible and the matrix T coincides with the

transition matrix of an itself. Now, for any θ ≥ 0, let Tθ denote the exponentially

transformed transition matrix, i.e.,

Tθ(i, j) = T (i, j)eθf(j) , (3.13)

clearly, T = T0. The following martingale construction can be found in [55]:

Lemma 3.15. In the situation above, the flow A admits arrival-martingales.

Proof. Let θ > 0 and let λ(θ) denote the spectral radius of Tθ and v ∈ R
smax a
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0 1

α

β
R

Figure 3.3: An arrival process modelled in terms of a Markov-Modulated On-Off
(MMOO) process

corresponding eigenvector. Note that by the Perron-Frobenius Theorem λ(θ) is

positive and v can be chosen to have positive components. With the function

ha defined by ha(f(i)) = vi we can write for arbitrary K > 0:

E

[

ha(an+1)e
θ(A(n+1)−(n+1)K)

∣

∣

∣ x1, . . . , xn

]

= eθ(A(n)−nK)
E

[

ha(an+1)e
θf(xn+1)

∣

∣

∣ xn

]

e−θK

= eθ(A(n)−nK)
(

T θv
)

(xn) e
−θK

= ha (an) e
θ(A(n)−nK)λ(θ)e−θK ,

Substituting

Ka :=
log λ(θ)

θ
(3.14)

for K proves the martingale property.

As an application of Lemma 3.15 consider the arrival model as a Markov

Modulated On-Off Process (MMOO) (Figure 3.3), i.e., a Markov chain xn jump-

ing between the two states 0 (“Off”) and 1 (“On”) with probabilities α and β,

respectively. While in state 1 it transmits R data units per time unit, while

in state 0 it does not transmit any data. Hence, an := Rxn. The stationary

distribution of an is given by:

π0 := P(an = 0) =
β

α+ β
, π1 := P(an = R) =

α

α+ β
, (3.15)

and the process is reversible, i.e., A = Ar. We additionally assume that the
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3 Arrival Martingales

Markov chain satisfies the “burstiness condition”

α < 1− β ,

i.e., the probability of jumping to the “On”-state is strictly less than the prob-

ability of staying there. The advantage of this condition is that it is equivalent

to the eigenvector v (as defined in Lemma 3.15) being monotonically increasing,

i.e.,

v0 < v1 ⇔ α < 1− β , (3.16)

for a proof see [27].

As an immediate consequence of Theorem 3.4 we now have:

Corollary 3.16 (Bounds for MMOO Arrivals). Consider the MMOO ar-

rival flow as above and a capacity C satisfying C > Rπ1 = E[an]. With θ∗ such

that

log λ(θ∗) = θ∗C

for the backlog Q and the virtual delay W holds:

P(Q ≥ σ) ≤κe−θ∗σ , and P(W ≥ k) ≤ κe−θ∗kC ,

where κ := α+βv0/v1

α+β . Moreover, for the constant holds κ < 1.

Proof. The existence of θ∗ follows from the Perron-Frobenius Theorem (see

Lemma 2.10), as

1 < min
i

∑

j

T θ
i,j ≤ λ(θ) ≤ max

i

∑

j

T θ
i,j ≤ eθmaxi f(xi) < ∞ .

Apply Theorem 3.4 to the martingale-envelope constructed in Lemma 3.15. For

the threshold Ha from Definition 3.3 holds Ha = ha(R) = ha(f(1)), such that

E[h(an)]

Ha
=

β
α+βha(0) +

α
α+βha(R)

ha(R)
= κ .
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The fact that κ < 1 follows from Eq. (3.16).

We now consider the case of K such flows (Ai)1≤i≤K , each with capacity

C1 > 0 being multiplexed in a system with capacity C := KC1 > 0. Instead

of writing down the transition matrix for the resulting process, we simply can

apply Theorem 3.6 and Corollaries 3.8–3.11 to obtain bounds on the aggregate

and per-flow analysis, respectively:

Corollary 3.17. Consider the multiplexed queueing system with total capacity

C = KC1, and let θ∗ and κ such that

log λ(θ∗) = θ∗C1 , and κ :=
(π0v0 + π1v1)

K

v
K−⌈CR−1⌉
0 v

⌈CR−1⌉
1

.

Then in the multiplexed queueing system with total capacity C = KC1, it holds

for the aggregate flow:

P (Q ≥ σ) ≤ κe−θ∗σ , and P (W ≥ k) ≤ κe−θ∗Ck ,

and for a single flow comprising K1 < K subflows under scheduling:

FIFO: P (W ≥ k) ≤ κe−θ∗Ck

SP: P (W ≥ k) ≤ κe−θ∗K1C1k

EDF1: P (W ≥ k) ≤ κe−θ∗(Ck−(K−K1)C1 min{k,y})

EDF2: P (W ≥ k) ≤ κe−θ∗(Ck+(K−K1)C1y) + κ̃e−θ̃NC1k ,

where y := d − d′, and EDF1 and EDF2 correspond to y ≥ 0 and y < 0,

respectively. For EDF2, κ̃ and θ̃ denote the corresponding parameters in the

queueing system which has the total capacity C = KC1 but only the K1 subflows

as arrivals.

Proof. At least ⌈CR−1⌉ chains have to be in the “On”-state if the aggregate

instantaneous arrival is larger than the capacity. Thus, by the monotonicity
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property from Eq. (3.16), for the threshold from Definition 3.3 holds:

Ha = v
K−⌈CR−1⌉
0 v

⌈CR−1⌉
1 .

Now simply apply Theorem 3.6 and Lemmas 3.8 – 3.11 to the arrival-martingale

of Lemma 3.15.

It can be shown that the leading constant κ is exponential in K (see [27])

and thus the fundamental property of an exponential decay in the number of

flows (see Eq. (1.3)) is captured. As a side remark, the corresponding leading

constant from [35, p. 340], is greater than one.

We point out that while the bounds in Corollary 3.17 for the aggregate

flow have already been obtained in [27], the per-flow bounds (i.e., for SP, FIFO,

and EDF) represent the contribution of this chapter.

In Figure 3.4 simulations of the MMOO and the corresponding bounds

for SP and EDF are displayed for different link utilizations. As in the case

of independent increments, the Martingale bounds (from Corollary 3.17) are

reasonably tight even at high utilizations (i.e., ρ = 0.95), whereas the bounds

calculated with Boole’s inequality (see Eq. (2.11)) are off by several orders of

magnitude.

3.2.3 Autoregressive Arrival Models

As a third example we consider autoregressive processes. Roughly, a p-order

autoregressive process (AR(p)) evolves by rescaling the p previous values of the

process and adding Gaussian white noise, i.e., uncorrelated Gaussian random

variables.

We start with the formal definition of AR(p). We assume throughout

that the white noise is not only uncorrelated but independent.

Definition 3.18. Let p ≥ 1, Z0, Z1, Z2, · · · ∼ N0,1 i.i.d., ϕ1, . . . , ϕp ∈ [0, 1),
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(b) Utilization ρ = 0.95, and d− d′ = 50− 1 = 49.

Figure 3.4: CCDF of the virtual delay (MMOO-case): N1 = 1
2N = 10, α = 0.1,

β = 0.5, and R = 1.

ϕ =
∑p

k=1 ϕk, and µ, σ > 0. If the relation

an =

p
∑

i=1

ϕian−i + (1− ϕ)µ+ (1− ϕ)σZn (3.17)

holds, the process (an)n is called the p-order autoregressive process, AR(p).

It can be shown (see, e.g., [26], p. 85) that if all the (complex) roots of

the characteristic polynomial

χ(z) = 1−
p
∑

i=1

ϕiz
i

lie outside the unit interval, i.e., χ(z) = 0 ⇒ |z| > 1, then the process AR(p)

is stationary. We assume throughout that this condition is fulfilled. As above,
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we apply Kolmogorov’s theorem to obtain an extended process (an)n∈Z
which is

still stationary and satisfying Eq. (3.17) (see Remark 2.3). Moreover, as AR(p)

is clearly a Gaussian process itself, it is also reversible (see [149, Theorem 1]),

i.e., Ar = A.

Note that although E[an] = µ for all n ∈ Z, by the correlation of AR(p)

the variance V[an] is not equal to σ, but must be derived using the Yule-Walker-

Equations (see again [26], p. 239).

As the instantaneous increment of an AR(p) process depends on the

p previous values and not only on the last one (as for the Markovian arrivals

from Subsection 3.2.2) we need to slightly modify the definition of an arrival-

martingale. The following notations are useful:

Notation 3.19. Denote by −→an the p-dimensional vector

−→an := (an, an + an−1, . . . , an + · · ·+ an−p+1) =

(

i
∑

k=1

an−k+1

)

1≤i≤p

. (3.18)

Further, for functions h1, . . . , hp let Πh denote the product function

Πh(x1, . . . , xp) :=

p
∏

i=1

hi(xi) .

For brevity, we omit the parameter p in Notation 3.19, because its value is clear

from the context.

Definition 3.20. For AR(p) arrival processes, in the definition of the arrival-

martingale (Definition 3.1), Eq. (3.1) is replaced by:

Πh (−→an) eθ(A(n)−nC) , n ≥ 0 . (3.19)

Note that for p = 1 the definition coincides with Definition 3.1. The

reason for the unusual representation of the p previous values of −→an in Eq. (3.18)

lies in the following fact:

Lemma 3.21. For σ > 0, let N := inf{n ≥ 0 | A(n) − Cn ≥ σ} denote the
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stopping time in Eq. (3.2) from the proof of Theorem 3.4. Then for any i ≥ 1,

i
∑

k=1

aN−k+1 > iC .

Proof. Assume that
∑i

k=1 aN−k+1 ≤ kC for some i ≥ 1. Then

AN−i − (N − i)C = (AN −NC)−
(

i
∑

k=1

aN−k+1

)

+ iC > σ ,

contradicting the minimal property of N .

The lemma generalizes the fact used in the proof of Theorem 3.4 that the

last increment aN−C must be positive. In the next theorem, arrival-martingales

for AR(p) are constructed:

Lemma 3.22. In the situation above, the autoregressive arrival process A(m,n) =

∑n
k=m+1 ak admits arrival-martingales.

Proof. Let θ > 0, Ka := µ+ σ2θ
2 and define the functions h1, . . . , hp by

hi(t) := eθ
ϕi

1−ϕ
t ,

i.e.,

Πh(−→an) = e
θ

1−ϕ

∑p
i=1 ϕi

∑i
k=1 an−k+1 .

For n ≥ 0, let Mn := Πh(−→an)eθ(An−nKa). We show that Mn is a martingale.

42



3 Arrival Martingales

Note that

E

[

Πh(−→an)eθ(an−Ka)
∣

∣

∣ Z1, . . . , Zn

]

= E

[

eθ(
1

1−ϕ (
∑p

i=1 ϕi

∑i
k=1 an−k+1)+an−Ka)

∣

∣

∣ Z1, . . . , Zn

]

= E

[

eθ(
1

1−ϕ (
∑p

i=1 ϕi

∑i
k=2 an−k+1)+ ϕ

1−ϕ
an+an−Ka)

∣

∣

∣ Z1, . . . , Zn

]

= E

[

eθ(
1

1−ϕ (
∑p

i=1 ϕi

∑i−1
k=1 an−k)+

∑p
i=1

ϕi
1−ϕ

an−i+µ+σZn−Ka)
∣

∣

∣ Z1, . . . , Zn

]

= E

[

eθ(
1

1−ϕ (
∑p

i=1 ϕi

∑i
k=1 an−k))e(µ+σZn−Ka)

∣

∣

∣ Z1, . . . , Zn

]

= Πh(−−→an−1)E[e
θ(σZn)]e−θ2σ2/2

= Πh(−−→an−1) .

Multiplying both sides by eθ(An−1−(n−1)Ka) yields

E [Mn | Z1, . . . , Zn] = Mn−1

and the proof is complete.

Note that for p = 0 we recover the case of independent increments as in

Subsection 3.2.1. Let now

Y :=

p
∑

k=1

ϕk

k
∑

i=1

an−i+1 ,

Y is normally distributed with E[Y ] = µ
∑p

k=1 kϕk (by stationarity, the distri-

bution of Y is independent of n). Let ν2 := V[Y ] denote its variance, which

again can be calculated using the Yule-Walker-Equations.

Considering the single flow scenario from Figure 2.1(a) and Theorem 3.4,

the following bounds hold:

Corollary 3.23. For the autoregressive arrival model AR(p) with a capacity C

satisfying C > µ, let

θ∗ = 2
C − µ

σ2
, and κ = e

θ∗(µ−C)
1−ϕ

(

∑p
i=1 iϕi−

ν2

(1−ϕ)σ2

)

.
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Then for the backlog Q and virtual delay W hold

P(Q ≥ σ) ≤κe−θ∗σ , and P(W ≥ k) ≤ κe−θ∗Ck .

Proof. The only difference to the proof of Theorem 3.4 concerns the leading

constant. Note that, by the monotonicity of the functions hi, with Lemma 3.21

one obtains:

Πh(−→aN ) ≥ Πh(C, . . . , pC) = e
θ

1−ϕ
C

∑p
i=1 iϕi ,

Hence, for the leading constant holds:

E[h(−→an)]
E[h(−→aN )]

≤ E[e
θ∗

1−ϕ (µ
∑p

i=1 iϕi+νZ0)]

e
θ∗

1−ϕ (
∑p

i=1 ϕi

∑

i
k=1 an−k+1)

=
e

θ∗

1−ϕ

(

µ
∑p

i=1 iϕi+
θ∗ν2

(1−ϕ)2

)

e
θ∗

1−ϕ

∑p
i=1 ϕiic

= e
θ∗(µ−C)

1−ϕ

(

∑p
i=1 iϕi−

ν2

(1−ϕ)σ2

)

= κ .

The rest is exactly the same as in the proof of Theorem 3.4.

Let us consider the special case of p = 1, i.e.,:

an = ϕan−1 + (1− ϕ)µ+ (1− ϕ)σZn .

This special case allows an explicit calculation of the variance ν2:

ν2 = V[ϕan] = V[ϕan+1] = ϕ2
V[ϕan + σ (1− ϕ)Zn+1] = ϕ2

(

ν2 + σ2 (1− ϕ)
2
)

,

and thus ν2 = σ2 (1−ϕ)ϕ2

1+ϕ . The leading constant κ from Corollary 3.23 reduces

to

κ =
E[h(an)]

h(C)
= e

θ∗(µ−C)
1−ϕ

(

ϕ− ν2

(1−ϕ)σ2

)

= e
θ∗(µ−C)

1−ϕ

(

ϕ− ϕ2

1+ϕ

)

= e
θ∗ϕ(µ−C)

1−ϕ2 . (3.20)
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(b) AR(2), ϕ1 = 0.4, ϕ2 = 0.2

Figure 3.5: CCDF of the virtual delay (autoregressive-case): AR(1) ((a)) and
AR(2) ((b)), with parameters µ = 0.5, σ = 1, utilization ρ = 0.75,
and, for EDF, y = d− d′ = 24.

Therefore, with regards to the queue size Q, the following bound holds:

P(Q > σ) ≤ e
θ∗ϕ(µ−C)

1−ϕ2 e−θ∗σ .

Note that, as µ − C < 0, in this case κ ∈ (0, 1]. This bound improves

the known results drastically: e.g., in [35], p. 340, an additional factor occurs,

which depends on an upper bound on the increment process. As the Gaussian

white noise is unbounded, the corresponding bound from [35] is trivial.

Now consider the aggregate scenario as in Figure 3.1: We assume that

two homogeneous and independent autoregressive arrival flows are multiplexed.

Corollary 3.24 (Bounds for AR(p) Arrivals). With the definitions as in
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3 Arrival Martingales

Corollary 3.23 for the multiplexed queueing system with aggregate capacity 2C

holds:

P(Q ≥ σ) ≤ κ2e−θ∗σ , and P(W ≥ k) ≤ κ2e−θ∗2Ck ,

and for a single flow under scheduling:

FIFO: P(W ≥ k) ≤κ2e−θ∗2Ck

SP: P(W ≥ k) ≤κ2e−θ∗Ck

EDF1: P(W ≥ k) ≤κ2e−θ∗(2Ck−C min{k,y})

EDF2: P(W ≥ k) ≤κ2e−θ∗(2Ck+Cy) + κ̃e−θ̃2Ck .

Again, y := d − d′, and EDF1 and EDF2 correspond to y ≥ 0 and y < 0,

respectively; κ̃ and θ̃ denote the constants κ and θ with C exchanged by 2C.

Proof. By definition of hi in Lemma 3.22:

hi ⊗ hi(t) = hi(t)
2 . (3.21)

The results corresponding to Theorem 3.6 and Corollaries 3.8 – 3.11 with the

modified arrival-martingale from Definition 3.20 are proved analogously.

Note that, as the sum of independent autoregressive processes is still

autoregressive, the aggregate bounds in the first part of Corollary 3.24 could

also be obtained by applying Corollary 3.23 to the single flow An + A′
n. As

the corresponding κ is independent of the number of flows, applying Eq. (3.21)

iteratively leads to bounds retaining the fundamental exponential decay property

from Eq. (1.3).

In Figures 3.5 and 3.6, simulations of the AR(p) and the corresponding

bounds for SP and EDF are displayed for different link utilizations. Unlike in

the two previous arrival models, Boole’s inequality could not be evoked to obtain

bounds, since the sum on the right hand side in Eq. (2.11) seems not to converge.
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(b) AR(2), ϕ1 = 0.4, ϕ2 = 0.2

Figure 3.6: CCDF of the virtual delay (autoregressive-case): AR(1) ((a)) and
AR(2) ((b)), with parameters µ = 0.5, σ = 1, utilization ρ = 0.95,
and, for EDF, y = d− d′ = 99.

3.3 Summary

In this chapter we have proposed a novel characterization of arrival models by a

certain supermartingale (“arrival-martingale”) and developed a related unified

calculus dealing with flows’ multiplexing and scheduling. The crucial result

of this calculus is that the scheduling operation translates into a time shifting

operation of the underlying martingale-envelopes, enabling thus the derivation of

tight per-flow performance bounds by leveraging a variant of Doob’s inequality.

We applied this calculus to Markovian and p-order autoregressive arrival flows

and derived bounds on the per-flow delay distributions for several scheduling

policies (FIFO, SP, and EDF). In certain burstiness scenarios, the obtained per-

flow bounds capture for the first-time a fundamental exponential decay factor in
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3 Arrival Martingales

the number of flows. Moreover, the bounds almost match simulations, improving

over classic results (e.g., FIFO: [49, 35], SP: [16, 155], EDF: [131]) by arbitrary

orders of magnitude, especially at hight utilizations.

In the next chapter, we complement the derived arrival-martingale cal-

culus with a parallel service-martingale calculus allowing for the analysis of more

advanced service models like the Aloha or CSMA/CA protocol.
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Service Martingales

In this chapter we extend the martingale methodology from Chapter 3 in order

to fit the delay analysis of Aloha and CSMA/CA networks with Markovian

arrivals. The novel element of the proposed extension is the concept of a service-

martingale which models the Markovian service, characteristic to a multiaccess

channel such as CSMA/CA, in the martingale domain. By combining service-

martingales with the arrival-martingales defined in Chapter 3, we obtain sharp

stochastic bounds on the backlog and delay distributions of a Markovian source

over Aloha and CSMA/CA multiaccess channels.

A key benefit of our proposed methodology integrating arrival- and

service-martingales is its modularity : Indeed, we provide conceivably straight-

forward applications to both simple and complex MAC scenarios. The first
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4 Service Martingales

(simple) scenario is standard and involves the analysis of a tagged bursty source

sharing a MAC channel. We then consider two complex extensions by addi-

tionally accounting for 1) in-source scheduling, i.e., the tagged source consists

of multiple flows scheduled according to a SP (Static Priority) policy before

being transmitted over the shared channel, and 2) spatial multiplexing MIMO

(multiple-input multiple-output), i.e., the tagged source is transmitted over mul-

tiple shared MAC channels. A qualitative insight of the obtained stochastic

bounds is that MIMO reduces the delays of bursty sources exponentially (in the

number of channels), and, more interestingly, that it is subject to a fundamental

power-of-two phenomena.

The rest of this chapter is organized as follows. After discussing re-

lated work (Section 4.1), we introduce the concept of service-martingales in

Section 4.2, and derive general performance metrics (backlog and delay) for a

source modelled by arrival-martingales. In Section 4.3 we apply these results to

a Markovian tagged source transmitting over Aloha and CSMA/CA channels;

numerical results illustrate the remarkable tightness of the obtained stochas-

tic bounds. In Section 4.4 we provide further applications to scenarios with

in-source SP scheduling and spatial multiplexing MIMO.

4.1 Related Work

Classical works concerned with the throughput and delay analysis of random

access protocols (e.g., Aloha or CSMA) rely on strong assumptions. One is

that the point process comprising of both newly generated and retransmitted

(due to collisions) packets is a Poisson process (Abramson [3], Kleinrock and

Tobagi [94], and more recently Yang and Yum [159]). A related assumption is

that, at each source, packets arrive as a blocked Poisson process, in the sense that

at most one packet can be backlogged at any source (Tobagi [141] or Beuerman

and Coyle [17]); this model is related to the infinite source model in which each

source generates a single packet during its lifetime (Lam [97]). Another related

and simplifying assumption is to discard the buffered packets at the beginning
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4 Service Martingales

of a transmission period for a source (Takagi and Kleinrock [135]).

Such conceivably unnatural assumptions enable a tractable analysis but

preclude the analysis of realistic bursty sources, i.e., non-Poisson. In particular,

the obtained results only capture the access delay, and not the other component

of the actual delay, i.e., the queueing delay. For an elaborate discussion on fun-

damental drawbacks of ignoring data burstiness in the context of the multiaccess

channel, in connection to information theory, see Gallager [64] and Ephremides

and Hajek [57].

More recent literature addresses the throughput or delay analysis of the

prevalent 802.11 CSMA/CA protocol. Some influential works include Bianchi [18],

Cali et al. [33], Carvalho and Garcia-Luna-Aceves [34], which share the common

assumption of saturated sources (i.e., ignoring burstiness). An approximate

queueing analysis accounting for random arrivals is undertaken in Tickoo and

Sikdar [140], by approximating the probability of non-empty queues as if the sys-

tem behaved as an M/M/1 queue. A related approximation of the probability

that a source finds itself empty upon a successful transmission is considered by

Garetto and Chiasserini [66]. Another work addressing non-saturated arrivals

is Alizadeh-Shabdiz and Subramaniam [4]; in addition to enforcing a technical

independence assumption from [18], the analysis crucially relies on an M/G/1

approximation of the network, i.e., the arrival process is again assumed to follow

a Poisson process.

While such existing results clearly provide valuable insights into the be-

havior of the notoriously difficult CSMA/CA protocol, the state-of-the-art liter-

ature lacks a mathematically rigorous (and also accurate) analysis under random

arrivals, especially non-Poisson/bursty. The goal of this chapter is to fill this gap

by providing the first rigorous and accurate delay analysis in single-hop Aloha

and CSMA/CA networks, subject to Markovian arrivals. A crucial feature of the

proposed analysis is that it rigorously accounts for buffering and consequently

it captures the total (i.e., access plus queueing) delay experienced by a tagged

Markovian source.
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A(n)
S

D(n)

Figure 4.1: A server with an arrival process A, service process S, and departure
process D

4.2 Theory

We assume the same situation as in Chapter 3 (as it was described in detail in

Section 2.2): A flow A(m,n) =
∑n

k=m+1 ak arrives at a server characterized by

a service process S(m,n) =
∑n

k=m+1 sk (see Figure 4.1). The service process S

links A to its corresponding departure process by the inequality

D(n) ≥ (A ∗ S) (n) := min
0≤m≤n

{A(m) + S(m,n)} , (4.1)

(see Eq. (2.4)). The increment processes (ak)k and (sk)k are assumed to be

stationary and independent of each other.

We give the central definition of this chapter concerning service mod-

elling:

Definition 4.1 (Service-Martingales). The service process S admits service-

martingales if for every θ > 0 there is a Ks ≥ 0 and a function hs : rng(s) → R
+

such that the process

hs(sn)e
θ(nKs−Sr(n)) , n ≥ 0 , (4.2)

is a supermartingale.

Again, the parameters Ks and hs implicitly depend on θ; the augmented

notation Ks(θ) and hs(θ) is omitted for brevity, when clear from the context.

Arrival- and service-martingales relate to each other by a sign change of

θ, and closely resemble with the concepts of effective bandwidth and capacity, re-

spectively. The crucial difference is that while the effective bandwidth and capac-

ity are defined in terms of the moment generating function (MGF) and Laplace
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4 Service Martingales

transform of A(n) and S(n), respectively, the arrival- and service-martingales

are defined as stochastic processes and not as (deterministic) numbers, albeit in

terms of similar exponential transforms.

The analogous result to Remark 3.2 also holds for service-martingales:

Remark 4.2. If (4.2) is a supermartingale, then by stationarity the “time-

shifted” process

hs(sn+k)e
θ(nKs−Sr(k,n+k))

is also a supermartingale, for some fixed k ≥ 0.

Let us now state an auxiliary definition which extends Definition 3.3 by

taking into account the service-martingale:

Definition 4.3 (Threshold). For ha and hs as in Definitions 3.1 and 4.2

define the threshold

Has := min {ha(x)hs(y) | x− y > 0} .

Intuitively, Has is the smallest value of ha(x)hs(y) such that the instan-

taneous arrival (i.e., x) is larger than any value of the stochastic process driving

the service process (i.e., y).

For the rest of this section we assume that the arrival flow A and the

service process S admit arrival- and service-martingales, respectively. The cor-

responding parameters are denoted by Ka and ha for the arrival-, and by Ks and

hs for the service-martingales. Recall that these parameters implicitly depend

on the value of θ.

Again, the performance metrics of interest are the (stationary) backlog

distribution as defined in Eq. (2.7):

Q =D sup
n≥0

{Ar(n)− Sr(n)} ,
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and the virtual delay from Eq. (2.9) with

P (W ≥ k) ≤
{

sup
n≥k

Ar(k, n)− Sr(n) ≥ 0

}

.

Theorem 4.4 (Backlog). Assume that the statistically independent processes

A and S admit arrival- and service-martingales, respectively. Let

θ∗ := sup {θ ≥ 0 | Ka ≤ Ks} ,

and Has as in Definition 4.3. Then the following backlog bound holds for any

σ ≥ 0

P(Q ≥ σ) ≤ E[ha(a0)]E[hs(s0)]

Has
e−θ∗σ .

Proof. Let θ∗ as defined, and the corresponding parameters Ka, ha, Ks, and hs

(all depending on θ∗). By the independence assumption, the process

ha(an)hs(sn)e
θ∗(A(n)−nKa+nKs−S(n))

is a supermartingale (see Lemma 2.9). As by definition (of θ∗) Ks −Ka ≥ 0,

M(n) := ha(an)hs(sn)e
θ∗(A(n)−S(n))

is a supermartingale as well. Now proceed similarly as in the proof of Theo-

rem 3.4 by defining the stopping time N as the first time when A(n) − S(n)

exceeds σ, i.e.,

N := min {n | A(n)− S(n) ≥ σ} ,

again, P(Q ≥ σ) = P(N < ∞). By the optional stopping theorem (see Lemma 2.8)
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applied to the stopping time N ∧ n (for n ≥ 0) we have

E[ha(a0)]E[hs(s0)] = E[M(0)] = E[M(N ∧ n)]

≥ E[M(N ∧ n)1{N≤n}]

= E[ha(aN )hs(sN )eθ
∗(A(N)−S(N))1{N≤n}]

≥ Hase
θ∗σ

P(N ≤ n) .

For the last step note that by the minimality of N , aN > sN and so with

Definition 4.3: ha(aN )hs(sN ) ≥ Has. The proof completes by letting n →

∞.

Theorem 4.5 (Delay). In the situation of Theorem 4.4, the following stochas-

tic bound holds for the virtual delay

P(W ≥ k) ≤ E[ha(a0)]E[hs(s0)]

Has
e−θ∗Ksk .

Proof. Let θ∗ as defined, and the corresponding parameters Ka, ha, Ks, and hs

(again, all depending on θ∗). Given the representation for the virtual delay from

Eq. (2.9), we can write:

P (W ≥ k) ≤ P

(

sup
n≥k

{Ar(k, n)− Sr(n)} ≥ 0

)

≤ P

(

sup
n≥k

{Ar(k, n)− (n− k)Ka + nKs − Sr(n)} ≥ kKs

)

.

Using Remark 4.2 and the independence assumption, it follows that

ha(an)hs(sn)e
θ(Ar(k,n)−(n−k)Ka+nKs−Sr(n))

is also a supermartingale (in the time-domain {k, k + 1, . . .}). Therefore, by in-

voking the same arguments as in the proof of Theorem 4.4, the above inequalities
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MAC
L− 1 (other) sources

A D

Figure 4.2: A tagged source L, comprising of arrival and departure processes A
and D, respectively, competing on a MAC shared channel (Aloha or
CSMA/CA) with L− 1 other sources

continue to:

P (W ≥ k) ≤ E[ha(ak)]E[hs(sk)e
θ∗(kKs−S(0,k))]

Has
e−θ∗Ksk

≤ E[ha(a0)]E[hs(s0)]

Has
e−θ∗Ksk ,

where we lastly used the stationarity of (an)n and the property that the expec-

tation of supermartingales is non-increasing.

4.3 Applications: Aloha and CSMA/CA

In this section we apply the previous theoretical results to analyze the queueing

performance of a bursty source, denoted by L, and transmitting over an Aloha

or CSMA/CA shared channel together with L−1 other (saturated) sources (see

Figure 4.2).

In both cases we consider a bursty source L being modelled by a Markov-

Modulated On-Off (MMOO) process (an)n as in Section 3.2.2 (see Figure 4.3).

0 1

pa

qa
R

Figure 4.3: The arrival process for source L, modelled in terms of a Markov-
Modulated On-Off (MMOO) process
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Recall that the transition matrix of the Markov chain is given by

Ta =







1− pa pa

qa 1− qa






,

for a’s steady state distribution holds

Πa =

(

qa
pa + qa

,
pa

pa + qa

)

,

and the cumulative arrival process can be represented as

A(n) =

n
∑

k=1

f(ak) , (4.3)

where f(0) = 0, f(1) = R, and R > 0 is the peak rate transmitted while the

source is in state “1” (i.e., the “On” state). Arrival martingales for the source

A were constructed in Lemma 3.15.

In the following we consider the two cases when the source L shares an

Aloha or CSMA/CA channel with L − 1 other (saturated) sources denoted by

{1, 2, . . . , L− 1}.

4.3.1 Aloha

With the (slotted) Aloha protocol, in each time slot a source transmits with a

fixed probability ptr > 0, independently from the other sources and also from

previous transmissions. Thus, the probability of a successful transmission is

given by

psuc := ptr (1− ptr)
L−1

.

During the interval of a successful transmission the link provides an ideal ca-

pacity C > 0. In any other interval, due to a successful transmission of another

source or a collision, no capacity is provided (for source L). The service process
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0 1

psuc

1− psuc

1− psuc psuc

C

Figure 4.4: The service process for source L, modelled in terms of a process with
independent increments corresponding to an Aloha link

for the source L is thus given by

Saloha(m,n) :=

n
∑

k=m+1

sk ,

were the the (instantaneous) service rates sk are i.i.d. and are distributed ac-

cording to:

sk :=















C P = ptr (1− ptr)
L−1

0 P = 1− ptr (1− ptr)
L−1

(see Figure 4.4 and also Ciucu et al. [41]).

Service-martingales for Saloha can be obtained in a way similar to the

i.i.d. arrival model of Lemma 3.12:

Lemma 4.6. The service process Saloha for the Aloha protocol admits service-

martingales.

Proof. As arrival- and service-martingales relate to each other by a sign change

of θ, replace in Eq. (3.11) the moment generating function by the Laplacian, i.e.,

let

Ks := logE
[

e−θs1
] /

(−θ) , (4.4)

and proceed as in the proof of Lemma 3.12.

We now state the main result for the Aloha model. Let Ta,θ denotes the expo-

nentially transformed transition matrix of Ta as in Eq. (3.13).

Corollary 4.7 (Bounds for Aloha). Assume the stability condition E[a1] <
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E[s1] and let

θ∗ := sup
{

θ > 0
∣

∣ λa(θ) = Ls(θ)
−1
}

,

where λa(θ) denotes the maximal positive eigenvalue of Ta,θ, and

Ls(θ) := 1− ptr (1− ptr)
L−1

+ ptr (1− ptr)
L−1

e−θC

is the Laplace transform of sk. Let further ha be a (positive) eigenvector of Ta,θ∗

corresponding to λa(θ), and hs ≡ 1. Then the following bounds hold for the

backlog and delay of source L:

P(Q ≥ σ) ≤ E[ha(a0)]

Has
e−θ∗σ , and P(W ≥ k) ≤ E[ha(a0)]

Has
e−θ∗Ksk ,

where Has is defined as in Definition 4.3.

Proof. Note first that θ∗ is well-defined (i.e., the supremum is taken over a non-

empty set) because

d

dθ
λa(θ)

∣

∣

∣

∣

θ=0

= E[a1] < E[s1] =
d

dθ
Ls(θ)

−1

∣

∣

∣

∣

θ=0

.

Note also that the more explicit definition of θ∗ follows from Theorem 4.4,

whereby the values Ka and Ks are from Eq. (3.14) and Eq. (4.4), respectively,

i.e.,

θ∗ := sup

{

θ > 0

∣

∣

∣

∣

∣

log λa(θ)

θ
≤ logE

[

e−θs1
]

−θ

}

.

The replacement of the inequality by an equality is possible due to the continuity

of the eigenvalues and the Laplace transform. The rest of the proof follows from

Theorems 4.4 and 4.5 using the constructed arrival- and service-martingales,

respectively.

To illustrate the accuracy of the obtained delay bounds, we quickly pro-

vide several numerical results in Figures 4.5 and 4.6, by varying both the uti-

lization and also the number of sources. The bounds are shown as continuous

lines and the simulation results are shown as box-plots.
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Figure 4.5: CCDF of the virtual delay of source L (Aloha-case): probabilities
pa = 0.1, qa = 0.5, ptr = 0.2, L = 10 sources, and utilizations
ρ = 0.5, 0.75, 0.9 (bottom to top), respectively
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Figure 4.6: CCDF of the virtual delay of source L (Aloha-case): probabilities
pa = 0.1, qa = 0.5, ptr = 0.2, ρ = 0.75, and number of sources
L = 5, 10, 25 (bottom to top), respectively

4.3.2 CSMA/CA

We adopt the CSMA/CAmodel from Durvy et al. [56] in terms of a Markov chain

(sn)n, as depicted in Figure 4.7. Due to its tree structure, the Markov chain is

reversible (see Kelly [88, Lemma 1.5]). The source L can transmit (subject to

current buffer occupancy) at some peak rate C > 0 (i.e., ideal channel’s capacity)

while in state L, whereas all sources are in backoff mode while in state 0.
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qs
qs

qs
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Figure 4.7: The service process for source L, modelled in terms of a Markov
process corresponding to a CSMA/CA link

The transition matrix of the chain (sn)n is given by

Ts =



















1− ps
ps

L . . . ps

L

qs 1− qs . . . 0

...
...

. . .
...

qs 0 . . . 1− qs



















,

whereas the steady-state distribution of s is given by

Πs =

(

qs
ps + qs

,
ps

L(ps + qs)
, . . . ,

ps
L(ps + qs)

)

.

Using the methodology from [41], the service process Scsma(m,n) of link

L can be represented by

Scsma(m,n) :=
n
∑

k=m+1

C1{sk=L} =
n
∑

k=m+1

f(sk) , (4.5)

where f(L) := C, and f(i) := 0 for i < L. Finally, let Ts,θ denote the exponen-

tially transformed transition matrix as in Definition 3.13.

Service-martingales for Scsma can be obtained in a way similar to the

Markovian case of Subsection 3.2.2:

Lemma 4.8. The service process Scsma for the CSMA/CA protocol admits

service-martingales.

Proof. For θ > 0, let λs(−θ) denote the maximal positive eigenvalue of Ts,−θ,
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hs a corresponding eigenvector, and

Ks :=
log λs(−θ)

−θ

The rest is as in the proof of Lemma 3.15.

We now state the main result for the CSMA/CA scenario.

Corollary 4.9 (Bounds for CSMA/CA). Assume the stability condition

E[a1] < E[s1] and let

θ∗ := sup

{

θ > 0

∣

∣

∣

∣

log λa(θ)

θ
=

log λs(−θ)

−θ

}

.

Let also ha and hs be corresponding (positive) eigenvectors of Ta,θ∗ and Ts,θ∗ ,

respectively. Then the following bounds hold for the backlog and delay of source

L:

P(Q ≥ σ) ≤ E[ha(a0)]E[hs(s0)]

Has
e−θ∗σ

P(W ≥ k) ≤ E[ha(a0)]E[hs(s0)]

Has
e−θ∗Ksk ,

where H is defined as in Definition 4.3.

Proof. Note that θ∗ is well-defined (i.e., the supremum is taken over a non-empty

set) because

d

dθ
λa(θ)

∣

∣

∣

∣

θ=0

= E[a1] < E[s1] =
d

dθ
(λs(−θ)))

−1

∣

∣

∣

∣

θ=0

.

For the rest of the proof simply apply Theorems 4.4 and 4.5 to the constructed

arrival- and service-martingales. The replacement of the inequality by an equal-

ity is due to the same argument as in the proof of Corollary 4.7.

As for Aloha, we quickly provide several numerical results in Figures 4.8

and 4.9; the figures confirm that the stochastic delay bounds are very accurate
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Figure 4.8: CCDF of the virtual delay of source L (CSMA/CA-case): probabil-
ities pa = 0.1, qa = 0.5, ps = 0.8, qs = 0.2, L = 10 sources, and
utilizations ρ = 0.5, 0.75, 0.9 (bottom to top), respectively
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Figure 4.9: CCDF of the virtual delay of source L (CSMA/CA-case): probabil-
ities pa = 0.1, qa = 0.5, ps = 0.8, qs = 0.2, utilization ρ = 0.75, and
number of sources L = 5, 10, 25 (bottom to top) flows, respectively

for a broad range of scenarios (note that at large values of the tail delay, the box

plots widen due to the availability of fewer data points in the simulations).

Finally, we note that for both Aloha and CSMA/CA, the arrival and

service processes are independent. That is due to the fact that the construction

of the service process is oblivious to the arrival process, and in particular it holds

for saturated arrivals; such constructions are conservative since the network

nodes do not rely on backlog state information from neighborhood nodes, and

thus the channel may be underutilized.
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4.4 Further Applications: Scheduling and

MIMO

In this section we present more complex applications of the general results from

Section 4.2. Concretely, we extend the CSMA/CA scenario from Subsection 4.3.2

in two directions: 1) accounting for in-source scheduling (Subsection 4.4.1), and

2) accounting for spatial multiplexing MIMO (Subsection 4.4.2).

4.4.1 In-Source Scheduling

We generalize the basic scenario from Section 4.3.2 by assuming that the tagged

source L comprises multiple flows, whose transmissions are first scheduled before

being sent over the CSMA/CA channel. Without loss of generality we assume

only two flows, whose arrivals and departures are denoted by A and D, and

A′ and D′, respectively, and a Static Priority (SP) scheduling policy (see Fig-

ure 4.10).

SP
Scheduler

A

A′

CSMA/CA
L− 1 (other) sources

D′

D

Source L

Figure 4.10: A tagged source L, comprising of two arrival flows A and A′, which
are scheduled according to an SP policy before being transmitted
over the channel

The arrival processes A and A′ of the source L are statistically inde-

pendent, and are assumed to have the same parameters as in Section 4.3 for

the arrival-martingales, i.e., Ka = K ′
a and ha(·) = h′

a(·); let also Ta,θ be the

corresponding exponential column-transform (of a single flow).

In this scheduled system, we are interested in the performance metrics

(i.e., backlog and delay) for the flow A. Because the service process Scsma(m,n)

from Eq. (4.5) is an exact service process, in the sense that Eq. (2.4) is in fact

satisfied with equality (see Ciucu et al. [41]), it follows that the overall service
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process available to the flow A is given by

SA(m,n) = Scsma(m,n)−A′(m,n) .

This service process, known in the (stochastic) network calculus literature as

the leftover service process (see also Chang [35] and Fidler [60]), can be thought

of as a combination of the service processes for SP (Eq. (3.7)) and CSMA/CA

(Eq. (4.5)).

Concerning the service process S(n), recall that it admits service-martingales

with parameters hs(·) and Ks; let T
θ
s be the corresponding column-transform.

Corollary 4.10 (Bounds for SP + CSMA/CA). Assume the stability con-

dition 2E[a1] < E[s1] and let

θ∗ := sup
{

θ > 0
∣

∣

∣ (λa(θ))
2
= λ(θ)−1

}

.

Let also ha and hs be corresponding (positive) eigenvectors of Ta,θ∗ and Ts,θ∗ ,

respectively. Then the following bounds hold for the backlog and delay of the

(sub-)arrival flow A of source L:

P(Q ≥ σ) ≤ E[ha(a0)]
2
E[hs(s0)]

Has
e−θ∗σ

P(W ≥ k) ≤ E[ha(a0)]
2
E[hs(s0)]

Has
e−θ∗(Ks−K′

a)k ,

where

Has := min {ha(x)h
′
a(x

′)hs(y) | x+ x′ − y > 0} .

Proof. Note first that θ∗ is well-defined using the same argument from Corol-

lary 4.9. Next we slightly adapt Theorems 4.4 and 4.5 for the constructed arrival-

and service-martingales. The key observation (in the case of the delay) is that

by the independence assumption of A, A′, and S, the product

ha(an)ha(a
′
n)hs(sn)e

θ(A(k,n)−(n−k)Ka+A′(n)−nK′
a+nKs−S(n))
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is a supermartingale. Note also that A′(k, n) is shifted with respect to both

A′(n) and S(n), whence the term Ks −Ka in the asymptotic decay rate of the

delay. Finally, the definition of θ∗ from Theorem 4.4 becomes

θ∗ := sup {θ > 0 | 2Ka ≤ Ks} ,

which completes the proof.

Corollary 4.10 generalizes the SP delay bounds from Corollary 3.8 for

a constant-rate server; similar generalizations are immediate in the case of the

other scheduling FIFO and EDF. Corollary 4.10 reveals the modularity feature

of the proposed methodology, in the sense of jointly analyzing interconnected

systems such as in-source scheduling and MAC protocols; a further convincing

example is provided next.

4.4.2 MIMO

Here we generalize the basic scenario from Section 4.3.2 by considering a spatial

multiplexing MIMO (multiple input multiple-output) scenario (see, e.g., Heath

and Paulraj [74]), in which the source L is served by J CSMA/CA channels (see

Figure 4.11). To keep the analysis tractable, we assume the independence of the

channels and disregard fading effects.

The source L has the same arrival process as in Section 4.3, in particular

with the parameters Ka and ha(·) for the corresponding arrival-martingales.

Furthermore, by extending the notations from Section 4.3.2, we assume that the

service on each channel j = 1, 2, . . . , J is modulated by i.i.d. Markov processes

(sj,n)n (with the same parameters as in Section 4.3.2). For the particular case

of MIMO spatial multiplexing, the overall service process Sj(m,n) of link L can

be represented by

S(m,n) :=
J
∑

j=1

Sj(m,n) :=
J
∑

j=1

n
∑

k=m+1

C1{sj,k=L} , (4.6)
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CSMA/CA
L− 1 (other) sources

1

CSMA/CA
L− 1 (other) sources

J

...
A

D

Figure 4.11: Spatial multiplexing MIMO: the tagged source L is transmitted over
J independent MAC channels

where Sj(m,n) is the service process for channel j.

Each service process Sj(n) admits service-martingales with parameters

hs(·) and Ks (due to the i.i.d. assumption across the modulated Markov pro-

cesses). Let also Ta,θ and Ts,θ be the corresponding exponential column-transforms

for the arrival and service processes.

Corollary 4.11 (Bounds for MIMO). Assume the stability condition E[a1] <

JE[s1] and let

θ∗ := sup
{

θ > 0
∣

∣ λa(θ) = (λs(θ))
−J
}

,

where sp(·) denotes the maximal positive eigenvalue. Let also ha and hs be

corresponding (positive) eigenvectors of Ta,θ∗ and Ts,θ∗ , respectively. Then the

following bounds hold for the backlog and delay of source L:

P(Q ≥ σ) ≤ E[ha(a0)]E[hs(s0)]
J

HJ
e−θ∗σ

P(W ≥ k) ≤ E[ha(a0)]E[hs(s0)]
J

HJ
e−θ∗Ksk ,

where

HJ := min







ha(x)
J
∏

j=1

hs(yj)

∣

∣

∣

∣

∣

∣

x−
J
∑

j=1

yj > 0







.

Proof. As in Corollary 4.9, θ∗ is well-defined. We make the key observation that
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Figure 4.12: The tail delays from Corollary 4.11 as a function of the number
of channels J (pa = 0.1, qa = 0.5, ps = 0.8, qs = 0.2, utiliza-
tion ρ = 0.75, and ε = 10−5, 10−3, 10−1); the bottom horizontal
lines correspond to the tail delays under deterministic service (the
corresponding bounds are computed with Theorem 4.5)

by the independence assumption on the Markov processes (sj,n)n, the product

J
∏

j=1

hj(sj,n)e
θ(JKs−S(n))

is a service-martingale for the overall service process S. Consequently, the defi-

nition of θ∗ from Theorem 4.4 becomes

θ∗ := sup {θ > 0 | Ka ≤ JKs} .

The rest proceeds as in Corollary 4.9.

Let us now analyze the impact of the number of channels J , in particular

on the probabilistic delay of source L. Due to the implicit definition of θ∗ from

Corollary 4.11 in terms of eigen-values/vectors, a quantitative result is conceiv-

ably difficult to be obtained. We thus resort to a numerical experiment, using the

same numerical values as in Section 4.3.2. Concretely, in Figure 4.12, we illus-

trate the tail delay for three violation probabilities (i.e., ε = 10−5, 10−3, 10−1) as

a function of the number of channels J , and for a normalized utilization ρ = 0.75

(for each J). The key observation is the exponential decay of the delay, an effect

which is more pronounced for smaller (and thus more practical) values of ε.
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The figure also includes the corresponding delays in a scenario with de-

terministic (and normalized) service, for the three values of ε (i.e., the three

horizontal bottom lines, which are invariant to J). As expected, for each ε,

the tail delays converge to the horizontal line corresponding to a deterministic

service; especially for small values of ε, the convergence is however very slow

and not visible in the current plot. While we limit J to 10 for both practical

considerations and the readability of the plot, we point out that for ε = 10−5

the convergence is still not visible at J = 100, but only around J = 1000 (i.e.,

an impractical regime).

Overall, the figure convincingly indicates that MIMO spatial multiplex-

ing manifests its power for small values of J only. Concretely, for realistic small

values of ε, there is a dramatic decrease in delay when increasing the number

of channels from J = 1 to J = 2. The delays continue to decrease by further

increasing J , but at much smaller rates.

4.5 Summary

In this chapter we have developed the first rigorous and accurate methodology

to compute queueing performance metrics (i.e., backlog and delay) for bursty

sources sharing a MAC (bursty) channel: the sources are modelled using the

arrival-martingale model from Chapter 3, whereas the available service for the

source at the shared channel is modelled using the service-martingale model. By

leveraging the modelling power of the proposed martingale methodology we have

shown that the obtained stochastic bounds are remarkably tight in the case of

Markov-modulated sources, and Aloha and CSMA/CA channels. We have also

shown that our methodology offers an attractive modularity feature, in the sense

that we could extend basic results to much more complex scenarios accounting

for in-source SP scheduling or MIMO spatial multiplexing.
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5
The Impact of Randomness in the

Number of Flows

The common challenge faced by all queueing approaches, when modelling some

unpredictable resource sharing based system, is capturing the system’s inherent

randomness. While capturing randomness is essential in modelling, different

randomness models can lead to very different insights on actual system behavior.

Consider for instance a simple example of a router with capacity C which is being

modelled by the classic M/M/1 queue: packets arrive as a Poisson process with

rate λ, and their sizes are exponentially distributed with average 1/µ. Under
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the stability condition λ/(µC) < 1, the packets’ average delay is

E

[

delay
]

=
1

µC − λ
. (5.1)

If we consider next the much simpler averaged-out D/D/1 model, in which the

interarrival times are constant (i.e., equal to 1/λ) and packet sizes are constant

as well (i.e., equal to 1/µ). Under the same stability condition, the packets’

average delay becomes

E

[

delay
]

=
1

µC
. (5.2)

Note the different quantitative results predicted by the two models, with the

observation that the “more random” one predicts higher delays. Such stochastic

ordering properties, formalizing the manifestation of the folk principle that “de-

terminism minimizes the queue”, have been studied in the context of queueing

systems (see the related work section) and even for risk management (see, e.g.,

Asmussen et al. [7]).

Let us consider a more complex queueing model subject to flows’ mul-

tiplexing and which explicitly accounts for the number of parallel flows at time

n, denoted throughout by F (n). While there is an overwhelming work on static

queues whereby F (n) is a constant (e.g., the results provided in Chapter 3),

much less is known on dynamic queues whereby F (n) is a stochastic process1.

Moreover, since communication networks are more accurately modelled by dy-

namic queues (e.g., the number of parallel flows traversing an Internet router

actually is a stochastic process) the goal of this chapter is to provide an ana-

lytical understanding on the role of randomness in F (n) on the queue size (e.g.,

How fast does it grow?). In particular, this chapter attempts to provide insights

into the question “What is the joint impact of stochastic models, for both F (n)

and the flows’ themselves, on the queue size?”.

To answer such a fundamental question we consider two randomness

1We use the terminologies static queue when the number of parallel flows is deterministic
and dynamic queue when the number of flows is random. While not standard and perhaps
confusing, the terminology is preferred as a convenient shorthand.
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models: One is subject to strong i.i.d. assumptions (paralleling Subsection 3.2.1),

enabling a tractable analytical study on the impact of various distributions of

F (n) on the queue size. The second more realistic case is when F (n), and

also the flows, have a Markov structure (paralleling Subsection 3.2.2). While

stochastic bounds on the queue size can also be derived, as in the i.i.d. case, they

are expressed in terms of eigen-values/vectors hampering an explicit analytical

investigation; for this reason, numerical evaluations will be invoked.

By using convexity arguments, the simplicity of the i.i.d. case enables

showing that the best-case distribution from the perspective of the queue size

is the intuitively obvious constant distribution, extending thus the folk princi-

ple that “determinism minimizes the queues” from static to dynamic queues.

The second extremal property concerns the corresponding worst-case distribu-

tion, i.e., which law of F (n) maximizes the queue size? It is shown that this is

a bimodal distribution, with mass on the extremes of F (n)’s range and there-

fore maximizing all the moments. This result also agrees with parallel results

from static queues concerning extremal properties of bimodal distributions (see

Section 5.1.3). Another immediate result is that strong conditions on order-

ing distributions are needed, in contrast to parallel results from M/G/k queues.

The perhaps most fundamental insight is that the above folk principle can fail,

in the more realistic case when F (n) is Markov-modulated. Concretely, we find

that there is a transition in the flows’ average lifetimes at which dynamic queue

models yield (stochastically) larger queues than the corresponding (normalized)

static queue models.

These overall insights raise the important caveat that approximating

(realistic) dynamic queues by static queues (i.e., replacing the stochastic process

F (n) by its mean E[F (n)]) can yield very misleading results, which can either

overestimate or underestimate the “true” results.

The rest of this chapter is structured as follows: First we overview related

work. In Section 5.2 we treat dynamic queues under i.i.d. multiplexing, and in

Section 5.3 under more realistic Markovian assumptions.
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5.1 Related Work

Here we overview previous work related to the main topics of this chapter, i.e.,

the relevance of studying dynamic queues (Subsection 5.1.1, stochastic orderings

concerning queueing metrics (Subsection 5.1.2), and extremal distributions for

minimizing/maximizing queues (Subsection 5.1.3).

5.1.1 Dynamic Queues and Analytical Approaches

The importance of accounting for the elastic nature of Internet traffic, deter-

mined by a dynamic or random number of parallel flows, has been recognized

in the context of bandwidth sharing. Massoulié and Roberts showed that ran-

domness in the number of parallel flows can have unpredictable consequences

on the throughput of long-lived flows, irrespective of the assigned weights to the

parallel flows [107]. In a similar setting, Bonald and Massoulié demonstrated

that network stability is insensitive to a broad range of fair allocations [20],

generalizing a result of de Veciana et al. for weighted max-min fairness [144].

A more recent study of Liu et al. showed that stability is actually sensitive to

the settings of α fairness, in networks with non-convex and time-varying rate

regions [102], generalizing an earlier result of Bonald and Proutière [21]. An-

other notable insensitivity result is that in dynamic scenarios with flows arriving

as a Poisson process, the first moments of the number of flows and the flows’

throughput do not depend on the flow size distribution or on the properties of

the flows’ arrivals (Fred et al. [63]).

A general way to model randomness in the number of flows is through

a queue with bulk arrivals, i.e., the G[F ]/G/1 queue, whereby customers arrive

in batches of random size F according to a renewal process, and customers have

some service time distribution. In the case of Poisson renewals, exact solutions

exist for various queueing metrics (e.g., Laplace transforms for waiting times)

and various scheduling of the batches: FIFO (Burke [30]), with priorities (Takagi

and Takahashi [136]), or PS (Bansal [13]); for more general renewals solutions

are given numerically (Schleyer [125]) or in terms of bounds (Yao et al. [160]).
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For an excellent treatment of queues with bulk arrivals see Chaudhry and Tem-

pleton [36]. Our contribution herein is to analyze very general distributions

(subject to a finite moment generating function (MGF)).

Other analytical approaches address queueing models with fluid arrivals.

For instance, the classical Anick-Mitra-Sondhi model [6], with a fixed number

of flows producing arrivals at some rates according to the states of Markov On-

Off processes, can be regarded as a queue with a binomial number of flows.

Queueing in related fluid models can be analyzed exactly in terms of spectral

representations, at a cost of high computational complexity due to a combina-

torial explosion in the number of states [133]. The advantage of our approach is

that it provides simple (convex) upper and lower bounds on queueing metrics,

which further permit the immediate analysis of extremal properties.

5.1.2 Stochastic Orderings

Stochastic orderings, setting partial orders for queueing metrics, were previously

addressed in static scenarios. An elementary example on the role of the variabil-

ity of underlying distributions was just illustrated in Eqs. (5.1) and (5.2). More

generally, in M/G/k queues, the average delay was shown to be an increasing

function of the variance of the service time distribution (see Whitt [151, 152]).

Extensions of this monotonicity property were considered by Asmussen and

O’Cinneide in [8] for Markov-modulated M/G/1 queues. For single queues with

Markov-modulated Poisson processes, and under some monotonicity assump-

tions on the generator of a Markov chain modulating the intensity, Bäuerle and

Rolski [15] proved that the queues increase by scaling down the generator. In

the case of networks with Poisson arrivals, it was shown that exponential packet

sizes yield smaller delays than averaged-out sizes but not in full generality (for

a counterexample see Harchol-Balter and Wolfe [72]). When the arrivals are not

Poisson however, the monotonicity property fails in some cases even for single

queues (see, e.g., Ross [124]).

This chapter shows that the monotonicity of the variance alone of the
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number of flows F (n) is not sufficient to infer stochastic orderings on the queue

size; instead, a sufficient condition is given by the monotonicity of the MGF.

In the light of related work, our result thus indicates that queuing metrics are

much more sensitive to the variability of the number of flows than of the flows

themselves; this claim is further supported by the emphasized sensitivity of

dynamic queues to peak rather than average-values.

5.1.3 Extremal Distributions

A “folk theorem” in queueing theory states that, when the average inter-arrival

(service) time is fixed, the constant inter-arrival (service) time distribution mini-

mizes queueing metrics such as average waiting time. This result was proved for

renewal processes (see Rogozin [122]) and also for more general arrival processes

with exponential service times (see Hajek [69] and Humblet [78]). A related

variant of the underlying intuitive principle that “determinism minimizes the

waiting” is that round-robin server assignment outperforms random server as-

signment (see Makowski and Philips [106]).

In turn, bimodal distributions maximize queue lengths in GI/M/1 queues

(Whitt [153]), in G/M/1 queues with bulk arrivals (Lee and Tsitsiklis [99]), and

more recently in queues with bulk arrivals and finite buffers (Bušić et al. [31]).

We will show that these extremal properties characteristic to static queues ex-

tend to dynamic queues as well.

5.2 I.I.D. Multiplexing

We first consider multiplexing under strong i.i.d. assumptions of the flows. This

simplified case enables an analytical study on the impact of the distribution of

the number of parallel flows on the queue size. For the more realistic Markov-

modulated multiplexing case, which is only amenable to a numerical study, see

the next section.

We consider the single-queue scenario from Chapter 3 (as depicted in
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A(n) C

F (n)

Figure 5.1: A server with constant rate C serving a single queue with input A(n)
consisting of F (n) parallel flows.

Figure 5.1): The queue has an infinite sized buffer, whereas the server has a

constant capacity C and serves the arrivals in a work-conserving manner.

After introducing the arrival model, we will derive upper and lower

bounds on the queue size, and then discuss on extremal distributions of F (n)

relative to achievable queue sizes; the obtained analytical insights will be finally

complemented by some illustrative numerical results.

5.2.1 Arrival Model

The time model is discrete. The number of parallel flows active at time n is

represented by a stationary stochastic process F (n). The cumulative arrival

process A(n), counting the number of data units (e.g., packets) over the time

interval [0, n] is defined recursively as

A(n) = A(n− 1) +

F (n)
∑

i=1

ai(n) , (5.3)

with the initial condition A(0) = 0. The instantaneous arrival process at time n

is represented by the random vector a(n) = (a1(n), a2(n), . . . ). When clear from

the context, we will refer to the elements of F (n) by F , and to the elements of

a(n) simply by a.

For some θ > 0, we assume that the moment generating functions

(MGFs)

φa(θ) := E
[

eθa
]

and φF (θ) := E
[

eθF
]

are finite. Moreover, we assume that the elements of a(n) and F (n) are each

i.i.d., and jointly independent.
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5.2.2 The Queue Distribution

Since the increment process A(n)−A(n− 1) is reversible, the stationary queue

size Q can be written as (see Eq. (2.7))

Q =D sup
n≥0

{A(n)− Cn} .

The next theorem provides upper and lower bounds for the distribution of Q:

Theorem 5.1. (Q’s Distribution, i.i.d.-case) Consider the arrival process

from Eq. (5.3) and assume that the elements of A are i.i.d. with MGF φa(θ), and

the elements of F are i.i.d. with MGF φF (θ); also, A and F are independent.

Consider a queue with service rate C and let

θ∗ := sup {θ ≥ 0 | φF (log φa(θ)) = φC(θ)} . (5.4)

Then we have the upper bound for all σ ≥ 0

P

(

Q ≥ σ
)

≤ e−θ∗σ . (5.5)

If in addition there exists the constants amax and Nmax such that a1(1) ≤ amax

almost surely (a.s.), F (1) ≤ Nmax a.s., and Nmaxamax > C, then we have the

lower bound for all σ ≥ 0

P

(

Q ≥ σ
)

≥ e−θ∗(Nmaxamax−C)e−θ∗σ .

The upper and lower bounds are asymptotically exact (i.e., the following

limit limσ→∞
1
σ logP (Q > σ) = θ∗ holds) since the two exponential bounds have

the same decay rate θ∗. We remark that the theorem immediately extends to

the case of a queue with random instantaneous capacities (C(1), C(2), . . . ), if

these are i.i.d.; the only modification is that φC(θ) in Eq. (5.4) is to be replaced

by φC(1)(θ). In the theorem, we do not explicitly impose the stability condition

E[a]E[F ] = φ′
a(0)φ

′
F (0) < C. Unless this is true then θ∗ = 0 in Eq. (5.4). Also,
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for the lower bound, the condition Nmaxamax > C avoids the trivial situation of

no queueing.

To prove the upper bound we apply Kingman’s technique for GI/GI/1

queues based on an exponential martingale [92]. To prove the lower bound we

rely on some additional ideas from Ross [123] and Chang [35].

Proof. The proof for the upper bound is a variant of the proofs of Theorem 3.4,

and Lemma 3.12, taking into account the additional randomness that stems

from the process F (n). Let x ≥ 0. With θ∗ as in the theorem we construct the

random process

Xn = eθ
∗(A(n)−Cn)

for all n ≥ 0. Let also the associated filtration of σ-algebras

Fn = σ(a(1), . . . ,a(n), F (1), . . . , F (n)) ,

where a(n)’s denote the vectors (a1(n), a2(n), · · · ).

The key to the proof is to show that Xn is a martingale. For some n ≥ 1

we can write for the conditional expectation

E [Xn | Fn−1] = E

[

Xn−1e
θ∗

(

∑F (n)
i=1 ai(n)−C

)

∣

∣

∣

∣

Fn−1

]

= Xn−1E

[

e
θ∗

(

∑F (n)
i=1 ai(n)−C

)
]

,

using that Xn−1 is Fn−1-measurable and the independence assumptions on A

and F. Further conditioning on F (n) we can compute the last expectation

E

[

eθ
∗ ∑F (n)

i=1 ai(n)
]

=
∑

m≥0

φa(θ
∗)nP (F (n) = m)

= φF (log φa(θ
∗)) ,

after using the independence properties again. With this we can continue above

E [Xn | Fn−1] = Xn−1φC(−θ∗)φF (log φa(θ
∗)) = Xn−1 ,
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using the definition of θ∗. Therefore the sequence Xn is a martingale (rela-

tive to Fn). The proof for the upper bound follows exactly as in the proof of

Theorem 3.4.

To prove the lower bound we further let y ≥ 0 and denote

N := inf {n ≥ 0 | A(n)− Cn ≥ σ} , and

Ny := min {N, inf {n ≥ 0 | A(n)− Cn ≤ −y}} .

Ny is the first time to exit the interval [−y, σ]. Note that Ny is a finite stop-

ping time relative to Fn. By the optional stopping theorem (see Lemma 2.8),

the process (XNy∧n)n is a martingale, which is bounded and hence uniformly

integrable. Thus, XTy∧n → XTy
a.s. and in L1 (see [154, Theorem 13.7]), and

we have

E [X0] =E
[

XNy∧0

]

= E
[

XNy

]

=E
[

XNy
| A (Ny) ≥ CNy + σ

]

P (A (Ny) ≥ CNy + σ)

+ E
[

XNy
| A (Ny) ≤ CNy − y

]

P (A (Ny) ≤ CNy − y) . (5.6)

Note further the implications of events

{A (Ny) ≥ CNy + σ} ⇒ {Ny = N}

⇒ {A (Ny − 1) < C (Ny − 1) + σ}

⇒ {A (Ny) ≤ CNy +Nmaxamax − C + σ} ,

where we used the definition of N and the bounding constants from the theorem.

We can thus bound the previous sum as

E [X0] ≤ eθ
∗(Nmaxamax−C+σ)

P (A (Ny) ≥ CNy + σ) + e−θ∗y .
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Letting y → ∞ yields

E [X0] ≤ eθ
∗(Nmaxamax−C+σ)

P (N < ∞) .

The lower bound from the theorem follows immediately from P (N < ∞) =

P (Q ≥ σ) and E [X0] = 1, which completes the proof.

5.2.3 Extremal Distributions

Given the bounds from Theorem 5.1, we can identify the best/worst-case dis-

tributions for F (n) which minimize/maximize the queue size. Then we discuss

conditions under which a particular distribution is “better” or “worse” than

another.

To formalize the underlying stochastic ordering, and thus the meaning

of “better” and “worse”, we say that a queue Q1 is smaller than another queue

Q2 if the corresponding decay rates θ1 and θ2 (e.g., defined in Eq. (5.4)) satisfy

θ1 ≥ θ2 ,

i.e., if the tail probability of Q1 decays faster than the tail probability of Q2.

Best-Case Distribution

First we briefly show the intuitive result that the best-case distribution of F is

the constant one. What is more interesting is that neither of the distributions

of F and a dominates the other, when jointly accounting for both.

Given the i.i.d. assumption, Jensen’s inequality (see Lemma 2.1)

eθE[X] ≤ E
[

eθX
]

(for some r.v. X) yields that

φE[F ] (log φa(θ)) ≤ φF (log φa(θ)) .
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The left-hand side corresponds to the composition of MGFs from the definition

of θ from Eq. (5.4) when there is no randomness in the number of parallel flows,

i.e., when the elements of F (n) are equal to a single constant. In turn, the

right-hand side accounts for randomness in F (n). Because of the inequality

above, it follows that the value of θ∗ from Eq. (5.4) decreases when accounting

for randomness, which further means that the queue increases correspondingly.

The best-distribution is thus the constant, which in particular minimizes all the

moments.

Finally, we point out the interesting fact that none of the randomness in

the number of parallel flows, or at the flow level, dominates the other. That is

because there is no general ordering between the terms

φE[F ] (log φa(θ)) and φF

(

log φE[a](θ)
)

.

Indeed, using Jensen’s inequality, the left term is the smallest when a is non-

random (i.e., a = E[a]) and F is random. In turn, the left term is the largest

when F is non-random (i.e., F = E[F ]) and a is random. This fundamental lack

of monotonicity suggests that, even for the purpose of deriving bounds on the

queue size distribution, both the randomness in the number of flows and at the

flow level must be jointly accounted for. In other words, simplifying the queueing

model by averaging-out either F or a can lend itself to incorrect results.

Worst-Case Distribution

According to Theorem 5.1, the problem of determining the distribution of F

which maximizes the queue reduces to solving for

argmax
F, fixed E[F ]

E
[

eθF
]

, (5.7)

for all θ > 0. The next Lemma gives the solution:
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Lemma 5.2. (Worst-case distribution) Assuming that F has the support

{0, 1, . . . , Fmax}, the solution of Eq. (5.7) is the bimodal distribution with

π0 = 1− E[F ]

Fmax

and πFmax
=

E[F ]

Fmax

.

Proof. Assume that there exists 0 < i < Fmax such that πi := P(F = i) > 0.

Denoting x = Fmax−i
Fmax

πi, let us observe that

π0 + πie
θi + πmeθFmax ≤ π0 + x+ (πFmax

+ πi − x) eθFmax . (5.8)

Indeed, showing this inequality reduces to showing that the function

f(i) :=
eθFmax − eθi

Fmax − i

is monotonically increasing over i ∈ {0, 1, . . . , Fmax − 1}. This can be shown

immediately by extending f(·) to continuous time, differentiating, and using the

inequality ez ≥ z + 1 for z ≥ 0.

Therefore, Eq. (5.8) shows that a “worse” distribution can be obtained

by appropriately spreading the distribution mass to the extremes. Note that the

new distribution retains the average value E[F ] since

iπi +mπFmax
= Fmax (πFmax

+ πi − x) .

The proof is complete by repeatedly spreading the mass, as in Eq. (5.8), for all

0 < i < Fmax for which πi > 0.

We note that the bimodal distribution was found to attain the max-

imum over a partial order set according to convex ordering (see Shaked and

Shanthikumar [129], Theorem 3.A.24, p. 125); in our case, the ordering is re-

stricted to MGFs only.
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5.2.4 Ordering Distributions

The constant best-case distribution and the bimodal worst-case distribution

identified earlier are clearly unrealistic from a practical point of view. It is

thus of interest to analyze the relationship between different (and more realis-

tic) distributions from the point of view of being “better” or “worse”.

Following the presented arguments, an immediate sufficient condition for

a distribution F1 to be “better” than a distribution F2 (subject to the condition

E[F1] = E[F2]) is an ordering on the MGFs, i.e.,

E
[

eθF1
]

≤ E
[

eθF2
]

, (5.9)

for all θ > 0. This can be seen from the construction of the optimal θ from, e.g.,

Eq. (5.4) in Theorem 5.1.

The condition from Eq. (5.9) is clearly strong as it implicitly involves all

the moments of F1 and F2. In the light of the discussion from Section 5.1.2 that

an ordering on the variance (of packet distributions) is sufficient for ordering

the queue sizes in M/G/k queues, we point out that a similar condition on

the variance is not sufficient in the current context (mainly due to non-Poisson

input). To quickly illustrate this negative fact, by counterexamples, let C = 3,

F1 the Uniform distribution with support {0, 1, 2, 3, 4} and F2 having the same

support, the same average E[F1] = E[F2] = 2, and the mass π1 = 0.5, π2 =

0.25, and π4 = 0.25. One can show that V ar[F1] > V ar[F2] and

sup
{

θ
∣

∣ eθC = E
[

eθF1
]}

> sup
{

θ
∣

∣ eθC = E
[

eθF2
]}

, (5.10)

i.e., F1 is “better” than F2.

In turn, by changing the mass of F2 to π1 = 0.5 and π4 = 0.5, one

can show that V ar[F1] < V ar[F2] but F1 is “worse” than F2. To conclude,

the variance alone of F is not a sufficient indicator for ordering the queues.

Moreover, in the light of the above counterexamples, it is conceivable that the

sufficient condition from Eq. (5.9), which imposes an ordering on the MGFs, is
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Figure 5.2: Impact of several distributions for the number of parallel flows F on
the queue size. Analytical bounds are depicted with lines, whereas
corresponding simulation results are depicted with the “×” symbol.

also necessary.

5.2.5 Numerical Results

We now provide numerical evidence on the discrepancy between static and dy-

namic queues, by varying the distribution of the number of parallel flows F and

also the corresponding peak-to-mean ratios.

To keep the analysis concise, we consider a homogeneous scenario in

which the elements of a are Bernoulli random variables taking the values 0 and

1 with probabilities 1−p and p, respectively. Figure 5.2 illustrates the queue size

x, for a fixed violation probability ε = 10−3, and as a function of the utilization

factor; the other parameters are E[F ] = 10, Fmax = 20, C = 9, and p is scaled

accordingly for each utilization value. The worst-case distribution is the one from

Lemma 5.2. The figure indicates that the impact of F ’s distribution on the queue

size can be substantial (e.g., as large as many orders of magnitude). Moreover,

simulation results (depicted with the “×” symbol, for each distribution) indicate

that our analytical bounds are quite tight.

In Figure 5.3 we illustrate the impact of several distributions on the

queue size, especially when varying the peak-to-mean ratio (the same parameters
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Figure 5.3: Impact of several distributions for the number of parallel flows F on
the queue size, depending on the peak-to-mean ratio.

are used as in Figure 5.2, except for scaling the peak and fixing the utilization to

75%). The figure provides strong evidence that approximating dynamic by static

queues can be arbitrarily misleading for queueing metrics, even for moderate

values of the peak-to-mean ratio.

As a side remark, the obtained results uncover several fundamental sim-

ilarities and differences amongst the concepts of capacity when defined in 1)

information theory (e.g., as the channel capacity), 2) static, and 3) dynamic

queues (e.g., as the required capacity to guarantee some queueing constraints).

All three corresponding maximal capacities are attained by the intuitively obvi-

ous constant distribution, which in particular has zero entropy. In turn, while

the minimal channel capacity is attained by the uniform distribution (which

maximizes the entropy), the two queueing minimal capacities are attained by

bimodal distributions; this conceptual difference stems from the different scalar

measures of a distribution used in information theory (i.e., the entropy) and

queues (i.e., moments accounting for actual values).
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5.3 Markov-Modulated Multiplexing (MMM)

In this section we consider the Markov-Modulated Multiplexing (MMM) case,

i.e., F (n) is modulated by a Markov process. While MMM is more realistic

than i.i.d. multiplexing, the implicit nature of the obtained stochastic bounds

only allows for qualitative insights on the behavior of dynamic queues using

numerical results.

5.3.1 Arrival Model

To model MMM we consider a number of Fmax Markov-Modulated sources. For

each source, transmissions are modulated by a Markov chain with state space

S = {0, 1, IA} (see Figure 5.4).

0 1

IA

p

q

r
s0

r
s1

s

R

Figure 5.4: A Markov process modulating the arrival process of a source

The upper two states correspond to a typical Markov-Modulated On-

Off (MMOO) source (see Figure 3.3 in Subsection 3.2.2) which is idle while in

state “0” and transmits at constant rate R while in state “1”. The extra state

“IA” models the situation that the MMOO source may be inactive, i.e., it is no

longer considered present. The difference between the states “0” and “IA” is

that r << q, i.e., it is much less likely for the source to enter the inactive state

than the idle state. From the inactive state, the source reactivates according to

the (conditional) steady-state probability vector of the MMOO source, i.e.,

πact =

(

q

p+ q
,

p

p+ q

)

,
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(see Eq. (3.15)) such that s0 = q
p+q (1− s) and s1 = p

p+q (1− s). The transition

matrix of the entire Markov chain is

T =













(1− p)(1− r) p(1− r) r

q(1− r) (1− q)(1− r) r

q
p+q (1− s) p

p+q (1− s) s













. (5.11)

To summarize, the number of parallel flows (i.e., the number of Markov

chains not delving in the “IA” state) is a (Markov) process F (n) with support

{0, 1, . . . , Fmax}. The fundamental difference from the i.i.d. multiplexing model

from Eq. (5.3) is that MMM allows for the dynamic multiplexing of bursty

sources (e.g., MMOO processes). In particular, we point out that the model from

Eq. (5.3) cannot be simply extended to bursty sources by relaxing the condition

that the elements of A are i.i.d.; for instance, in the case of MMOO sources in

Eq. (5.3), their Markovian structure would be ambiguous due to dynamically

changing F (n). On the other hand, the proposed MMM model restricts the

distribution of F (n) to a binomial, albeit the dynamical structure (i.e., driven

by an implicit Markov chain) of F (n) is captured.

5.3.2 The Queue Distribution

Let (ai(n))n, i ∈ {1, . . . , Fmax}, denote Fmax independent copies of Markov-

Modulated sources as in Figure 5.4. Then, the (cumulative) arrival process

A(n) is recursively given by

A(n) = A(n− 1) +

Fmax
∑

i=1

f(ai(n)) , (5.12)

where

f(x) :=















R x = 1

0 x ∈ {0, IA}
.

It is easy to check that the stationary distribution of each source is given
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by the probability vector

π =

(

q(1− s)

(p+ q)(r + 1− s)
,

p(1− s)

(p+ q)(r + 1− s)
,

r

r + 1− s

)

.

Further, the balance equations

πiT (i, j) = πjT (j, i) , i, j ∈ S

hold so that the sources ai(n), and hence the increment process A(n) − A(n −

1), are reversible. Consequently, the stationary queue length Q has again the

representation (see Eq. (2.7))

Q = sup
n≥0

{A(n)− Cn} .

Recall the definition of the exponentially transformed transition matrix (see

Eq. (3.13)):

Tθ(i, j) := Tθ(i, j)e
θf(j) , i, j ∈ S ,

for θ ≥ 0. Further, λ(θ) denotes the maximal positive eigenvalue and ν a corre-

sponding positive eigenvector.

The next theorem provides upper and lower bounds on Q’s distribution:

Theorem 5.3. (Q’s Distribution, MMM-case) Consider the arrival model

from Eq. (5.12) and a constant server capacity C > 0. Let

θ∗ := sup
{

θ ≥ 0
∣

∣

∣ λ(θ) = eθCF−1
max

}

,

then the following bounds on the backlog hold for σ > 0:

P(Q ≥ σ) ≤ Hue
−θ∗σ , and P(Q ≥ σ) ≥ Hle

−θ∗σ ,

88



5 The Impact of Randomness in the Number of Flows

where

Hu =
(π0ν0 + π1ν1 + πIAνIA)

Fmax

ν
⌈CR−1⌉
1 +min{ν0, νIA}Fmax−⌈CR−1⌉

, and

Hl =
(π0ν0 + π1ν1 + πIAνIA)

Fmax

maxs ν
Fmax
s eθ∗(RFmax−C)

.

Note that the definition of θ∗ resembles the one from Theorem 5.1 with

the only difference that the MGF is replaced by the eigenvalue. We also note

that θ∗ = 0 when the queue is not stable, and that the upper and lower bounds

are asymptotically exact since they have the same decay rate θ∗.

Proof. By Lemma 3.15, the processes

Xi
n := νai(n)e

θ∗(
∑n

k=1 f(ai(k))−CF−1
maxn) ,

(for fixed 0 ≤ i ≤ Fmax) are martingales. By the independence assumption on

the Fmax arrivals the product

Xn :=

Fmax
∏

i=1

Xi
n =

Fmax
∏

i=1

νai(n)e
θ∗(A(n)−Cn)

is a martingale as well (see Lemma 2.9). Now similarly as in the proof of Theo-

rem 3.4 define the stopping time

N = inf {n ≥ 0 | A(n)− Cn ≥ σ}

and then apply the optional stopping theorem to N ∧ n, implying that

E[X0] = E[XN∧n] ≥ E[XN∧nI{N≤n}] ≥ eθ
∗σ
E[

Fmax
∏

i=1

νai(N)I{N≤n}] .

As in the proof of Corollary 3.17, at time N at least ⌈CR−1⌉ chains are trans-
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mitting. Therefore:

Fmax
∏

i=1

νai(N) ≥ ν
⌈CR−1⌉
1 +min{ν0, νIA}Fmax−⌈CR−1⌉ =

E[X0]

Hu

The upper bound then follows as in the proof of Theorem 5.1 by letting n → ∞

and observing that

P(Q ≥ σ) = P(N < ∞) .

For the lower bound, define the stopping time

Nτ = min{N, inf {n ≥ 0 | A(n)− Cn ≤ −τ}}

for some τ ≥ 0. Using the same arguments as in the proof of Theorem 5.1 we

have

E[X0] =E [XNτ
| A(Nτ )− CNτ ≥ σ]P(A(Nτ )− CNτ ≥ σ)

+ E [XNτ
| A(Nτ )− CNτ ≤ −τ ]P(A(Nτ )− CNτ ≤ −τ)

≤max
s

νFmax
s eθ

∗(RFmax−C+σ)
P(A(Nτ )− CNτ ≥ σ) + max

s
νFmax
s e−θ∗τ .

Now simply let τ → ∞:

E[X0] ≤ max
s

νFmax
s eθ

∗(RFmax−C+σ)
P(N < ∞) =

E[X0]

Hl
eθ

∗σ
P(N < ∞) ,

which completes the proof.

5.3.3 Numerical Results

As in Section 5.2, we next discuss the discrepancy between static and dynamic

queues. Recall that the exponential decay rate θ∗ from Theorem 5.3 is the same

for the upper and lower bounds, respectively, and is thus the dominating factor

for the decay of the overflow probability P(Q ≥ σ).

We consider a similar numerical settings as in Section 5.2.5 with an

average Favg = 10 of homogeneous Markov Modulated sources, as in Figure 5.4,
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(a) p = 0.1, q = 0.5

Decay Rate

Flow duration

T
h

e
ta

2 20 200

0
0

.1
0

.2
0

.3
0

.4
0

.5

static
dyn. (Mmax=15)

dyn. (Mmax=20)

dyn. (Mmax=50)

(b) p = 0.01, q = 0.05

Figure 5.5: Decay rate θ as a function of the flows’ average lifetime r−1 for both
static and dynamic (dyn.) scenarios (ρ = 0.75, Favg = 10, RC−1 is
rescaled for each r−1; the x-axis is shown on a log-scale)

which are active (i.e., dwelling in the states 0 and 1). Formally,

πIA =
r

r + 1− s
= 0.25 . (5.13)

The parameter r determines the flow’s average lifetime (which equals

r−1). Its range is the interval [0, 1
3 ]; for r = 0 the queues are static, whereas for

r > 1
3 the parameter s cannot be scaled such that Eq. (5.13) holds. The ratio

RC−1 is scaled such that the link utilization ρ = 0.75 remains constant in all

cases, i.e.,

RC−1 =
ρ

π1Fmax
and RC−1 =

ρ

(πact)1 Favg

in the dynamic and static cases, respectively.

In Figure 5.5 we illustrate the dominating factor θ∗ from Theorem 5.3,

of the probability of P(Q ≥ σ), for various average lifetimes r−1 of the flows.

Compared to 5.5(a), the scenario from 5.5(b) captures burstier flows (by decreas-

ing the transition probabilities by a factor of 10). In both figures we consider a

static scenario (i.e., Fmax = 10) and three (properly normalized) dynamic (dyn.)

scenarios by varying Fmax = 15, 20, 50.

Figure 5.5(a) highlights the expected behavior that randomness in the

number of flows “hurts” the system’s performance: Unless the flows are very
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short-lived (i.e., r−1 ≥ 5) the backlog in the dynamic case is on average larger

than its deterministic counterpart. Interestingly, for r−1 ≤ 4 the performance

actually benefits from randomization. This is due to the fact that for very short-

lived flows, the (beneficial) property of multiplexing roughly independent flows

(as the Markov structure lasts very shortly) outruns the (detrimental) effect of

the bursty sources.

This transition effect, i.e., the actual value of the flows’ average lifetime

at which dynamic multiplexing “hurts”, depends on the flows’ own burstiness.

This can be seen from Figure 5.5(b) where the transition occurs at much larger

average lifetimes (and at which the flows remain roughly independent since the

flows’ Markov structure survives for around the average dwelling time in one of

the states).

In conclusion, the figures indicate that for reasonable (i.e., not very

short) average flows’ lifetimes, flows’ multiplexing “hurts” the queue size. More-

over, the discrepancy between static and dynamic queues depends on the flows’

own burstiness and also the distribution/support of the number of flows, and

can be arbitrarily large as shown in Figure 5.5(a) for large Fmax and long flows.

5.4 Summary

In this chapter we utilized the powerful martingale-methodology from Chapters 3

and 4 to investigate the queueing behavior in typically neglected but highly rele-

vant dynamic queues characterized by a random number of parallel flows. Under

some strong i.i.d. assumptions, enabling a tractable analysis, we have first shown

that dynamic queues retain some extremal properties from static queues, i.e.,

capacities are maximized by constant distributions and are minimized by bi-

modal distributions. While the i.i.d. case confirms that “determinism minimizes

the queues”, we have shown that this folk principle fails in the more realistic

case when the number of parallel flows has a Markov structure. Concretely,

we have shown that there is a transition of the flows’ average lifetime, below

which dynamic queues are smaller than static queues. While our observations
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jointly depend on the overall statistics, they nevertheless provide a convincing

argument that current approximations of dynamic by static queues can be very

misleading, and that a rigorous analysis of queueing scenarios with a dynamic

number of flows is necessary.

93



6
Fork-Join Queueing Systems

The performance analysis of Fork-Join (FJ) systems received new momentum

with the recent wide-scale deployment of large-scale data processing that was

enabled through emerging frameworks such as MapReduce [54]. The main idea

behind these big data analysis frameworks is an elegant divide and conquer

strategy with various degrees of freedom in the implementation. The open-

source implementation of MapReduce, known as Hadoop [150], is deployed in

numerous production clusters, e.g., Facebook and Yahoo [86].

The basic operation of MapReduce is depicted in Figure 6.1. In the map

phase, a job is split into multiple tasks that are mapped to different workers

(servers). Once a specific subset of these tasks finish their executions, the cor-

responding reduce phase starts by processing the combined output from all the
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input job

split 1

split n

...

map

map

map

map

reduce

reduce

Figure 6.1: Schematic illustration of the basic operation of MapReduce.

corresponding tasks. In other words, the reduce phase is subject to a fundamen-

tal synchronization constraint on the finishing times of all involved tasks.

A natural way to model one reduce phase operation is by a basic FJ

queueing system with K servers. Jobs, i.e., the input unit of work in MapReduce

systems, arrive according to some point process. Each job is split into K (map)

tasks (or splits, in the MapReduce terminology), which are simultaneously sent

to the K servers. At each server, each task requires a random service time,

capturing the variable task execution times on different servers in the map phase.

A job leaves the FJ system when all of its tasks are served; this constraint

corresponds to the specification that the reduce phase starts no sooner than

when all of its map tasks complete their executions.

Concerning the execution of tasks belonging to different jobs on the same

server, there are two operational modes. In the non-blocking mode, the servers

are work-conserving in the sense that tasks immediately start their executions

once the previous tasks finish theirs. In the blocking mode, the mapped tasks of

a job simultaneously start their executions, i.e., servers can be idle when their

corresponding queues are not empty. The non-blocking execution mode prevails

in MapReduce due to its conceivable efficiency, whereas the blocking execution

mode is employed when the jobtracker (the node coordinating and schedul-

ing jobs) waits for all machines to be ready to synchronize the configuration

files before mapping a new job; in Hadoop, this can be enforced through the

coordination service zookeeper [150].
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In this chapter we analyze the performance of the FJ queueing model in

four practical scenarios by considering two broad arrival classes (driven by either

renewal or non-renewal processes) and the two operational modes (i.e., blocking

and non-blocking) described above. The key contribution, to the best of our

knowledge, are the first non-asymptotic and computable stochastic bounds on

the waiting and response time distributions in the most relevant scenario, i.e.,

non-renewal (Markov modulated) job arrivals and the non-blocking operational

mode. Under all scenarios, the bounds are numerically tight especially at high

utilizations. This inherent tightness is due to a suitable martingale representa-

tion of the underlying queueing system similar to the one of Chapters 3 and 4.

The simplicity of the obtained stochastic bounds enables the derivation of scal-

ing laws, e.g., delays in FJ systems scale as O(logK) in the number of parallel

servers K, for both renewal and non-renewal arrivals, in the non-blocking mode;

more severe delay degradations hold in the blocking mode, and, moreover, the

stability region depends on the same fundamental factor of logK.

In addition to the direct applicability to the dimensioning of MapReduce

clusters, there are other relevant types of parallel and distributed systems such

as production or supply networks. In particular, by slightly modifying the basic

FJ system corresponding to MapReduce, the resulting model suits the analysis

of window-based transmission protocols over multipath routing. By making

several simplifying assumptions such as ignoring the details of specific protocols

(e.g., multipath TCP), we can provide a fundamental understanding of multipath

routing from a queueing perspective. Concretely, we demonstrate that sending a

flow of packets over two paths, instead of one, does generally reduce the steady-

state response times. The surprising result is that by sending the flow over

more than two paths, the steady-state response times start to increase. The

technical explanation for such a rather counterintuitive result is that the logK

resequencing price at the destination quickly dominates the tempting gain in the

queueing waiting time due to multipath transmissions.

The rest of this chapter is structured as follows: We first discuss related
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work on FJ systems and related applications. Then we analyze full mapping,

i.e., a mapping of jobs to K servers in Sections 6.2 (renewal input) and 6.3 (non-

renewal input). The analysis of partial mapping, i.e., a mapping of jobs to H <

K servers follows in Section 6.4. In Section 6.5 we apply the obtained results on

the steady-state response time distributions to the analysis of multipath routing

from a queueing perspective.

6.1 Related Work

We first review analytical results on FJ systems, and then results related to

the two application case studies considered in this chapter, i.e., MapReduce and

multipath routing.

The significance of the Fork-Join queueing model stems from its natural

ability to capture the behavior of many parallel service systems. The perfor-

mance of FJ queueing systems has been subject of multiple studies such as

[11, 109, 143, 90, 95, 12, 25]. In particular, [11] notes that an exact performance

evaluation of general FJ systems is remarkably hard due to the synchronization

constraints on the input and output streams. More precisely, a major difficulty

lies in finding an exact closed form expression for the joint steady-state work-

load distribution for the FJ queueing system. However, a number of results

exist given certain constraints on the FJ system. The authors of [62] provide the

stationary joint workload distribution for a two-server FJ system under Pois-

son arrivals and independent exponential service times. For the general case

of more than two parallel servers there exists a number of works that provide

approximations [109, 143, 95, 98] and bounds [11, 12] for certain performance

metrics of the FJ system. Given renewal arrivals, [12] significantly improves the

lower bounds from [11] in the case of heterogeneous phase-type servers using a

matrix-geometric algorithmic method. The authors of [95] provide an approxi-

mation of the sojourn time distribution in a renewal driven FJ system consisting

of multiple G/M/1 nodes; they show that the approximation error diminishes

at extremal utilizations. Refined approximations for the mean sojourn time in
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two-server FJ systems that take the first two moments of the service time dis-

tribution are given in [90]; numerical evidence is further provided on the quality

of the approximation for different service time distributions.

The closest related work to ours is [11], which provides computable lower

and upper bounds on the expected response time in FJ systems under renewal

assumptions with Poisson arrivals and exponential service times; the underlying

idea is to artificially construct a more tractable system, yet subject to stochastic

ordering relative to the original one. Our corresponding first order upper bound

recovers theO(logK) asymptotic behavior of the one from [11], and also reported

in [109] in the context of an approximation; numerically, our bound is slightly

worse than the one from [11] due to our main focus on computing bounds on the

whole distribution (first order bounds are secondarily obtained by integration).

Moreover, we show that the O(logK) scaling law also holds in the case of Markov

modulated arrivals. In a parallel work [91] to ours, the authors adopt a network

calculus approach to derive stochastic bounds in a non-blocking FJ system, under

a strong assumption on the input; for related constructions of such arrival models

see [81].

The work in [82, 83] studies FJ systems where jobs leave the system

when a subset H ≤ K of its tasks are finished. This system is similar to the

partial mapping FJ system that we study in Section 6.4, however, with subtle

yet fundamental differences. The FJ system presented in [82, 83] is based on

the assumption that when H tasks finish execution, the finished job purges the

unfinished K −H tasks out their corresponding queues. The authors of [82, 83]

provide upper bounds for the mean response times in such systems under Poisson

arrivals and general service distributions. In Section 6.4, we consider instead

injective task mapping, i.e., jobs are only forked onto a subset of servers H ≤ K.

For this type of FJ systems we provide bounds on the steady state waiting and

response time distributions under round-robin and random task placement.

Concerning concrete applications of FJ systems, in particular MapRe-

duce, there are several empirical and analytical studies analyzing its perfor-
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mance. For instance, [161, 9] aim to improve the system performance via em-

pirically adjusting its numerous and highly complex parameters. The targeted

performance metric in these studies is the job response time, which is in fact

an integral part of the business model of MapReduce based query systems such

as [110] and time priced computing clouds such as Amazon’s EC2 [1]. For an

overview on works that optimize the performance of MapReduce systems see

the survey article [111]. Using a similar idea as in [11], the authors of [138] de-

rive asymptotic results on the response time distribution in the case of renewal

arrivals; such results are further used to understand the impact of different

scheduling models in the reduce phase of MapReduce. Using the model from

[138] the work in [139] provides approximations for the number of jobs in a tan-

dem system consisting of a map queue and a reduce queue in the heavy traffic

regime. The work in [145] derives approximations of the mean response time

in MapReduce systems using a mean value analysis technique and a closed FJ

queueing system model from [142].

Concerning multipath routing, the works [10, 73] provided ground for

multiple studies on different formulations of the underlying resequencing delay

problem, e.g., [70, 157]. Factorization methods were used in [10] to analyze the

disordering delay and the delay of resequencing algorithms, while the authors

of [73] conduct a queueing theoretic analysis of an M/G/∞ queue receiving a

stream of numbered customers. In [70, 157] the multipath routing model com-

prises Bernoulli thinning of Poisson arrivals over K parallel queueing stations

followed by a resequencing buffer. The work in [70] provides asymptotics on

the conditional probability of the resequencing delay conditioned on the end-to-

end delay for different service time distributions. For K = 2 and exponential

interarrival and service times, [157] derives a large deviations result on the re-

sequencing queue size. Our work differs from these works in that we consider a

model of the basic operation of window-based transmission protocols over mul-

tipath routing, motivated by the emerging application of multipath TCP [117].

We point out, however, that we do not model the specific operation of any par-
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ticular multipath transmission protocol. Instead, we analyze a generic multipath

transmission protocol under simplifying assumptions, in order to provide a the-

oretical understanding of the overall response times comprised of both queueing

and resequencing delays.

Relative to the existing literature, our key theoretical contribution is

to provide computable and non-asymptotic bounds on the distributions of the

steady-state waiting and response times under both renewal and non-renewal

input in FJ systems. The consideration of non-renewal input is particularly

relevant, given recent observations that job arrivals are subject to temporal cor-

relations in production clusters. For instance, [37, 85] report that job, respec-

tively, flow arrival traces in clusters running MapReduce exhibit various degrees

of burstiness.

6.2 FJ Systems with Renewal Input

We consider a FJ queueing system as depicted in Figure 6.2. Jobs arrive at the

input queue of the FJ system according to some point process with interarrival

times ti between the i and i + 1 jobs. Each job i is split into K tasks that are

mapped through a bijection to K servers. A task of job i that is serviced by

some server n requires a random service time xk,i. A job leaves the system when

all of its tasks finish their executions, i.e., there is an underlying synchronization

constraint on the output of the system. We assume that the families {ti} and

{xk,i} are independent.

In the sequel we differentiate between two cases, i.e., a) non-blocking and

b) blocking servers. The first case corresponds to work-conserving servers, i.e.,

a server starts servicing a task of the next job (if available) immediately upon

finishing the current task. In the latter case, a server that finishes servicing a

task is blocked until the corresponding job leaves the system, i.e., until the last

task of the current job completes its execution. This can be regarded as an

additional synchronization constraint on the input of the system, i.e., all tasks

of a job start receiving service simultaneously. We will next analyze a) and b)
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...
job arrivals

1

2

K

Figure 6.2: A schematic Fork-Join queueing system with K parallel servers. An
arriving job is split into K tasks, one for each server. A job leaves
the FJ system when all of its tasks are served. An arriving job is
considered waiting until the service of the last of its tasks starts, i.e.,
when the previous job departs the system.

for renewal arrivals.

6.2.1 Non-Blocking Systems

Consider an arrival flow of jobs with renewal interarrival times ti, and assume

that the waiting time of the first job is w1 = 0. Given K parallel servers, the

waiting time wj of the jth job is defined as

wj = max

{

0, max
1≤n≤j−1

{

max
k∈[1,K]

{

n
∑

i=1

xk,j−i −
n
∑

i=1

tj−i

}}}

, (6.1)

for all j ≥ 2, where xk,j is the service time required by the task of job j that

is mapped to server k. We count a job as waiting until its last task starts

receiving service. Similarly, the response times of jobs, i.e., the times until

the last corresponding tasks have finished their executions, are defined as r1 =

maxk xk,1 for the first job, and for j ≥ 2 as

rj = max
0≤n≤j−1

{

max
k∈[1,K]

{

n
∑

i=0

xk,j−i −
n
∑

i=1

tj−i

}}

, (6.2)

where by convention
∑0

i=1 ti = 0; for brevity, we will denote maxk := maxk∈[1,K].

We assume that the task service times xk,j i.i.d.. The stability condition

for the FJ queueing system is given as E [x1,1] < E [t1]. By stationarity and
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reversibility of the i.i.d. processes xk,j and tj , there exists a distribution of the

steady-state waiting time w and steady-state response time r, respectively, which

have the representations

w =D max
n≥0

{

max
k

{

n
∑

i=1

xk,i −
n
∑

i=1

ti

}}

(6.3)

and

r =D max
n≥0

{

max
k

{

n
∑

i=0

xk,i −
n
∑

i=1

ti

}}

, (6.4)

respectively. Note that the only difference in Eq. (6.3) and Eq. (6.4) is that for

the latter the sum over the xk,i starts at i = 0 rather than at i = 1.

The following theorem provides stochastic upper bounds on w and r. The

corresponding proof will rely on submartingale constructions and the optional

stopping theorem (see Lemma 2.8).

Theorem 6.1. (Renewals, Non-Blocking) Given a FJ system with K par-

allel non-blocking servers that is fed by renewal job arrivals with interarrivals tj.

If the task service times xk,j are i.i.d., then the steady-state waiting and response

times w and r are bounded by

P [w ≥ σ] ≤ Ke−θnbσ (6.5)

P [r ≥ σ] ≤ KE
[

eθnbx1,1
]

e−θnbσ , (6.6)

where θnb (with the subscript “nb” standing for non-blocking) is defined by

θnb := sup
{

θ > 0
∣

∣ E
[

eθx1,1
]

E
[

e−θt1
]

= 1
}

. (6.7)

We remark that the stability condition E [x1,1] < E [t1] guarantees the

existence of a positive solution in Eq. (6.7) (see the argument in Remark 3.14).

Proof. Consider the waiting time w. We first prove that for each k ∈ [1,K] the
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process

zk(n) = eθnb

∑n
i=1(xk,i−ti)

is a martingale with respect to the filtration

Fn := σ {xk,m, tm |m ≤ n, k ∈ [1,K]} .

The independence assumption of xk,j and tj implies that

E [zk(n) | Fn−1] = E

[

eθnb

∑n
i=1(xk,i−ti)

∣

∣

∣ Fn−1

]

= E

[

eθnb(xk,n−tn)
]

eθnb

∑n−1
i=1 (xk,i−ti)

= eθnb

∑n−1
i=1 (xk,i−ti)

= zk(n− 1) , (6.8)

under the condition on θnb from the theorem.

Next we prove that the process

z(n) = max
k

zk(n) (6.9)

is a submartingale w.r.t. Fn. Given the martingale property of each of the zn

and the monotonicity of the conditional expectation we can write for j ∈ [1,K]:

E

[

max
k

zk(n)

∣

∣

∣

∣

Fn−1

]

≥ E [zj(n) | Fn−1] = zj(n− 1) ,

where the inequality stems from maxk zk(n) ≥ zj(n) for j ∈ [1,K] a.s., whereas

the subsequent equality stems from the martingale property Eq. (6.8) for zk(n)

for all k ∈ [1,K]. Hence, we can write

E [z(n) | Fn−1] ≥ max
k

zk(n− 1) = z(n− 1) , (6.10)

which proves the submartingale property.
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To derive a bound on the steady-state waiting time distribution, let

σ > 0 and define the stopping time N as usually by

N := inf

{

n ≥ 0

∣

∣

∣

∣

∣

max
k

n
∑

i=1

(xk,i − ti) ≥ σ

}

, (6.11)

such that with the representation of w from Eq. (6.3): {N < ∞} = {w ≥ σ}.

Now, using the optional stopping theorem (see Lemma 2.8) for submartingales

with n ≥ 1:

K =
∑

k∈[1,K]

E

[

eθnb

∑n
i=1(xk,i−ti)

]

≥ E

[

max
k

eθnb

∑n
i=1(xk,i−ti)

]

= E [z(n)] (6.12)

≥ E [z(N ∧ n)]

≥ E [z(N)1N<n]

≥ eθnbσP [N < n] ,

where we used the condition on θnb from the theorem in the first line, Boole’s

inequality in the second line, and the optional stopping theorem for submartin-

gales in the fourth line. In the last line we used the definition of the stopping

time K. The proof completes by letting n → ∞.

For the response time r, define the processes

z̃k(n) = eθnb(
∑n

i=0 xk,i−
∑n

i=1 ti) ,

which differs from the zk only in the range of the sum of the service times xk,i.

Then we proceed as for the derivation of the bound on the waiting time w. The

only difference in the derivation is that inequality Eq. (6.12) translates to

KE
[

eθnbx1,1
]

≥ E

[

max
k

eθnb(
∑n

i=0 xk,i−
∑n

i=1 ti)
]

.
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Fixing the right hand sides in Eq. (6.5) and Eq. (6.6) to ε, we find that

the corresponding quantiles on the waiting and response times grow with the

number of parallel servers K as O(logK), a law which was already demonstrated

in the special case of Poisson arrival and exponential service times, and for first

moments, in [109], and more generally in [11]. This scaling result is essential for

dimensioning FJ systems such as MapReduce computing clusters, as it explains

the impact of a MapReduce server pool size K on the job waiting/response

times. Note that this result depends on the assumption that the tasks’ service

times xk,i are fixed, i.e., the “job size”
∑

k∈[1,K] xk,i increases in K. By properly

rescaling the service times (e.g., by considering
xk,i

K ), a higher value of θnb in

Eq. (6.7) is obtained, and therefore in Theorem 6.1 – for sufficiently large σ –

the beneficial effect of a higher decay rate outruns the detrimental effect of an

increased constant K.

We note that the bound in Theorem 6.1 can be computed for different

arrival and service time distributions as long as the MGF (moment generating

function) and Laplace transform from Eq. (6.7) are computable. Given a scenario

where the job interarrival process and the task size distributions in a MapReduce

cluster are not known a priori, estimates of the corresponding MGF and Laplace

transforms can be obtained using recorded traces, e.g., using the method from

[68].

Next we illustrate two immediate applications of Theorem 6.1.

Example 1: Exponentially distributed interarrival and service times

Consider that the interarrival times ti and service times xk,i are exponentially

distributed with parameters λ and µ, respectively; note that when K = 1 the

system corresponds to the M/M/1 queue. The corresponding stability condition

becomes µ > λ. Using Theorem 6.1, the bounds on the steady-state waiting and

response time distributions are

P [w ≥ σ] ≤ Ke−(µ−λ)σ (6.13)
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and

P [r ≥ σ] ≤ K

ρ
e−(µ−λ)σ , (6.14)

where the exponential decay rate µ− λ follows by solving µ
µ−θ

λ
λ+θ = 1, i.e., the

instantiation of Eq. (6.7).

Next we briefly compare our results to the existing bound on the mean

response time from [11], given as

E [r] ≤ 1

µ− λ

K
∑

k=1

1

k
. (6.15)

By integrating the tail of Eq. (6.14) we obtain the following upper bound

on the mean response time

E [r] ≤ log(K/ρ) + 1

µ− λ
.

Compared to Eq. (6.15), our bound exhibits the same logK scaling law but

is numerically slightly looser; asymptotically in K, the ratio between the two

bounds converges to one. A key technical reason for obtaining a looser bound is

that we mainly focus on deriving bounds on distributions; through integration,

the numerical discrepancies accumulate.

For the numerical illustration of the tightness of the bounds on the wait-

ing time distributions from Eq. (6.13) we refer to Figure 6.3.(a); the numerical

parameters and simulation details are included in the caption.

Example 2: Exponentially distributed interarrival times and

constant service times

We now consider the case of i.i.d. exponentially distributed interarrival times ti

with parameter λ, and deterministic service times xk,i = 1/µ, for all i ≥ 0 and

k ∈ [1,K]; note that when N = 1 the system corresponds to the M/D/1 queue.

The condition on the asymptotic decay rate θnb from Theorem 6.1 be-
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Figure 6.3: Bounds on the waiting time distributions vs. simulations (renewal
input): (a) the non-blocking case Eq. (6.13) and (b) the blocking
case Eq. (6.22). The system parameters are K = 20, µ = 1, and
three utilization levels ρ = {0.9, 0.75, 0.5} (from top to bottom).
Simulations include 100 runs, each accounting for 107 slots.

comes

λ

λ+ θnb
= e−

θnb
µ ,

which can be numerically solved; upper bounds on the waiting and response

time distributions follow then immediately from Theorem 6.1.

6.2.2 Blocking Systems

Here, we consider a blocking FJ queueing system, i.e., the start of each job is

synchronized amongst all servers. We maintain the i.i.d. assumptions on the

interarrival times ti and service times xn,i. The waiting time and response time

for the jth job can then be written as

wj =max

{

0, max
1≤n≤j−1

{

n
∑

i=1

max
k

xk,j−i −
n
∑

i=1

tj−i

}}

rj = max
0≤n≤j−1

{

n
∑

i=0

max
k

xk,j−i −
n
∑

i=1

tj−i

}

.

Note that the only difference to Eq. (6.1) and Eq. (6.2) is that the maximum

over the number of servers now occurs inside the sum.

It is evident that the blocking system is more conservative than the
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non-blocking system in the sense that the waiting time distribution of the non-

blocking system is dominated by the waiting time distribution of the block-

ing system. Moreover, the stability region for the blocking system, given by

E [t1] > E [maxn xn,1], is included in the stability region of the corresponding

non-blocking system (i.e., E [t1] > E [x1,1]).

Analogously to Eq. (6.3), the steady-state waiting and response times w

and r have now the representations

w =D max
n≥0

{

n
∑

i=1

max
k

xk,i −
n
∑

i=1

ti

}

(6.16)

r =D max
n≥0

{

n
∑

i=0

max
k

xk,i −
n
∑

i=1

ti

}

. (6.17)

The following theorem provides upper bounds on w and r:

Theorem 6.2. (Renewals, Blocking) Given a FJ queueing system with K

parallel blocking servers that is fed by renewal job arrivals with interarrivals tj

and i.i.d. task service times xk,j. The distributions of the steady-state waiting

and response times are bounded by

P [w ≥ σ] ≤ e−θbσ (6.18)

P [r ≥ σ] ≤ E
[

eθbx1,1
]

e−θbσ ,

where θb (with the subscript “b” standing for blocking) is defined by

θb := sup
{

θ > 0
∣

∣ E
[

eθmaxk xk,1
]

E
[

e−θt1
]

= 1
}

. (6.19)

Before giving the proof we note that, in general, Eq. (6.19) can be nu-

merically solved. Moreover, for small values of K, θb can be analytically solved.

Proof. Consider the waiting time w. We proceed similarly as in the proof of

Theorem 6.1. Letting Fk as above, we first prove that the process

y(n) = eθb
∑n

i=1(maxk xk,i−ti)
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is a martingale w.r.t. Fn using a technique from [93]. We write

E [y(n) | Fn−1] = E

[

eθb
∑n

i=1(maxk xk,i−ti)
∣

∣

∣ Fn−1

]

= eθb
∑n−1

i=1 (maxk xk,i−ti)E

[

eθb(maxk xk,1−t1)
]

= eθb
∑n−1

i=1 (maxk xk,i−ti)

= y(n− 1) ,

where we used the independence and renewal assumptions for xn,i and ti in

the second line, and finally the condition on θb from Eq. (6.19). The proof for

w completes as in the proof of Theorem 3.4 by applying the optional stopping

theorem to the stopping time

N := inf

{

k ≥ 0

∣

∣

∣

∣

∣

k
∑

i=1

(

max
n

xn,i − ti

)

≥ σ

}

. (6.20)

The proof for the response time r is analogous.

Example 3: Exponentially distributed interarrival and service times

Consider interarrival and service times ti and xk,i that are exponentially dis-

tributed with parameters λ and µ, respectively. In [119] it was shown that

max
k

Lk =D

K
∑

k=1

Lk

k

for i.i.d. exponentially distributed random variables Lk, so that the stability

condition E [t1] > E [maxk xk,1] becomes

1

λ
>

1

µ

K
∑

k=1

1

k
. (6.21)

By applying Theorem 6.2, the bounds on the steady-state waiting and

response time distributions are

P [w ≥ σ] ≤ e−θbσ (6.22)
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and

P [r ≥ σ] ≤ µ

µ− θb
e−θbσ ,

where θb can be numerically solved from the condition

K
∏

k=1

kµ

kµ− θb

λ

λ+ θb
= 1 .

For quick numerical illustrations we refer back to Figure 6.3.(b).

The interesting observation is that the stability condition from Eq. (6.21)

depends on the number of servers K. In particular, as the right hand side

grows in logK, the system becomes unstable (i.e., waiting times are infinite) for

sufficiently large K.

Example 4: Exponentially distributed interarrival and constant

service times

If the service times are deterministic, i.e., xk,i = 1/µ for all i ≥ 0 and k ∈ [1,K],

the representations of w and r from Eq. (6.16) and Eq. (6.17) match their non-

blocking counterparts from Eq. (6.3) and Eq. (6.4) and hence the corresponding

stability regions and stochastic bounds are equal to those from Example 2.

6.3 FJ Systems with Non-renewal Input

In this section we consider the more realistic case of FJ queueing systems with

non-renewal job arrivals. This model is particularly relevant given the empirical

evidence that clusters running MapReduce exhibit various degrees of burstiness

in the input [37, 85]. Moreover, numerous studies have demonstrated the bursti-

ness of Internet traces, which can be regarded in particular as the input to

multipath routing.

We model the interarrival times ti using a Markov modulated process

similar to the one from Subsection 3.2.2. Concretely, consider a two-state mod-

ulating Markov chain ck, as depicted in Figure 6.4, with a transition matrix T
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1 2

p

qL1 L2

Figure 6.4: Markov modulating chain ck for the job interarrival times.

given by

T =







1− p p

q 1− q






, (6.23)

for some values 0 < p, q < 1. In state i ∈ {1, 2} the interarrival times are

given by i.i.d. random variables Li with distribution Li. We assume that L1 is

stochastically smaller than L2, i.e.,

P [L1 ≥ t] ≤ P [L2 ≥ t] , (6.24)

for any t ≥ 0. Additionally, we assume that the Markov chain ck satisfies the

same burstiness condition as in Eq. (3.16), namely

p < 1− q , (6.25)

i.e., the probability of jumping to a different state is less than the probability of

staying in the same state.

Analogously to Eq. (3.13), the exponential transform of the transition

matrix T is defined as

Tθ :=







(1− p)E
[

e−θL1
]

p E
[

e−θL2
]

q E
[

e−θL1
]

(1− q)E
[

e−θL2
]






,

for some θ > 0. Let Λ(θ) denote the maximal positive eigenvalue of Tθ, and

the vector h = (h(1), h(2)) denote a corresponding eigenvector. By the Perron-

Frobenius Theorem, Λ(θ) is equal to the spectral radius of Tθ such that h can
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be chosen with strictly positive components.

As in the case of renewal arrivals, we will next analyze both non-blocking

and blocking FJ systems.

6.3.1 Non-Blocking Systems

We first analyze a non-blocking FJ system fed with arrivals that are modulated

by a stationary Markov chain as in Figure 6.4. We assume that the task service

times xk,j are i.i.d. and that the families {ti} and {xk,i} are independent. Note

that both the definition of wj from Eq. (6.1) and the representation of the

steady-state waiting time w in Eq. (6.3) remain valid, due to stationarity and

reversibility; the same holds for the response times.

The next theorem provides upper bounds on the steady-state waiting and

response time distributions in the non-blocking scenario with Markov modulated

interarrivals.

Theorem 6.3. (Non-Renewals, Non-Blocking) Given a FJ queueing sys-

tem with K parallel non-blocking servers, Markov modulated job interarrivals

tj according to the Markov chain depicted in Figure 6.4 with transition matrix

Eq. (6.23), and i.i.d. task service times xk,j. The steady-state waiting and re-

sponse time distributions are bounded by

P [w ≥ σ] ≤ Ke−θnbσ (6.26)

P [r ≥ σ] ≤ KE
[

eθnbx1,1
]

e−θnbσ , (6.27)

where θnb is defined by

θnb := sup
{

θ > 0
∣

∣ E
[

eθx1,1
]

Λ(θ) = 1
}

.

Proof. Consider the filtration

Fn := σ {xk,m, tm, cm |m ≤ n, k ∈ [1,K]} ,
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that includes information about the state ck of the Markov chain. Now, we

construct the process z(n) as

z(n) = h(cn)e
θnb(maxk

∑n
i=1 xk,i−

∑n
i=1 ti)

=
(

eθnb(maxk

∑n
i=1 xk,i−nD)

)(

h(cn)e
θnb(nD−

∑n
i=1 ti)

)

(6.28)

with the deterministic parameter

D := θ−1
nb log

(

E
[

eθnbx1,1
])

.

Note the similarity of z(n) to Eq. (6.9) except for the additional function h.

Next we show that both terms of Eq. (6.28) are submartingales. In the

first step we note that by the definition of D:

E

[

eθnb(
∑n

i=1 xk,i−kD)
∣

∣

∣ Fn−1

]

= eθnb(
∑n−1

i=1 xk,i−(n−1)D) ,

hence, following the line of argument in Eq. (6.10) the left factor of Eq. (6.28),

which accounts for the additional maxk, is a submartingale. The second term

follows as in the proof of the service-martingale in Lemma 4.8. As the process

z(n) is a product of two independent submartingales, it is a submartingale itself

w.r.t. Fn. We use the stopping time N defined in Eq. (6.11) and apply the

optional stopping theorem. On the one hand we can write for every k ∈ N

E [z(n)] ≥ E [z(N ∧ n)]

≥ E [z(N ∧ n)1N<n]

= E

[

max
k

h(cN )eθnb(
∑N

i=1 xk,i−
∑N

i=1 ti)1N<n

]

≥ eθnbσE [h(cN )1N<n]

= eθnbσE [h(cN ) | N < n]P [N < n] . (6.29)
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Figure 6.5: The O(logK) scaling of waiting time percentiles wε for Markov mod-
ulated input (the non-blocking case Eq. (6.26)). The system pa-
rameters are µ = 1, λ2 = 0.9, ρ = 0.75 (in both (a) and (b))
p = 0.1, q = 0.4 (in (a)), three violation probabilities ε (in (a)),
ε = 10−4 and only two burstiness parameters p + q (in (b)) (for vi-
sual convenience). Simulations include 100 runs, each accounting for
107 slots.

On the other hand we can upper bound the term

E [z(n)] = E

[

max
k

eθnb(
∑n

i=1 xk,i−nD)
]

E

[

h(cn)e
θnb(nD−

∑n
i=1 ti)

]

≤ KE [h(c1)] .

Letting n → ∞ in Eq. (6.29) leads to

P [N < ∞] ≤ E [h(c1)]

E [h(cN ) | N < ∞]
Ke−θnbσ . (6.30)

In Lemma 6.4 below it is shown that the distribution of the random variable

(cN | N < n) is stochastically smaller than the stationary distribution of the

Markov chain. Given the burstiness condition in Eq. (6.25) and that the function

h is monotonically decreasing [27], we can further upper bound the prefactor in

Eq. (6.30) as

E [h(c1)]

E [h(cN ) | N < ∞]
≤ 1 ,

which completes the proof. The proof for the response time r is analogous.

The stochastic ordering used in the proof of Lemma 6.3 is given by the
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following Lemma:

Lemma 6.4. Let cn be the Markov chain from Figure 6.4 and N be the stopping

time from Eq. (6.11). Then the distribution of (cN | N < ∞) is stochastically

smaller than the steady-state distribution of cn, i.e.,

P [cN = 2 | N < ∞] ≤ P [c1 = 2] ,

or, equivalently,

E [h(cN ) | N < ∞] ≥ E [h(cn)] ,

for all monotonically decreasing functions h on {1, 2}.

Proof. Using Bayes’ rule and the stationarity of the process cn, it holds:

P [cN = 2 | N < ∞] = P [N < ∞]
−1

P [cN = 2, N < ∞]

= P [N < ∞]
−1

∞
∑

n=1

P [cN = 2, N = n]

= P [N < ∞]
−1

P [c1 = 2]
∞
∑

n=1

P [N = n | cn = 2]

Since L1 is stochastically smaller than L2 (see Eq. (6.24)), we have for any n ≥ 1

P[N = n | cn = 2] = P

[

tn≤max
k

n
∑

i=1

xk,i−
n−1
∑

i=1

ti−σ,max
k

n−1
∑

i=1

(xk,i−ti) < σ

∣

∣

∣

∣

cn=2

]

≤ P

[

tn≤max
k

n
∑

i=1

xk,i−
n−1
∑

i=1

ti−σ,max
k

n−1
∑

i=1

(xk,i−ti) < σ

]

= P [N = n] .

Hence P [cN = 2 | N < ∞] ≤ P [c1 = 2], which completes the proof.

Remark 6.5. Note that, if the burstiness condition Eq. (6.25) is not fulfilled

then we can still upper bound the prefactor in Eq. (6.30) using the trivial upper

bound

E [h(c1)]

E [h(cN ) | N < ∞]
≤ E [h(c1)]

minn h(cn)
.
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Figure 6.5 displays the bounds on the waiting time percentiles wε, for

various violation probabilities ε, in the FJ system with non-renewal input. The

bounds closely match the corresponding simulation results, shown as box-plots,

while also exhibiting the O(logK) scaling behavior (which can be also derived

from both Eq. (6.26) and Eq. (6.27), as in Section 6.2).

6.3.2 Blocking Systems

Now we turn to the blocking variant of the FJ system that is fed by the same non-

renewal arrivals as in the previous section. We consider exponential distributions

Lm for m ∈ [1, 2]. The main result is:

Theorem 6.6. (Non-Renewals, Blocking) Given a FJ system with K block-

ing servers, Markov modulated job interarrivals tj, and i.i.d. task service times

xk,j. The steady-state waiting and response time distributions are bounded by

P [w ≥ σ] ≤ e−θbσ (6.31)

P [r ≥ σ] ≤ E
[

eθbx1,1
]

e−θbσ ,

where θb is defined by

θb := sup
{

θ > 0
∣

∣ E
[

eθmaxk xk,1
]

Λ(θ) = 1
}

.

Again, the positive solution for θb is guaranteed under the stronger sta-

bility condition E [t1] > E [maxn xn,1] and the Perron-Frobenius Theorem.

Proof. Let D := θ−1
b logE

[

eθb maxk xk,1
]

and define the process y by:

y(n) = h(cn)e
θb(

∑n
i=1 maxk xk,i−

∑n
i=1 ti)

= (eθb(
∑n

i=1 maxk xk,i−nD))(h(cn)e
θb(nD−

∑n
i=1 ti)) .

Similarly to the proofs of Theorem 6.2 and Theorem 6.3 one shows that

both the first and second factor of y are martingales, and hence y is a martingale.
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Figure 6.6: Bounds on the waiting time distributions vs. simulations (non-
renewal input): (a) the non-blocking case Eq. (6.26) and (b) the
blocking case Eq. (6.31). The parameters are K = 20, µ = 1, p =
0.1, q = 0.4, λ1 ∈ {0.4, 0.72, 0.72} and λ2 ∈ {0.9, 0.9, 1.62} leading to
utilizations ρ ∈ {0.5, 0.75, 0.9}. Simulations include 100 runs, each
accounting for 107 slots.

We use the stopping time N in Eq. (6.20) and write

E [h(c1)] = E [y(0)]

≥ E [y(N ∧ n)]

≥ E [y(N ∧ n)1N<n]

= E

[

eθb(
∑N

i=1 maxk xk,i−
∑N

i=1 ti)h(cN )1N<n

]

≥ eθbσE [h(cN ) | N < ∞]P [N < n] .

Taking n → ∞ we obtain the bound

P [N < ∞] ≤ E [h(c1)]

E [h(cK) | K < ∞]
e−θbσ ≤ e−θbσ ,

where we used Lemma 6.4 for the last inequality. The proof for r is analogous.

A close comparison of the waiting time bound in the non-renewal case

Eq. (6.31) to the corresponding bound in the renewal case Eq. (6.18) reveals

that the decay factors θb depend on similar conditions, whereby the MGF of the

interarrival times in Eq. (6.18) is replaced by the maximal positive eigenvalue
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of the modulating Markov chain in Eq. (6.31). Moreover, given the ergodicity

of the underlying Markov chain, the blocking system with non-renewal input is

subject to the same degrading stability region (in logK) as in the renewal case

(recall Eq. (6.21)).

For quick numerical illustrations of the tightness of the bounds on the

waiting time distributions in both the non-blocking and blocking cases we refer

to Figure 6.6.

So far we have contributed stochastic bounds on the steady-state waiting

and response time distributions in FJ systems fed with either renewal and non-

renewal job arrivals. The key technical insight was that the stochastic bounds

in the non-blocking model grow as O(logK) in the number of parallel servers

K under non-renewal arrivals, which extends a known result for renewal ar-

rivals [109, 11]. The same fundamental factor of logK was shown to drive the

stability region in the blocking model. A concrete application follows next.

6.4 Partial Mapping

In this section we consider FJ queueing systems where jobs are mapped to a

subset of H ≤ K servers. This model captures a crucial aspect of the opera-

tion of parallel systems, i.e., the amount of resources provided to some job is

not necessarily the entire amount of resources available. This corresponds, for

example, to batch systems, where servers are grouped into resource pools and

incoming jobs are assigned to one such pool. In general, partial mapping pro-

vides a basis for service differentiation and isolation within parallel systems. In

the following we regard two contrasting types of partial mapping, i.e., a rigid

round-robin mapping and a random partial mapping of jobs to H ≤ K servers.

The subsequent analysis of the fan-out ratio H/K on the system performance

provides a reference for dimensioning such server pools. In the following, we

restrict the exposition to the more interesting case of non-blocking servers since

most of the derivations rely on results from Sections 6.2 and 6.3.
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6.4.1 Round-robin Partial Mapping, Dyadic System

We consider a dyadic FJ system where the number of servers is given as K = 2W

(with W ≥ 1) and a job is split into H = 2V tasks (with 1 ≤ V ≤ W ). The

assignment of tasks to servers follows a round-robin scheme such that the first

job is assigned to servers 1, . . . , H, the second to the servers H +1, . . . , 2H, etc.

In the following, we consider job arrivals as renewal processes similar to

Section 6.2. For the analysis it is sufficient to look only at an equivalent “FJ

subsystem” that consists of only H servers and adjust the job interarrival times

t̄n to that system accordingly:

t̄n :=

2(W−V )
∑

i=1

t(n−1)2(W−V )+i .

Note that for the extremal case V = W we recover the scenario from Section 6.2,

i.e., t̄n = tn.

The Laplace transform of the job interarrival times t̄n to one subsystem

is obtained directly from the Laplace transform of the original job interarrival

times tn and the number of subsystems:

E

[

e−θt̄1
]

= E
[

e−θt1
]2W−V

= E
[

e−θt1
]

K
H .

The steady-state waiting time distribution now has the following repre-

sentation:

w =D max
n≥0

{

max
1≤k≤H

{

n
∑

i=1

xk,i −
n
∑

i=1

t̄i

}}

(6.32)

and the response time:

r =D max
n≥0

{

max
1≤k≤H

{

n
∑

i=0

xk,i −
n
∑

i=1

t̄i

}}

. (6.33)

The next theorem provides upper bounds on the steady-state waiting

and response time distributions in the non-blocking scenario with partial round-

robin mapping and renewal interarrivals.

119



6 Fork-Join Queueing Systems

Theorem 6.7. (round-robin mapping, Renewals, Non-Blocking) Given

a FJ queueing system with K = 2W non-blocking servers and partial round-

robin mapping of jobs to H = 2V servers with 1 ≤ V ≤ W . The system is fed by

renewal job arrivals with interarrivals tj. If the input job size is normalized such

that the MGF of the task service time is given as E
[

eθxk,i/H
]

, with the service

times xk,i being i.i.d., then the steady-state waiting and response times w and r

are bounded by

P [w ≥ σ] ≤ He−θσ ,

P [r ≥ σ] ≤ HE
[

eθx1,1
]

e−θσ ,

where θ is defined by

θ := sup

{

θ > 0

∣

∣

∣

∣

E

[

eθx1,1/H
]

E
[

e−θt1
]

N
H = 1

}

. (6.34)

Proof. The proof goes along the same arguments of the proof of Theorem 6.1,

however, with modified MGF and Laplace transform for the task service times

xk,i and the job interarrival times ti, respectively.

The rationale behind the normalization of the input job size such that

the MGF of the task service time is given as E
[

eθxk,i/H
]

is to compare different

fan-out factors H such that the mean task service time is E [x] /H.

Example 5: Exponentially distributed interarrival and service times

In the case of exponentially distributed interarrival times with parameter λ the

job interarrival times at one subsystem have an Erlang EK
H

distribution. We

assume the tasks are exponentially distributed with a mean 1/Hµ. The condition

Eq. (6.34) from Theorem 6.7 becomes

(

Hµ

Hµ− θ

)(

λ

λ+ θ

)
N
H

= 1 . (6.35)

In Figure 6.7 we show simulation box-plots as well as corresponding
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Figure 6.7: Round-robin partial mapping: Bound on the waiting time percentile
wε for renewal arrivals and increasing number of servers (fan-out)
H. The system parameters are µ = 1, λ = 0.75, ε = 10−3 and the
overall number of servers is K = 28.

bounds on the waiting time percentile wε from Theorem 6.7 for an increasing

number of fan-out servers H. Observe the diminishing gain in terms of waiting

time reduction with increasing the server fan-out.

6.4.2 Random Partial Mapping

Here, we consider a system that randomly maps a job to H out of K available

servers based on a uniform distribution over the set {A ⊆ {1, . . . ,K} | |A| = H}

of server combinations with cardinality H. We bound the job waiting and re-

sponse time in this system using the following abstraction which considers the

probability of assigning a task to a specific server. Note that the probability for

a task dedicated to a certain server is given by pd = H/K. Now, if we focus on

only one server of this FJ system, the task service times at that server can be

represented by the compound distribution

x̄k,i =















xk,i with probability pd

0 with probability 1− pd ,

(6.36)

since a job that is not assigned to this server can be considered to have a ser-

vice time equal to 0. Hence, one server of this FJ system with random partial

mapping can be modelled as if it is part of a FJ system with full mapping as in
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Section 6.2, but with the modified service times x̄k,i. Note that due to the selec-

tion of the subset with fixed cardinality H, the (x̄k,i)k are no longer independent.

Their MGF can be computed as:

E
[

eθx̄k,i
]

= (1− pd) + pdE
[

eθxk,i
]

.

The representations for the waiting and response time, respectively, be-

come

w =D max
n≥0

{

max
1≤k≤H

{

n
∑

i=1

x̄k,i −
n
∑

i=1

ti

}}

, (6.37)

and

r =D max
n≥0

{

max
1≤k≤H

{

xk,0 +

n
∑

i=1

x̄k,i −
n
∑

i=1

ti

}}

. (6.38)

Note the asymmetry for the response time in (6.38). For i ≥ 1 we consider

the modified service times x̄k,i as the corresponding server is only selected with

probability pd. In turn, for i = 0, we need to consider the unmodified service

time x0,i as we only look at those servers which have been selected for mapping.

The following theorems provide upper bounds on the steady-state wait-

ing and response time distributions in the non-blocking scenarios with partial

random mapping for renewal and Markov-modulated interarrivals, respectively.

Theorem 6.8. (Random Mapping, Renewals, Non-Blocking) Given a FJ

queueing system with K servers and random partial mapping of jobs to H ≤ K

servers based on a uniform distribution over the set {A ⊆ {1, . . . ,K} | |A| = H}

of server combinations with cardinality H. The system is fed with renewal job

arrivals. If the task service times xk,j are i.i.d., then the steady-state waiting

and response times w and r are bounded by

P [w ≥ σ] ≤ He−θ∗σ ,

P [r ≥ σ] ≤ HE

[

eθ
∗x1,1

]

e−θ∗σ ,
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Figure 6.8: Bounds on the waiting time distributions vs. simulation box-plots
for renewal input with random server mapping. The parameters
are K = 16, µ = 1. (a) Here, we fix the fan-out ratio to H = 12
and change the job arrival rate λ ∈ {0.5, 0.75, 0.9} while in (b) we
fix the arrival rate to λ = 0.75 and vary the fan-out ratio H/K ∈
{0.25, 0.5, 0.75}. Simulations include 100 runs, each accounting for
106 slots.

where θ is the solution of

θ∗ :=
{

θ > 0
∣

∣

(

(1− pd) + pdE
[

eθxn,i
])

E
[

e−θt1
]

= 1
}

. (6.39)

Proof. The proof goes along similar steps as for Theorem 6.7, however, using

the process

zk(n) = eθ
∗ ∑n

i=1(x̄k,i−ti)

which is a martingale for each k ≤ K under the criterion (6.39) on θ∗.

Note that the observed correlation of the (x̄k,i)k does not cause any

problems in the proof as the submartingale construction does not require inde-

pendence. In fact, even the processes zk(n) from the proof of Theorem 6.1 were

not independent due to the common interarrival times ti.

Figure 6.8 shows a numerical illustration of the tightness of the bounds

on the waiting time distribution from Theorem 6.8. The illustrated results are

for the example of exponentially distributed interarrival and service times with

parameters λ and µ, respectively.
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By combining the above consideration of the compound service time

distribution with the results from Section 6.3, one can extend the analysis of

random partial mapping to the case of non-renewal input.

Theorem 6.9. (Random Mapping, Non-Renewals, Non-Blocking) Given

a FJ queueing system with K parallel non-blocking servers, Markov modulated

job interarrivals tj as in Section 6.3, and task service times x̄k,i that are de-

scribed by Eq. (6.36). Jobs are randomly mapped to servers according to a uni-

form distribution over the set of server combinations with cardinality H. The

steady-state waiting and response time distributions are bounded by

P [w ≥ σ] ≤ He−θ∗σ ,

P [r ≥ σ] ≤ HE

[

eθ
∗x1,1

]

e−θ∗σ ,

where θ∗ is defined by

θ∗ := sup
{

θ > 0
∣

∣

(

(1− pd) + pdE
[

eθx1,1
])

Λ(θ) = 1
}

.

(Recall that Λ(θ) was defined as a spectral radius of Tθ in Section 6.3).

Proof. The proof follows analogously to the proof of Theorem 6.3 with the dif-

ference that xk,i is replaced by x̄k,i and K by H, respectively.

Remark 6.10. Random number of servers H: One variation of the system that

is considered in Section 6.4.2 is a random mapping of arriving jobs to a random

number of servers 1 ≤ H ≤ N based on a uniform distribution over the power

set 2A \ {∅} with A = {1, . . . , N}. In this case the steady state waiting and

response times are bounded by

P [w ≥ σ] ≤ Ke−θ∗σ ,

P [r ≥ σ] ≤ KE

[

eθ
∗x1,1

]

e−θ∗σ ,

where θ∗ is the solution of (6.39) with pd = 2N−1/(2N − 1).
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6.5 Application to Window-based Protocols over

Multipath Routing

In this section we slightly adapt and use the non-blocking FJ queueing sys-

tem from Section 6.2.1 to analyze the performance of a generic window-based

transmission protocol over multipath routing. While this problem has attracted

much interest lately with the emergence of multipath TCP [117], it is subject

to a major difficulty due to the likely overtaking of packets on different paths.

Consequently, packets have to additionally wait for a resequencing delay, which

directly corresponds to the synchronization constraint in FJ systems. We note

that the employed FJ non-blocking model is subject to a convenient simplifica-

tion, i.e., each path is modelled by a single server/queue only.

As depicted in Figure 6.9, we consider an arrival flow containing l batches

of K packets, with l ∈ N, at the fork node A. In practice, a packet as denoted

here may represent an entire train of consecutive datagrams. The incoming

packets are sent over multiple paths to the destination node B, where they need

to be eventually reordered. We assume that the batch size corresponds to the

transmission window size of the protocol, such that one packet traverses a single

path only. For example, the first path transmits the packets {1,K + 1, 2K +

1, . . . }, i.e., packets are distributed in a round-robin fashion over the K paths.

We also assume that packets on each path are delivered in a (locally-) FIFO

order, i.e., there is no overtaking on the same path.

In analogy to Section 6.2.1, we consider a batch waiting until its last

packet starts being transmitted. When the transmission of the last packet of

batch j begins, the previous batch has already been received, i.e., all packets of

the batch j − 1 are in order at node B.

We are interested in the response times of the batches, which are up-

per bounded by the largest response time of the packets therein. The arrival

time of a batch is defined as the latest arrival time of the packets therein,

i.e., when the batch is entirely received. Formally, the response time of batch
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Figure 6.9: A schematic description of the window-based transmission over mul-
tipath routing; each path is modelled as a single server/queue.

j ∈ {lK + 1 | l ∈ N} can be given by slightly modifying Eq. (6.2), i.e.,

rj = max
0≤n≤j−1

{

max
k

{

n
∑

i=0

xk,j−i −
n
∑

i=1

tk,j−i

}}

.

The corresponding steady-state response time has the modified representation

r =D max
n≥0

{

max
k

{

n
∑

i=0

xk,i −
n
∑

i=1

tk,i

}}

.

The modifications account for the fact that the packets of each batch are asyn-

chronously transmitted on the corresponding paths (instead, in the basic FJ

systems, the tasks of each job are simultaneously mapped). In terms of nota-

tions, the tk,i’s now denote the interarrival times of the packets transmitted over

the same path k, whereas xk,i’s are i.i.d. and denote the transmission time of

packet i over path k; as an example, when the arrival flow at node A is Poisson,

tk,i has an Erlang EK distribution for all k and i.

We next analyze the performance of the considered multipath routing

for both renewal and non-renewal input.
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Renewal Arrivals

Consider first the scenario with renewal interarrival times. Similarly to Sec-

tion 6.2.1 we bound the distribution of the steady-state response time r using

a submartingale in the time domain j ∈ {lK + 1 | l ∈ N}. Following the same

steps as in Theorem 6.1, the process

zk(n) = eθ
∗(

∑n
i=0 xk,i−

∑n
i=1 tk,i)

is a martingale with

θ∗ := sup
{

θ > 0
∣

∣ E
[

eθx1,1
]

E
[

e−θt1,1
]

= 1
}

,

where we used the filtration

Fn := σ {xk,m, tk,m | m ≤ n, k ∈ [1,K]} .

Note that E
[

e−θt1,1
]

denotes the Laplace transform of the interarrival times of

packets transmitted over each path. The proof that maxk zk(n) is a submartin-

gale follows a similar argument as in Eq. (6.10). Hence, we can bound the

distribution of the steady-state response time as

P [r ≥ σ] ≤ KE

[

eθ
∗x1,1

]

e−θ∗σ , (6.40)

with the condition on θ∗ from above.

Non-Renewal Arrivals

Next, consider a scenario with non-renewal interarrival times ti of the packets

arriving at the fork node A in Figure 6.9, as described in Section 6.3. On every

path k ∈ [1,K] the interarrivals are given by a sub-chain (ck,n)n that is driven by

the K-step transition matrix TK = (αi,j)i,j for T given in Eq. (6.23). Similarly

as in the proof of Theorem 6.3, we will use an exponential transform (TK)θ of
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the transition matrix that describes each path k, i.e.,

(TK)θ :=







α1,1β1 α1,2β2

α2,1β1 α2,2β2






,

with αi,j defined above and β1, β2 being the elements of a vector β of conditional

Laplace transforms of K consecutive interarrival times ti. The vector β is given

by

β :=







β1

β2






=













E

[

e−θ∗ ∑K
i=1 ti

∣

∣

∣ c1 = 1
]

E

[

e−θ∗ ∑K
i=1 ti

∣

∣

∣
c1 = 2

]













,

and can be computed given the transition matrix T from Eq. (6.23) via an

exponential row transform [35, Example 7.2.7] denoted by

T̃θ∗ :=













(1− p)E
[

e−θ∗L1
]

pE
[

e−θ∗L1
]

qE
[

e−θ∗L2
]

(1− q)E
[

e−θ∗L2
]













,

yielding β = (T̃θ∗)K







1

1






.

Denote Λ(θ∗) and h = (h(1), h(2)) as the maximal positive eigenvalue of

the matrix (TK)θ∗ and the corresponding right eigenvector, respectively. Mim-

icking the proof of Theorem 6.3, one can show for every path k that the process

zk(n) = h(ck,n)e
θ∗(

∑n
i=0 xk,i−

∑n
i=1 tk,i)

is a martingale with the definition

θ∗ := sup
{

θ > 0
∣

∣ E
[

eθx1,1
]

Λ(θ) = 1
}

. (6.41)

Given the martingale representation of the processes zk(n) for every path
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k, the process

z(n) = max
k

zk(n)

is a submartingale following the line of argument in Eq. (6.10). We can now use

Eq. (6.30) and the remark at the end of Section 6.3.1 to bound the distribution

of the steady-state response time r as

P [r ≥ σ] ≤ E [h(c1,1)]

h(2)
KE

[

eθ
∗x1,1

]

e−θ∗σ , (6.42)

where we also used that h is monotonically decreasing and θ∗ as defined in

Eq. (6.41).

As a direct application of the obtained stochastic bounds (i.e., Eq. (6.40)

and Eq. (6.42)), consider the problem of optimizing the number of parallel paths

K subject to the batch delay (accounting for both queueing and resequencing

delays). More concretely, we are interested in the number of paths K minimizing

the overall average batch delay. Note that the path utilization changes with K

as

ρ =
λ

Kµ
,

since each path only receives 1
K of the input. In other words, the packets on

each path are delivered much faster with increasing K, but they are subject to

the additional resequencing delay (which increases as logK as shown in Sec-

tion 6.2.1).

To visualize the impact of increasing K on the average batch response

times we use the ratio

R̃K :=
E [rK ]

E [r1]
,

where, with abuse of notation, E [rK ] denotes a bound on the average batch re-

sponse time for some K, and E [r1] denotes the corresponding baseline bound for

K = 1; both bounds are obtained by integrating either Eq. (6.40) or Eq. (6.42)

for the renewal and the non-renewal case, respectively. Note that the quantity
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Figure 6.10: Multipath routing reduces the average batch response time when
R̃K < 1; smaller R̃K corresponds to larger reductions. Baseline
parameter µ = 1 and non-renewal parameters: p = 0.1, q = 0.4,
λ1 = {0.39, 0.7, 0.88}, λ2 = 0.95, yielding the utilizations ρ =
{0.5, 0.75, 0.9} (from top to bottom).

R̃K , as a ratio of two upper bounds, is meaningful only if the corresponding

bounds are assumed to be reasonably tight.

In the renewal case, with exponentially distributed interarrival times

with parameter λ, and homogeneous paths/servers where the service times are

exponentially distributed with parameter µ, we obtain

R̃K =

(

log(Nµ/(µ− θ∗)) + 1

log(1/ρ) + 1

)(

µ− λ

θ∗

)

, (6.43)

where θ∗ is defined as

θ∗ := sup

{

θ > 0

∣

∣

∣

∣

∣

µ

µ− θ

(

λ

λ+ θ

)K

= 1

}

.

In the non-renewal case we obtain the same expression for R̃K as in

Eq. (6.43) except for the additional prefactor E[h(c1(1))]
h(2) prior to K; moreover, θ

is the implicit solution from Eq. (6.41).

Figure 6.10 illustrates R̃K as a function of K for several utilization levels
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ρ for both renewal (a) and non-renewal (b) input; recall that the utilization on

each path is ρ
K . In both cases, the fundamental observation is that at small

utilizations (i.e., roughly when ρ ≤ 0.5), multipath routing increases the response

times. In turn, at higher utilizations, response times benefit from multipath

routing but only for 2 paths. While this result may appear as counterintuitive,

the technical explanation (in (a)) is that the waiting time in the underlying

EK/M/1 queue quickly converges to 1
µ , whereas the resequencing delay grows

as logK; in other words, the gain in the queueing delay due to multipath routing

is quickly dominated by the resequencing delay price.

6.6 Summary

In this chapter we have provided the first computable and non-asymptotic bounds

on the waiting and response time distributions in Fork-Join queueing systems

under full and partial server mapping. We have analyzed four practical scenarios

comprising of either work-conserving or non-work-conserving servers, which are

fed by either renewal or non-renewal arrivals. In the case of work-conserving

servers, we have shown that delays scale as O(logK) in the number of parallel

servers K, extending a related scaling result from renewal to non-renewal in-

put. In turn, in the case of non-work-conserving servers, we have shown that

the same fundamental factor of logK determines the system’s stability region.

Given their inherent tightness, our results can be directly applied to the dimen-

sioning of Fork-Join systems such as MapReduce clusters and multipath routing.

A highlight of our study is that multipath routing is reasonable from a queueing

perspective for two routing paths only.
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Replication in Parallel Systems

Despite a significant increase in network bandwidth and computing resources,

major online service providers (and not only) still face extremely volatile rev-

enues due to the high variability of latencies (aka response times/delays), espe-

cially in their tails (e.g., the 95th-percentile). Several well-cited and convincing

studies reported significant potential revenue loss by Google, Bing, or Amazon,

were the latencies higher [127, 76, 132]; a typical cited argument is that an

additional 100ms in latency would cost Amazon 1% of sales.

Given the late abundance of computing resources, a natural and yet very

simple way to improve latencies is replication, a concept which was traditionally

used to improve the reliability of fault-tolerant systems [126]. In the context of a

multi-server (parallel) system, the idea is merely to replicate a task into multiple
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copies/replicas, and to execute each replica on a different server. By leveraging

the statistical variability of the servers themselves, as execution platforms, it is

expected that some replicas would finish much faster than others; for a discussion

of various system/OS factors affecting execution times see [53]. The key gain of

executing multiple replicas is not to reduce the average latency, but rather the

latency tail which is recognized as critically important for ensuring a consistently

fluid/natural responsiveness of systems. Therefore, replication can be regarded

as being instrumental to the development of “latency tail-tolerant systems”,

similarly to its role in fault-tolerant systems [53].

While the idea of using redundant requests is not new, as it has been

used to demonstrate significant speedups in parallel programs [67, 75], it has

become very attractive with its implementation in the MapReduce framework

through the so-called “backup-tasks” [54]. Thereafter there has been a surge

of very high-quality empirical work which has convincingly demonstrated the

benefits of using redundancy for significant latency improvement, both in the

mean and also top percentiles. Such works include latency reductions in Google’s

distributed systems [52], in DNS queries and database servers [146], key-value

storage systems [134], cloud storage systems [156], or significant speed-ups of

small jobs in data-centers [5] or short TCP flows [158].

Such empirical work has been complemented by several excellent ana-

lytical studies (see the Related Work section), which have provided fundamental

insight into the benefits of replication. Constrained by analytical tractability,

most of these works make several strong assumptions: not only the arrivals are

Poisson and the service times are exponentially distributed (i.e., typical assump-

tions in the queueing literature), but the service times of the replicas plus the

corresponding original tasks are statistically independent. By challenging these

assumptions, especially the last two, we first provide some elementary analytical

arguments, along with some simulation results, that the benefits of replication

are highly dependent on both the distributional and correlation structures of the

service times. A convincing example is that the stability region of a system is not

133



7 Replication in Parallel Systems

monotonous in the replication factor. For instance, by adding a replica server

an overloaded system can be stabilized, an advantage which however vanishes

by adding additional replica servers.

In this chapter, we provide a general analytical framework to compute

stochastic bounds on the response time distributions in replication systems. In

particular, our framework covers scenarios with Markovian arrivals, general ser-

vice time distributions (subject to a finite moment generating function), and a

correlation model amongst the original and replicated tasks. Using back-of-the-

envelope calculations, our results can be immediately used for engineering pur-

poses (e.g., to determine the optimum number of replicated servers to minimize

the top percentiles of latencies). Similar to Chapter 6 our methodology relies on

martingales-based techniques. According to several numerical/simulation illus-

trations, our results exhibit a similar high accuracy, including the challenging

case of Markovian arrivals.

To concretely illustrate the applicability of our results we consider two

applications. The first is to improve the performance of FJ queueing systems

through replication, thus extending the model from 6. In particular, we de-

sign an elementary replication policy which can significantly improve not only

delay quantiles (e.g., by a factor of roughly 2), but more fundamentally the

stability region of a FJ system by a logarithmic factor O(lnK) in the number

of servers K; our analysis provides a theoretical understanding of the benefits

of using back-up tasks in MapReduce, as a proposal to alleviate the problem

of stragglers [54]. Albeit such a theoretical benefit is obtained under strong

exponential and statistical independence assumptions, simulation results show

that the underlying numerical benefits carry over to realistic scenarios subject

to correlations amongst replicas. The second application investigates the ana-

lytical trade-off between resource usage and response times under replication, a

matter which has recently been addressed through Google and Bing empirical

studies. The key analytical insight is that increasing resource usage through

replication yields a substantial reduction of response time upper quantiles if the
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Figure 7.1: A parallel system with K servers; tasks are dispatched to the servers
in a possibly replicated manner (i.e., the same task to multiple
servers)

service times of the replicas are sufficiently independent (i.e., subject to a low

correlation factor, to be later formally described).

The rest of the chapter is organized as follows. In Section 7.1 we intro-

duce the analytical models and discuss related work. In Section 7.2 we provide

several insights into the benefits of replication, by following elementary models

and derivations. In Section 7.3 we provide our general theoretical framework

dealing with both Poisson and Markovian arrivals, and also independent and

correlated replicas (i.e., four scenarios). In Section 7.4 we investigate the two

applications of our analytical framework.

7.1 Replication Models and Related Work

We consider a parallel system with K homogeneous servers with identical speeds

(see Figure 7.1). A stream of tasks arrives at a dispatcher according to some

stationary point process; the interarrival times are denoted by ti with the mean

E [t1] =
1
λ , whereas their number within the (continuous) time interval (0, t] is

denoted by N(t). This process can have a Markov structure, to be more precisely

defined in Section 7.3.2.

The service times of the tasks are denoted by xi and are drawn from

some general distribution subject to a finite moment generating function; the

average is set to E [x1] =
1
µ . For numerical purposes, we will occasionally use the
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analytically convenient Pareto distribution, which can be approximated within

our theoretical framework through a hyperexponential distribution.

The utilization of one server, in a system without replicas where tasks

are symmetrically distributed, is denoted by

ρ :=
λ

Kµ
.

In general, it is assumed for stability that ρ < 1. However, in a system with

replication, the expression of the utilization ρ may change depending on vari-

ous factors (e.g., the distribution of tasks’ service times) whereas the stability

condition may fail (such occurrences will be specifically indicated).

7.1.1 Tasks Assignment Policies

A crucial design component in the parallel server system is the task assignment

policy, i.e., how are the incoming tasks assigned to the K servers for processing?

While many such policies have been analytically and empirically studied, we

focus on few relevant ones in terms of both performance and overhead:

• Random: Each task is dispatched, uniformly at random, to one of the

K servers; in the particular case of a Poisson (overall) arrival stream, the

tasks arrived at some server follow a Poisson distribution with rate λ
K .

• Round-Robin: Tasks are deterministically dispatched in a circular fash-

ion to the K servers, i.e., task i is assigned to server i mod K (with the

convention that 0 stands for K); in the case of a Poisson stream, the

interarrival times at some server follow an Erlang E(K,λ) distribution.

• G/G/K: Unlike the previous two schemes, which immediately dispatch

the incoming tasks, and whereby tasks enqueue at the assigned servers, in

G/G/K it is the responsibility of each server to fetch a single task, from a

centralized queue at the dispatcher, once they become idle.
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• (Full-)Replication (K-replication factor): Each incoming task i is repli-

cated to all the K servers1; the corresponding service times are denoted

by xi,j for j = 1, . . . ,K. Alike in Random and Round-Robin, each server

maintains a local (FIFO) queue.

• Partial-Replication (k-replication factor): Besides full replication, a task

may be replicated to only k ≤ K servers; we will assume that both K and

k are powers of 2, and that consecutive blocks of k replicas are allocated

to the K servers in a round-robin manner. We call the underlying strategy

(strict) Partial-Replication when 1 < k < K, and No-Replication when

k = 1.

In terms of analytical tractability, Random and Round-Robin are signifi-

cantly more amenable than G/G/K; in fact, exact results are known for G/G/K

only in the case of Poisson arrivals and exponential service times (in which case

the model is denoted by M/M/K). However, G/G/K yields significantly better

performance (i.e., much smaller response times of the tasks) than Random and

Round-Robin, especially in the case of high variability of the tasks’ service times;

in turn Round-Robin slightly outperforms Random (for an excellent related dis-

cussion see [71], pp. 408–430).

It is to be noted however that the superiority of G/G/K is (partly)

due to the availability of additional system information, i.e., each task is “in-

formed” about which server is idle such that it can minimize its response time.

In turn, amongst policies which are oblivious to such information, Round-Robin

was shown to be optimal for exponential [58, 147] and increasing failure rate dis-

tributions [103]; for a recent state-of-the-art queueing analysis of Round-Robin

see [79].

A more sophisticated replication strategy was proposed in the context of

massively parallel data processing systems in which (large) jobs are forked/split

into (smaller) tasks, each assigned to a server; once a fraction of the tasks fin-

ish their executions, each of the remaining (and straggling) tasks are further

1For the sake of clarification, the original task is called a replica as well.
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replicated. This model appeared in the MapReduce specification [54], and was

formally studied in terms of the underlying response time / resource usage trade-

off, albeit by disregarding queueing effects in [148]. Another strategy used by

Google is to defer the start of executing the second replica for some suitable

time, in order to reduce resource usage [53].

7.1.2 Purging/Cancellation Models

Before discussing the relative performance of Replication to other policies, we

first define how replication strategies deal with residual resources. From a tech-

nical perspective, the following distinction is similar to the one of blocking and

non-blocking from Chapter 6:

• Purging: A task is considered to complete (and hence its response time

is determined) when the fastest replica finishes its execution; at the same

time, the residual replicas are all purged/cancelled from the system (with

some negligible related cost).

• Non-Purging: A task response time is determined as in the Purging case,

but the remaining replicas leave the system no sooner than their execution

end.

Purging is clearly more efficient from a purely task response-time per-

spective, as it frees resources once the first replica completes; this operation

demands however synchronization overhead amongst the servers. One basic rea-

son for this superiority is that in the Non-Purging model the utilization increases

k-fold for a k-replication factor, for any task service time distribution; in partic-

ular, a 2-replication factor requires the replica-free system to have a utilization

under 50% (otherwise the response times get unbounded). In turn, the growth

of the utilization is less pronounced in the Purging model, depending on the

type of distribution of the service times; in fact, and perhaps counter-intuitively,

there is no increase in the case of the exponential distribution regardless the

replication factor (for a follow-up discussion see 7.2.2).
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Besides the advantage of a better queueing performance, the Purging

model is much easier to analyze. In fact, the only analytical study of Non-

Purging is considered in [146]; besides the classical and simplifying assumptions

of Poisson arrivals and exponential service times, the underlying queueing anal-

ysis critically relies on an artificial statistical independence assumption amongst

the queues. Using this assumption, it is shown that below a utilization threshold

of 33%, a 2-replication factor strategy does improve the response time despite

the inherent doubling of the utilization.

A generalized version of Partial-Replication considers the situation when

the fastest l ≤ k replicas finish their execution (the residual ones being subse-

quently purged); a practical use of this generalization is in coded distributed

storage systems [128]. The central result is that under arrivals with indepen-

dent increments, and exponential (or “heavier”) service times, Full-Replication

minimizes the (average) response times. In turn, in the case of “lighter” service

times and 100% utilization, a replication factor greater than one is detrimental.

The underlying proofs use an ingenious coupling argument, but do not provide

quantitative results.

Another set of qualitative results, on the superiority of Full-Replication

for a specific type of service time distributions (including the exponential) is

presented in [96]. Interestingly, under a discrete time model with geometric

service time distributions, is is shown in [22] through quantitative results that

No-Replication is optimal (for an explanation of the apparent contradiction be-

tween exponential and geometric service time distributions, with respect to the

optimality of the replication model, see [96]).

Recently, an Early Purging model, in which residual replicas are purged

once the first one starts its execution, has been mentioned in [53] and further

analyzed in [84]; besides reducing the resource usage, it was shown that this

model can also significantly reduce response times despite the apparent loss of

diversity, at high utilizations.

The perhaps most fundamental related result obtained so far is a re-
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cent exact analysis under the purging model [65]. While the analysis critically

relies on the Poisson/exponential models, a key analytical contribution is cap-

turing multi-class arrivals (i.e., different arrival streams are served by different

sets of (replicated) servers). The elegance of the results lends itself to several

fundamental and contriving insights into the properties of replication, especially

accounting for the multi-class feature of the model.

More general stochastic bounds in replication systems are obtained in [61],

including the very challenging multi-stage case, by leveraging the analytical

power of the stochastic network calculus methodology. While the underlying

arrival and service models from [61] are more general than ours, the crucial dif-

ference is in handling the underlying correlation structures: concretely, while [61]

deals with arbitrary correlation structures yielding stochastic bounds holding in

great generality, we exploit the specific correlation structures through the mar-

tingale methodology.

7.2 Elementary analytical Insights

Here we complement the previous discussion by providing several motivating

examples. After quickly contrasting the task assignment policies introduced

earlier, under the Poisson/exponential models, we explore more general service

time distributions. The key insight is that the stability region of replicated

systems is not necessarily monotonous in the number of replicas; depending on

the service distribution, any of the policies No-Replication, Full-Replication, or

Partial-Replication can yield the largest stability region.

7.2.1 The M/M model

For some immediate analytical insight, consider the classical example of Poisson

arrivals and exponential service times. Due to a lack of closed-form formulas for

all considered policies, for large number of servers, we assume that K = 2; recall

that the (server) utilization is ρ = λ
2µ .
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The average response times for the four policies (i.e., Random, Round-

Robin, M/M/2, and Replication) are, respectively,

E [TRnd] =
1

µ(1− ρ)

E [TRR] =
2

µ
(

1− 4ρ+
√
1 + 8ρ

)

E [TMM2] =
1

µ (1− ρ2)

E [TRep] =
1

2µ(1− ρ)
.

Note that Replication induces an M/G/1 queueing model, in which the service

time is the first order statistics of two i.i.d. random variables (in the current

case being an exponential with half of the mean of the original). Immediate

comparisons reveal that the minimum (“best”) response time is attained by

Replication; a key reason is that the gain of sampling the minimum of exponential

random variables, together with the Purging model, significantly dominates the

cost of temporary redundant resource usage. In turn, the maximum (“worst”)

response time is attained by Random; the relative performance of Round-Robin

and M/M/2 depends on the value of ρ. Lastly, we point out that the superiority

of Replication immediately extends to larger values of K.

More general results in terms of lower and upper bounds on the average

response time in the case of a variant of Replication, in which only the fastest

l ≤ K tasks are required to complete (whilst the residual tasks are purged) (and

which was qualitatively studied in [128]), appeared in [83]; in particular, it was

shown that Replication outperforms the corresponding M/M/K model. Further

upper bounds were derived in the case of general service time distributions, using

existing bounds on the first two moments of the lth order statistics.

7.2.2 Beyond the M model

In the previous example with exponential service times, the stability region is

invariant to the replication factor; the reason is that the 1st order statistic of
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K (independent) exponential random variables exp(µ) is an exponential ran-

dom variable exp(Kµ). The next elementary examples show that any strategy

amongst No-Replication, Full-Replication, or Partial-Replication can yield the

strictly largest stability regions (and hence “best” response times, at least in

some subset of the stability region; a follow-up discussion will be given in Sec-

tion 7.3.3). A fundamental reason is the assumption of independent service

times of the replicas, which motivates the need for accounting for some correla-

tion structures.

Recall that in the No-Replication scenario, a necessary and sufficient

condition for stability (or, equivalently, for finite response times) is

E[x1] < KE[t1] .

In the case of Full-Replication, the corresponding stability condition is given by

E [min {x1, . . . , xn}] < E[t1] ,

whereas in the case of Partial-Replication with replication factor k by

E [min {x1, . . . , xk}] <
K

k
E[t1] . (7.1)

Denoting the CCDF of xi by

f(x) := P(x1 ≥ x) ,

we observe from the previous stability conditions that the “best” replication-

factor k is

argmin
k

k

∫

fk(x)dx . (7.2)

We next present examples of different distributions for xi resulting in

“best” scenarios for each of the three replication strategies.
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No-Replication: Uniform

Assume uniformly distributed service times, i.e., xi ∼ U[0,1]. The following

argument shows that in this case replication is detrimental, i.e.,

E [x1] < kE [min {x1, . . . , xk}] ,

for any k ≥ 2 :

kE [min {x1, . . . , xk}] =k

∫ ∞

0

P (min {x1, . . . , xk} ≥ x) dx

=k

∫ ∞

0

P (x1 ≥ x)
k
dx

=

∫ 1

0

kxkdx =
k

k + 1
>

1

2
= E [x1] .

The same argument additionally shows that Partial-Replication is better than

Full-Replication. This result extends the qualitative observation from [128] (i.e.,

Theorem 4 therein, restricted to a 100% utilization, and hence an unstable

regime) to any (stable) utilization.

Full-Replication: Weibull

Let the xi now be Weibull distributed, i.e., f(x) = e−(x/λ)α . For α < 1, a higher

degree of replication is “better”, as shown below:

kE [min {x1, . . . , xk}] =k

∫ ∞

0

P(min {x1, . . . , xk} ≥ x)dx

=k

∫ ∞

0

e−k(x/λ)αdx

=k
λ

k1/α
Γ(1 + 1/α) .

By the assumption on α, the last term is monotonically decreasing in k. Note

that in the special case of exponentially distributed xi, i.e., α = 1, replication

is neither beneficial nor detrimental (from the point of view of the stability re-

gion), as pointed out earlier. This result also extends the qualitative observation
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from [128] (i.e., Theorem 3) to any (stable) utilization.

Partial Replication: Pareto

Lastly we consider the Pareto distribution, i.e., f(x) = x−α for x ≥ 1. For

a suitably chosen α > 1, it can be shown that (strict) Partial-Replication can

become “better” than both Full-Replication and No-Replication:

kE [min {x1, . . . , xk}] =k

∫ ∞

0

P (min {x1, . . . , xk} ≥ x) dx

=k + k

∫ ∞

1

x−kαdx = k +
k

kα− 1
.

It is clear that for sufficiently small α > 1, the minimal value is attained for

k = 2 .

This last example highlights that the performance of replication strate-

gies heavily depends on the replication factor k, the service time distribution,

and other underlying assumptions. In particular, performance is not monotonic

in k, and thus an optimization framework is desirable (related results, on the

actual response time distributions as a function of k will be provided in the next

section).

For complementary numerical results illustrating the counterintuitive

effect of k, consider the Pareto distribution with the assumption of independent

service times of the k replicas. Let K = 4, arrival rate λ = 1, α = 1.1 (for the

Pareto distribution), yielding a utilization ρ = 2.75 (i.e., 275%). By plotting

the simulated latencies of the first 104 packets, Figure 7.2 shows that while the

system without replication is in overload, a replication factor of k = 2 stabilizes

the system (reducing the utilization to 0.91), whereas a replication factor of 4

puts the system back in overload (increasing the utilization to 1.29).

The non-monotonic behavior in k disappears when the service times are

sufficiently correlated. Indeed, by taking the service times of the replicas as
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Figure 7.2: From overload (k = 1) to underload (k = 2) and back (k = 4)
(K = 4, α = 1.1, λ = 1, and utilization ρ = 2.75 (for the non-
replicated k = 1 case))

y + xi (where the xi are Pareto distributed, and y ≥ 0 is arbitrary), it holds:

kE[min{y + x1, . . . , y + xk}] = kE[y] + kE[min{x1, . . . , xk}]

= kE[y] + k +
k

kα− 1

= k

(

E[y] +
kα

kα− 1

)

,

so that (for a suitably chosen α > 1, and a sufficiently large value of E[y]) the

optimal value of k in Eq. (7.2) is 1 (i.e., No-Replication is “best”).

7.3 Theory

We assume a queueing system with K servers and interarrival times between

jobs i and i + 1 denoted by ti. Upon its arrival, job i is replicated to k ≤ K

servers where they are processed with service times xi,1, . . . , xi,k, respectively.

We throughout assume that K is an integral multiple of k. Further, the jobs are

assigned to the K
k batches in a round robin scheme, i.e., the interarrival times

for one batch can be described as:

t̃i :=

K/k−1
∑

j=0

t(i−1)K
k
+j .
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The following recursion describes the response time ri+1 of job i+1, i.e.,

the time between the job’s arrival and its service being complete:

r1 := min
j≤k

x1,j , ri+1 := min
j≤k

{xi+1,j}+max{0, ri − t̃i} ,

resulting in a representation of the steady-state response time r as:

r =D max
n≥1

{

n+1
∑

i=1

min
j≤k

{xi,j} −
n
∑

i=1

t̃i

}

, (7.3)

where the empty sum is by convention equal to 0. Note that, essentially the

only difference between the response time as defined above (Eq. (7.3)) and the

response time in the FJ scenario (Eq. (6.17)) is that the inner max-operator is

exchanged by the min.

Depending on the correlation between either the interarrival times and

the service times, respectively, we consider four different scenarios: In Sub-

section 7.3.1, all random variables ti, xi,j are assumed to be independent. In

Subsection 7.3.2, the interarrival times are driven by a certain Markov chain,

whereas in Subsection 7.3.3 the service times are correlated through a common

additive factor. Finally, in Subsection 7.3.4, a combination of both correlation

models is considered.

7.3.1 Independent Arrivals, Independent Replication

As stated above, we consider the scenario of independent replication, i.e., the set

{ti, xi,j | i ≥ 1, j ≤ k} forms an independent family of random variables.

The next Theorem provides an upper bound on the CCDF of r as defined

in Eq (7.3):

Theorem 7.1. Let θind be defined by

θind := sup

{

θ ≥ 0

∣

∣

∣

∣

E

[

eθminj≤k{xi,j}
]

E
[

e−θti
]

K
k ≤ 1

}

.
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Then the following bound on the response time holds for all σ ≥ 0:

P(r ≥ σ) ≤ E

[

eθind minj≤k{x1,j}
]

e−θindσ .

Note that, given the stability condition from Eq. (7.1), θind > 0 as

d

dθ
E

[

eθminj≤k{xi,j}
]

E
[

e−θti
]

K
k

∣

∣

∣

∣

θ=0

= E

[

min
j≤k

{xi,j}
]

− K

k
E [ti] < 0 .

Proof. Define the process M(n) by

M(n+ 1) := eθind(
∑n+1

i=1 minj≤k{xi,j}−
∑n

i=1 t̃i) .

As in the proof of Theorem 6.2 one shows that M(n) is a martingale. Now define

the stopping N as

N := min

{

n ≥ 0

∣

∣

∣

∣

∣

n
∑

i=1

min
j≤k

{xi,j} −
n−1
∑

i=1

t̃i ≥ σ

}

,

and proceed as in the proof of Theorem 3.4.

We point out that the proof essentially follows the bounding technique

for GI/GI/1 queues from [92], also used in the proof of Theorem 6.2.

7.3.2 Markovian Arrivals, Independent Replication

We now turn to the more realistic scenario where the interarrival times are cor-

related: A two-state Markov chain Z(n) alternates between active and inactive

periods; while in the active state, exponentially distributed interarrival times

are generated with parameter λact, and the chain turns inactive with probability

p > 0. In the inactive state, one interarrival time (exponentially distributed,

parameter λinact < λact) is generated, and the chain jumps back to the active

state (see Figure 7.3) (Note that this is essentially a special case of the Markov
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iact act 1− p

1

p
λiact λact

Figure 7.3: Two-state Markov chain Z(n)

chain from Figure 6.4.). Formally, let

ti,act ∼ Exp(λact) , ti,iact ∼ Exp(λiact)

be i.i.d. random variables and define the sequence of interarrival times ti by

ti := ti,Z(i) .

The steady state distribution π of the Markov chain is given by

πact =
1

1 + p
, and πiact =

p

1 + p
,

such that for the average of the interarrival times holds

E[ti] =
(

λ−1
act + pλ−1

iact

) /

(1 + p) (7.4)

Note that the transition matrix of Z(n) is given by:

T :=







0 1

p 1− p






.

In order to state the main result of this section, we need an exponential transform

of T similar to the one in Eq. (3.13):
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Definition 7.2. For 0 ≤ θ < λiact, let Tθ denote the following matrix:

Tθ :=







0 λact

λact+θ

p λiact

λiact+θ (1− p) λact

λact+θ






.

Further, let ξ(θ) denote the maximal positive eigenvalue of Tθ, and h = (hact, hiact)

be a corresponding eigenvector.

The following Theorem is the analogous result to Theorem 7.1 (note that

the service times xi,j are still assumed to be i.i.d.):

Theorem 7.3. Let 1 ≤ k ≤ K and θmkv be defined by

θmkv := sup
{

θ ≥ 0
∣

∣

∣
E

[

eθminj≤k{xi,j}
]

ξ
K
k (θ) ≤ 1

}

.

Then, for the system with replication to k out of K servers, the following bound

on the response time holds for all σ > 0:

P(r ≥ σ) ≤ E

[

eθmkv minj≤k{xi,j}
]

e−θmkvσ .

Proof. Proceeding similarly as in the proof of Theorem 7.1, define the process

M(n) by

M(n) := hZ(nK
k
−1)e

θmkv(
∑n

i=1 x̃i−
∑n−1

i=1 t̃i) .

M(n) is a martingale: By induction over K
k − 1 one shows that:

E

[

e−θmkv t̃n+1

∣

∣

∣

∣

Z

(

n
K

k
− 1

)]

=
(

T
K
k

θmkv

)

Z(nK
k
−1),iact

+
(

T
K
k

θmkv

)

Z(nK
k
−1),act

.
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Now:

E

[

hZ((n+1)K
k
−1)e

θmkv(x̃n+1−t̃n)
∣

∣

∣

∣

Z

(

n
K

k
− 1

)

= act

]

= E

[

eθmkv minj≤k{xn,j}
] (

T
K
k

θmkv
h
)

act

= E

[

eθmkv minj≤k{xn+1,j}
]

ξ
K
k (θmkv)hact

= hact ,

and similarly one obtains:

E

[

hZ((n+1)K
k
−1)e

θmkv(x̃n+1−t̃n)
∣

∣

∣

∣

Z

(

n
K

k
− 1

)

= iact

]

= hiact ,

so that:

E

[

hZ((n+1)K
k
−1)e

θmkv(x̃n+1−t̃n)
∣

∣

∣

∣

Z

(

n
K

k
− 1

)]

= hZ(n) .

Now multiply both sides by eθmkv(
∑n

i=1 minj≤k{xi,j}−
∑n−1

i=1 ti). The proof com-

pletes along the same kind of lines as in the proof of Theorem 7.1.

7.3.3 Independent Arrivals, Correlated Replication

We now address the more realistic scenario when the replicas xi,j are no longer

independent; we consider the following correlation model (from [83]):

xi,j = δyi + (1− δ) yi,j , (7.5)

where the random variables yi and yi,j are i.i.d., and δ ∈ [0, 1]. Here, the

parameter δ describes the degree of correlation amongst the replicas: δ = 0

corresponds to the i.i.d. case from Section 7.3.1, whereas for δ = 1 the K servers

are entirely synchronized so that no replication gain is achieved.

The interarrival times ti are first assumed to be i.i.d. as in Section 7.3.1.
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Figure 7.4: Delay for the 99%-percentile as a function of the degree of correlation
δ (λ = 4 ∗ 0.75, µ = 1, K = 4, k = 1, 2, 4)

Theorem 7.4. Let θcor be defined by

θcor := sup

{

θ ≥ 0

∣

∣

∣

∣

E
[

eθδyi
]

E

[

eθ(1−δ)minj≤k{yi,j}
]

E
[

e−θti
]

K
k ≤ 1

}

.

Then the following bound on the response time holds for all σ ≥ 0:

P(r ≥ σ) ≤ E
[

eδθcoryi
]

E

[

e(1−δ)θcor minj≤k{yi,j}
]

e−θcorσ .

Proof. Entirely analogous to the proof of Theorem 7.1.

To illustrate the impact of the correlation parameter δ we consider the

special case when yi and yi,j are exponentially distributed with parameter µ.

Clearly,

min
j≤k

{yi,j} ∼ Exp(kµ) ,

so that θcor > 0 is the solution of

µ

µ− δθ

kµ

kµ− (1− δ) θ

λ

λ+ θ
= 1 .

Further, Figure 7.4 illustrates the 99%-percentile of the delay as a func-

tion of the degree of correlation δ for several numbers of replicas k. Strictly

from the point of view of the stability region, as it was also considered in Sec-
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tion 7.2.2, we observe that replication (both k = 2 and k = 4) is detrimental as

the corresponding systems quickly become unstable. In contrast, from the point

of view of delays, replication can be beneficial within a subset of the correspond-

ing stability region notwithstanding its strict inclusion in the stability region

of the non-replicated system. This fundamental observation can be intuitively

explained in that for larger values of the degree of correlation δ, the servers be-

come more synchronized and consequently no significant replication gain can be

achieved; a further follow-up discussion concerning a convergence result depend-

ing on δ will be given in Section 7.4.1. As a side remark, the symmetry in the

delay for k = 1 is due to the underlying Erlang distribution, which minimizes

its variance at δ = .5.

7.3.4 Markovian Arrivals, Correlated Replication

We briefly state the results for the combination of the scenario from Sections 7.3.2

and 7.3.3:

Theorem 7.5. With the same notation as in Sections 7.3.2 and 7.3.3, let

θmkv,cor be defined by

θmkv,cor := sup

{

θ ≥ 0
∣

∣

∣ E
[

eθδyi
]

E

[

eθ(1−δ)minj≤k{yi,j}
]

ξ
K
l (θ) ≤ 1

}

.

Then the following bound on the response time holds for all σ ≥ 0:

P(r ≥ σ) ≤ E
[

eδθmkv,coryi
]

E

[

e(1−δ)θmkv,cor minj≤k{yi,j}
]

e−θmkv,corσ .

Proof. Entirely analogous to the proofs of Theorems 7.1 and 7.3.

To numerically compare our stochastic bounds from Theorems 7.1, 7.4,

7.3, and 7.5 to simulation results we refer to Figures 7.5(a)–(d), respectively.

In all four scenarios, addressing combinations of independent/correlated arrivals

and replications, jobs are replicated to k = 1, 2, 4 out of a total number of

K = 4 servers. The parameters of the respective models are chosen such that

152



7 Replication in Parallel Systems

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Delay

P
ro

b
a

b
ili

ty

●

k = 1

k = 2

k = 4

0 10 20 30 40 50

1
0

−
8

1
0

−
6

1
0

−
4

1
0

−
2

1
0

0

(a) Poisson (Theorem 7.1)
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(b) Poisson with correlation (δ = .5) (Theo-
rem 7.4)
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(c) Markov (p = 0.1, λiact = 0.3, λact = 30)
(Theorem 7.3)
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(d) Markov with correlation (as in (c) and
δ = .5) (Theorem 7.5)

Figure 7.5: Stochastic bounds vs. simulation results accounting for 109 packets
(K = 4, ρ = .75, µ = 1)

the (server) utilization remains constant, i.e., ρ = 0.75. In particular, in Fig-

ure 7.5(a), both the interarrival- and service times are exponentially distributed

with parameters λ = 4 × 0.75 = 3 and µ = 1. In Figure 7.5(b), the interar-

rival times are again exponential with λ = 4 × 0.75 = 3, the correlation factor

is δ = 0.5, whereas the components yi and yi,j of the service times xi,j from

Eq. (7.5) are exponential with parameter

µ′ := δ + (1− δ)
/

k ,

such that E[xi,j ] = 1. In Figure 7.5(c), the parameters for the Markov chain are

p = 0.1, λact = 30, λiact = 0.3, whereas the services times are exponential with

parameter µ = 1. According to Eq. (7.4) the average of the interarrival times
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is E[ti] = 1/3, such that ρ = 0.75. Finally, in Figure 7.5(d), the parameters for

the service times from Figure 7.5(b) are combined with the parameters for the

interarrival times from Figure 7.5(c). We remark that in all four scenarios the

stochastic bounds from Theorems 7.1, 7.4, 7.3, and 7.5 are remarkably accurate.

7.4 Applications

In this section we present two practical applications of our theoretical frame-

work. The first concerns integrating replication with a fork-join queueing model

(see Chapter 6); a major outcome is the construction of an intuitive class of as-

signment policies which can fundamentally improve response times. The second

investigates the analytical trade-off between resource usage and response times,

an issue which was subject to several measurement studies involving Google and

Bing traces.

7.4.1 Fork-Join with Replication (FJR)

In this section we consider replication in the context of a FJ queueing system as

in Chapter 6, i.e., arriving jobs are split into K different tasks which are mapped

to K servers to be processed independently. A job is considered finished once

all of its corresponding tasks have finished. We consider the special case of a

blocking system (see Subsections 6.2.2 and 6.3.2) whereby jobs cannot be forked

before all of the tasks of the previous job have left the system.

The obvious drawback of this blocking model is that it is no longer work-

conserving: servers can become idle once some but not all tasks of one job are

complete. Moreover, the stability condition of the system becomes a function of

the number of servers.

Consider for instance the case of Poisson arrivals with rate λ and expo-

nential and identically distributed service times xi, i = 1, . . . ,K, with rate µ. As

the distribution of the maximum of i.i.d. exponential random variables satisfies
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Server 1:

Server 2:

Server 3:

Server 4:

y0 y1 y2 y3 y4

Figure 7.6: FJR policy; different colors denote different tasks, dotted lines indi-
cate tasks which have been purged.

maxKi=1 xi =D

∑K
i=1

xi

i [119], the stability condition is roughly

λ

µ
lnK < 1 . (7.6)

To overcome the issue of decaying stability regions (in the number of

servers K) we propose the following task assignment policy which suitably trig-

gers replicas on top of the standard FJ model.

Policy FJR (Fork-Join with Replication): Once a server finishes its task, it im-

mediately replicates a remaining task from another running server. When either

the original task or one of its replica has finished, the others are immediately

purged.

FJR can be regarded as a concrete implementation of backup-tasks in

MapReduce (which is not explicitly presented in the original MapReduce descrip-

tion [54]). Our policy is quite flexible in that the executing task to be replicated

can be chosen randomly (yet independently of the current state); moreover, as

multiple servers can become idle at the same time (due to the underlying purg-

ing model), each can replicate any executing tasks. Intuitively, this flexibility is

due to the underlying assumption of exponentially distributed and independent

service times.

The main result of the FJR policy is the following:

Theorem 7.6. The overall service time x of jobs processed by FJR follows an
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Erlang(K,Kµ)-distribution. Consequently, the corresponding stability condition

is

λ

µ
< 1 .

Proof. Let y1 < y2 < . . . < yK denote the times where the tasks (original or

replica) finish (see Figure 7.6). Obviously, it holds x = yK . We first show (with

the convention y0 ≡ 0) that the family

{yi − yi−1 | i ≥ 1}

is independent and identically exponentially distributed with parameter Kµ.

For i = 1, this follows directly from the well known fact that the min-

imum over K independent, exponential random variables with rate µ is expo-

nentially distributed with rate Kµ.

Now, suppose 1 ≤ l ≤ K tasks finish, or are purged, at time yi. Denote

by z1, . . . , zl the corresponding service times of the respective replicas starting

at yi. For the remaining K − l servers, denote by zl+1, . . . , zK the service times

of the current tasks and by sl+1, . . . , sK the length of time they started before

yi. Now we can write

yi+1 − yi = min
{

z1, . . . , zl, zl+1 − sl+1, . . . , zK − sK

∣

∣ zl+1 − sl+1, . . . , zK − sK > 0
}

.

Note that the family {z1, . . . , zK} is independent from one another and from

{sl+1, . . . sK}.

Now, with

A := {zl+1 − sl+1, . . . , zK − sK > 0} ,
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Figure 7.7: Improving the 99%-percentile of delays in FJ systems by replication

~s := (sl+1, . . . , sK), and f(.) the common density of ~s:

P(yi+1 − yi ≥ σ) = P (min {z1, . . . , zl, zl+1 − sl+1, . . . , zK − sK} ≥ σ | A)

= e−lµσ

∫

e−µ(
∑K

j=l+1 σ+sj)f(~s)d~s
/

P(A)

= e−Kµσ

∫

e−µ
∑K

j=l+1 sjf(~s)d~s
/

P(A)

= e−Kµσ

∫

P(zl+1 > sl+1, . . . , zK > sK)f(~s)d~s
/

P(A)

= e−Kµσ ,

so that yi − yi−1 is exponentially distributed for any 1 ≤ i ≤ K. It

follows that

x = yK =

K
∑

i=1

yi − yi−1

has an Erlang distribution with parameters K and Kµ. Therefore E[x] = 1
µ ,

which completes the proof.

It is evident that the stability region of FJR improves the stability region

of the standard FJ queueing model (given in Eq. (7.6)) by a logarithmic factor.

Figure 7.7 shows the 99th percentile of the delays as a function of K (µ = 1 and

Poisson arrivals with rate such ρ = 0.75 whenK = 1; the utilization consequently

decays for larger K). The numerical benefit of FJR is that it roughly halves the

FJ delays.
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Figure 7.8: Convergence of FJR to FJ in terms of the degree of correlation δ
(K = 4).

While the fundamental improvements achieved by the FJR policy, rel-

ative to the standard FJ model, are remarkable, we point out that they are

mainly due to the exponential and independence assumptions on the triggered

replicas. Unfortunately, a clean analysis in the case of correlated replicas (even

of the form (1 − δ)xi + δx, with x and xi’s being exponentially distributed)

appears prohibitive. For this reason, we resort to simulations to illustrate that

the benefits of FJR (proven in the ideal i.i.d. and exponential case) carry over

to more practical scenarios with correlated replicas.

Concretely, Figure 7.8 shows the bounds on the delay distributions for

FJ and three FJR scenarios, depending on the degree of correlation δ (the service

times of an original and its replicated tasks are (1− δ)xi + δx, with x and xi’s

being exponentially distributed with rate µ = 1; Poisson arrivals such that the

utilization for FJ is ρ = 0.9 (the corresponding utilizations for FJR are not

analytically determined)). The figure essentially illustrates the convergence of

FJR to FJ; we remark in particular that FJ is invariant to δ, whereas FJR

behaves identically as FJ when δ = 1 (i.e., when the replicas are identical to

the originals).
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7.4.2 Resource Usage vs. Response Times

For the second application we investigate the analytical trade-off between re-

source usage and response times under replication. This application is moti-

vated by empirical observations from Google [53] and Bing [80] traces that a

slight increase in the resource budget may yield substantial reductions of the

upper quantiles of response times. For example, [80] reports that the 99th per-

centile of the delay improves by as much as 40% under a 5% increase of the

resource budget. To compensate for the inherent increase of resource usage un-

der replication, the schemes from [53, 80] defer the execution time of the replicas

until the original request has been outstanding for a given replication offset ∆.

∆ y

x

Server 2:

Server 1:

. . .

. . .

Figure 7.9: Replication with deferred execution times: a replica (at Server 2)
may start no sooner than (∆ ≥ 0) after the starting time of the
original (at Server 1).

Consider a scenario with two servers. Jobs arrive with rate λ at the first

server with interarrival times ti and service times xi =D x; if the processing time

of a job is larger than some fixed ∆, then the job is replicated at the second

server with service times yi =D y (see Figure 7.9 for a time-line illustration of

a generic job with execution time x and its replica, should x > ∆). Whenever

either of the original job or its replica finishes execution, the residual service

time of the other is cancelled (i.e., the purging replication model).

The utilization at the first server is thus given by

ρ1 = λE [min{x,∆+ y}] , (7.7)
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whereas the utilization at the second is

ρ2 = λE [min {|x−∆|, y}] . (7.8)

We note that unlike previous models, where the utilization is server independent,

the current model is subject to different server utilizations due to the lack of

symmetry in dispatching the load.

The measure for resource usage is the total utilization at the two servers

and is denoted by u to avoid confusion

u := ρ1 + ρ2 .

Aiming for explicit results, we assume for convenience the independent

replication model and the exponential service model, i.e., x ∼ exp(µ) and

y ∼ exp(µ), with µ = 1. Given the statistical independence of xi’s and yi’s,

straightforward computations of integrals yield

ρ1 =
λ

µ
− λ

2µ
e−µ∆ and

ρ2 =
λ

2µ
e−µ∆ ,

which means that the resource usage u = λ
µ is invariant to the choice of ∆.

In turn, ∆ can have a major impact on the response times: for instance,

if µ < λ < 2µ then the response times can be either unbounded for sufficiently

large values of ∆, and in particular when ∆ = ∞ (i.e., no replicas are executed),

or finite for some values of ∆.

In fact, an immediate application of Theorem 7.1 yields that the response

time is non-decreasing in ∆. Thus, the optimal choice of ∆, which minimizes

both the resource usage and the response times, is ∆ = 0. The explanation for

the seemingly sharp contrast between this theoretical result and the empirical

results from [53, 80] is the underlying independence assumption of the replication

model.
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7.5 Summary

In this chapter we have developed an analytical framework to compute stochas-

tic bounds on the response time distribution in quite general replicated queue-

ing systems. Unlike existing models, ours cover practical scenarios including

correlated interarrivals, general service time distributions, and not necessarily

independent service times for original tasks and their replicas. By employing the

powerful martingale methodology, we were able to derive numerically accurate

bounds by exploiting the specific correlation structures of the underlying pro-

cesses. Remarkably, we have shown both analytically and through simulations

that the choices of the underlying models and assumptions play a fundamental

role concerning the effects of replication in parallel systems, thus motivating our

general framework. In terms of applications, we have developed a novel task

replication policy in fork-join systems which is similar to the implementation of

back-up tasks in MapReduce. For the analytically convenient Poisson arrivals

and i.i.d. exponential service times model, our policy improves the performance

of the standard fork-join model by a fundamental logarithmic factor.
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8
Concluding Remarks

8.1 On the Accuracy of the Martingale-Bounds

The crucial step in the derivations of all the performance bounds in the preced-

ing chapters consists in invoking (some variant of) Doob’s inequality, either for

(super-)martingales (Chapters 3–7) or for submartingales (Chapter 5 and Chap-

ter 6). In this section we discuss the tightness of the martingale-based method

and provide some insight into reasons for differences of the bounds’ accuracy.

Although the bounds illustrated in the Figures of Chapter 3 are seem-

ingly accurate, the bounds degrade with the level of correlations within the ar-

rivals. This trend can be particularly noticed for 1-order vs. 2-order autore-

gressive processes (see Figure 3.5(a) vs. 3.5(b)); the same could be observed by
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Figure 8.1: Possible CCDF of the delay. Depending on the flows’ burstiness the
martingale (exponential) bounds are inevitably loose for small or
large delays.

reducing the scale of the x-axis in Figures 3.6(a) and 3.6(b). One explanation

is that on a logarithmic y-axis the simulations throughout are seemingly con-

vex, i.e., the probabilities in an initial phase decay faster than asymptotically

(see Figure 8.1(a)), this behavior has been in fact convincingly shown to hold

for bursty flows in [39]. In contrast, as the arrival- and service-martingales are

based on exponential transforms, they can only render bounds of the form of

the (generalized) exponential distribution (i.e., P ≤ κe−θx), whence the straight

lines in the plots. In other words, the longer the “initial phase” of the true

distribution is, or more generally the level of long-range correlations, the larger

the gap is between the distribution and the obtained bounds.

A possible approach to reduce this inherent gap would be to use hy-

perexponential rather than exponential transforms, i.e., functions of the form

p1e
θ1x+p2e

θ2x, where the parameters p1, λ1 and p2, λ2 are scaled accordingly to

the initial and the tail periods, respectively.

The diametrically opposite situation occurs in the FJ queueing system

(Chapter 6): for non-blocking systems, the simulations now have a concave shape

on a logarithmic y-axis (see Figure 6.3(a)), and hence the (exponential) bounds

are to some extend inaccurate in the initial phase but reasonably tight asymptot-

ically (see Figure 8.1(b)). Moreover, for both blocking and non-blocking systems,
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the bounds become more accurate at higher utilizations (see Figures 6.3 and 6.6).

This behavior can be explained by the correlation within the servers: For the

leading constant K (the number of servers) from Theorem 6.1, the union bound

was utilized (see the second line of Eq. (6.12)), which is known to provide better

estimates if the r.v.’s under consideration are rather uncorrelated. As a high link

utilization translates into a comparably smaller impact of the common interar-

rival times ti (i.e., the “dependent part”), the (xk,i − ti)k∈[1,K] become “more

uncorrelated” and hence the gap between simulations and bounds is reduced.

8.2 Conclusion

In this thesis, we developed a general framework that combines the stochastic

network calculus methodology with the powerful probabilistic tool of martin-

gales. Concretely, the characteristics of a queueing system were captured by

arrival- and service-martingales (Definitions 3.1 and 4.1), retaining the “modu-

larity” property of SNC that information about the arrival and the service are

encoded in two different objects. Whereas the arrival-martingales enable the

analysis of queueing systems under scheduling (Chapter 3), and provide its first

sharp per-flow delay bounds (Corollaries 3.8–3.11), the service-martingales allow

for the analysis of more sophisticated service models like random access protocols

(Chapter 4). Here, we provided the first rigorous and accurate delay analysis of

Aloha and CSMA/CA networks, subject to Markovian arrivals (Corollaries 4.7

and 4.9).

Moreover, we demonstrated the versatility of the martingale approach

by considering related queueing systems: For queueing systems with a random

number of parallel flows (Chapter 5) we gave evidence that the “folk theo-

rem” of queueing theory (“determinism minimizes the queue size”), can actually

fail (Theorem 5.3). In the scenario of multi-server systems we provided non-

asymptotic and computable bounds on the performance of fork-join queueing

systems (Chapter 6) and systems with replications (Chapter 7), respectively.

The bounds provided in this thesis improve the corresponding bounds de-
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rived with Boole’s inequality by several orders of magnitude (see e.g, Figure 3.4);

moreover, simulations indicate that they are reasonably tight, especially at hight

utilizations (see e.g., Figure 4.8). Thus, we convincingly demonstrated that the

inaccuracy of (state-of-the-art) SNC is mainly due to inappropriate probabilis-

tic tools leveraged in its application, rather than to SNC itself. The revised

stochastic network calculus with martingales could disprove the skepticism to-

wards its practical relevance, and help establishing SNC as a valuable tool to

the performance analysis of queueing systems.
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