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Abstract

Quantile forecasts are central to risk management decisions because of the widespread

use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to

forecast volatility, and the method of computing quantiles from the volatility forecasts. In

this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns

of �ve currencies. The forecasting models that have been used in recent analyses of the

predictability of daily realized volatility permit a comparison of the predictive power of

di¤erent measures of intraday variation and intraday returns in forecasting exchange rate

variability. The methods of computing quantile forecasts include making distributional

assumptions for future daily returns as well as using the empirical distribution of predicted

standardized returns with both rolling and recursive samples. Our main �ndings are that the

Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts

for currencies which experience shifts in volatility, such as the Canadian dollar, and that

the use of the empirical distribution to calculate quantiles can improve forecasts when there

are shifts.
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1 Introduction

The increasing availability of high-frequency intraday data for �nancial variables such as stock

prices and exchange rates has fuelled a rapidly growing research area in the use of realized

volatility estimates to forecast daily, weekly and monthly returns volatilities and distributions.

Andersen and Bollerslev (1998) showed that using realized volatility (obtained by summing

the squared intraday returns) as the measure of unobserved volatility for the evaluation of

daily volatility forecasts from ARCH/GARCH models1, instead of the usual practice of proxy-

ing volatility using daily squared returns, suggests such forecasts are more accurate than had

hitherto been found. Recent contributions have gone beyond the use of realized volatility as a

measure of actual volatility for evaluation purposes, and consider the potential value of intraday

returns data for forecasting volatility at lower frequencies (such as daily). Andersen, Bollerslev,

Diebold and Labys (2003b) set out a general framework for modelling and forecasting with

high-frequency, intraday return volatilities, drawing on contributions that include Comte and

Renault (1998) and Barndor¤-Nielsen and Shephard (2001).2 The (log of) the realized volatility

series can be modelled using autoregressions, or vector autoregressions (VARs) when multiple

related series are available. As an alternative measure to realized volatility, Barndor¤-Nielsen

and Shephard (2002) and Barndor¤-Nielsen and Shephard (2003) have proposed realized power

variation - the sum of intraday absolute returns - when there are jumps in the price process.

Authors such as Blair, Poon and Taylor (2001) have investigated adding daily realized volatil-

ity as an explanatory variable in the variance equation of GARCH models estimated on daily

returns data.

Rather than modelling the aggregated intraday data (in the form of realized volatility or

power variation), Ghysels, Santa-Clara and Valkanov (2006) use the high-frequency returns

directly: realized volatility is projected on to intraday squared and absolute returns using the

MIDAS (MIxed Data Sampling) approach of Ghysels, Santa-Clara and Valkanov (2004) and

Ghysels, Sinko and Valkanov (2006).

In the approaches exempli�ed by Andersen et al. (2003b) and Ghysels et al. (2004), and in

a recent contribution by Koopman, Jungbacker and Hol (2005), the volatility predictions are

typically compared to future realized volatilities using a loss function such as mean-squared

error. The future conditional variance is taken to be quadratic variation, measured by realized

1See Engle (1982), Bollerslev (1986), and Bollerslev, Engle and Nelson (1994).
2Related contributions include: Andersen, Bollerslev, Diebold and Labys (2003a) and Andersen, Bollerslev,

Diebold and Labys (2001), with applications to exchange rates; Barndor¤-Nielsen and Shephard (2002) and

Barndor¤-Nielsen and Shephard (2003), on asymptotic theory and inference. See Poon and Granger (2003) for

a recent review.
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volatility. Andersen et al. (2003b) justify the use of quadratic variation to measure volatility.

They show that, in the absence of microstructure e¤ects, as the sampling frequency of the in-

traday returns increases, the realized volatility estimates converge (almost surely) to quadratic

variation. But when there are microstructure e¤ects, the appropriate intraday sampling fre-

quency is less clear - sampling at the highest frequencies may introduce distortions. We review

issues to do with microstructure noise and investigate the appropriate sampling frequency for

our exchange rate data.

Instead of comparing model forecasts as previously described, we compare models in terms

of estimates of the quantiles of the distributions of future returns, such as estimates of Value-

at-Risk (VaR). Our paper is closer to Giot and Laurent (2004), who compare an ARCH-type

model and a model using realized volatility in terms of forecasts of Value-at-Risk. Although

their particular ARCH model performs well, we narrow our study to focus exclusively on models

based on realized volatility (or its constituents, intraday returns). Evidently, a quantile forecast

is the product of two factors: the model used to forecast volatility, and the method of computing

quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts

of the daily exchange rate returns of �ve currencies. We consider the contributions of the

volatility forecasting models and the method of obtaining quantiles to the overall accuracy of

the quantile forecasts. We evaluate models based on estimates of daily volatility obtained from

the intraday data, and models that use the intraday data directly, along with an autoregression

in realized volatility as a benchmark. These models are chosen as they have been used in recent

analyses of the predictability of daily realized volatility to good e¤ect, although there are many

other models that could have been included: see for example the models in Giot and Laurent

(2004). Our aim is to focus on the factors that appear to give good high-frequency quantile

forecasts of exchange rates. For this purpose, a small number of volatility forecasting models

will su¢ ce.

We will assess in addition the implications of di¤erent ways of computing quantiles from the

volatility estimates and forecasts, including making distributional assumptions about expected

daily returns, as well as using the empirical distribution of predicted standardized returns using

both rolling and recursive samples. We also take into account the role of updating the models�

parameter estimates during the out-of-sample period as a way of countering potential breaks in

the volatility process, and the impact this has on the quantile forecasts. Our main �ndings are

that the Heterogenous Autoregressive (HAR) model (see Corsi (2004)) provides more accurate

volatility and quantile forecasts for currencies which experience shifts in volatility, such as

the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can

improve forecasts when there are shifts.
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The plan of the remainder of the paper is as follows. The next section brie�y reviews

intraday-based volatility measures, and the data. Section 3 discusses the leading volatility

forecasting model in the recent literature, and section 4 the computation and evaluation of

quantile forecasts. Section 5 presents the empirical results, and section 6 some concluding

remarks.

2 Data and Volatility Measures

2.1 Exchange rate data

We use �ve spot exchange rates: the Australian dollar (AU), Canadian dollar (CA), Euro

(EU), U.K. pound (UK), and Japanese yen (JP), all vis-à-vis the U.S. dollar, from 4 Jan. 1999

to 31 October 2003. We have 5-minute intraday returns calculated as the �rst di¤erence of

the logarithmic average of the bid-ask quotes over the 5-minute interval. Weekends, public

holidays, and other inactive trading days are excluded from the sample, following Andersen

et al. (2003b).3 This gives a total of 1240 trading days. While some authors have used 30-

minute intraday returns to calculate the realized volatility estimates, others have used 5-minute

data.4 Given the recent literature on the e¤ects on noise of estimates of realized volatility, we

investigate the appropriate sampling frequency for our data. We report the usual volatility

signature plots in Figure 1. The plots o¤er broad support for 30-minute sampling, as they

appear to stabilize at around m = 30. In addition, we follow the suggested way of choosing an

approximate optimal sampling frequencyM� (the number of observations per day) of Bandi and

Russell (2005a) and Bandi and Russell (2005b). The sampling frequency is chosen to minimize

the MSE of the resulting daily realized volatility estimate, RVi, conditional on the volatility

sample path, by calculating M� as (see also Zhang, Mykland and Aït-Sahalia (2005)):

M� =

 
Q̂i
�̂

! 1
3

(1)

where:

�̂ =

 Pn
i=1

PM
j=1 y

2
j;i

nM

!2
3The data source is the SIRCA (Securities Industry Research Centre of Asia-Paci�c),

http://www.sirca.org.au/.
4For example, Andersen et al. (2003a) and Andersen et al. (2003b) use 30-minute data, and Andersen,

Bollerslev and Meddahi (2006) state that �within the class of linear realized volatility based forecast procedures,

the use of an underlying 30-minute return horizon appears to provide a robust and reasonably e¢ cient choice�.

Studies using 5-minute data include Andersen et al. (2001) and Barndor¤-Nielsen and Shephard (2004).
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and:

Q̂ = n�1
nX
i=1

Q̂i, Q̂i =
M15

3

M15X
j=1

y4j;i:

The days are indexed by i = 1; : : : ; n, where yj;i is the jth of M intraday observed returns on

day i. yj;i is typically contaminated with the microstructure noise in the price observations

that underlie the returns series. Q̂i is the estimator of the quarticity of Barndor¤-Nielsen and

Shephard (2002), and �̂ is the estimator of the squared second moment of the noise process

(
�
E"2

�2, where " is the additive error with which the observed price measures the true price).
The estimator of

�
E"2

�2 is based on the highest frequency at which the data are available (in
our case, 5-minute data), while the subscript of 15 on M indicates Q̂i is estimated by sampling

every 15-minutes (M15 = 96). As noted by Bandi and Russell (2005a), the intuition behind (1)

is clear: the larger the microstructure noise relative to the quarticity of the e¢ cient price (as

gauged by the respective estimates, �̂ and Q̂i), the less frequently returns should be sampled

per day to avoid contaminating the RV measure with noise. The results of these calculations

for the �ve exchange rates suggest sampling more frequently than every 30-minutes: sampling

every 10 to 15 minutes might be appropriate. As a compromise, we take as our benchmark

30-minute sampling, as suggested by the volatility signature plots, but also check that some of

the key �ndings are robust to sampling every 5-minutes, in deference to the optimal sampling

frequency calculations and the studies that use 5-minute sampling.

Finally, in addition to the use of signature plots and estimating optimal sampling frequencies,

there are other approaches that might be adopted to obtain RV measures when there is noise,

as discussed in Andersen et al. (2006). These include the two-scale approach of Zhang et al.

(2005), as well as the Hansen and Lunde (2006) use of a Newey-West bias-correction in the

presence of correlated noise. Given our main focus is not on the method of construction of the

RV measure, but VaR forecasts, we do not consider these here.

2.2 Estimates of volatility

In the recent literature, volatility is often measured using realized volatility, which for daily

volatility is calculated by summing up intraday squared returns:

RVi = [yM ]
[2]
i �

MX
j=1

y2j;i: (2)

In the absence of microstructure e¤ects, as M increases to in�nity, the realized volatility given

in (2) converges to the underlying integrated volatility, which is a natural volatility measure.

As explained in the previous section, we set M = 48 corresponding to 30-minute sampling.
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Similarly, �ve-day (ten-day) realized volatility is calculated by summing squared returns over

a �ve-day (ten-day) period.

RVt;t+ND =

NDX
i=1

RVt+i

where nD = 5 (10).

A number of studies have suggested that lags of measures of intraday variation other than

realized volatility may have predictive power for realized variation. Ghysels, Santa-Clara and

Valkanov (2006) and Forsberg and Ghysels (2004) propose the absolute and power variation,

whilst Andersen, Bollerslev and Diebold (2005) argue for separating out a �jump�component

from the measure of intraday variation.

Realized absolute variation is de�ned as:

RAVi = ��1(1=M)1=2
MX
j=1

jyj;ij

where � =
p
2=�. Forsberg and Ghysels (2004) argue for RAV as a predictor of the volatility

of stock returns, on the grounds that it may be better able to capture the persistence of stock-

return volatility. It can be shown that RAV is immune to jumps and the sampling error is better

behaved than for RV. Notwithstanding the theoretical and empirical arguments in support of

RAV as a predictor of stock-return volatility, there is no evidence on whether RAV is a useful

predictor of exchange rate return volatility. We �ll in the empirical evidence.

Another measure of intraday variation is bipower variation (BPV), proposed by Barndor¤-

Nielsen and Shephard (2003). This is de�ned as:

BPVi = ��2(1=M)
M�1X
j=1

jyj;ijjyj+1;ij:

BPV has been used to separate the continuous and the jump components of RV (Andersen

et al., 2005). The jump component can be consistently estimated by the di¤erence between the

RV and BPV:

fJMgi = maxhRVi �BPVi; 0i:

However, the jumps estimated in this way may be too small to be statistically signi�cant. To

identify statistically signi�cant jumps, Andersen et al. (2003b) suggested the use of:

fZMgi =
log(RVi)� log(BPVi)p

M�1(��4 + 2��2 � 5)fTQMgi(BPVi)�2
;
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which is asymptotically distributed standard normal. In the above statistic, fTQMgi is the
realized tri-power quarticity, calculated as:

fTQMgi =M��34=3

MX
j=1

jyj;ij4=3jyj+1;ij4=3jyj+2;ij4=3;

where �4=3 = 2
2=3�(7=6)=�(0:5) and �(:) denotes the gamma function. The signi�cant jumps

are then estimated as:

fJM;�gi = I(fZMgi > ��)(RVi �BPVi);

and the continuous component as:

fCM;�gi = I(fZMgi � ��)RVi + I(fZMgi > ��)BPVi;

where I(:) is the indicator function, and �� denotes the critical value of the standard normal

for a (1� �) level test.
We estimate jump and continuous components using � = 0:95. We �nd that jumps are

present at around 28% of the sample, with some di¤erences across currencies.

2.3 Summary Statistics

Figure 2 plotsRVi, its two components fC48;0:95gi and fJ48;0:95gi, andRAVi (for i = 1; : : : ; 1240),
in standard deviation form, for Australian and Euro dollars. To conserve space, only the �gures

associated with these two currencies are reported. Figures for the other currencies, which can

be obtained on request, show similar features. From RVi and fC48;0:95gi, the stylized features
of the conditional volatility of �nancial time series, documented in the ARCH literature, are

evident for both currencies. The �uctuations of the volatility estimates over time are consis-

tent with the presence of positive serial correlation, as are the jump estimates fJ48;0:95gi. The
estimates based on the power variation, RAVi, are more conservative than RVi and fC48;0:95gi
for both currencies.

Rather than modelling RVi directly, we specify and estimate models for the log of the

square root of realized volatility, log(RV 1=2t ). The log transformation has been found to result

in series which are closer to being normal (see Andersen et al. (2003b)), facilitating modelling

using standard autoregressions, for example. Table 1 presents some descriptive statistics for the

daily, �ve-day and ten-day realized volatility estimates. The values of skewness and kurtosis of

log realized volatility are similar to those found by Andersen et al. (2003b), Table II, for daily

volatility, except for the UK pound which has higher negative skewness than the others. The
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realized volatility estimates show strong evidence of long-range dependence, as evidenced by

the Ljung-Box test rejections. Visual inspection of the autocorrelation functions (not reported)

show very slow declines, consistent with the observations made by Andersen et al. (2003b) that

the realized volatility estimates can be characterized by a long memory process.

We also report the same statistics for standardized returns - daily, �ve-day and ten-day

returns divided by the square root of the relevant estimate of realized volatility. These match

the �ndings for standardized returns of Andersen et al. (2003a). Although we reject the null

that log volatility and standardized returns are Gaussian, in most cases the departures from

normality are likely to be small, and in terms of modelling log realized volatility at both daily,

�ve-day and ten-day frequencies we proceed as in the earlier studies.

Compared to earlier studies of exchange rates, we consider a greater number of series,5

and as will become apparent, the exchange rates exhibit di¤erent characteristics which creates

variation in the performance of di¤erent models and methods across currencies.

3 Models for Volatility Forecasting

Ghysels, Santa-Clara and Valkanov (2006) and Forsberg and Ghysels (2004) evaluate the pre-

dictability of the volatility of equity returns (measured by realized volatility) over 5-day and

1-month horizons using a number of the recently proposed models. One of these models is a

simple autoregression in the log of realized volatility, logRV 1=2i . The benchmark autoregressive

model for direct calculation of h-step ahead forecasts is then:

log(RV
1=2
t;t+h) =  0 +

 
p�1X
s=0

 s+1L
s

!
log(RV

1=2
t�s�1;t�s) + "t+h: (3)

We consider two regression models that use alternative measures of intraday variation as ex-

planatory variables: the Heterogenous Autoregressive model (HAR) proposed by Corsi (2004),

and the MIxed Data Sampling (MIDAS) approach of Ghysels et al. (2004). The HAR model

was used by Corsi to model the volatility of Swiss exchange rates, and has been extended by

Andersen et al. (2005) to include jump components. These two models are discussed below.

3.1 MIDAS

The MIDAS approach uses highly parsimonious distributed lag polynomials to enable intraday

data to be used to forecast daily data. The information content of the higher-frequency returns

5 Andersen et al. (2003b) analysed the US Dollar - Deustch Mark and Dollar - Japanese Yen rates. We are

not aware of forecasts of realized volatility for the Euro.
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data is thus exploited in tightly parameterised models, and the problem of selecting the appro-

priate lag orders is in part automatically taken care of: see the references for details. Consistent

estimates of the model�s parameters result even though the data frequencies of the regressand

and regressors di¤er: see Ghysels et al. (2004). The MIDAS regression to forecast the log of

realized volatility using intraday squared returns has the form:

logRV
1=2
t;t+h = �0 + �1 log

h
B
�
L1=M ; �

� ey2t i1=2 + e"t+h (4)

where B
�
L1=M ; �

�
=
PK
k=0 b (k; �)L

k=M , Lk=Mey2t�1 = ey2t�k=M . Here the tilde over a variable
such as y indicates that the series is at the intraday frequency. For example, when k = 0,eyt�k=M = eyt refers to the last intraday return of day t, whereas yt refers to the day t daily
return. When K > M intraday observations covering more than just the preceding day will

be included. In our application, the number of intraday squared returns is M = 47; so if

K = 235, we use information of the past �ve days in forecasting, which is equivalent to p = 5

in equation (3). Instead of having
�ey2t 	 on the RHS of (4), we also experiment with absolute

intraday returns, jeytj, as Forsberg and Ghysels (2004) found improvements in the predictability
of stock return volatility from using absolute returns. Our work will determine which of absolute

returns or squared returns are the more useful for predicting daily exchange rate volatility. We

parameterise the lag polynomial B
�
L1=M ; �

�
as an �Exponential Almon Lag�following Ghysels,

Sinko and Valkanov (2006), whereby:

b (k; �) =
exp(�1k + �2k

2)PK
k=1 exp(�1k + �2k

2)

In a sense the MIDAS model is more general than the autoregressive model in daily realized

volatility (equation (3)). In the AR model, the implicit coe¢ cients on all the intraday squared

returns (or absolute returns) of the same day are constrained to be equal. Further, if the models

were speci�ed in terms of RV rather than logRV
1
2 (and there was no log of the distributed lag

on the RHS of (4)) then the MIDAS model would nest the AR. Viewed as a MIDAS model,

the AR has a very speci�c lag polynomial structure, whereby the weights are given by a step

function.

3.2 Heterogenous Autoregressive (HAR) Model

The heterogenous autoregressive model for realized volatility (HAR-RV) of Corsi (2004) and

Andersen et al. (2005) speci�es the current value of realized volatility as the sum of a small

number of past realized volatilities constructed over di¤erent horizons, and can also be viewed

as a restricted MIDAS model with step functions (see Forsberg and Ghysels (2004) and Ghysels,
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Sinko and Valkanov (2006)). The HAR-RV model can be written using the following simplifying

notation. De�ne the normalized multi-period realized volatility as:

RV
1=2
i;i+s = s�1(RV

1=2
i+1 + :::+RV

1=2
i+s );

so that s = 5 and s = 22 are the weekly and monthly realized volatilities, respectively. Then the

daily HAR-RV model that incorporates weekly and monthly realized volatility (in logarithmic

form) can be written as:

log(RV
1=2
t;t+h) = �0 + �Dlog(RV

1=2
t ) + �W log(RV

1=2
t�5;t) + �M log(RV

1=2
t�22;t) + �t+h: (5)

Ignoring logs, it is clear that the coe¢ cient on the intraday squared returns during the previous

day is equal to �D+�W +�M , on the intraday returns during days t�4 to t�1 is �W +�M , and
during days t�21 to t�5 is �M . Assuming that �D; �W ; �M > 0, this corresponds to a MIDAS

model in which the lag coe¢ cients decline as a step function. However, it would be infeasible

using an unrestricted MIDAS regression to allow for the monthly e¤ect that is parameterised

in the HAR-RV by the variable log(RV 1=2t�22;t). Consequently, a potential advantage of the

HAR-RV, or step-function MIDAS model, is that it is better able to capture long-range serial

dependence in volatility. Corsi (2004) reports simulations that show that the HAR model is

able to capture the hyperbolic decay typical of the sample autocorrelations of actual realized

volatility.

The HAR-RV model can be extended to include jump components calculated using the

notion of bipower variation of Barndor¤-Nielsen and Shephard (2004). This gives the HAR-RV

model, written as:

log(RV
1=2
t;t+h) = �0+�Dlog(RV

1=2
t )+�W log(RV

1=2
t�5;t)+�M log(RV

1=2
t�22;t)+�J log(1+J

�
t )+�t+h;

where J�i � fJMgi. Andersen et al. (2005) found the �J coe¢ cient to be statistically signi�-
cant in most of their empirical examples. In addition to adding the jump component as above,

the explanatory variables of the HAR-RV model can be decomposed into continuous and jump

components. To simplify the notation again, let Ci � fCM;�gi and Ji � fJM;�gi. The nor-
malized multi-period jump and continuous components of realized volatility are respectively

written as Ci;i+s = s�1(Ci+1 + ::: + Ci+s); and Ji;i+s = h�1(Ji+1 + ::: + Ji+s). Utilising the

multi-period jump components separately gives the daily HAR-RV-CJ model of Andersen et al.

(2005), written (in logarithmic form) as:

log(RVt;t+h) = �0 + �CDlog(Ct) + �CW log(Ct�5;t) + �CM log(Ct�22;t)

+�JC log(1 + Jt) + �JW log(1 + Jt�5;t) + �JM log(1 + Jt�22;t) + �t+h:
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Andersen et al. (2005) �nd that most of the jump component coe¢ cients in the HAR-RV-CJ

model are statistically insigni�cant, and that the continuous components provide most of the

predictability of the model. The HAR can easily be speci�ed for absolute returns, e.g.,:

log(RV
1=2
t;t+h) = �0 + �Dlog(RAV t) + �W log(RAVt�5;t) + �M log(RAV t�22;t) + �t+h;

where RAV t�s;t is the normalized multi-period absolute variation.

Finally, we included a HAR model with the disturbance term speci�ed as a Gaussian

GARCH(1; 1) process. Augmenting the HAR with a GARCH error process gives rise to the

HAR-GARCH model of Corsi, Kretschmer, Mittnik and Pigorsch (2005). Those authors adopt

a model of this sort after �nding evidence of autoregressive conditional heteroskedasticity in

the residuals of their HAR models using standard ARCH-LM tests. Rather than a standard

Gaussian or Student t GARCH process, they use a standardized normal inverse Gaussian (NIG)

distribution for the innovations to the GARCH process. We use the simpler formulation, but

note that the �ndings of Corsi et al. (2005) suggest that this may be inferior to using the NIG

distribution.

4 Methods for Computing and Evaluating Quantile forecasts

The models in the previous section deliver forecasts of log daily volatility over the next h days.

Following Forsberg and Ghysels (2004), we obtain predicted volatility using the approximation:

dRV 1=2t;t+h = exp� dlog(RV )1=2t;t+h� :
Conditional quantiles qt;t+h can be obtained by �inverting�the distribution function Ft (y) =

Pr (yt;t+h � y j Ft), where yt;t+h is the sum of daily exchange rate returns from day t + 1 to

t+ h, and Ft is the information set at t. They are computed for a given probability � so that
Ft (qt;t+h) = �. Assuming that the returns are unpredictable, we have the following process for

the returns yt;t+h = "t;t+h, where "t;t+h =dRV 1=2t;t+hzt+h and zt+h is iid. The predicted �-quantile
is:

q̂t;t+h =dRV 1=2t;t+hF�1t (�) :

Therefore, the predicted quantiles are based on the predicted volatility but they also depend

on the assumption on the predictive density Ft (yt;t+h) :

4.1 Methods for Computing the Predictive Density

The simplest method to compute F�1t (�) is to assume a distribution for the daily returns.

Table 1 presented descriptive statistics of the standardized return yt;t+h=RV
1=2
t;t+h, and suggests
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that a standard normal distribution may be a reasonable approximation. In this case, we can

assume that daily returns are N(0; RVt;t+h); so that zt is standard normal, we have that Ft = �.

Then the quantiles with probabilities � is:�
z�dRV 1=2t;t+h;� (6)

where z
 = ��1 (
). The assumptions of Gaussianity of the predictive density and the un-

predictably of returns underlie the popular Riskmetrics model of J.P. Morgan (1995), wheredRV 1=2t;t+h is computed as an exponentially-weighted moving average.
The assumption of normality could be replaced by a Student t assumption, or any other

parametric distribution. See Bao, Lee and Salto¼glu (2004) for a discussion of some of the

possibilities. In this paper, we also use a Student t with 8 degrees of freedom to capture fatter

tails than the normal, although there is no strong evidence of this characteristic in the statistics

of Table 1, at least for the full sample.

If standardized returns are reasonably well approximated by a normal distribution, then

setting Ft = � should mean that improvements in volatility forecasting accuracy are associated

with quantile coverage rates closer to nominal levels. That is, there is a close association between

good volatility forecasts, and good quantile forecasts. If the speci�c distributional assumption

that is adopted is poor, quantile forecasts may be improved by using instead the empirical

distribution function (EDF) of the standardized returns. If the EDF is used, then it seems likely

that the association between the performance of the volatility and derived quantile forecasts

may be looser, in the sense that the quantile forecasts of models with relatively inaccurate

volatility forecasts may not be much worse than the quantiles from models with more accurate

volatility forecasts.

Granger, White and Kamstra (1989) suggest calculating quantiles from bQ, the EDF of the
standardized returns, yt;t+h=dRV 1=2t;t+h, such that the � quantile is given by:� bQ�1 (�)dRV 1=2t;t+h� (7)

Here, bQ�1 (
) is the 
-quantile of the EDF of the standardized returns, assuming that daily
returns are unpredictable in mean.

We calculate EDFs in two ways: using recursive and rolling samples of previous forecasts. To

see what this means, assume that the complete sample is divided into T in-sample and n out-of-

sample observations. The predicted quantiles q̂t;t+h are computed for t = T; T+1; : : : ; T+n�h,
giving n � (h� 1) forecasts of length h. The EDF bQt employed to compute q̂t;t+h uses rT
observations of the standardized returns yt;t+h=dRV 1=2t;t+h where r 2 (0; 1). In our empirical
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exercise, we have r = 0:23 implying that we use 200 observations. These observations are

obtained using h-step ahead forecasts of volatilitydRV 1=2t;t+h from t = rT +1; : : : ; T �h, assuming
that the model was estimated on the the sample up to T . The di¤erence between the rolling

and recursive schemes for the computation of bQt is the inclusion of the past observations of
the standardized returns yt+h=dRV 1=2t;t+h while computing q̂t;t+h: the rolling scheme (qroll) uses
moving windows of size rT and the recursive (qrec) always increases the sample adding the new

observation of the standardized return at each forecast origin.

4.2 Evaluating predicted quantiles

However obtained, quantile forecasts can be evaluated by comparing their actual coverage

against their nominal coverage rates. The actual rates are given by C�;h = E [1(yt;t+h < qt;t+h)],

which are estimated by Ĉ�;h = 1
n

Pn
t=1 1 (yt;t+h < q̂t;t+h), where t = 1; : : : ; n indexes the fore-

casts. Correct unconditional coverage can be tested by a simple likelihood ratio test of whether

Ĉ�;h is signi�cantly di¤erent from the nominal proportion �: see e.g., Granger et al. (1989) and

Christo¤ersen (1998). Instead, in this paper we evaluate the accuracy of VaR forecasts using

the �tick�or check function. The expected loss of an h-step ahead forecast made by forecaster

m is de�ned as:

L�;h;m = E
�
�� 1

�
yt;t+h < qmt;t+h (�)

�� �
yt;t+h � qmt;t+h (�)

�
(8)

which is estimated by:

L̂�;h;m =
1

n

nX
t=1

�
�� 1

�
yt;t+h < q̂mt;t+h (�)

�� �
yt;t+h � q̂mt;t+h (�)

�
:

This is clearly related to the calculation of coverage weights, but weights the di¤erence between

the observed return and forecasted quantile by 1 � � when the observed return is lower than

the �-quantile, and by � when the observed return exceeds the quantile. This loss function is

a natural way to evaluate quantile forecasts, as discussed by Giacomini and Komunjer (2005),

who use it as the basis of a test for conditional quantile forecast encompassing. We assess

whether the di¤erences in the value of (8) across di¤erent sets of VaR forecasts are signi�cantly

di¤erent from each other, using the testing procedure of Diebold and Mariano (1995). We make

pairwise comparisons6 between sets of VaR forecasts. The loss di¤erential is de�ned as:

dt;�;h =
�
�� 1

�
yt < q̂at;t+h (�)

�� �
yt � q̂at;t+h (�)

�
�
h
�� 1

�
yt < q̂bt;t+h (�)

�i h
yt � q̂bt;t+h (�)

i
6 If we had a larger set of rival forecasts, it would be sensible to use the reality-check approach of White (2000).

As it is, pairwise comparisons of the small set of rival forecasts enables us to more clearly see which features of

the data help explain the relative forecast performances of the models.
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for sets of forecasts a and b. The null that forecaster a is as accurate as forecaster b can be

tested using:
d�;hq

var(d�;h)
� N(0; 1);

where �d�;h is the average over t of dt;�;h. Under the alternative, we specify a one-sided test,

so that rejection of the null indicates that forecaster b is more accurate than forecaster a. For

h > 1 we use the Newey-West estimator for the variance, and a truncation lag of h � 1. By
allotting only a relatively small fraction of our total observations to the forecast period, we are

able to side-step issues related to the e¤ects of in-sample parameter estimation uncertainty on

the distribution of the test statistic (see West (2006) for a discussion).

5 Empirical Results

The objective of this empirical section is to observe which forecasting models of realized volatil-

ity and methods for computing quantile forecasts are more accurate, and to relate these �ndings

to the underlying properties of the exchange rate series. In the �rst section, we focus on fore-

casting the volatility of exchange rate returns. In the second section we consider volatility and

quantile forecasting and the potential bene�ts of updating the parameters of the forecasting

models over the out-of-sample period. The third section evaluates the di¤erent methods of

computing quantile forecasts for a given volatility forecasting model, and the fourth compares

these results to those for the AR model. The �fth section checks the robustness of the results

to the sampling frequency used to estimate the realized volatility, and last relates the results

to the properties of the individual exchange rates.

The available sample is divided into two, so that the out-of-sample period is around 1/4 of

the total sample (a bit more than a year). Similar divisions into in and out-of-sample observation

periods are made by Andersen et al. (2003b) and Ghysels, Santa-Clara and Valkanov (2006).

5.1 Comparing Volatility Forecasts with Fixed Forecasting scheme

In this section we present both an in and out-of-sample comparison of the accuracy of volatility

forecasts using the models and predictors discussed in section 3. Table 2 presents the in-

sample R2 and out-of-sample root mean squared forecast errors (RMSFE) for daily, weekly

and fortnightly forecast horizons (h = 1; 5; 10). Results are presented for an AR(5), MIDAS

and HAR models. We compute forecasts from MIDAS regressions using squared (M(RV )) and

absolute returns (M(RAV )). For the HAR, we use the basic speci�cation (H(RV )), the one
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with RAV as predictor (H(RV )), a speci�cation with separate continuous and jump components

(H(CJ)), and also a HAR-GARCH (H(GA)). Average estimates over the currencies are also

recorded.

The HAR is the best forecasting model overall, with more accurate forecasts on RMSE for

AU and CA, and for EU and JP at h = 5; 10. For the �ve-day volatility forecasts of CA, gains

of 20% can be found in comparison with the AR(5). The ability of HAR to capture the long-lag

e¤ects in a simple way is a likely reason for this success. From the RMSFE calculations, it is

clear that the GARCH extension to the HAR does not lead to systematic improvements.

The MIDAS forecasts using RAV are better than the AR for AU and CA, where the use

of RAV as the predictor outperforms using RV. The use of RAV is also better than RV in the

HAR for CA. But these exceptions aside, we do not �nd the general improvements from using

RAV reported by Forsberg and Ghysels (2004) for stock returns.

The in-sample R2s are broadly in line with the out-of-sample RMSFEs, where the HAR is

preferred, especially at h = 5; 10.

The forecast comparisons reported in this section are based on a �xed scheme - i.e., �xed

coe¢ cients in the out-of-sample period. This is standard practice in the volatility forecasting

literature e.g., Giot and Laurent (2004), Andersen et al. (2003b), and Ghysels, Santa-Clara and

Valkanov (2006), but less so more generally. Breaks in the volatility process during the out-of-

sample period, or parameter drift, may adversely a¤ect forecast performance. Re-estimation

of the models�parameters during the out-of-sample period may prove bene�cial in these cir-

cumstances: see Clements and Hendry (2006) for a general discussion of structural breaks and

forecasting. The next section considers two forms of updating.

5.2 Comparing Forecasting Models using Rolling and Recursive Samples

As we did not �nd large di¤erences from using di¤erent measures of intraday variation as

explanatory variables taking all the currencies together, in the following tables we present results

using squared returns (and forecasting models are labelled as MIDAS and HAR henceforth).

We also exclude from the following tables, HAR speci�cations that do imply in signi�cantly

di¤erences of out-of-sample performance in comparison with the basic speci�cation (HAR-

GARCH and HAR with separated continuous and jump component). Table 3 presents out-of-

sample RMSFEs for the three forecasting models under �xed (as in Table 2), rolling (makes

use of �xed windows of data to re-estimate the parameters over the out-of-sample period)

and recursive (using increasing windows to re-estimate the models) forecasting schemes. In

addition, we also compare the loss in predicting VaR at the 5% level with the tick function (eq.
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8). The VaR calculations are based on the assumption that standardized returns are normally

distributed.

With the exception of CA, the improvement in RMSFE accuracy of the volatility forecasts

from updating the parameter estimates is relatively small at h = 1 for all three models. Larger

improvements are recorded at h = 5, 10 on RMSFE for both AR and MIDAS, and these are

again largest for CA. Di¤erences of accuracy of forecasts between the rolling and recursive

samples are virtually nonexistent. We conclude that the e¤ect of updating is small, except for

CA, and also �nd the e¤ect on the accuracy of the VaR forecasts (given by VaR loss) is also

small.

5.3 Predicting Quantiles with Di¤erent Distributional Assumptions

Because updating parameter estimates over the forecast period had little e¤ect on quantile

forecasts (with the exception of CA), we proceed to compare di¤erent methods of computing

quantiles assuming a �xed forecasting scheme. For a given volatility model, we calculate the

tick loss of VaR forecasts based on di¤erent distributional assumptions. The methods are

described in section 4.1. We let qnorm denote the method that assumes a normal distribution,

and qt8 a t-distribution with 8 degrees of freedom. The other two methods use the EDF of the

standardized returns to compute quantiles. qroll computes the empirical quantiles using rolling

samples of size 200 and qrec uses an increasing window of observations from 200 up to 200+n.

Tables 4a and 4b present the results for 5% and 2.5% VaRs, respectively. The entries are the

ratios of the loss using the speci�ed distributional assumption to the loss when the predicted

quantiles are computed assuming the normality of standardized returns. Consider Table 4A.

The results suggest that the null that the normality assumption is adequate for daily VaR�s is

rejected for CA using all three models. For the longer period returns, there is evidence that

loss can be reduced for CA when the AR and MIDAS are used by using an assumption other

than that of normality. For h = 1 there is an improvement in all three models�forecasts for EU

when the normality assumption is abandoned, although these are not always su¢ ciently large to

result in signi�cant test outcomes. But apart from these �ndings for CA and EU, we do not �nd

statistically signi�cant reductions in loss from using a non-normal distributional assumption for

any of the other currencies using any of the three models. For the longer horizons, the loss

ratios indicate that use of the EDF may be worse than using a normality assumption, a result

we attribute in part to the relatively small samples available to calculate the EDFs. To a lesser

degree these results hold for the 2.5% VaR (see Table 4b).
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5.4 Predicting Quantiles with Di¤erent Distributional Assumptions Relative

to the AR Benchmark Model

Tables 5a and 5b are similar to Tables 4a and 4b, in that the tick loss of VaR forecasts based

on di¤erent distributions are reported, but the benchmark is now the AR model (using the

same distributional assumption as for the HAR or MIDAS). That is, the denominators of the

ratios reported in Tables 5a and 5b are always the loss for the quantiles computed using AR

volatility forecasts and the indicated method. This allows a cross-model comparison for a

speci�c distributional assumption.

These results indicate that the HAR is better than the AR for CA and the UK for daily VaR

irrespective of the distributional assumption, so that the choice of distribution does not a¤ect

the ranking between forecasting models in these cases. However, for CA the performance of the

AR improves relative to the HAR when the EDFs are used instead of the normal distribution

assumption. We also �nd that MIDAS is better than the AR for AU for all VaR horizons

irrespective of the distributional assumption we make.

5.5 E¤ect of the sampling-frequency used to calculate realized volatility

Table 6 presents a check on the robustness of some of these �ndings to the sampling frequency,

by reporting VaR loss using RV estimates obtained using 5-minute sampling, and comparing

these to the results obtained using 30-minute sampling to estimate RV. The VaRs are calculated

assuming normality and a �xed forecasting scheme. The MIDAS models (eq. 4) are estimated

with K = 1435, which is the usual 5 days of past data when M = 287. The table shows that

loss is always smaller using the 30-minute returns to calculate RV, and that the ranking of the

models is generally una¤ected by the switch to 5-minute returns (the ratios across models for

a given currency are generally similar).

We next calculate VaRs for di¤erent distributional assumptions for 5-minute sampling. The

results are recorded in Table 7. As for 30-minute sampling, we �nd that the performance of the

AR improves relative to the HAR when the EDFs are used instead of the normal distribution

assumption, and there are bene�ts to using the HAR relative to the AR when the normal

distribution is used. In contrast with the results for AU in Table 5a, there is no evidence that

the direct use of intraday returns (i.e., the MIDAS model) improves VaR forecasts in comparison

to an AR model.
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5.6 Explaining Country-Speci�c Di¤erences in Forecast Performance

Our results indicate the largest di¤erences across models and methods are for CA. Graphs of

the daily returns in the out-of-sample period (July 4, 2002 to October 27, 2003) along with

5% VaR forecasts from the AR and HAR models (computed assuming a normal distribution)

shed some light on these �ndings. Figure 3 shows that after April 2003, the frequency of large

negative returns increased. Before this point, there is almost no di¤erence across models and

methods in the VaR forecasts. After April 2003 it is apparent from the �gure that there are

marked di¤erences between the HAR and AR model VaR forecasts. Figure 4 shows the 1-step

ahead forecasts of realized volatility (and outturns) for all �ve countries. From this �gure, it

is clear that the good performance of the HAR model VaR forecasts for CA stems from the

superior performance of the HAR volatility forecasts over this period. The HAR forecasts are

better able to capture the general upturn in volatility relative to either the AR or MIDAS

models. It is also apparent from �gure 3 that currencies other than CA do not show such a

clear level shift, or such a clear distinction between the volatility forecasts of the models.

The reason why the HAR model volatility forecasts adapt more quickly than those of the

AR to the higher level of volatility in the later part of the forecast period can be understood

with reference to the in-sample period estimates of the AR and HAR, which are given in the

Appendix. The parameter estimates recorded there correspond directly to the model parameters

de�ned by equations (3) and (5) for the AR and HAR, respectively. Also reported are the

estimates for the MIDAS model given in equation (4). Consider a �xed-forecasting scheme,

and suppose that there has been a level shift in the unconditional mean of log(RV 1=2t ) from

its in-sample value of � to �0. The average values of the forecasting functions of the AR and

HAR models su¢ ciently long after the shift has occurred can be approximated by substituting

RHS terms in log(RV 1=2t ) by �0. Coupled with the in-sample parameter estimates, the average

values of the forecast functions are (for Canada):

AR: �2:70 + 0:53�0

HAR: �1:62 + 0:72�0:

The greater weight on �0 in the HAR model means that its volatility forecasts will track the

shift in the underlying level of volatility better than the forecasts of the AR, because it adjusts

faster to the level shift.

Although not shown in Figure 3, the use of the EDF (based on rolling windows) to compute

VaR instead of the assumption of normality improves the performance of both models, but

especially that of the AR model (in keeping with the results in Table 4a).
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In general, we �nd that a simple model for realized volatility (an AR) and the use of

the normal distribution give reasonable VaR estimates for the majority of the currencies we

consider. However, when exchange rates are subject to unexpected increases in volatility, as

in the case of the Canadian dollar, the HAR model is better able to adapt. We have provided

a simple argument of how this might happen. When there are shifts, the use of the empirical

distribution is better than the normality assumption.

6 Conclusions

We have evaluated the forecast performance of a number of models that have recently been

proposed to exploit the informational content of intraday data. The goal is initially to predict

exchange rate volatility at daily, weekly and fortnightly horizons. We �nd that the method of

parameterizing intraday returns implicit in the step-function MIDAS (i.e., the HAR model) is

generally superior to the MIDAS model which is not parameterized in this way. This appears

to be due in part to the inclusion of monthly realized volatility in the former. Relative to recent

work, we have considered whether some of the results for stock market volatility also hold for

exchange rate volatility, namely that absolute intraday returns have more predictability than

squared returns. This does not appear to be the case in general.

We then go beyond much of the recent literature to consider quantile forecasts. Quantile

forecasts are the product of two factors: the model used to forecast volatility, and the method

of computing quantiles from the volatility forecasts. However, the two aspects can be combined

to generate a quantile forecast by either assuming a particular distributional assumption for

expected future returns, or by using the volatility forecasts to obtain standardised returns from

which an empirical distribution function can be estimated. One of our main �ndings is that a

simple model for realized volatility (such as an autoregression) combined with the assumption

of a normal distribution for expected future returns yields reasonable VaR estimates for the

majority of the currencies in our sample. The exception is the Canadian dollar, and we explain

the di¤erent �ndings for this currency in terms of a speci�c structural break in the underlying

level of volatility in the out-of-sample period.

From the point of view of a risk manager, the results of this paper suggest that realized

volatility can be useful for computing Value-at-Risk forecasts. The combination of a simple

autoregressive model for log realized volatility, together with the empirical distribution of (past)

returns standardized by (past) predicted volatility, or even an assumption of normality, will in

�normal times� generate competitive Value-at-Risk forecasts with reasonable coverage rates,

although when there are structural shifts models such as the HAR may fare better.
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Table 1: Descriptive Statistics for Daily Realized Volatility and Standardized Returns (4
Jan. 1999 to 31 October 2003)

Mean StDev Skewness Kurtosis Q(20) BJ(2)
log(RVt,t+1

(1/2))
AU -5.04 0.34 0.07 3.73 2862.1 24.14
CA -5.61 0.34 0.08 3.36 3412.1 7.29
EU -5.11 0.31 -0.008 3.99 1414.8 40.64
UK -5.38 0.29 -0.37 3.89 1138.5 37.03
JP -5.18 0.35 0.11 4.38 1715.3 70.91

log(RVt,t+5
(1/2))

AU -4.18 0.26 0.23 2.80 9945.0 17.89
CA -4.76 0.25 0.25 3.18 11233. 131.72
EU -4.25 0.22 0.22 3.39 7333.4 24.64
UK -4.53 0.19 0.08 3.17 7045.5 2.85
JP -4.31 0.26 0.72 3.58 6759.5 130.11

log(RVt,t+10
(1/2))

AU -3.83 .24 .19 2.53 13959. 18.45
CA -4.41 .23 .82 3.18 15046. 139.73
EU -3.89 .20 .26 3.11 11495. 14.09
UK -4.18 .17 .07 3.36 10806. 7.74
JP -3.96 .23 .72 3.30 10234. 110.9

Rt,t+1/(RVt,t+1)
(1/2)

AU -0.06 0.89 -0.05 2.65 19.40 7.58
CA -0.04 0.91 -0.03 2.48 15.86 16.35
EU -0.01 0.96 -0.05 2.61 32.56 9.31
UK -0.03 0.92 0.11 2.68 11.26 5.62
JP -0.01 0.92 0.11 2.48 7.93 21.18

Rt,t+5/(RVt,t+5)
(1/2)

AU -0.11 0.88 -0.01 2.33 1512.9 29.14
CA -0.07 0.91 0.07 2.55 1432.7 13.83
EU -0.04 0.95 0.01 2.58 1720.6 24.34
UK -0.06 0.95 0.07 2.61 1604.0 9.84
JP -0.04 0.99 0.01 2.56 1565.6 10.98

Rt,t+10/(RVt,t+0)
(1/2)

AU -.14 .90 -0.03 2.46 3806.1 15.39
CA -.10 .90 0.10 2.59 3510.6 10.82
EU -.06 .99 -0.03 2.23 4197.3 30.58
UK -.08 .98 0.12 2.59 3708.1 11.52
JP -.07 .96 0.11 2.52 3687.9 14.39

Note. Q(20) is the Ljung-Box test statistic for serial correlation up to 20 (Chi(20)) and
BJ(2) is the statistic of the normality test (skewness =0 and kurtosis=3) for small
samples.



Table 2: Comparing Forecasting Models: AR, MIDAS and HAR with RV, RAV and CJ as Predictors.

R2

(T = 862; common sample)
RMSFE
(n = 340)

AR M(RV) M(RAV) H(RV) H(RAV) H(CJ) H(GA) AR M(RV) M(RAV) H(RV) H(RAV) H(CJ) H(GA)

h = 1
AU 0.318 0.952 0.988 1.033 1.020 1.032 1.026 0.170 0.998 0.976 0.988 0.983 0.986 0.992
CA 0.120 0.920 0.991 1.029 1.059 1.029 1.022 0.159 1.028 0.951 0.881 0.833 0.884 0.875
EU 0.228 0.971 1.000 1.022 1.021 1.019 1.019 0.147 0.989 0.994 0.989 0.996 1.000 0.992
UK 0.204 0.987 0.976 1.029 0.997 1.045 1.023 0.111 1.002 0.994 0.993 0.992 0.998 0.989
JP 0.237 0.986 1.072 1.037 1.027 1.024 1.019 0.162 0.994 0.981 0.997 1.000 1.009 1.002
Av 0.221 0.963 1.005 1.030 1.025 1.030 1.022 0.150 1.002 0.979 0.970 0.961 0.975 0.970

h = 5
AU 0.437 0.998 1.007 1.109 1.081 1.098 1.034 0.123 1.000 0.972 0.935 0.934 0.935 0.929
CA 0.167 1.005 1.047 1.312 1.325 1.350 1.113 0.136 1.018 0.941 0.791 0.725 0.789 0.841
EU 0.338 0.989 1.020 1.146 1.144 1.144 1.115 0.093 0.978 0.999 0.935 0.960 0.956 0.913
UK 0.358 1.046 1.060 1.083 1.075 1.094 0.965 0.068 0.987 0.998 0.986 1.001 0.991 1.037
JP 0.317 1.031 1.114 1.126 1.122 1.107 1.017 0.113 0.992 0.968 0.975 0.975 0.977 0.972
Av 0.323 1.014 1.050 1.155 1.149 1.158 1.049 0.107 0.995 0.976 0.924 0.919 0.930 0.938

h = 10
AU 0.440 1.009 1.015 1.154 1.121 1.137 1.143 0.119 1.012 0.978 0.900 0.896 0.900 0.894
CA 0.158 0.973 1.006 1.501 1.500 1.566 1.090 0.141 1.019 0.965 0.802 0.746 0.794 0.880
EU 0.331 0.957 1.051 1.285 1.300 1.311 1.279 0.085 0.979 0.999 0.903 0.928 0.929 0.902
UK 0.358 1.004 1.032 1.133 1.131 1.143 1.066 0.061 0.992 1.006 0.991 1.004 1.001 1.030
JP 0.291 1.040 1.094 1.289 1.275 1.271 0.971 0.105 0.986 0.980 0.941 0.949 0.954 0.957
Av 0.316 0.997 1.039 1.272 1.265 1.286 1.110 0.102 0.998 0.985 0.908 0.905 0.916 0.933

Note: The entries for AR (with 5 lags) are actual values (either 2R or RMSFE). The entries for all other models are ratios over the AR(5) value. M is for
MIDAS regression and H is for the Heterogeneous regression. (RV) means that the regressor is the realized quadratic variation. (RAV) means that the regressor
is the realized absolute variation. (CJ) means that the regressors are the continuous component and jumps. (GA) is a HAR model with RV but assuming that
the disturbances follow a GARCH(1,1) process. Details are presented in section 3. Emboldened entries have ratios that indicate a difference larger than 10%. Av
indicates the values computed for the average over currencies. The RMSFE is computed as 100 times the square root of the sum of the squared forecast errors
divided by nh.



Table 3: Comparing RMSFE of volatility forecasting and Loss Function of VaR forecasts
under different forecasting schemes

Fixed Rolling Recursive
AR MIDAS HAR AR MIDAS HAR AR MIDAS HAR

h = 1
RMSFE

AU 0.170 0.169 0.168 0.175 0.174 0.173 0.175 0.173 0.173
CA 0.159 0.163 0.140 0.142 0.144 0.132 0.143 0.145 0.132
EU 0.147 0.146 0.146 0.150 0.148 0.148 0.149 0.148 0.147
UK 0.111 0.111 0.110 0.113 0.112 0.112 0.113 0.113 0.112
JP 0.162 0.161 0.162 0.168 0.167 0.167 0.169 0.168 0.168
Av 0.150 0.150 0.145 0.150 0.149 0.146 0.150 0.149 0.146
Ratio 0.999 0.994 1.009 1.000 0.996 1.009

VaR Loss Function
AU 6.32 6.25 6.35 6.23 6.17 6.28 6.22 6.15 6.28
CA 5.43 5.55 5.07 5.02 5.13 4.97 5.05 5.14 4.97
EU 6.59 6.64 6.59 6.51 6.53 6.51 6.51 6.52 6.51
UK 5.16 5.17 5.11 5.23 5.19 5.17 5.21 5.19 5.16
JP 5.62 5.62 5.64 5.62 5.56 5.60 5.63 5.59 5.61
Av 5.82 5.84 5.75 5.72 5.72 5.71 5.72 5.72 5.71
Ratio 0.983 0.978 0.992 0.983 0.978 0.993

h = 5
RMSFE

AU 0.123 0.123 0.115 0.128 0.128 0.119 0.126 0.127 0.118
CA 0.136 0.139 0.108 0.105 0.106 0.090 0.107 0.108 0.091
EU 0.093 0.091 0.087 0.095 0.094 0.089 0.094 0.092 0.088
UK 0.068 0.067 0.067 0.070 0.069 0.069 0.070 0.069 0.069
JP 0.113 0.112 0.110 0.114 0.114 0.113 0.117 0.116 0.114
Av 0.107 0.106 0.097 0.102 0.102 0.096 0.103 0.103 0.096
Ratio 0.962 0.961 0.984 0.965 0.965 0.986

VaR Loss Function
AU 11.86 11.62 12.09 12.06 11.80 12.18 12.07 11.80 12.20
CA 9.08 9.19 8.58 8.66 8.66 8.77 8.63 8.62 8.74
EU 11.78 11.79 11.72 11.89 11.83 11.80 11.85 11.79 11.77
UK 10.95 10.98 10.84 10.91 10.96 10.87 10.90 10.91 10.86
JP 11.68 11.52 11.64 11.51 11.25 11.67 11.61 11.43 11.73
Av 11.07 11.02 10.97 11.01 10.90 11.06 11.01 10.91 11.06
Ratio 0.994 0.989 1.008 0.994 0.990 1.008

h = 10
RMSFE

AU 0.119 0.121 0.107 0.122 0.124 0.110 0.120 0.121 0.109
CA 0.141 0.144 0.113 0.101 0.103 0.085 0.104 0.106 0.087
EU 0.085 0.083 0.076 0.086 0.084 0.078 0.084 0.083 0.077
UK 0.061 0.060 0.060 0.062 0.062 0.061 0.062 0.061 0.061
JP 0.105 0.104 0.099 0.103 0.102 0.099 0.107 0.105 0.101
Av 0.102 0.102 0.091 0.095 0.095 0.087 0.095 0.095 0.087
Ratio 0.926 0.927 0.951 0.933 0.932 0.956

VaR Loss Function
AU 19.53 19.01 19.81 19.79 19.29 20.00 19.87 19.35 20.09
CA 14.98 15.13 14.52 15.01 15.03 14.77 14.87 14.90 14.68
EU 16.16 15.94 16.03 16.36 16.14 16.31 16.22 15.98 16.19
UK 13.02 13.13 13.20 12.99 13.05 13.17 13.03 13.12 13.19
JP 15.57 15.52 15.75 15.35 15.29 15.52 15.52 15.46 15.62
Av 15.85 15.75 15.86 15.90 15.76 15.95 15.90 15.76 15.95
Ratio 1.003 1.001 1.006 1.003 1.001 1.006

Note: Number of forecasts, n, is 340. The RMSFEs for the fixed forecasting scheme are the same as in
Table 2. The entries are loss*10000. For the rolling scheme, the sample size is kept constant using a rolling
window. For the recursive scheme, the sample size is increasing over the out-of-sample period. The rows
marked headed `Ratio’ compare the rolling and the recursive schemes with the fixed scheme for the average
over the currencies. “MIDAS” was labelled M(RV) in table 2 and “HAR” was labelled H(RV).



Table 4.a: Comparing Accuracy of 5% VaR forecasts with Different Methods of Computing the Predictive Quantiles with Normal
distribution as benchmark.

AR MIDAS HAR
qt8 qroll qrec qt8 qroll qrec qt8 qroll qrec

h = 1
AU 1.006 [.60] 1.015 [.75] 1.000 [.48] 1.007 [.62] 1.011 [.71] 1.000 [.51] 1.003 [.55] 1.023 [.81] 1.001 [.52]
CA 0.926 [.00] 0.917 [.01] 0.937 [.00] 0.925 [.00] 0.910 [.00] 0.932 [.00] 0.965 [.07] 0.968 [.10] 0.978 [.05]
EU 0.961 [.06] 0.970 [.19] 0.963 [.13] 0.957 [.05] 0.970 [.16] 0.963 [.09] 0.960 [.06] 0.971 [.18] 0.962 [.10]
UK 1.007 [.63] 1.024 [.99] 1.004 [1.0] 1.003 [.55] 1.019 [.96] 1.008 [.98] 1.006 [.61] 1.018 [.96] 1.012 [.99]
JP 1.019 [.82] 1.022 [.92] 1.011 [.83] 1.026 [.92] 1.008 [.82] 1.007 [.98] 1.014 [.75] 1.015 [.77] 1.016 [.82]

h=5
AU 1.059 [.98] 1.034 [.87] 1.027 [.83] 1.061 [.98] 1.022 [.73] 1.026 [.78] 1.037 [.86] 1.029 [.90] 1.016 [.81]
CA 0.953 [.13] 0.996 [.45] 0.985 [.25] 0.946 [.10] 0.992 [.40] 0.976 [.16] 1.024 [.75] 1.067 [1.0] 1.030 [.95]
EU 1.059 [.98] 1.030 [.99] 1.010 [.98] 1.057 [.97] 1.033 [.97] 1.010 [.91] 1.048 [.94] 1.029 [.98] 1.012 [.95]
UK 0.980 [.29] 1.029 [.88] 1.015 [.82] 0.971 [.23] 1.024 [.80] 1.005 [.59] 0.984 [.33] 1.038 [.93] 1.019 [.88]
JP 1.034 [.86] 1.110 [.99] 1.048 [.90] 1.068 [1.0] 1.088 [.99] 1.031 [.89] 1.020 [.73] 1.094 [.98] 1.045 [.86]

h=10
AU 0.973 [.32] 1.030 [.72] 0.997 [.46] 0.971 [.32] 1.015 [.61] 1.005 [.55] 0.977 [.34] 1.043 [.73] 1.012 [.61]
CA 0.927 [.10] 0.959 [.30] 1.022 [.82] 0.923 [.09] 0.956 [.29] 1.015 [.75] 0.942 [.17] 1.006 [.54] 1.016 [.81]
EU 1.019 [.66] 1.039 [.96] 1.021 [.94] 1.018 [.65] 1.049 [.99] 1.015 [.95] 1.001 [.51] 1.042 [.95] 1.017 [.77]
UK 1.025 [.72] 1.124 [1.0] 1.036 [.91] 1.014 [.62] 1.135 [1.0] 1.033 [.87] 1.012 [.60] 1.104 [.99] 1.035 [.81]
JP 1.053 [.98] 1.166 [1.0] 1.145 [1.0] 1.055 [.98] 1.188 [1.0] 1.152 [1.0] 1.014 [.65] 1.145 [1.0] 1.120 [.99]

Note: The entries are ratios of the tick loss from using the indicated predictive density (qt8, qroll or qrec) to using the normal distribution
(qnorm) for the indicated model. The values in brackets are p-values for the null that VaR forecasts computed with normal distribution are
at least as accurate as forecasts computed with the indicated predictive density. Emboldened entries indicate the null is rejected at the 10%
level, implying that use of the specified method yields statistically more accurate VaRs than the normal distribution (for the given
volatility forecasting model).



Table 4.b: Comparing Accuracy of 2.5% VaR forecasts with Different Methods of Computing the Predictive Quantiles with Normal
distribution as benchmark.

AR MIDAS HAR
qt8 qroll qrec qt8 qroll qrec qt8 qroll qrec

h = 1
AU 1.009 [.58] 1.022 [.75] 1.012 [.81] 1.012 [.60] 1.024 [.76] 1.006 [.72] 1.001 [.51] 1.017 [.69] 1.006 [.67]
CA 0.906 [.03] 0.880 [.06] 0.942 [.05] 0.905 [.02] 0.876 [.06] 0.931 [.04] 0.923 [.08] 0.939 [.15] 0.973 [.17]
EU 0.977 [.31] 0.977 [.22] 0.968 [.16] 0.968 [.25] 0.967 [.17] 0.960 [.14] 0.965 [.23] 0.972 [.22] 0.958 [.15]
UK 1.011 [.61] 1.016 [.94] 1.007 [.76] 1.004 [.53] 1.013 [.79] 1.007 [.69] 1.015 [.64] 1.028 [.98] 1.015 [.95]
JP 1.015 [.65] 1.014 [.63] 1.011 [.65] 1.009 [.59] 1.[015 [.62] 1.008 [.60] 0.999 [.49] 1.006 [.55] 0.997 [.47]

h= 5
AU 1.127 [1.0] 1.012 [.58] 0.972 [.29] 1.146 [1.0] 0.991 [.43] 0.980 [.38] 1.116 [1.0] 1.028 [.70] 1.008 [.56]
CA 1.023 [.63] 1.116 [1.0] 1.029 [.92] 1.013 [.57] 1.113 [1.0] 1.024 [.89] 1.064 [.82] 1.114 [1.0] 1.045 [1.0]
EU 1.122 [1.0] 1.030 [.73] 0.995 [.40] 1.121 [1.0] 1.027 [.72] 0.996 [.42] 1.116 [1.0] 1.041 [.89] 1.007 [.62]
UK 1.030 [.73] 1.035 [.95] 1.023 [.87] 1.028 [.72] 1.026 [.85] 1.010 [.67] 1.032 [.75] 1.025 [.78] 1.018 [.71]
JP 1.109 [1.0] 1.215 [1.0] 1.192 [1.0] 1.131 [1.0] 1.150 [1.0] 1.134 [1.0] 1.099 [1.0] 1.203 [1.0] 1.186 [1.0]

h = 10
AU 1.020 [.60] 1.040 [.72] 1.050 [.85] 1.051 [.75] 1.044 [.83] 1.050 [.85 0.993 [.47] 1.031 [.66] 1.027 [.82]
CA 0.898 [.20] 1.081 [.81] 1.089 [.88] 0.885 [.17] 1.051 [.69] 1.086 [.87] 0.938 [.31] 1.078 [.82] 1.120 [.96]
EU 1.125 [1.0] 1.095 [.99] 1.043 [.98] 1.151 [1.0] 1.109 [.94] 1.045 [.97] 1.132 [1.0] 1.086 [.99] 1.038 [1.0]
UK 1.133 [1.0] 1.177 [.99] 1.024 [.89] 1.130 [1.0] 1.178 [.99] 1.038 [.96] 1.130 [1.0] 1.164 [.99] 1.051 [.97]
JP 1.126 [1.0] 1.225 [1.0] 1.220 [1.0] 1.138 [1.0] 1.241 [1.0] 1.262 [1.0] 1.110 [1.0] 1.226 [1.0] 1.220 [1.0]

Note: See notes to Table 4.a



Table 5.a: Comparing Accuracy of 5% VaR forecasts between Forecasting Models under Different Assumptions on the Predictive Density with
AR as benchmark.

qnorm qt8 qrec qroll
MIDAS HAR MIDAS HAR MIDAS HAR MIDAS HAR

h = 1
AU 0.989 [.08] 1.005 [.71] 0.990 [.03] 1.002 [.61] 0.985 [.03] 1.012 [.93] 0.989 [.08] 1.006 [.75]
CA 1.014 [.99] 0.934 [.00] 1.013 [.98] 0.973 [.08] 1.007 [.88] 0.987 [.09] 1.009 [.95] 0.975 [.03]
EU 1.008 [.87] 0.999 [.43] 1.003 [.72] 0.998 [.35] 1.008 [.79] 1.000 [.50] 1.008 [.79] 0.998 [.39]
UK 1.002 [.62] 0.990 [.05] 0.997 [.29] 0.989 [.02] 0.997 [.33] 0.984 [.05] 1.006 [.85] 0.998 [.43]
JP 1.006 [.80] 1.003 [.65] 1.014 [.99] 0.998 [.41] 0.992 [.23] 0.996 [.34] 1.002 [.55] 1.008 [.81]

h = 5
AU 0.980 [.06] 1.019 [.83] 0.982 [.08] 0.999 [.46] 0.968 [.01] 1.014 [.77] 0.979 [.11] 1.009 [.73]
CA 1.012 [.99] 0.945 [.04] 1.004 [.81] 1.015 [.76] 1.008 [.93] 1.012 [.84] 1.003 [.76] 0.987 [.28]
EU 1.000 [.47] 0.994 [.29] 0.998 [.23] 0.984 [.00] 1.003 [.65] 0.994 [.25] 1.000 [.49] 0.997 [.36]
UK 1.003 [.60] 0.990 [.15] 0.994 [.29] 0.994 [.20] 0.998 [.41] 0.998 [.42] 0.993 [.27] 0.994 [.23]
JP 0.966 [.16] 0.997 [.37] 0.998 [.47] 0.983 [.01] 0.947 [.00] 0.982 [.08] 0.950 [.00] 0.993 [.15]

h = 10
AU 0.973 [.08] 1.014 [.73] 0.971 [.07] 1.019 [.80] 0.958 [.02] 1.027 [.98] 0.981 [.11] 1.030 [.90]
CA 1.010 [.97] 0.969 [.15] 1.006 [.86] 0.985 [.33] 1.007 [.90] 1.017 [.85] 1.004 [.77] 0.964 [.12]
EU 0.986 [.11] 0.992 [.20] 0.986 [.08] 0.974 [.00] 0.997 [.39] 0.996 [.41] 0.981 [.11] 0.989 [.31]
UK 1.009 [.88] 1.014 [.81] 0.997 [.27] 1.000 [.51] 1.019 [.99] 0.996 [.43] 1.005 [.93] 1.013 [.77]
JP 0.996 [.33] 1.011 [.74] 0.998 [.39] 0.974 [.00] 1.015 [1.0] 0.993 [.26] 1.003 [.66] 0.989 [.12]

Note: The entries are ratios of tick loss of the indicated volatility forecasting model against the AR model, when the predicted density is as indicated for
both models for computing VaRs. The values in brackets are p-values for the null that VaR forecasts of the indicated model are no more accurate than
forecasts of the AR(5). Emboldened entries signify the null is rejected at the 10% level.



Table 5.b: Comparing Accuracy of 2.5% VaR forecasts between Forecasting Models under Different Assumptions on the Predictive Density
with AR as benchmark.

qnorm qt8 qrec qroll
MIDAS HAR MIDAS HAR MIDAS HAR MIDAS HAR

h = 1
AU 0.991 [.15] 1.010 [.78] 0.993 [.16] 1.001 [.54] 0.993 [.09] 1.005 [.68] 0.985 [.09] 1.003 [.61]
CA 1.018 [.97] 0.934 [.01] 1.017 [.94] 0.951 [.07] 1.014 [.86] 0.997 [.40] 1.006 [.80] 0.964 [.07]
EU 1.008 [.78] 1.001 [.55] 0.998 [.36] 0.989 [.04] 0.998 [.41] 0.997 [.40] 1.000 [.51] 0.991 [.25]
UK 0.997 [.38] 0.983 [.02] 0.990 [.15] 0.988 [.07] 0.994 [.32] 0.995 [.27] 0.997 [.40] 0.991 [.11]
JP 1.022 [.99] 1.010 [.75] 1.015 [.95] 0.994 [.32] 1.023 [.99] 1.002 [.55] 1.019 [.98] 0.997 [.39]

h = 5
AU 0.970 [.09] 1.003 [.56] 0.986 [.13 0.993 [.26] 0.949 [.02] 1.019 [.89] 0.978 [.05] 1.040 [.97]
CA 1.009 [.88] 1.002 [.53] 0.999 [.46] 1.043 [.94] 1.007 [.86] 1.001 [.51] 1.004 [.73] 1.017 [.74]
EU 0.999 [.32] 0.987 [.03] 0.997 [.19] 0.981 [.00] 0.996 [.16] 0.998 [.45] 1.000 [.45] 0.999 [.47]
UK 0.990 [.31] 0.995 [.26] 0.988 [.08] 0.998 [.32] 0.981 [.20] 0.986 [.18] 0.978 [.17] 0.990 [.29]
JP 0.977 [.28] 0.987 [.05] 0.997 [.46] 0.978 [.00] 0.925 [.00] 0.977 [.01] 0.929 [.00] 0.982 [.00]

h= 10
AU 0.948 [.05] 1.035 [.86] 0.976 [.13] 1.008 [.63] 0.951 [.13] 1.026 [.99] 0.947 [.06] 1.012 [.78]
CA 1.013 [.95] 0.960 [.21] 0.998 [.30] 1.003 [.52] 0.984 [.09] 0.957 [.15] 1.011 [.84] 0.988 [.31]
EU 0.976 [.10] 0.969 [.01] 0.997 [.18] 0.975 [.00] 0.988 [.12] 0.962 [.01] 0.978 [.07] 0.964 [.09]
UK 0.998 [.37] 1.000 [.49] 0.995 [.05] 0.996 [.30] 0.999 [.43] 0.989 [.22] 1.011 [.87] 1.026 [.99]
JP 0.995 [.34] 0.976 [.02] 1.007 [.91] 0.962 [.00] 1.009 [.77] 0.978 [.02] 1.029 [1.0] 0.975 [.00]

Note: See notes to Table 5.a.



Table 6: Comparing Loss functions of 5% VaR forecasts using 5- and 30-min data

Loss with 5-min data Ratio to 30-min data
AR MIDAS HAR AR MIDAS HAR

h=1
AU 7.78 7.82 7.67 1.23 1.25 1.21
CA 6.39 6.24 6.30 1.18 1.13 1.24
EU 7.26 7.23 7.19 1.10 1.09 1.09
UK 5.63 5.64 5.60 1.09 1.09 1.10
JP 5.79 5.84 5.79 1.03 1.04 1.03
Av. 6.57 6.55 6.51

h=5
AU 19.47 19.56 19.25 1.64 1.68 1.59
CA 24.18 24.29 24.06 2.66 2.64 2.81
EU 16.65 16.59 16.48 1.41 1.41 1.41
UK 12.85 12.86 12.79 1.17 1.17 1.18
JP 12.28 12.27 12.06 1.05 1.06 1.04
Av. 17.09 17.11 16.93

h=10
AU 27.22 27.34 26.65 1.39 1.44 1.35
CA 46.52 46.59 46.60 3.11 3.08 3.21
EU 24.14 24.13 23.84 1.49 1.51 1.49
UK 18.65 18.71 18.51 1.43 1.42 1.40
JP 16.30 16.35 16.14 1.05 1.05 1.02
Av. 26.57 26.62 26.35

Note: The entries in the left panel are loss functions (*10000) of 5% VaR forecasts when the realized volatility and returns are computed with data
sampled at each 5 minutes. Loss functions computed for data sampled at each 30 minutes are reported in Table 3.



Table 7: Comparing Accuracy of 5% VaR forecasts between Forecasting Models under Different Assumptions on the Predictive
Density with AR as benchmark.

qnorm qt8 qrec qroll
MIDAS HAR MIDAS HAR MIDAS HAR MIDAS HAR

h = 1
AU 1.005 [.89] 0.987 [.00] 1.006 [.92] 0.988 [.00] 1.007 [.93] 1.002 [.65] 1.009 [.94] 1.002 [.63]
CA 0.977 [.01] 0.986 [.04] 0.978 [.03] 0.987 [.08] 0.984 [.04] 0.991 [.10] 0.977 [.04] 0.992 [.17]
EU 0.995 [.15] 0.990 [.00] 0.996 [.24] 0.990 [.00] 1.002 [.64] 0.994 [.08] 0.992 [.06] 0.997 [.30]
UK 1.001 [.57] 0.995 [.07] 1.001 [.56] 0.994 [.02] 0.997 [.35] 0.991 [.03] 1.005 [.72] 0.996 [.17]
JP 1.008 [.99] 0.999 [.44] 1.010 [1.0] 0.995 [.19] 1.010 [.94] 1.005 [.83] 0.996 [.29] 1.002 [.63]

h = 5
AU 1.005 [.90] 0.989 [.02] 1.003 [.81] 0.986 [.00] 1.005 [.90] 0.988 [.03] 1.002 [.68] 0.992 [.08]
CA 1.005 [.77] 0.995 [.26] 1.006 [.84] 1.008 [.89] 1.009 [.83] 1.023 [1.0] 1.010 [.93] 1.025 [.99]
EU 0.996 [.18] 0.989 [.06] 0.998 [.31] 0.985 [.00] 0.996 [.22] 0.997 [.25] 0.999 [.38] 0.990 [.08]
UK 1.001 [.57] 0.995 [.12] 1.001 [.64] 0.996 [.07] 0.995 [.08] 0.992 [.07] 0.991 [.02] 0.988 [.00]
JP 0.999 [.36] 0.982 [.00] 1.004 [.96] 0.979 [.00] 1.001 [.60] 0.984 [.03] 0.995 [.07] 0.989 [.09]

h = 10
AU 1.004 [.87] 0.979 [.00] 1.005 [.96] 0.976 [.00] 1.012 [.97] 1.005 [.88] 1.004 [.85] 0.988 [.10]
CA 1.001 [.66] 1.002 [.59] 1.004 [.81] 1.003 [.64] 1.011 [.99] 1.015 [.89] 1.000 [.47] 1.018 [.92]
EU 1.000 [.46] 0.988 [.13] 1.003 [.92] 0.984 [.07] 0.998 [.35] 0.979 [.05] 0.996 [.21] 0.997 [.43]
UK 1.003 [.83] 0.992 [.06] 1.002 [.70] 0.989 [.01] 1.001 [.58] 0.985 [.10] 1.015 [.99] 0.997 [.39]
JP 1.003 [.78] 0.990 [.17] 1.007 [.99] 0.970 [.00] 1.006 [.94] 0.977 [.02] 0.997 [.28] 0.995 [.30]

Note: This Table reproduces results of Table 5a with data sampled at each 5 minutes instead of 30 minutes.
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Figure 1: Volatility Signature Plots for the five currencies: AU, CA, UK, EU, JP
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Figure 2: Estimates of Daily Realized Volatility (std. dev) with Australian and Euro Intraday Exchange Rate Returns: Realized Quadratic Variation (RV);
Realized Power Variation (RPV); Continuous and Jump Components. (Jan 4, 1999 – Oct. 31, 2003)
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Figure 4: Realized Volatility and 1-step-ahead forecasts with AR, HAR and MIDAS for the five currencies.



Appendix: Estimates of AR, MIDAS and HAR for each currency and horizon

In-sample period: January 4, 1999 to July 3, 2002 (common sample: same sample size for each h and model).

Australian Dollar
AR MIDAS HAR

 h=1 h=5 h=10 h=1 h=5 h=10 h=1 h=5 h=10
 -1.19 -.675 -.576  .004 .409 .509 0 -.635 .064 .218
 .276 .204 .169  .735 .664 .627 d .159 .091 .056
 .120 .151 .133  -.017 .0101 .002 w .340 .263 .218
 .049 .111 .116  .0001 .000 .000 m .328 .488 .527
 .122 .120 .114
 .193 .107 .111
R2 .32 .44 .44 R2 .31 .44 .44 R2 .32 .48 .50

Canadian Dollar
AR MIDAS HAR

 h=1 h=5 h=10 h=1 h=5 h=10 h=1 h=5 h=10
 -2.70 -2.48 -2.59  -1.97 -1.74 -2.06 0 -1.62 -1.19 -1.32
 .204 .133 .105  .495 .412 .153 d .131 .063 .049
 .162 .079 .073  .010 -.003 .010 w .215 .139 .062
 .011 .056 .048  .000 .000 .000 m .371 .439 .447
 .035 .070 .052
 .115 .077 .056
R2 .12 .17 .16 R2 .11 .17 .15 R2 .12 .22 .24

Euro
AR MIDAS HAR

 h=1 h=5 h=10 h=1 h=5 h=10 h=1 h=5 h=10
-1.54 -1.20 -1.12  -.369 -.225 -.301 0 -.949 -.285 -.009
 .185 .184 .146  .678 .576 .514 d .057 .089 .055
 .133 .138 .116  -.005 .010 -.0004 w .451 .217 .132
 .124 .108 .102  .000 .000 .000 m .306 .468 .572
 .059 .076 .087
 .197 .089 .091
R2 .23 .34 .33 R2 .22 .33 .32 R2 .23 .39 .43

British Pound
AR MIDAS HAR

 h=1 H=5 h=10 h=1 h=5 h=10 h=1 h=5 h=10
-1.83 -1.32 -1.29  -.414 -.069 -.246 0 -1.12 -.599 -.463
 .239 .165 .147  .686 .617 .544 d .133 .061 .051
 .099 .115 .103  -.0105 -.002 .0008 w .322 .334 .256
 .090 .106 .099  .0001 .000 .000 m .338 .336 .384
 .044 .097 .090
 .189 .113 .097
R2 .20 .36 .36 R2 .20 .37 .36 R2 .21 .39 .40

Japanese Yen
AR MIDAS HAR

 h=1 H=5 h=10 h=1 h=5 h=10 h=1 h=5 H=10
 -1.65 -1.36 -1.39  -.443 -.297 -.460 0 -1.06 -.548 -.399
 .266 .200 .157  .671 .569 .495 d .169 .119 .080
 .128 .120 .099  -.0165 -.0104 -.009 w .335 .207 .096
 .094 .097 .084  .0001 .0001 .0001 m .292 .401 .511
 .051 .073 .073
 .142 .070 .080
R2 .24 .32 .29 R2 .24 .33 .30 R2 .25 .36 .37


