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2.2.2 Néron-Severi Lattice of a Complex K3 surface . . . . . . . . . . 14

2.3 Elliptic Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Interplay with Elliptic Curves over function fields . . . . . . . . 17

2.3.2 Classification of Singular Fibres . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Lines on a Quartic Surface 22

3.1 Elliptic Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Lines of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Base Change and Ramification . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Consequences for lines of the second kind . . . . . . . . . . . . . . . . . 29

3.5 64 lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



Chapter 4 Lines on a Complete Intersection of three Quadrics 34

4.1 Existence of Quadrics of Rank 4 . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Construction of the Elliptic Fibration . . . . . . . . . . . . . . . . . . . 40

4.3 j -Invariant of the Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Singular Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Semi-Stable Fibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Shioda-Tate Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Height Pairing on the Mordell-Weil Group of Sections . . . . . . . . . . 62

4.8 Further Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix A Code for Table 4.3 76

Appendix B Code for Example 4.8.1 78

Bibliography 82

ii



List of Tables

2.1 Kodaira’s Classification of Singular Fibres . . . . . . . . . . . . . . . . . 21

3.1 Classification of singularities on plane cubics and their Euler number 23

3.2 Intersection of Singular Fibres with the Flex Locus . . . . . . . . . . . 23

3.3 Fibre type according to Ramification type . . . . . . . . . . . . . . . . . 27

3.4 Fibre Type According to Orders of Vanishing in local Weierstrass

form: [SS10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Singular fibres after cyclic base Change: [RS15b] . . . . . . . . . . . . . 28

3.6 Number of lines meeting a line of the second kind: [RS15b] . . . . . . 30

3.7 Singular Fibres after Base Change: [RS15b] . . . . . . . . . . . . . . . . 30

4.1 Singular Fibres in the Elliptic Fibration . . . . . . . . . . . . . . . . . . 48

4.2 Slopes of Singular Fibres and their multiplicity . . . . . . . . . . . . . . 51

4.3 Maximal Ranks of Φ for each combination of singular fibres . . . . . . 61

4.4 Upper bounds on the number of points of bounded height in the

remaining cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 The thirteen candidates for lines of minimal height with their inter-

sections of singular fibres on the surface [4,4,4,4,4,2,1,1]. . . . . . . 72

4.6 The required configurations for generators of the Mordell-Weil group

when surface [4,4,4,4,4,2,1,1] has 40 lines. . . . . . . . . . . . . . . . 75

iii



Acknowledgments

In making this document, I wish to thank my supervisor Damiano Testa for intro-

ducing me to the vast area of pure mathematics referred to as “Algebraic Geometry”,

in particular the slightly less vast area of studying the geometry of K3 surfaces. I

find his enthusiasm and intuition for the subject to be very inspiring, and his in-

sights and suggestions during our numerous discussions (from too many time-zones

to keep track of) to be invaluable in creating this document.

I also wish to thank Florian Bouyer, to whom I feel heavily indebted, for helping

me and taking part in many discussions that lead to ideas and new understanding

in the foundational knowledge of my research. He also promptly and quite happily

came to my aid in my struggles against Magma’s syntax. I also would like to thank

him and all my other peers, most notably Ben Pooley, for their encouragement and

many sources of entertainment that have made these years a pleasure to experience,

as well as providing hope and optimism when needed.

iv



Declarations

In Chapter 1, the section with Motivation is my own work developed through dis-

cussions with my supervisor, unless otherwise stated. The main focus of this thesis

is Conjecture 1.2.1 which (as far as the I know) has not been published before and

is the result of numerous discussions with myself and my supervisor.

Chapter 2 largely consists of a summary of necessary background material which

can be found in many different common sources which have been thoroughly cited

throughout the section.

Chapter 3 consists of a summary of a relevant recent paper, and is hence cited

throughout. It is here to emphasise that the important points from the case of

quartic hypersurfaces also apply in the case of three quadrics.

Everything in Chapter 4 (unless explicity stated otherwise) is my own work, devel-

oped with the guidance and influence of my supervisor. As far as I am aware, none

of the material here is published elsewhere, and thus forms the bulk of the original

content of this thesis.

Furthermore, I confirm that this thesis has not been submitted for a degree at any

other university.

v



Abstract

In this document we formulate and discuss conjecture 1.2.1, giving an upper bound

for the number of lines on K3 surfaces occurring as complete intersections of three

quadrics in P5. In the case that these quadrics contain in their span a quadric of

rank 4, we construct a pair of elliptic fibrations, each of which realises the lines on

the surface as either sections or line components within the singular fibres, and the

general fibre is realised as an intersection of two quadrics in P3.

The possibilities for singular fibres are limited by the Euler number of the surface,

while the rank of the group of sections is bounded by the rank of its Picard group.

In the cases where this rank is low, these bounds are enough to prove the stated

conjecture in the torsion-free case by utilising the height-pairing.

In the remaining cases, if a surface has more lines than the stated conjecture, we

discuss how these techniques can be used to construct necessary conditions on the

configurations of the lines on the surface, along with an example of how this could

work in practice.
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Chapter 1

Introduction

1.1 Motivation

The famous result of Cayley and Salmon of 1849 goes as follows:

Theorem 1.1.1. [Cay69] Let X ⊂ P3 be a smooth cubic surface over C. Then X

contains exactly 27 lines.

I first heard this result as an undergraduate, and found it most curious.

What does the ‘27’ represent exactly? Why ‘exactly’? were obvious and immediate

questions that arose in my head. Of course, these surfaces have now been extensively

studied and the answers related to this surface have been known for a long time.

The most immediate follow-up question is therefore: “What about lines on other

surfaces? Does a similar result follow for quartics surfaces?”. In 1943, Segre answers

this question:

Theorem 1.1.2. [Seg43] Let X ⊂ P3 be a smooth quartic surface over C. Then X

contains at most 64 lines.

This is also quite an interesting result! Note that for the quartic we can only

say “at most 64 lines”, whereas the cubic was “exactly 27”. In fact, there do exist

such examples of quartic hypersurfaces over C with 64 lines, as well as examples

with fewer:

� Schur’s quartic {x4 − xy3 = z4 − zw3} ⊂ P3 contains precisely 64 lines.

� The Fermat quartic {x4 + y4 + z4 +w4 = 0} ⊂ P3 contains precisely 48 lines.

� On the other hand, if X is a “random” choice of smooth quartic hypersurface

in P3, it will contain no lines at all. That is, the set of surfaces with no lines
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is an open dense subset of the moduli space parametrising smooth quartic

hypersurfaces in P3.

The number of lines can be checked using methods found in [BS07].

This change of behaviour in the minimum number of lines represents the fact that

the quartic hypersurface is a “K3” surface, while the cubic is a del Pezzo surface.

Indeed, a much more recent result shows that Segre’s result can be extended to more

general fields:

Theorem 1.1.3. [RS15b] Let k be any field of characteristic not 2 or 3. Then any

smooth quartic surface S ⊂ P3
k contains no more than 64 lines.

There are also corresponding results for the missing characteristics. In char-

acteristic 3, the Fermat quartic contains 112 lines which is maximal [RS15a], while

in characteristic 2 the maximal number on a smooth surface is 60 lines [Deg16],

though whether this is sharp is unknown.

The methods used in these papers are much more modern than the geometric ar-

guments used by Segre and Cayley/Salmon, allowing the results over more general

fields.

It is therefore natural to ask “If you know the result for quartics, what about other

types of K3 surface?”. In this document, we concentrate on the case that X is a

smooth complete intersection of three quadrics in P5.

Consider the following example: Let x0, x1,⋯, x5 be homogeneous coordinates for

P5 over the field C. Let X ⊂ P5 be the surface defined by the simultaneous vanishing

of:

Q1 ∶ x2
0 − 2x2

1 + x2
2 − 2x2

5

Q2 ∶ x2
1 − 2x2

2 + x2
3 − 2x2

5

Q3 ∶ x2
2 − 2x2

3 + x2
4 − 2x2

5

note that X is smooth and a complete intersection. Notice also that the line L

parametrised by

(t ∶ u)↦ (t ∶ t + u ∶ t + 2u ∶ t + 3u ∶ t + 4u ∶ u)

lies on X; it vanishes on Q1,Q2 and Q3.

Observe that Q1,Q2 and Q3 are all diagonal quadrics, so replacing xi with −xi, all

three polynomials remain unchanged. Hence there is a (Z/2Z)5-group action on X,

and the orbit of L under this group action yields 25 = 32 lines, whose parametrisa-

tions can easily be obtained from that of L above. (Indeed, if one is interested in

2



questions regarding fields of definition for lines, note that all of the lines above in

the orbit are defined over Q.)

This document was written to discuss the following question: “Does this example for

X have the maximal possible number of lines for an intersection of three quadrics?”.

In fact, one quite powerful result related to lines on intersections of quadrics whose

proof requires no complicated tools is the following:

Lemma 1.1.4. Any smooth surface X ⊂ P5 which is a complete intersection of three

quadrics in P5 cannot contain a “triangle” (that is, a 3-cycle of lines).

Proof. Let I(X) be the ideal associated to the variety X, generated by three degree

two homogeneous polynomials f1, f2 and f3. Let L ⊂ P5 be a choice of a line. If L

is suitably general, then fi∣L vanishes either at two distinct points or a single point

with multiplicity two. Otherwise, it is possible is that fi∣L is identically zero, and

hence fi vanishes along the entire line L. In particular, if fi∣L vanishes at three

distinct points, then fi∣L is identically zero. In terms of varieties, this means that

if L ∩ Qi contains at least three distinct points, then L ⊂ Qi, and hence if L ∩X
contains at least three distinct points, then L ⊂X.

Suppose now that X contains a triangle T of lines. The lines themselves are called

“edges” and denoted by {L1, L2, L3}, the “vertices” consist of the points p1 ∶= L2∩L3,

p2 ∶= L1∩L3 and p3 ∶= L1∩L2. Note that there exists a unique two dimensional plane

P with T ⊂ P ⊂ P5. Now p ∈ P be any point and let L be a line in P passing through

p, which does not meet p1, p2 and p3 (this is the general case). Then L ∩ T consists

of three distinct points x1, x2, x3. These points lie on L ∩X, so by the argument

above, L ⊂X, and in particular, p ∈X.

This argument works for any point p ∈ P ∖ {p1, p2, p3}. As T ⊂ X by definition, it

follows that the entire plane P ⊂ X; that is, the two dimensional smooth complete

intersection X contains a two plane P . Since X is smooth, we conclude that P =X,

but this contradicts the fact that X is a K3 surface. We conclude that no such

triangle T ⊂X exists.

Indeed, the configuration of lines on the example with 32 lines contains no

“triangles”, instead having many “squares”; i.e. four-cycles. It is this restrictive

property combined with some of the ideas from Rams-Schütt which inspired the

results and methods that I present in this document.

1.2 Overview of Results

The main question we address in this thesis is the following conjecture:
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Conjecture 1.2.1. Let k be a field of characteristic not 2 or 3 and let X ⊂ P5 be a

smooth complete intersection of three quadric hypersurfaces over k. Then X cannot

contain any more than 32 lines.

Remark 1.2.2. Since we are looking for an upper bound for the number of lines

on the surface, it is reasonable to assume that k is algebraically closed: we can only

increase the number of lines if we include those that are not only defined on k but

also on all extensions.

As far as the author knows, this result is not known. This conjecture is in

the same spirit as the result of [RS15b, Theorem 1.2], which I state here:

Theorem 1.2.3 (Rams, Schütt). Let k be a field of characteristic not 2 or 3. Then

any geometrically smooth quartic surface over k contains at most 64 lines.

While I was not able to prove this conjecture in the required time to submit

this in my PhD Thesis, this document contains a useful construction of an elliptic

fibration on complete intersections of three quadric hypersurfaces, which allows for

a study of their lines. From this we are able to deduce the following theorems, all

of which (to the best of my knowledge) are new results.

Theorem 1.2.4. Let X be a smooth complete intersection of quadrics over k. If

X contains a square of lines, then it can contain no more than 48 lines.

This is Lemma 4.1.10 together with Proposition 4.5.2.

In order to get closer to the ultimate goal of Conjecture 1.2.1, we later separate into

a number of cases based upon the rank of the associated Mordell Weil Group of

sections Φ which is a finitely generated abelian group (see Definition 4.6.1). Under

the computational requirement of being torsion free, we use the height-pairing to

improve the above estimate into the following theorem:

Theorem 1.2.5. Let X be a smooth complete intersection of quadrics over k as

before. Assume that X contains a square of lines, it contains more than 32 lines in

total, and its Mordell-Weil Group Φ is torsion free. It then follows that rank(Φ) > 1.

This is proved as Corollary 4.7.14.

4



Chapter 2

Background

This chapter contains a summary of necessary common background assumed in this

document.

2.1 K3 Surfaces

Throughout this document k shall be assumed to be algebraically closed field (see

Remark 1.2.2). We shall be dealing only with varieties; that is, geometrically inte-

gral separated schemes of finite type over k. Basic theory of varieties can be found in

(for instance) [Rei88, Sha74, Mum95], while more advanced theory of schemes can be

found in (for instance) [Sha95, Mum99]. What follows will be a short introduction

into K3 surfaces.

2.1.1 Definitions and Examples

Definition 2.1.1. For a smooth variety X ⊂ Pn of dimension 2, consider the sheaf

of differentials ΩX . By definition this is a locally free sheaf of rank 2. The canonical

sheaf ωX is the invertible sheaf defined to be the determinant of ΩX . Its associated

divisor will be denote by KX and called the canonical divisor.

In terms of differential forms, KX = div s, where s is any rational 2-form on X. In

local coordinates {x, y}, this is s = gdx∧dy for a non-zero rational function g ∈ k(X).

Definition 2.1.2. A K3 surface is a smooth projective 2 dimensional variety over

a field k such that ωX ≅ OX and H1(X,OX) = 0.

Example 2.1.3. 1. A smooth quartic X ⊂ P3 is a K3 surface. Indeed from the

short exact sequence

0→ O(−4)→ O → OX → 0
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on P3, consider the long exact sequence of cohomology, and use the fact that

H1(P3,O) =H2(P3,O(−4)) = 0

to deduce that H1(X,OX) = 0.

Taking determinants of the cotangent bundle sequence ([Har77] Proposition

8.12)

0→ O(−4)∣X → ΩP3 ∣X → ΩX → 0

yields the adjunction formula ωX ≅ ωP3 ⊗O(4)∣X ≅ OX . In local coordinates

with X given by the vanishing of a quartic polynomial f , a trivialising section

of ωX is

∑(−1)ixidx0 ∧⋯ ∧ d̂xi ∧⋯ ∧ dx3

f

where d̂xi means “omit this term from the sum”.

2. Similarly, any smooth complete intersection of type (d1,⋯dn) in Pn+2 is a K3

surface if and only if ∑di = n + 3. Note that this implies that there are only

three cases: (4) in P3 (as above), (2,3) in P4 and (2,2,2) in P5. For the

majority of Chapter 4 we shall be concentrating exclusively on the final of

these three cases.

Let hi(X,F ) be the rank of the sheaf cohomology group H i(X,F ).

Remark 2.1.4. Note that if X is a K3 surface, then by definition h0(X,OX) = 1,

and h1(X,OX) = 0. By Serre Duality, we have h2(X,OX) = h0(X,OX) = 1. This

implies that χ(X,OX) = 2.

2.1.2 Linear, Algebraic and Numerical equivalence

Let X be a smooth surface over k and write Div(X) for its group of Weil divisors.

Let − ⋅ − ∶ Div(X) × Div(X) → Z denote the intersection pairing on X. Recall the

following equivalence relations on Div(X):

Definition 2.1.5. 1. C,D ∈ Div(X) are linearly equivalent if C =D+div(f) for

some rational function f ∈ k(X).

2. C,D ∈ Div(X) are algebraically equivalent if there is a connected curve T , two

closed points 0 and 1 ∈ T , and a divisor E in X × T , flat over T , such that

E0 −E1 = C −D.

3. C,D are numerically equivalent if C ⋅E =D ⋅E for all E ∈ Div(X).

6



For general surfaces, these relations are related by the following implications:

Linear Equivalence⇒ Algebraic Equivalence⇒ Numerical Equivalence

Here is a brief explanation:

For the first implication, if C and D are linearly equivalent, then C =D + div(f) so

we can take T = P1 with local coordinates t, u and then E = div(tf − u) in X × P1,

showing that C and D are algebraically equivalent.

For the second, suppose that C,D are algebraically equivalent, given by a divisor

E ⊂ X × T . Choose an embedding X ↪ Pn given by a very ample divisor H; this

allows us to embed X × T and hence E in PnT . As C ⋅H is the degree of C in the

embedding induced by H, by flatness of the fibres E over T and as T is connected,

we see that C ⋅H = D ⋅H. From [Har77, page 359] (as we assume k is algebraically

closed, Remark 1.2.2), we can write any divisor on X as a difference of ample

divisors, completing the argument.

Definition 2.1.6. The Picard Group is the abelian group Pic(X) for the equivalence

classes of Div(X) by linear equivalence.

Let Picτ(X) ⊆ Pic(X) be the set of classes which are numerically trivial; that is

Picτ(X) = {L ∈ Pic(X)∣L ⋅L′ = 0 for all L′ ∈ Pic(X)}

Finally, let Pic0(X) be the set of classes algebraically equivalent to zero.

The Neron-Severi Group is the abelian group NS(X) ∶= Pic(X)/Pic0(X), and de-

note Num(X) ∶= Pic(X)/Picτ(X).

In the special case of X being a K3 surface, things become much simpler.

First, by Riemann-Roch for surfaces [Har77, Theorem V.1.6] we have:

Lemma 2.1.7. Let X be a K3 surface and let L ∈ Pic(X). Then

χ(X,L) = L
2

2
+ 2

Proof. For any divisor on a surface X we have, by Riemann-Roch

χ(X,L) = 1

2
L ⋅ (L −KX) + χ(X,OX).

X being a K3 surface yields KX = 0 and since we showed above in Remark 2.1.4

that χ(X,OX) = 2 this immediately yields the result.

7



Proposition 2.1.8. Let X be a K3 surface over a field. Then the natural surjections

Pic(X)→ NS(X)→ Num(X)

are isomorphisms.

Proof. Since X is projective, there is an ample sheaf L′ on X. If L ∈ ker(Pic(X)→
Num(X)) then L.L′ = 0 and thus if L ≠ OX then H0(X,L) = 0. Serre duality

implies that H2(X,L) ≅H0(X,L⊗−1)∗ = 0. Hence χ(X,L) ≤ 0. On the other hand,

by Lemma 2.1.7, we have χ(X,L) = 1
2L

2 + 2 and hence L2 < 0, meaning that L

cannot be numerically trivial.

The above proposition allows us to freely switch between different viewpoints

with no confusion, and we will often be doing so implicitly.

To help us compute the self-intersection numbers of curves on X, we have the

adjunction formula, see [Har77, V, Proposition 1.5]:

Proposition 2.1.9. If C is a nonsingular curve of genus g on the surface X, then

2g − 2 = C ⋅ (C +KX).

In the case of X being a K3 surface, we simply have

2g − 2 = C2.

and in particular, if L ≅ P1 is a line, then g(L) = 0 so L2 = −2.

We shall now turn our attention to the Singular Cohomology of K3 surfaces,

allowing us to obtain important data on Pic(X).

2.1.3 Singular Cohomology of Complex K3 surfaces

In the special case where k = C, every K3 surface as defined above is also given the

structure of a complex manifold. This process is known as Serre’s GAGA Principle

[Ser56] This allows us to study K3 surfaces via their singular cohomology.

Let e(X) denote the topological Euler characteristic of a space X, and ci(X) denote

the i-th chern class of the tangent bundle of X for i = 1 and 2. Again, from Remark

2.1.4, χ(X,OX) = 2. On the other hand Noether’s formula states that

χ(X,OX) = 1

12
(c1(X)2 + c2(X)) = 1

12
(KX ⋅KX + e(X))
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(see [BHPVdV04, Theorem I.5.5]). As KX = 0 (or equivalently ωX ≅ OX), we have

c1(X)2 = 0 and hence e(X) = c2(X) = 24.

For the singular cohomology groups of X we have H0(X,Z) ≅ Z since X is connected

and H4(X,Z) ≅ Z because X is oriented (see, for example [Hat01, Section 3.3]).

In order to relate terms of singular cohomology with sheaf cohomology, we use the

exponential sequence:

0→ Z→ OX → O×
X → 0

giving rise to the long exact sequence:

0→H0(X,Z)→H0(X,OX)→H0(X,O×
X)→H1(X,Z)→H1(X,OX)⋯

→H1(X,O×
X) c1Ð→H2(X,Z)→H2(X,OX)→H2(X,O×

X)→H3(X,Z)
(2.1)

By using Cellular or Simplicial homology (and the fact that X here is a complex

manifold, and hence is constructed only from cells of even dimension), the equiva-

lence of cohomology theories and the Universal Coefficient theorem (for example, see

[Hat01, Section 2.2]) we can see that H1(X,Z) =H3(X,Z) = 0. From the Universal

Coefficient Theorem we have that

0→ Ext(H1(X,Z),Z)→H2(X,Z)→ Hom(H2(X,Z),Z)→ 0

the Ext term is 0 and as H2(X,Z) is finitely generated, we see that H2(X,Z) is

torsion free and of the same rank as H2(X,Z). As e(X) = 24, we deduce that

rankH2(X,Z) = 24 − 1 − 1 = 22. Summarising these results about the singular

cohomology of a complex K3 surface, we deduce that:

Proposition 2.1.10. Let X be a K3 surface over the C. Then its singular coho-

mology groups are:

H i(X,Z) ≅

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z if i = 0,4

Z22 if i = 2

0 otherwise

As H4(X,Z) ≅ Z, Poincaré Duality tells us that the cup product induces a

perfect bilinear pairing:

⌣∶H2(X,Z) ×H2(X,Z)→ Z

for this case, this simply means that for any primitive x there is a y such that

x ⌣ y = 1.

We shall investigate this paring f on H2(X,Z), but first we recall some lattice
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theory.

2.2 Lattices

In this section we shall contain all the necessary background on lattice theory. For

more detailed information, see the paper [Nik80] covering the classification of uni-

modular lattices, or one of the books [CS99, Ebe13, MH73].

For the time being we treat lattices in their pure and most abstract form, and begin

with a series of algebraic definitions.

Definition 2.2.1. Let M be a free Z-module and f ∶M ×M → Z be a bilinear form

on M .

1. f is said to be degenerate if there exists x ∈ M with x ≠ 0 such that for any

y ∈M , f(x, y) = 0. Otherwise, f is said to be non-degenerate.

2. f is said to be symmetric if for any x, y ∈M we have f(x, y) = f(y, x).

Definition 2.2.2. A lattice S is a free Z-module of finite rank, together with a

non-degenerate symmetric bilinear form with values in Z. In this document, we

shall often use the notation x ⋅ y ∶= f(x, y) for the bilinear form on S (the same

notation as for the intersection form on a surface). When x = y we shall often use

x2 ∶= f(x,x).

Let S be a lattice of finite rank r. Choose a basis {e1,⋯, er} to generate the

free Z-module. Note that by convention any element of S can be written as a sum

of integer multiples of ei.

Definition 2.2.3. The Gram matrix of S with respect to this basis is the r × r
matrix A, whose (i, j)-th entry is the integer ei ⋅ ej .

Remark 2.2.4. 1. As the bilinear form on S is assumed to be symmetric, any

Gram matrix will be a symmetric matrix.

2. As the bilinear form on S is assumed to be non-degenerate, any Gram matrix

will always have full rank. This is because after an orthogonal change of basis

we can assume that the Gram matrix is diagonal with eigenvectors x1,⋯, xn.

But then xi ⋅ xj = 0 if i ≠ j, so the Gram matrix has full rank if and only if

its eigenvectors have xi.xi ≠ 0 for each i. It follows that if the Gram matrix is

not full rank, then the bilinear form is degenerate. (See Lemma 2.2.10.)

10



Here we use the usual rules of matrix multiplication as a short-hand while

working in the lattice S. In this way, by definition A can be expressed as

A =
⎛
⎜⎜⎜
⎝

e1

⋮
er

⎞
⎟⎟⎟
⎠
(e1 ⋯ er)

then if {f1,⋯, fr} is some other basis, with a change of basis matrix P , we have that

(f1 ⋯ fr) = (e1 ⋯ er)P

and hence

P TAP = P T
⎛
⎜⎜⎜
⎝

e1

⋮
er

⎞
⎟⎟⎟
⎠
(e1 ⋯ er)P =

⎛
⎜⎜⎜
⎝

f1

⋮
fr

⎞
⎟⎟⎟
⎠
(f1 ⋯ fr)

so the associated Gram matrix for S with respect to {f1,⋯, fr} is the conjugate

P TAP .

We can now define a number of invariants of the lattice, with corresponding prop-

erties of their Gram matrices (of course these properties of the matrices will be

invariant under conjugation).

Definition 2.2.5. The lattice S is said to be even if x2 ∶= x ⋅x ∈ 2Z is even for each

x ∈ S. Otherwise, S is said to be odd.

Lemma 2.2.6. Let A be the Gram matrix of S with respect a choice of basis. S is

even if and only if the diagonal entries Aii ∈ 2Z for all 1 ≤ i ≤ r.

Proof. Let {e1,⋯er} be the basis associated to A. Note that x2 ∈ 2Z for all x ∈ S if

and only if e2
i ∈ 2Z for all 1 ≤ i ≤ r. This happens if and only if Aii = e2

i ∈ 2Z for each

i.

Definition 2.2.7. For two lattices S1, S2 we denote by S ∶= S1 ⊕ S2 to be their

orthogonal sum.

That is, if B1 is a basis for S1 with quadratic form f1 and B2 is a basis for

S2 with quadratic form f2 then a basis for S is the union B1 ∪B2. The quadratic

form f for S is then defined on basis elements by:

f(x, y) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1(x, y) if x and y ∈ B1

f2(x, y) if x and y ∈ B2

0 otherwise
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If A1 and A2 are the Gram matrices of S1 and S2 with respect to the bases B1 and

B2 respectively, then the associated Gram matrix of S with respect to B is simply

the diagonal sum of matrices A ∶= A1 ⊕A2.

Definition 2.2.8. Let S be a lattice with basis B and A be the Gram matrix of S

with respect to B.

1. The discriminant of S is the value discr(S) ∶= det(A).

2. S is said to be unimodular if discr(S) = ±1.

Note that the discriminant of a lattice is independent of the choice of basis; any

change of basis matrix and its inverse are both integral and their determinants are

hence ±1.

Definition 2.2.9. Let S be a lattice with quadratic form f . For a ∈ Q, write

S(a) for the lattice with quadratic form af , under the assumption that af remains

integral. We say that S(a) is obtained from S by twisting by a.

If S has Gram matrix A with respect to some basis, we can compute its

eigenvalues. Being symmetric, we have the following well-known result from Linear

Algebra (which we do not prove here):

Lemma 2.2.10. A square matrix A is symmetric if and only if there exists an or-

thogonal matrix Q and a diagonal matrix D such that QTAQ =D. In particular, the

diagonal elements of D are eigenvalues. If 0 is an eigenvalue the form is degenerate.

Let λ+ be the number of positive eigenvalues of A, while λ− is the number

of negative eigenvalues of A.

Definition 2.2.11. The rank of a lattice S, denoted rank(S) is defined to be its

rank as a Z-module.

If S has Gram matrix A with respect to some basis, then the signature of S, is

defined to be the pair sign(S) ∶= (λ+, λ−).

Lemma 2.2.12. The signature of a lattice S is independent of the choice of basis.

Proof. Extend the quadratic form of the lattice to the vector space V ∶= S⊗ZR. Here

we use Sylvester’s Law on Inertia (for example, [Nor86]) implies that the induced

quadratic form on V can be diagonalised into the form

f = y2
1 + y2

2 +⋯ + y2
p − ypS1 = qS22p+1 −⋯ − y2

r

and the number p of positive squares appearing in this reduction does not depend

on the choice of basis. This number p is hence the value of λ+, while λ− = r − p.

12



Definition 2.2.13. A lattice S is called:

1. positive definite if for any 0 ≠ x ∈ S,x2 > 0.

2. negative definite if for any 0 ≠ x ∈ S,x2 < 0.

3. positive semi-definite if for any x ∈ S,x2 ≥ 0.

4. negative semi-definite if for any x ∈ S,x2 ≤ 0.

Equivalently, one sees that a non-degenerate lattice S of signature (λ+, λ−)
is either positive or negative definite if and only if λ− = 0 or λ+ = 0 respectively.

The following classification of even unimodular lattices is due to Milnor:

Theorem 2.2.14. [Ser70, V.2.2][Classification of Indefinite Even Unimodular Lat-

tices] We have an existence and uniqueness criteria for even indefinite unimodular

lattices as follows:

1. An even unimodular lattice of signature (λ+, λ−) exists if and only if l+− l− ≡ 0

mod 8.

2. If λ+ > 0 and λ− > 0 then an even unimodular lattice with these invariants is

isomorphic to the lattice

U⊕λ+ ⊕E8(−1)⊕(λ+−λ)−/8

where U and E8 are the lattices that are constructed by the Gram matrices

U ∶=
⎛
⎝

0 1

1 0

⎞
⎠
, E8 ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1 −1

−1 2 −1

−1 2

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.2)

2.2.1 Intersection Form on a K3 Surface

We recall Proposition 2.1.10, which implies that any K3 surface X over C has

H2(X,Z) ≅ Z22 and that Poincaré Duality induces a perfect bilinear pairing ⌣. In-

deed, as it is a perfect pairing, the quadratic form onH2(X,Z) is non-degenerate and
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in particular it is unimodular. Moreover, the cup product ⌣∶H2(X,Z)×H2(X,Z)→
H4(X,Z) is symmetric on H2, so we get the following:

Lemma 2.2.15. Let X be a K3 surface over C. The cup product induces a lattice

structure on H2(X,Z).

We shall now compute various invariants of this lattice structure.

Proposition 2.2.16. [BHPVdV04, VIII.3.1] The pairing ⌣ is even; that is x ⌣ x ∈ 2Z
for all x ∈H2(X,Z).

The cup product thus gives rise to an even integral quadratic form

q ∶H2(X,Z)→ Z z ↦ x ⌣ x

Extend q by R-linearity to a form qR ∶ H2(X,Z) ⊗ R → R. Let λ+ and λ− denote

respectively the number of positive and negative eigenvalues of qR. The Thom-

Hirzebruch index theorem [Hir66, Page 86] says that

b+ − b− =
1

3
(c1(X)2 − 2c2(X)) = −16.

On the other hand, λ+ +λ− = rank(H2(X,Z)) = 22. Combining this discussion with

Theorem 2.2.14, we have proved the following:

Proposition 2.2.17. Let X be a K3 surface over C. The cup product induces the

structure of a lattice ΛK3 on H2(X,Z). Moreover:

ΛK3 ≅ U⊕3 ⊕E8(−1)⊕2

2.2.2 Néron-Severi Lattice of a Complex K3 surface

For a complex K3 surface X, the long exact sequence (2.1) associated to the expo-

nential sequence and the vanishing of H1(X,OX) = 0 give an injection

c1 ∶H1(X,O×
X)↪H2(X,Z)

which is also called the first Chern Class.

Recall the standard isomorphism Pic(X) ≅H1(X,O×
X) (see [Har77, III Ex4.5]).

Definition 2.2.18. Let X be a complex surface. We define by Hp,q(X) the Dol-

beault cohomology group of complex differential forms of type (p, q). This is isomor-

phic by Dolbeault’s theorem to

Hp,q(X) ≅Hq(X,Ωp
X)
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and satisfy the relations

Hp,q(X) =Hq,p(X) and ⊕
p+q=k

Hp,q(X) =Hk(X,C).

For more information on the Hodge decomposition of complex surfaces, see [Voi07,

Chapter 6].

When X is a K3 surface, from ωX ≅ OX we get rank(H2,0(X)) = 1, gener-

ated by ωX . Serre duality and ωX ≅ OX again give that rank(H0,2(X)) = 1. As

rank(H2(X,C)) = 22, it follows that rank(H1,1(X)) = 20.

In particular CωX = H2,0(X) determines the decomposition of H2(X,C) into its

Dolbeault cohomology groups. The cup product on H2(X,Z) extends to a symmet-

ric bilinear pairing on H2(X,C) equal to the bilinear form (α,β)↦ ∫X α ∧ β.

Let i∗ ∶ H2(X,Z) → H2(X,C) be the canonical map. The Lefschetz (1,1)-theorem

says that the image of i∗ ○ c1 is H1,1(X) ∩ i∗H2(X,Z). By Proposition 2.1.8 and

the GAGA Principle [Ser56], the intersection H1,1(X) ∩ i∗H2(X,Z) coincides with

Pic(X).
In particular, we have the following:

Proposition 2.2.19. Let X be a complex K3 surface. Then 0 ≤ rank(Pic(X)) ≤ 20.

Proof. From the discussion above, the Néron-Severi lattice consists of integral classes

in H2(X,Z) that are closed (1,1) forms. In particular, the Picard number is at most

the dimension of H1,1(X), which is 20 for a K3 surface.

2.3 Elliptic Fibrations

In this section we introduce elliptic surfaces, and explain the relationship between

elliptic curves over one-dimensional function fields using the generic fibre and the

Kodaira-Néron model. General sources for this section are [Mir89, SS10, CD89].

As always, we shall work over a field of characteristic not 2 or 3.

Let C be a smooth projective curve over k.

Definition 2.3.1. An elliptic surface S over C is a smooth projective surface S

together with an elliptic fibration over C; that is a surjective morphism f ∶ S → C

such that:

1. almost every fibre is a smooth connected curve of genus 1.

2. there are no −1 curves in the fibres of f .
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Remark 2.3.2. The second condition comes from the classification of algebraic

surfaces. −1-curves occur as exceptional divisors of blow-ups to surfaces at smooth

points (this is Castelnuovo’s Theorem, see [Har77, V 5.7]). In fact, it is always

possible to blow-down any −1 curves on a surface X to reduce to a smooth minimal

model Y . In other words, for any surface X there exists a surface Y and a birational

map f ∶X → Y such that Y has no −1 curves, and that f can be factored as a finite

number of blow-downs. For more details on this, and a proof, see [Har77, V 5.8].

Remark 2.3.3. Note in the definition, (which is consistent with the majority of

literature on elliptic surfaces) we have not said that “the general fibre of f is an

elliptic curve”. This would imply that in each fibre there is a chosen special point

acting as the trivial element for the fibre’s group law, and hence that a section for

the map f would be given. For the application we have in mind, we will not only

assume the existence of a section, but will also assume be this section occurs as a

line on the surface. Indeed, the cases where there are no sections become rather

trivial!

Definition 2.3.4. We say that an elliptic surface f ∶ X → C has section S if there

is a map s ∶ C →X with f ○ s = idC where S is the image of s.

Assumption 2.3.5. In all that follows in this document, any elliptic fibration will

take the following two assumptions:

1. there exists at least one section, which shall usually be denoted by S0, and

called the zero section; on each smooth genus 1 fibre F of X, S0 ∩ F is the

chosen point which forms the trivial element in the group law on F .

2. there exists at least one singular fibre; this rules out uninteresting cases, such

as X ≅ E ×C where E is an elliptic curve.

The following remark is an important technical point:

Remark 2.3.6. Note that for a given surface X, there is no a priori reason why this

choice of section would be unique; whenever a section is chosen the reader should

be wary that the choice is not necessary “natural”. For our purposes for finding

bounds on the numbers of lines, this ambiguity is not so much of a problem, rather

the flexibility that it offers is possibly an advantage.

Definition 2.3.7. Let p ∶X → P1 be any elliptic fibration on X and C an irreducible

curve on X. If C is contained in some fibre F of p, we say that C is vertical with

respect to p. Otherwise, we say that C is horizontal with respect to p. When there

is no confusion as to which elliptic fibration we refer to, we simply say C is vertical

or horizontal as needed.
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Assuming the section is very convenient for one more reason: we can work

with a Weierstrass form

y2 = x3 + ax + b, a, b ∈ k(C)

where we regard the generic fibre E as an elliptic curve over the function field k(C).
In particular, this implies that the sections form an abelian group, with the chosen

section S0 the trivial element of this group.

In terms of the Weierstrass form, the assumption that X contains at least 1 singular

fibre guarantees that the coefficients are not contained in the ground field k, but are

non-constant elements of the function field k(C).

2.3.1 Interplay with Elliptic Curves over function fields

Constructing a curve over a function field: An elliptic surface X over C gives

rise to an elliptic curve E over the function field k(C) by way of using the generic

fibre. Explicitly, a section s ∶ C → X produces a k(C) rational point P on E as

follows: Let S denote the image of C under s in X. Then P = E ∩ S.

Conversely, let P be a k(C)-rational point on the generic fibre E. A priori, P is

only defined on the smooth fibres, but we can consider the closure S of P in X (so

that S ∩E = P ). Restricting the fibration to S, we obtain a birational morphism of

S onto the non-singular curve C.

By Zariski’s main theorem ([Har77, V 5.2]), (which summarises as “Along birational

morphisms, there is only one branch at normal points”,) f ∣S is an isomorphism. The

inverse gives the unique section associated to the k(C)-rational point P .

Constructing the surface: Suppose we are given an elliptic curve E over the

function field k(C) of a curve C. The Kodaira-Néron model describes how to as-

sociate an elliptic surface S → C over k to E whose generic fibre returns exactly

E.

At first, we omit the singular fibres. Remove all points from C where the

discriminant of E over k(C) vanishes. Denote the resulted open subset of C by C0.

Above every point of C0, the fibre is therefore a smooth elliptic curve over k from

E. This gives a quasi-projective surface X0 with smooth elliptic fibration

f0 ∶X0 → C0.

It is best to simply think of the Weierstrass equation of E being restricted to C0

(after adding the usual point at ∞ to every smooth fibre). All that remains is to fill
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in suitable singular fibres at the points omitted from C.

For instance, if the Weierstrass form defines a smooth surface everywhere, then all

fibres are irreducible. The singular fibres are either nodal or cuspidal rational curves.

If the Weierstrass form is not smooth somewhere, then we resolve these singularities

minimally, and the resulting surface X is called the Kodaira-Néron model for E.

The desingularisation process is called Tate’s algorithm, and this can be found in

detail in [SS10, Section 4.2]. Uniqueness of the Kodaira-Néron model should be

clear: Assume there are two desingularisations X and X̃ which are both smooth

elliptic surfaces over C. In particular, neither of them contain (−1)-curves in the

fibres.

X
bir

  

X0
bir

X̃

~~
C

and hence there is a birational morphism X → X̃. The surface classification [Har77,

Section V 5.5] relies on the fact that every birational morphism is a succession of

smooth blow-ups and blow-downs. By construction these two desingularisations X

and X̃ are isomorphic outside the singular fibres, and neither do the fibres contain

any (−1)) curves. Hence X ≅ X̃ and the Kodaira-Néron model is unique.

From this construction we can identify the usual Mordell-Weil group Φ of points on

the elliptic curve E over k(C) with the group of sections. This is looked at later in

sections 4.6 and 4.7.

All we need is the following result which is a special case of the Mordell-Weil theorem

for abelian varieties over suitable global fields (see [Ser89, Section 4]):

Theorem 2.3.8. [SS10, Theorem 6.1] Let X → C be an elliptic surface with a

section. The associated elliptic curve E over k(C) is a finitely generated group.

2.3.2 Classification of Singular Fibres

The possible singular fibres of a smooth elliptic surface were classified by Kodaira

and we shall briefly summarise the ideas here, following [Mir89]. The intersection

form on X (as discussed in previous sections above) induces a symmetric bilinear

form on the Q-vector space V whose basis is the set of irreducible components of

singular fibres.

It turns out [Mir89, Lemma I.6.1] that by using the Hodge Index Theorem this form

is negative semi-definite on V and its kernel is dimension 1, spanned by the class of

a smooth fibre, X0.

Now, for any graph G, (possibly containing loops or multiple edges) one can form
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the Q-vector space VG with basis the vertices of G, and define a symmetric bilinear

form on VG by declaring that on the vertices:

v ⋅w ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−2 + 2(#{loops at v}) if v = w
the number of edges joining v and w if v ≠ w

The space VG, together with this form is called the associated lattice to the graph

G.

Consider the following list of graphs, called the Dynkin diagrams:

An ∶ ● ● ⋯ ● (n ≥ 1 vertices total)
Dn ∶ ● ● ⋯ ● ●

●

(n ≥ 4 vertices total)

E6 ∶ ● ● ● ● ●

●
E7 ∶ ● ● ● ● ● ●

●
E8 ∶ ● ● ● ● ● ● ●

●

Note in particular that the associated lattice VE8 to the Dynkin Diagram E8 above

is precisely the lattice “E8(−1)” in the notation of Theorem 2.2.14 in the previous

section.

Indeed, all of the Dynkin diagrams above have negative definite associated lattices.
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We also should consider the Extended Dynkin Diagrams with multiplicities:

A0 ∶ ●1 , A1 ∶ ●1 ●1 , An, n ≥ 2 ∶ a cycle of n + 1 vertices, all labelled 1.

D4 ∶ ●1 ●2 ●1

●1 ●1

, Dn, n ≥ 5 ∶ ●1 ●2 ⋯ ●2 ●1

●1 ●1

E6 ∶ ●1 ●2 ●3 ●2 ●1

●2 ●1

E7 ∶ ●1 ●2 ●3 ●4 ●3 ●2 ●1

●2

E8 ∶ ●2 ●4 ●6 ●5 ●4 ●3 ●2 ●1

●3

For the extended Dynkin Diagrams G, note that the element of VG consisting of

multiplying each vertex by its label, has square 0 in the lattice.

Thus each extended Dynkin diagram contains an ordinary Dynkin diagram and an

additional vertex. We see therefore that the associated lattice to each extended

Dynkin diagram is negative semi-definite, with a dimension 1 kernel, spanned by

this vector labelled above.

The following lemma is a curious fact:

Lemma 2.3.9. [Mir89, Lemma I.6.3]

1. Every connected graph either is contained in or contains an extended Dynkin

diagram.

2. Every connected graph without loops or multiple edges either is contained in

or contains an extended Dynkin diagram without loops or multiple edges.

This implies that the extended Dynkin diagrams are the only graphs whose

associated lattice is negative semi-definite with dimension 1 kernel.

From this, the classification of singular fibres is straightforward; each singular fibre

is a collection of rational curves whose intersection graph is an extended Dynkin

diagram. The complete list is below, for the proof of completeness see [Mir89,

Theorem I.6.6]
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Name Description

I0 smooth elliptic curve
I1 nodal rational curve
I2 two smooth rational curves meeting transversally at two points

In, n ≥ 3 n smooth rational curves meeting in a cycle; with dual graph An
I∗n , n ≥ 0 n + 5 smooth rational curves meeting with dual graph Dn+4

II a cuspidal rational curve
III two smooth rational curves meeting at one point to order 2
IV three smooth rational curves all meeting at one point

IV ∗ 7 smooth rational curves meeting with dual graph E6

III∗ 8 smooth rational curves meeting with dual graph E7

II∗ 9 smooth rational curves meeting with dual graph E8

mIn, n ≥ 0 topologically an In fibre, but each curve has multiplicity m.

Table 2.1: Kodaira’s Classification of Singular Fibres

Remark 2.3.10. In fact, for the applications we have in mind, things are a lot

simpler than this. We will primarily be looking at surfaces with only semi-stable

fibres; these are simply of the form In for n ≥ 0. The others will not be needed so

much, I only state them here for the sake of completeness.
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Chapter 3

Lines on a Quartic Surface

In this chapter, we summarise the methods of the paper [RS15b].

Consider a smooth degree 4 hypersurface S ⊂ P3. The aim is to prove

Theorem. Let k be any field of characteristic not 2 or 3. Then any smooth quartic

surface S ⊂ P3
k contains no more than 64 lines.

3.1 Elliptic Fibrations

For this section, we will assume that the field k has characteristic not 2 or 3.

Let S be a smooth quartic in P3 = P3
k and suppose that there exists a line l on S.

Take a pencil of planes in P3 that contain this line. After a change of coordinates, we

can assume that the line l is given by {x3 = x2 = 0} and so any plane passing through

l is described uniquely by an equation of the form {τx0 = υx1} for (τ ∶ υ) ∈ P1. We

call this element in P1 the gradient of the plane. Note that the gradient of the plane

depends on the choice of coordinates.

For t ∈ P1 denote by Ft the intersection of S ∖ l with the plane of gradient t.

From the pencil of planes containing l we get a fibration:

π ∶ S → P1

mapping each point x ∈ S ∖ l to the element t ∈ P1 such that x ∈ Ft. In particular,

Ft is the fibre of t and for almost all choices of t ∈ P1, Ft consists of a smooth cubic

plane curve.

By construction, any other line l1 in S meeting l will be contained in a plane meeting

l and so l1 will be a reduced component of Ft for some t. In this case, Ft will be a

singular cubic plane curve.
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The possible types of singularities that can occur have been classified by Kodaira.

Using his notation we list them in the table below:

Fibre Description e(Fibre)
I1 Cubic curve with a node 1
I2 A conic and a line meeting transversally in two points 2
I3 Three lines meeting pairwise in three different points 3
II Cubic curve with a cusp 2
III A conic and line meeting tangentially at one point 3
IV Three lines all meeting transversally at one point 4

Table 3.1: Classification of singularities on plane cubics and their Euler number

Note that for a general smooth plane curve, there are exactly nine points

of inflection (intersection of determinant of 3 × 3 Hessian and degree 3 original

equation). We now make the following definitions:

Definition 3.1.1. A line l on S is said to be of the second kind if and only if it

intersects every smooth fibre of the fibration π ∶ S → P1 in a point of inflection.

Otherwise, we say l is a line of the first kind.

Definition 3.1.2. Let F ⊂ P3 be the closure of the set of inflection points on all

the smooth cubics. We call F the flex locus of the fibration π ∶ S → P1.

If the original line l was a line of the second kind, then l meets each singular

fibre at points lying in F .

Using the group structure present on each smooth fibre, Néron’s minimal model for

Abelian Varieties [Nér64] tells us where F can intersect each singular fibre. Using

the fact that each inflection point on a fibre is precisely a point of order 3, the table

below tells us the intersection of F with each singular fibre in Table 3.1:

Fibre type Fibre ∩F

I1 Three Smooth Points and the node
I2 Three smooth Points (all on one component) and both nodes
I3 Three Smooth Points on each Component
II One Smooth Point and the cusp
III One Smooth Point and the node
IV 1 Smooth Point on each Component and the node.

Table 3.2: Intersection of Singular Fibres with the Flex Locus

For example, in the case of smooth curves degenerating into an I1 fibre, we have 6

inflection points meeting at the node.
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In the I2 case, we have 3 inflection points meeting at each one of the nodes.

In this way we can see that we can attach an elliptic fibration to the quartic hy-

persurface in the natural way, and that the most special type of line, a line of the

second kind, is forced to intersect each singular fibre in a very limited way. The

lines of the second kind are the most difficult to deal with, as the number of lines

meeting a line of the first kind is very easy to compute algebraically.

3.2 Lines of the First Kind

In this section, we will bound the number of lines that can meet a line of the first

kind. First we have the following algebraic lemma:

Lemma 3.2.1. [Seg43] Let l be a line of the first kind in a non-singular quartic

surface S ⊂ P3. Then at most 18 points of l can be points of inflection for some fibre

Ft of π ∶ S → P1.

Proof. We suppose l is the line x2 = x3 = 0. Then S is given by an equation of the

form

f ∶ x2α0(x0, x1) + x3α1(x0, x1)
+x2

2β0(x0, x1) + x2x3β1(x0, x1) + x2
3β2(x0, x1)

+x3
2γ0 + x2

2x3γ1 + x2x
2
3γ2 + x3

3γ3

where degαi = 3, degβi = 2 and deg γi = 1 in x0, x1. The fibre Fλ is therefore given

by the intersection of the plane x3 = λx2 and f . This decomposes into the line l

itself and the cubic

Cλ ∶ α0(x0, x1) + λα1(x0, x1) + x2(β0 + λβ1 + λ2β2) + x2
2(γ̃0 + γ̃1 + γ̃2 + γ̃3) (3.1)

and so Cλ ∩ l is given by x2 = x3 = 0 and α0(x0, x1) + λα1(x0, x1) = 0.

A point in this set is an inflection point of Cλ if and only if the determinant of the

Hessian of 3.1 vanishes. I.e. taking second derivatives with respect to x0, x1, x2 then

setting x2 = 0 amounts to:

det

⎛
⎜⎜⎜
⎝

a1 b1 d2

b1 c1 e2

d2 e2 f3

⎞
⎟⎟⎟
⎠
= 0 (3.2)

where a1, b1, c1, d2, e2, f3 are polynomials in λ of degree represented by their sub-

script. The coefficients of these polynomials are all degree 1 in x0, x1. The determi-

nant is therefore a degree 5 polynomial in λ whose coefficients are all homogeneous
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cubics in x0, x1.

Multiplying by α5
1 and then substituting in α0(x0, x1) + λα1(x0, x1) = 0 gives a ho-

mogeneous polynomial of degree 18 in x0, x1, whose solutions are the points of l for

which meet Cλ in a point of inflection. Note that if equation 3.2 identically vanishes,

then this implies that every point of l meets every fibre at a point of inflection and

so l was not a line of the first kind.

Now, note that any reducible plane cubic containing a line is (after a change

of coordinates) of the form xq2(x, y, z) = 0 for some quadratic form q2. Then the

Hessian is
⎛
⎜⎜⎜
⎝

2∂q2∂x + ∂2q2
∂x2

x ∂q2
∂y +

∂2q2
∂x∂yx

∂q2
∂z +

∂2q2
∂x∂zx

∂q2
∂y +

∂2q2
∂x∂yx

∂2q2
∂y2

x ∂2q2
∂y∂zx

∂q2
∂z +

∂2q2
∂x∂zx

∂2q2
∂y∂zx

∂2q2
∂z2

x

⎞
⎟⎟⎟
⎠

and so the determinant vanishes at x = 0 (to order 1); in particular the entire line

is contained in the vanishing of the Hessian determinant. Combining this with the

previous lemma gives us:

Corollary 3.2.2. [Seg43] Any line l of the first kind on a non-singular quartic

surface S ⊂ P3 can be met by no more than 18 lines of S.

3.3 Base Change and Ramification

We have seen that any line l on the quartic surface S yields an elliptic fibration.

However, such a line also gives a natural morphism

f ∶ l → P1.

Take x ∈ l ⊂ S. Since S is a smooth surface, x has a well-defined tangent plane in

P3. This tangent plane certainly contains l, and so is one of the planes in the elliptic

fibration π ∶ S → P1. In this plane, the planar cubic curve Ft intersects l at x and

so we set f(x) ∶= t (the “slope” of the plane). Note that since Ft will (in general)

intersect l in three points, the map f ∶ l → P1 is a degree 3 morphism (Ft intersects

l in three points; all these points therefore have the same tangent plane).

Note that by varying the slope t of the plane smoothly, the points Ft ∩ l vary,

describing curves which may ramify at points when the curve Ft happens to become

singular. Hence any attempt at a section might get permuted at ramification points,

so these do not trace out well-defined sections P1 → S. We seek to remedy this

situation:
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Given f ∶ l → P1, the corresponding map of function fields therefore corresponds to

a degree 3 field extension k(l)/k(t). Therefore we may write the Galois closure of

this field extension in the form K = k(t, α1, α2, α3) where α1, α2, α3 are the roots of

the defining cubic polynomial φ ∈ k(t)[s]. Hence K/k(t) is a field extension of order

3 or 6 depending whether
√

disc(φ) ∈ k(l). Let B denote the curve with function

field K.

We now perform a base change of the fibration π ∶ S → P1 as follows:

S2
//

��

S1
//

π1
��

S

π
��

B // l
f // P1

where S1 = l ×P1 S and S2 = S1 ×l B are formed by taking the fibred product.

Above each point of x ∈ l is a fibre of π ∶ S → P1: π−1
1 (x) = {(x, y) ∈ l×S∣π(y) = f(x)}.

By construction the fibration S1 → l is now a proper elliptic fibration; each

fibre is a cubic curve with a marked point (i.e. an elliptic curve), and this choice of

marked point remains consistent as we smoothly range over the fibres, tracing out

a well-defined section O.

For the fibration S2 → B, we now have three well-defined sections, O,P1, P2 ∶ P1.

Suppose now that l is a line of the second kind. Therefore l meets each smooth

fibre Ft at a point of inflection. In particular, the sections P1 and P2 consist of

3-torsion points which are inverse to each other (O,P1, P2 all lie on the l for each

t). Looking at the fibration S2 → B, these sections limit the number of cases for

the singular fibres of S2 → B. In particular, the 3-torsion sections meet any fibre

of S2 → B (smooth or non-smooth) in three distinct smooth points by construction.

From Table 3.2 the only possibilities for singular fibres are I1, I2, I3 or IV .

We can now distinguish between these fibre types according to how the morphism

f ∶ l → P1 ramifies.

Lemma 3.3.1. Let l be a line of the second kind, and F a singular fibre of π ∶ S → l

such that the map f ∶ l → P1 is unramified at F . Then F has type I1, I3 or IV .
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Proof. Since the fibre is unramified, l meets F is 3 distinct points, all necessarily

smooth. On S2 the fibre F is replaced by n = 3 or 6 fibres of the same type. These

fibres all accommodate non-trivial 3-torsion sections. From the table, I1, I2, I3 or

IV are possibilities.

However, I2 (consisting of a line and a conic) is not possible, since the 3 torsion

sections would all meet the same fibre component, while the line l inducing them

meets both fibre components (the curves l, the residual line and the conic all lie

in the same plane). In particular, l does not intersect a single component in three

smooth points, contradicting the Table 3.2.

We now deal with the ramified fibres (which are automatically singular). At

such a fibre, the morphism f ∶ l → P1 has either 2 preimages (case 1) or it has a

single preimage (case 2).

Lemma 3.3.2. Let l be a line of the second kind, and F a singular fibre of π ∶ S → P1

such that the map f ∶ l → P1 ramifies at F . Then F has type I1, I2, II or IV

according to the ramification type as follows:

Fibre type II I1, I2, IV

Ramification type case 1 case 2

Table 3.3: Fibre type according to Ramification type

Proof. First of all, F cannot be of type I3 since the every intersection with F is a

smooth point, so the fibre admits 3-torsion, so that l → P1 cannot ramify.

By a similar argument, if f ∶ l → P1 ramifies at a fibre of type IV then l must meet

the node of the fibre (since l is a line of the second kind) and hence the ramification

type is case 2.

For other fibre types, we argue with the base change S2 → B. Here, the fibre F is

replaced by fibre which admit 3-torsion (see Table 3.2). Tate’s Algorithm [Tat75]

is used to describe the behaviour of singular fibres under a cyclic base change of

degree d. This normally consists of repeated blow-ups, but outside of characteristic

2 and 3, there is a much quicker procedure:

We may assume that the singular fibre in the elliptic fibration is given locally by a

short Weierstrass equation

y2 = x3 + a4x + a6

Where a4 and a6 are polynomials depending on a local parameter t (where the

singular fibre occurs at t = 0). Let ∆ = −27a3
6 − 4a2

4 be the discriminant of this

equation. Then denote by n ∶= v(∆) the order of vanishing of ∆ at t = 0. Similarly,
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v(a4) and v(a6) are the order of vanishing of a4 and a6 (at t = 0). Then the fibre

type is completely determined by table 3.4 below.

If the form is not in one of the fibre types indicated in the table, then v(a4) ≥ 4

Fibre type v(a4) v(a6)

I0

⎧⎪⎪⎨⎪⎪⎩

0

≥ 0

⎧⎪⎪⎨⎪⎪⎩

≥ 0

0

In(n > 0) 0 0

II ≥ 1 1

III 1 ≥ 2

IV ≥ 2 2

I∗0

⎧⎪⎪⎨⎪⎪⎩

2

≥ 2

⎧⎪⎪⎨⎪⎪⎩

≥ 3

3

I∗n−6(n > 6) 2 3

IV ∗ ≥ 3 4

III∗ 3 ≥ 5
II∗ ≥ 4 5

Table 3.4: Fibre Type According to Orders of Vanishing in local Weierstrass form:
[SS10]

and v(a6) ≥ 6 and so we can apply the change of variables

(x′, y′) ∶= (t2x, t3y)

to obtain an isomorphic equation. This transformation drops v(∆) by 12 and de-

creases v(a4) and v(a6). Since v(∆) must remain positive, we only need to apply

the transformation a finite number of times.

We now perform a cyclic base change of degree d (that is, in the local Weierstrass

form of the singular fibres, replace a4(t) and a6(t) with a4(td) and a6(td) respec-

tively); the results of Tate’s Algorithm on this process are contained in the following

table 3.5:

Fibre type d = 2 d = 3

In I2n I3n

II IV I∗0
III I∗0 III∗

IV IV ∗ I0

Table 3.5: Singular fibres after cyclic base Change: [RS15b]

In particular, the behaviour illustrated in the table rules out the fibre type
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F = III since it cannot be base changed to fibres I∗0 or III∗ as they are not possible

fibres in Table 3.1.

When F is of type II, we see that the only possibility is to replace it by three fibres

of type IV in S2. On l → P1 this corresponds to the non-Galois case of ramification

type 1 (l meets a smooth point of a fibre transversally and a node). (See Table 3.2).

We also see that when F is of type IV , on S2 F can only be replaced by a smooth

fibre. Then l meets it at at one point with multiplicity 3 (since l is a line of the

second kind). Hence the fibre is of ramification type 2.

We now analyse fibres of type I1 and I2. Assume that the ramification type is

1; that is, l meets a smooth point of the fibre transversally and a node. In S2

this fibre would be replaced by fibres of type I2 or I4. By assumption the section

O would meet one fibre component on S2 (the original smooth intersection point)

while the other sections P1 and P2 meet a different fibre component (corresponding

to the node). However, the structure of the fibre components is Z/2Z or Z/4Z which

do not admit proper 3-torsion; therefore all 3-torsion sections must have the same

component, which is a contradiction.

3.4 Consequences for lines of the second kind

Assume l ⊂ S is a line of the second kind. Recall the degree 3 map f ∶ l → P1. By

the Hurwitz Theorem, we have

∑
p∈l

(ep − 1) = 4

where ep is the ramification index of p. The ramification type of f has three possi-

bilities:

1. 4 points in P1 each have 2 preimages, and so correspond to ramification type

1 (one of the preimages has ep = 2, the other eq = 1).

2. 1 point in P1 has 1 preimage, corresponding to ramification type 2 (the preim-

age has ep = 3), 2 others have ramification type 1

3. 2 points in P1 each have 1 preimage, and so both correspond to ramification

type 2.

We refer to these cases as 14,2 ⋅ 12 and 22 respectively. We now have the following

proposition:
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Proposition 3.4.1. Let l ⊂ S be a line of the second kind on a smooth quartic S with

ramification type R. Then l meets exactly 12,15,16,18,19 or 20 lines, depending

on the ramification type as follows:

R Number of lines meeting l

14 12
2 ⋅ 12 15 or 16

22 18,19 or 20

Table 3.6: Number of lines meeting a line of the second kind: [RS15b]

Proof. To prove the proposition, we use the 3-torsion sections on S2. These induce

an isogeny on the generic fibres and the resulting surface is denoted by S′2. S2 and S′2
have the same topological invariants (Euler-Poincaré) characteristic, Betti numbers,

geometric genus, Picard number). This puts severe restrictions on the singular fibres

of S2 and S′2. Recalling the possible singular fibres of S from Lemmas 3.3.1 and

3.3.2. The corresponding fibres on S2 and S′2 are given in the following table. Here,

n = 3 or 6 is the degree of the splitting field of k(l)/k(t). In particular, since S2 and

Fibre on S Fibre on S2 Fibre on S′2
I1 n × I1 n × I3

unramified I3 n × I3 n × I1

IV n × IV n × IV
II 3 × IV 3 × IV

ramified I1 I3 I9

I2 I6 I18

IV I0 I0

Table 3.7: Singular Fibres after Base Change: [RS15b]

S′2 have the same Euler characteristic, and it is the sum of the local contributions

of singular fibres, we deduce that the unramified fibres of type I3 must balance out

the other fibres of type I1 since by Table 3.7 we see that on unramified fibres they

are interchanged after the base change from S2 to S′2. That is, in the unramified

case, each I1 fibre is balanced out by a I3 fibre. Moreover, for every I2 fibre, there

are two I3 fibres.

Knowing this, we will use Theorem 6.10 of [SS10] which says that if char(k) ≠ 2 or

3 then

24 = e(S) = ∑
t∈P1

e(Ft)

Case 1: R = 14 By Lemma 3.3.2 S has 4 ramified fibres of type II these contribute
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8 to the Euler characteristic e(S) = 24. Therefore there are 16 local contributions

among the unramified singular fibres. This consists of a total of 4 pairs (I1, I3) and

IV . Any possibility contributes 3 lines each, so l meets a total of 12 lines.

Case 2: R = 2 ⋅ 12 In this case there are two ramified fibres of type II. These

contribute 4 to the Euler characteristic, so there are 20 remaining contributions

over a total number of five pairs (I1, I3) and IV , or possible a triple (I2, I3, I3) in

which case there are three leftover pairs and type IV fibres. In any possibility, there

are five fibres consisting of 3 lines, and if there is a triple (I2, I3, I3) we get one more

line from the I2 fibre. This results in either 15 or 16 lines meeting l.

Case 3: R = 22 In this case there can be no fibres of type II. In order to reach

e(S) = 24, the local contributions from the singular fibres are distributed over a

total number of 6 pairs of (I1, I3) and fibres of type IV , with the possibility of one

or two triples (I2, I3, I3) (each counting for two). Note that the presence of each

triple accounts for 8 towards the Euler characteristic.

In all cases, the fibration has 6 fibres consisting of 6 lines each, and each triple

(I2, I3, I3) gives an extra line from the I2 fibre; therefore there are 18,19 or 20 lines

meeting l.

3.5 64 lines

Lemma 3.5.1. If l on S is met by more than 12 lines, then it is met by 3 coplanar

lines.

Proof. If l is met by 3 coplanar lines, then the corresponding elliptic fibration must

have singular fibres of type I3 or type IV . Therefore assume instead that no such

fibres appear.

If the number of singular fibres of type I1, I2, I3, II, III, IV is given by a1,a2,a3,b,c,d

respectively, then from Table 3.3, and [SS10] Theorem 6.10 we have:

e(S) = 24 = a1 + 2a2 + 2b + 3c

and the number of lines meeting l is therefore a2 + c. Maximising a2 + c we therefore

have that a1 = 0, b = 0 so 24 = 2(a2+ c)+ c. Since a2+ c is maximal, we may assume c

is minimal (i.e. c = 0) and so a2 = 12; that is l meets 12 lines, all coming from type

I2 singularities.

We need one more definition:

Definition 3.5.2. Let S ⊂ P3 be a nonsingular quartic surface. The flecnodal divisor
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F is the subset of points p ∈ S such that the order of vanishing of the tangent plane

TpS is order 4.

We collect some facts about the flecnodal divisor:

Proposition 3.5.3. [Seg43]

1. F is obtained as a complete intersection of S with a surface of order 20.

2. Any line l on S is a component of F .

3. If l is a line on S, contained in F with multiplicity d then l⋅(K−dl) = l⋅K−dl2 =
20 + 2d.

We are now ready to prove

Theorem 3.5.4. If there are no lines of the second kind, then there are no more

than 64 lines on a nonsingular quartic surface S ⊂ P3.

Proof. We prove the theorem in a number of cases.

Case 1 First, assume that S contains 4 lines A,B,C,D in plane π. Note that these

four lines all meet each other in π. In addition, any other line l ⊂ S ⊂ P3 meets π and

thus meets (at least) one of the lines A,B,C,D. By Corollary 3.2.2, A,B,C and D

can only meet 18 lines in total; 3 of these are already accounted for so each one of

A,B,C and D can (at most) meet 15 other lines. This gives a total of 4+4×15 = 64

lines.

Otherwise, no 4 lines are in a plane. Hence any plane π spanned by two lines C ⊂ S
and D ⊂ S with C ∩D ≠ ∅ meets S again in a residual nonsingular conic Ω.

Case 2 We assume that π∩S = C +D+Ω and Ω is not a component of the flecnodal

divisor F . In that case, Ω meets F in 2 × 20 = 40 points. Four of these points are

where Ω meets the lines C and D and so F meets Ω in 36 other points. Any other

line of S would meet π and so meets Ω in one of these points. (If multiple lines go

through a point, this point is counted with multiplicity in the 36 = Ω ⋅ (K −C −D)).
Moreover, by Lemma 3.5.1 we have assumed that C and D meet at most 11 lines

on S each, so the total number of lines on S cannot exceed 2+11+11+36 = 60 lines.

Otherwise, any plane spanned by any pair of intersecting lines meets a conic Ω which

is also a component of the flecnodal divisor F .

Case 3 We assume that S contains n ≥ 8 pairs of intersecting lines. By assumption,

F therefore contains at least n ≥ 8 irreducible conics, in addition to the lines of S.

Since F has degree 80, the number of lines cannot exceed 80 − 2 × 8 = 64 lines.

Case 4 The final case is when S contains only n < 8 pairs of incident lines. Then
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any other line meets no lines at all. In terms of the intersection form, classes of

pairs of incident lines span a sublattice of H2(S,Z) of rank at least n + 1. Pic(S)
cannot exceed 22, so the m classes of the disjoint lines span a sublattice of rank

m ≤ 22 − (n + 1), and the number of lines on S cannot exceed 2n + (22 − (n + 1)) =
21 + n ≤ 29 lines.

We now turn to the case where S contains a line l of the second kind. Then

we have the following lemma:

Lemma 3.5.5. [RS15b] If l ⊂ S is a line of the second kind, then a line l0 in a fibre

of π ∶ S → P1 is of the second kind if and only if S is the Schur quartic and the fibre

is ramified (of Kodaira type IV at 0 or ∞).

That is, unless S is the Schur quartic, every line of the second kind meeting

more than 16 lines is disjoint to all other lines of the second kind.

With this, we can easily prove the following corollary:

Corollary 3.5.6. Any quartic surface S contains at most 66 lines.

Proof. Since the Schur quartic contains exactly 64 lines, we deduce from Lemma

3.5.5 that any line contained in a fibre of π is of the first kind. Take a fibre of type

I3 or IV contained in a plane H. (Proposition 3.4.1 gurantees that there are either

4,5 or 6 such fibres to choose from depending whether the degree 3 map f ∶ l → P1

ramifies as 14, 2 ⋅ 12 or 22 respectively.) Each fibre component meets at most 18

other lines on S by Corollary 3.2.2. Thus (arguing similar to Case 1 of the proof

of Theorem 3.5.4) we see that any other line in S meets π and so meets on of the

components of the fibre, or l. Since all the 4 lines in the plane H meet each other,

there can be at most

4 + 3 × (18 − 3)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
first kind

+ (20 − 3)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

second kind

= 66

lines on S.

In fact, having more than 64 lines implies the existence of I2 fibres and by

means of a second elliptic fibration along the lines in those fibres, we can improve

the bound of Corollary 3.5.6. We shall not discuss this in detail here, since it is not

necessary for the results we hope to attain for the case of three quadrics.
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Chapter 4

Lines on a Complete

Intersection of three Quadrics

In this chapter, we will prove the main result of this document, using the method

explained in Chapter 3 as inspiration. Throughout this chapter, we will work in a

field k which is not of characteristic 2 or 3.

Remark 4.0.7. We shall be looking at upper bounds for number of lines on the

surface X. For this reason, it is reasonable to assume that k is algebraically closed

(see Remark 1.2.2): we can only increase the number of lines if we include those

that are not only defined on k but also on all extensions.

4.1 Existence of Quadrics of Rank 4

For our field k, denote by x0, x1,⋯, x5 a choice of homogeneous coordinates on P5.

Definition 4.1.1. Let f = ∑5
i,j=0 aijxixj be a homogeneous degree two polynomial

in the xi. Let A ∈M6×6(k) be the matrix:

A ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a00 a01 a02 a03 a04 a05

a10 a11 a12 a13 a14 a15

a20 a21 a22 a23 a24 a25

a30 a31 a32 a33 a34 a35

a40 a41 a42 a43 a44 a45

a50 a51 a52 a53 a54 a55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We then define the rank of f to be the rank of the symmetric matrix 1
2(A + AT ).

For a quadric hypersurface Q ⊂ Pn we define rank(Q) to be the rank of its defining
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polynomial.

We note that there are many such matrices A that a single f could yield,

but 1
2(A +AT ) is the unique symmetric matrix that satisfies the matrix equation

f = xT 1

2
(A +AT )x, where x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x0

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Since allowing changes of coordinates greatly allows us to simplify calcula-

tions, the following lemma is necessary:

Lemma 4.1.2. The rank of a quadric hypersurface Q is unchanged under linear

changes of the coordinates x0,⋯, x5.

Proof. Let f be the defining equation of Q in x0,⋯, x5. If y0,⋯, y5 is a linear

change of coordinates (so that the degree of f is unchanged) then there exists an

invertible matrix B such that By = x. Then for some symmetric matrix A, we have

f = xTAx = (By)TA(By) = yTBTABy and so the rank of f in the y coordinates is

the rank of the matrix

1

2
((BTAB) + (BTAB)T ) = BT 1

2
(A +AT )B = BTAB

By Lemma 2.2.10 applied to the symmetric matrices A and BTAB, there exist

orthogonal matrices P1, P2 and diagonal matrices D1, D2 such that P T1 AP1 = D1

and (BP2)TABP2 = P T2 B
TABP2 = D2. In particular, rank(A) = rank(D1) and

rank(BTAB) = rank(D2).
It follows that (P T1 BP2)TD1(P T1 BP2) =D2 and hence D1 and D2 are two diagonal

matrices with the same eigenvalues. In particular, their ranks are equal, and so

rank(f(xi)) = rank(A) = rank(D1) = rank(D2) = rank(BTAB) = rank(f(yi))

hence rank(f) (and hence rank(Q)) is independent of the choice of coordinates.

Now let Q1,Q2 and Q3 be three quadrics in P5, defined by polynomials f1, f2

and f3 respectively. In some coordinate system, let A1,A2,A3 be their correspond-

ing symmetric matrices. We consider the ideal I generated by f1, f2, f3. For the
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construction of the elliptic fibration in the next section, we will be subject to the

following assumption:

Assumption 4.1.3. If X = Q1 ∩ Q2 ∩ Q3 is a smooth complete intersection of

three quadrics in P5 and I is the ideal generated by the defining equations of the

quadrics Q1,Q2 and Q3, then there exists a degree two polynomial f ∈ I such that

its vanishing set Q is a quadric with rank(Q) ≤ 4.

For the remainder of this section, we will turn our attention to justify why

this assumption is reasonable, given the context of trying to prove Conjecture 1.2.1.

Remark 4.1.4. For general choice of Q1, Q2 and Q3 we see that the general Q in

the ideal I is of rank 6, but there certainly exist quadrics of lower rank; consider

the pencil xQ1 + yQ2 and the degree 6 polynomial f = det(xA1 + yA2). Roots of

this polynomial correspond precisely to elements of the pencil (and hence the ideal

I) whose rank at most 5. It follows (see Lemma 4.1.6) that a stronger condition

on the pencil of quadrics will be sufficient to guarantee a matrix of rank at most 4.

Unfortunately, this condition remains unknown to the author at this present time.

This assumption is crucial to the construction of an explicit elliptic fibration

that we will make in the next section, which is then used throughout the rest of the

document.

Indeed, we can obtain an abstract elliptic fibration with the help of the following

theorem:

Proposition 4.1.5. [Huy16][Chapter 11, Proposition 1.3 2] Let X be a K3 surface

over a field k with char(k) ≠ 2,3. If rank(Pic(X) > 5 then X admits an elliptic

fibration.

This implies that for any smooth surface X = Q1 ∩Q2 ∩Q3 which has many

lines, hence large Picard rank, X admits an elliptic fibration. While this elliptic

fibration may not have anything to do with the one constructed in Section 4.2, its

singular fibres are still restricted by the topology of X. It would be nice to prove

that the general smooth fibre must be an intersection of two quadrics, since then we

can use the ideas in this document.

The result below relates existence of a quadric of low rank if the determinant planar

curve contains a singularity.

Lemma 4.1.6. Let M1 = (aij), M2 = (bij) and M3 be n × n matrices, and let C

be the degree n curve defined by f ∶= det(xM1 + yM2 + zM3) = 0 on P2
⟨x,y,z⟩. Let

Q1,Q2,Q3 be the quadric hypersurfaces defined by M1,M2,M3 respectively and
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assume that X = Q1 ∩Q2 ∩Q3 is smooth. Assume also that p = (0 ∶ 0 ∶ 1) lies on

C (that is, rank(M3) ≤ n − 1). If this point p is a singular point of the curve then

rank(M3) ≤ n − 2.

Proof. The result is essentially a direct computation. Let r = rank(M3). First, we

will assume that M3 is in Smith Normal Form. If it is not, find matrices P and Q

so that PM3Q is in smith normal form. P and Q are invertible since they can be

obtained by row and column operations (which are invertible). Then

φ ∶= det(PM1Qx + PM2Qy + PM3Qz) = det(P )det(xM1 + yM2 + zM3)det(Q)

Note that rank(PM2Q) = rank(M2) and rank(PM1Q) = rank(M1), and the curve

defined by φ is equal to the original curve.

Since M3 is in smith normal form,

M3 =
⎛
⎝

Ir 0r,n−r

0n−r,r 0n−r,n−r

⎞
⎠

smoothness of X implies that either ann ≠ 0 or bnn ≠ 0: Assume temporarily that

ann = bnn = 0. Hence p ∶= (0 ∶ 0 ∶ 0 ∶ 0 ∶ ⋯ ∶ 1) lies on X. Note that

∂Q1

∂xk
= 2

n

∑
j=0

ajkxj ,
∂Q2

∂xk
= 2

n

∑
j=0

bjkxj ,
∂Q3

∂xk
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2xk k ≤ r(≤ n − 1)
0 otherwise

We see that at the point p all these partial derivatives vanish (since we assume

ann = bnn = 0 and thus p is a singular point of X. Since X is smooth, this is a

contradiction.

We now have all the ingredients for the proof: work locally on the affine chart

containing (0 ∶ 0 ∶ 1): let s and t be local parameters for x, y at (0,0). Since M3 is a

singular point, ∂f∂s and ∂f
∂t vanish at (0,0); by assumption the polynomial f therefore

has no terms of degree one or zero in s and t.

f is given by the determinant of the matrix

⎛
⎝
(saij + tbij + 1)1≤i,j≤r (saij + tbij)1≤i≤r<j≤n

(saij + tbij)1≤j≤r<i≤n (saij + tbij)r<i,j≤n
⎞
⎠

Hence f is a sum of products of n entries of this matrix, and so each term of f is

exactly of degree n in s, t except those using entries from the top-left r×r submatrix,

where it is possible to have terms of lower degree. We see that the lowest possible

degree is when r terms are taken from this r×r submatrix, and so the lowest degree
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terms of f yield the determinant of the bottom-right n − r × n − r submatrix in the

expression above.

If M3 has rank n − 1 then f can be written as

f = sann + tbnn + higher order terms

since ann ≠ 0 or bnn ≠ 0 or we obtain non-zero linear terms for f , contradicting that

f is singular at (0,0). To avoid a contradiction, Hence rank(M3) ≤ n − 2.

Remark 4.1.7. 1. In fact, the converse to Lemma 4.1.6 also holds; existence of

a quadric of rank less than n−2 in the pencil implies existence of a singularity

on the curve C. In other words, singularities on C correspond precisely to

quadrics of low rank in the pencil. It is therefore relatively easy to check

whether a pencil of quadrics on P5 contains a quadric of rank 4 in their span;

simply search the planar curve for a singular point.

2. Of course, a random choice of a smooth surface X is unlikely to result in any

singularities on the curve C. However with regard to the next Lemma 4.1.10,

it is the idea that a surface with many lines on it will cause such a situation.

We will justify this idea in a moment.

Why should we think this assumption is reasonable? We will see this after

Lemma 4.1.10. First, we define a square of lines and prove some easy statements

about them:

Definition 4.1.8. A square on X is defined to be a subvariety consisting of a

union of four lines {l0, l1, l2, l3} on X whose non-empty intersections are precisely

p01 ∶= l0 ∩ l1, p12 ∶= l1 ∩ l2, p23 ∶= l2 ∩ l3 and p30 ∶= l3 ∩ l0.

This implies the following easy result:

Lemma 4.1.9. Let S be a square in P5 whose edges are defined over k. There is

a coordinate system x0,⋯, x5 on P5 such that the ideal defining S is generated by

x0x2, x1x3, x4, x5.

Proof. Let p01, p12, p23, p30 be the four points of S corresponding respectively to the

non-empty intersections of the lines as in Definition 4.1.8. Note that p01, p12, p23, p30

cannot all be contained in the same plane; if they were then all four lines of S would

be contained in this same plane and hence any two edges of the square would meet,

which is impossible; l0 does not meet l2.
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Moreover, no three of these intersection points are collinear, and hence these inter-

section points are linearly independent and therefore we can define homogeneous

coordinates x0,⋯, x5 on P5 such that

p01 = (1 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 0)
p12 = (0 ∶ 1 ∶ 0 ∶ 0 ∶ 0 ∶ 0)
p23 = (0 ∶ 0 ∶ 1 ∶ 0 ∶ 0 ∶ 0)
p30 = (0 ∶ 0 ∶ 0 ∶ 1 ∶ 0 ∶ 0)

Hence the ideal defining S is thus generated in these coordinates by x0x2, x1x3, x4,

and x5.

In particular, we see that a square defines a 3 dimensional linear subspace.

This implies the following result about quadrics of rank 4:

Lemma 4.1.10. Let X ⊂ P5 be a smooth complete intersection of three linearly

independent quadrics Q1,Q2,Q3. If X contains a square, then there exists a quadric

of rank at most 4 containing X.

Proof. Let S be a square in X and choose coordinates x0,⋯, x5 for P5 as in Lemma

4.1.9. In this coordinate system, any quadric containing S has an equation of the

form

αx0x2 + βx1x3 + λx4 + µx5 = 0

where α,β ∈ k and λ,µ are linear forms. In particular, any quadric in the ideal

(Q1,Q2,Q3) defining X has to be of this form, since these all vanish on X, hence S.

In particular, we can take linear combinations of Q1,Q2 and Q3 (by way of Gaussian

Elimination) to obtain at least one quadric of the form Q = λ′x4 + µ′x5 in the ideal

(Q1,Q2,Q3).
We see that the symmetric matrix corresponding to Q has a 4 × 4 zero submatrix,

and hence the rank(Q) ≤ 4.

Indeed, if there is a quadric of rank at most 4, then the smoothness of X

implies that this quadric has rank exactly 4:

Lemma 4.1.11. If X is the smooth intersection of three quadrics in P5 then the

rank of every quadric vanishing on X is at least four.

Proof. Let q0 be a quadratic form vanishing on X and let L ⊂ P5 be the singular

subvariety of the quadric q0 = 0. By Lemma 2.2.10 after an orthogonal change of

coordinates we may assume that q0 is of the form ∑ri=1 x
2
i where r is the rank of q0.
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Observe that L is a linear subspace and to prove the statement it suffices to show

that the dimension of L is at most 1, since dim(L) = dim(q0) − r = 5 − r.
Choose quadratic forms q1, q2 such that X is the vanishing set of q0, q1 and q2. For

each i ∈ {0,1,2} denote by Qi the quadric corresponding to qi = 0. On one hand,

the intersection L ∩ Q1 ∩ Q2 ⊆ X, on the other hand, this intersection consists of

singular points of X since Q0 is singular along L and X is a complete intersection.

Since X is smooth, we conclude that the varieties L and Q1 ∩Q2 are disjoint.

As the codimension of Q1 ∩Q2 is 2, we conclude that the dimension of L is at most

1, as required.

In particular, if Assumption 4.1.3 is not satisfied, then X contains no squares.

Indeed, if a surface X would have a maximal number of lines, then increasing its

Picard rank only allows more room for more lines. Consider Proposition 4.1.5, hence

we may assume the existence of an abstract elliptic fibration on X. Any lines on X

are contained as either fibres or sections of the elliptic fibration, and by considering

how the singular fibres of the elliptic fibration are limited by the global topology of

X, if the configuration of lines is square-free then certainly no more than 16 lines can

appear as fibres (8 fibres of type I3). Now lines appearing as sections are described

uniquely by which irreducible components of singular fibres they intersect. If two

different section lines meet the same pair of fibre lines then this results in a square.

We see that to avoid squares, two section lines can only share at most one fibre line,

but on the other hand, each section line must meet every fibre somewhere.

4.2 Construction of the Elliptic Fibration

As before, assume X = Q1 ∩ Q2 ∩ Q3 is a smooth complete intersection of three

quadrics, embedded in P5.

For this section, we will be assuming that Assumption 4.1.3 holds. Let Q0 ∈ I(X)
denote a quadric of rank 4 in the ideal spanned by Q1,Q2,Q3. It is clear that the

ideal of X is therefore generated by Q0 and two of the remaining three quadrics,

therefore we may assume during the following construction that rank(Q3) = 4.

Construction 4.2.1. Q3 ⊂ P5 is a quadric of rank 4 in P5. After a suitable co-

ordinate change, it is immediate that Q3 is a cone over a quadric Q′ ⊂ P3
⟨s,t,u,v⟩,

where s, t, u, v are homogeneous coordinates for P3 and can be identified with

linear forms in P5. Since Q′ ≅ P1×P1, we can make a further coordinate change

and we may assume that Q3 is given by the equation su − tv = 0 in P5.

In particular, we see that the singular subscheme of Q3 consists of the line
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l0 ∶= {s = t = u = v = 0} in P5. Note that this line l0 does not lie on X, since X

is a smooth complete intersection.

Let π0 ∶ P5 → P3 map defined by projecting away from l0. If P5 is chosen

to have coordinates {s, t, u, v, x4, x5}, then π0 amounts to “forgetting” coordi-

nates x4 and x5. We see that π0(Q3) = Q′.

Since Q′ ≅ P1 × P1, let π1, π2 ∶ Q′ → P1 be the projections onto the first and

second factor respectively.

Now consider the following diagram:

X = Q1 ∩Q2 ∩Q3� _

�� p2

��

p1

��

Q3

π0
��

P1 Q′π1oo π2 // P1

By composing, we therefore obtain two maps p1, p2 ∶X → P1. For a point m ∈
P1, let Fi(m) denote p−1

i (m). Then for each i and m, (πi ○ π0)−1(m) consists

of a 3-dimensional linear subspace P of Q3 ⊂ P5 and so Fi(m) = P∩Q1 ∩Q2 is

an intersection of two quadrics in P3.

In particular, each fibre is a curve of arithmetic genus 1.

We conclude that a quadric of rank 4 containing X induces two different

morphisms X → P1 induced by linear projections from the ambient projective space.

Each fibre of the morphisms is isomorphic to an intersection of two quadrics in P3.

Lemma 4.2.3 below ensures that the fibration satisfies the first condition in Definition

2.3.1. This is a non-degeneracy condition that, for example, ensures that the surface

X is not the product of a singular fibre and P1.

Remark 4.2.2. Note that for a line l ⊂X, the projections π0, π1, π2 either map the

line to a point or map the line isomorphically to another line. As a result, under the

induced elliptic fibration π ∶ X → P1, each line is mapped either isomorphically to

the base curve (l is horizontal) or the line collapses onto a single point (l is vertical).

In particular, there is no need to perform base changes as in the case of lines on the

quartic surface in Section 3.3; there is no ramification to consider when constructing

sections.

Lemma 4.2.3. Let X be a smooth complete intersection of three quadrics Q1, Q2,

Q3 in P5 and assume that the rank of Q3 is 4. Let P ⊂ P5 be a linear subspace of
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dimension 3 contained in Q3 and let Π be the pencil in P generated by the quadrics

Q1 ∩ P and Q2 ∩ P. A general quadric in this pencil Π is smooth.

Proof. Choose homogeneous coordinates x0,⋯, x5 in P5 so that P is the linear sub-

space defined by x0 = x1 = 0. In this coordinate system, an equation for the quadric

Q3 takes the form x0l0 + x1l1 = 0 where l0 and l1 are linear forms; denote by q1

a quadratic form defining Q1 and by q2 a quadratic form defining Q2. In what

follows, for a polynomial f in x0,⋯, x5 let f̃ be the polynomial obtained by setting

x0 = x1 = 0. we compute the matrix J obtained from the Jacobian matrix of the

polynomials x0l0 + x1l1, q1, q2 setting to zero the variables x0, x1:

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

l̃0 l̃1 0 0 0 0

∂̃q1

∂x0

∂̃q1

∂x1

∂̃q1

∂x2

∂̃q1

∂x3

∂̃q1

∂x4

∂̃q1

∂x5

∂̃q2

∂x0

∂̃q2

∂x1

∂̃q2

∂x2

∂̃q2

∂x3

∂̃q2

∂x4

∂̃q2

∂x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Suppose that p is a point in Q1 ∩Q2 ∩P where Q1 ∩P and Q2 ∩P are both singular.

At the point p, the rank of the matrix J is at most two, since its last four columns

vanish and hence p is a singular point of the surface X, contradicting the smoothness

assumption. Hence each point of the base locus of the pencil Π is contained in

the smooth locus of some quadric in the pencil. By Bertini’s Theorem over an

algebraically closed (hence infinite) field we conclude that the quadrics in the pencil

Π which are smooth forms an open dense subset, as required.

We shall use the following terminology while working with the elliptic fibra-

tions constructed in this section:

Definition 4.2.4. Consider the two elliptic fibrations p1, p2 ∶ X → P1 in Construc-

tion 4.2.1. Due to the symmetry present in their construction, we will not be specific

as to whether we choose the first or second projection. In this situation we say that

p2 is the dual fibration to p1.

Furthermore, for m ∈ P1 we say that the curve F1(m) is a fibre and F2(m) is the

dual fibre of m. On the other hand given a fibre or dual fibre Fi(m), we say that m

is the slope of the fibre.

The following remark is an easy consequence of the construction, nevertheless

it will be crucial in proving Theorem 1.2.4:

Remark 4.2.5. Note that the projections π0 and π1, π2 are linear morphisms. As

a result if l is a line on X, then π0(l) is a line on Q′ = P1 × P1 and so lies in one of
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the two families. In particular, if it lies in the first family then π1∣l ∶ l → P1 is an

isomorphism, and so l is a section of the map p1 ∶ X → P1. On the other hand, l is

contained in the fibre of p2 with slope p2(l).
By symmetry, if l lies in the second family of Q′ then l is contained in a fibre of p2

while being a section of p1.

Thus with respect to a particular elliptic fibration, since each line l on X occurs

either in a fibre or as a section, each line on X occurs as an irreducible component

in either a fibre or a dual fibre.

4.3 j -Invariant of the Fibres

We consider the elliptic fibration for X → P1 in Construction 4.2.1 with the assump-

tion that Q3 is a quadric of rank 4. In this section we will be investigating the

j-function j ∶ P1 → P1 that sends m to the j-invariant of the fibre of slope m in this

given elliptic fibration.

We will study it directly using a particularly nice set of coordinates that come from

the following algebraic lemma:

Lemma 4.3.1. [Fuk90, 2.3, p. 31] Suppose that M1 and M2 are symmetric ma-

trices over an algebraically closed field k and that M1 has full rank. Then we can

diagonalise both of them as follows:

ATM1A = I and ATM2A =D

where D is the matrix of eigenvalues and A is the corresponding matrix of eigen-

vectors of M−1
1 M2, that is M−1

1 M2A = AD.

Remark 4.3.2. 1. The matrix of eigenvectors A is not necessarily an orthogonal

matrix.

2. As M1 is invertible, det(M1)det(zIn−M−1
1 M2) = det(zM1−M2), so the eigen-

values of M−1
1 M2 are precisely the roots of the equation det(zM1 −M2).

3. When k is algebraically closed we are free to assume that M1 is an identity

matrix.

In the case of X = Q1∩Q2∩Q3 being a smooth complete intersection of three

quadrics with rank(Q3) = 4, the fact that the theorem requires Q1 to be invertible

is no big deal, there is at least one quadric Q in the span of Q1 and Q2 with full

rank; smoothness of X guarantees that the polynomial det(zQ1 −Q2) ∈ k[z] is not
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constantly zero (see the proof of Lemma 4.1.6). Then X = Q ∩Q2 ∩Q3 with Q full

rank.

Then, for any intersection of two quadrics Q1 and Q2 in P3, from this lemma, we

choose coordinates x0,⋯, x3 for P3 so that Q1 and Q2 are written as

Q1 ∶= {x2
0 + x2

1 + x2
2 + x2

3 = 0} and Q2 ∶= {λ0x
2
0 + λ1x

2
1 + λ2x

2
2 + λ3x

2
3 = 0}

where the λi ∈ k.

We know that Q1∩Q2 is a genus one curve; in order for it to be a true elliptic curve

we need to pick a point. The j-invariant can then be obtained by putting the curve

into Weierstrass form with this point being the point at infinity.

For an explicit formula in terms of the λi, we may let

P = (p0 ∶ p1 ∶ p2 ∶ p3) ∶= (
√
λ2 − λ1 ∶

√
λ0 − λ2 ∶

√
λ1 − λ0 ∶ 0) ∈ Q1 ∩Q2

(this point is well-defined unless all the λi coincide, in which case Q1 = Q2 and so

Q1∩Q2 is not a curve.) From here, (by Magma, which puts Q1∩Q2 into Weierstrass

form), one may check that (Q1 ∩Q2, P ) is isomorphic to the elliptic curve E with

j-invariant

j(E) = 28
⎡⎢⎢⎢⎢⎣

3

∑
i=0

λ2
i

2

⎛
⎝ ∑
j<k, j≠i≠k

(λj − λk)2⎞
⎠
− (λ0λ1 − λ2λ3)2

− (λ0λ2 − λ1λ3)2 − (λ0λ3 − λ1λ2)2
⎤⎥⎥⎥⎥⎦

3
⎛
⎝∏i<j

(λi − λj)2⎞
⎠

−1
(4.1)

In particular, note that this expression for the j-invariant is independent of the spe-

cific choice of coordinates in Lemma 4.3.1, and of the choice of the point P ∈ Q1∩Q2.

Since the denominator of the j-invariant for an elliptic curve is equal to the discrim-

inant of the curve, from the above expression we conclude that the curve Q1 ∩Q2 is

smooth if and only if the eigenvalues λ0,⋯, λ3 of M−1
1 M2 are distinct.

Note that equation (4.1) is a symmetric rational function of degree 12 in terms of

the roots λ0, λ1, λ2, λ3. We wish to obtain the same expression without having to

compute the roots of det(xM1 −M2) or utilise the specific coordinate system that

simultaneously diagonalises both quadrics.
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Let σi be the elementary symmetric polynomial of degree i in {λ0,⋯, λ3}. That is:

σ0 ∶= 1, σ1 ∶= λ0 + λ1 + λ2 + λ3,

σ2 ∶= λ0λ1 + λ0λ2 + λ0λ3 + λ1λ2 + λ1λ3 + λ2λ3,

σ3 ∶= λ0λ1λ2 + λ0λ1λ3 + λ0λ2λ3 + λ1λ2λ3,

σ4 ∶= λ0λ1λ2λ3

By definition of λi, and elementary symmetric polynomials we have

det(xM1 − yM2) =
3

∏
i=0

(x − λi) =
4

∑
i=0

(−1)4−iσ4−ix
iy4−i

and so the j-invariant (4.1) can be written as:

j(E) = 28 (σ2
2 − 3σ3σ1 + 12σ4σ0)

3 [σ2
3(σ2

2σ
2
1 − 4σ3

2σ0 − 4σ3σ
3
1 + 18σ3σ2σ1σ0 − 27σ2

3σ
2
0)

+ σ4(−4σ3
2σ

2
1 + 16σ4

2σ0 + 18σ3σ2σ
3
1 − 80σ3σ

2
2σ1σ0 − 6σ2

3σ
2
1σ0 + 144σ2

3σ2σ
2
0)

+ σ2
4(−27σ4

1 + 144σ2σ
2
1σ0 − 128σ2

2σ
2
0 − 192σ3σ1σ

2
0) + 256σ3

4σ
3
0]
−1

(4.2)

which has the advantage of being directly computable from the coefficients of the

polynomial det(xM1 − yM2), with the disadvantage of being more unwieldy and

less symmetric for computations by hand. Note that both the numerator and the

denominator for this expression are homogeneous polynomials in the σi’s of degree

6. We will use this fact in the proof of the next proposition, which is the main result

of this section.

Proposition 4.3.3. Let X be a smooth complete intersection of three quadrics

Q1,Q2,Q3 in P5, with rank(Q3) = 4. For a fibre Ft of slope t in the associated

elliptic fibration 4.2.1, the j-invariant of j(Ft) is expressible as a rational function

whose numerator and denominator are both polynomials of degree (at most) 24 in

the slope of the fibre t.

Proof. Recall that we may perform a linear change of coordinates to assume Q3 is

of the standard form x0x3 − x1x2. Then the fibration π is the composition of the

projection π0 ∶ P5 → P3 obtained by eliminating the coordinates x4, x5, together with

the projection onto, say, the first factor π1 ∶ π0(Q3)→ P1. The fibre Ft is then given

by π−1(t) = π−1
0 (π−1

1 (t)) = Q1 ∩Q2 ∩ π−1
1 (t). Now, on P3, π0(Q3) is isomorphic to
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P1 × P1 via the Segre map, and so π−1
1 (t) is given by the line

Lt ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x0 = tx2

x1 = tx3

⊂ P3
⟨x0,x1,x2,x3⟩

Therefore, Ft is given by intersecting Q1 and Q2 with π−1
0 (Lt), this amounts to

restricting Q1 and Q2 to the linear subspace P isomorphic to P3 defined by x0 = tx2

and x1 = tx3. Therefore, the corresponding symmetric matrices M1 and M2 for the

fibre Ft are 4 × 4 matrices, whose entries are polynomials of degree at most

⎛
⎜⎜⎜⎜⎜
⎝

2 2 1 1

2 2 1 1

1 1 0 0

1 1 0 0

⎞
⎟⎟⎟⎟⎟
⎠

Therefore det(xM1 − yM2) ∈ (k[t])[x, y] is a homogeneous polynomial of degree y

in x, y, whose coefficients are polynomial of (at most) degree 4 in the slope t. In

particular, in the notation of equation (4.2),

det(xM1 − yM2) =
4

∑
i=0

(−1)4−iσ4−ix
iy4−i

we see that each σi is a degree 4 polynomial in t, and hence, by equation (4.2),

j(Ft) is a rational function, whose numerator and denominator are both degree 24

polynomials in t.

Since j(Ft) is unchanged by isomorphisms of the fibre, in particular this is indepen-

dent of the choice of coordinates using in the simplifying expression for Q3.

For any elliptic curve E, the denominator of j(E) is precisely the discriminant

∆(E) of the curve. Using the following results will prove to be very useful:

Proposition 4.3.4. [MP86, Corollary 1.2] The Euler number of a singular fibre

e(Ft) is equal to the order of vanishing of the discriminant ∆ at t.

Since the construction 4.2.1 and the formula obtained by Proposition 4.3.3

for the j-invariant are explicit in terms of the defining polynomials Q1,Q2,Q3 for X,

this proposition immediately allows us to find and then identify the singular fibres

by analysing the discriminant. In order to emphasise this, in the next section we

will shortly see an example with all the calculations performed transparently.

The following result relates the Euler number of a fibre, the rank of the associated
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sublattice of the Néron-Severi group and the type of the singular fibre. For a singular

fibre Ft, let e(Ft) denote its Euler number. Let S0 be a distinguished section for the

elliptic fibration π ∶ X → P1. (S0 is the zero-section of π). Let α ∶ X → X̂ contract

all components of fibres not meeting S0. Then (with respect to S0,) X̂ can locally

be presented in Weierstrass form, and the sections defined by the three roots of the

cubic make up a cubic curve T consisting of three sections. They can be considered

as sublattices of the Néron-Severi group of X and as such have rank r(Ft).

Proposition 4.3.5. [MP86, Corollary 1.3] For all cases of singular fibres Ft, 0 ≤
e(Ft) − r(Ft) < 2. Moreover,

1. When e(Ft) − r(Ft) = 0, the fibre Ft is smooth (type I0).

2. When e(Ft) − r(Ft) = 1, the fibre Ft is semistable (type In), for some n ≥ 1.

We will soon see how the fixed structure of the Néron-Severi lattice and the

j-invariant determines which combinations of singular fibres are permitted. We shall

use this information in the next section to start to achieve bounds on the number

of lines present in the fibres of Construction 4.2.1.

4.4 Singular Fibres

As usual, X is a non-singular complete intersection of three quadrics in P5. In

the fibration π ∶ X → P1 from Construction 4.2.1, any vertical lines present in X

will occur in singular fibres, which can only occur when the expressions for the j-

invariant in Equations (4.1) and (4.2) are not defined; that is when the denominator

vanishes.

For an abstract elliptic fibration, the singular fibres are completely classified in

[Kod63], and this process is summarised in section 2.3.2. Since all fibres in the

Construction 4.2.1 are intersections of two quadrics in P3, we can narrow down the

possibilities as follows:

Lemma 4.4.1. [Bak23, Chapter 3, Page 122] The following table lists all the possi-

ble cases for a singular fibre π of the elliptic fibration in Construction 4.2.1, together

with the associated Euler number of that fibre. The notation used is the Kodaira

notation with added decoration.

Proof. We give a short justification to the completeness of the table, and examples

for the cases that do exist.

Let Q1 and Q2 be two quadrics in P3. Q1 ∩ Q2 is a degree 4 curve in P3 (with
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Type Description Euler Lines

Number

I1 Nodal Quartic Curve 1 0

I2a Line meeting Twisted Cubic in two points 2 1

I2b Two nonsingular conics meeting in two points 2 0

I3 A nonsingular conic meeting a singular conic at 3 2

two smooth points, one point on each component

I4 Four lines meeting in a square 4 4

II Cuspidal Quartic Curve 2 0

IIIa Line meeting Twisted Cubic in one point at a tangent 3 1

IIIb Two nonsingular conics meeting at one point tangentially 3 0

IV A nonsingular conic meeting a singular conic at 4 2

its singular point

R3 A double line meeting two skew lines 4 3

R2 Two double lines meeting at one point 3 2

R1 A double conic 2 0

Table 4.1: Singular Fibres in the Elliptic Fibration

homogeneous coordinates x, y, z, t), and if irreducible, it meets a general plane in

four points.

Take any two smooth points on the curve and consider the pencil of planes passing

through the line joining these two points. Each plane therefore intersects the curve

(generally) in two other points. When the curve has exactly one singular point,

any plane passing through it and another smooth base point meets the curve in

one more point and so the points of the curve are in one-to-one correspondence

with the points of a line; that is, the curve is rational. In this case we get a node

I1, (for example 2xy + z2 − t2,2xy + y2 + (1 −m2)z2 − (1 − n2)t2, or a cusp II e.g.

2xy + z2 + t2,2xy + 2yz + z2 + (1 − n2)t2.

If the curve has more than one singular point, then the curve is reducible. Indeed, if

it was irreducible, any general plane passing through two of its singular points would

miss the rest of the curve; but the union of such planes is an open dense subset of P3

and so the entire curve is contained in a union of finitely many planes. In particular,

the curve restricted to one of these planes is a degree 4 planar curve, and thus meets

any general line in four points. Being an intersection of two quadrics, any quadric

that vanishes on three collinear points vanishes on the line containing them, and so

the curve contains a plane, which is a contradiction.

We can now assume that the curve decomposes into at least two components. If
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there is a component of degree 3, then the curve consists of a line and a twisted cubic

(otherwise Q1 ∩Q2 is planar), and they intersect at either two points transversally

in case I2a (e.g. xy+zt,2xy+2czt+y2−y2) or at one point tangentially (this is case

IIIa (e.g. xy + zt, 2xy + 2zt + 2yt + z2).

All other cases consist of a union of two conics: the conics will not intersect in four

points, since then the union of them would be planar. If they are both nonsingular,

then this gives cases I2b (for example x2 + y2 + z2 + t2, x2 + y2 + cz2 + dt2) and IIIb

(for example 2xy + y2 + z2 − t2,2xy + z2 + t2). If one is singular and the other is not

then we get cases I3 (for example 2xy + z2 − t2,2xy + y2 + c(z2 − t2)) and IV (e.g.

2xy + z2 − t2,2xy + 2yz + z2 − t2) from the table.

In all other cases, both conics are singular. We can have a square of four lines I4

(x2+y2+z2+t2, x2+y2+c(z2+t2)), or when one of the lines from one conic coincides

with one the lines from the other conic, giving case R3 (xy + zt, xy + yt). R2 and R1

are the most degenerate cases when the two conics coincide, which can only happen

if one of the quadrics is in fact a double plane (either tangent or general).

Now that we have established the notation for the singular fibres, we present a

detailed example clarifying the construction of an elliptic fibration and computation

of the j-map.

Example 4.4.2. Let X ⊂ P5
⟨x0,x1,⋯,x5⟩

be the smooth surface in Section 1.1 formed

by the intersection of:

Q1 ∶= x2
0 − 2x2

1 + x2
2 − 2x2

5

Q2 ∶= x2
1 − 2x2

2 + x2
3 − 2x2

5

Q3 ∶= x2
2 − 2x2

3 + x2
4 − 2x2

5

Note that in this choice of coordinates, the symmetric matrix associated to Q1 is

diagonal diag(1,−2,1,0,0,−2) and so is a quadric of rank 4 with singular subscheme

consisting of the line l0 ∶= (x0 = x1 = x2 = x5 = 0).
Let π0 ∶= P5 → P3

⟨s,t,u,v⟩ be the projection away from l0. Q1 is then a cone over a

quadric π0(Q1), which is expressed in these coordinates as sv = tu. This P3 can be

embedded explicitly in P5 by setting

s = x0 −
√

2x1, t = −x2 −
√

2x5, u = x2 −
√

2x5, v = x0 +
√

2x1

and thus:

sv − tu = (x0 −
√

2x1)(x0 +
√

2x1) − (−x2 −
√

2x5)(x2 −
√

2x5) = x2
0 − 2x2

1 + x2
2 − 2x2

5
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as required.

We see that π0(Q1) is isomorphic to P1 × P1, so for (λ ∶ µ) ∈ P1, let L(λ∶µ) be the

line on π0(Q1) defined by (µs = λu,µt = λv). As (λ ∶ µ) ∈ P1 varies, L(λ∶µ) traces

out one of the family of lines in π0(Q1). Hence:

π−1
0 (L(λ∶µ)) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µ(x0 −
√

2x1) = λ(x2 −
√

2x5)
µ(−x2 −

√
2x5) = λ(x0 +

√
2x1)

⊂ Q1

which is simply a linear subspace in P5 isomorphic to P3. Hence the fibre with slope

(λ ∶ µ) is the curve given by

F (λ ∶ µ) ∶= π−1
0 (L(λ∶µ)) ∩Q2 ∩Q3 ⊂X

We note that when both λ ≠ 0 and µ ≠ 0, F (λ ∶ µ) is 3 dimensional linear subspace

determined by setting

(x0 =
λ2 − µ2

2λµ
x2 −

√
2
λ2 + µ2

2λµ
x5) ∩ (x1 =

−λ2 − µ2

2
√

2λµ
x2 +

λ2 − µ2

2λµ
x5)

and so

F (λ ∶ µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ4−14λ2µ2+µ4

8λ2µ2
x2

2 + x2
3 +

−λ4+µ4

4λ2µ2

√
2x2x5 + λ4−10λ2µ2+µ4

4λ2µ2
x2

5

x2
2 − 2x2

3 + x2
4 − 3x2

5

i.e.

π0(F (λ ∶ µ)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
8(v

2 − 2sv + s2) + 1
4(−3u2 + 2tu − 3t2)

−tu

which gives us symmetric matrices:

M2 ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ4−14λ2µ2+µ4

8λ2µ2
0 0

√
2−λ

4+µ4

8λ2µ2

0 1 0 0

0 0 0 0√
2−λ

4+µ4

8λ2µ2
0 0 λ4−10λ2µ2+µ4

4λ2µ2

⎞
⎟⎟⎟⎟⎟⎟
⎠

, M3 ∶=

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 −2 0 0

0 0 1 0

0 0 0 −2

⎞
⎟⎟⎟⎟⎟
⎠

then

det(xM2 − yM3) = −y(x + 2y)(−3λ4 + 18λ2µ2 − 3µ4

4λ2µ2
x2 − xy + 2y2)

= 3λ4 − 18λ2µ2 + 3µ4

4λ2µ2
x3y + 3λ4 − 16λ2µ2 + 3µ4

2λ2µ2
x2y2 + 4xy3 + 4y4
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Using expression (4.2), we have

σ0 ∶= 0

σ1 ∶=
−3λ4 + 18λ2µ2 − 3µ4

4λ2µ2

σ2 ∶=
3λ4 − 16λ2µ2 + 3µ4

2λ2µ2

σ3 ∶= −4

σ4 ∶= 4

and so the j-invariant of the general fibre is:

j(F ) ∶= 26(9λ8 − 132λ6µ2 + 490λ4µ4 − 132λ2µ6 + 9µ8)3

−34λ2µ2(λ2 − 2λµ − µ2)4(λ2 + 2λµ − µ2)4(λ2 − 6µ2)(6λ2 − µ2)

in particular, the only fibres F (λ ∶ µ) which are singular are when the denominator

of j(F ) vanishes:

Slope λ/µ of singular fibre 0 ∞ 1 ±
√

2 −1 ±
√

2 ±
√

6 ±1√
6

Multiplicity 2 2 4, 4 4, 4 1, 1 1, 1

Table 4.2: Slopes of Singular Fibres and their multiplicity

We now analyse the singular fibres one by one, and decide what type of fibre they

are:

1. When λ = 0,

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 =
√

2x1

x2 = −
√

2x5

x2
1 + x2

3 − 6x2
5

−2x2
3 + x2

4

which consists of two smooth conics intersecting at the two points

(±
√

12 ∶ ±
√

6 ∶ −
√

2 ∶ 0 ∶ 0 ∶ 1).

2. When µ = 0,

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = −
√

2x1

x2 =
√

2x5

x2
1 + x2

3 − 6x2
5

−2x2
3 + x2

4
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which consists of two smooth conics intersecting at the two points

(∓
√

12 ∶ ±
√

6 ∶
√

2 ∶ 0 ∶ 0 ∶ 1).

3. When λ/µ = 1 +
√

2,

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x2 + 2x5

x1 = −x2 + x5

−x2
2 + x2

3 − 2x2x5 − x2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

which consists of a square of 4 lines

(x3 + (x2 + x5))(x3 − (x2 + x5)) ∩ (x4 + x2 + 2x5)(x4 − x2 − 2x5)

meeting at the points: (1 ∶ 2 ∶ −1 ∶ 0 ∶ ±1 ∶ 1), (0 ∶ 3 ∶ −2 ∶ ±1 ∶ 0 ∶ 1).

4. When λ/µ = 1 −
√

2,

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x2 − 2x5

x1 = x2 + x5

−x2
2 + x2

3 + 2x2x5 − x2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

which consists of a square of 4 lines

(x3 + (x2 − x5))(x3 − (x2 − x5)) ∩ (x4 + x2 − 2x5)(x4 − x2 + 2x5)

meeting at the points: (0 ∶ 3 ∶ 2 ∶ ±1 ∶ 0 ∶ 1), (−1 ∶ 2 ∶ 1 ∶ 0 ∶ ±1 ∶ 1).

5. When λ/µ = −1 +
√

2,

F (λ ∶ µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = −x2 + 2x5

x1 = −x2 − x5

−x2
2 + x2

3 + 2x2x5 − x2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

which consists of a square of four lines

(x3 + (x2 − x5))(x3 − (x2 − x5)) ∩ (x4 + x2 − 2x5)(x4 − x2 + 2x5)
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meeting at the four points: (0 ∶ −3 ∶ 2 ∶ ±1 ∶ 0 ∶ 1), (1 ∶ −2 ∶ 1 ∶ 0 ∶ ±1 ∶ 1).

6. When λ/µ = −1 −
√

2,

F (λ ∶ µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = −x2 − 2x5

x1 = −x2 + x5

−x2
2 + x2

3 − 2x2x5 − x2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

which consists of a square of four lines

(x3 + x2 + x5)(x3 − (x2 + x5)) ∩ (x4 + x2 + 2x5)(x4 − x2 − 2x5)

meeting at the four points: (−1 ∶ 2 ∶ −1 ∶ 0 ∶ ±1 ∶ 1), (0 ∶ 3 ∶ −2 ∶ ±1 ∶ 0 ∶ 1).

7. When λ/µ =
√

6.

F (λ ∶ µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = 5
√

6
12 x2 + 7

√
12

12 x5

x1 = −7
√

12
24 x2 + 5

√
6

12 x5

−47
48 x

2
2 + x2

3 − 35
24

√
2x2x5 − 23

24x
2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

is singular at the one point (−
√

6
√

2 ∶
√

6 ∶ −
√

2 ∶ 0 ∶ 0 ∶ 1), so the fibre consists

of an irreducible quartic curve with a node.

8. When λ/µ = −
√

6.

F (λ ∶ µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = −5
√

6
12 x2 − 7

√
12

12 x5

x1 = 7
√

12
24 x2 − 5

√
6

12 x5

−47
48 x

2
2 + x2

3 − 35
24

√
2x2x5 − 23

24x
2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

is singular at the one point (−
√

6
√

2 ∶ −
√

6 ∶ −
√

2 ∶ 0 ∶ 0 ∶ 1), so the fibre consists

of an irreducible quartic curve with a node.
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9. When λ/µ =
√

6
−1

.

F (λ ∶ µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = −5
√

6
12 x2 + 7

√
12

12 x5

x1 = −7
√

12
24 x2 − 5

√
6

12 x5

−47
48x

2
2 + x2

3 + 35
√

2
24 x2x5 − 23

24x
2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

is singular at the one point (
√

12
6 ∶ −

√
6 ∶

√
2 ∶ 0 ∶ 0 ∶ 1) , so the fibre consists of

an irreducible quartic curve with a node.

10. When λ/µ = −
√

6
−1

F (λ ∶ µ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = 5
√

6
12 x2 − 7

√
12

12 x5

x1 = 7
√

12
24 x2 + 5

√
6

12 x5

−47
48x

2
2 + x2

3 + 35
√

2
24 x2x5 − 23

24x
2
5

x2
2 − 2x2

3 + x2
4 − 2x2

5

is singular at the one point (−
√

12
6 ∶

√
6 ∶

√
2 ∶ 0 ∶ 0 ∶ 1) , so the fibre consists of

an irreducible quartic curve with a node.

In summary, we see that there are 10 fibres contributing 4 squares, 4 nodes and 2

pairs of conics, and so we see here 16 of the 32 lines of X. The other 16 appear as

sections; for example the line x1 −x0 −x5, x2 −x0 − 2x5, x3 −x0 − 3x5, x4 −x0 − 4x5 is

mapped to the section corresponding to the line s = (
√

2 − 1)t, (
√

2 − 1)v = u (from

the other pairing of π0(Q1)).

4.5 Semi-Stable Fibres

Now that we have the full table, we will begin to make some simplifying assumptions.

From the Proposition4.3.4 in the last section, we saw that singular fibres occur

precisely when the discriminant of the j-map vanishes and so we see that singular

fibres are isolated and we can proceed locally.

With regard to investigating Conjecture 1.2.1, we will be looking for as many lines

as possible with limitation that the sum of all the Euler numbers of the singular

fibres is at most 24.

Let π ∶ X → P1 be an elliptic fibration. We say this fibration is semistable if each

singular fibre is of type In in the Kodaira notation.
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From checking the table we see that we get lines with the greatest “efficiency”

on the Euler number in the semistable fibres. From the duality between the fibres

and sections of Construction 4.2.1, when assuming maximality, we first choose to

maximise the number of lines that appear in fibres, and study the possibilities for

the lines in sections/dual-fibres. That is, if the discriminant vanishes with order 4,

we might as well assume that the corresponding singular fibre contains as many lines

as possible, which in this case is I4.

This leads us to the simplifying assumption:

Assumption 4.5.1. The elliptic fibration on X will be semistable; it will only

contain singular fibres of type I1, I2a, I2b, I3, I4. (In the notation of Table 4.1).

Note that we allow the presence of I1 and I2b fibres, despite containing no

lines as fibres.

Note that from [MP89], an elliptic fibration is stable if and only if the j-map has

degree exactly 24. From Lemma 4.3.3, this is the general case.

It follows from Lemma 4.3.4 that we can classify all possible semistable elliptic K3

surfaces by the 1575 partitions of 24.

Returning to the case where X is an intersection of three quadrics in P5, we have seen

from Lemma 4.4.1 that the greatest local contribution to the Euler characteristic

comes from an I4 fibre, which has an Euler number itself of 4. Thus, we are only

interested in the 169 partitions of 24 where each element of the partition is an integer

1 ≤ n ≤ 4.

In fact, we are only interested in these partitions that yield many lines; using Lemma

4.2.1 we see that in the semistable case:

e(F ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4⇒ 4 lines on F .

3⇒ 2 lines on F .

2⇒ 1 or 0 lines on F , corresponding to I2a or I2b accordingly.

1⇒ no lines in F.

In order to address Conjecture 1.2.1, we will focus only on those surfaces which can

have more than 32 lines total. The duality between the vertical and horizontal lines

means we can always assume (by changing which elliptic fibration we take from

Construction 4.2.1 if necessary) that there are more lines appearing in the fibres

than the sections. As a result we only need to look at those cases where there are 17

or more lines appearing within singular fibres. This leaves us with the following 46

semistable cases, which we list below. This list can be created using the magma
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code written in section A

The five cases with strictly more than 20 lines occurring as fibres are:

[4,4,4,4,4,4] 24 lines

[4,4,4,4,4,2a,2a] 22 lines

[4,4,4,4,4,3,1] 22 lines

[4,4,4,4,4,2a,1,1] 21 lines

[4,4,4,4,4,2a,2b] 21 lines

The six cases with exactly 20 lines occurring as fibres are:

[4,4,4,4,4,2b,2b]
[4,4,4,4,4,2b,1,1]
[4,4,4,4,3,3,1,1]

[4,4,4,4,3,2a,2a,1]
[4,4,4,4,2a,2a,2a,2a]

[4,4,4,4,4,1,1,1,1]

The six cases with exactly 19 lines occurring as fibres are:

[4,4,4,4,3,2a,2b,1]
[4,4,4,4,2a,2a,2a,2b]

[4,4,4,3,3,3,2a,1]
[4,4,4,3,3,2a,2a,2a]
[4,4,4,4,3,2a,1,1,1]

[4,4,4,4,2a,2a,2a,1,1]
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The thirteen cases with exactly 18 lines occurring as fibres are:

[4,4,4,4,3,2b,2b,1] [4,4,4,4,2a,2a,2b,2b]
[4,4,4,3,3,3,2b,1] [4,4,4,3,3,2a,2a,2b]

[4,4,4,4,3,2b,1,1,1] [4,4,4,4,2a,2a,2b,1,1]
[4,4,4,4,2a,2a,1,1,1,1] [4,4,4,4,3,1,1,1,1,1]

[4,4,4,3,3,3,1,1,1] [4,4,4,3,3,2a,2a,1,1]
[4,4,4,3,2a,2a,2a,2a,1] [4,4,4,2a,2a,2a,2a,2a,2a]

[4,4,3,3,3,3,2a,2a]

The remaining sixteen cases with exactly 17 lines occurring as fibres are:

[4,4,4,4,2a,2b,2b,2b] [4,4,4,3,3,2a,2b,2b]
[4,4,4,4,2a,2b,2b,1,1] [4,4,4,4,2a,2b,1,1,1,1]
[4,4,4,3,3,2a,2b,1,1] [4,4,4,3,2a,2a,2a,2b,1]

[4,4,4,2a,2a,2a,2a,2a,2b] [4,4,3,3,3,3,2a,2b]
[4,4,4,4,2a,1,1,1,1,1,1] [4,4,4,3,3,2a,1,1,1,1]
[4,4,4,3,2a,2a,2a,1,1,1] [4,4,4,2a,2a,2a,2a,2a,1,1]

[4,4,3,3,3,3,2a,1,1] [4,4,3,3,3,2a,2a,2a,1]
[4,4,3,3,2a,2a,2a,2a,2a] [4,3,3,3,3,3,3,2a]

In particular, there can be no more than 24 lines appearing as fibres. Using the

duality between the fibres and sections in Construction 4.2.1, this yields:

Proposition 4.5.2. Let X be a smooth K3 surface defined as an intersection of

three quadrics in P5, whose ideal contains a quadric of rank 4. Then X contains no

more than 48 lines.

4.6 Shioda-Tate Formula

Note that if π ∶X → P1 is an elliptic fibration, this is equivalent to considering X as

an elliptic curve E over the base function field k(P1) = k(t). E(k(t)) has an abelian

group structure of k(t)-rational points, which is finitely generated by Theorem 2.3.8.

From the correspondence discussed in Section 2.3.1 the sections of π ∶X → P1 form

a finitely generated abelian group of irreducible curves on X.
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Definition 4.6.1. Denote by Φ the abelian group of sections, described above. We

call it the Mordell-Weil group of sections.

Remark 4.6.2. Note that it is possible that a surface X can contain only vertical

P1s. In these cases we conclude that X can contain at most 24 lines, and X is not

a counterexample to Conjecture 1.2.1. We therefore continue with the assumption

that the group Φ contains at least one section which is a line.

Any singular fibres in X correspond to sublattices within the Néron-Severi

group NS(X). In particular, recall that an In fibre (with n ≥ 1) corresponds to a

copy of the sublattice An−1 which is a rank n − 1 sublattice with Gram Matrix of

the form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 1

1 −2 ⋱ ⋱ 0

0 ⋱ ⋱ ⋱ 0

0 ⋱ ⋱ −2 1

1 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Also note that for any section S, it is birational to P1, and hence from Proposition

2.1.9, we have S2 = −2.

Definition 4.6.3. Let Σ ∶= {σ ∈ NS(X)∣σ ⋅ F = 1, σ2 = −2} be the set of numerical

sections. Viewing Φ as a subset of NS(X), the set of numerical sections Σ contains

Φ.

Let U be the sublattice of NS(X) generated by the zero section S0 and

the class of a smooth fibre F . Then F 2 = 0 (any two smooth fibres are disjoint),

and S0 ⋅ F = 1, meaning that U is a unimodular lattice. It follows that we have a

decomposition NS(X) = U ⊕U⊥ and we therefore have a projection map p ∶ Σ→ U⊥.

Lemma 4.6.4. The map p restricts to a bijection p ∶ Σ→ U⊥.

Proof. Take σ ∈ Σ. Then

p(σ) = det

⎛
⎜⎜⎜
⎝

S0 σ F

S2
0 σ ⋅ S0 1

1 1 0

⎞
⎟⎟⎟
⎠

= σ + (S2
0 − σ ⋅ S0)F − S0

Then for τ ∈ U⊥ define

p′(τ) = τ − 1

2
(τ2)F + S0
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and we see that

p′(p(σ)) = σ + [(S0)2 − (σ ⋅ S0)]F − S0 −
1

2
[σ + [(S0)2 − (σ ⋅ S0)]F − S0]2F + S0

= σ + [(S0)2 − (σ ⋅ S0)]F − S0 −
1

2
[S2

0 − 2σ ⋅ S0 − 2]F + S0

= σ + [1

2
S2

0 + 1]F = σ

and

p(p′(τ)) = p(τ − 1

2
(τ2)F + S0)

= τ − 1

2
(τ2)F + S0 + [(S0)2 − (τ − 1

2
(τ2)F + S0) ⋅ S0]F − S0

= τ − 1

2
(τ2)F + [(S0)2 − (−1

2
(τ2) + S2

0)]F = τ − 1

2
(τ2)F + [1

2
(τ2)]F

= τ

so p and p′ are inverse bijections.

We also have a projection q ∶ Σ → Φ: any numerical section σ may be

decomposed as σ = σ0 + r where σ0 is an irreducible section and rF = 0 (that is, r

consists of components of fibres). Then define q(σ) ∶= σ0.

Let R be the sublattice of N generated by components of fibres not meeting S0. R

is therefore a negative definite sublattice with a natural decomposition as a direct

sum of the reducible fibres. Note R ⊆ U⊥, so by Lemma 4.6.4 we have a well defined

map p′ ∶ R → Σ. Then

Lemma 4.6.5. The sequence

0→ p′(R)↪ Σ
qÐ→ Φ→ 0

is exact.

Proof. Certainly p′(R) ⊆ ker(q). If q(σ) = S0 then σ = S0 + ∑i niEi + lF where

Ei ∈ U⊥. As σ2 = S2
0 we must have l = −1

2 (∑i niEi)2. Thus σ = p′ (∑i niEi) by

definition of p′.

Taking ranks of the lattices in Lemma 4.6.5 gives us:

Theorem 4.6.6 (Shioda-Tate Formula). [Shi72][Tat66] Let X be an elliptic K3

surface and let Φ be the set of irreducible sections. Then Φ is an abelian group with
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rank(Φ) finite and

rank(Pic(X)) = 2 +∑
F

r(F ) + rank(Φ)

where the sum is taken over fibres, and r(F ) is the rank of the sublattice of NS(X)
corresponding to F . In particular, when X is semistable, corresponding to the

partition [n1, . . . , ns] of 24, this formula reduces to:

rank(Pic(X)) = 26 − s + rank(Φ).

From the fact that the Picard rank rank(Pic(X)) ≤ 20 for a K3 surface, for

the fibre configuration corresponding to a partition [n1,⋯, ns] we get that rank(Φ) ≤
s−6. Table 4.3 shows what the maximal rank of Φ can be for each of the 46 cases. In

particular, we note in all cases that the maximum possible rank of Φ is 5, and that

the case [4,4,4,4,4,4] corresponding to fibres of type I4 has Φ as a finite group.

In order to yield bounds on the number of lines, we first discuss the relationship

between the group law on Φ with the structure of the Néron-Severi Group.

In what follows, use S do describe the section in the Mordell-Weil Group Φ associated

to a divisor S in the Néron-Severi Group. Moreover, for n ∈ N, denote by nS ∶=
S +⋯ + S
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.

The following lemma is the key to understand how the group laws interact with each

other:

Lemma 4.6.7. Let X → P1 be an elliptic fibration. Let S0 ∈ NS(X) denote the

section corresponding to the zero element O ∈ Φ. Then for any P,Q ∈ Φ, we have

P +Q = R in Φ ⇔ P +Q − S0 = R + V in NS(X)

where V is a vertical divisor.

Proof. See [Mir89, VII.2].

From this relationship, we get the following result:

Proposition 4.6.8. If nP = Q for n ∈ Z then nP − (n − 1)S0 = Q + V , where V is

vertical.

Proof. We proceed by induction on n. For n = 1 the result is clear (in this case

V = 0). Assume true for n = k. Then for n = k + 1, Q = (k + 1)P = kP + P so

kP − (k − 1)S0 + P − S0 = V ′ +Q. Hence (k + 1)P − kS0 = V ′ +Q as required.
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Case Number of lines as fibres Maximal rank(Φ)

[4,4,4,4,4,4] 24 0
[4,4,4,4,4,2a,2a] 22 1
[4,4,4,4,4,3,1] 22 1
[4,4,4,4,4,2a,1,1] 21 2
[4,4,4,4,4,2a,2b] 21 1
[4,4,4,4,4,2b,2b] 20 1
[4,4,4,4,4,2b,1,1] 20 2
[4,4,4,4,3,3,1,1] 20 2
[4,4,4,4,3,2a,2a,1] 20 2
[4,4,4,4,2a,2a,2a,2a] 20 2
[4,4,4,4,4,1,1,1,1] 20 3
[4,4,4,4,3,2a,2b,1] 19 2
[4,4,4,4,2a,2a,2a,2b] 19 2
[4,4,4,3,3,3,2a,1] 19 2
[4,4,4,3,3,2a,2a,2a] 19 2
[4,4,4,4,3,2a,1,1,1] 19 3
[4,4,4,4,2a,2a,2a,1,1] 19 3
[4,4,4,4,3,2b,2b,1] 18 2
[4,4,4,4,2a,2a,2b,2b] 18 2
[4,4,4,3,3,3,2b,1] 18 2
[4,4,4,3,3,2a,2a,2b] 18 2
[4,4,4,4,3,2b,1,1,1] 18 3
[4,4,4,4,2a,2a,2b,1,1] 18 3
[4,4,4,4,2a,2a,1,1,1,1] 18 4
[4,4,4,4,3,1,1,1,1,1] 18 4
[4,4,4,3,3,3,1,1,1] 18 3
[4,4,4,3,3,2a,2a,1,1] 18 3
[4,4,4,3,2a,2a,2a,2a,1] 18 3
[4,4,4,2a,2a,2a,2a,2a,2a] 18 3
[4,4,3,33,3,2a,2a] 18 2
[4,4,4,4,2a,2b,2b,2b] 17 2
[4,4,4,3,3,2a,2b,2b] 17 2
[4,4,4,4,2a,2b,2b,1,1] 17 3
[4,4,4,4,2a,2b,1,1,1,1] 17 4
[4,4,4,3,3,2a,2b,1,1] 17 3
[4,4,4,3,2a,2a,2a,2b,1] 17 3
[4,4,4,2a,2a,2a,2a,2a,2b] 17 3
[4,4,3,3,3,3,2a,2b] 17 2
[4,4,4,4,2a,1,1,1,1,1,1] 17 5
[4,4,4,3,3,2a,1,1,1,1] 17 4
[4,4,4,3,2a,2a,2a,1,1,1] 17 4
[4,4,4,2a,2a,2a,2a,2a,1,1] 17 4
[4,4,3,3,3,3,2a,1,1] 17 3
[4,4,3,3,3,2a,2a,2a,1] 17 3
[4,4,3,3,2a,2a,2a,2a,2a] 17 3
[4,3,3,3,3,3,3,2a] 17 2

Table 4.3: Maximal Ranks of Φ for each combination of singular fibres

For the negative case, if −P = Q then by definition P +Q = O in Φ. Hence P +Q−S0 =
V + S0 and so −P − (−1 − 1)S0 = Q + (−V ) as required. Combining this with the

result in the positive case proves the proposition.

This above result also works when working over Q rather than Z. For this we

will write the shorthand p
qP = Q to mean that pP = qQ in the Mordell-Weil Group

Φ.
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Proposition 4.6.9. If aP = Q for a ∈ Q then aP − (a − 1)S0 = Q + V , where V is

vertical.

Proof. We write a = m
n . By definition we have

mP = nQ

and from the previous proposition (applied twice) we have

mP − (m − 1)S0 = nQ − (n − 1)S0 + V ∈ Pic(X)⊗Q

dividing both sides of this equality by n and rearranging gives

aP − (a − 1)S0 = Q + V

for some vertical divisor V .

Unfortunately, the vertical divisors that appear in all three of the above lem-

mas make computations of intersection numbers between different sections quite

difficult, since the lattice structure of the Néron-Severi Group NS(X) is quite mys-

terious. One way of avoiding having to deal with the vertical sections is by utilising

the height pairing on Φ, which we shall introduce in the next section.

4.7 Height Pairing on the Mordell-Weil Group of Sec-

tions

The main reference for this section is the survey article [SS10], Chapters 6 and 11.

If X is an elliptic surface of the type contained in Table 4.3, while we know very

little about the structure of the lattice NS(X) other than the bound for the rank

rank(Pic(X)) ≤ 20, it does contain a large sublattice of a very specific type thanks

to Theorem 4.6.6.

Let f ∶ X → P1 be an elliptic surface with zero section S0. We will utilise the
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following notation in the remainder of this section:

F a general fibre

Fv the fibre f−1(v) above v ∈ P1

mv the number of components in the fibre Fv

R the points of P1 whose fibre is reducible.

Θv,0 the component of Fv met by the zero section. This component

will also be called “the trivial component”.

Θv,i the other components of Fv(i = 1, . . . ,mv − 1)
Tv the lattice generated by the fibre components in Fv not

meeting the zero section: Tv = ⟨Θv,i ∶ 1 ≤ i <mv − 1⟩.
Av the Gram matrix of Tv with respect to the generators Θv,i.

Definition 4.7.1. In the above notation we define the trivial lattice T ⊂ NS(X) to

be the orthogonal sum

T = ⟨S0, F ⟩⊕⊕
v∈R

Tv

We observe that as X is a K3 surface, ⟨S0, F ⟩ has Gram Matrix
⎛
⎝
−2 1

1 0

⎞
⎠

.

In all of the semistable cases in Table 4.3 all of the summands Tv are An lattices for

n ∈ {1,2,3}, and so for these, T has signature (1,1 +∑v∈R(mv − 1)).

Theorem 4.7.2. The map Φ→ NS(X)/T sending a point P to its section P mod T

gives an isomorphism

Φ ≅ NS(X)/T

Proof. We shall exhibit the inverse of the map

P → P mod T

Let E denote the generic curve and for convenience view E as an elliptic curve on

the elliptic surface X. Define a homomorphism

Div(X)→ Div(E)

as follows: take any divisor D on X; this decomposes into horizontal and vertical

parts. The horizontal part D′ intersects E properly, giving a divisor D∣E of degree

D′.E on E called the restriction of D to E. Note that D∣E is linearly equivalent to
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0 ∈ Div(E) if and only if D is linearly equivalent to a vertical divisor V on X.

By Abel’s Theorem on E the divisor D thus determines a unique point P ∈ E by

the following linear equivalence of degree zero divisors

D∣E − (D′.E)S0 = P − S0

Write ψ(D) = P . We therefore have obtained a homomorphism ψ ∶ Div(X) → Φ,

whose kernel is generated by vertical divisors and the zero section S0.

In particular, ψ is therefore defined on the quotient NS(X)/T → Φ, and gives the

required isomorphism NS(X)/T ≅ Φ.

We now aim to endow the Mordell-Weil group Φ (up to torsion) with the

structure of a positive-definite lattice. The intuition we have in mind from Theorem

4.7.2 is that the sections are ‘complementary’ to the trivial lattice T . This motivates

the following definition:

Definition 4.7.3. The essential lattice L is the orthogonal complement of the trivial

lattice T inside NS(X).

Since NS(X) is even and negative definite of rank rank(Pic(X)), and T is a

sublattice of rank 2 +∑v(mv − 1), the following lemma is immediate:

Lemma 4.7.4. The essential lattice L is even and negative definite. Furthermore,

rank(L) = rank(Pic(X)) − 2 −∑
v

(mv − 1).

Note that each section S does not precisely lie in the essential lattice L since

S meets each fibre and some fibre components non-trivially. To deal with this, we

shall use an orthogonal projection to map points of the Mordell-Weil group Φ to

elements of the essential lattice.

For simplicity, we shall tensor these lattices by Q and work in the vectorspaces

NS(X)Q ∶= NS(X) ⊗Z Q and the corresponding vectorspaces TQ, LQ. As NS(X)
is torsion free this will not affect calculations in any way, only to avoid dealing

with subtleties with finite-index lattice embeddings. The intersection pairing on the

lattice extends to a negative definite bilinear form on these vectorspaces which takes

values in Q.

Define the vector space homomorphism

φ ∶ NS(X)Q → LQ
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as the orthogonal projection with respect to the subspace TQ. For an element

D ∈ NS(X), the image φ(D) is uniquely determined by the properties φ(D) ⊥ TQ
and φ(D)−D ∈ TQ. To show the uniqueness, suppose A and B are two divisors, both

orthogonal to TQ and A −D ∈ TQ, B −D ∈ TQ. Then 0 = A.(B −D) = A.(A −D) =
B.(A−D) so A2 = A.D = A.B. If A ≠ B then A.B ≥ 0 but A2 < 0 (by Lemma 4.7.4),

giving a contradiction. Moreover, this is given on points P ∈ E by the formula

φ(P ) = P − S0 − (P .S0 + 2)F −∑
v

(Θv,1 ⋯ Θv,mv−1)A−1
v

⎛
⎜⎜⎜
⎝

P .Θv,1

⋮
P .Θv,mv−1

⎞
⎟⎟⎟
⎠

(4.3)

As we see formula (4.3), the integral matrices Av do not necessarily have

determinant ±1 and so their inverses may well not be integral. In particular, for

an elliptic surface of type [n1, ..., ns] in Table 4.3 above, φ(P ) will at most need

coefficients in 1
mZ, where m = lcm(n1,⋯, ns).

Proposition 4.7.5. The orthogonal projection φ ∶ Φ → LQ given by formula (4.3)

is a group homomorphism with kernel Tors(Φ).

Proof. Note that by Lemma 4.6.7, P +Q − S0 = P +Q + V for a vertical divisor V .

Now compute φ(P +Q)−φ(P )−φ(Q) using formula (4.3) above. After cancellation

we are left with the expression

−V + (V.S0)F +∑
v

(Θv,1 ⋯ Θv,mv−1)A−1
v

⎛
⎜⎜⎜
⎝

V.Θv,1

⋮
V.Θv,mv−1

⎞
⎟⎟⎟
⎠

Write the vertical divisor V = aF + ∑v bv,0Θv,0 + ⋯ + bv,mv−1Θv,mv−1, and we can

compute the intersection numbers in the expression above.

If Fv = I2, then the element in the sum corresponding to this fibre equates to

(bv,1 − bv,0)Θv,1. For Fv = I3 the corresponding element is

(Θv,1 Θv,2)
⎛
⎝

−2
3

−1
3

−1
3

−2
3

⎞
⎠
⎛
⎝
bv,0 − 2bv,1 + bv,2
bv,0 + bv,1 − 2bv,2

⎞
⎠
= bv,1Θv,1 + bv,2Θv,2 − bv,0(Θv,1 +Θv,2)
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While for the case Fv = I4 the corresponding term in the sum is

(Θv,1 Θv,2 Θv,3)
⎛
⎜⎜⎜
⎝

−3
4

−1
2

−1
4

−1
2 −1 −1

2
−3
4

−1
2

−1
4

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

bv,0 − 2bv,1 + bv,2
bv,1 − 2bv,2 + bv,3
bv,0 + bv,2 − 2bv,3

⎞
⎟⎟⎟
⎠

= bv,1Θv,1 + bv,2Θv,2 + bv,3Θv,3 − bv,0(Θv,1 +Θv,2 +Θv,3)

and hence for any singular fibre Fv, the related term in the sum can be written in

a shorthand as V ∣Fv − bv,0F .

Moreover, (V.S0)F = aF + ∑v bv,0F ; we see that all the terms in the expression

cancel giving φ(P +Q) − φ(P ) − φ(Q) = 0 as required, so φ is a homomorphism.

Certainly we have that Tors(Φ) ⊂ ker(φ), since any torsion element of the image is

trivial after being tensored with Q.

Now take a point P such that φ(P ) = 0. Then if P is not torsion then from the

formula, P ∈ TQ is an element of the trivial lattice. From the isomorphism in

Theorem 4.7.2, it follows that P = S0.

We are now in a position to endow Φ with the structure of a lattice by pulling

back the lattice structure on LQ:

Definition 4.7.6. Let φ ∶ Φ → LQ be the orthogonal projection. Define a bilinear

map on Φ, called the height-pairing :

P,Q ∈ Φ⇒ ⟨P,Q⟩ ∶= −φ(P ) ⋅ φ(Q) ∈ 1

m
Z

where m is defined as above. In the special case of P = Q, we denote h(P ) ∶= ⟨P,P ⟩
to be called the height of the point P .

Theorem 4.7.7. The height pairing is a symmetric bilinear pairing on Φ (equiv-

alently the generic elliptic curve E). It induces the structure of an even positive-

definite lattice on the free abelian group Φ
Tors(Φ)

.

Proof. Symmetry and bilinearity follow immediately from the properties of the inter-

section pairing on NS(X) and that φ is a homomorphism. As L is negative-definite,

we have

⟨P,P ⟩ = 0⇔ φ(P ) = 0⇔ P ∈ Tors(Φ)

showing that the height-pairing is positive-definite.

This lattice structure is only defined on the quotient Φ
Tors(Φ)

. For this reason,

any information on sections in only valid under the following assumption:
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Assumption 4.7.8. The Mordell-Weil Group of sections Φ for the surface X is

torsion-free.

Since we are concerned primarily here with surfaces whose singular fibres are

only I1, I2, I3 and I4, this gives the following easy result.

Corollary 4.7.9. Let P ∈ Φ with P ≠ S0 any section. Then h(P ) ≥ 1
12 . If further-

more the elliptic surface X contains no fibres of type I3 then h(P ) ≥ 1
4 .

Proof. This follows immediately from the fact that the height pairing is positive

definite, and for an elliptic surface of type [n1,⋯, ns], it takes values in 1
mZ, where

m ∶= lcm{n1,⋯, ns}. Since all the cases in Table 4.3 contain at least one fibre of

type I4 this means m ∈ {4,12}, depending whether the surface also contains at least

one fibre of type I3.

The height pairing is remarkably easy to compute, and can be given as an

exact formula as follows in terms of intersection numbers:

Proposition 4.7.10. Let P,Q ∈ Φ, and write P ,Q for the corresponding sections

in NS(X). The height-pairing is then given by the formula:

⟨P,Q⟩ = 2 + P .S0 +Q.S0 − P .Q −∑
v

contrv(P,Q).

In the special case when P = Q this formula reduces to

h(P ) = 4 + 2P .S0 −∑
v

contrv(P ).

Here the correction terms contrv(P,Q) depend only on the fibre components of Fv

met by the sections. Specifically, let P meet Θv,i and Q meet Θv,j (with S0 meeting

Θv,0 as usual). Then the local correction term at v is

contrv(P,Q) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if ij = 0

−(A−1
v )i,j , if ij ≠ 0

The correction term for a single section P is defined by contrv(P,P ). As the only

singular fibres are of type I1, I2, I3, I4, it follows that in every case contrv(P,Q) ≥ 0.

Proof. The formula follows from direct computation. Let us concentrate first on the

terms involving the sum. Since P meets Θv,i and no other Θv,k, while Q meets Θv,j
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the sum in the expression for φ(P ) is

∑
v

mv−1

∑
k=1

Θv,k(A−1
v )k,i

if ij ≠ 0.

Since F 2 = F.Θv,k = 0 for any choice of v, k,F , S0.F = P .F = Q.F = 1 and the

conditions of P and Q meeting irreducible fibre components with A−1
v symmetric,

we have, for ij ≠ 0:

− ⟨P,Q⟩ = P .Q − P .S0 −Q.S0 + S2
0 − 2∑

v

(A−1
v )i,j +∑

v

mv−1

∑
k,l=1

Θv,k.Θv,l(A−1
v )k,i(A−1

v )l,j

(4.4)

By definition, Θv,k ⋅Θv,l = (Av)i,j , while usual matrix multiplication gives the formula

(AB)i,j = ∑kAi,kBk,j , hence

mv−1

∑
k,l=1

Θv,k.Θv,l(A−1
v )k,i(A−1

v )l,j =
mv−1

∑
l=1

(AvA−1
v )i,l(A−1

v )l,j = (A−1
v )i,j

and so

− ⟨P,Q⟩ = P .Q − P .S0 −Q.S0 − 2 −∑
v

(A−1
v )i,j

as required.

In the case that ij = 0 we take the values of all the sums to be 0 in formula 4.4

instead, and the required result follows immediately.

We now turn our attention to lines occurring as sections. Let X be as usual;

a K3 surface formed as a smooth complete intersection of three quadrics in P5, one

of whom is a quadric of rank 4 giving rise to the pair of dual elliptic fibrations as

usual. If there are no lines on X that appear as sections, then the work here is done.

Otherwise, we will take one of them and assume that this line is the zero section S0.

Now, the explicit formula easily gives results when the section P is a line on X:

Corollary 4.7.11. If L is any line on X appearing as a section, then h(L) ≤ 6.

Moreover, h(L) ≤ 4 for all but at most two of these lines.

Proof. Since we assumed that both L and S0 are lines, L.S0 is at most 1. As

each local contribution contrv(P ) ≥ 0, it follows from the explicit formula that

h(P ) ≤ 4 + 2P .S0 ≤ 6.

On the other hand, each time we have a choice of two elliptic fibrations on X,
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and X is assumed to be semistable. In particular L and S0 can be considered as

sections or alternatively as irreducible components of fibres of the dual fibration.

Therefore S0 can at most meet 2 other irreducible components of fibres in the dual

fibration, at most two of these can be lines. We conclude that L.S0 = 0 except for

at most two choices of section lines L and in these cases we obtain an upper bound

of h(P ) ≤ 4.

We can use Corollaries 4.7.9 and 4.7.11 by performing a count of points

satisfying these bounds. These give us crude upper bounds for the numbers of lines

that can appear as sections.

In fact, this point count for lines in only needs to take into account the effective

cone of points in Φ:

Lemma 4.7.12. The set {L ∈ Φ∣L is a line} is contained in the effective cone gen-

erated by a choice of effective generators for Φ.

Proof. Take a finite generating set for Φ. For each generator P , if P is effective

then −P cannot be effective. Since Φ is torsion-free, by Proposition 4.7.5 we get an

embedding of Φ into 1
mL. Then −P .H = −P .H < 0, where H is the hyperplane class

of X. As the effective sections form a cone within the essential lattice, it follows

that any point Q ∈ Φ can correspond to an effective curve if it is a positive sum of

effective generators.

This works nicely for the case when rank(Φ) = 1:

Proposition 4.7.13. When Φ has rank 1 and is torsion-free, the elliptic surface X

can contain at most 9 lines as sections.

Proof. Let P be a generator of Φ. Then h(P ) ≥ 1
12 and so by bilinearity of the

height pairing h(nP ) ≥ n2

12 . For nP to be a line we need h(nP ) ≤ 4, so n2 ≤ 48 and

hence ∣n∣ ≤ 6 since n is an integer.

From Lemma 4.7.12, we may assume that the generator P gives an effective section

(otherwise replace P by −P ) and hence we assume that n ≥ 0. Therefore there are

at most six non-trivial points P ∈ Φ that can be lines. These together with the zero

section and the other possible two lines (see Corollary 4.7.11) gives an upper bound

of 6 + 2 + 1 lines.

Corollary 4.7.14. If X has more than 32 lines and Φ is torsion free then rank(Φ) >
1.
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Proof. Consider Table 4.3. In order to maximise lines onX under the restriction that

Φ is torsion free and rank(Φ) ≤ 1, the elliptic surface X is of type [4,4,4,4,4,2a,2a]
or [4,4,4,4,4,3,1] and by Proposition 4.7.13, X contains at most 9 + 22 = 31 lines.

We can then do the same for the other possible ranks. Let {P1,⋯, Pr} be a

generating set for Φ.

Note that by bilinearity h(a1P1 + a2P2) = a2
1 + 2a1a2 ⟨P1, P2⟩ + a2

2h(P2). In order to

maximise the results of the point count, we assume that h(P1) = h(P2) = 1
m is hence

minimal. Since the height-pairing is positive definite and ⟨P1, P2⟩ ∈ 1
mZ, it follows

that ⟨P1, P2⟩ ≥ 0. Indeed, the point-count is therefore bounded above by the case

that the height-pairing of ⟨P1, P2⟩ = 0.

The same argument applies to all other ranks; we can therefore attain maximal

possible bounds when the Gram matrix of Φ with respect to the generating set

{P1,⋯, Pr} is 1
mIr.

Subject to these conditions, the point count can be performed.

Proposition 4.7.15. The number of points height less than 4 for various cases is

given in the table below. In the same table, we use these for crude estimates on the

number of lines.

Case #{P,h(P ) ≤ 4} Number of lines

r = 2, no I3 fibres 17 17 + 2 + 21 = 40
r = 2, with an I3 fibre 43 43 + 2 + 20 = 65
r = 3, no I3 fibres 54 54 + 2 + 20 = 76
r = 3, with an I3 fibre 230 230 + 2 + 19 = 251
r = 4, no I3 fibres 165 165 + 2 + 18 = 185
r = 4, with an I3 fibre 1110 1110 + 2 + 18 = 1130
r = 5, (only case has no I3 fibres) 482 482 + 2 + 17 = 501

Table 4.4: Upper bounds on the number of points of bounded height in the remaining
cases.

We notice that all the results for lines are bigger than 32, and all results for

lines other than the first are even bigger than 48 which was attained by Proposition

4.5.2 and so further analysis is needed.

4.8 Further Ideas

Is it possible to find the generating set for the lattice 1
mIn above? If so, we can try

and establish the intersection data for these generators. Here, we present a compu-
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tational method that in principle could work for all cases, and presents necessary

configurations of lines to achieve these bounds in the previous table.

Example 4.8.1. Let us look in detail at the case for the surface [4,4,4,4,4,2a,1,1]
(21 lines as fibres) and assume that Φ ≅ Z2 as an abstract group, generated by

{P,Q}. We may assume that P and Q are lines. Note that, as is always the case

when using the height-pairing, we have to assume that Φ is torsion free, and we get

no information about torsion sections.

From Proposition 4.7.10, the explicit formula tells us that the height of P is com-

puted from knowing P .S0 and the local contributions of the section at each singular

fibre. In order to maximise the values of these point counts, we wish to minimise

therefore the value of h(P ), and so we try to maximise the sum ∑v contrv(P ) for

each case of when P .S0 ∈ {0,1}. The value of ∑v contrv(P ) can be calculated for

each case depending on which type of irreducible fibre components the section P

meets.

In this example there are 42 options (up to permutations) for how a given section

intersects the singular fibres for each case of P .S0 = 0 and the case P .S0 = 1, giving

84 cases in total (up to permutations of the I4 fibres). The candidates for minimal

height are in the table below, along with how which components of each singular

fibre is met. For instance, the first case meets 3 of the I4 fibres at their trivial

component Θ4,0, meets one at Θ4,1 and the remaining one at Θ4,2 which is disjoint

from the trivial component in that fibre. This case also meets the I2 fibre at the

trivial component Θ2,0.

In the table below each row corresponds to a section and contains a sequence of

numbers. The number in column indexed by #Θn,i indicated how many irreducible

components of type Θv,i the section meets, when Fv is of type In. Next denotes the

height of the section when the value of Li.S0 is as stated in the final column.

This data allows us to compute the value of contrv(P,Q); we are looking for the

cases where this vanishes. The idea is to go through each case and see what con-

figurations are forced in order for the height lattice to take the required shape of
1
4I2.

For example, assume L1 and L2 are the generators. In order for ⟨L1, L2⟩
to be the required value of 0, we need L1L2 = 0, since L1.S0 = L2.S0 = 1 and

having a triangle {L1, L2, S0} is forbidden by Lemma 1.1.4. Hence we require

∑v contrv(L1, L2) = 4. It is clear that for the two I1 fibres and also the I2 fibre

that the local contributions here are all zero since both L1 and L2 meet the trivial

components of each fibre. We only need to consider the five I4 fibres. From the

table, L1 intersects one of these in component Θ4,1, and another in Θ4,2 and the
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Name #Θ4,0 #Θ4,1 #Θ4,2 #Θ4,3 #Θ2,0 #Θ2,1 #Θ1,0 h(P ) Li.S0

L1 3 1 1 0 1 0 2 1
4

1
L2 3 0 1 1 1 0 2 1

4
1

L3 1 3 1 0 0 1 2 1
4

0
L4 1 2 1 1 0 1 2 1

4
0

L5 1 1 1 2 0 1 2 1
4

0
L6 1 0 1 3 0 1 2 1

4
0

L7 1 1 3 0 1 0 2 1
4

0
L8 0 5 0 0 1 0 2 1

4
0

L9 0 4 0 1 1 0 2 1
4

0
L10 0 3 0 2 1 0 2 1

4
0

L11 0 2 0 3 1 0 2 1
4

0
L12 0 1 0 4 1 0 2 1

4
0

L13 0 0 0 5 1 0 2 1
4

0

Table 4.5: The thirteen candidates for lines of minimal height with their intersections
of singular fibres on the surface [4,4,4,4,4,2,1,1].

remaining three in the trivial component each. L2 is similar, except it meets an Θ4,3

component instead of Θ4,1. Note that we have not yet specified exactly which I4

fibres are met in what way, only the number of types of component met. We need to

enumerate and go through all the possibilities for which I4 fibres are met my each

section and see if the sum of local contributions can ever reach 4.

For the case of {L1, L2}, we quickly see that the target of ∑v contrv(L1, L2) = 4 is

impossible to attain; there are only two singular fibres for which the local con-

tribution at those fibres is non-zero and this can only occur when neither sec-

tion L1 or L2 meets the trivial component; there are two cases, either there is

an I4 singular fibre where the two sections both meet at component Θ4,1 (giving

∑v contrv(L1, L2) = 3
4 +

1
2) or instead there is a singular fibre where the two sections

L1, L2 meet at components Θ4,2,Θ4,1 (giving ∑v contrv(L1, L2) = 1
4 +

1
2) respectively.

Either way, the height-pairing ⟨L1, L2⟩ > 0.

We can repeat this argument for each choice of generators {Li, Lj} with 1 ≤ i < j ≤ 13.

In each argument, we see that L1 cannot be a generator since the maximum possible

∑v contrv(L1, Lj) can be 1 + 3
4 , attained only if Lj meets in at least one Θ4,2 and a

Θ4,1. But then in whenever j > 2, we have ⟨L1, Lj⟩ = 2 + 1 + 0 − L1 ⋅ Lj − (1 + 3
4) =

1 + 3
4 −L1 ⋅Lj > 0, since L1 and Lj are assumed to be lines.

The same argument shows that {L2, Lj}, j > 2 cannot be a generating set for the

lattice 1
4I2.

Let us look at the case {L3, L4}. Here we need∑v contrv(L3, L4)+L3.L4 = 2. As both

L3 and L4 meet the I2 fibre non-trivially, the contribution from the I4 fibres must

total 3
2 or 1

2 . We can go through and check each choice of pairing between L3 and L4.
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It turns out that L3.L4 = 0. If L3 meets the five I4 fibres at Θ0,Θ1,Θ1,Θ1,Θ2 re-

spectively then we can assume L4 meets these fibres in one of the four configurations

(and 10 other permutations obtained by permuting the middle three terms).

[Θ2,Θ0,Θ1,Θ3,Θ1], [Θ1,Θ1,Θ2,Θ3,Θ0]

Now we use Lemma 7.4 on page 33 of the survey article:

Lemma 4.8.2. [SS10](Lemma 7.4) Consider the map ψ ∶ E(K) → ∏v∈RG(Fv),
taking a section to the respective fibre components that it meets. Then ψ is a group

homomorphism.

In particular, if L4 is forced to have one of these two configurations above,

then this determines the configuration for L3 + L4 and hence we can compute the

height. Since we are assuming L3 and L4 are generators for the height lattice 1
4I2,

we require that h(L3 +L4) = 1
2 . On the other hand, from the lemma for each of the

two cases, L3 +L4 is forced to intersect the I4 fibres in the following configurations

respectively:

[Θ2,Θ1,Θ2,Θ0,Θ3], [Θ1,Θ2,Θ3,Θ0,Θ2]

while from Table 4.5, L3 +L4 meets the I2 fibre trivially.

It follows that the sums of local contributions ∑v contrv(L3+L4) are 1+1+ 3
4 +

3
4 = 14

4

in both cases.

Then the height h(L3 +L4) = 4 + 2L3 +L4.S0 − 14
4 = 1

2 only when L3 +L4.S0 = 0.

The same argument works for {L3, L5}: this time there are four cases; the only cases

when h(L3 +L5) = 1
2 is when L5 intersects the I4 fibres in the configuration

[Θ2,Θ0,Θ1,Θ3,Θ3], [Θ3,Θ1,Θ2,Θ3,Θ0]

and L3 +L5.S0 = 0.

For {L3, L6} the height-pairing of ⟨L3, L6⟩ can only be zero if L6 meets the fibres

one of the configurations

[Θ3,Θ0,Θ3,Θ3,Θ2], [Θ0,Θ2,Θ3,Θ3,Θ3]

the corresponding heights h(L3 +L6) are both 4 + 2L3 +L6.S0 − 13
4 ≠ 1

2 .

For {L3, L7} there are two possibilities for L7, but each gives ∑v(L3 +L7) = 3 hence

h(L3 +L7) ≠ 1
2 .

For the {L3, Lj} with j ≥ 8 the height-pairing always satisfies ⟨L3, Lj⟩ ≠ 0.

By repeating the same argument for the remaining {Li, Lj} with 4 ≤ i < j we see
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that this can only be a generating set for 1
4I2 if i, j ∈ {4,5,6,7}; and those cases are

when i = 4 and Lj is:

L5 ∈ {[Θ1,Θ2,Θ3,Θ0,Θ3], [Θ2,Θ1,Θ3,Θ3,Θ0],
[Θ2,Θ0,Θ3,Θ1,Θ3, ], [Θ3,Θ1,Θ3,Θ0,Θ2]}

or i = 4 and Lj is:

L6 ∈ {[Θ3,Θ2,Θ3,Θ0,Θ3], [Θ2,Θ0,Θ3,Θ3,Θ3]}

or i = 4 and Lj is:

L7 ∈ {[Θ0,Θ2,Θ2,Θ1,Θ2], [Θ1,Θ0,Θ2,Θ2,Θ2], [Θ1,Θ2,Θ2,Θ2,Θ0]}.

Alternatively, i = 5 and j is either 6 or 7. In the case j = 6 we have:

L6 ∈ {Θ2,Θ3,Θ3,Θ0,Θ3], [Θ3,Θ3,Θ0,Θ2,Θ3]}

while in the case j = 7 we have instead:

L7 ∈ {[Θ1,Θ0,Θ2,Θ2,Θ2], [Θ1,Θ2,Θ2,Θ0,Θ2], [Θ0,Θ2,Θ1,Θ2,Θ2]}.

The final cases are when i = 6 and L7 is:

L7 ∈ {[Θ1,Θ2,Θ0,Θ2,Θ2], [Θ0,Θ1,Θ2,Θ2,Θ2]}

More similar calculations perhaps could be done to eliminate these possibilities for

being generating sets.

The conclusions from these calculations can be summarised in the following

theorem:

Theorem 4.8.3. Let X be an elliptic surface [4,4,4,4,4,2,1,1], whose Mordell-

Weil Group Φ is torsion-free, and has rank 2, generated by P and Q with P ,Q

lines. Then the height pairing on X gives the lattice structure 1
4I2 only if P and Q

intersect the singular fibres according to the data listed in Table 4.6.

In this table, each row is a section, and contains a sequence of numbers.

A number i in the column denote by the fibre fibre Fv means “this section meets

Θv,i, where Θ0,v denotes the trivial component, i.e. the component meeting the zero

section.

74



Fibre type: I4 I4 I4 I4 I4 I2

P : 0 1 1 1 2 1

Q: 2 1 2 0 3 1
1 2 3 0 2 1
2 0 1 3 3 1
3 1 2 3 0 1

P : 0 1 1 2 3 1

Q: 1 2 3 0 3 1
2 1 3 3 0 1
2 0 3 1 3 1
3 1 3 0 2 1
3 2 3 0 3 1
2 0 3 3 3 1
0 2 2 1 2 0
1 0 2 2 2 0
1 2 2 2 0 0

P : 0 1 2 3 3 1

Q: 2 3 3 0 3 1
3 3 0 2 3 1
1 0 2 2 2 0
1 2 2 0 2 0
0 2 1 2 2 0

P : 0 2 3 3 3 1

Q: 1 2 0 2 2 0
0 1 2 2 2 0

Table 4.6: The required configurations for generators of the Mordell-Weil group
when surface [4,4,4,4,4,2,1,1] has 40 lines.

Corollary 4.8.4. If X is an elliptic surface of type [4,4,4,4,4,2,1,1] with Mordell-

Weil Group Φ torsion free then X has at most 40 lines, attaining this bound only if

Φ ≅ Z2 generated by P,Q with P ,Q lines in configurations listed in Table 4.6.

Of course, similar tables can equally be created for the other surfaces when

rank(Φ) > 1. The reason I have not done this here is due to time constraints on the

submission deadline for this document.
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Appendix A

Code for Table 4.3

This section contains the functions I used in Magma to quickly calculate the data

present in Table 4.3. Note that the full table includes separate cases to distinguish

between I2a and I2b fibres which are described in Table 4.1, but the code below

assumes any I2 fibres are of type I2a. In order to compute the missing cases, note

that replacing an I2a fibre with an I2b removes a vertical line from the fibration,

while leaving the combinatorial data in the partition of 24 unchanged.

// First we create a sequence of all partitions of 24 that contain

// only the numbers 1..4

// As the numbers in each partition from the "Partitions()" function

// are sorted from highest to lowest, we only need to check the

// first element.

S := Partitions(24);

S1 := [];

for s in S do;

if s[1] le 4 then;

Append(~S1,s);

end if;

end for;

// The function MaxLines takes s, a partition of 24 and returns the

// maximum possible number of vertical lines in the corresponding

// singular fibres.

function MaxLines(s)

Output := 0;

for i in [1..#s] do;
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if s[i] eq 4 then Output := Output +4;

end if;

if (s[i] eq 3) or (s[i] eq 2) or (s[i] eq 1) then;

Output := Output + s[i] - 1;

end if;

end for;

return Output;

end function;

// S2 consists only of the partitions in S1 that generate 17 or more

// vertical lines. This leaves us with 30 possibilities.

S2 := [];

for s in S1 do;

if MaxLines(s) gt 16 then;

Append(~S2,s);

end if;

end for;

// The function MaxRank takes s, a partition of 24 and returns the

// maximum rank of the group of sections, as given in the Shioda-

// Tate formula.

function MaxRank(s)

return #s - 6;

end function;

// The following command prints the results of Table 3.4:

for i in [1..#S2] do;

print S2[i], MaxLines(S2[i]), MaxRank(S2[i]);

end for;
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Appendix B

Code for Example 4.8.1

This section contains the functions I used in Magma to quickly calculate all the

cases in Example 4.8.1, where I determine necessary conditions for an elliptic surface

[4,4,4,4,4,2,1,1] to have more than 32 lines. Nothing in this code contains any

advanced theory, this code could be reworked to deal with the other surfaces. This

code can be used to generate the data in Table 4.6 as follows: For each 1 ≤ i < j ≤ 13

we aim to search for the possibilities for the height-pairing ⟨Li, Lj⟩ = 0. We note

that in order for this to happen, ∑v contrv(Li, Lj) = 2 + Li.S0 + Lj .S0 − Li.Lj . We

can use the value of Li.S0 and Lj .S0 and the assumption of Li.Lj ∈ {0,1} to get two

target values t1, t2 for ∑v contrv(Li, Lj).
After pasting in the code below, simply enter in the commands:

SumLocalContributionsCases(PotentialLines[i],PotentialLines[j],t1);

SumLocalContributionsCases(PotentialLines[i],PotentialLines[j],t2);

Magma will return for you a sequence of triples. The first value in each triple

corresponds to the value of P in Table 4.6, while the second value in each triple

corresponds to a choice of Q. The third value in the triple simply serves as a

reminder for what value you assigned for the target value of ∑v contrv(Li, Lj).

//PotentialLines contains the thirteen cases from Table 12,

// consisting of combinatorial data of how many components of each

// type are met from among the I_4 fibres.

PotentialLines := [[0,0,0,1,2],[0,0,0,2,3],[0,1,1,1,2],[0,1,1,2,3],

[0,1,2,3,3],[0,2,3,3,3],[0,1,2,2,2],[1,1,1,1,1],

[1,1,1,1,3],[1,1,1,3,3],[1,1,3,3,3],[1,3,3,3,3],

[3,3,3,3,3]];
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//The function "AddSequences" simply adds two sequences term-by-term.

AddSequences := function(SeqA,SeqB);

assert(#SeqA eq #SeqB);

SeqC := [];

for i in [1..#SeqA] do;

Append(~SeqC,SeqA[i]+SeqB[i]);

end for;

return SeqC;

end function;

//The function ListPermutations takes a sequence of integers (which

// may contain repeated values) and lists all permutations of that

// given sequence. This list is filtered, with repeated permutations

// deleted.

ListPermutations := function(Input);

//The sequence of integers is copied, then we modify it by adding on

// rational numbers between 0 and 1 to ensure that in what follows,

// the sequence has no repeated terms. Note that this action is

// temporary and will be undone by flooring all these terms,

// returning to the original values.

//SeqB contains the distinct list of rational numbers between 0 and

// 1.

SeqB := [Rationals()|];

for i in [1..#Input] do;

Append(~SeqB,i/(2*(#Input)));

end for;

//Make Unique adds this list of rationals to the integer-valued

// input to guarantee all terms are distinct.

MakeUnique := AddSequences(Input ,SeqB);

//Once all terms in the sequence are unique, we typecase the

// sequence to a set. We then call the "Permutations" command which

// lists all permutations of that set, typecasting all these outputs

// back to sequences. As all entries are distinct by construction,

// this typecasting preserves all the data.

Perms := Setseq(Permutations(Seqset(MakeUnique)));

//Now we have a list of permutations we floor all of these rational

// valued sequences, returning them to the integer values we started
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// with.

for i in [1..#Perms] do;

for j in [1..#Input] do;

Perms[i][j] := Floor(Perms[i][j]);

end for;

end for;

//Perms now contains many repeated permutations. We delete these by

// typecasting the sequence of sequences into a set of sequences and

// back again, automatically deleting repeated values in "Perms".

return Setseq(Seqset(Perms));

end function;

//The function "MatchVectorsI4" deal with local contributions. You

// input two vectors each corresponding to the combinatorial data of

// which irreducible component of the singular I4 fibre is met. The

// function then returns the sum of the local contributions

// \sum_v contr_v(. , .) for the computation of the height pairing.

MatchVectorsI4 := function(Vect1,Vect2);

//I4 is simply the matrix of local correction terms for the I4

// singular fibre. See the definition of the local contribution at a

// fibre contr_v(P,Q) in the proof of a Proposition.

I4 := Matrix(Rationals(),4,4,[

[0,0,0,0],

[0,3/4,1/2,1/4],

[0,1/2,1,1/2],

[0,1/4,1/2,3/4]]);

assert(#Vect1 eq #Vect2);

sum := 0;

for i in [1..#Vect1] do;

sum := sum + I4[Integers()!(Vect1[i]+1)][Integers()!(Vect2[i]+1)];

end for;

return sum;

end function;

//The function "SumLocalContributionsCases" takes in two sets of

// combinatorial data for the intersections of two sections with the

// I4 fibres. We wish to calculate the sum of local contributions
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// between these two sections in order to get a value of the height-

// pairing. In order to do this, we need to range over all

// permutations for this combinatorial data (we may assume one is

// fixed and simply vary the other one). Then, given a target value

// for the sum of local contributions, we search for a configuration

// that returns it. Any successful configurations are stored.

SumLocalContributionsCases := function(Vect1,Vect2,Target);

Output := [];

//We assume Vect1 is fixed and go through all permutations of Vect2.

Perms := ListPermutations(Vect2);

for V in Perms do;

//We calculate the sum of local contributions between each

// permutation V of Vect2 and the fixed value Vect1.

Contr := MatchVectorsI4(Vect1,V);

if Contr eq (Target) then;

//Any pair which yields the desired value is stored...

Append(~Output,[Vect1,V,[Contr]]);

end if;

end for;

//...and returned.

return Output;

end function;
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MA, 1989. MR 986969

[CS99] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices

and groups, third ed., Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences], vol.

290, Springer-Verlag, New York, 1999, With additional contributions

by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko,

R. A. Parker, L. Queen and B. B. Venkov. MR 1662447

[Deg16] A. Degtyarev, Lines in supersingular quartics, To appear.

arXiv:1604.05836 (2016).

82



[Ebe13] Wolfgang Ebeling, Lattices and codes, third ed., Advanced Lectures

in Mathematics, Springer Spektrum, Wiesbaden, 2013, A course par-

tially based on lectures by Friedrich Hirzebruch. MR 2977354

[Fuk90] Keinosuke Fukunaga, Introduction to statistical pattern recognition,

Morgan Kaufmann, 1990.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York,

1977, Graduate Texts in Mathematics, No. 52. MR 0463157 (57

#3116)

[Hat01] A. Hatcher, Algebraic topology, Cambridge University Press, 2001.

[Hir66] F. Hirzebruch, Topological methods in algebraic geometry, Third en-

larged edition. New appendix and translation from the second German

edition by R. L. E. Schwarzenberger, with an additional section by A.

Borel. Die Grundlehren der Mathematischen Wissenschaften, Band

131, Springer-Verlag New York, Inc., New York, 1966. MR 0202713

[Huy16] Daniel Huybrechts, Lectures on k3 surfaces, Cambridge Studies in

Advanced Mathematics, Cambridge University Press, 2016.

[Kod63] K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2)

77 (1963), 563–626; ibid. 78 (1963), 1–40. MR 0184257

[MH73] John Milnor and Dale Husemoller, Symmetric bilinear forms,

Springer-Verlag, New York-Heidelberg, 1973, Ergebnisse der Math-

ematik und ihrer Grenzgebiete, Band 73. MR 0506372

[Mir89] Rick Miranda, The basic theory of elliptic surfaces, Dottorato di

Ricerca in Matematica. [Doctorate in Mathematical Research], ETS

Editrice, Pisa, 1989. MR 1078016

[MP86] Rick Miranda and Ulf Persson, On extremal rational elliptic surfaces,

Math. Z. 193 (1986), no. 4, 537–558. MR 867347 (88a:14044)

[MP89] , Configurations of In fibers on elliptic K3 surfaces, Math. Z.

201 (1989), no. 3, 339–361. MR 999732 (90h:14051)

[Mum95] David Mumford, Algebraic geometry i complex projective varieties,

Springer-Verlag, 1995.

[Mum99] , The red book of varieties and schemes, Springer-Verlag, 1999.

83
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